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Abstract

We investigate the one loop contributions to the graviton self-energy from a nonminimally cou-
pled massive scalar perturbatively on a de Sitter background space-time. We assume a positive
effective mass m2 + ξR > 0. We canonically quantize the scalar field and derive the de Sitter
invariant Chernikov-Tagirov propagator. The graviton is defined as a small perturbation around
a de Sitter background and the two one loop Feynman diagrams contributing to the graviton self-
energy are computed through the effective action. We find that the diagram contributing to the
nonlocal part of the graviton self-energy is proportional to the connected energy-momentum ten-
sor correlator, where the expectation value is with respect to the de Sitter invariant Bunch-Davies
vacuum. We employ dimensional regularization. The connected energy-momentum correlator
is calculated and only partially renormalized due to the many divergences present. The second
diagram is a local contribution to the graviton self-energy and is renormalized by the inverse
gravitational constant and cosmological constant counterterms. The renormalized graviton self-
energy can be used to quantum correct the linearized Einstein equation enabling us to investigate
if nonminimally coupled massive scalars, produced during inflation, have an effect on dynamical
gravitons and the force of gravity at one loop order. The connected energy-momentum correlator
has importance on its own as it is the variance of the expectation value of the energy-momentum
tensor and is needed to answer whether or not the expectation value of the energy-momentum
tensor is a good description for backreaction.
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Chapter 1

Introduction

The theory of primordial inflation, a period of rapid expansion in the early universe during
which quantum fluctuations were magnified to macroscopic scales forming the seeds for density
perturbations. These density perturbations later evolved into the temperature anisotropies in
the cosmic microwave background (CMB) and the large-scale structure of the universe. Inflation
is well supported by observational data from measurements to the cosmic microwave background
by the WMAP and PLANCK collaborations [16][8]1.

However, matter and radiation explain only a small part of the total energy density in the
universe. Indeed recent measurements show the density parameter for matter to be Ωm = 0.308±
0.012, with baryonic matter ΩB ≈ 0.046 and the remaining matter, dark matter, thought to be
nonrelativistic particles of unknown origin (the radiation density today is negligible). This leaves
roughly 69% of the energy contents of the universe unexplained. This unknown energy density is
dubbed dark energy (DE) and is responsible for the accelerated expansion of the universe we see
today. In the standard model of cosmology (ΛCDM) it is attributed to the cosmological constant
and measurements constrain the equation of state of dark energy to wDE = −1.006 ± 0.045
compared to wΛ = −1. One wonders if dark energy can be explained, like matter, from quantum
fluctuations in the early universe.

In the work of Glavan and Prokopec the idea, that dark energy originates from the backre-
action of quantum fluctuations originating in the primordial inflationay universe, is examined
for three different scalar models [12][14][13]. They used semiclassical gravity, which quantizes
the matter fields but leaves the background space-time, on which the matter fields live, classical.
The one-loop corrected Einstein equation takes the form

Gµν = 8πGN
[
Tµν + 〈T̂µν〉

]
, (1.1)

where Tµν is the classical energy-momentum tensor of the scalar field and 〈T̂µν〉 is the expectation
value of the energy-momentum tensor with respect to a given state of the quantum fluctuations.
The Einstein equation (1.1) is treated perturbatively by separating it into its classical part
and the first order corrections to the background space-time sourced by 〈T̂µν〉, which defines
backreaction. The growth of these quantum fluctuations were studied on an FLRW background
through the cosmological eras up to the beginning of the dark energy dominated era today. They
found that the contribution from the backreaction of a nonminimally coupled very light massive
scalar is a potentially good candidate for dark energy at late-times for the following parameter
ranges: the scalar mass m . H0, where H0 is the Hubble parameter today; the nonminimal

1Observed values of the density parameters, Hubble constant and equation of state parameter are the ones
measured by the Planck collaboration 2015 results.
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coupling parameter |ξ| ∼ 10−1 − 10−2, ξ < 0 (in this thesis we use ξ > 0 simplifying the
calculations) and the number of e-foldings NI ∼ 103 − 104. They assumed that the expectation
value of the energy-momentum tensor is a good description for backreaction, which needs to be
confirmed. To check if 〈Tµν〉 is a good description for backreaction one would need to calculate
the variance of the energy-momentum tensor, which is given by the connected energy-momentum
tensor correlator (TT-correlator).

In the work by Park and Woodard [32] minimally coupled massless scalar contributions to
the graviton self-energy on de Sitter were calculated. They used the result to calculate the effect
of scalars, produced during inflation, on the propagation of dynamical gravitons and found no
effect [31]. This result was reexamined by Leonard, Park, Prokopec and Woordard [24] and they
found that inflationary scalars produced during inflation have no significant late-time effects on
dynamical gravitons at one loop order. The graviton self-energy was also used by Park, Prokopec
and Woodard to calculate quantum corrections to the gravitational potentials of a static massive
point particle [30]. They found that the potentials were modified by a term ∝ ln a, the first such
result for a fully renormalized analysis.

These works form the main motivation of this thesis to study gravitons on de Sitter modified
by quantum fluctuations of a nonminimally coupled massive scalar and the TT-correlator. The
central problems of this thesis are:

• Computation of the contributions to the graviton self-energy from nonminimally coupled
massive scalars.

• Computation of the connected TT-correlator for the nonminimally coupled massive scalar.

The renormalized graviton self-energy can be used to quantum correct the linearized Einstein
equation enabling us to investigate whether scalars, produced during inflation, have an effect on
dynamical gravitons at one-loop order and how they effect the force of gravity as has already
been done for the minimal massless case.

The TT-correlator is important to answer whether an expectation value of the energy-
momentum tensor is a good description for backreaction, or if the distribution of energy densities
and pressures vary a lot. If they do vary a lot; one must resort to stochastic gravity, where a
stochastic source is added to the semiclassical Einstein equation to account for the fluctuations
of the energy-momentum tensor [17]. It turns out that by calculating the graviton self-energy to
one-loop order we obtain the TT-correlator automatically, making it the central object of this
thesis. For the minimally coupled massive case the nonrenormalized TT-correlator was derived
in [35].

In this thesis we work on de Sitter space and assume a de Sitter invariant vacuum, propagator,
strictly positive effective mass m2 + ξR > 0 and stricly positive nonminimal coupling ξ > 0. We
start with the introduction of some basic concepts from cosmology. We then introduce de Sitter
space and discuss some of its geometric properties and show that it is a good approximation for
inflation; moreover it is an exact model for a FLRW space-time entirely sourced by the cosmolog-
ical constant. The nonminimally coupled massive scalar is introduced and canonically quantized.
The equations of motion are exactly solved and the Chernikov-Tagirov propagator is derived.
We define the graviton field as small fluctuations around a classical de Sitter background and
derive the one loop corrections to the graviton self-energy. We find that the nonlocal contribution
to the self-energy is proportional to the connected TT-correlator. We check our result for the
nonrenormailzed TT-correlator by taking the minimal coupling limit ξ → 0 and comparing it
to [35] and taking the massless minimially coupled limit and comparing it to [32]. Our result
agrees in both cases. We employ dimensional regularization, preserving general covariance, and
extract differential operators, to localize the divergences onto delta function terms. This way
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one can obtain a form of the self-energy suitable for use in the quantum corrected linear Einstein
equation (6.2); however in the case of nonminimal coupling the TT-correlator contains many di-
vergences making renormalization a cumbersome process, which we only partially complete. For
the local contribution to the self-energy we find, unlike the massless minimally coupled scalar,
a nonvanishing contribution [32]. We conclude this thesis by discussing our results and briefly
discussing the result found in [30].
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Chapter 2

The Homogeneous and Isotropic
Universe

This chapter is a short introduction to some basics of general relativity and classical cosmology.
We derive the Einstein field equations from the action functional. The matter content of the
universe is modeled by a perfect fluid and the well known Friedmann equations are derived.
We end this chapter by briefly discussing the history of our universe, which consists of roughly
three distinct eras. The following conventions are used in this thesis unless explicitly mentioned
otherwise. The temporal component of the metric comes with a minus sign and the spatial
components carry a plus sign. For the geometric quantities we use the (+++) convention [28]
and we have taken ~ = c = 1 unless mentioned otherwise. Most results are derived in D-
dimensions; however, in this chapter we sometimes set D = 4 to make a connection to our four
dimensional universe.

2.1 FLRW Space-Time

Observations show that, at sufficiently large scales (∼ 100 Mpc and above), the universe is
homogeneous and isotropic. This is known as the cosmological principle. Homogeneity tells us
that the geometric properties of space are the same at all spatial locations. Isotropy tells us
that we cannot single out any special direction in space. At smaller scales this is evidently not
true, as there exist a significant degree of inhomogeneity in the form of galaxies, clusters, etc.
The standard practice is to assume that these inhomogeneities can be ignored, and the matter
distribution can be described by an average density when studying the large scale dynamics of the
universe. The geometric properties of space are determined by the distribution of matter through
the Einstein field equations. Furthermore, observational data suggests our universe is expanding
and spatially flat (the spatial curvature of our universe is |ΩK | < 0.005). These observations are
very well described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time, which is
defined by the invariant line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj = a(η)2ηµνdx
µdxν , (2.1)

where gµν is the metric, ηµν the Minkowski metric, a the scale factor, xi spatial coordinates, t
cosmological (physical) time and η conformal time. The cosmological and conformal time are
related via dt = adη, and the physical distance rphys between two points at fixed coordinates
x and x′ is proportional to to the comoving distance χ through the relation rphys = a(t)χ.
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Taking the derivative of this equation with respect to physical time t and evaluating it at t = t0
yields v(t0) = H0rphys(t0) known as Hubble’s law, where H0 = 67.8 ± 0.9km s−1 Mpc−1 is the
Hubble parameter today. Note that at each instant of time this metric is manifestly isotropic and
homogeneous. In general we will work in D-dimensions to facilitate dimensional regularization
and renormalization, which preserves general covariance, and is performed in chapter 5. The
dynamics of the scale factor are governed by the Einstein field equations. The pure gravity part
with cosmological constant is given by the Einstein-Hilbert action functional

SEHΛ[gµν ] =
1

16πGN

∫
dDx

(√
−gR− 2Λ

)
. (2.2)

The vacuum Einstein field equations are then obtained via the principle of least action

Gµν + Λgµν = 0, (2.3)

with

Gµν = Rµν −
1

2
Rgµν , (2.4)

Where GN is Newton’s gravitational constant, Gµν is the Einstein tensor, Rµν is the Ricci tensor
and R is the Ricci scalar. The geometric quantities are defined as follows:

• The Christoffel symbols,

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν); (2.5)

• The Riemann tensor,

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ; (2.6)

• The Ricci tensor,
Rµν = Rλµλν ; (2.7)

• The Ricci scalar
R = gµνRµν . (2.8)

When matter fields are present the total action is given by

S = SEHΛ[gµν ] + Sm[φ, gµν ], (2.9)

where Sm[φ, gµν ] is the unspecified matter content of the theory and φ are the matter fields.
After Extremising (2.9) we obtain the equations of motion

Gµν + Λgµν = 8πGNTµν , (2.10)

where

Tµν = − 2√
−g

δSm
δgµν

, (2.11)

is the energy-momentum tensor for the matter fields. Specifying the matter fields to be ideal
classical fluids the energy-momentum tensor takes the form

Tµν = (ρm + pm)uµuν + pgµν , (2.12)
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where ρm and pm are the energy density and pressure and uµ is the four velocity normalized
as uµuµ = −1. The first Friedmann equation is obtained from the 00-component of (2.10) and
reads

H2

a2
=

8πGN
3
× 6

(D − 2)(D − 1)
ρ. (2.13)

The second Friedmann equation is obtained from the trace of (2.10) and the first Friedmann
equation and reads

H′ −H2

a2
= −4πGN ×

2

D − 2
(ρ+ p), (2.14)

where H = ∂ηa/a = a′/a the conformal Hubble parameter, which is related to the Hubble
parameter H = ȧ/a = H/a and ρ and p are the effective energy density and pressure defined as

ρ = ρm +
Λ

8πGN
, p = pm −

Λ

8πGN
, (2.15)

which reduce to ρm and pm when there is no cosmological constant. Note that we can think of the
cosmological constant term as either a geometric quantity on the left-hand side of (2.10) or as part
of the energy-momentum tensor by moving it to the right-hand side. The Friedmann equations
determine the evolution of the scale factor. Cosmological relevant fluids can be characterized by
their barotropic equation of state relating their energy density and pressure, pm = wρm where w
is the equation of state parameter. For non-relativistic matter wM = 0, for radiation wR = 1/3
and for the cosmological constant wΛ = −1. A fluid with energy density ρm and pressure pm
satisfies the covariant energy conservation law

∇µTµν = ρ′m + (D − 1)H(ρm + pm) = 0. (2.16)

We can integrate equations (2.13) and (2.16) using the equation of state to obtain a relation
between the scale-factor and physical time. For D = 4 space-time dimensions we find the
following relations:

• For a radiation dominated universe a ∝
√
t,

• For a matter dominated universe a ∝ t2/3,

• For a universe dominated by the cosmological constant a ∝ exp(Ht).

Next we introduce the slow-roll parameter defined as

ε = − Ḣ

H2
= 1− H

′

H2
, (2.17)

which should not be confused with the pole prescription ε used in this thesis. For a spatially
flat FLRW space-time dominated by an ideal fluid we can use (2.13) and (2.14) to express the
slow-roll parameter in terms of the equation of state parameter

ε =
D − 1

2
(1 + w), (2.18)

which is related to the deceleration parameter q, which gives us information on how much the
expansion of the universe is speeding up or slowing down, as

q(t) = − äa
ȧ2

= ε− 1. (2.19)
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From this definition it is clear that the universe is decelerating for ε > 1 and accelerating for
ε < 1. The history of our universe roughly consists of three distinct eras: the inflationary era
(0 < εI � 1), the radiation dominated era (εR = 2) and the matter dominated era (εM =
3/2), where we have taken D = 4. Note that εI ≈ εΛ = 0, thus we see inflation can be well
approximated by a flat FLRW space-time with ε = 0, H = constant and a ∝ exp(Ht) [26]. In
chapter 3 we will show that the de Sitter space-time describes exactly such a space-time.
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Chapter 3

The de Sitter Space-Time

In this chapter we introduce the de Sitter space-time as a hyperboloid embedded in a Minkowski
space-time of one spatial dimension higher, show that it corresponds to a FLRW space-time with
exponential scale-factor and show that it is a good model for inflation. Once we have introduced
all required properties of the de Sitter space-time, we introduce the action functional of the
nonminimally coupled massive scalar and canonically quantize the fields using the Hamiltonian
formalism. We follow the analysis of [13][12][14] closely where this procedure was done for a
nonminimally coupled massive scalar field on a flat FLRW space-time. The energy-momentum
tensor is derived, the equations of motion exactly solved and the Chernikov-Tagirov propagator
calculated for a strictly positive effective mass to avoid any infrared divergences. The explicit
value of the energy-momentum tensor is not relevant for this thesis; however, we will need the
general form written in terms of the propagator, to derive the TT-correlator in appendix B. For
those interested in the explicit value of the expectation value of the energy-momentum tensor we
refer to [13][12][14], where it was calculated in terms of the mode functions for the inflationary,
radiation dominated and matter dominated eras.

3.1 Maximally Symmetric Space-Time

A maximally symmetric space-time is a space-time that admits the maximum number of Killing
vectors i.e. D(D + 1)/2 [6]. All maximally symmetric space-times have constant curvature and
the simplest example of such a space-time is the Minkowski space-time, which corresponds to
a maximally symmetric space-time with zero curvature. The de Sitter space-time is the unique
maximally symmetric space-time with positive curvature corresponding to a positive cosmological
constant1 [6]. Interest in this space-time follows from the fact that it is a good approximation to
the universe during inflation (εdS = 0 compared to 0 < εI � 1). Moreover it is an exact model
of a universe entirely sourced by the cosmological constant. Consider a (D + 1)-dimensional
Minkowski space-time. Then the D-dimensional de Sitter space-time can be represented by
embedding the hyperboloid

ηABX
AXB =

1

H2
(3.1)

in (D + 1)-dimensional Minkowski space-time Fig. 3.1. Here ηAB is the metric of the (D + 1)-
dimensional Minkowski space-time and the indices A and B run from 0 to D. H is a constant

1The unique maximally symmetric space-time with negative curvature is the anti de Sitter space-time corre-
sponding to a negative cosmological constant.
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Figure 3.1: D-dimensional hyperboloid representing de Sitter space embedded in (D + 1)-
dimensional Minkowski space. Every point XA(x) has an antipodal point XA(x̃) = −XA(x). A
straight line drawn between a point and its antipode passes through the origin, the analogue of
a diameter of a sphere. Figure adapted from [35].

and can be related to the Hubble parameter, which we shall see shortly. Note that the de Sitter
space-time is the set of points that lie at a constant distance from the origin, thus it is the
Minkowskian analogue of the D-dimensional sphere. The embedding (3.1) makes manifest the
isometries that leave the hyperboloid invariant i.e. the Lorentz transformations. We conclude
that the isometry group of de Sitter is the Lorentz group also called the de Sitter group O(1, D),
which is generated by D(D + 1)/2 Killing vectors, the maximum number a manifold can have.
We now introduce the so called flat slicing coordinates (t, xi), i = 1, . . . , D− 1 on de Sitter given
by,

X0 =
1

H
sinh(Ht) +

H

2
xix

ieHt,

Xi = eHtxi,

XD =
1

H
cosh(Ht)− H

2
xix

ieHt,

−∞ < t <∞, −∞ < xi <∞.

(3.2)

These coordinates do not cover the entire de Sitter manifold, indeed they cover only half as
can be seen from the relation X0 + XD > 0. From (3.1) and (3.2) the metric induced by the
embedding is found to be

ds2 = ηABdX
AdXB = −dt2 + e2Htδijdx

idxj ≡ gµνdxµdxν . (3.3)

This is exactly the spatially flat FLRW metric (2.1) with scale factor

a(t) = eHt. (3.4)

By taking the derivative of (3.4) one finds

H =
ȧ

a
, (3.5)
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which is indeed the Hubble parameter. Therefore, we can conclude that de Sitter space-time
corresponds to a flat FLRW space-time with constant Hubble parameter, exponential scale factor
and vanishing slow-roll parameter i.e. sourced entirely by the cosmological constant. Introducing
conformal time adη = dt we can write the induced metric as

gµν = a2(η)ηµν , (3.6)

and the scale factor as

a(η) = − 1

Hη
, η < 0, (3.7)

which is the preferred form of the de Sitter metric in this thesis. For this range of η the metric
covers the half of the de Sitter manifold corresponding to an expanding universe, which can be
seen from the scale-factor in conformal time (3.7). The other half of the manifold is given by
η > 0, which corresponds to a contracting universe, which we will not consider here.

For maximally symmetric spaces the geometric quantities take an especially simple form. The
Riemann curvature tensor of a maximally symmetric space is given by

Rρσµν = 2H2gρ[µgν]σ, (3.8)

where the square brackets denote normalized antisymmetrization

T[µν] =
1

2

(
Tµν − Tνµ

)
. (3.9)

Contracting we find the Ricci tensor

Rµν ≡ Rαµαν = (D − 1)H2gµν . (3.10)

Taking the trace we obtain the Ricci scalar

R = gµνRµν = D(D − 1)H2. (3.11)

The relation between the Hubble parameter and the cosmological constant follows from the
Einstein equation. Indeed for

Rµν −
1

2
Rgµν + Λgµν = 0, (3.12)

to hold the cosmological constant must satisfy

H2 =
2Λ

(D − 1)(D − 2)
. (3.13)

The de Sitter invariant distance function2 is defined as

1− 1

2
Y (X;X ′) = H2ηABX

AX ′B , (3.14)

which in flat coordinates in conformal form takes the form

y(x;x′) =
−(η − η′)2 + ||x− x′||2

ηη′
≡ ∆x2(x;x′)

ηη′
, 0 ≤ y ≤ 4 (3.15)

or using (3.7)
y(x;x′) = aa′H2∆x2(x;x′), (3.16)

2In the literature one often encounters the definition Z(x;x′) = 1− 1
2
Y (x;x′) for the invariant distance function.
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with a′ = ∂ηa . The function y is related to the geodesic distance ` between two points x and x′

as

y(x;x′) = 4 sin2

[
1

2
H`(x;x′)

]
, (3.17)

making the range of y evident. From (3.15) it is clear that for y < 0, y = 0 and y > 0 the points x
and x′ are timelike, lightlike and spacelike separated respectively. We have denoted the classical
invariant distance with a bar, y, to discern it from the y used when doing quantum mechanical
computations, which differs from y by a pole prescription.

We will now look at a special kind of isometry of de Sitter, the antipodal transformation.
The antipodal transformation is a mapping that sends a point x to its antipodal point x̃, defined
as XA(x̃) = −XA(x) and maps a future directed curve into a past directed curve. Note that
since η < 0 the antipodal point is not covered by our choice of coordinates (3.2). Clearly it is an
isometry of the de Sitter hyperboloid (3.1). More descriptively, the antipodal point x̃ is opposite
x such that a line drawn between these points passes through the center of the hyperboloid.
From (3.14) and (3.16) we have the relation y(x̃;x′) = 4− y(x;x′). We note that if y(x;x′) = 4,
x′ lies on the lightcone of the antipodal point x̃ of x. For y > 4 the antipodal point of x and x′

are timelike separated.
In the remainder of this thesis our background geometry will be that of de Sitter with metric

(3.6).

Figure 3.2: Causal structure of de Sitter in conformal coordinates (3.6),(3.2) The coordinates
only cover the region η < 0. The wavy line is located at η = 0 and represents future infinity.
Regions for various values of y are drawn. The lightcone of x is given by y = 0. For y = 4 the
point x′ lies on the lightcone of the antipodal point of x. Figure based on [19].

3.2 The Nonminimally Coupled Massive Scalar

In this section we introduce the action for the nonminimally coupled massive scalar field on a de
Sitter space-time. We start with the quantization of the theory and then solve the equations of
motion in terms of mode functions. Then we derive the quantized energy-momentum tensor for
the nonminimally coupled scalar field and write it in terms of the expectation value of the fields
through the method of pointsplitting. The results are kept in a sufficiently general form that
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they are also valid for flat FLRW space-times. In section 3.3 we will exactly solve the equations
of motion and derive the propagator on the de Sitter space-time.

The action for a nonminimally coupled massive scalar field in D-dimensions is given by

Sφ =

∫
dDx

√
−g
[
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − 1

2
ξRφ2

]
, (3.18)

where the dimensionless parameter ξ is the nonminimal coupling and m is the scalar field mass.
The coupling is conformal if ξ ≡ ξc = (D−2)/(4(D−1)). For conformal coupling and m = 0 the
scalar theory is left invariant under conformal transformations gµν → Ω2(x)gµν . On a de Sitter
background with metric (3.6) the Lagrangian density takes the form

Lφ =
aD−2

2

[
(φ′)2 − (∇φ)2 − (ma)2φ2 − ξa2Rφ2

]
. (3.19)

To quantize this field we use the Hamiltonian formalism. First we must define a canonical
conjugate momentum

π(x) =
∂Lφ
∂φ′

= aD−2φ′(x), (3.20)

then we define the Hamiltonian via the Legendre transform,

H[φ, π; η) =

∫
dD−1x [π(x)φ′(x)− Lφ] |φ′→a2−Dπ

=
aD−2

2

∫
dD−1x

[
π2

a2D−4
+ (∇φ)2 + (ma)2φ2 + ξa2Rφ2

]
. (3.21)

Next we promote the fields φ and π to operators and impose canonical commutation relations,

[φ̂(η,x), π̂(η,x′)] = iδD−1(x− x′) (3.22)

[φ̂(η,x), φ̂(η,x′)] = [π̂(η,x), π̂(η,x′)] = 0. (3.23)

Next we define the Hamiltonian operator as

Ĥ(η) = H[φ̂, π̂; η), (3.24)

which determines the time evolution via the Heisenberg equations for the field operators,

φ̂′(x) = i[Ĥ(η), φ̂(x)] = a2−Dπ̂(x) (3.25)

π̂′(x) = i[Ĥ(η), π̂(x)] = aD−2
[
∇2φ̂(x)− (ma)2φ̂(x)− ξa2Rφ̂(x)

]
. (3.26)

After combining these two equations we obtain the equations of motion for the field operator φ̂

φ̂′′ + (D − 2)Hφ̂′ −∇2φ̂+ a2(m2 + ξR)φ̂ = 0. (3.27)

Note that (3.27) is simply the Klein-Gorden equation for a nonminimally coupled scalar on a de
Sitter background obtained by extremising (3.18)

(�−m2 − ξR)φ̂ = 0, (3.28)

where � = gµν∇µ∇ν is the covariant d’Alembertian and H = a′/a is the conformal Hubble
parameter. Next we decompose the fields into Fourier modes,

φ̂(η,x) =
a

2−D
2

(2π)
D−1

2

∫
dD−1k

[
eik·xU(k, η)b̂(k) + e−ik·xU∗(k, η)b̂†(k)

]
, (3.29)
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where the mode function U(k, η) depends only on k = ||k||, which is implied by the symmetries
of our system. The equations of motion in terms of the mode function U(k, η) take the form of
a harmonic oscillator equation with time-dependent mass and is given by

U ′′(k, η) +

[
k2 +M2(η)

]
U(k, η) = 0, (3.30)

with

M2(η) = m2a2 +

(
ξ − D − 2

4(D − 1)

)
Ra2. (3.31)

The annihilation and creation operators are required to satisfy the commutation relations,[
b̂(k), b̂†(k′)] = δD−1(k− k′), (3.32)[
b̂(k), b̂(k′)] = 0, (3.33)[

b̂†(k), b̂†(k′)] = 0. (3.34)

These commutation relations together with the canonical commutation relations (3.22) and (3.23)
fix the Wronskian normalization of the mode function

U(k, η)U ′∗(k, η)− U∗(k, η)U ′(k, η) = i. (3.35)

The vacuum state |Ω〉 is defined to be annihilated by the annihilation operators,

b̂(k)|Ω〉 = 0, ∀k, (3.36)

which implies there is no scalar field condensate

〈Ω|φ̂(x)|Ω〉 = 0, (3.37)

nor can it be dynamically generated since we are working with effectively free fields [44] [41]
[40]. The entire Fock space can now be constructed by acting on the vacuum state with the
creation operators b†(k) and once we have specified the mode functions and its derivative at
some time it is completely determined. The vacuum state is required to not contain any infrared
(IR) divergences and reduce to the Bunch-Davies vacuum [5][7] in the ultraviolet (UV), which
reduces to the flat space positive frequency mode in the UV i.e.

U(k, η)→ U(k, η)BD
k→∞∼ e−ikη√

2k
. (3.38)

Now that the theory has been quantized we can derive the the energy-momentum tensor for the
nonminimally coupled massive scalar in the usual way,

T̂µν(x) =
−2√
−g(x)

δSφ[φ, gµν ]

δgµν(x)

∣∣∣∣∣
φ→φ̂

= ∂µφ̂(x)∂ν φ̂(x)− 1

2
gµν(x)gαβ(x)∂αφ̂(x)∂βφ̂(x)

− 1

2
gµν(x)m2φ̂(x)2 + ξ [Gµν(x) + gµν(x)�−∇µ∇ν ] φ̂(x)2, (3.39)

where in the derivation it is useful to recall

δR =
[
Rµν + gµν�−∇µ∇ν

]
δgµν . (3.40)
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Figure 3.3: Diagrammatic representation of pointsplitting Tµν . The coordinate x is split into two
points x and x′; hence the name. After taking the coincidence limit the energy-momentum tensor
〈Tµν(x)〉 is returned. This method facilitates the computation of products of energy-momentum
tensors, specifically the TT-correlator.

The expectation value of this operator with respect to the vacuum state |Ω〉 can be written in

terms of the the expectation value of the fields 〈φ̂(x)φ̂(x′)〉. This method is called pointsplitting
and a diagrammatic representation of this method is shown in Fig. (3.3).

〈T̂µν(x)〉 =

[
δα(µδ

β
ν) −

1

2
gµν(x)gαβ(x)

]
〈∂αφ̂(x)∂βφ̂(x)〉

+

[
ξGµν(x)− 1

2
gµν(x)m2

]
〈φ̂(x)2〉

+ ξ
[
gµν(x)gαβ(x)− δα(µδ

β
ν)

]
〈∇α∇βφ̂(x)2〉

=

([
(1− 2ξ) δα(µδ

β
ν) −

1

2
(1− 4ξ) gµν(x)gαβ(x)

]
∂α∂

′
β

+ ξGµν(x)− 1

2
gµν(x)m2

+ ξ
[
gµν(x)gαβ(x)− δα(µδ

β
ν)

] (
∇α∂β +∇′α∂′β

))
〈φ̂(x)φ̂(x′)〉

∣∣∣
x′→x

≡ τµν(x;x′) i∆(x;x′)|x′→x , (3.41)

This form will prove convenient in the computation of the TT-correlator in appendix B as it
facilitates the computation of products of the energy-momentum tensor.

3.3 The Chernikov-Tagirov Propagator

The Chernikov-Tagirov propagator [7] is defined as

i∆(x;x′) = 〈T
{
φ̂(x)φ̂(x′)

}
〉, (3.42)

where T denotes time ordering

T
{
φ̂(x)φ̂(x′)

}
= θ(η − η′)φ(x)φ(x′) + θ(η′ − η)φ(x′)φ(x), (3.43)
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with θ(x) the Heaviside step function defined as

θ(x) =

 0, for x < 0,
1
2 , for x = 0,
1, for x > 0,

(3.44)

and the expectation value is taken with respect to the vacuum |Ω〉. If the vacuum is invariant
under the full de Sitter group O(1, D), which we have assumed, it follows that the propagator is
invariant as well and can, up to a pole prescription, only depend on the two space-time points x
and x′ via the de Sitter invariant distance function y(x;x′) [2]. It is the analogue of the Feynman
propagator of quantum field theory on Minkowski space-time. To find i∆(x;x′) we must first
solve the equations of motion. The equations of motion for a nonminimally coupled massive
scalar on de Sitter are

(�−m2 − ξR)φ̂ = 0. (3.45)

In section 3.2 we have shown that the equations of motion for the mode functions on de Sitter
take the form of a harmonic oscillator. Up to this point those results are also valid for a general
flat FLRW spacetime. We will now use the explicit value for R on de Sitter, which in contrast
to a general flat FLRW space-time is a constant (3.10). Thus (3.30) becomes

[∂2
η + k2 +M2(η)]U(k, η) = 0, (3.46)

where

M2(η) = a2H2

(
1

4
− ν2

)
, (3.47)

with

ν2 =

(
D − 1

2

)2

−
(
m2

H2
+D(D − 1)ξ

)
≡
(
D − 1

2

)2

−M2.

(3.48)

This equation can be solved exactly in terms of Bessel functions. Defining w = k/(aH) and
u =
√
wU (3.46) reads (

w2 d2

dw2
+ w

d2

dw2
+ w2 − ν2

)
u(w) = 0. (3.49)

We recognize this equation as the Bessel differential equation which has solutions Jν(w) and
Yν(w), where Jν(w) and Yν(w) are Bessel functions of the first and second kind respectively.
Taking two linearly independent combinations of these solutions and transforming back to con-
formal coordinates we find

U(k, η) = αk

√
−πη

4
H(1)
ν (−kη) + βk

√
−πη

4
H(2)
ν (−kη), (3.50)

where

H(1)
ν (w) = Jν(w) + iYν(w),

H(2)
ν (w) = Jν(w)− iYν(w),

(3.51)

are the Hankel functions of the first and second kind and αk and βk are the Bogolyubov co-

efficients. The choice of
√
−πη/4H(1)

ν and
√
−πη/4H(2)

ν is such that they both satisfy the
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Wronskian normalization condition separately. The full solution obeys the Wronskian normal-
ization condition (3.35) for |αk|2 − |βk|2 = 1. The mode function (3.50) must have the correct
asymptotic behaviour (3.38). The asympotic expansion of the Hankel functions are given by
(9.2.7) in [1] √

−πη
4

H(1)
ν (−kη)→ 1√

2k
e−ikη, (3.52)√

−πη
4

H(2)
ν (−kη)→ 1√

2k
eikη. (3.53)

We choose αk = 1 and βk = 0 to obtain the correct asymptotic behaviour for the mode function
corresponding to the Bunch-Davies vacuum. This is known as the adiabatic vacuum state of
infinite order [33][34][27] and on de Sitter is also a Hadamard state [22]. Finally the mode
function takes the form,

U(k, η) =

√
−πη

4
H(1)
ν (−kη),

U∗(k, η) =

√
−πη

4
H(1)∗
ν (−kη) =

√
−πη

4
H(2)
ν (−kη).

(3.54)

To derive the propagator we must calculate the expectation value 〈T {φ̂(x)φ̂(x′)}〉, which in terms
of the mode function reads

〈T {φ̂(x)φ̂(x′)}〉 = (aa′)
2−D

2 =

∫
dD−1k

(2π)D−1
eik·∆x

[
θ(η − η′)U(k, η)U∗(k, η′)

+ θ(η′ − η)× h.c.

]
,

(3.55)

where ∆x = x − x′ and ∆x ≡ ||∆x||. Switching to (D − 1)-dimensional spherical coordinates
and aligning the axes such that k ·∆x = k∆x cos θD−3 we obtain

〈T {φ̂(x)φ̂(x′)}〉 =
(aa′)

2−D
2

(2π)D−1

∫ ∞
0

dk kD−2

∫ π

0

dθD−3 sinD−3(θD−3)eik∆x cos θD−3

∫
dΩD−3

×
[
θ(η − η′)U(k, η)U∗(k, η′) + θ(η′ − η)× h.c.

]
,

(3.56)

where the third integral is the surface integral of a (D − 3)-dimensional sphere∫
dΩD−3 =

2π
D−2

2

Γ
(
D−2

2

) . (3.57)

The middle integral in (3.56) can be evaluated using the identity

Jν(z) =

(
z

2

)ν
1

Γ(ν + 1/2)
√
π

∫ π

0

dθ (sin θ)2νeiz cos θ. (3.58)
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Taking 2ν = D − 3 and z = k∆x and using (3.54, 3.7) we find

〈T {φ̂(x)φ̂(x′)}〉 =
π

4

HD−2

2D−2π
D−1

2

∫ ∞
0

dk kD−2
JD−3

2
(k∆x)

( 1
2k∆x)

D−3
2

[
θ(η − η′)H(1)

ν (−kη)H(1)∗
ν (−kη′)

+ θ(η′ − η)× h.c.

]
.

(3.59)

This integral can be evaluated by using (27) in [20], which we state here for completeness∫ ∞
0

dxxµ+1Jµ(cx)H(1)
ν (ax)H(1)∗

ν (bx) =
Γ
(
µ+ 1 + ν

)
Γ
(
µ+ 1− ν

)
π

3
2 Γ
(
µ+ 3

2

)
×

( 1
2c)

µ

(ab)µ+1 2F1

(
µ+ 1 + ν, µ+ 1− ν;µ+

3

2
;

(a+ b)2 − c2

4ab

)
.

(3.60)

Using (3.60), (3.16) and noting that y(x;x′) = y(x′;x) we find the Chernikov-Tagirov propagator

i∆(x;x′) =
HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(
D
2

)
× 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y

4

)
≡ HD−2

(4π)D/2
G(y), (3.61)

where we have assumed a positive effective mass squared, m2 +ξR > 0, for which the propagator
is de Sitter invariant; y is the de Sitter invariant distance modified by a pole prescription (3.64),
which we will discuss shortly; and 2F1 is the Gauss hypergeometric function. If the mass is not
strictly positive or if ε = −Ḣ/H2 6= 0, the propagator develops de Sitter breaking contributions
due to the particle creation in the deep infrared [20, 21] and thus becomes much more complicated.
The divergent behaviour for m2 + ξR = 0 can be readily seen from (5.37) when taking s → 0.
We also note that for D = 4 and m2 + ξR > 0 the only divergence occurs when x and x′ lie on
the lightcone i.e. y = 0, which is expected as it coincides with the Minkowski result.

We will now discuss some subtleties in the derivation of the propagator. The propagator
(3.61) satisfies the equation

(�−m2 − ξR)i∆(x;x′) = i
δD(x− x′)√

−g
; (3.62)

however, in [18] it was shown that it also admits a solution of the form

i∆2(x;x′) = C 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

)
, (3.63)

where C is some constant. For nonzero C the propagator has an additional singularity at y = 4
i.e. when x′ lies on the lightcone of the antipodal point of x Fig. (3.2). Such a solution
corresponds to the so called α-vacua, which are considered unphysical; therefore, we discard this
solution [10][23][4][15][9].

We now define the pole prescription that sources the delta function in (3.62) correctly,

y(x;x′) ≡ y++(x;x′) =
−
(
|η − η′| − iε

)2
+ ||x− x′||2

ηη′
. (3.64)
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Indeed the delta function is sourced entirely by the action of � on terms proportional to y1−D/2 in
the expansion of the propagator as can be seen from (5.28). In the remainder of this thesis we will
use the modified de Sitter length function as defined in (3.64). Had we not taken α = 1 and β = 0,
additional terms with different pole prescriptions would have entered the propagator as arguments
of the hypergeometric function [18]. We list the other pole prescriptions for completeness

y(x;x′)+− =
−(η − η′ + iε)2 + ||x− x′||2

ηη′
(3.65)

y(x;x′)−+ =
−(η − η′ − iε)2 + ||x− x′||2

ηη′
(3.66)

y(x;x′)++ =
−
(
|η − η′|+ iε

)2
+ ||x− x′||2

ηη′
. (3.67)

Propagators with these pole prescriptions are called the Wightman propagators (i∆+−, i∆−+)
and the anti-time ordered propagator (i∆−−). These terms would also bring additional singu-
larities with them; thus, if one requires no additional singularities, de Sitter invariance and the
vacuum state to be precisely Bunch-Davies, the only choice is α = 1 and β = 0.

We conclude this chapter by calculating the energy-momentum tensor. It is convenient to
define derivatives of the hypergeometric function G(y),

dn

dyn
G(y) ≡ dn

dzn
G(y) =

(
− 1

4

)n
Gn(y) , (3.68)

where z = 1− y/4 and

Gn(y) =
Γ(a+ n)Γ(b+ n)

Γ(c+ n)
2F1

(
a+ n, b+ n; c+ n; 1− y

4

)
, G0(y) ≡ G(y) . (3.69)

Using (3.41), (3.68) and some identities from appendix A it is straightforward to show that

〈Tµν(x)〉 = k(D)Γ

(
1− D

2

)
HDgµν , (3.70)

where, k(D) is a dimensionless function of D not divergent for D = 4. Note that the gamma
function diverges for D = 4. We could immediately absorb this infinity into a cosmological
constant counterterm, which will become clear in chapter 5, to obtain

〈T renµν (x)〉 = ∆

(
Λ

16πGN

)
f

gµν , (3.71)

Where ∆
(

Λ
16πGN

)
f

is some finite constant. The specific value of 〈Tµν〉 is not relevant for this

work; however, it is important to note that it is nonzero and will result in a nonvanishing tadpole
diagram as shown in chapter 4.

19



Chapter 4

Graviton Self-Energy One Loop
Corrections

In this chapter we will derive the expressions for the one loop corrections to the graviton self-
energy from a nonminimally coupled massive scalar. We start by expanding the full metric
around a classical de Sitter background and derive the cubic and quartic vertices. We then
derive the graviton self-energy through the effective action. We will find that the nonlocal part
of the graviton self-energy is proportional to the connected TT-correlator, which we check against
the known results in the literature in the minimally coupled case ξ = 0 [35] and in the minimally
coupled massless case m = 0, ξ = 0 [32]. The local contribution is, unlike the minimally coupled
massless case, nonvanishing.

4.1 Cubic and Quartic Vertices

In order to find the cubic and quartic corrections to the graviton self-energy we expand the full
metric around the classical de Sitter background metric

gµν = gµν + κhµν , κ
2 = 16πGN , (4.1)

where we define the graviton field hµν as a small perturbation around the classical de Sitter
background gµν (3.6) and κ is the loop counting parameter. The inverse metric is then given by

gµν = ḡµν − κhµν + κ2hµαh ν
α +O(h3). (4.2)

We want to expand the action (3.18), where gµν now is the full metric, up to second order in
h and split the result into a zeroth, first and second order part. The zeroth order part of the
action will be the action for the nonminimally coupled scalar with respect to the background
metric, which contains no interactions. The first and second order part will contain the cubic
and quartic interactions respectively. First we need to expand the determinant of the metric

√
−g = exp

[
1

2
Tr ln(−gµν)

]
=
√
−ḡ
(

1 +
κ

2
h+ κ2

[
1

8
h2 − 1

4
hαβhαβ

])
, (4.3)

where indices are lowered and raised by the background metric gµν and h ≡ hµµ = gµνhµν . For
the expansion of R we refer to [28] and state the result
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R(1)
µν =

κ

2

(
−∇µ∇νh−�hµν +∇α∇νhαµ +∇α∇µhαν

)
(4.4)

R(2)
µν =

κ2

2

[
1

2
∇µhαβ∇νhαβ + hαβ

(
∇µ∇νhαβ +∇α∇βhµν −∇ν∇βhαµ −∇µ∇βhαν

)
+∇βh α

ν

(
∇βhαµ −∇αhβµ

)
−
(
∇βhαβ −

1

2
∇αh

)(
∇νhαµ +∇µhαν −∇αhµν

)]
, (4.5)

where the covariant derivatives are taken with respect to the background metric. We are now in
a position to expand all the quantities in (3.18). Using (4.2), (4.3), (4.4) and (4.5) we find the
intermediate result

√
−gR =

√
−g
{
R− κhµνGµν −

(
gµν�−∇µ∇ν

)
κhµν + κ2hµν

[(
1

8
gµνgρσ −

1

4
gµρgνσ

)
R

− 1

2
gρσRµν + gνρRµσ

]
hρσ

+ κ2hµν
[
gµρgνσ�+ gρσ∇µ∇ν − 2gµρ∇σ∇ν −

1

2
gµνgρσ�+

1

2
gµν∇ρ∇σ

]
hρσ

+ κ2

[
3

4
gµρgνσ∇

α
hµν∇αhρσ −

1

2
gµσ∇ρhµν∇νhρσ − gµρ∇νhµν∇σhρσ

+ gρσ∇νhµν∇µhρσ −
1

4
gµνgρσ∇

α
hµν∇αhρσ

]}
, (4.6)

where R and Rµν are the Ricci scalar and Ricci tensor of the background metric. Finally we find

S = S + S(3) + S(4), (4.7)

with

S =

∫
dDx

√
−g
[
−1

2
gµν∂µφ(x)∂νφ(x)− 1

2
m2φ2(x)− 1

2
ξRφ2(x)

]
, (4.8)

which is precisely the action of the nonminimally coupled massive scalar on the de Sitter back-
ground. Secondly the first order part

S(3) =

∫
dDx

√
−gκ

2
hµν(x)Tµν(x), (4.9)

which contains cubic interactions between one graviton and two scalars (left diagram of Fig. 4.1),
where Tµν(x) is precisely the energy-momentum tensor on the background metric (2.11)

Tµν(x) =
2

κ
√
−g(x)

δS

δhµν(x)

∣∣∣∣
h→0

= ∂µφ(x)∂νφ(x)− 1

2
gµν(x)gαβ(x)∂αφ(x)∂βφ(x)

− 1

2
gµν(x)m2φ(x)2 + ξ

[
Gµν(x) + gµν(x)�−∇µ∇ν

]
φ(x)2. (4.10)

Note the sign in the definition of Tµν , which comes from the positive sign of the hµν∂µφ∂νφ part
of the expanded action. Lastly the second order part

S(4) =

∫
dDx

√
−g
∫

dDx′
κ2

2
hµν(x)Vµνρσ(x− x′)hρσ(x′), (4.11)

21



Figure 4.1: The cubic vertex corresponding to graviton-scalar-scalar interactions to the left
and the quartic vertex corresponding to graviton-graviton-scalar-scalar interactions to the right.
Curly lines are gravitons and dashed lines are scalars.

which contains quartic interactions between two gravitons and two scalars (right diagram of Fig.
4.1), with

Vµνρσ(x− x′) =
1

κ2
√
−g(x)

δ2S

δhρσ(x′)δhµν(x)
(4.12)

= −1

2

{[
1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

](
gαβ∂αφ(x)∂βφ(x) +mφ2(x) + ξRφ2(x)

)
− 1

2

(
gρσ∂(µφ(x)∂ν)φ(x) + gµν∂(ρφ(x)∂σ)φ(x)

)
+ gρ)(ν∂µ)φ(x)∂(σφ(x) + gµ)(ρ∂σ)φ(x)∂(νφ(x)

+ ξφ2(x)

[
gρ)(νRµ)(σ + gµ)(ρRσ)(ν −

1

2

(
gρσRµν + gµνRρσ)

]}
δD(x− x′)

− 1

2
ξ

{(
φ2(x) + φ2(x′)

)[
gµ(ρgσ)ν�− 2gµ)(ρ∇σ)∇(ν −

1

2
gµνgρσ�

]
+

[
1

2
φ2(x) + φ2(x′)

]
gµν∇(ρ∇σ)

+

[
1

2
φ2(x′) + φ2(x)

]
gρσ∇(µ∇ν)

− 3

2
φ2(x)gµ(ρgσ)ν�+ 3φ2(x)gµ)(ρ∇σ)∇(µ

− φ2(x)

[
gµν∇(ρ∇σ) + gρσ∇(µ∇ν)

]
+

1

2
gµνgρσφ

2(x)�

}
δD(x− x′) + terms proportional to ∇φ2(x), (4.13)

where the terms proportional to ∇φ2(x) will vanish once we take the expectation value because
〈φ(x)2〉 is a constant on de Sitter.
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Figure 4.2: Diagrammatic representation of the graviton self-energy −i
[
µνΣρσ

]
(x;x′) in the

presence of a nonminimally coupled massive scalar to one loop order. The left diagram consists

of two cubic vertices and is proportional to ∝ 〈T {T̂µν(x)T̂ ρσ(x′)}〉. The middle diagram consists
of one quartic vertex and gives a local contribution to the graviton self-energy. The right diagram
is the counterterm vertex. Curly lines are gravitons and dashed lines are scalars.

4.2 One loop Corrections

The effective action can be obtained from

eiΓ[g] =

∫
Dφ eiS[g+h,φ] =

∫
Dφ ei(S+S(3)+S(4))

=

∫
Dφ eiS

[
1 + iS(3) + iS(4) +

1

2
(iS(3))2 + · · ·

]
= 1 + 〈iS(3)〉+ 〈iS(4)〉+

1

2
〈(iS(3))2〉+ · · · ,

(4.14)

where we have expanded the interacting part of the action up to relevant order [19][45]. The
metric is in principle a quantum field as well and one would expand the metric as a mean plus
fluctuations i.e. ĝ = 〈ĝ〉+κh. We are however expanding around a classical background g 6= 〈ĝ〉,
which as we will see shortly, has consequences. Moreover, one would similarly expand the scalar
field φ = 〈φ〉 + ϕ and integrate out the fluctuations. However, in our case there is no scalar
condensate as we discussed in chapter 3.2; therefore, the fluctuations are just φ. Next we expand
the left-hand side of (4.14)

1 + iΓ[g] = 1 + iΓ[g] + iΓh[g] + iΓhh[g] + iΓ≥h3 [g], (4.15)

where

iΓhh = −1

2

∫
dDx

∫
dDx′ hµν(x)i

[
µνΣρσ

]
(x;x′)hρσ(x′), (4.16)

with

−i
[
µνΣρσ

]
(x;x′) = −i

[
µνΣρσ

]
3pt

(x;x′) +−i
[
µνΣρσ

]
4pt

(x;x′) + counterterms (4.17)

The graviton self-energy µνΣρσ(x;x′), which is the sum of the diagrams in Fig. 4.2, can then be
read off by comparing (4.14) with (4.15). Note that at this point we have not yet introduced
counterterms; thus, the counterterm diagram is not included and the graviton self-energy is
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Figure 4.3: The tadpole diagram corresponding to 〈S(3)〉. It quantum corrects the classical
background gµν towards the true quantum average metric 〈ĝµν〉 to one loop order. Curly lines
are gravitons and dashed lines are scalars.

therefore not yet renormalized. Writing down the expectation values in (4.14) explicitly we find

1

2
〈(iS(3))2〉 = −1

2

∫
dDx

√
−g(x)

∫
dDx′

√
−g(x′)

κ2

4
hµν(x)〈T {T̂µν(x)T̂ ρσ(x′)}〉hρσ(x′)

(4.18)

〈iS(4)〉 = i

∫
dDx

√
−g(x)

∫
dDx′

κ2

2
hµν(x)〈Vµνρσ(x− x′)〉hρσ(x′) (4.19)

〈iS(3)〉 = i

∫
dDx

√
−g(x)

κ

2
hµν〈Tµν(x)〉. (4.20)

Note that the S(3) part contains a cubic vertex Fig. 4.1, thus 〈(iS(3))2〉 contains two cubic
vertices. The only diagram containing two cubic vertices at this order is the left diagram in Fig.
4.2 to which it corresponds. Similarly the 〈S(4)〉 part gives rise to a quartic vertex Fig. 4.1 and
relates to the middle figure of Fig. 4.2. Note that we also have a tadpole diagram Fig. 4.3
coming from the S(3) part. It is proportional to the energy-momentum tensor ∝ 〈Tµν〉, therefore
nonzero since 〈Tµν〉 6= 0 (3.70). The nonvanishing tadpole arises from the expansion around a
classical background instead of the average of a quantum operator 〈ĝ〉 and it quantum corrects
our classical background on de Sitter. Finally we can write down the nonrenormalized graviton
self-energy

−i
[
µνΣρσ

]
3pt

(x;x′) = −κ
2

4

√
−g(x)

√
−g(x′)〈T {T̂µν(x)T̂ ρσ(x′)}〉, (4.21)

and
−i
[
µνΣρσ

]
4pt

(x;x′) = iκ2
√
−g(x)〈Vµνρσ(x− x′)〉. (4.22)

For the explicit expression of the self-energy we need the value of the TT-correlator and 〈Vµνρσ〉.
The derivation of the TT-correlator 〈T {T̂µν(x)T̂ρσ(x′)}〉 is a lengthy calculation and has been
the main work of this thesis. Here we state the result and for the full calculation we refer to
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appendix B where it is done in detail. The connected TT-correlator is given by

〈T {T̂µν(x)T̂ ρσ(x′)}〉 =
H2D−4

(4π)D

{[
∂µy∂νy∂

′
ρy∂
′
σy
][

4ξ2 d
4G

dy4
G− 8ξ(1− 2ξ)

d3G

dy3

dG

dy

+ 2(1− 4ξ + 6ξ2)
(d2G

dy2

)2
]

+
[
∂(µy∂ν)∂

′
(ρy∂

′
σ)y
][

16ξ2 d
3G

dy3
G+ 4(1− 8ξ + 12ξ2)

d2G

dy2

dG

dy

]
+
[
∂µ)∂

′
(ρy∂

′
σ)∂(νy

][
8ξ2 d

2G

dy2
G+ 2(1− 2ξ)2

(dG
dy

)2
]

+H2
[
∂µy∂νyg

′
ρσ + gµν∂

′
ρy∂
′
σy
][

(2− y)
[
4ξ2
]d3G

dy3
G

+ (2−y)
[
D−2− 8(D−1)ξ + 4(4D−1)ξ2

]d2G

dy2

dG

dy

+
[(

1−M2
)

+ 4
(
D−1+2M2

)
ξ − 4

(
3D−1+4M2

)
ξ2
](dG

dy

)2

+
[
−M2 + 8M2ξ − 4(D+1+4M2)ξ2

]d2G

dy2
G

]
+
[
H4gµνg

′
ρσ

][
16ξ2 d

2G

dy2
G+

[
2(D2−D−4)−16(D2−3)ξ+16(2D2+2D−3)ξ2

+
4y−y2

2

(
−(D−1)2+2M2+4

(
(2D−1)(D−1)−4M2

)
ξ

− 8(2D2−2D+1−4M2)ξ2
)](dG

dy

)2
+ (2−y)

[
−(D−1)M2+8DM2ξ−4

(
D−1+4(D+1)M2

)
ξ2
]dG
dy
G

+
[
M4−2M2

(
(D−1)+4M2

)
ξ + 2

(
(D−1)2 + 2(2D−3)M2+8M4

)
ξ2
]
G2

]}
.

(4.23)

Note that in the minimal coupling limit, when ξ = 0, the TT-correlator is much simpler as
the terms that are most difficult to renormalize drop out. The nonrenormalized TT-correlator
for a minimally coupled massive scalar on de Sitter was calculated by Perez-Nadal, Roura and
Verdaguer [35]. Park and Woodard [32] used the result of Perez-Nadal, Roura and Verdaguer
to check their calculation of the graviton self-energy for the minimally coupled massless scalar,
which was derived by the use of Feynman rules, and found agreement. We will now compare
our result (4.23) in the limit ξ = 0 with the result of Perez-Nadal, Roura and Verdaguer. The
connected TT-correlator of Perez-Nadal, Roura and Verdaguer, denoted Fabc′d′ , for the minimally
coupled massive case is given by (28) in [35]:

Fabc′d′ = P (µ)nanbnc′nd′ +Q(µ)(nanbgc′d′ + nc′nd′gab)

+R(µ)(4n(agb)(c′nd′) + S(µ)2ga(c′gd′)b + T (µ)gabgc′d′ , .
(4.24)

where (un)primed indices always go with (un)primed coordinates. Note that their TT-correlator
is expressed in five basis tensors that are different from the ones we use and the variable µ. They
are defined as follows:
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• µ(x;x′) is the geodesic distance between x and x′, which in our notation is µ(x;x′) =
H`(x;x′);

• na and na′ are the unit tangent vectors to the geodesic at the points x and x′, pointing
outward, and defined as na = ∇aµ and na′ = ∇a′µ;

• gab′ is the parallel propagator which parallel transports a vector from x to x′ along the
geodesic, which at coincidence becomes the metric;

• gab and gc′d′ are the metric tensors at the points x and x′ respectively.

From (3.17) we find that the de Sitter invariant distance can be written in terms of µ(x;x′) as

cos(µ) ≡ Z = 1− y

2
, (4.25)

and from (4.25) we find the relation

dy

dµ
=
√

4y − y2. (4.26)

We can now convert their tensors into ours which was done in [32]. The results are

na =
1

H
√

4y − y2
∂ay,

nb′ =
1

H
√

4y − y2
∂b′y,

gab′ = − 1

2H2

[
∂a∂b′y +

1

4− y
∂ay∂b′y

]
,

(4.27)

where factors of H which are set to 1 in [35] have been restored. The five basis tensors can now
be written in terms of our five basis tensors,

nanbnc′nd′ =
1

H2(4y − y2)2
∂ay∂by∂c′y∂d′y,

nanbgc′d′ + nc′nd′gab =
1

H2(4y − y2)

[
gab∂c′y∂d′y + ∂ay∂bygc′d′

]
,

4n(agb)(c′nd′) = − 2

H4(4y − y2)
∂(ay∂b)∂(c′y∂d′)y −

2

H4(4y − y2)(4− y)
∂ay∂by∂c′y∂d′y,

2ga(c′gd′)b =
1

2H4
∂a)∂(c′y∂d′)∂(by +

1

H4(4− y)
∂(ay∂b)∂(c′y∂d′)y,

+
1

2H4(4− y)2
∂ay∂by∂c′y∂d′y,

gabgc′d′ = gabgc′d′ .

(4.28)
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Next we need the µ-dependent coefficients P , Q, R, S and T . They are [35]

P = 2G2
1 ,

Q = G2
1 + 2G1G2 −

m2

H2
G′2,

R = G1G2,

S = G2
2 ,

T =
1

2
G2

1 − G1G2 +
D − 4

2
G2

2 +
m2

H2
G′2 +

1

2

m4

H4
G2,

(4.29)

where G is the minimally coupled massive scalar propagator

G(µ) =
HD−2

(4π)D/2
Γ
(
D−1

2 + νD
)

Γ
(
D−1

2 − νD
)

Γ
(
D
2

)
× 2F1

(
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
; 1− y

4

)
, (4.30)

with

ν2
D =

(
D − 1

2

)2

− m2

H2
, (4.31)

and G1 and G2 are defined as

G(µ) = G′′(µ)− G′(µ) cscµ, (4.32)

G2(µ) = −G′ cscµ, (4.33)

where primes on G are derivatives with respect to µ. By the chain rule and (4.26) we find

dG
dµ

=
√

4y − y2
dG
dy
, (4.34)

d2G
dµ2

= (4y − y2)
d2G
dy2

+ (2− y)
dG
dy
. (4.35)
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We can now rewrite the expressions for P , Q, R, S and T (4.29) in terms of y and derivatives of
G as follows

P = 2(4y − y2)2

(
d2G
dy2

)2

− 4y(4y − y2)
d2G
dy2

dG
dy

+ 2y2

(
dG
dy

)2

,

Q = −(4y − y2)2

(
d2G
dy2

)2

− 2(2− y)(4y − y2)
d2G
dy2

dG
dy

+ (4y − y2)

(
dG
dy

)2

− m2

H2
(4y − y2)

(
dG
dy

)2

,

R = −2(4y − y2)
d2G
dy2

dG
dy

+ 2y

(
dG
dy

)2

,

S = 4

(
dG
dy

)2

,

T =
1

2

[
(4y − y2)2

(
d2G
dy2

)2

+ 2(2− y)(4y − y2)
d2G
dy2

dG
dy

+ [4(D − 4)− (4y − y2)]

(
dG
dy

)2]
+
m2

H2
(4y − y2)

(
dG
dy

)2

+
1

2

m4

H4
G2.

(4.36)

Using (4.28), (4.36) and the hypergeometric differential equation for G[
(4y−y2)

d2

dy2
+D(2−y)

d

dy
− m2

H2

]
G(y) = 0, (4.37)

to reduce all second order derivative terms of the form (4y − y2)d
2G
dy2 , we can write the TT-

correlator of [35] as

Fµνρ′σ′ =
[
∂µy∂νy∂

′
ρy∂
′
σy
]
2
(d2G
dy2

)2

+
[
∂(µy∂ν)∂

′
(ρy∂

′
σ)y
]
4
d2G
dy2

dG
dy

+
[
∂µ)∂

′
(ρy∂

′
σ)∂(νy

]
2
(dG
dy

)2

+H2
[
∂µy∂νyg

′
ρσ + gµν∂

′
ρy∂
′
σy
][

(2−y)(D − 2)
d2G
dy2

dG
dy

+
(
1−m

2

H2

)(dG
dy

)2

−m
2

H2

d2G
dy2
G
]

+
[
H4gµνg

′
ρσ

][[
2(D2−D−4)− 4y−y2

2
(D − 1)2

](dG
dy

)2
− (2−y)(D − 1)

m2

H2

dG
dy
G+

m4

H4
G2

]
.

(4.38)

In this form we can compare it against our result (4.23) by noting that in the minimal coupling
limit G (3.61) and G (4.30) are related by

HD−2

(4π)
D
2

G(y) = G(y). (4.39)
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Finally we can take the minimal coupling limit by making the replacements

HD−2

(4π)
D
2

G(y)→ G(y), (4.40)

M2 → m2

H2
, (4.41)

ν2
D →

(
D − 1

2

)2

− m2

H2
, (4.42)

ξ → 0, (4.43)

in (4.23) to find that it reduces to the TT-correlator (4.38) derived in [35]. We will now take
the massless limit of (4.38) and compare it to the result of Park and Woodard [32], who already
checked their work against [35]; however, since we have used the hypergeometric equation to
reduce higher derivative terms we cannot directly compare our result with theirs. The propagator
for the minimally coupled massless scalar is given by

i∆MMC(x;x′) = A(y) + k ln (aa′), (4.44)

where k ln (aa′) is a de Sitter breaking term as their exists no de Sitter invariant propagator for
the massless minimally coupled scalar [3]. However, at one loop order the scalar contributions
to the graviton self-energy only involve second derivatives of the propagator ∂µ∂

′
νi∆MMC(x;x′)

[32]; therefore, only derivatives of A(y) will enter the graviton self-energy at one loop, which
are de Sitter invariant. This fact will turn out to be crucial in obtaining the minimally coupled
massless TT-correlator from (4.38). The function A(y) has the expansion

A(y) =
HD−2

(4π)
D
2

{
Γ(D2 )
D
2 − 1

(
y

4

)1−D
2

+
Γ(D2 + 1)
D
2 − 2

(
y

4

)2−D
2

− π cot

(
πD

2

)
Γ(D − 1)

Γ(D2 )
(4.45)

+

∞∑
n=0

[
1

n

Γ(n+D − 1)

Γ(n+ D
2 )

(
y

4

)n
− 1

n− D
2 + 2

Γ(n+ D
2 + 1)

Γ(n+ 2)

(
y

4

)n−D
2 +2

, (4.46)

which obeys the equation

(4y − y2)A′′(y) +D(2− y)A′(y) =
HD−2

(4π)
D
2

Γ(D)

Γ(D2
, (4.47)

which looks almost like a hypergeometric differential equation. Note that in the massless limit
the propagator G(y) (4.30) is ill defined, but its derivatives are not. Expanding G(y) by using the
Gauss transformation formula (5.10) and the series expansion for the hypergeometric function
(5.11) the formal series expansion for G(y) for m = 0 reads

G(y) =
HD−2

(4π)
D
2

{
Γ(D2 )
D
2 − 1

(
y

4

)1−D
2

+
Γ(D2 + 1)
D
2 − 2

(
y

4

)2−D
2

− Γ(0)
Γ(D − 1)

Γ(D2 )
(4.48)

+

∞∑
n=0

[
1

n

Γ(n+D − 1)

Γ(n+ D
2 )

(
y

4

)n
− 1

n− D
2 + 2

Γ(n+ D
2 + 1)

Γ(n+ 2)

(
y

4

)n−D
2 +2

. (4.49)

Note that while G(y) and A(y) are not the same they differ only by a divergent but constant term
in the massless limit; therefore, the derivatives of G(y) and A(y) are identical and well defined
for m = 0. As a result we can set m = 0 in all terms that contain only derivatives of G. We
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must now deal with the terms proportional to m2/H2G in (4.23). In the small mass expansion
G reduces to

G(y) =
HD−2

(4π)
D
2

H2

m2

Γ(D)

Γ(D2
, (4.50)

it follows that

lim
m→0

m2

H2
G(y) =

HD−2

(4π)
D
2

Γ(D)

Γ(D2
, (4.51)

where we note it is the same as the constant on the right hand side of (4.47). The hypergeometric
differential equation (4.37) then reduces to (4.47). Park and Woodard [32] and Perez-Nadal,
Roura, Verdaguer [35] obtained the massless limit by discarding the term M4G2 before taking
the limit m → 0, which is the only term that does not contain derivatives of G in the TT-
correlator before applying the hypergeometric differential equation. This is justified because
only derivatives of the propagator enter the self-energy at one loop order. In our case the
application of the hypergeometric differential equation gives rise to additional factors that do
not contain derivatives of G. Obtaining the correct massless limit would then require us to
identify and discard the mass term that does not enter the TT-correlator from the application of
the hypergeometric differential equation; and trace back the mass terms that do enter the TT-
correlator through the hypergeometric differential equation, then take the limit m → 0 so that
we can apply (4.47). Not discarding the term M4G2 and taking m→ 0 will not give the correct
massless TT-correlator as it will add a constant contribution descending from the nonvanishing
limit (4.51) nor will discarding all mass terms coming from the application of the hypergeometric
function as the right hand side of (4.47) is nonzero! Because of these subtleties one might be
better off using the TT-correlator in its form before higher derivatives were reduced through the
hypergeometric differential equation, which we will do now. We can piece together the minimally
coupled massless TT-correlator from appendix B by discarding the term m4/H4G; setting m = 0
in all other terms since they come with derivatives of G, which are well defined; and making the
replacement G(n)(y)→ A(n)(y) to find

〈T {T̂µν(x)T̂ ρσ(x′)}〉 =
[
∂µy∂νy∂

′
ρy∂
′
σy
]
2
(d2A

dy2

)2

+
[
∂(µy∂ν)∂

′
(ρy∂

′
σ)y
]
4
d2A

dy2

dA

dy

+
[
∂µ)∂

′
(ρy∂

′
σ)∂(νy

]
2
(dA
dy

)2

−H2
[
∂µy∂νyg

′
ρσ + gµν∂

′
ρy∂
′
σy
][

(4y − y2)

(
d2A

dy2

)2

+ 2(2− y)
dA

dy

d2A

dy2
−
(
dA

dy

)2]
+
[
H4gµνg

′
ρσ

][1

2
(4y − y2)2

(
d2A

dy2

)2

+ (2− y)(4y − y2)
dA

dy

d2A

dy2

+
[
2(D − 4)− 1

2
(4y − y2)

](dA
dy

)2
]
.

(4.52)

The result agrees with Park and Woodard [32].
For the expectation value of Vµνρσ we need to calculate 〈φ(x)2〉 and 〈∂µφ(x)∂νφ(x)〉. Note

that these are simply the propagator (3.61) and the second derivative of the propagator in the
coincidence limit (x′ → x) i.e.

〈φ(x)2〉 = i∆(x;x′)|x′→x (4.53)

〈∂µφ(x)∂νφ(x)〉 = ∂µ∂
′
νi∆(x;x′)|x′→x. (4.54)
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Using the following identities

2F1 (a, b; c; 1) =
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

, Re(c− a− b) > 0, (4.55)

∂µy(x;x′) = aH(δ0
µy + 2a′H∆xµ), (4.56)

∂′νy(x;x′) = a′H(δ0
νy − 2aH∆xν), (4.57)

∂µ∂
′
νy(x;x′) = aa′H2(δ0

µδ
0
νy − 2aδ0

µH∆xν + 2a′δ0
νH∆xµ − 2ηµν), (4.58)

and (3.69) we find

〈φ2(x)〉 =
HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 + ν

)
Γ
(

1
2 − ν

) Γ

(
1− D

2

)
, (4.59)

and

〈∂µφ(x)∂νφ(x)〉 =
1

2

HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 + ν

)
Γ
(

1
2 − ν

) [
(D − 1)2

4
− ν2

]
Γ

(
−D

2

)
H2gµν .

(4.60)

Using the results (4.59), (4.60) and (4.13) we find

〈Vµνρσ(x− x′)〉 = −1

2

HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 + ν

)
Γ
(

1
2 − ν

) {
[

1

2
H2

(
(D − 1)2

4
− ν2

)
Γ

(
− D

2

)
(D − 4)

+ Γ

(
1− D

2

)(
m2

H2
+ ξ(D − 1)(D − 4)

)]
H2

[
1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

]
+ ξΓ

(
1− D

2

)[
1

2
gµ(ρgσ)ν�− gµ)(ρ∇σ)∇(ν −

1

2
gµνgρσ�

+
1

2

(
gµν∇(ρ∇σ) + gρσ∇(µ∇ν)

)]}
δD(x− x′), (4.61)

which is a local term. Now that we have the explicit expression for the nonrenormalized graviton
self-energy we can begin to renormalize it, which we will do in the next chapter.
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Chapter 5

Renormalization

The expressions we derived for the cubic and quartic corrections to the graviton self-energy
contain ultraviolet divergences for D = 4. To deal with these divergences we employ dimensional
regularization and renormalization, which allows us to maintain all the symmetries of the theory;
thus, preserving general covariance [43]. The process is as follows. First we regularize the
ultraviolet divergences by dimensional regularization, which automatically subtracts power-law
divergences, then we renormalize the remaining logarithmic divergences 1/(D− 4) by absorbing
them into a counterterm action. It is important to note that one is generally interested in
integrals of the self-energy that enter e.g. the quantum corrected linearized Einstein equation
(6.2) which is given by

√
−gDµνρσκhρσ(x)−

∫
d4x′

[
µνΣρσret

]
(x;x′)κhρσ(x′) =

κ2

2
Tµνlin (x), (5.1)

where the integration is over the coordinates x′µ. Therefore the self-energy is renormalized when
it is written in a form that is integrable in D = 4 space-time dimensions. Were it not for
the divergent coefficients 1/(D − 4), which are of course the ultraviolet divergences we want
to extract, the contributions from the quartic vertices to the graviton self-energy (4.22)(4.61)
would already be integrable. These divergent coefficients are easily renormalized as we will show
in section 5.1. To renormalize the contribution of the cubic vertices (4.21) we will have to work a
lot harder as there are many terms that are not integrable in D = 4 space-time dimensions (even
terms with coefficients that are perfectly regular in D = 4). The procedure will be to extract
differential operators and localize the divergences onto delta function terms, which can then be
subtracted off using counterterms. The derivatives that act with respect to xµ can be pulled out
of the integral and the derivatives with respect to x′µ can be partially integrated. In this thesis
we will only renormalize the term proportional to G2. For the renormalization of the G2 part of
the TT-correlator we follow a more general approach than [36] [11] and show that in the small
mass expansion the renormalized results are the same. For the other products of the propagator
the equivalence of both approaches is not clear.

5.1 Renormalizing the Quartic Contribution

The renormalization of the contributions to the graviton self-energy coming from the quartic
vertices is fairly simple as (4.61) is already integrable with the exception of divergent constants
of the type ∝ 1/(D − 4) multiplying tensor structures. These divergences descend from the
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gamma functions when D = 4. To make the divergences manifest we expand (4.61) around
D = 4

Γ

(
1−D/2

)
=

2

D − 4
+ γE − 1 +O(D − 4), (5.2)

Γ

(
−D/2

)
= − 1

D − 4
+

3

4
− 1

2
γE +O(D − 4), (5.3)

where the logarithmic divergences are now evident and γE = 0.577 . . . is the Euler constant.
Since we have assumed m2 + ξR > 0 or equivalently M2 > 0 (3.48) and ε = 0 (2.17) (not to be
confused with the pole prescription ε) there should only be divergences of the logarithmic type.
However the overall factor of the quotient of gamma functions may diverge for general νD (in
this chapter we have added the subscript D to the D-dependent index ν to differentiate between
νD and ν4 ≡ ν). To show that no divergences for our choice of ν exist we expand the overall
factor around D = 4

Γ
(
D−1

2 + νD
)

Γ
(
D−1

2 − νD
)

Γ
(

1
2 + νD

)
Γ
(

1
2 − νD

) = 1 +
D − 4

2

[
ψ

(
3

2
+ ν

)
+ ψ

(
3

2
− ν
)]
, (5.4)

where ψ(z) = d/dz ln Γ(x) is the digamma function. The digamma function is holomorphic on
the entire complex plane minus 0 and the negative integers (C \ Z≤0). In four dimensions we

have ν =
√

9/4−M2 with M2 > 0; thus, the digamma functions do not diverge and indeed the
only divergences are of the logarithmic type. Going back to (4.61) we can immediately see that
the D − 4 term in the second line cancels the divergence from Γ(−D/2). In the third line one
logarithmic factor is cancelled by the factor D − 4, however, the term proportional to m2/H2

remains logarithmically divergent. The last line also contains a logarithmic divergence. These
divergences are eliminated by two counterterms, the cosmological constant counterterm and the
inverse gravitational constant counterterm. The counterterm action takes the form

Sct =

∫
dDx

√
−g(x)

{
∆

(
1

16πGN

)
R− 2∆

(
Λ

16πGN

)}
. (5.5)

Taking the second variation of (5.5) we obtain

δ2Sct
δhρσ(x′)δhµν(x)

= κ2√−ḡ
{

∆

(
1

16πGN

){
(D − 1)(D − 4)H2

[
1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

]
+

[
1

2
gµ(ρgσ)ν�− gµ)(ρ∇σ)∇(ν −

1

2
gµνgρσ�+

1

2

(
gµν∇(ρ∇σ) + gρσ∇(µ∇ν)

)]}
− 2∆

(
Λ

16πGN

)[
1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

]}
δD(x− x′). (5.6)

To cancel the divergences in (4.61) the counterterm coefficients must be

∆

(
1

16πGN

)
= i

1

2
ξ
HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 + ν

)
Γ
(

1
2 − ν

) Γ

(
1− D

2

)
+ ∆

(
1

16πGN

)
f

, (5.7)

∆

(
Λ

16πGN

)
= −i1

4
m2 HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(

1
2 + ν

)
Γ
(

1
2 − ν

) Γ

(
1− D

2

)
+ ∆

(
Λ

16πGN

)
f

, (5.8)
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where ∆
(

1
16πGN

)
f

and ∆
(

Λ
16πGN

)
f

are finite parameters. We can now construct the renormal-

ized quartic contribution to the graviton self-energy

−i
[
µνΣren

ρσ

]
4pt

(x;x′) = ia4κ2

{[
H4

64π2

(
m2

H2

)(
m2

H2
+ 12ξ − 2

)
+ 2i∆

(
Λ

16πGN

)
f

]
×
[

1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

]
− i∆

(
1

16πGN

)
f

[
1

2
gµ(ρgσ)ν�− g(µ|(ρ∇σ)∇|ν) −

1

2
gµνgρσ�

+
1

2

(
gµν∇(ρ∇σ) + gρσ∇(µ∇ν)

)]}
δ4(x− x′), (5.9)

where we have taken D = 4, which is integrable. Note that the finite remainder of the first
term in (5.7) and (5.8) are multiplied by overall factors of ξ and m2; thus, the finite counterterm
parameters also contain overall factors of ξ and m2. Therefore, in the minimally coupled massless
case the contribution from the quartic vertices to the graviton self-energy vanishes, which agrees
with [32].

5.2 Renormalizing the Cubic contribution

The TT-correlator (4.23) contains products of the scalar propagator (3.61) and up to its fourth
order derivative, which compared to minimal coupling where the highest derivative is of second
order, complicates matters considerably. To renormalize we must first write the propagator as
the sum of two series around y = 0; one with integer powers and one with non-integer powers.
Using the following transformation formula

2F1

(
D − 1

2
+ νD,

D − 1

2
− νD,

D

2
, 1− y

4

)
(5.10)

=
Γ(D2 )Γ(1− D

2 )

Γ( 1
2 − νD)Γ( 1

2 + νD)
×2F1

(
D − 1

2
+ νD,

D − 1

2
− νD,

D

2
,
y

4

)
+
(y

4

)1−D
2 Γ(D2 )Γ(D2 − 1)

Γ(D−1
2 − νD)Γ(D−1

2 + νD)
×2F1

(
1

2
+ νD,

1

2
− νD, 2−

D

2
,
y

4

)
,

and the series expansion of the hypergeometric function

2F1 (a, b; c; d) =

∞∑
n=0

(a)n(b)n
(c)nn!

(
y

4

)2

, (5.11)

where (z)n = Γ(z + n)/Γ(z) is the Pochhammer symbol, the propagator can be written as

i∆(x;x′) =
HD−2

(4π)
D
2

[
Γ
(
D−3

2 − νD
)
Γ
(
D−3

2 + νD
)

Γ
(

1
2 − νD

)
Γ
(

1
2 + νD

) [(D − 3

2

)2

− ν2
D

]
Γ
(

1− D

2

)
×
∞∑
n=0

(
D−1

2 + νD
)
n

(
D−1

2 − νD
)
n

(D2 )n

(y4 )n

n!

+
(y

4

)1−D
2

Γ
(D

2
− 1
) ∞∑
n=0

(
1
2 + νD

)
n

(
1
2 − νD

)
n(

2− D
2

)
n

(
y
4

)n
n!

]
, (5.12)
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In the expansion of (5.12) we have to keep a certain amount of terms in D-dimensions, while the
remaining ones can be resummed. The number of terms can be determined from the requirement
that the self-energy needs to be integrable in D = 4 space-time dimensions i.e. the lowest
power of the resulting D = 4 part of the TT-correlator must be 1/y. For G2 we have to
keep only the term ∼ y1−D/2 in D-dimensions while the other terms can be set to D = 4 and
resummed. Indeed for G2 ∼ y2−D +O(1/y) only one term is not integrable in D = 4 space-time
dimensions and needs to be renormalized. For GG′ we need to keep the leading two terms in
each propagator ∼ (y1−D/2 + [y2−D/2 +y0]) and ∼ (y−D/2 +y1−D/2), which leads to three terms
that need to be renormalized ∼ (y1−D, y2−D, y−D/2). For GG′′ we need to keep the leading
three terms of each propagator in D-dimensions ∼ (y1−D/2 + [y2−D/2 + y0] + [y3−D/2 + y1])
and ∼ (y−1−D/2 + y−D/2 + y1−D/2). The resulting product will have five terms that need to
be renormalized (y−D, y1−D, y2−D, y−1−D/2, y−D/2). G′2 also requires us to keep three terms
in D-dimensions ∼ (y−D/2 + y1−D/2 + [y2−D/2 + y0])2 yielding four terms to renormalize ∼
(y−D, y1−D, y2−D, y−D/2). GG′′′ and G′G′′ require us to keep the leading four terms in D-
dimensions giving rise to seven and six terms respectively that need to be renormalized. Finally
we have GG′′′′, G′G′′′ and (G′′)2 that require us to keep the leading five terms in D-dimensions
leading to nine, eight and seven terms that need to be renormalized. The propagator products
also come with factors of y and y2, which will reduce the number of divergent terms. The message
is clear, additional derivatives of the propagator complicate matters considerably and third and
fourth order derivatives enter the TT-correlator entirely due to nonminimally coupling. In this
thesis we will only renormalize G2. The other factors are beyond the scope of this thesis and
need to be renormalized in a later work.

Upon pulling out the n = 0 term in the second sum of (5.12) and reorganizing the expression
we find

i∆(x;x′) =
HD−2

(4π)
D
2

{
Γ
(D

2
−1
)(y

4

)1−D
2

(5.13)

+
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D
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(
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n+1(

2−D
2

)
n+1

(
y
4

)n+2−D
2

(n+ 1)!

]}
.

We need this expression to zeroth order in (D−4). It suffices to expand all parts of this expression
to first order in (D − 4). Thus we have

Γ
(
D−3

2 −νD
)
Γ
(
D−3

2 +νD
)

Γ
(

1
2−νD

)
Γ
(

1
2 +νD

) = 1 +
D−4
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[
ψ
(1

2
+ν
)

+ψ
(1

2
−ν
)]
, (5.14)

(D−3

2

)2

−ν2
D =

(1

4
− ν2

)[
1 +

D−4

2

(1− δν2

1
4 − ν2

)]
, (5.15)

Γ
(
1−D

2

)
=

2

D − 4

[
1 +

D−4

2

(
− 1−ψ(1)

)]
, (5.16)

Γ
(D

2
−1
)

= 1 +
D−4

2
ψ(1), (5.17)

where ψ(1) = −γE and δν2 = 3 − 14ξ. Expanding (5.13) around D = 4 we can show that all
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logarithmic divergences cancel. Indeed to leading order in ∝ 1/(D − 4) (5.13) can be written as

i∆(x;x′) =
HD−2
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2
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2
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)(y
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2
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)(y
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(
(D−4)0

)
.

Next we expand to order (D− 4)0 and after some algebra we arrive at the following form for the
propagator

i∆(x;x′) =
HD−2

(4π)
D
2

{
Γ
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2
−1
)(y

4

)1−D
2

(5.19)

+
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×
[
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)
+ ψ

(3

2
− ν + n

)
− ψ

(
1 + n

)
− ψ

(
2 + n

)]
+ O(D−4) ,

where we have kept only the ∼ y1−D/2 term in D-dimensions as discussed earlier. This expression
is more general than the one used in [36] [11] in the sense that it is valid for arbitrary mass
parameter m2 + ξR > 0 while the expansion in [36] [11] is a small mass expansion valid for
0 < m2 + ξR� H2. To renormalize G2 we need the square of (5.19)

(
i∆(x;x′)

)2
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H2D−4

(4π)D

{
Γ

(
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2
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)2(
y
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)2−D

+
8

y
f(y) + f(y)2

}
, (5.20)

where we have taken D = 4 in the second and third term and f(y) is defined as

f(y) =
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2
+ ν + n

)
+ ψ
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2
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)
− ψ

(
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)
− ψ

(
2 + n

)]}
.

(5.21)

Note that for our choice of ν, f(y) contains no divergences; moreover, the term proportional to
y2−D has finite coefficients for D = 4, but is not integrable! To make it integrable one must
extract a d’Alembertian operator. Before we can extract a d’Alembertian we must first know
how the d’Alembertian acts on functions of y.
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Writing out the d’Alembertian operator and using the relations of appendix A we find

�
H2

F (y) =
1

H2

1√
−g

∂µ
(√
−ggµν∂νy

)
= (4y − y2)F ′′(y) +D(2− y)F ′(y)− 4iεδ(η − η′)F ′(y)

− 2iεHa(η′)sgn(η − η′)
[
2yF ′′(y) +DF ′(y)

]
.

(5.22)

When F (y) is a nonsingular function i.e. when F (y) contains no powers of y1−D/2 we can take
ε = 0 and (5.22) reduces to

�
H2

F (y) = (4y − y2)F ′′(y) +D(2− y)F ′(y). (5.23)

When
F (y) = y1−D

2 +O(y2−D
2 ), (5.24)

the term −4iεδ(η − η′)F ′(y) gives rise to a delta function in the limit ε → 0 [29]. To show this

we use (5.22) to find the action of the d’Alembertian on F (y) = y1−D
2 +O(y2−D

2 ) and obtain

�
H2

F (y) = 4i
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2
− 1

)
εδ(η − η′) 1

y
D
2

+O(y1−D
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4i(D2 − 1)

HD
√
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εδ(η − η′)
(ε2 + ||x− x′||)D

2

+O(y1−D
2 ).

(5.25)
Multiplying (5.25) with a test function ϕ(x) that falls off sufficiently rapidly, integrating, taking

the limit ε→ 0 and noting that terms O(y1−D
2 ) are integrable, we see that the only delta function

comes from the term proportional to εδ(η−η′)
(ε2+||x−x′||)

D
2

as follows,

lim
ε→0

∫
dDx

εδ(η − η′)
(ε2 + ||x− x′||)D

2

ϕ(x) = lim
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∫
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ε

(ε2 + ||x− x′||)D
2

ϕ(x, η′)
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∫
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1

(1 + |z|2)
D
2

ϕ(εz + x′, η′) = ϕ(x′, η′)

∫
dD−1r

rD−2

(1 + r2)
D
2

∫
dΩD−2

=
π

D
2

Γ(D2 )
ϕ(x′),

(5.26)

where we made the change of variables z = (x − x′)/ε and switched to spherical coordinates
(3.57). Note that (5.25) behaves exactly like a delta function times some constant when ε → 0;
thus, we conclude

lim
ε→0

4i(D2 − 1)

HD
√
−g

εδ(η − η′)
(ε2 + ||x− x′||)D

2

=
4π

D
2

Γ(D2 − 1)

iδD(x− x′)
HD
√
−g

. (5.27)

Using (5.22), (5.27) and taking ε→ 0 we find[
�
H2
− D(D − 2)

4

](
y

4

)1−D
2

− (4π)
D
2

Γ(D2 − 1)

iδD(x− x′)
HD
√
−g

= 0. (5.28)

Relation (5.28) plays a crucial role in localizing the divergences onto delta function terms. Be-
fore continuing with renormalization we compare our choice of F (y) (5.24) with the propagator
expansion (5.12). Note that they contain the same powers of y and that the delta function in
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the propagator equation (3.62) is correctly sourced by the action of � on the term proportional
to y1−D/2 in the propagator.

We are now ready to reduce the degree of divergence of y2−D by two by extracting a
d’Alembertian [37][38][39]. Using relation (C.2), which derives from (5.23), and adding zero
to it using (5.28) we can isolate the divergence,(
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) iδD(x− x′)
(aH)D

.

(5.29)

At first look every term in (5.29) has a divergence of the type ∝ 1/(D − 4). However on closer
inspection, expanding all factors of y around D = 4, all but the divergent factor in front of the
Dirac delta cancel. Indeed upon performing the expansion and setting D = 4 for all terms that
do not diverge we find
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)2(
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)
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(5.30)

The first two terms of (5.30) are integrable and the divergence has been localized on a delta
function. Note that we can move the d’Alembertian acting on the first term out of the integral
over x′ (5.1) making it truly local. To renormalize we subtract off the divergent term with local
counterterms. For this particular divergence we introduce the cosmological constant counterterm
action

Sct = −2

∫
dDx

√
−g∆

(
Λ

16πGN

)
, (5.31)

and taking its second variation we obtain

δ2Sct
δhρσ(x′)δhµν(x)

= −2κ2√−ḡ∆

(
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16πGN

)[
1

4
gµνgρσ −

1

2
gµ(ρgσ)ν

]}
δD(x− x′), (5.32)

which gives the correct tensor structure gµνg
′
ρσ together with an additional tensor structure,

which we will discuss shortly. To cancel the divergence in the last line of (4.23) the counterterm
coefficient must be

∆

(
Λ

16πGN

)
= −iKD

HD

(4π)
D
2

Γ(D/2− 1)

(D − 3)(D − 4)
+ ∆

(
Λ

16πGN

)
f

, (5.33)

where
KD = M4−2M2

(
(D−1)+4M2

)
ξ + 2

(
(D−1)2 + 2(2D−3)M2+8M4

)
ξ2 (5.34)

and we define K4 ≡ K. Recalling (4.21) the partially renormalized correction to the graviton
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self-energy is given by

− i
[
µνΣren

ρσ

]G2

3pt
(x;x′) = −κ2 (aa′)4

4

H8

(4π)4
gµνg

′
ρσK

(
− 4
�
H2

[
ln (y/4)

y

]
+

8

y

[
ln (y/4)− 1

2

]
+

8

y
f(y) + f(y)2

)
− κ2

2
a4gµνg

′
ρσδ

4(x− x′)∆
(

Λ

16πGN

)
f

+ κ2a4gµ(ρg
′
σ)νδ

4(x− x′)∆
(

Λ

16πGN

)
f

− iκ2aDKD
HD

(4π)
D
2

Γ(D/2− 1)

(D − 3)(D − 4)
gµ(ρg

′
σ)νδ

D(x− x′).

(5.35)

Note that in the last line we traded a divergent term of the type ∝ gµνg′ρσ with one of the type
∝ gµ(ρg

′
σ)ν . This is perhaps no surprise since there is no guarantee that every divergent term can

be cancelled independently. However the last term must cancel a divergent term elsewhere in
(4.23) for the calculation to be correct. Moreover, the usual counterterms employed in gravity,
which also contain this tensor structure, are R2 and the Weyl tensor squared CµνρσC

µνρσ, which
we will need for the full renormalization1. We mentioned before that the renormalization of
the other propagator products is beyond the scope of this thesis; however, we can speculate.
The tensor structure ∂µ)∂

′
(ρy∂

′
σ)∂(νy at coincidence is proportional to ∝ gµ(ρgσ)ν and is a likely

candidate. Our approach thus far was to expand the propagator around D = 4 and then
renormalize. In [36] [11] a small mass expansion preceeded the renormalization procedure. It is
not clear if renormalizing then performing a small mass expansion or first performing the small
mass expansion and then renormalizing yield the same result. We now show that for the G2

term they are indeed equivalent. Because the first term in (5.19) has no dependency on M2,
the divergent term in (5.29) does not either. Thus we only need to show that the small mass
expansion of (5.19) yields the same result as in [36] [11]. We define

ν =
D − 1

2
− s =

D − 1

2
− 1

D − 1

m2 + ξR

H2
+O

(
m2 + ξR

H2

)2

(5.36)

which corresponds to the deviation of νD from the minimally coupled, massless case. Expanding
(5.19) in s we find

i∆(x;x′) =
HD−2

(4π)
D
2

{
Γ

(
D

2
− 1

)(
y

4

)1−D
2

+ (−2 + 3s) ln

(
y

4

)
+

2

s
− 4

+ s

∞∑
n=1

[
2− n(n+ 2) ln (y/4)

n2

(
y

4

)n]}
,

(5.37)

where the infinite sum is finite and can be written as

∞∑
n=1

[
2− n(n+ 2) ln (y/4)

n2

(
y

4

)n]
= 2Li2

(
y

4

)
− y/4

1− y/4
ln

(
y

4

)
+ 2 ln

(
y

4

)
ln

(
1− y

4

)
, (5.38)

where Lin(z) =
∑∞
k=1 z

k/kn is the polylogarithm. This result agrees with [36]. For propagator
products where more terms need to be kept in D-dimensions it is not clear if the two approaches
yield the same result.

1When there is a scalar condensate one also needs the counterterm Rφ2.
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Chapter 6

Discussion and Outlook

In this thesis we have derived the one loop contributions to the graviton self-energy modified
by a nonminimally coupled massive scalar on the de Sitter background and calculated the con-
nected TT-correlator. It turned out that by performing the calculation of one, one can almost
immediately obtain the other. Our case is de Sitter invariant and we assumed a strictly positive
effective mass m2 + ξR > 0 and strictly positive nonminimal coupling ξ > 0. We found the
two diagrams contributing to the self-energy through an expansion of the effective action, which
relates the nonlocal part of the self-energy to the TT-correlator,

−i
[
µνΣρσ

]
3pt

(x;x′) =
κ2

4

√
−g
√
−g′〈T {T̂µν(x)T̂ ρσ(x′)}〉. (6.1)

We checked our result of the TT-correlator in the minimal coupling and massless minimal cou-
pling limit against the results of Park and Woodard [32] and Perez-Nadal, Roura and Verdaguer
[35] and found that they agreed. It is worth noting that first taking the massless limit m → 0
does not give the same result as discarding the m4G2 term then setting m = 0, with the latter
resulting in the correct massless minimally coupled correlator. Discarding the m4G2 term is
justified because only derivatives of the propagator enter the self-energy at one loop order. The
local contribution −i

[
µνΣρσ

]
4pt

(x;x′) to the self-energy was renormalized through the inverse

gravitational and cosmological constant counterterms. We found, unlike the minimally coupled
massless case, the result to be nonvanishing. The nonlocal −i

[
µνΣρσ

]
3pt

(x;x′) part proved harder

to renormalize as it contains derivatives of the propagator of up to order four resulting in many
divergent terms. In contrast, only derivatives of up to second order of the propagator enter in the
TT-correlator of the minimally coupled massive scalar; thus the hardest terms to renormalize
enter the TT-correlator through nonminimal coupling. The result is a partially renormalized
result where we renormalized the part proportional to ∝ H4gµνg

′
ρσG

2. We isolated the diver-
gence by extracting d’Alembertians, localizing the divergence onto a delta function, and used
the cosmological constant counterterm to remove this divergence since it gives rise to the correct
tensor structure gµνg

′
ρσ; however, it also has an additional tensor structure ∝ gµ(ρg

′
σ)ν which

comes with a logarithmic divergence. This is perhaps no surprise since there is no guarantee
that we can renormalize the TT-correlator term by term. Indeed this leftover term must cancel
a divergence elsewhere for our analysis to be correct. Moreover, for the full renormalization the
usual counterterms employed in gravity are R2 and CµνρσC

µνρσ, which will be required to cancel
terms that require the extraction of multiple d’Alembertians. In the case of a scalar condensate
one also needs the counterterm Rφ2.

The natural next step would be to finish the renormalization procedure. We could then
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in principle calculate the effect of inflationary nonminimally coupled massive scalars on the
propagation of dynamical gravitons at one loop by solving the quantum corrected linearized
Einstein equation for the graviton field by employing the Schwinger-Keldysh formalism [42].
This was done for the minimally coupled massless scalar in [31] [24] where no significant effects
were found. One could also use the self-energy to calculate the corrections to the force of gravity
from e.g. a point mass. This was done in [30] where corrections to the gravitational potentials
were found. We will now give an outline of their calculation and discuss their results.

We start with the linearized Schwinger-Keldysh effective field equation, which is obtained
by replacing µνΣρσ(x;x′) in the linearized Einstein field equation with its retarded version
µνΣρσret(x;x′) and reads

√
−gDµνρσκhρσ(x)−

∫
d4x′

[
µνΣρσret

]
(x;x′)κhρσ(x′) =

κ2

2
Tµνlin (x), (6.2)

where
√
−gDµνρσκhρσ(x) is obtained by expanding the Einstein equation

√
−g(Gµν + Λgµν)

to first order in κhµν . To study how inflationary scalars affect the propagation of dynamical
gravitons one must set the energy-momentum tensor to 0. Since we only know the self-energy at
one loop order (∝ κ2) we expand the graviton field and self-energy to order κ2

hµν = h(0)
µν + κ2h(1)

µν +O(κ4), (6.3)[
µνΣρσren

]
ret

(x;x′) = κ2
[
µνΣρσ(1)

]
(x;x′) +O(κ2). (6.4)

Using these expansions and the fact that h
(0)
µν solves the linearized Einstein equation with solution

h(0)
µν = εµν(k)u0(η,k)eik·x, (6.5)

with

u0(η,k) =
H√
2k3

[
1− ik

Ha

]
e−ikη, (6.6)

and the polarization tensor which has the usual transverse, traceless form with vanishing temporal
components

εµ0(k) = 0, kiεij(k) = 0, εii(k) = 0, (6.7)

(6.2) becomes
√
−gDµνρσκh(1)

ρσ (x)−
∫

d4x′
[
µνΣρσ(1)

]
(x;x′)κh(0)

ρσ (x′) = 0. (6.8)

Solving this equation, no significant late-time effects were found [31][24]. For the nonminimally
coupled massive scalar significant effects may be found due to the additional parameters m and
ξ.

For quantum corrections to the force of gravity in the presence of a static point mass M on
de Sitter the linearized energy-momentum tensor takes the form

Tµνlin = −aδµ0 δν0Mδ3(x), (6.9)

and the quantum corrected linear Einstein equation (6.2) becomes

√
−gDµνρσκhρσ(x)−

∫
d4x′

[
µνΣρσret

]
(x;x′)κhρσ(x′) = −aκ

2

2
δµ0 δ

ν
0Mδ3(x). (6.10)
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The symmetries of the system imply a solution of the form,

h00(x) = f1(η, r), (6.11)

h0i(x) = ∂if2(η, r), (6.12)

hij(x) = δijf3(η, r) + ∂i∂jf4(η, r), (6.13)

where r ≡ ||x||. Choosing the longitudinal (Newtonian) gauge f2 = 0 and f4 = 0, the classical

solutions to the 0th order equation
√
−gDµνρσh(0)

ρσ (x) = κ
2T

µν
lin are

f
(0)
1 (x) =

2GM

ar
≡ −2φ(0), (6.14)

f
(0)
3 (x) =

2GM

ar
≡ −2ψ(0), (6.15)

which define the 0th order potentials φ(0) and ψ(0) in the longitudinal gauge. The one loop

contributions to the potentials are given by φ(1) = −f (1)
1 /2 and ψ(1) = −f (1)

3 /2. The resulting
quantum corrected potentials φdS = φ(0) + φ(1) and ψdS = ψ(0) + ψ(1) at late times (a � 1)
calculated by Park, Prokopec and Woodard [30] are

φdS(x) = −GM
ar

{
1 +

~
20πc3

G

(ar)2
− ~GH2

30πc5
ln(a) +O

(
1

a3

)}
, (6.16)

ψdS(x) = −GM
ar

{
1− ~

60πc3
G

(ar)2
− ~GH2

30πc5
ln(a) +O

(
1

a3

)}
. (6.17)

Note the term ∝ ln a, which grows in time and will have a significant effect at sufficiently late
times. Moreover, since they contribute equally to both potentials one can interpret them as
a renormalization of the mass term or Newton’s gravitational constant. Of course their scalar
propagator was of the form i∆(x;x′) = A(y(x;x′)) + k ln(aa′), where the last term breaks de
Sitter invariance. In our case the analysis is de Sitter invariant; however, a correction term ∝ ln a
may arise from the conformal anomaly, though usually small, as is the case for massless fermions
coupling to a light nearly minimally coupled scalar field [11]. Moreover, we have additional
terms, namely the mass and nonminimal coupling; thus, we might find effects in terms of those
parameters.
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Appendix A

de Sitter Identities

The invariant distance function y(x;x′) (3.15) is given by

y(x;x′) = aa′H2∆x2 = aa′H2
[
− (η − η′)2 + ||x− x′||2

]
, (A.1)

and is related to the geodesic distance `(x;x′) in de Sitter space by

y(x;x′) = 4 sin2
[
H`(x;x′)/2

]
. (A.2)

For the propagator and any function of the invariant distance we add a pole prescription to y
and define

y(x;x′) = aa′H2∆x2 = aa′H2
[
− (|η − η′| − iε)2 + ||x− x′||2

]
. (A.3)

The following de Sitter invariant identities have been used extensively in this thesis. In particular
in the derivation of the TT-correlator. For a more extensive list of identities we refer to [25].

∂ρy∂
ρy = ∂′ρy∂

′ρy = H2(4y − y2) (A.4)

(∂ρy)(∂ρ∂′νy) = H2(2− y)∂′νy (A.5)

(∂′σy)(∂′µ∂′σy) = H2(2− y)∂µy (A.6)

(∂µ∂′σy)(∂′σ∂ρy) = 4H4gµρ −H2(∂µy)(∂ρy) (A.7)

(∂′µ∂σy)(∂σ∂′ρy) = 4H4g′µρ −H2(∂′µy)(∂′ρy) (A.8)

∇ρ∂µy = H2(2− y)δ µρ (A.9)

∇′ρ∂′µy = H2(2− y)δ µρ (A.10)

∇µ∂µy ≡ �y = DH2(2− y) (A.11)

∇′µ∂′µy ≡ �′y = DH2(2− y) (A.12)

In tensor structures, such as the tensor structures above, one can safely take y ≡ y, but in
functions of y such as the propagator one needs the ε-prescription! Without this pole prescription
the propagator (3.62) is not well defined.
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Appendix B

The TT-correlator on de Sitter

B.1 The propagator

The scalar propagator (3.61) for a real massive scalar field on de Sitter space is given by the time
ordered Chernikov-Tagirov propagator,

i∆(x;x′) = 〈T [φ̂(x)φ̂(x′)]〉

=
HD−2

(4π)D/2
Γ
(
D−1

2 + ν
)

Γ
(
D−1

2 − ν
)

Γ
(
D
2

)
× 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y

4

)
≡ HD−2

(4π)D/2
G(y), (B.1)

where T denotes time ordering, 2F1 is the Gauss hypergeometric function,

ν =

√(D − 1

2

)2

− m2

H2
−D(D − 1)ξ, (B.2)

y(x;x′) = aa′H2∆x2 = aa′H2
[
− (|η − η′| − iε)2 + ||x− x′||2

]
(B.3)

and we have assumed a positive mass-squared, m2 + ξR > 0. If the effective mass is not strictly
positive or if ε 6= 0 the propagator develops de Sitter breaking contributions due to the particle
creation in the deep infrared [20, 21] and thus becomes much more complicated.

It is convenient to define derivatives of the propagator function,

dn

dyn
G(y) ≡ dn

dzn
G(y) =

(
− 1

4

)n
Gn(y) , (B.4)

where z = 1− y/4 and

Gn(y) =
Γ(a+ n)Γ(b+ n)

Γ(c+ n)
2F1

(
a+ n, b+ n; c+ n; 1− y

4

)
, G0(y) ≡ G(y) . (B.5)

44



Figure B.1: Diagrammatic representation of pointsplitting 〈T {T̂µν(x)T̂ρσ(x′′)}〉. The points x
and x′′ are split into x , x′ and x′′ , x′′′. The operator τµν(x;x′) acts on the points x and x′ and
the operator τρσ(x′′;x′′′) on the points x′′ and x′′′. Note that the left diagram can be obtained
by interchanging ρ↔ σ and x′′ ↔ x′′′, explaining the factor two in (B.11)

.

B.2 TT-correlator

The TT-correlator (4.23) is computed by the method of pointsplitting. A diagrammatic repre-
sentation is shown in Fig. (B.1). We define the following operator,

τµν(x;x′) = τ (1)
µν (x;x′) + τ (2)

µν (x;x′) + τ (3)
µν (x;x′), (B.6)

with

τ (1)
µν (x;x′) =

[
(1− 2ξ) δα(µδ

β
ν) −

1

2
(1− 4ξ) gµν(x)gαβ(x)

]
∂α∂

′
β

≡ Aαβµν (x)∂α∂
′
β , (B.7)

τ (2)
µν (x;x′) = ξGµν(x)− 1

2
gµν(x)m2 = −1

2

[
(D − 1)(D − 2)H2ξ +m2

]
gµν

≡ B(x)gµν , (B.8)

τ (3)
µν (x;x′) = ξ

[
gµν(x)gαβ(x)− δα(µδ

β
ν)

] (
∇α∂β +∇′α∂′β

)
≡ Cαβµν (x)

(
∇α∂β +∇′α∂′β

)
. (B.9)

It is useful to define the connected part of an expectation value of four operators as[
〈φ̂(x)φ̂(x′)φ̂(x′′)φ̂(x′′′)〉 − 〈φ̂(x)φ̂(x′)〉〈φ̂(x′′)φ̂(x′′′)〉

]∣∣
x′→x, x′′′→x′′ . (B.10)

Using the operator (B.6) and (B.10) we can calculate the one-loop contribution to the connected
part of the TT-correlator by using a Wick contraction as follows,

〈T {T̂µν(x)T̂ρσ(x′′)}〉 = τµν(x;x′)τρσ(x′′;x′′′) 〈T [φ̂(x)φ̂(x′)φ̂(x′′)φ̂(x′′′)]〉
∣∣∣
x′→x,x′′′→x′′

= 2τµν(x;x′)τρσ(x′′;x′′′) 〈T [φ̂(x)φ̂(x′′)]〉〈T [φ̂(x′)φ̂(x′′′)]〉
∣∣∣
x′→x,x′′′→x′′

= 2τµν(x;x′)τρσ(x′′;x′′′) i∆(x;x′′)i∆(x′;x′′′)|x′→x,x′′′→x′′ . (B.11)

To organize the calculation we now define,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(ij) = 2τ (i)
µν (x;x′)τ (j)

ρσ (x′′;x′′′) i∆(x;x′′)i∆(x′;x′′′)|x′→x,x′′′→x′′ , (B.12)

with i, j ∈ {1, 2, 3}. We can now write (B.11) as

〈T {T̂µν(x)T̂ρσ(x′′)}〉 =
∑
i,j

〈T̂µν(x)T̂ρσ(x′′)〉(ij). (B.13)

In what follows we calculate every term on the right hand side of (B.13) separately.
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B.2.1 The (11) contribution

Upon plugging (B.1) into (B.12) for i = 1 and j = 1 we find,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(11) =
2H2(D−2)

(4π)D
Aαβµν (x)Aγδρσ(x′′)∂α∂

′
β∂
′′′
γ ∂
′′′
δ

×
[
G(y(x;x′′))G(y(x′;x′′′))

]
|x′→x,x′′′→x′′

=
2H2(D−2)

(4π)D
Aαβµν (x)Aγδρσ(x′′)∂α∂

′′
γG(y(x;x′′))

× ∂′β∂′′′δ G(y(x′;x′′′))|x′→x,x′′′→x′′

=
2H2(D−2)

(4π)D
Aαβµν (x)Aγδρσ(x′′)∂α∂

′′
γG∂β∂

′′
δG (B.14)

=
2H2(D−2)

(4π)D
Aαβµν (x)Aγδρσ(x′′)

[
∂αy∂βy∂

′′
γy∂

′′
δ y
(d2G

dy2

)2

(B.15)

+ 2∂(αy∂β)∂
′′
(γy∂

′′
δ)y

dG

dy

d2G

dy2
+ ∂α)∂

′′
(γy∂

′′
δ)∂(βy

(dG
dy

)2
]
.

Upon contracting with Aαβµν (x) and Aγδρσ(x′′) defined in (B.7) we obtain,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(11) =
H2D−4

(4π)D

{[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
][

4(1−2ξ)2 dG

dy

d2G

dy2

]
+
[
∂µ)∂

′′
(ρy∂

′′
σ)∂(νy

][
2(1−2ξ)2

(dG
dy

)2
]

+
[
∂µy∂νy∂

′′
ρ y∂

′′
σy
][

2(1−2ξ)2
(d2G

dy2

)2
]

−H2
[
∂µy∂νyg

′′
ρσ + gµν∂

′′
ρ y∂

′′
σy
]
(1−2ξ)(1−4ξ)

×
[
(4y−y2)

(d2G

dy2

)2

+ 2(2−y)
dG

dy

d2G

dy2
−
(dG
dy

)2
]

+H4
[
gµνg

′′
ρσ

]
(1−4ξ)

×
[

1

2
(1−4ξ)(4y−y2)2

(d2G

dy2

)2

+ (1−4ξ)(4y−y2)(2−y)
dG

dy

d2G

dy2

+
[
(1−4ξ)

(
2D − 1

2
(4y−y2)

)
− 8(1−2ξ)

](dG
dy

)2
]}

(B.16)

In the next subsections we calculate (B.12) for the other values of i and j.
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B.2.2 The (12)+(21) contribution

〈T {T̂µν(x)T̂ρσ(x′′)}〉(12) =
2H2(D−2)

(4π)D
Aαβµν (x)Bg′′ρσ∂α∂

′
β

[
G(y(x;x′′))G(y(x′;x′′′))

]
|x′→x,x′′′→x′′

=
2H2(D−2)

(4π)D
Aαβµν (x)Bg′′ρσ∂αG∂βG

= 2
H2(D−2)

(4π)D

(
dG

dy

)2{
− H2

2
(1− 4ξ)B(4y − y2)gµνg

′′
ρσ

+ (1− 2ξ)B∂(µy∂ν)yg
′′
ρσ

}
. (B.17)

The (21) term is simply computed from the (12) term by the substitutions, µν ↔ ρσ and x↔ x′′.
We find

〈T {T̂µν(x)T̂ρσ(x′′)}〉(12)+(21) =
H2D−4

(4π)D

(dG
dy

)2[
(D−1)(D−2)ξ+

m2

H2

]
(B.18)

×
{
−H2

[
gµν∂

′′
(ρy∂

′′
σ)y+∂(µy∂ν)yg

′′
ρσ

]
(1−2ξ) +H4

[
gµνg

′′
ρσ

]
(1−4ξ)(4y−y2)

}
.

B.2.3 The (13)+(31) contribution

〈T {T̂µν(x)T̂ρσ(x′′)}〉(13) =
2H2(D−2)

(4π)D
Aαβµν (x)Cγδρσ(x′′)∂α∂

′
β(∇′′γ∂′′γ +∇′′′γ ∂′′′γ )

×
[
G(y(x;x′′))G(y(x′;x′′′))

]
|x′→x,x′′′→x′′

=
4H2(D−2)

(4π)D
Aαβµν (x)Cγδρσ(x′′)

[
∂α∇′′γ∂′′δG∂βG

]
=
H2(D−2)

(4π)D
Aαβµν (x)Cγδρσ(x′′)

[
− 4H2 dG

dy

(
dG

dy
− d2G

dy2
(2−y)

)
∂αy∂βyg

′′
γδ

+ 8
dG

dy

d2G

dy2
∂′′γy∂α∂

′′
δ y∂βy + 4

dG

dy

d3G

dy2
∂αy∂βy∂

′′
γy∂

′′
δ y

]
(B.19)
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Next we work out Aαβµν (x)Cγδρσ(x′′) and add to it the (31) contribution by exchanging µν ↔ ρσ
and x↔ x′′ in the (13) contribution. We find

〈T {T̂µν(x)T̂ρσ(x′′)}〉(13)+(31) =
H2D−4

(4π)D
dG

dy

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
][
−8ξ(1−2ξ)

d3

dy3

]
(B.20)

+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
][
−16ξ(1−2ξ)

d2

dy2

]
+H2

[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
][

4ξ(1−2ξ)

(
(4y−y2)

d3

dy3

+(D+1)(2−y)
d2

dy2
−(D−1)

d

dy

)
+2ξ(1−4ξ)

(
(4y−y2)

d3

dy3
+2(2−y)

d2

dy2

)]
+H4

[
gµνg

′′
ρσ

][
− 4ξ(1−4ξ)(4y−y2)

(
(4y−y2)

d3

dy3

+(D+1)(2−y)
d2

dy2
−(D−1)

d

dy

)]}
G(y).

B.2.4 The (22) contribution

This one is trivial, we find

〈T {T̂µν(x)T̂ρσ(x′′)}〉(22) =
2H2(D−2)

(4π)D
B2gµνg

′′
ρσG

2

=
H2D−4

(4π)D

[
(D − 1)(D − 2)ξ +

m2

H2

]2[
H4gµνg

′′
ρσ

]G2

2
. (B.21)

B.2.5 The (23)+(32) contribution

〈T {T̂µν(x)T̂ρσ(x′′)}〉(23) =
2H2(D−2)

(4π)D
BgµνC

γδ
ρσ(x′′)(∇′′γ∂′′δ +∇′′′γ ∂′′′δ )

×G(y(x;x′′))G(y(x′;x′′′))|x′→x,x′′′→x′′

=
4H2(D−2)

(4π)D
GBgµνC

γδ
ρσ(x′′)∇′′γ∂′′δG

=
4H2(D−2)

(4π)D
G

{
H2ξB

[
dG

dy
(2−y)(D−1)+

d2G

dy2
(4y−y2)

]
gµνg

′′
ρσ

− d2G

dy2
ξBgµν∂

′′
(ρy∂

′′
σ)y

}
. (B.22)

48



To this we need to add the (32) term, which is computed by µν ↔ ρσ and exchanging x↔ x′′.
We find

〈T {T̂µν(x)T̂ρσ(x′′)}〉(23)+(32) =
H2D−4

(4π)D

[
(D−1)(D−2)ξ+

m2

H2

]
ξ

×G
{
H2
[
gµν∂

′′
(ρy∂

′′
σ)y+∂(µy∂ν)yg

′′
ρσ

]
2
d2

dy2
(B.23)

−4H4
[
gµνg

′′
ρσ

][
(4y−y2)

d2

dy2
+(D−1)(2−y)

d

dy

]}
G(y) .

B.2.6 The (33) contribution

〈T {T̂µν(x)T̂ρσ(x′′)}〉(33) =
2H2(D−2)

(4π)D
Cαβµν (x)Cγδρσ(x′′)(∇α∂β +∇′α∂′β)(∇′′γ∂′′δ +∇′′′γ ∂′′′δ )

×G(y(x;x′′))G(y(x′;x′′′))|x′→x,x′′′→x′′

=
4H2(D−2)

(4π)D
Cαβµν (x)Cγδρσ(x′′)

[
G∇α∂β∇′′γ∂′′δG+∇α∂βG∇′′γ∂′′δG

]
=

4H2(D−2)

(4π)D
Cαβµν (x)Cγδρσ(x′′)

{
H4(2−y)

[
−GdG

dy
+(2−y)

((
dG

dy

)2

+G
d2G

dy2

)]
gαβg

′′
γδ

+H2

[
− 2G

d2G

dy2
+(2−y)

(
G
d3G

dy3
+
dG

dy

d2G

dy2

)]
(gαβ∂

′′
γy∂

′′
δ y + ∂αy∂βyg

′′
γδ)

+ 2G
d2G

dy2
∂α∂

′′
γy∂

′′
δ ∂βy+4G

d3G

dy3
∂′′γy∂α∂

′′
δ y∂βy+G

d4G

dy4
+

(
d2G

d2y

)2

∂αy∂βy∂
′′
γy∂

′′
δ y

}
.

This evaluates to,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(33) =
H2D−4

(4π)D
(4ξ2)

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
](d2G

dy2

)2

(B.24)

−H2
[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
][

(4y−y2)
(d2G

dy2

)2

+(D−1)(2−y)
dG

dy

d2G

dy2

]
+H4

[
gµνg

′′
ρσ

][
(4y−y2)2

(d2G

dy2

)2

+2(D−1)(2−y)(4y−y2)
dG

dy

d2G

dy2

+(D−1)2(2−y)2
(dG
dy

)2
]

+G

[[
∂µy∂νy∂

′′
ρ y∂

′′
σy
] d4

dy4
+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
]
4
d3

dy3
+
[
∂µ)∂

′′
(ρy∂

′′
σ)∂(νy

]
2
d2

dy2

−H2
[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
](

(4y−y2)
d4

dy4
+(D+3)(2−y)

d3

dy3
−2D

d2

dy2

)
+H4

[
gµνg

′′
ρσ

](
(4y−y2)2 d

4

dy4
+2(D+1)(2−y)(4y−y2)

d3

dy3

+
(
4(D2−3)−(D2+2D−1)(4y−y2)

) d2

dy2
−(D−1)2(2−y)

d

dy

)]
G(y)

}
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B.3 Full energy-momentum tensor correlator

In this section we construct the full energy-momentum tensor two point function. In order to
do that, it is useful to first reduce different components by making use of the hypergeometric
differential equation for G(y) and its derivatives,[

(4y−y2)
d2

dy2
+D(2−y)

d

dy
−M2

]
G
(
y(x;x′′)

)
= 0[

(4y−y2)
d3

dy3
+ (D+2)(2−y)

d2

dy2
−
[
M2 +D

] d
dy

]
G
(
y(x;x′′)

)
= 0[

(4y−y2)
d4

dy4
+ (D+4)(2−y)

d3

dy3
−
[
M2 + 2(D+1)

] d2

dy2

]
G
(
y(x;x′′)

)
= 0 , (B.25)

where

M2 ≡ m2

H2
+D(D−1)ξ . (B.26)

From (B.16) we get,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(11) =
H2D−4

(4π)D

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
][

2(1−2ξ)2
(d2G

dy2

)2
]

+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
][

4(1−2ξ)2 dG

dy

d2G

dy2

]
(B.27)

+
[
∂µ)∂

′′
(ρy∂

′′
σ)∂(νy

][
2(1−2ξ)2

(dG
dy

)2
]

+H2
[
∂µy∂νyg

′′
ρσ + gµν∂

′′
ρ y∂

′′
σy
]
(1−2ξ)(1−4ξ)

×
[
(D−2)(2−y)

dG

dy

d2G

dy2
−M2G

d2G

dy2
+
(dG
dy

)2
]

+H4
[
gµνg

′′
ρσ

][1

2
(1−4ξ)2

(
(D−1)

(
4D−(D−1)(4y−y2)

)(dG
dy

)2

−2(D−1)(2−y)M2 dG

dy
G+M4G2

)
−8(1−2ξ)(1−4ξ)

(dG
dy

)2
]}
.

From (B.18) we get,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(12)+(21) =
H2D−4

(4π)D

(dG
dy

)2[
M2 − 2(D−1)ξ

]
(B.28)

×
{
−H2

[
gµν∂

′′
(ρy∂

′′
σ)y+∂(µy∂ν)yg

′′
ρσ

]
(1−2ξ) +H4

[
gµνg

′′
ρσ

]
(1−4ξ)(4y−y2)

}
.
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From (B.20) we get,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(13)+(31) =
H2D−4

(4π)D

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
][
−8ξ(1−2ξ)

d3G

dy3

dG

dy

]
(B.29)

+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
][
−16ξ(1−2ξ)

d2G

dy2

dG

dy

]
+H2

[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
][[
− 2(D+2)ξ + 8(D+1)ξ2

]
(2−y)

d2G

dy2

dG

dy

+
[
2(D+2+3M2)ξ − 8(D+1+2M2)ξ2

](dG
dy

)2
]

+H4
[
gµνg

′′
ρσ

]
4ξ(1−4ξ)

[[
− 4D + (D−1−M2)(4y−y2)

](dG
dy

)2

+(2−y)M2 dG

dy
G

]}
.

The (22) contribution (B.21) remains unchanged,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(22) =
H2D−4

(4π)D
[
H4gµνg

′′
ρσ

][M2 − 2(D−1)ξ
]2

2
G2 . (B.30)

Next, from (B.23) we get,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(23)+(32) =
H2D−4

(4π)D

{
H2
[
gµν∂

′′
(ρy∂

′′
σ)y+∂(µy∂ν)yg

′′
ρσ

][
2M2ξ

d2G

dy2
G
]

+
[
H4gµνg

′′
ρσ

][
4M2ξ(2−y)

dG

dy
G− 4M4ξG2

]}
. (B.31)

Finally, the (33) contribution (B.24) can be written as,

〈T {T̂µν(x)T̂ρσ(x′′)}〉(33) =
H2D−4

(4π)D
(4ξ2)

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
]((d2G

dy2

)2

+
d4G

dy4
G

)
(B.32)

+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
]
4G

d3G

dy3
+
[
∂µ)∂

′′
(ρy∂

′′
σ)∂(νy

]
2G

d2G

dy2

+H2
[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
][

(2−y)

(
d3G

dy3
G+

dG

dy

d2G

dy2

)
−2(M2+1)

d2G

dy2
G

]
+
[
H4gµνg

′′
ρσ

][
4
d2G

dy2
G+ (2−y)2

(dG
dy

)2

+(2−y)(D−1−4M2)
dG

dy
G

+M2(2M2−1)G2

]}
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When all of the above contributions are combined one gets,

〈T {T̂µν(x)T̂ρσ(x′′)}〉 =
H2D−4

(4π)D

{[
∂µy∂νy∂

′′
ρ y∂

′′
σy
][

4ξ2 d
4G

dy4
G− 8ξ(1−2ξ)

d3G

dy3

dG

dy

+ 2(1−4ξ+6ξ2)
(d2G

dy2

)2
]

(B.33)

+
[
∂(µy∂ν)∂

′′
(ρy∂

′′
σ)y
][

16ξ2 d
3G

dy3
G+ 4(1−8ξ+12ξ2)

d2G

dy2

dG

dy

]
+
[
∂µ)∂

′′
(ρy∂

′′
σ)∂(νy

][
8ξ2 d

2G

dy2
G+ 2(1−2ξ)2

(dG
dy

)2
]

+H2
[
∂µy∂νyg

′′
ρσ+gµν∂

′′
ρ y∂

′′
σy
][

(2−y)
[
4ξ2
]d3G

dy3
G

+(2−y)
[
D−2− 8(D−1)ξ + 4(4D−1)ξ2

]d2G

dy2

dG

dy

+
[(

1−M2
)

+ 4
(
D−1+2M2

)
ξ − 4

(
3D−1+4M2

)
ξ2
](dG

dy

)2

+
[
−M2 + 8M2ξ − 4(D+1+4M2)ξ2

]d2G

dy2
G

]
+
[
H4gµνg

′′
ρσ

][
16ξ2 d

2G

dy2
G+

[
2(D2−D−4)−16(D2−3)ξ+16(2D2+2D−3)ξ2

+
4y−y2

2

(
−(D−1)2+2M2+4

(
(2D−1)(D−1)−4M2

)
ξ

−8(2D2−2D+1−4M2)ξ2
)](dG

dy

)2
+(2−y)

[
−(D−1)M2+8DM2ξ−4

(
D−1+4(D+1)M2

)
ξ2
]dG
dy
G

+
[
M4−2M2

(
(D−1)+4M2

)
ξ + 2

(
(D−1)2 + 2(2D−3)M2+8M4

)
ξ2
]
G2

]}
.

Note that in the minimal coupling limit, when ξ = 0, the TT correlator is much simpler since
the most difficult terms to renormalize drop out.
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Appendix C

Extracting d’Alembertians

To keep the computational part of this thesis selfcontained we outline the method of extracting
d’Alembertians and list the identities needed to fully renormalize the TT-correlator. For the full
list of identities we refer to [37][38][39].

Extracting d’Alembertians from powers of y/4 reduces the degree of divergence by 2. Acting
with a d’Alembertian on a nonsingular function F (y) one obtains

�
H2

F (y) = (4y − y2)F ′′(y) +D(2− y)F ′(y), (C.1)

where a nonsingular function F (y) is defined as a function which, when expanded in powers of

y does not contain the power y1−D
2 . Using (C.1) and rearranging one establishes the relation(

y

4

)−α
= − 1

(α− 1)(D/2− α)

�
H2

(
y

4

)1−α

+
D − α
D/2− α

(
y

4

)1−α

, (C.2)

where α 6= D/2. When the d’Alembertian acts on a singular function y1−D/2 we obtain the
relation

�
H2

(
y

4

)1−D
2

=
(4π)D/2

Γ
(
D
2 − 1

)
(Ha)D

iδD(x− x′) +
D(D − 2)

4

(
y

4

)1−D
2

. (C.3)

The derivation of relation (C.3) is given in chapter 5 starting at equation (5.22). We now list a
few examples for specific values of α(

y

4

)−D
=

2

D(D − 1)

�
H2

(
y

4

)1−D

(C.4)(
y

4

)1−D

=
2

(D − 2)2

�
H2

(
y

4

)2−D

− 2

D − 2

(
y

4

)2−D

(C.5)(
y

4

)2−D

=
2

(D − 3)(D − 4)

�
H2

[(
y

4

)3−D

−
(
y

4

)1−D
2
]

+
D(D − 2)

2(D − 3)(D − 4)

(
y

4

)1−D
2

− 4

D − 4

(
y

4

)3−D

+
2

(D − 3)(D − 4)

(4π)
D
2

Γ
(
D
2 − 1

) iδD(x− x′)
(aH)D

. (C.6)

The other terms can be generated similarly. Note that we added 0 to (C.6) by making use of
(C.3) in order to isolate the divergence onto a delta function term. The expressions (C.6) appear
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to have many divergences for D = 4; however, all divergences cancel except for the last term
when expanding the powers of y around D = 4. To renormalize one needs to subtract off the
delta function term in (C.6) by introducing appropriate counterterms.
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