
Mesh Navigation Through Jumping

Nick Roumimper

March 7, 2017

Abstract

The motion planning problem has been applied to a wide variety of fields and contexts.
However, very few solutions to this problem combine multiple modes of motion. This report
explores the motion planning problem in a three-dimensional environment where the charac-
ter can not only walk on all available surfaces, but also jump between different surfaces. We
take a more fundamental approach than much of the practically oriented work in the field.
Starting from a set of physics-based axioms, we establish the definitions of minimal and
optimal jumps between any two points. By extending these concepts to three-dimensional
line segments, we define the jump link minimal velocity and jump link minimal arc length,
which are two concrete heuristics for connectivity and optimality. Combined with special
case definitions for projected edges, this allows us to provide a practical implementation of
a jump link. We then provide notes on the results’ usage in practice. The usage of jump
links in a path planning algorithm is left for future work.

1

Contents
1 Introduction 3

1.1 Motivation . 3
1.2 Contributions . 4
1.3 Structure . 4

2 Related Work 5
2.1 Motion and path planning . 5

2.1.1 Representations of the navigable space 5
2.1.2 Searching the navigation structure . 7

2.2 Previous work on navigation through jumping 7
2.2.1 Methods without jump annotations . 7
2.2.2 Methods with jump annotations . 8
2.2.3 Motivation of this research project . 11

3 Exploration of Jumping 14
3.1 Approach and terminology . 14
3.2 Mechanics . 15
3.3 Physics of jumping . 16
3.4 Single jump concepts . 17

3.4.1 Minimal jump speed and associated angle 18
3.4.2 Optimal jump velocity . 20
3.4.3 Rational jump range . 24

3.5 Jump links . 25
3.5.1 Approach . 25
3.5.2 Assumptions . 26
3.5.3 Valid jump links . 26
3.5.4 Partial jump links . 28
3.5.5 Projected jump links . 29

3.6 Jump link concepts . 29

4 Jump Link Minimal Velocity 32
4.1 Interpolated minimal speed . 32
4.2 Relation between the interpolation variables 34
4.3 Reduction to extrema . 35
4.4 Special cases . 36

5 Jump Link Minimal Arc Length 38
5.1 Arc length symmetry . 38
5.2 Arc length integral . 39

6 Practical Implementation 41

7 Conclusion 42

8 Discussion and Future Work 42

2

1 Introduction
Path planning is a complex and important problem in many digital applications, such as
computer games and pedestrian simulations. This problem takes the form of a character
seeking a path through the areas it can traverse (the navigable space) from the starting
position to the goal position. The subproblem where the navigable space is planar, and
the character is constrained to walking (e.g. the section of a floor that is not occupied by
obstacles) has been studied intensively, leading to a wide selection of different methods to
represent the navigable space and to find paths within this representation. How humans
plan their paths, and what constitutes a realistic path to the human eye, has been a field of
particular interest.

So far, path planning has been applied to many types of navigable spaces, such as envi-
ronments with layers, levels and slopes (multi-layered environments, e.g. a parking garage),
higher-dimensional spaces, and in conjunction with time. This thesis studies the problem
of navigation in virtual worlds for characters that can jump between locations. Jumping
allows the character to surmount obstacles, or reach previously unreachable locations, and
incorporating this ability greatly increases the complexity of the path planning algorithm.
The ability to jump is especially common in computer games. As a result, practical imple-
mentations of characters jumping to reach their goals already exist, but this specific domain
has not yet been investigated in detail, nor from a strongly founded theoretical standpoint.

Starting from a representation of the navigable space (i.e. a navigation mesh), in this
thesis we develop methods to annotate the navigation mesh with jumping information, and
apply them to a variety of environments. The following sections explain in greater detail
the motivation for the thesis, its goals and how this report is structured.

1.1 Motivation
Our definition of a (suitable) multi-layered environment will be established in more detail
in the upcoming sections of this report. However, to provide a practical example, a highway
crossover is multi-layered by nature; both the road above and below the crossover can be
seen as their own walkable environment (i.e. considered as a navigable polygon), and if both
polygons are projected onto the ground plane, they overlap at the bridging section.

A navigation mesh encodes how characters can navigate between regions in an environ-
ment. A wide variety of navigation meshes can be computed automatically from the original
three-dimensional environment. However, many of these meshes assume that characters are
constrained to stay on the walkable surface. By jumping, previously unreachable locations
can become reachable, and drastic shortcuts may be realized. The problem here is that
jumping can not easily be considered a natural extension of walking; another (third) di-
mension comes into play, and physical rules of momentum and ballistics apply. Annotating
a multi-layered environment with realistic jump links has not yet been researched without
relying on predetermined trajectories or highly restrictive assumptions.

For practical applications (e.g. games), when provided with a set of discrete, point-to-
point jump arcs, current state-of-the-art programs are known to add these point-to-point
arcs in specific locations based on a sampled collision volume of jump trajectories. The main
problem with this approach is that the trajectories then become predetermined, which may
lead to very unnatural-looking paths. Game designers often simply add a limited number of
jump arcs manually, directing the character’s actions while simultaneously severely restrict-
ing any applied path planning algorithm.

This thesis examines jumping in multi-layered environments from a continuous standpoint.
Starting from an axiomatic approach to the mechanism of jumping, we establish metrics
and methods to quantify the quality of the jump between any two points. Subsequently, we

3

expand and derive these concepts to the greater context of any two line segments in three-
dimensional space. As a result, we aim to provide the theoretical bedrock for advances in
the quality of complex paths in computer games and advanced crowd simulations.

1.2 Contributions
This thesis has the following five main contributions. First of all, we present an in-depth
discussion of the literature currently available on the subject. We hereby motivate the line
of reasoning that allows us to approach this issue from a purely theoretical standpoint.

Secondly, we provide a number of jump-related metrics, derived from an exhaustive ex-
amination of this mode of transportation. These allow us to narrow down the range of valid
possibilities between any two edges, and reduce even the valid possibilities within this small
band to specific optimal trajectories.

Thirdly, we expand the definition of these metrics into the combination of any two line
segments in three-dimensional space. In doing so, we find ourselves capable of determining
the optimal jump between any two segments.

Fourthly, we draw the necessary conclusions to make these metrics usable for practical im-
plementation, based on our own experiences. The latter three items constitute the primary
contributions of this work.

1.3 Structure
Section 2 contains the theoretical background for this thesis; it provides an overview of
related work on path planning and navigation through jumping, and sets up the approach
of the rest of the report. Section 3 sets up the contributions of this report in point-to-point
cases, which is subsequently used in sections 4 and 5 to expand to three-dimensional space.
Section 6 is dedicated to addressing the practical implementation of these metrics as far
as possible within the scope of this report. Finally, section 7 summarizes the contents of
this thesis, and section 8 points out where there is still room for improvement within these
methods and aids future research by suggesting avenues of exploration for new projects.

4

2 Related Work
This section contains the general theoretical background for this report, as well as an
overview of the currently available methods for mesh navigation through jumping. Sub-
section 2.1, "Motion and path planning", provides a summarized definition of said problem,
and a basic overview of the structures and algorithms commonly used to solve it. Readers
familiar with this field may skip this subsection. Subsection 2.2, "Previous work in the
field", discusses the state of the art pertaining to navigation through jumping. This section
is also used to motivate the direction of this report.

2.1 Motion and path planning
The motion planning problem was first introduced in the domain of robotics, under the
name of "the Piano Mover’s Problem" [23]. Its name derives from the common problem
of moving an unwieldy object from one side of a room to another without colliding with
other obstacles. Motion planning refers to determining the actions required to move from
a starting configuration to a goal configuration. Here, all degrees of freedom need to be
considered, commonly resulting in high-dimensional configuration spaces. The problem is
defined as follows [19], and has in this form been found to be PSPACE-hard to solve [24]:

1. Given a world W, which is either R2 or R3;

2. a semialgebraic region representing all obstacles O ⊂ W;

3. a semialgebraic robot X ⊂ W representing the object to be moved;

4. the configuration space C based on all possible transformations of X , partitioned into
the subspace of free configurations called the navigable space N and the subspace of
blocked configurations called the obstacle space O;

5. an initial configuration qI ⊂ N ;

6. a goal configuration qG ⊂ N ;

7. find a continuous path within N from qI to qG, or correctly report that such a path
does not exist.

In this thesis, we focus on a subset of motion planning problems, where the configuration
space is restricted to the spatial dimensions; i.e. we assume the object to be moved does
not have any pertinent dimensions of orientation. This simplifies the planning result from a
set of motions to a path, and hence, we refer to this restricted version as the path planning
problem. Solving path planning problems is an integral part of creating convincing artificial
intelligence, since characters are often required to move independently from one place to the
next within their virtual world in an ”efficient” manner. The definition of ”efficiency” varies
greatly per domain, but a common definition aims to minimize the Euclidean length of the
total path. This version of the motion planning problem, known as the shortest path problem,
is the backbone of this report. In the following sections, we provide a general summary of
the representations and algorithms used in solving path planning problems. Note that we
will focus this examination on planning problems in position-based configuration spaces with
holonomic movement. This subset of problems is the most prevalent and well-researched.

2.1.1 Representations of the navigable space

In order to compute a path in any virtual environment, such as the two-dimensional envi-
ronment seen in Figure 1a, we require a representation of the navigable space. This repre-
sentation contains the legal configurations for the character (i.e. free locations). In many
applications, the representation of the navigable space can (largely) be computed prior to
execution, while the path planning itself is done at runtime.

5

Figure 1: Representations of the navigable space. (a) A simple 2D environment with polygonal obstacles.
(b) A sampling-based roadmap of the navigable space. (c) A triangulation. (d) The medial axis.

A common representation method involves sampling the available configurations, either
regularly, (semi-)randomly, or incrementally (see [19] for a treatment). Samples are stored
and linked to their neighbours in a navigation graph, which allows any graph planning algo-
rithm to use it, presuming that the start and end position can be linked to the graph. One
of the more commonly used methods is known as the Probabilistic Roadmap (PRM, [17],
(b) in Figure 1), which branches out from a starting configuration into spatially close and
valid configurations, and attempts to connect them to the navigation graph. Since these
methods only approximate the navigable space, their navigation graphs may miss (connec-
tions between) configurations that are valid. Furthermore, the paths generated may be
jagged and/or inefficient, and as a result, not look natural enough for virtual characters.
[12]. However, due to their simple construction algorithms, their easy extension into higher
dimensionalities and adjustable computational complexity, these methods can be applied to
a wide variety of fields, a prime example being protein folding problems [1].

Oftentimes for configuration spaces limited to the spatial dimensions, we can use data
structures which describe the navigable space in full, and can (preferably) be assembled
automatically. For example, a constrained Delaunay triangulation (CDT, [6], see (c) in
Figure 1 for a general triangulation example) subdivides the navigable space into triangles,
allowing simple search operations on the triangulation’s dual graph. Another strongly re-
lated structure is the Voronoi diagram ((d) in Figure 1), or its commonly used subset, the
medial axis [3]. The medial axis of the navigable space consists of all points equidistant to
two or more obstacles. Many of these translate to edges (for two obstacles) or vertices (for
more obstacles) in the Voronoi diagram. These both fully cover the navigable space, and
have been successfully applied to motion planning ([15], [2]).

Navigation meshes consist of a collection of regions that describe the space, combined with
a graph that describes the connections between these regions. The Explicit Corridor Map
(ECM, [11]), a prime example, consists of a Voronoi diagram annotated with event points
that refer to the obstacles that shape that Voronoi edge. When a path is planned with
depth-first search, a corridor (i.e. ”hallway”) is computed through the Voronoi diagram,
which is triangulated and then planned inside with the highly efficient ”funnel” algorithm.

However, since navigation meshes operate on a condensed representation rather than a
complete one, they share the weakness that the resulting paths may still be inefficient. The
visibility graph is a well-studied data structure (though explicitly not a navigation mesh)
that can be used to determine the shortest path exactly (see [8] for a treatment). This
graph connects all pairs of vertices of the obstacles that can be connected by a straight
line that is entirely in the navigable space (i.e. vertices that can ”see each other”). Then,
when connecting the start and goal position to all visible vertices in the visibility graph, the
shortest path in the graph is also the Euclidean shortest path.

The visibility–voronoi complex [28] is a hybrid approach consisting of a visibility-based com-
plex, based on expanding all obstacles outward by any clearance distance value, and the
Voronoi diagram in the original space combined. This complex can be used to determine

6

the shortest path with any desired clearance from the obstacles (by choosing paths from the
visibility complex), and also allows for trade-offs when less clearance can lead to significant
short-cuts (by choosing paths from the Voronoi diagram). However, this method requires
O(n2) space during construction and exact number types, and may therefore not be feasible
for the chosen application. There is a wide variety of meshes and mesh hybrids across the
spectrum between precision and usability, showing that choosing a navigation mesh is hardly
an uninvolved task. For a comparative study on navigation meshes, refer to the work by
van Toll et al. [25]

2.1.2 Searching the navigation structure

When we have a representation of the navigable space available, we do not yet have any
path leading through it, let alone the shortest one. A representational structure commonly
contains a weighted, undirected graph that connects points in the navigable space, as seen in
the previous section. Hence, graph search algorithms are applied to all of the above methods.

Dijkstra’s algorithm [9], a classic result in graph search algorithms, finds the shortest path
from the starting vertex to the goal vertex (or, in fact, any vertex in the graph). The search
algorithm iteratively expands the connections from the vertex with the shortest distance to
the starting vertex, and corrects encountered paths that are suboptimal. Over time, all ver-
tices contain references that refer backwards along the shortest path to the starting vertex.
The running time of this algorithm was later improved by storing and retrieving the yet to
be explored vertices in a sorted Fibonacci heap, based on their distance to the start vertex
[10].

Elaborating on the improvements made by ordering the vertices in a heap, Dijkstra’s algo-
rithm is extended to the A*-algorithm by changing the heuristic used to sort these vertices
[14]. In the A*-algorithm (and similarly in many variants and extensions), the distance to
the start vertex is added to a heuristically determined value, resulting in the sorting value.
The heuristic can be manually chosen depending on the application, but as long as the added
value does not overestimate the actual length of the path (i.e. it is ”admissible”), A* will find
the optimal path to the goal vertex. Choosing a suitable heuristic can result in far faster
path finding, and even overestimating heuristics are used to find suboptimal paths quickly.

2.2 Previous work on navigation through jumping
In this section, we summarise the previous work in the field on navigation through jumping,
both in practical applications and in scientific publications. While summarising, we highlight
the gaps in the current research, and distill said gaps into the motivation of our report.
We have separated the previous work according to whether or not the methods explicitly
annotate the navigation mesh, in order to highlight the distinctions between the approaches.

2.2.1 Methods without jump annotations

We start by discussing the path planning algorithms that incorporate jumping without an-
notating their navigation structure. These methods do not consider jumping structurally
as a method to significantly shorten path length, but rather as a tool to bridge gaps or
obstacles of certain sizes. As a result, the jump capabilities are limited by factors such as
the available animations or a preset jumping range.

This approach is most apparent in the work by Lau & Kuffner [18], which is one of the
first path planning methods to address navigation through jumping. Here, a finite state
machine (FSM) is manually assembled beforehand out of the available animations that de-
scribes what transitions between animations are valid, i.e. look as designed. The planning
algorithm then iteratively expands a search tree from the starting position in the general
direction of the goal area, until positions are found therein, and the shortest found path is
selected. The provided example FSM includes a single jumping animation that can traverse

7

Figure 2: Image from [18], that displays the finite state machine that connects all moves.

obstacles up to a certain height, so jumping is possible, but very limited. More jumping
animations could be incorporated, but the complexity of the search tree quickly becomes
prohibitive. This method has been developed with smooth animation in mind, and is not
suitable for dynamic character movement.

The method by Kapadia et al. [16] provides a more flexible representation of jumping.
The concept of a planning hierarchy, where the path is refined gradually at different levels
of detail, is the method’s main contribution. The hierarchy suggested in the paper starts
with an indicative route, based on the dual graph of the triangulation of the navigation
mesh. This route is then altered based on dynamic unreachabilities on the second level, and
the subpaths (”tunnels”) are further refined on the third level. Finally, on the fourth level,
the movement of dynamic obstacles is taken into account and final subpaths are determined.

It is there that jumping is used to surmount obstacles and gaps, adjusting the path slightly
at a fairly high cost. Although this is one of the most dynamic and continuous implementa-
tions of jumping as of yet, the jumping adjustments do not alter the path significantly (i.e.
change the homotopic class), and moving the jumping ability up in the hierarchy requires a
completely different navigation structure.

Finally, the method by Levine et al. [20], although it aims to solve planning in dynamic envi-
ronments, provides the most meaningful implementation of jumping. This dynamic planning
method is based on the assumption that the position of all objects (walkable spaces and ob-
stacles) is known for any point in time. This knowledge allows the sampling of the planning
space with landmarks, which are attached to their surface and move along with it. Based
on the landmarks, the planning algorithm can assemble a search tree in space-time from
the landmark closest to the start to the landmark closest to the goal. Since the distances
and heights between landmarks may vary strongly, all of the character’s movements are
determined by motion controllers, whose parameters are determined through reinforcement
learning in a preprocessing stage. Under the assumption that waiting is the lowest-cost
motion controller, the search tree in space-time can be searched with A* for the optimal
path up to sampling error.

Jumping is one of the motion controllers, used to overcome gaps and height differences.
This capability is limited by the animation and the boundaries of the motion controller, but
it can be adjusted within those bounds, making it flexible. Hence, it is very well-suited to
predictable practical applications. Although the quality of the found path is provably high,
the sampling error can be very large, and the planning complexity can become prohibitive
when the sampling resolution is increased. Furthermore, it is left unclear how landmarks
are handled that are over time intersected by the obstacle space.

2.2.2 Methods with jump annotations

We now move on to methods where jump annotations are added to the navigation structure,
starting at simple methods and progressively discussing more refined representations. Here,
the most basic representations are found in the field, implemented in game development
kits such as Unity3D [27, 26] and CryEngine [7]. Both of these programs allow the user to

8

Figure 3: Image from [16], that illustrates the different path planning domains in its method.

Figure 4: Image from [20], that illustrates its usage of space-time graphs in a two-dimensional setting.

add single jump arcs with a fixed start, end and trajectory to the navigation mesh. In a
similar way, the CryEngine includes a specification of an AI Path [7], a path consisting of
curves that can be added between spatially separated navigation meshes. These structures
are intended for designers to manually increase the connectivity of their environments, and
work well in practice; however, they have little value in terms of scientific rigor.

An example of a more flexible method can be found in the Smooth Movement Across Ran-
dom Terrain (SMART) system, as implemented by Splash Damage for the 2011 shooter
game Brink [13]. This game is centered around fast-paced free-running style action, and
hence, the players have to be able to duck, jump over and jump across obstacles smoothly.
To accomplish this, the navigation mesh is annotated in a preprocessing step with reachabil-
ities, which connect two edges from separate sections that overlap when projected onto the
ground plane. The players can subsequently run at these reachabilities, and based on factors
such as the player’s height and where the player is looking, the character jumps, mantles,
vaults, wall hops or slides to move forward. This approach thusly adjusts the animation
based on the appropriate action, allowing practical flexibility but indeterminate theoretical
quality.

Returning to the realm of scientific publications, the jump representation takes a so far
unexplored form in the work by Lopez et al. [21] This method is aimed at planning in
changing environments, and represents the navigable space with collision volumes and walk-
able volumes that are recomputed on the fly. The primary volume used, the Accessibility
Volume, connects the walkable surfaces between two objects, and is computed for every
object by extruding the precomputed Accessibility Profile from the outer edges. The pro-
file is constructed by sampling the limited range of jump trajectories from a single point,
and taking the convex hull of these samples. To plan paths in the changing environment,
probabilistic roadmaps (PRMs) are computed for the walkable surfaces; when the Accessi-

9

bility Volume of one object overlaps with the walkable surface of another, the path planning
method seeks out two walkable nodes to connect and bridge the gap.

The advantage of this method is that the trajectory is dynamically specified from point
to point, allowing for potentially very close to optimal paths containing natural-looking
jumps. On the other hand, the usage of PRMs introduces all of their shortcomings: jagged
and possibly inefficient paths, as well as missing valid connections, depending on the sam-
pling density. The symptomatic jaggedness of the found paths is demonstrated quite clearly
in the video accompanying this work. Also, the algorithm to determine the Accessibility
Volume is particularly unwieldy, even for dynamic environments.

We find another PRM-based approach in the work by Campana et al. [5], wherein a point
robot navigates a three-dimensional environment solely by jumping. In this system, each
jump arc consists of a frictionless (i.e. symmetrical) parabola based on Newtonian physics.
The set of admissible parabolas is bounded by four constraints: two constraints limiting
the angles of takeoff and landing to prevent ”slipping”, one to limit the takeoff velocity to
represent the robot’s speed capacity, and one to limit the landing velocity to represent the
robot’s tolerance of impact forces. Any parabola in the band of trajectories that satisfies all
four can be chosen during planning.

The jump representation for this method is created by randomly sampling a point from
the environment. Based on the normal vector of the surface at that point, as well as the
provided slipping constraint, we can construct a three-dimensional friction cone which ap-
plies to both takeoff and landing. As the paper proves, two of these points that can be
connected with a valid parabola each have a neighbourhood of points that can be connected
as well. As a result, a probabilistic roadmap planner that samples randomly from the envi-
ronment will find a valid path between any two points if one exists, as running time tends
to infinity.

The methods by Lopez et al. and Campana et al. find similar-looking paths. Whereas
the former combines both walking and jumping motions through a fairly convoluted repre-
sentation, the latter limits itself to jumping, but with a compact representation that lends
itself to large environments. An extension of Campana’s method with parallel walking con-
nections between samples would be of particular interest. However, this would still not result
in natural-looking motion. As the associated video demonstrates, many motions along any
given path are extraneous, and thus, the paths found are of no demonstrable quality.

To conclude this survey, we discuss the most refined approach to adding and using jump
annotations found so far. This approach is found in the Master’s thesis by Sara Budde
[4], as well as the Recast Navigation software by Mikko Mononen [22], and has likely been
implemented in Unity3D [26]. (Licensing terms make this difficult to determine, but mr.
Mononen is employed by Unity at the time of writing, and he has remarked on the similar-
ities in an interview [4].) Note that the work by Sara Budde provides a more robust and
flexible sampling approach, but the representation is structurally the same.

The algorithm iteratively selects and samples outer edges of the navigation mesh, where
a predefined jump trajectory is projected as starting from each of these sample points. The
trajectories that connect to the same walkable surface are considered together as a jump arc.
To check the validity of such an arc, each of the separate trajectories is combined with the
height of the character, and each of these ”slices” is tested for collision with the surrounding
obstacles. This may result in jump arcs being split up into any number of separate arcs.
Every sufficiently wide jump arc that does not cause collisions becomes an annotation in the
navigation mesh.

These jump annotations are highly suitable for practical purposes, can bridge any num-
ber of gaps, can easily cross obstacles and greatly increase mesh connectivity. However,

10

Figure 5: Image from [13], that shows the various SMART options for a geometrically simple environment.

Figure 6: Image from [21], that illustrates how jump connections are established between PRMs in practice.

since they are essentially made up of collections of single jumping arcs, these annotations
cannot be easily crossed diagonally or at varying heights. Similar to the single jump arcs,
there are no guarantees on the quality of the paths planned.

2.2.3 Motivation of this research project

First of all, we here discuss the disadvantages of the methods that omit jump annotations for
their path planning. If the mesh does not contain jump annotations, then a path planning
algorithm that incorporates jumping can either use it as a highly local, and thereby small-
scale and computationally manageable action, or attempt to plan (structurally significant)
jumps while the algorithm is running.

Jumping at a local level, as found in the work by Kapadia et al. [16], has the distinct
disadvantage that it does not meaningfully change the homotopic class of the found path.
Although local jumps can be used to traverse small obstacles, which may be suitable for
certain dynamic environments, the results are no different from planning when these obsta-
cles are simply omitted. Essentially, such a path planning algorithm can choose to ”smooth
over” small enough obstacles and gaps. Since jumping is essential rather than secondary to
this report, this approach will not be sufficient here.

Planning larger jumps at runtime on a case-by-case basis, on the other hand, very quickly
becomes computationally infeasible. Since the starting location of any jump should not

11

Figure 7: Image from [5], where the blue path has been planned with less stringent constraints than the
red path.

Figure 8: Image from [4], that shows how continuous representations are constructed from densely sampled
collision slices.

12

reoccur in any remotely efficient path, reuse of previous results is very limited. Also, for
the algorithm to connect all possible locations, each reachable location needs to be consid-
ered, which may well include the entire environment. Hence, each jump is a unique case
that requires evaluation of (in the worst-case scenario) all navigable polygons. Attaching
sufficiently advanced jump connections to the navigation mesh in an offline stage is simply
a way to prepare these complex considerations for the online stage.

Secondly, from the examined methods that do use jump annotations, we can conclude that
no representations have been defined as of yet that cover all (rationally) possible jump arcs.
The closest contenders consist of the work by Lopez et al. [21] and the work by Budde [4],
which use continuous annotations. We find that the representations generated by Budde are
based on a single trajectory that is sampled with a predefined density. This keeps us from
planning more efficient routes, regardless of context. On the other hand, the method by
Lopez et al. may produce a fairly dense Accessibility Profile, but it is not guaranteed to be
complete or have a smooth boundary. And even then, to establish actual jump connections,
the method still requires random sampling of configurations that are within range, leading
to further jagged and inefficient paths, or most damningly, valid paths not being found. An
annotation structure that considers all valid trajectories is thus still sorely missing from the
field.

Thirdly, although methods have been coined to place jump representations in the navigation
mesh, these methods have not yet been applied to entirely continuous representations. The
placement work by Mikko Mononen [22] and Budde provides an interesting theoretical base
to work off of, but more exact placement methods are required in this case. Furthermore,
the possible placement cases and degeneracies have so far not been formally described, so a
description of such special cases contributes directly to this field.

13

3 Exploration of Jumping
Whereas the proceeding sections have explored the theory in and fundamental results of this
field, we here move to providing our research.

In this section, we examine the idea of a single jump between two points, and apply it
to connections between polygons in order to provide our definition of jump links. First, we
make our assumptions relating to the mechanics of both moving and jumping. Secondly, we
provide the equations from Newtonian physics we use to simulate jumps, which we treat as
our mathematical axioms. Thirdly, we describe the jump space between a starting and a
goal point, and define the concepts of minimal jumps, optimal jumps and the rational jump
range. Fourthly, we interpolate this point-based definition between three-dimensional line
segments, and examine the special cases that result from our axiomatic system. This pro-
vides us with our theoretical definition of jump links. Finally, we provide informal definitions
of the heuristics we will define in the upcoming sections of this report.

3.1 Approach and terminology
Previously, we provided a number of broad-strokes overviews of the concepts central to this
report. In order to provide the appropriate context for our work, we need to define the
environment to which it applies, as well as the metrics that determine its success. Although
many of the below definitions will not come directly into play in this section yet, we provide
them here in advance and reference them when applicable.

Our chosen environment is a non-empty set of disjoint multi-layered walkable surfaces, where
each surface is annotated with its own navigation mesh. To clarify, this means the following
for any valid environment:

• The environment may contain only one walkable surface, or any number of walkable
surfaces, as long as these surfaces don’t (self-)overlap or (self-)intersect;

• When projected onto the ground plane, each walkable surface may intersect itself or
any other surfaces any number of times;

• Each walkable surface consists of a collection of interconnected triangles in three-
dimensional space;

• Each surface as a whole must be entirely walkable for a disk-shaped object with a non-
zero radius, i.e. contains no perfectly vertical triangles or pairs of triangles connected
by a single vertex;

• Each surface has been annotated with a complete navigation mesh that allows the
planning of paths between any two points in that surface.

This latter constraint is particularly meaningful to our results; as seen in the related work,
many different types of navigation meshes have been defined (or can be extended to become
well-defined) for multi-layered walkable surfaces. This allows us to apply any of these meth-
ods to the subproblem of planning a walked path across a single surface. In this report, we
provide the solution to the subproblem of meaningfully connecting walkable surfaces through
jump links.

In order to remain consistent with most, if not nearly all available implementations of
navigation meshes, as well as bound the complexity of the presented method, we restrict
our path planning to holonomic motion. Although the jump trajectories we define in the
next subsections are based on essential results from physics, we do not maintain or compute
momentum explicitly when planning paths. Extending the method provided here to account
for nonholonomic motion is left for future work.

As a consequence of the aforementioned, the metric used to gauge the quality of a path

14

is the sum of the Euclidean length of each of its component lines and curves, i.e. its total
length from start to finish. As may be expected, a shorter path is considered better than a
longer one. This suits both almost all navigation meshes, as well as holonomic motion, and
applies to any piecewise assembled path curve (i.e. both line segments ”on foot” and jump
arcs ”in the air”).

We conclude this prerequisite section by clarifying certain terminology:

• The term ”velocity” here applies to the three-dimensional vector of motion;

• The term ”speed” here is used to refer to the scalar length of the velocity vector;

• The term ”angle” here refers to the angle between the velocity vector and the ground
plane.

The velocity vector for a jump between two given points is uniquely defined given both
the speed and angle of the jump. In this situation, we therefore interchangeably refer to a
jump’s velocity and the combination of its speed and angle.

3.2 Mechanics
In order to describe and simulate jumps in a digital environment, we must first clearly de-
fine what ”jumping” means in this context. Although it seems like an obvious concept, its
simulated counterpart is limited by the simulation environment, as well as its purpose. We
wish to find a definition that balances realism and computational complexity, with special
emphasis on the latter, considering that we apply it across any number of ranges of jumps.

When jumping, we push ourselves away from the ground, launching from our start to
our goal. In this thesis, we presume that the simulated environment includes a gravita-
tional force, such that any character is drawn downward in the air at a constant rate of
acceleration. (Hence, our results do not translate well to simulations of ”extraterrestrial”
environments, e.g. outer space.) From a physics standpoint, starting at ”takeoff” the jumper
traverses a trajectory based on said gravitational force, the jumping angle, the jumping force
(which can also be described through the initial jumping speed) and the friction experienced
along the trajectory, i.e. air drag.

Here, the air drag is by far the most complex force to simulate accurately; it depends
on the density of the air (and therefore also on the temperature), as well as the speed of the
jumper at any point in time, the cross sectional area of the jumper in the direction of mo-
tion and a drag coefficient value derived from the jumper’s shape. If we were to include this
full level of detail, the precomputation of paths would become computationally prohibitive.
Even a limited representation has distinct disadvantages; this would prevent us from apply-
ing symmetry to simplify the representation, and/or require that the jump representations
are recomputed depending on the character using them. This is not desirable behaviour for
what is potentially already a computationally very expensive procedure. As a result, we
will not be taking air drag into account when considering jump trajectories. This is left
for a possible future implementation. To simulate how air drag strongly limits the distance
traversed when jumping, the results can be made more realistic if required by reducing the
maximal jump distance accordingly.

Since we omit air drag from our simulations, we also omit the possibility to alter one’s
trajectory in midair. Changes of configuration in the character might have influenced the
cross sectional area and drag coefficient, changing the distance traversed, or even the angle of
motion. Note that while changing the jump trajectory in midair is not in any way realistic,
it is a commonly included mechanic in video games. Consider for example many platform-
ing games, where players can interrupt or tweak the trajectory while moving. Although the
method presented in this thesis could very well be applied to the domain of video games, we
here choose realism over practicality of application, and indeed do not allow changes to the

15

trajectory after the start of the jump. This means that any jump trajectory, when projected
onto the ground, must return a straight line segment.

We are now left with a trajectory influenced only by gravity, the jumping angle and the
jumping speed. Since we presume that the gravitational constant has been provided, we
can now exercise easily predictable control over the trajectory through the chosen angle and
speed. In terms of physics, this method corresponds to the ballistic trajectory of a projectile
when disregarding air drag. This situation has been well studied and can be easily typified
through several standard formulas.

Our final observations provide reasonable limits on these two alterable parameters, as well
as the range of trajectories. Concerning the speed, we must note that it is of course not
possible to jump with negative speed, i.e. negative force. Also, for ease of reference, we
assume that the maximum jump speed vmax has been defined for each character, as either
a real value or ”infinity”. Considering the jumping angle, we note most importantly that we
do not consider it possible to jump at a negative angle. With general ballistic trajectories,
negative angles may apply when an object is launched downward. Although we do consider
characters as being ”launched” by their jump actions, we presume that they cannot push
themselves downward off of the edge of a platform or through it, as this would be particu-
larly unrealistic. We thereby limit the angle of jumps to values between 0 and π radians.
(In upcoming sections, we will find that in practice only angles between 0 and 1

2π radians
need to be considered.) It does remain possible to fall straight down off an edge - this is
represented by ”jumping” at any angle with zero speed.

Finally, we restrict the number of trajectories by requiring that any valid trajectory must
have a zero or negative vertical speed when it reaches its intended goal. This means that
the trajectory actually needs to ”touch down” onto its goal, allowing the character to come
to a standstill. In this simulation, we do not explicitly compute momentum, but we know
that characters jumping up at a point with excessive force can in fact overshoot their target.
To simply interrupt such a trajectory during the simulation at the desired goal point would
unquestionably run counter to our goal of realism.

We thus conclude that we can represent jumping by a limited subset of ballistic trajectories
without air drag or intermittent propulsion. This allows us to use the applicable equations
in our simulations, and equally importantly, as the axiomatic basis for our definition of jump
links. We therefore provide these equations in the next section.

3.3 Physics of jumping
In this section, we describe how we can create a jump trajectory, based on Newtonian physics
equations. These describe ballistic trajectories in the plane from the starting position (0, 0),
where x refers to the horizontal direction and y refers to the vertical direction. Such a
trajectory for a simple projectile (i.e. point mass) that is free from air drag is not resisted
in the horizontal direction, and is only subject to the gravitational force g in the vertical
direction. This is expressed as follows:

ax = 0 (1)

ay = −g (2)

where ax is the horizontal acceleration, and ay is the vertical acceleration. The velocity v
along the trajectory is a combination of its horizontal and vertical component, v2x and v2y
respectively, which can be expressed as:

v =
√
v2x + v2y (3)

16

The horizontal velocity does not change along the trajectory, but the vertical velocity is
subject to the gravitational pull, as expressed in the following equations:

vx = v0 ∗ cos(θ) (4)

vy = v0 ∗ sin(θ)− gt (5)

where v0 is the initial speed, θ is the angle of launch and t represents time. As a result, the
horizontal and vertical displacement (x and y, respectively) are expressed as follows:

x = v0t ∗ cos(θ) (6)

y = v0t ∗ sin(θ)− 1

2
gt2 (7)

Now, when we substitute out t with the formula based on x, the following equation is derived:

y = x ∗ tan(θ)− gx2

2(v ∗ cos(θ))2
(8)

The above equation is central to the following sections, where we will be utilizing a three-
dimensional equivalent. Now, if we have both the starting point and (the relative position
of) the goal point, we still require both v0 and θ to define the trajectory. Through a separate
derivation process, which we have omitted here, we find a formula that allows us to determine
the angle required to reach a target coordinate (dx, dy) relative to the starting position (0, 0):

θ = arctan(
v20 ±

√
v40 − g(gd2x + 2dyv20)

gdx
) (9)

We will also regularly be referring to the three-dimensional equivalent of the above equation
in the upcoming sections. Finally, we provide several separately derived equations that
we will only refer to once, but stem from the same background in physics. The following
equation returns the range of the ballistic trajectory R, i.e. the horizontal distance the
launched object has traversed when it once again reaches the height of its starting position,
based on v0, θ and g:

R =
v20 ∗ sin(2θ)

g
(10)

The following equation returns the maximum height of the ballistic trajectory h based on
its range R:

h =
R ∗ tan(θ)

4
(11)

Now that we have examined the base equations of ballistic physics in the plane, we can
apply them to the simple case of jumping from one point to another, and derive the concepts
crucial to our definition of the jump link representation.

3.4 Single jump concepts
In this section, we examine jumping from a predefined starting point to a predefined goal
point in an unobstructed space, and define a minimal and optimal velocity (i.e. jumping
speed and angle) for any two points. This provides us with rational bounds on the trajectory
space for any two points, resulting in the definition of the rational jump space.

Note that from this section on, we provide the three-dimensional equivalents of the pre-
viously described functions, in a coordinate system where the positive y-direction is consid-
ered to be ”up” (i.e. gravity is applied in the negative y-direction). This means we will be
replacing the variable x with lxz, where lxz represents the current ground plane projected
distance to the starting point, and the variable y with ly, where ly represents the y-value
(i.e. height) at the corresponding point. When referring to the fixed location of the goal
point relative to the starting point, we substitute dx with dxz and retain dy.

17

Figure 9: A simple sketch of a three-dimensional environment, with the axes included. The blue axis points
in the positive y-direction, the red axis points in the positive x-direction and the green axis points in the
positive z-direction. The provided trajectory is a sketch intended to clarify the perspective.

3.4.1 Minimal jump speed and associated angle

Given the locations of the start and goal of our desired jump, it is clear that not all chosen
pairs of speeds and angles will result in a valid jump between the two. Any one pairing
may overshoot or undershoot the target, and only very specific pairings relate to trajec-
tories landing exactly at the goal point. Equation 9 provides us with a way to determine
the associated angle when the speed has been provided. However, it also provides a way to
define the minimal speed required to reach the goal from the starting position.

We refer back to Equation 9, and here provide its three-dimensional equivalent where v
represents the jumping speed:

θ = arctan(
v2 ±

√
v4 − g(gd2xz + 2dyv2)

gdxz
) (12)

For clarity, we note that dxz represents the ground plane projected distance from the
goal point to the starting point, and dy represents the height difference between the goal
and starting point. Consider, when we substitute A = v4 − g(gd2xz + 2dyv

2), the different
cases corresponding to the different values of A. If A is negative, the above returns zero
values; this means that the speed is insufficient to reach the target point, regardless of the
chosen angle. If A is positive, the above returns two possible launch angles. The greater
angle will result in a higher arc, but both trajectories reach (xt, yt).

However, the final case is of particular interest. When A is equal to zero, which occurs
for a single specific speed, the above returns only one associated angle. There is, so to
speak, no leeway in how the jump has to be made. This implies that the jump speed is
minimal for that particular target coordinate. We refer to this minimal speed as vmin. If we
equate A to zero, we find that we can determine the minimal speed directly from dxz and
dy, as we demonstrate below:

18

v4min − g(gd2xz + 2dyv
2
min) = 0

v4min − 2gdyv
2
min − g2d2xy = 0

substituting: a = v2min a2 − 2gdya− g2d2xz = 0

application of the quadratic formula a =
2gdy ±

√
4g2d2y + 4g2d2xz

2

unsubstituting vmin =

√√√√2gdy ±
√

4g2d2y + 4g2d2xz

2

vmin =

√√√√
gdy ±

√
4g2 ∗ (d2y + d2xz)

2

vmin =

√√√√
gdy ±

2g ∗
√
d2y + d2xz

2

vmin =

√
gdy ± g

√
d2y + d2xz

vmin =
√
g

√
dy ±

√
d2y + d2xz

Although at first glance, this equation appears to be able to return two valid results, in
practice it will return exactly one. Since we consider irrational speeds invalid in practice,
the negative case above does not return a meaningful result in any case. We highlight the
negative case to demonstrate this point:

vmin =
√
g

√
dy −

√
d2y + d2xz

Now, the second square root only returns a valid result when dy −
√
d2y + d2xz is zero or

positive, and similarly,
√
d2y + d2xz always returns a zero or positive value. In fact, whenever

d2xz > 0,
√
d2y + d2xz > |dy|, making dy −

√
d2y + d2xz negative and the result invalid. We

therefore only have to consider cases when d2xz = 0, i.e. the line segment between the start
and the goal position extends directly upward.

Assuming this is the case, when dy > 0, the negative case returns exactly zero. We know
this is invalid in practice, since the goal point is higher than the starting point, meaning we
have to jump directly upward at some speed to reach it. On the other hand, when dy < 0,
the result is irrational, and finally, when dy = 0, the returned value of zero is valid and even
correct, but exactly the same as the value found in the positive case. This means we can
safely ignore the negative case, resulting in the completed equation for the minimal jump
speed :

vmin =
√
g

√
dy +

√
d2y + d2xz (13)

This minimal jump speed is well-defined for every point pairing. As we have shown that
this speed corresponds to exactly one angle, we can define the minimal jump angle θmin

accordingly. When we substitute 0 = v4 − g(gd2xz + 2dyv
2) into Equation 12, we find

that the minimal jump angle is easily computed when the minimal jump speed has been
established:

19

Figure 10: A rendered sketch of a three-dimensional environment, with a minimal velocity jump trajectory
drawn from the starting polygon (red) to the goal polygon (green). Note that the other trajectories in the
blue slice are also valid, and are in fact shorter than the minimal velocity jump. However, the lower the
speed, the larger the range needs to be in order to compensate; the minimal velocity jump between two
points also has the longest rational arc.

θmin = arctan(
v2min

gdxz
) (14)

The minimal jump velocity vector, then, derives naturally from the minimal jump speed
and angle. The illustration provided by Figure 10 shows a minimal velocity jump trajectory,
contrasted against other trajectories which require greater speeds.

3.4.2 Optimal jump velocity

As previously defined, we define the cost of any path as the sum of the Euclidean length
of each of its component lines and curves. In upcoming sections, we motivate this choice
further, but this means that for any two points, the trajectory with the lowest possible
arc length is the best possible jump between them - in the context of the full path as well.
Referring back to the illustration, this means that the lower arc is preferable to the upper arc.

As a result, we can define the optimal jump velocity by the speed and angle associated
with the trajectory with the smallest arc length. To find these values for any given point
pair, we do not need to compute the arc lengths explicitly; we only have to demonstrate that
the resulting trajectory length is indeed the smallest possible. The definitions of the optimal
jump speed and angle vary depending on the difference in height between the starting and
goal point, and so these definitions are provided in separate paragraphs for clarity.

Optimal jump speed when jumping downward When jumping downward (i.e. when the
y-value of the starting point is greater than the y-value of the goal point), the shortest
trajectory is found when the jumping angle is equal to 0 radians/degrees. Figure 11 makes
that evident; any other trajectory, even when the associated speed is greater, must maintain
a greater angle and therefore arcs over the trajectory at 0 radians/degrees. As a result, the
optimal jump angle when jumping downward θoptd is always exactly zero.

By referring to Equation 12, we can determine the formula for the associated optimal speed

20

Figure 11: A similar rendered sketch of a three-dimensional environment, with the optimal velocity jump
trajectory drawn from the starting polygon (red) to the goal polygon (green). Note that the starting angle
here is zero, which is the lowest possible valid angle.

voptd by deriving from the following equation:

0 = arctan(
v2optd ±

√
v4optd − g(gd2xz + 2dyv2optd)

gdxz
)

Based on trigonometric functions we can state that arctan(x) = 0 → x = 0, and we know
that for the result of a fraction to be zero, the numerator needs to be 0. We can hence
reduce the above to the following equation:

0 = v2optd ±
√
v4optd − g(gd2xz + 2dyv2optd)

Now, we know that both v2optd and
√
v4optd − g(gd2xz + 2dyv2optd) are zero or positive, so

all solutions to this equation are found when we subtract the two terms from each other
(when both are zero, they could also be added together, but this offers no separate result).
Therefore, we can reduce the above to:

v2optd =
√
v4optd − g(gd2xz + 2dyv2optd)

v2optd =
√
v4optd − g2d2xz − 2gdyv2optd√

v4optd =
√
v4optd − g2d2xz − 2gdyv2optd

further reducing the equation g2d2xz = −2gdyv
2
optd

gd2xz = −2dyv
2
optd

gd2xz
−2dy

= v2optd√
gd2xz
−2dy

= voptd

This leads us to the following definitions for the optimal jump speed and angle when jumping
downward:

voptd =

√
gd2xz
−2dy

θoptd = 0

(15)

21

Figure 12: A rendered sketch of a three-dimensional environment, with the optimal velocity jump trajectory
drawn from the starting polygon (red) to the goal polygon (green). Note that the landing angle of the
trajectory is zero, being the exact converse of the downward trajectory between the two points.

Optimal jump velocity when jumping upward As stated in our assumptions, all valid
trajectories must land on their goal point rather than simply cross it, i.e. have a zero or
negative upward speed when the trajectory reaches the goal point. Since we consider the
navigable space to contain all walkable surfaces as floors, a trajectory might otherwise only
cross through the goal point before being propelled further away by momentum. Thus, when
jumping upward (i.e. when the y-value of the goal point is greater than the y-value of the
starting point), aiming directly at the goal point with an infinitely great speed does not
result in a valid trajectory. In a manner mirroring jumping downward, the trajectory is as
short as possible when the goal point coincides with its apex, implying that the ”angle of
motion” at the goal point is always zero.

For this particular case, the launch angle is not a constant, but varies depending on the
locations of the start and goal points. Contrary to the preceding derivations, we first find
the optimal jump angle θoptu and use its value to determine the optimal jump speed voptu .
We refer back to Equation 11:

h =
R ∗ tan(θ)

4

Here, h is the highest point of the trajectory, and R is the range of the projectile, i.e. the
distance traversed when the parabola reaches the same height as that of its starting point.
Since the positions are measured relative to the starting point, the range corresponds to the
parabola’s second root. In the above equation, we can substitute h with dy (our desired
apex height) and R with 2dxz (twice our desired traversed distance). After performing these
substitutions, we can rewrite the equation as follows:

dy =
2dxz ∗ tan(θoptu)

4
4dy = 2dxz ∗ tan(θoptu)

4dy
2dxz

= tan(θoptu)

arctan(
2dy
dxz

) = θoptu

(16)

We now only need to determine the optimal jump speed. We refer back to Equation 8, which
describes the height of the trajectory as a function of the distance traversed, and provide

22

its three-dimensional equivalent:

ly = lxz ∗ tan(θoptu)− gl2xz
2(voptu ∗ cos(θoptu))2

(17)

The variable lxz represents the increasing ground plane projected distance from the starting
point, while the variable ly represents the associated height for that point. (The choice
of the letter l holds no specific significance, other than being distinct enough to hopefully
prevent confusion.) When we substitute lxz with dxz and ly with dy, we find the following:

dy = dxz ∗ tan(θoptu)− gd2xz
2(voptu ∗ cos(θoptu))2

By applying the results from Equation 16, we can simplify this function significantly:

dy = dxz ∗ tan(arctan(
2dy
dxz

))− gd2xz

2(voptu ∗ cos(arctan(
2dy

dxz
)))2

dy = dxz ∗
2dy
dxz
− gd2xz

2(voptu ∗ cos(arctan(
2dy

dxz
)))2

dy = 2dy −
gd2xz

2(voptu ∗ cos(arctan(
2dy

dxz
)))2

Furthermore, since the relationships between trigonometric functions and their inverses state
that cos(arctan(x)) = 1√

x2+1
:

dy = 2dy −
gd2xz

2v2optu ∗
1√

2dy
dxz

2
+1

2

−dy = − gd2xz
2v2optu ∗

1
4d2y

d2xz
+1

dy =
gd2xz ∗ (

4d2
y

d2
xz

+ 1)

2v2optu

v2optu =
4gd2y + gd2xz

2dy

v2optu = 2gdy +
1

2

gd2xz
dy

voptu =

√
2gdy +

1

2

gd2xz
dy

voptu =
√
g

√
2dy +

1

2

d2xz
dy

This leads us to the following definitions for the optimal jump speed and angle when
jumping upward:

θoptu = arctan(
2dy
dxz

)

voptu =
√
g

√
2dy +

1

2

d2xz
dy

(18)

As found previously, the associated velocity vector is uniquely defined by the optimal jump
speed and angle. Figure 12 illustrates that the trajectory traversed is the same as the
optimal trajectory in the converse case; we will demonstrate and expand on this property
in upcoming sections.

23

Figure 13: A rendered sketch of a three-dimensional environment, where the starting and goal points are at
the same level. The blue slice of possible trajectories approaches the marked straight line as the maximum
speed increases, meaning that a valid trajectory is available for any speed above the minimum.

Optimal jump velocity on the level plane In the final remaining case, we consider jump-
ing between two points at the same height. This case is very likely to occur in manually
modelled environments, as well as extracted environments where the coordinates have been
rounded to an appropriate precision. Here, the straight line segment between the two points
is in fact a valid trajectory, if the character is capable of jumping at an infinitely high speed.
Depending on the application, this is either valid, or the speed is bounded to a predefined
value; regardless, we can always find a valid trajectory associated with the maximum speed
vmax. As a result, the optimal jump speed on the level plane voptl is equal to the vmax for
that particular character.

This leaves us to find the associated angle θoptl . We refer back to Equation 10, where
we substitute R with dxz, v with vmax and θ with θoptl :

dxz =
v2max ∗ sin(2θoptl)

g

By rewriting this function as follows, we can determine the value for θoptl :

dxz =
v2max ∗ sin(2θoptl)

g

gdxz = v2max ∗ sin(2θoptl)

gdxz
v2max

= sin(2θoptl)

arcsin(
gdxz
v2max

) = 2θoptl

1

2
arcsin(

gdxz
v2max

) = θoptl

This leads us to the following definitions for the optimal jump angle and speed on the level
plane, which are demonstrated in Figure 13:

voptl = vmax

θoptl =
1

2
arcsin(

gdxz
v2max

)
(19)

Considering all possible cases has provided us with a clear definition of the optimal jump
speed and angle between two points, regardless of how they relate to each other spatially. We
will therefore be referring to vopt and θopt respectively, to represent the values appropriate
for the starting and goal points.

3.4.3 Rational jump range

Now that we have defined the minimal and optimal jumps for point-to-point jumps, we
can introduce the concept of rational trajectories. Provided the maximum jump speed of

24

a character vmax, we consider the chosen trajectory between two points rational if it is
valid, and has the lowest arc length of the trajectories associated with min(vmax, vopt). We
elaborate on this definition by examining the different cases of how vmax relates to vmin and
vopt:

• If vmax < vmin, we know that there are no valid trajectories, and hence there is no
rational trajectory;

• If vmax = vmin, the only valid trajectory between the starting and goal point is the
minimal jump trajectory, making this the rational trajectory by extension;

• If vmax > vmin and vmax ≤ vopt, vmax is associated with two possible trajectories,
where one has a lower launch angle than the other. The trajectory with a lower
launch angle results in a shorter arc length. We therefore consider this trajectory to
be rational in this case;

• If vmax > vopt, we find either a longer trajectory than the one associated with vopt and
θopt or an invalid trajectory; hence, the rational trajectory for this case is the optimal
jump trajectory.

Furthermore, any rational jump trajectory will by necessity be located between the minimal
and optimal jump, meaning that these are the bounds to a range of trajectories which we
hereby refer to as the rational jump range. Any jump outside of this range can be considered
irrational, since there is always either a jump associated with min(vmax, vopt) that has a
lower arc length, or no valid trajectory available. This gives us a surprisingly compact range
of jump trajectories that require consideration in the unobstructed jump space.

3.5 Jump links
In this section, we abstractly define the concept of a jump link, in the context of a three-
dimensional multi-layered navigable space. We start by motivating our approach, and further
limit the set of trajectories we consider valid in this context. This allows us to strictly define
valid edge-to-edge connections, as well as partial and projected connections.

3.5.1 Approach

In this report, we use jumping as a method to navigate a multi-layered navigable space by
traversing directly through the three-dimensional space enveloping it. Since this type of en-
vironment can contain any configuration of navigable polygons, it could be argued that any
valid point-to-point connection in the mesh needs to be considered. In fact, path planning
with all potential jumps can find more efficient paths than when jumps are constrained to
a subset.

However, accurately representing any possible jump between even just two walkable poly-
gons and selecting a provably efficient arc presents a problem with a complexity exceeding
the scope of this report. We could choose to apply sampling methods or imposing limitations
on the parameters (such as the shapes of either polygon, the number of permitted jump arcs,
the existence of holes and/or the relative placement of the polygons); however, we believe
that in many instances, an exact exploration of the edge-to-edge case will be more valuable
than a severely limited exploration of the polygon-to-polygon case.

Furthermore, as we are about to demonstrate, certain jumps into polygons can be simu-
lated by choosing virtual edges inside the polygon. Through this approach, we maximize
the number of valid connections while limiting the complexity of the associated problem.
Using trajectories that include any positions inside polygons can then, in future work, also
be approached as a path-smoothing operation on the paths found by this report. Hence, we
here only consider jumps between two line segments that are part of polygons. In practice,
the approach is in line with the one used in the foremost reference, namely the Master’s

25

thesis by Sara Budde [4].

Finally, it must be noted that any jump link is considered to be bidirectional. In the
upcoming sections, we will not explicitly specify the jump direction, especially since the
trajectories are not affected by direction of traversal (which would have been the case, had
we incorporated air drag). Any concept we define thereby has a counterpart in the other
direction.

3.5.2 Assumptions

Succinctly summarized, the assumptions in section 3.2 imply the following requirements for
a valid point-to-point jump:

• The launch speed of the jump needs to be equal to or greater than zero;

• The landing speed needs to be equal to or less than zero (e.g. landing "downward");

• The jumping velocity needs to point upward or remain level with the horizon.

Since trajectories directly upward or downward adhere to these requirements, we can con-
clude that any two points in space can be connected through a valid jump. However, when
planning in an environment populated with polygons, we find that not every jump arc is
necessarily possible or sensible.

For our following examples, we choose two triangles and a point on one of the edges for
each triangle, between which we wish to plan a jump arc. We assume that neither of these
polygons is degenerate, which is to say their three points are not collinear and neither tri-
angle is perpendicular to the ground plane. (We can safely exclude these latter cases, since
we could not consider such a triangle part of a walkable surface.)

Depending on the placement of these polygons, we find that certain jump arcs intersect the
starting polygon or goal polygon. If a jump trajectory intersects with inaccessible obstacles
or other layers (”floors”) in the navigable space, we cannot consider it valid, for apparent
reasons of realism. Although we do not yet consider polygons other than the aforementioned
triangles, we already find that the surrounding context limits the extent to which we can
connect any two line segments. (See also Figure 14 for an example.)

We can also construct cases where the valid jump arcs occur away from the direction of
the polygon’s edge (i.e. at greater than 1

2π radians). Although these are not necessarily
incorrect, we here choose to consider these arcs invalid as well, for two reasons. First of all,
almost every jump arc with a launch angle greater than 1

2π radians (outside of degenerate
cases) has a more efficient counterpart with a starting point from another location in the
polygon (see also Figure 15 for an example).

Secondly, although these jumps adhere to our previously constructed point-to-point defi-
nitions, we find that they appear unrealistic in an environment populated with walkable
surfaces. In the context of a larger path, such a jump could only be viewed as a physically
impossible heel-face turn, inconsistent with a common viewer’s interpretation of momentum
(even if we do not apply non-holonomic motion in this report). This limits the valid range
of launch angles to [0, 12π].

3.5.3 Valid jump links

In the remainder of this section, we use the term ”edges” to refer to line segments that are
specifically part of the boundary of a polygon; ”line segments” is used for the more general
case, where they may also be part of a polygon’s interior.

Abstractly speaking, we can define a jump link as a connection between two valid line

26

Figure 14: A sketch of a trajectory blocked by two same-sized source polygons. This trajectory is con-
sidered invalid. Similarly, trajectories passing through non-source polygons are also considered invalid; the
representation of the obstacle space is discussed in upcoming sections.

Figure 15: A sketch of two paths, where the red polygon contains the starting point and the green polygon
contains the goal point. The orange path contains an arc with a launch angle greater than 1

2
π radians; as

we can see, this trajectory has a more efficient counterpart, and appears unrealistic in a larger context. The
blue path presents a preferable alternative.

27

Figure 16: A top-down view sketch of two polygons. The blue line represents the dividing plane between the
halfspaces of the edge, whose endpoints are marked with the blue dots. The lightly shaded space represents
the outer halfspace for said edge.

segments. Naturally, this definition is meaningless if we do not also provide the definition
of valid line segments. Based on the additional constraints, we can now define the combina-
tions of line segments which we consider to be valid. The core principle is that for a jump
link to be valid between two line segments, each point on each line segment must have at
least one valid jump trajectory to the other segment.

For many combinations of polygonal edges, we find that there may not be a single valid
jump arc between them. Using a simple metric to filter the (potentially) valid from the
invalid combinations goes a long way towards limiting the computational load of the jump
link creation algorithm. Hence, we introduce the concept of facing edges to separate the two.

For any edge that belongs to a triangle, we can define two inclusive halfspaces whose
bounding plane both entirely contains the edge and is perpendicular to the ground plane.
Combined, they contain the entirety of the three-dimensional space. The third point, by
necessity, must be in at least one of these halfspaces; since we consider vertical polygons to
be degenerate in walkable surfaces, we can state that it resides in strictly one. We call the
halfspace containing the triangle’s third point the inner halfspace, and the other the outer
halfspace. This is illustrated in Figure 16.

Due to our newly introduced constraints with regards to the jumping angle, the outer half-
space of such an edge contains all trajectories we consider valid. (Since the halfspaces are
inclusive, the inner halfspace may also contain valid trajectories, but the outer halfspace
must contain them all in any case.) We consider one edge to be facing the other if the
one edge is entirely contained in the outer halfspace of the other edge, and at most a single
endpoint is contained in the halfspace’s bounding plane. This latter condition filters degen-
erate combinations, but allows the case where two edges are connected by an endpoint, i.e.
jumping around corner gaps. We consider two edges to be facing if each is facing the other.
Although in practice no trajectories may be found, any two facing edges have the potential
to be connected by a valid jump arc. Note that the edges need not be directly opposite each
other in order to be facing; in fact, we can assume that in practice they often will not be.

3.5.4 Partial jump links

Edges need not be entirely facing or non-facing. One edge may be facing the other but not
vice versa; however, accepting these cases would violate our approach of bidirectional jump
links. This leaves us with the possibility that the dividing plane of one edge’s halfspace

28

Figure 17: Three top-down sketches of facing, partially facing and non-facing edges. In the first sketch,
both edges are facing, which allows us to connect them with a jump link. In the second sketch, only the
orange sections can be connected, since the green polygon intersects the dividing plane of the other edge.
In the third sketch, neither edge faces the other, so we do not connect these two.

intersects with the other edge, vice versa, or both. According to the preceding definition, we
would have to reject these possibilities out of hand. However, valid jump arcs may still exist
between parts of the edges, bounded by endpoints and the intersections with the bounding
planes. In order to create a complete representation, we wish to consider the combination
of valid line segments separately from the remainder of the edge.

This is why we disconnect the concept of a jump link from specific edges. Although pair-
ings of edges are still used to generate links, the result may be any combination of line
segments. This allows us to include valid partial cases that would be excluded in a stricter
implementation. Such a valid partial case is presented in the second example of Figure 17.

3.5.5 Projected jump links

We include one final possible case that is not directly related to relations between mul-
tiple edges, but rather, the relation between an edge and a polygon. As specified in the
above constraints, falling down and jumping directly upward constitute valid trajectories.
Although we do not perform direct polygon-to-polygon comparisons, this added category
allows a wide variety of added connections between one higher edge and one lower polygon.
(Note that the spatially converse case is invalid in any configuration.)

These positions can be determined by subdividing the walkable polygons into layers and
projecting the outer edges of these layers onto the underlying ones. Wherever the edges
project onto an underlying polygon, we can establish a virtual edge directly at the projec-
tion site. These virtual edges are used similarly to the partial jump links. However, since
the polygon projected onto can have any number of deformities and holes, for this thesis,
we only introduce virtual edges when the entirety of the projection lands within the tar-
get polygon. Otherwise, partial approaches might be generated which don’t combine well
with our direct edge to edge mapping. A valid projected jump link is illustrated in Figure 18.

In summary, based on the target environment and restrictions to the trajectories, we have
defined three types of jump links we will generate to connect the inner and disjunct areas
of walkable surface in any given multi-layer environment. Although the treatise so far has
been particularly theoretical, such a fundamental underpinning is required to motivate the
concrete concepts we will be providing in future sections. With these definitions out of the
way, we can focus on how to create jump link representations that are of use to the path
planning algorithm, which is the topic of the next section.

3.6 Jump link concepts
Now that we have identified when we can connect two line segments through a jump link, the
question remains exactly what this concept entails. Essentially, a jump link is a representa-

29

Figure 18: A side view sketch of the two possible jump links between two edges. Projected onto the ground
plane, the edges overlap at the middle vertical line. The yellow shaded plane displays the partial projection
of the red polygon onto the green polygon, which allows us to add a projected jump link through a virtual
edge. The remaining line segments of the edge (colored light blue) can also be connected by a facing jump
link.

tion of the geometry between its line segments, and the information we store in these links
only needs to be what we will be using in our path planning algorithm. Within this section,
we introduce our path planning requirements and provide the methods used to compute
them.

As we have seen previously, we can establish any number of trajectories between two line seg-
ments, and the remaining geometry may interfere in any number of ways. We wish to make
these complex situations more tractable by providing bounds on the trajectories across, as
well as a description of the space that the jump link traverses. This section is dedicated to
defining the two central concepts that make up our jump link representation and motivating
their importance.

First of all, when planning a path across a jump link, we need to know if it is possible
for the character to cross it. Although we don’t prescribe what applications our method is
to be used for, within many contexts (e.g. video game development, navigation based on
human locomotion) it is reasonable to assume that the reach of the character is bounded in
some way. We would not expect a human character to make a jump of one hundred meters
across, but such jump links might very well be added to an environment when our method is
applied. Simultaneously, we expect the memory load of our preprocessed stage to be fairly
great, since we also need to describe the three-dimensional obstacles for every jump link.
This makes it inefficient to store separate sets of jump links for any situation.

We define the jump link minimal velocity as the jump vector associated with the lowest
possible jump speed, amongst all pairings of starting and goal points on the respective
edges. As we have seen previously, such a minimal jump velocity exists for any valid point
pairing, and since both line segments are bounded by their endpoints, there must be a lowest
minimal jump velocity across any jump link. With this minimal velocity precomputed, we
can efficiently prune the search tree during path planning if we define a maximum speed for
the character.

Secondly, the ”lowest cost” jump across a given jump link is of particular computational
interest to us. The A*-algorithm, as described in Chapter 2, uses a search heuristic to focus
the exploration of the search tree; it retains optimality if this search heuristic is admissible,
i.e. it never overestimates the cost of the full path to the goal. The closer to the lower bound

30

this heuristic is, the faster the goal is found. For regular locomotion, these heuristics are
usually easy to define (e.g. the straight-line distance to the goal), but when incorporating
jumping physics, it becomes far more complicated to find efficient heuristics.

Our current path planning approach defines the cost of a path as the sum of the Euclidean
length of each of its component lines and curves. When traversing a polygonal environment
(efficiently), this cost is restricted to the sum of the length of the separate line segments
across each of the polygons. As we introduce jumping, we find that each jump separately
can be considered as a segment of that path, curved in three-dimensional space. To main-
tain a consistent measure of cost, the arc length of the jump should define the cost of that
particular segment. As a result, we find a lower bound on the cost across a given jump link if
we can compute the arc length of the ”smallest trajectory” across a jump link. We define the
jump link minimal arc length as the shortest possible arc length of the trajectory amongst
all pairings of starting and goal points on the respective edges. This heuristic allows us to
speed up the path finding process significantly.

These two central concepts form the basis of the jump link representation we will be in-
troducing. In the upcoming sections, we derive the equations necessary to determine these
metrics for any two three-dimensional line segments.

31

4 Jump Link Minimal Velocity
In this section, we will be providing our derivation for the jump link minimal velocity,
demonstrating that we can compute it in linear time for any two line segments. Based on
the preceding section, we can consider this process completed when we have derived the
two points, across the line segments, that have the jump link minimal speed; the associated
jump vector follows logically from those two points.

For many combinations of edge segments, especially when we are dealing with a manually
constructed environment, the minimal speed required to cross the gap is fairly apparent.
Two line segments that are ground-plane parallel and level, for example, are best connected
through either a right-angle jump arc or an arc between two endpoints; on the other hand,
two line segments that share an endpoint have a lowest possible speed of zero. Here, we
start by assuming we know nothing about the line segments we wish to plan between - and
interpolate across them as lines rather than bounded segments. Not only does this give
us an exact result for the jump link minimal velocity, it also provides us with important
conclusions as to the extrema of this function.

The derivation to reach this conclusion is quite elaborate, involves many division and square
root operations, and requires a great deal of substitution to keep the result legible. This
is why we will first show the full process of finding the equation for the jump link minimal
speed, assuming that the contents of square roots are not negative and denominators are
not zero; afterwards, we discuss all cases that need to be considered separately under its
own heading.

4.1 Interpolated minimal speed
We refer back to Equation 13, which describes the minimal speed between two points as a
function of their ground plane projected distance dxz and their height difference dy:

vmin =
√
g

√
dy +

√
d2y + d2xz

When we wish to find the minimal speed between two edges vs→g
min , the values for dxz and

dy are dependent on both the point chosen to start from and the point chosen to land on.
The valid starting and goal points are each between the first and second endpoint of the
respective line segment; as a temporary shorthand, we refer to these points as ps1 and ps2 for
the starting edge and pg1 and pg2 for the goal edge.

Since we know that the edges are line segments in three-dimensional space, we can ap-
ply linear interpolation to describe the position of all valid starting and goal points, as well
as describe the distance between the selected points. We introduce cs as the interpolation
scalar between ps1 and ps2, where a value of 0 refers to ps1 and a value of 1 refers to ps2.
Similarly, we introduce cg as the interpolation scalar between pg1 and pg2, where a value of 0
refers to pg1 and a value of 1 refers to ps2.

In order to describe the distance vector d between the starting and goal points, which
we split in its components dx, dy and dz, as a function of cg and cs, we introduce a number
of new vectors to our terminology as follows:

• d̄, the initial distance vector, is computed by subtracting ps1 from pg1;

• ∆s, the rate of change for the starting edge, is computed by subtracting ps1 from ps2;

• ∆g, the rate of change for the goal edge, is computed by subtracting pg1 from pg2.

32

Note that by the above definitions, we essentially shift the frame of reference to that of
ps1. These new vectors, which for any two predefined edges are constant values, allow us to
define dx, dy and dz as follows:

dx = d̄x + ∆g
xcg −∆s

xcs

dy = d̄y + ∆g
ycg −∆s

ycs

dz = d̄z + ∆g
zcg −∆s

zcs

where ∆g
x refers to the x-component of the vector ∆g, and all other subscripts are considered

similarly. The above already provides us with our desired interpolated definition of dy, but
the definition for dxz has to be composed from the preceding according to the Euclidean
definition of distance as follows:

dxz =
√
d2x + d2z

substituting dxz =
√

(d̄x + ∆g
xcg −∆s

xcs)
2 + (d̄z + ∆g

zcg −∆s
zcs)

2

after expansion dxz =

√
(∆s

x
2 + ∆s

z
2)c2s + (∆g

x
2

+ ∆g
z
2
)c2g + (−2∆s

x − 2∆s
z)cscg

+(−2d̄x∆s
x − 2d̄z∆s

z)cs + (2d̄x∆g
x + 2d̄z∆g

z)cg + (d̄2x + d̄2z)

(20)

The expanded version of the above expression introduces a great number of constants, which
we can compute directly from our frame of reference, but which take up a great deal of space
in the expression, making it almost illegible. We will encounter this particular problem a
few times over the course of the derivation, which is why we will perform quite a few substi-
tutions. The primary purpose of the derivation here is to elucidate the process, rather than
provide the equation in its entirety.

We see this in practice when we substitute our newly found descriptions of dy and dxz
into the minimal speed equation. We can rewrite its term d2y + d2xz as seen below:

d2y + d2xz

d2y + (
√
d2x + d2z)2

d2y + d2x + d2z

which when expanded returns a large expression, on par with that of Equation 20. This
is why we provide our interpolated minimal speed function with several substitutions per-
formed, which are provided directly afterwards:

vs→g
min =

√
g

√
d̄y + ∆g

ycg −∆s
ycs +

√
αc2s + βc2g + γcscg + εcs + ζcg + η (21)

where

α = ∆s
x
2 + ∆s

y
2 + ∆s

z
2

β = ∆g
x
2 + ∆g

y
2 + ∆g

z
2

γ = −2∆g
x∆s

x − 2∆g
y∆s

y − 2∆g
z∆s

z

ε = −2d̄x∆s
x − 2d̄y∆s

y − 2d̄z∆s
z

ζ = 2d̄x∆g
x + 2d̄y∆g

y + 2d̄z∆g
z

η = d̄2x + d̄2y + d̄2z

All of the above substitutions are fairly simple, and each is a constant with regards to the
selected edges. We will henceforth be working with Equation 21, but in a number of special
cases, we will unsubstitute these expressions.

33

4.2 Relation between the interpolation variables
Now that we have an expression in Equation 21 that defines the minimal speed as a function
of two variables, we can attempt to find its minimum amongst the function’s extrema. We
know that in the extrema of such a function, both partial derivatives are equal to zero.
These partial derivatives are straightforward to find by application of the chain rule and the
standard derivative of square root functions. To elucidate the equation’s origin, we start by
providing the partial derivative of Equation 21 with respect to cs split up into three distinct
parts, separated by applications of the chain rule:

∂vs→g
min

∂cs
=

√
g

2

√
d̄y + ∆g

ycg −∆s
ycs +

√
αc2s + βc2g + γcscg + εcs + ζcg + η

∗

(−∆s
y +

1

2
√
αc2s + βc2g + γcscg + εcs + ζcg + η

∗

(2αcs + γcg + ε))

(22)

We alter it slightly to view the equation as two separate parts:

∂vs→g
min

∂cs
=

√
g

2

√
d̄y + ∆g

ycg −∆s
ycs +

√
αc2s + βc2g + γcscg + εcs + ζcg + η

Part 1

∗

(−∆s
y +

(2αcs + γcg + ε)

2
√
αc2s + βc2g + γcscg + εcs + ζcg + η

) Part 2

At the extrema, the above function needs to be equal to zero; since the two parts are
multiplied, this implies that at least one of them has to be zero for this to be true. However,
Part 1 in the above equation can only return a value of zero if g = 0, and according to our
assumptions, this would not constitute a valid simulation. As a result, we know that Part
2 must be equal to zero at the extrema. After some slight rewriting, we can conclude that
the following must hold:

2
√
αc2s + βc2g + γcscg + εcs + ζcg + η =

2αcs + γcg + ε

∆s
y

(23)

Through a comparable procedure, we find the partial derivative of Equation 21 with respect
to cg:

∂vs→g
min

∂cg
=

√
g

2

√
d̄y + ∆g

ycg −∆s
ycs +

√
αc2s + βc2g + γcscg + εcs + ζcg + η

Part 1

∗

(∆g
y +

(2βcg + γcs + ζ)

2
√
αc2s + βc2g + γcscg + εcs + ζcg + η

) Part 2

(24)

Since a similar line of reasoning holds for this partial derivative, the following must hold at
the extrema of Equation 21:

2
√
αc2s + βc2g + γcscg + εcs + ζcg + η =

2βcg + γcs + ζ

−∆g
y

(25)

Seeing as both Equation 23 and 25 have to be true in the extrema, we find that the following
must also hold there:

2αcs + γcg + ε

∆s
y

=
2βcg + γcs + ζ

−∆g
y

(26)

34

This crucial insight allows us to relate cs to cg for all extrema. By reducing cs to an
expression containing cg, we can substitute for cs, allowing us to find a global minimal
velocity for the edges. The above can be rewritten to such an expression:

2α

∆s
y

cs +
γ

∆s
y

cg +
ε

∆s
y

= − 2β

∆g
y
cg −

γ

∆g
y
cs −

ζ

∆g
y

2α

∆s
y

cs +
γ

∆g
y
cs = − 2β

∆g
y
cg −

γ

∆s
y

cg −
ζ

∆g
y
− ε

∆s
y

2α∆g
y + γ∆s

y

∆s
y∆g

y
cs =

−2β∆s
y − γ∆g

y

∆s
y∆g

y
cg +

−ζ∆s
y − ε∆g

y

∆s
y∆g

y

(2α∆g
y + γ∆s

y)cs = (−2β∆s
y − γ∆g

y)cg + (−ζ∆s
y − ε∆g

y)

cs =
−2β∆s

y − γ∆g
y

2α∆g
y + γ∆s

y

cg +
−ζ∆s

y − ε∆g
y

2α∆g
y + γ∆s

y

As demonstrated, the relation between cs and cg is linear; only the constants involved
consist of many different terms. This is why we perform another substitution to simplify
our terminology:

cs = κcg + λ (27)

where

κ =
−2β∆s

y − γ∆g
y

2α∆g
y + γ∆s

y

λ =
−ζ∆s

y − ε∆g
y

2α∆g
y + γ∆s

y

4.3 Reduction to extrema
Now that we can describe the relation between cs and cg, we can replace cs with κcg + λ in
Equation 23 and attempt to simplify it to a solvable form. We present this process below,
providing succinct notes as we go:

2αcs + γcg + ε

∆s
y

= 2
√
αc2s + βc2g + γcscg + εcs + ζcg + η (Equation 23)

2α(κcg + λ) + γcg + ε

∆s
y

= 2
√
α(κcg + λ)2 + βc2g + γcg(κcg + λ) + ε(κcg + λ) + ζcg + η

2ακcg + 2αλ+ γcg + ε

2∆s
y

=
√
ακ2c2g + 2ακλcg + αλ2 + βc2g + γκc2g + γλcg + εκcg + ελ+ ζcg + η

We perform a substitution in the above, resulting in the following:

µcg + ν

2∆s
y

=
√
ακ2c2g + 2ακλcg + αλ2 + βc2g + γκc2g + γλcg + εκcg + ελ+ ζcg + η (28)

where

µ = 2ακ+ γ

ν = 2αλ+ ε

35

Continuing on from Equation 28, we find:

(µcg + ν)2

4∆s
y
2 = ακ2c2g + 2ακλcg + αλ2 + βc2g + γκc2g + γλcg + εκcg + ελ+ ζcg + η

µ2c2g + 2µνcg + ν2

4∆s
y
2 = (ακ2 + β + γκ)c2g + (2ακλ+ γλ+ εκ+ ζ)cg + (αλ2 + ελ+ η)

µ2

4∆s
y
2 c

2
g +

2µν

4∆s
y
2 cg +

ν2

4∆s
y
2 = (ακ2 + β + γκ)c2g + (2ακλ+ γλ+ εκ+ ζ)cg + (αλ2 + ελ+ η)

(
µ2

4∆s
y
2 − (ακ2 + β + γκ))c2g + (

2µν

4∆s
y
2 − (2ακλ+ γλ+ εκ+ ζ))cg + (

ν2

4∆s
y
2 − (αλ2 + ελ+ η)) = 0

which, despite seeming daunting, is simply a quadratic equation, which can be solved through
the quadratic formula:

cg =
−b̄±

√
b̄2 − 4āc̄

2ā
where

ā = (
µ2

4∆s
y
2 − (ακ2 + β + γκ))

b̄ = (
2µν

4∆s
y
2 − (2ακλ+ γλ+ εκ+ ζ))

c̄ = (
ν2

4∆s
y
2 − (αλ2 + ελ+ η))

This finally provides us with the values for cs and cg at all possible extrema of Equation 21,
which are found as follows:

cg =
−b̄±

√
b̄2 − 4āc̄

2ā
cs = κcg + λ

(29)

And when we can use this to determine the possible values for cs and cg, we can substitute
their dxz and dy into Equation 13 to determine the jump link minimal speed, as well as the
jump link minimal angle and by extension, the jump link minimal velocity.

It must be noted that the values for cs and cg are not restricted to the bounds of the
line segments they are derived from; they may well extend under 0 or beyond 1. However,
this result does allow us insight into the structure of the function, which we will refer back
to in the upcoming discussion of the special cases and the structural observations.

4.4 Special cases
Having seen the entire derivation process, we now examine in chronological order the as
of yet undiscussed special cases where the above derivation returns no result at all. Note
that we have already established in Section 3.4.1 that the point-to-point minimal speed is
well-defined for any two points. For legibility’s sake, we here repeat its definition:

vmin =
√
g

√
dy +

√
d2y + d2xz

We therefore find the first of these cases in Equation 22; the partial derivative of the inter-
polated minimal speed with respect to cs. (Note that the case presented here applies to the
partial derivative with respect to cg as well.) The result of this equation becomes invalid
in two different cases. The first case occurs when the minimal speed between cg and cs is
actually zero. Now, based on its definition, we know this situation occurs when the following
two conditions both apply:

36

• dxz, i.e. the ground plane projected distance between the two points is zero;

• dy, i.e. the height difference between the start and the goal point is negative.

In other words, this case occurs when there is at least one point on the starting edge that
lies directly above the goal edge. As we have previously discussed, falling directly downward
with zero speed actually constitutes a valid jump. As a result, we can simply define the
minimal jump speed in such a case as this as zero.

The second case occurs when the denominator found in Part 2 of Equation 22 is zero.
This would occur when

√
d2x + d2y + d2z is actually zero; as we can observe directly, this im-

plies that the distance between the two points is zero. We know that this case can occur
in practice, if we select two line segments that overlap in exactly one point. Especially
manually constructed environments are likely to have such cases occur, where characters
can jump across corners or over gaps in walkable polygons. However, it must be apparent
that the minimal jump speed in this case is zero as well.

We encounter our next potentially problematic derivation when deriving the relation be-
tween cs and cg. Specifically, Equation 26 cannot be used directly when either ∆s

y or ∆g
y is

zero - and especially when both are zero. Since this means that either edge is level, we can
be assured that these cases will occur in the intended environments, either by design or by
sampling coordinate rounding.

For any of these cases, we find that we can establish a valid definition of κ and λ (and
thereby, a valid relation between cs and cg) regardless. The previously demonstrated deriva-
tion results in the most complicated definition of κ and λ. We will here provide a separate
explicit derivation of κ and λ for the case when ∆s

y is zero, but ∆g
y is not. This means we

start from the following relation between the partial derivatives:

2αcs + γcg + ε =
2βcg + γcs + ζ

−∆g
y

2αcs + γcg + ε = − 2β

∆g
y
cg −

γ

∆g
y
cs −

ζ

∆g
y

(2α− γ

∆g
y

)cs = (− 2β

∆g
y
− γ)cg + (− ζ

∆g
y
− ε)

(2α∆g
y − γ)cs = (−γ∆g

y − 2β)cg + (−ε∆g
y − ζ)

cs =
−γ∆g

y − 2β

2α∆g
y − γ

cg +
−ε∆g

y − ζ
2α∆g

y − γ

And thereby we find the alternative definitions for κ and λ:

κ =
−γ∆g

y − 2β

2α∆g
y − γ

λ =
−ε∆g

y − ζ
2α∆g

y − γ

Since the other two cases do not result in more complicated derivations, we do not explicitly
provide them here. We also observe that when either edge is level, we can still perform the
reduction to extrema without the associated denominator problems.

Finally, we must conclude that this function, while in itself valuable in proving that the
jump link minimal velocity does indeed exist, may not always result in us directly finding a
minimum, for example when the two line segments are parallel. We address why we do not
explicitly need to address these cases, since they do not directly interfere with our usage of
this derivation, in Section 6.

37

5 Jump Link Minimal Arc Length
In addition to finding the jump link minimal speed, which during planning aids to prune
unreachable jump connections from the search tree, we also aim to find the jump across any
given link where the length of the jump arc (i.e. the cost of that connection) is minimal.
When performing a search, this allows us to prune reachable, but suboptimal jump connec-
tions. We start by demonstrating how we can simplify this problem by applying symmetry,
before deriving the minimal arc length between set starting and goal points. By examin-
ing this function and proving certain crucial properties, we motivate finding the jump link
minimal arc length through practical methods.

5.1 Arc length symmetry
For predefined starting and goal points, we can disregard any speed and angle pair that
is not optimal, since this pair by definition has a longer trajectory. Since we have three
different definitions for the optimal speed, i.e. when jumping downward, jumping upward
and on the level plane, one would assume we require three separate functions to describe
any trajectory’s arc length. However, we will show here that we only require one arc length
integral for all three cases.

The central observation is that, given the position of the starting and goal point, the op-
timal trajectory when jumping upward from the start to the goal ts→g

optu is the same as the
optimal trajectory when jumping downward from the goal to the starting point tg→s

optd
. We

will demonstrate this by proving that the angle of tg→s
optd

at dxz is the negative of the starting
angle for ts→g

optu . Since trajectories can be uniquely defined by their relative position to the
goal and the starting angle (note how there is only one valid speed in Equation 12 when θ,
dxz and dy are given), we hereby show that ts→g

optu and tg→s
optd

traverse the same arc, only in
the opposite direction.

To find the angle of tg→s
optd

at dxz, we need to find the optimal trajectory’s slope at dxz.
For this, we need the trajectory function’s derivative, a result that will come in handy in
upcoming sections. Equation 17 for this particular case is as follows:

ly = lxz ∗ tan(θg→s
optd

)− gl2xz
2(vg→s

optd
∗ cos(θg→s

optd
))2

When jumping downwards, θoptd is always equal to zero, and since tan(0) = 0 and cos(0) = 1,
this reduces to:

ly = − gl2xz

2vg→s
optd

2

The optimal speed can be described in terms of dxz and dy, as demonstrated in Equation
15, leading to the following derivation:

ly = − gl2xz

2
√

gd2
xz

−2dy

2

ly = − gl2xz

2
gd2

xz

−2dy

ly = − gl
2
xz

gd2
xz

−dy

ly =
dyg

gd2xz
l2xz

38

The final simplification step results in a particularly succinct trajectory function:

ly =
dy
d2xz

l2xz (30)

Its derivative is equally succinct, and easily found:

l′y =
2dy
d2xz

lxz (31)

We can hence determine that the slope of the trajectory at dxz is equal to 2dy

dxz
. This slope

signifies that every unit of ground plane projected movement corresponds to 2dy

dxz
units of

vertical movement; ergo, it is the ratio between vertical and ground plane motion. To find
the angle associated with this slope, we consider that in this scenario the vertical motion is
the opposite side with regards to the line through dxz, where the ground plane motion is
the adjacent side with regards through the line through dxz; the angle is therefore found by
computing

arctan(
2dy
dxz

)

which is equal to θs→g
optu , according to Equation 18.

Finally, we observe that the arc length of the optimal speed jump on the level plane theoret-
ically depends on the maximum speed. However, since we are looking for an admissible (i.e.
underestimating) heuristic, we choose an infinitely high maximum speed. The associated
”arc” is a straight line, and so on the level plane, the minimal arc length is simply dy.

5.2 Arc length integral
Based on the previously demonstrated symmetry, we now only have to determine the arc
length for downward jumps to cover all cases. Referring to elementary calculus, we find that
the arc length larc of a given curve f(x) is found by solving the following integral:

larc =

∫ b

a

√
1 + (f ′(x))2dx

where a and b are the upper and lower bounds respectively of the measured curve section.
Substituting in the downward trajectory derivative established in Equation 31, the integral
becomes:

larc =

∫ b

a

√
1 +

(
2dy
d2xz

lxz

)2

dlxz

The curve section we’re interested in, in terms of lxz (i.e. distance from the starting point),
runs from zero to dxz, which results in the following value for the arc length larc:

larc =

∫ dxz

0

√
1 +

4d2y
d4xz

l2xz dlxz (32)

The required integral is difficult to determine, but when given a possible solution, it is simple
to verify through derivation. So for simplicity’s sake, we here provide the resulting integral
first, and then demonstrate how it derives to the above equation. The arc length can be
defined as follows:

larc =

√
4d2y
d4xz

l2xz + 1 ∗ 1

2
lxz +

1

2
√

4d2
y

d4
xz

sinh−1

√4d2y
d4xz

lxz

∣∣∣dxz

0
(33)

where sinh−1 is the inverse hyperbolic sine function. Recall that since for two set points,
dy and dxz are constants, when determining the derivative, we can substitute:

α =
4d2y
d4xz

39

for considerable simplification. The derivation process is provided below:

(
√
αl2xz + 1 ∗ 1

2
lxz +

1

2
√
α
sinh−1(

√
αlxz))′

1

2
√
αl2xz + 1

∗ 2αlxz ∗
1

2
lxz +

1

2

√
αl2xz + 1 +

1

2
√
α
∗

√
α√

αl2xz + 1

αl2xz

2
√
αl2xz + 1

+
1

2

√
αl2xz + 1 +

1

2
√
αl2xz + 1

αl2xz + 1

2
√
αl2xz + 1

+
1

2

√
αl2xz + 1

1

2

αl2xz + 1√
αl2xz + 1

+
1

2

√
αl2xz + 1

1

2

√
αl2xz + 1 +

1

2

√
αl2xz + 1√
αl2xz + 1

unsubstituting:

√
1 +

4d2y
d4xz

l2xz

Note that when we choose a value of zero for the arc length function, we always find zero.
The arc length function can as a result be reduced to a single equation:

larc =
√
αd2xz + 1 ∗ 1

2
dxz +

1

2
√
α
sinh−1(

√
αdxz) (34)

And when we unsubstitute α in this equation, as well as harken back to its original definition
to consider the following (note that we do not need to take the absolute value, since both
dy and dxz will always be positive):

√
α =

√
4d2y
d4xz

=

√
(
2dy
d2xz

)2 =
2dy
d2xz

(35)

We can further reduce the arc length equation as follows:

larc =

√
4d2y
d4xz

d2xz + 1 ∗ 1

2
dxz +

1

2
2dy

d2
xz

sinh−1(
2dy
d2xz

dxz) (36)

larc =

√
4d2y
d2xz

+ 1 ∗
√

1

4
d2xz +

d2xz
4dy

sinh−1(
2dy
dxz

) (37)

larc =

√
d2y +

1

4
d2xz +

d2xz
4dy

sinh−1(
2dy
dxz

) (38)

Sadly, we must conclude that applying interpolation to this function does not result in a
neat, derivable function like the one we have seen for the minimal velocity. Hence, a formal
definition of the jump link minimal arc length remains out of our reach. However, the steps
we have taken towards a practical implementation show how we do not necessarily need this
formal definition to proceed. Therefore, we conclude this train of thought in Section 6.

40

6 Practical Implementation
In this section, we discuss the limitations of the results we have achieved so far in a practical
setting, and address how we can fill the remaining gaps. We start by examining the minimal
jump speed function.

As shown in Section 3.4.1, the minimal jump speed function is well-defined for any two
points. This means that for any input points, the minimal jump speed will return a valid
value, and as a result, the interpolated minimal jump speed function must be continuous in
nature. Knowing this, we refer to the result of Equation 29. We find that the interpolated
minimal jump speed equation has at most two extrema.

Under stricter circumstances, we might require a second derivative test to categorize each
of these points as either a minimum, maximum or saddle point. This would allow us to
prove exactly which category these extrema belong to, although notably, they cannot both
be minima or both be maxima. However, practical concerns come into play here. During
the implementation of the aforementioned method in a double-type precision environment,
we found that the steps involved in this first-derivative procedure (in particular, the great
numbers of square root operations) led to a systematic inaccuracy in our results. We were
able to retrace these inaccuracies by grid sampling point pairs around a number of single-
minimum edge pairings.

The inaccuracies we encountered occurred at the earliest around the fifth decimal. For
environments computed with up to the centimeter or millimeter precision, such inaccuracies
can certainly affect the results, even if the difference is fairly minute. And based on the
complexity of the preceding derivation, we can be assured that the second derivatives will
suffer from even greater inaccuracies. We must therefore consider that this test may not
even be sufficiently reliable in practice.

The prevalence of numerical inaccuracy in most available frameworks requires us to ac-
cept, to a degree, an imperfection in our results. The preceding has been entirely exact; one
would hope that the results reflect this. Luckily, we have shown that there are at most two
extrema in the jump link minimal velocity function, which cannot logically both be minima
or both be maxima. As a result, even when the two extrema are sufficiently close together,
iterative grid sampling of this continuous function will lead to increasingly accurate results.
In practice, we apply sampling pairs to find the minimal arc to within acceptable thresholds.

This sampling approach also applies to the jump link minimal arc length. Through practi-
cal testing, we have found that although attempts at explicit derivation have not had the
desired effect, iterative grid sampling shows that for any one point, there is a single mini-
mum amongst all possible target locations, and (logically) vice versa. We are thereby able
to perform two-dimensional sampling to find the desired value up to the precision deemed
meaningful. Given that any explicit derivation would result in similar numerical inaccura-
cies, we can consider the jump link minimal arc length found through sampling methods.

Finally, a gap still very much remaining is the case we have identified on jump links pro-
jected down. However, we have omitted this case from our preceding derivations, since the
minimal velocity and arc length are easy to determine. The minimal velocity is either zero,
or the velocity required to jump up between the two vertically closest points; the arc length
is the same in both cases, namely the vertical distance between the aforementioned points.
We do however note that the definition of a jump link is not complete without this case
being covered in terms of connectivity. The challenge then becomes to find these instances
- by projecting all edges onto surfaces where applicable.

41

7 Conclusion
Within this report, we have approached jumping between layers in a three-dimensional walk-
able environment from a theoretical standpoint. Through analysis of the related work, we
have identified that an exact approach, free from predefined jump trajectories and sampling,
was lacking from the field. Starting from axiomas from Newtonian physics and select as-
sumptions for realism, we defined the central concepts of this report: the minimal jump and
optimal jump between any two points, which together bound the rational jump range for
any point robot.

Further based on our axiomas and careful analysis, we examined in great detail the ne-
cessity for a jump link structure, as well as the cases when these jump links are actually
applicable in practice. This has allowed us to clearly define valid jump links, that can be
used in any simulation requiring a realistic approach. We then find that any jump link that is
to be used in path planning would require some manner of heuristics for planning algorithms.

We extend our existing base of definitions to two three-dimensional line segments, which
we refer to as the jump link minimal velocity and the jump link minimal arc length, re-
spectively. These values provide heuristics for jump minimality and optimality, which can
be directly used by A* algorithms in planning a path across any complex environment. We
explicitly derive the equations used to compute them, as far as has proven necessary to
determine how we can implement them.

When applying these definitions to practical situations, we found that the accuracy of these
methods could be improved by iteratively sampling results rather than attempting a direct
derivation. We also require separate handling of the vertical cases which naturally followed
from our axiomatic system.

The results of this report lay the foundation for more efficient, accurate and flexible path
planning algorithms that take the full dimensionality of their environment into account. As
addressed in the discussion, further results of practical implementation are omitted; we leave
it to future researchers to expand on the metrics provided here.

8 Discussion and Future Work
From the theoretical framework of this report, a great number of possible avenues of research
remain. We here describe these potential approaches, in the hope that future colleagues ex-
pand this work to progress the field even further.

Obstacle space representations - One avenue of research is including representations
of the obstacle space between two edges as part of their jump link. This would eliminate the
need for examining jumps on a case-by-case basis during path planning, allowing algorithms
to plan paths in any polygonal environment in a single stretch. When the scope of this
report was originally determined, this item had been considered up to the point of example
calculations under simple circumstances (e.g. a vertical line obstacle blocking part of the
rational jump range between two points). Despite its merit, it had to be concluded that the
potential complexity of such a representation would necessitate a report of similar size to
this one all on its own.

Practical A* algorithm implementation results - Arguably the greatest omission in
this report is the number of practical results from applying these metrics in the A* algo-
rithm, or similar path planning methods. Although the provided derivations stand on their
own, a number of paths planned by connecting a suitable navigation mesh to the jump
links would give instantaneous insight into the applicability of this method. Aside from
structurally simple tessellations, this would require additional research into the annotated
navigation structure as a whole.

42

Simulations with improved realism - Within this report, we have chosen a simplified
set of axiomatic equations governing motion in order to strike a balance between realism
and computational cost - two aspects which are commonly at odds. The resulting separa-
tion between the two modes of motion and the jump arc symmetry have been invaluable to
achieving our results, but they by no means result in realistic effects. Within a nonholo-
nomic system of motion, i.e. where the run-up to the point of jumping affects the available
speeds and/or angles, the paths found by any planning algorithm (under the appropriate
settings) will approximate reality far more closely, both mathematically and to the human
eye. To a lesser extent, reintroducing air drag would have a similar effect, although one
imagines the cost of reconsidering the results presented here would outweigh the value of
such a small-scale improvement.

Additional modes of motion - We have here considered jumping as a mode of motion
secondary to walking. As seen in the Related Work section, there is a significant amount of
additional research pertaining to this approach. However, other modes of motion may also
warrant further investigation. Notably, the SMART system employed in Brink [13] employs
parkour-style animation controllers to scale the world geometry; its informal approach leaves
room for more exact path planning with climbing and scaling options. Any approach that
expands the range of motion of (human or robot) characters can contribute to the quality
of their simulations.

43

References
[1] Nancy M Amato and Guang Song. Using motion planning to study protein folding

pathways. Journal of Computational Biology, 9(2):149–168, 2002.

[2] Franz Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data
structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[3] Harry Blum. A transformation for extracting new descriptors of shape. Proc. Symp.
Models for Perception of Speech and Visual Form, pages 362–380, 1967.

[4] Sara Budde. Automatic generation of jump links in arbitrary 3d environments. MSc
Thesis, 2013.

[5] Mylène Campana and Jean-Paul Laumond. Ballistic motion planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2016), Daejeon,
South Korea, October 2016.

[6] L Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1-4):97–108, 1989.

[7] CryTek. Cryengine documentation on off-mesh navigation, from the multi-
layer navigation section. http://docs.cryengine.com/display/SDKDOC2/Off-mesh+
Navigation. Accessed: 08-07-2015.

[8] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational Geometry. Springer, 2000.

[9] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[10] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[11] Roland Geraerts. Planning short paths with clearance using explicit corridors. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages
1997–2004. IEEE, 2010.

[12] Roland Geraerts and Mark H Overmars. The corridor map method: a general frame-
work for real-time high-quality path planning. Computer Animation and Virtual
Worlds, 18(2):107–119, 2007.

[13] Arne Olav Hallingstad. Vault, slide, mantle: Building brink’s smart system. Presented
at the Game Developers Conference 2012, 2012. Accessed: 10-07-2012.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics, IEEE Trans-
actions on, 4(2):100–107, 1968.

[15] Marcelo Kallmann. Path planning in triangulations. In Proceedings of the IJCAI work-
shop on reasoning, representation, and learning in computer games, pages 49–54, 2005.

[16] Mubbasir Kapadia, Alejandro Beacco, Francisco Garcia, Vivek Reddy, Nuria Pelechano,
and Norman I Badler. Multi-domain real-time planning in dynamic environments.
In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 115–124. ACM, 2013.

[17] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. Robotics
and Automation, IEEE Transactions on, 12(4):566–580, 1996.

44

http://docs.cryengine.com/display/SDKDOC2/Off-mesh+Navigation
http://docs.cryengine.com/display/SDKDOC2/Off-mesh+Navigation

[18] Manfred Lau and James J Kuffner. Precomputed search trees: planning for interactive
goal-driven animation. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 299–308. Eurographics Association, 2006.

[19] Steven M LaValle. Planning Algorithms. Cambridge University Press, 2006.

[20] Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović. Space-time planning
with parameterized locomotion controllers. ACM Transactions on Graphics (TOG),
30(3):23, 2011.

[21] Thomas Lopez, Fabrice Lamarche, and Tsai-Yen Li. Space-time planning in changing
environments: using dynamic objects for accessibility. Computer Animation and Virtual
Worlds, 23(2):87–99, 2012.

[22] Mikko Mononen and contributors. Recast navigation open source project. https:
//github.com/memononen/recastnavigation. Accessed: 10-07-2015.

[23] John H Reif. Complexity of the movers problem and generalizations extended abstract.
In Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Sci-
ence, pages 421–427, 1979.

[24] John H Reif. Complexity of the Generalized Mover’s Problem. Center for Research in
Computing Techn., Aiken Computation Laboratory, Univ., 1985.

[25] W.G. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré, and
R. Geraerts. A comparative study of navigation meshes. In Proceedings of the 9th
International ACM SIGGRAPH Conference on Motion in Games, pages 91–100, 2016.

[26] Unity. Unity documentation on navmesh baking, from the navigation overview section.
https://docs.unity3d.com/353/Documentation/Manual/Navmeshbaking.html. Ac-
cessed: 09-07-2015.

[27] Unity. Unity documentation on off-mesh links, from the navigation overview sec-
tion. http://docs.unity3d.com/Manual/class-OffMeshLink.html. Accessed: 08-
07-2015.

[28] Ron Wein, Jur P Van Den Berg, and Dan Halperin. The visibility–voronoi complex
and its applications. In Proceedings of the Twenty-First Annual Symposium on Com-
putational Geometry, pages 63–72. ACM, 2005.

45

https://github.com/memononen/ recastnavigation
https://github.com/memononen/ recastnavigation
https://docs.unity3d.com/353/Documentation/Manual/Navmeshbaking.html
http://docs.unity3d.com/Manual/class-OffMeshLink.html

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure

	2 Related Work
	2.1 Motion and path planning
	2.1.1 Representations of the navigable space
	2.1.2 Searching the navigation structure

	2.2 Previous work on navigation through jumping
	2.2.1 Methods without jump annotations
	2.2.2 Methods with jump annotations
	2.2.3 Motivation of this research project

	3 Exploration of Jumping
	3.1 Approach and terminology
	3.2 Mechanics
	3.3 Physics of jumping
	3.4 Single jump concepts
	3.4.1 Minimal jump speed and associated angle
	3.4.2 Optimal jump velocity
	3.4.3 Rational jump range

	3.5 Jump links
	3.5.1 Approach
	3.5.2 Assumptions
	3.5.3 Valid jump links
	3.5.4 Partial jump links
	3.5.5 Projected jump links

	3.6 Jump link concepts

	4 Jump Link Minimal Velocity
	4.1 Interpolated minimal speed
	4.2 Relation between the interpolation variables
	4.3 Reduction to extrema
	4.4 Special cases

	5 Jump Link Minimal Arc Length
	5.1 Arc length symmetry
	5.2 Arc length integral

	6 Practical Implementation
	7 Conclusion
	8 Discussion and Future Work

