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Abstract

In the process of healthcare invoicing, many mistakes are made when physicians assign activity

codes to treatments. Health insurance companies require hospitals to check the assigned activity

codes and therefore Electronic Health Records (EHR) are examined manually. In this thesis, a system

is proposed that automatically checks whether assigned activity codes are correct or not, based on

unstructured EHR texts. This binary prediction was made with the use of supervised machine

learning algorithms. Several algorithms are compared: Logistic regression, Naive Bayes, Neural

Network, and Support Vector Machines. Furthermore, the classification problem was extended to

a multi-class classification in which the reason of rejecting an incorrectly assigned activity code

was predicted. Accuracies of 93.3% and 87.4% were achieved for respectively the binary and the

multi-class classification. It was found that feature selection had a higher impact on the results

than the choice of the algorithm. Future work can investigate new activity codes that have other

requirements. Moreover, the current system can be used for prevention instead of checking.

Keywords: healthcare invoicing systems, supervised machine learning, text mining, data min-

ing

i



Table of contents

Abstract i

Table of contents ii

1 Introduction 1

1.1 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory 9

2.1 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Training and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Performance measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Feature representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Text mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Feature generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Data 22

3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Class label distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Most frequent words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Application 28

4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Feature generation and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Predicting the class label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Experimental setup 33

5.1 Training and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Balance between accuracy and human work . . . . . . . . . . . . . . . . . . . . . . . 35

ii



6 Results 37

6.1 Binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Performance with feature selection . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.2 Performance without feature selection . . . . . . . . . . . . . . . . . . . . . . 38

6.1.3 Comparing features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Multi-class classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 Performance with feature selection . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.2 Performance without feature selection . . . . . . . . . . . . . . . . . . . . . . 42

6.2.3 Comparing features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Optimal balance between performance and human work . . . . . . . . . . . . . . . . 43

7 Conclusion & Discussion 45

7.1 Performance on the binary classification problem . . . . . . . . . . . . . . . . . . . . 45

7.2 Performance on the multi-class classification . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Comparing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.4 Importance of feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.5 Redirecting cases to humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References 50

Appendix I - Stopwords 54

Appendix II - Synonyms 56

Appendix III - Binary features 57

Appendix IV - Multi features 58

iii



1 Introduction

“The techniques of Artificial Intelligence are to

the mind what bureaucracy is to human social

interaction.”

Terry Winograd

Over the last decades, Artificial Intelligence has evolved exceptionally fast. Things that were

not considered possible several years ago, now are widely used. Nowadays, it is faster to ask Siri

when the train departs than to look it up yourself. Moreover, self-driving cars are emerging and

it will not be long before your car brings you wherever you want to go to while you sit back and

relax. Furthermore, vast innovations from Artificial Intelligence were introduced in healthcare.

Take for instance the iKnife [1, 21], a self-learning device that gives direct feedback about the

tumour tissue that is being cut, which helps surgeons in deciding what amount of tissue to remove.

Another example is computer-aided diagnosis in medical imaging [11]. By using Artificial Intelligence

techniques, computers are now able to diagnose certain diseases by evaluating medical images.

Medical improvements have led to improved human health and longevity. However, they have

caused health expenses to growth significantly as well [4].

There exist numerous rules and regulations in healthcare to control the high costs. Therefore,

medical institutions are bound to strict requirements when invoicing healthcare provided by them

[32]. However, these requirements consume time and resources that could otherwise have been de-

voted to medical care. To start with, hospitals need to categorise the medical care they provide

in order to invoice the health insurance companies using the corresponding invoice codes. Subse-

quently, when hospitals have already been rewarded, they also have to prove that the registration

and classification during the process was accurate, lest they have to refund the overpay.

Not only technologies in healthcare have improved quickly over the last years, information tech-

nology has improved substantially as well. Consequently, a great extent of the healthcare declaration

process can now be executed automatically. Nevertheless, there still remain parts of the process

that have to be carried out manually. More specifically, while applications that define invoice codes

1



1. Introduction 2

and that send itimised invoices to health insurance companies already exist, they do not yet check

whether the used activity code, on which the invoice code is based, is correct. Therefore, automating

the process of checking whether every registered activity belonging to the classified treatment has

indeed been performed could further optimise the procedure.

The current research proposes and builds a proof of concept that uses supervised machine learning

techniques to automatically check whether or not an activity code was justified. This research project

is conducted at Topicus, a company that develops, among other things, technological solutions

for healthcare institutions. The particular project that this research is part of consists of several

software applications that support the financial aspect of healthcare. As mentioned above, Topicus

has already developed applications that categorise provided medical care into the correct invoice

classes and that compose and send invoices to health insurance companies. On the contrary, an

application that checks whether the requirements of the treatment classification have been met still

has to be built.

The remaining part of this introduction is structured as follows. To start with, the problem at

hand will be explained in more detail. Subsequently, related research will be discussed. Lastly, the

research question will be posed, while simultaneously presenting the corresponding hypothesis.

1.1 Problem context

To record their provided medical care, hospitals use an Electronic Health Record (EHR), which

enables medical practitioners to systematically collect information of patients in a digital format.

To subsequently report their information to health insurance companies in order to get paid, hos-

pitals use the so-called DBC system, which stands for Diagnosis Treatment Combination (Diagnose

Behandel Combinatie). This system is developed by the Nederlandse Zorgautoriteit (NZa), which

stands for Dutch Healthcare Authority [33]. The DBC system is based on the RSAD model, which is

an abbreviation for Register, Summarise, Deduce, and Invoice (Registreren, Samenvatten, Afleiden

en Declareren). The DBC system was not only introduced to register provided care with the purpose

to invoice, it was also introduced to improve both the quality and the e�ciency of healthcare [17].

Before explaining the DBC system in more detail, it is important to emphasise the di↵erence

between two di↵erent codes, namely activity codes and DBC codes. The NZa has provided a list

with all possible activity codes and their corresponding short descriptions [31]. Based on this list
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and the diagnosis, physicians report both the provided therapy and the corresponding activity code

in the EHR. Additionally, there are DBC codes, which are used for invoicing. Using decision trees,

DBC codes are derived from activity codes, but certainly do not equal them.

Three main characteristics of the DBC system are the product structure, the registration rules,

and the grouper [33]. First, the product structure contains the arrangement and grouping of all

diagnoses and medical activities in the set of DBC codes. In other words, the product structure

defines how to translate the activity codes that are reported in the EHR into DBC codes. Second,

the registration rules define when to initiate and close a health trajectory for a patient. Furthermore,

these rules prescribe what information is needed for registration in order to select the correct DBC

code at a subsequent stage. Lastly, there is the grouper, which is a system that combines the activity

codes stored in a patient’s health trajectory with the product structure to deduce the corresponding

DBC codes. This is a complex process since there exist over 5000 DBC codes. After the grouper

has returned the DBC code, the medical institution uses a specific software system to invoice the

provided medical care based on this code. In order to improve e�ciency, hospitals receive an agreed

price for a provided combination of diagnosis and treatment. Therefore, hospitals are forced to

minimise inessential activities. This can for instance be done by reducing duplicate and unnecessary

tests and treatments, or by reducing the length of a hospitalisation [8].

In sum, when a patient requests medical care, a health trajectory is opened. Every activity

executed to diagnose or treat a specific disease, is registered in the EHR. For instance, in case of

a broken leg, the activity to diagnose could consist of an X-ray while the treatment could consist

of plastering the broken leg or perform surgery. The corresponding activity code is added to the

patient’s trajectory in the DBC system. After 120 days, or when the treatment is finished, the

trajectory is closed and the data are sent to the grouper. The grouper connects this information

to a specific DBC code, which in turn can be used by the hospital to send an invoice to the health

insurance company.

There exist applications that determine DBC codes and send itemised invoices corresponding to

these codes. However, activity codes have to be determined manually. As experienced by Topicus,

many mistakes are made by physicians in selecting activity codes. Because a large amount of money

is involved, hospitals have to prove that the classification of their activity code was accurate - even

when the invoices have already been paid. More specifically, they have to prove for a given number

of cases, that specific actions required for the derived activity code have indeed been performed an

registered. Unfortunately, this part of the process often needs to be done manually, which involves

the very time consuming task of analysing digital unstructured texts. Every assigned activity code

requires a specific combination of a diagnosis, physician’s description and medical activities, which
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is for instance saved in a description of an Emergency Room visit or a referral letter, both of which

are in turn saved in the EHR. Despite the fact that the registration process has many requirements,

there are no fixed rules for the notation of the information in documents such as referral letters

and consult descriptions. Hence, little consistency exists among documents, which complicates the

problem of extracting the right information from the unstructured text.

Hospital EHR DBC system

GrouperFinancial systemHealth insurance company

Patient Diagnosis, therapy,

and activity code

Activity code

Data set

DBC codeInvoice

Can you prove
that activity code
is justified?

Money

Figure 1.1: Schematic overview of the invoice process in hospitals

1.2 Related work

No previous research could be found regarding the automation of the declaration process in the

Dutch healthcare system, due to the rareness and specificity of both the Dutch healthcare and health

insurance systems. However, other concepts regarding data mining in healthcare have been investi-

gated. One of the first applications in medical data mining was health-KEFIR, short for Key Find-

ings Reporter in healthcare [27, 29]. This application automatically analysed deviations in relevant

variables such as laboratory results or medication use. Since a lot of variables should be taken into

account when deciding on a patient’s therapy, physicians might overlook some deviations. A medical

data mining system can help by directing attention to important deviations, hence facilitating the

decision on the patient’s therapy. Moreover, data mining could be used to provide assistance in pre-

dicting a medical diagnosis [18, 39]. Large sets of medical information such as laboratory results and

descriptions of examinations combined with the correct diagnosis can be used to train a predictive al-

gorithm. When the algorithm is su�ciently trained, its predictions can help physicians in diagnosing.

Furthermore, medical data mining could be used to help predict the prognosis of a (chronic) disease

[20],

or even predict the survival time of patients that are on the waiting list for an organ transplant [24].

The use of medical data mining creates several possibilities to improve healthcare, but this area
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also induces a lot of di�culties and limitations that have frequently been discussed [7, 23, 29]. To

start with, despite the fact that abundant data sets are available, not all data can be analysed easily

because of privacy and security concerns. In North America, Europe, and Asia at least some of the

medical information of as many as three-quarters of a billion persons is collected in electronic form

[7]. To ensure their privacy, the data have to be anonymised and the analysis has to be carried

out in a secured environment. Furthermore, the data set may contain inconsistent, insignificant or

redundant information, or the data may even be incomplete due to tests that were not or imprecisely

performed. Furthermore, an important characteristic of medical data is the weight of physicians’

descriptions. These descriptins are di�cult to standardise, and therefore di�cult to mine because

they are written in unstructured or semi-structured text. In describing a patient’s condition and

describing the relationship among medical entities, both ambiguous terms and distinct grammatical

constructs are regularly used. Moreover, a lot of abbreviations are used by physicians, whether

standard or not [9]. Sometimes it is barely feasible to manually decode the tangle of uncommon

abbreviations written by a physician, let alone to automate this process. Because of all these

possibilities in the encoding and description process, each medical condition can be described in

multiple ways. However, in data mining it is preferred to have the data in canonical form, which

is a notation that encloses all interchangeable forms of the same concept [2]. Since there are no

prescribed registration forms of medical information, there is a profusion of distinct expressions that

are all medically equivalent [7]. Even elementary concepts in medicine do not have a canonical form,

which makes it fairly di�cult to analyse all of these texts.

Popowich [35] has investigated the problem of analysing unstructured medical text. More specif-

ically, the use of text mining and natural language processing in determining whether healthcare

claims involve potential fraud or abuse. The aim of his study was to build an algorithm that de-

termines whether other parties were (partially) responsible for covering the costs of medical claims.

As mentioned, medical texts can be full of synonyms, abbreviations, acronyms, and jargon, which

complicates the text mining process. A large number of synonyms might cause an unnecessary

number of features. Moreover, individual features might be less predictive than a single feature that

combines all synonyms. This problem was solved using WordNet [15], which is a lexical database

for the English language, was used. In this database, synonyms are grouped into so-called synsets.

Since WordNet is not specifically built for the medical lexicon, a subset of its synonym database

was adapted to the medical domain. Unfortunately, using WordNet is not possible in this thesis, as

the focus is on Dutch medical texts. Although a Dutch version of WordNet is available, it merely

contains synonyms for a small subset of the strings available in the English version. Moreover, a

large number of words that is used in the texts to be analysed is too specific to the medical field to

occur in the general database. SNOMED Clinical Terms [34], a collection of medical terms, codes

and synonyms, also seemed appropriate to use, but regrettably this database does not exist in Dutch



1. Introduction 6

either.

Regarding the text mining algorithm, Popowich reported several preparatory steps. To start

with, text fragments are used as input. Subsequently, these fragments are split into individual

words and the most relevant fragments are selected. Then, using WordNet, the number of selected

words is diminished by replacing synonyms. Next, the relevance of words is determined and words

that are not relevant enough are removed. After these steps have been completed, the remaining

indicators are used to train the algorithm.

Although a limited number of relevant publications in this area of research could be found,

extant literature has addressed several important di�culties. Analysis of the substantial amount of

available medical data could lead to improvements in healthcare if some aspects that are typical for

medical data are taken into account. First, the privacy of all of the data should be secured. Second,

the possibility that data might be incorrect or missing should be considered. Lastly, it should be

contemplated that mining unstructured texts might be di�cult due to myriad ways to express a

medical description. The use of lists of synonyms and abbreviations might be helpful here.

1.3 Research questions

Restating, hospitals have to prove that their declared activity codes are correct, i.e. that every

required activity belonging to this activity code has indeed been registered and performed. This

information is often disclosed in referral letters or in descriptions of Emergency Room visits, both

of which are stored in the hospital’s electronic health record. Therefore, digital unstructured texts

frequently have to be analysed manually. However, manually analysing digital unstructured texts

can presumably be replaced an application that uses Artificial Intelligence techniques. The present

study uses machine learning techniques to propose and build a proof of concept checking whether

every required activity for a specific activity code is indeed performed and recorded. In other words,

the following research question is posed:

Is it possible to develop an automatic classification system, using supervised machine

learning algorithms, that determines whether an activity code was assigned correctly

or not, based on digital unstructured text stored in the electronic health record?

As mentioned before, each DBC code requires a specific set that consists of the diagnosis, the

physician’s interpretation and the medical activities. Hospitals only get paid when they have both

performed and registered all of this information. The analysis and inspection of the classification
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procedure has two possible outcomes: It can either be correct, or incorrect. Since prior classification

data are available and both classes are predefined, supervised machine learning algorithms will be

used. However, several supervised machine learning algorithms can be used to solve the stated

classification problem. Therefore, not only a proof of concept is proposed, it is also investigated

which machine learning algorithm reaches the best performance in analysing these healthcare texts.

This leads to the following subquestion:

Which supervised machine learning algorithm performs best?

In addition to the available information about the correctness of the prior activity code classifi-

cation, the reasons for rejecting incorrectly classified activities are available as well. Since this infor-

mation can be useful to help hospitals improve their administration and convince health insurance

companies, it would be beneficial to predict the reason for rejection along with the aforementioned

binary classification. This leads us to the second subquestion:

Is it possible to predict the reason of rejection for activity codes that are classified as

incorrect?

The performance of the classification is not merely a↵ected by the kind of machine learning

algorithm, as the features that are used as input influence the performance as well. Therefore,

generating and selecting predictive features is important. This results in the third subquestion:

Which features are the most predictive in the current classification problem?

An automatic classification system that either confirms or rejects prior manual classifications in

the healthcare declaration system will result in a considerable decrease in workload, since manually

analysing unstructured texts in the electronic health record is a very time consuming task. Although

no previous work could be found regarding this specific research problem, text mining is already

successfully used to solve several other problems in healthcare industry [20, 27, 29, 35, 39]. Hence

it is expected that it will be possible to build a model that confirms prior classifications of activity

codes, using supervised learning techniques. However, predicting the performance of the model

using di↵erent supervised machine learning algorithms is more di�cult. The aim of the proof of

concept is to evaluate whether the prior assignment of an observation to a class was correct or not.

Assuming that the majority of the prior observations is assigned correctly, the easiest approach is

to predict that all observations are assigned correctly. In that case, the accuracy rate is equal to the

percentage of cases in the majority class. Therefore, the accuracy of the envisioned proof of concept

is expected to be at least the same as the percentage of cases in the majority class. However, it is

nearly infeasible to predict the exact accuracy of the model.



1. Introduction 8

1.4 Outline

In this first chapter, the Dutch healthcare declaration system was introduced. Although over the

last years progress has been made regarding the automation of this process, no application yet exists

that simplifies the process. In particular, an application that helps proving that every requirement

corresponding to a specific activity code is provided and registered is still absent. The current study

uses supervised machine learning techniques to propose and build an approach that supports this

part of the process. In order to formulate an answer to the research questions and to evaluate the

validity of the aforementioned hypotheses, the proposed proof of concept will be implemented.

In Chapter 2, relevant methods, theories, and techniques in the area of machine learning will

be outlined. In Chapter 3, the data set that is used for the current research will be discussed.

Subsequently, in Chapter 4, the architecture in which the aforementioned techniques are integrated

into a proof of concept will be laid out. Chapter 5 will present the experimental setup of this

research, filled by the experimental results in Chapter 6. Finally, in Chapter 7, the conclusion of

this research will be presented and discussed.



2 Theory

“What is the di↵erence between theory and

practice? There is no di↵erence, in theory. But

in practice there is.”

Ian Witten and Eibe Frank

In the first chapter, the research problem is introduced and its context is explained. In this

thesis, data mining will be used to analyse unstructured text in medical documents in order to be

able to automatically check prior manually assigned activity codes. The current chapter addresses

the theoretical background of text mining and describes the methods and techniques that will be

used in the proposed application.

2.1 Data mining

According to Witten and Frank [43], data mining is defined as the process of, automatically or

semi-automatically, discovering meaningful structural patterns in large quantities of data in order to

make nontrivial predictions on new data. Moreover, they define machine learning as the acquisition of

structural descriptions from examples that are used for prediction, understanding, and explanation.

The concepts ‘data mining’ and ‘machine learning’ are frequently used interchangeably. However,

the term machine learning can be used more comprehensively. Namely, the most important part

of this field of study consists of learning to make right predictions on new data. ‘Learning’ can be

defined as changing behaviour such that future performance will be better. In other words, the data

is mined in order to learn how to improve predictions on new data [43].

With the use of machine learning, three distinct learning problems can be solved: supervised,

unsupervised, and reinforcement learning problems [38]. As the name indicates, supervised learning

algorithms use the help of a supervisor that provides correct examples. The training data comprises

observations along with their corresponding response [3]. The goal is to fit a model that relates

9
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the associated response to the predictors in order to accurately predict the response for future

observations [22]. In other words, a function is learned from examples of its inputs and outputs.

In supervised learning, learning a continuous function is distinguished from learning a discrete-

valued function. The first is called regression, the latter classification. In contrast to supervised

learning, unsupervised learning does not learn from data sets that are provided with correct answers.

Unsupervised learning is denoted as discovering groups of similar examples within the data [3]. An

unsupervised learning algorithm will try to infer a function to describe a hidden structure from

unlabeled data. Thus, a pattern is learned from the input while no specific output values are supplied

[38]. Using unsupervised learning to define groups with corresponding features is called clustering.

The most important di↵erence between supervised and unsupervised learning lies in the labels of the

classes. In supervised learning, cases are classified into predefined categories, while in unsupervised

learning the classes are not known in advance. The third kind of learning is reinforcement learning,

which is defined as learning how to map situations to actions, in order to maximise a numerical

reward signal [40]. This type of learning distinguishes itself from supervised learning by discovering

what actions yield the highest reward by trial-and-error, instead of learning what action to perform

in what situation by error signals from examples.

The central question to this thesis is whether assigned activity codes were correct or not. Since

the class labels are known in advance, and a data set with correct classifications is available, the

classification problem in this thesis will be solved using supervised learning techniques. To get more

comfortable with these kinds of techniques, supervised learning and specifically classification will be

laid out in detail.

2.1.1 Classification

In classification, a distinction is made between single label and multi-label classification. In the

first case, categories do not overlap and an observation may only be grouped in a single class. On

the contrary, multi-label allows categories to overlap. Therefore, an observation can be assigned to

several categories simultaneously. However, assigning a case to several categories is not obligatory

and a case might also be assigned to one or none of the categories. In this thesis, a case will be

assigned to just one class, and therefore it is a single label classification. More specifically, it is a

special instance of a single label classification problem. Since a case has to be classified as either

correct or incorrect, it is a binary, of Boolean, classification.

As mentioned before, classification is a supervised learning technique that is used to learn a

discrete-valued function from examples of its inputs and outputs. Thus, observations have to be
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assigned to predefined classes. In other words, the discrete-valued function will map the observations

to the predefined categories. The goal is to approximate an unknown target function. For the binary

classification problem, the function can be described as:

f : x ! {T ,F} (2.1)

In case the reasons for rejection are predicted as well, there are some more categories available,

resulting in the following function:

f : x ! {T ,F1,F2,F3} (2.2)

Each F-class represents a category in which similar reasons of rejections are grouped. These di↵erent

groups will be discussed in more detail in Chapter 3.

2.1.2 Training and testing

The data set has to be split into a training set, used to learn the function, a validation set,

used to optimise the parameters, and a test set, used to assess the function’s accuracy. To obtain

adequate optimization and predictive performance, each set should contain unique data. Otherwise

the function might perform well on the training data but poor on on unseen data, such that the

predictive performance might be too optimistic. Overfitting is an example of a problem that might

occur when the training data is also used to validate and test the trained function. Although an

overfitted function is correct, it is too narrow since it is trained too explicitly on a specific training

set, as is illustrated in Figure 2.1. In other words, it is trained on the noise in the data rather than

of the underlying relation. Therefore, such a function is only useful in predicting items whose class

is already known, while the goal is to achieve the best predictive performance on new data [13]. The

performance on a training set hence does not necessarily predict the performance on a test set with

new data.
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x1

x2 Desired curve
Over-fitted curve

Observations of class A
Observations of class B

Figure 2.1: Overfitting

Not only do three unique sets of data have to be available, all sets have to contain enough unique

data as well. The training set has to be as large as possible to build a proficient model. Moreover,

the validation set has to contain enough data in order to reach good performance in optimisation.

Furthermore, to be able to obtain a reliable estimate of the predictive performance, the test set has to

be su�ciently large as well. However, the supply of data might be limited and therefore it might be

demanding to retrieve enough data to form three unique and su�cient data sets. Fortunately, cross-

validation can be used to tackle this problem [3]. When applying cross-validation, the proportion of

the available data that can be used for both training and testing will increase. The data set will be

divided into S subsets, which in the simplest case will all be of equal size. Therefore, this process is

called S-fold cross-validation.

Test First run

Test Second run

Test Third run

Test Fourth run

Figure 2.2: S-fold cross validation with S = 4

In Figure 2.2, S-fold cross-validation is illustrated. In each run, S � 1 groups (white) will be

used to train a set of models, while the remaining group (grey) will be used to evaluate the trained

models. In total, S runs will be executed and the performance scores from these runs will be
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averaged. However, cross-validation increases not only the amount of data that can be used for

training and testing, but also the total number of executed runs. The inevitable extension of runs

that have to be performed, with a factor S to be specific, may cause problems when the training of

a model is computationally expensive.

Another aspect that might influence the performance of the model is the disproportion in the

number of examples assigned to each class, which is called the problem of skewed class distribution

[30, 43]. In a binary classification problem this implies that there is a substantial discrepancy

between the number of observations that are labelled as true and the number of observations that

are labelled as false. If the class distribution of the example data set is skewed, this might result

in a classifier that is able to accurately predict the majority class, but a predictive accuracy for the

minority class that is not satisfactory. This is for instance the case if each class is assigned to the

majority class. This problem will arise in case the misclassification cost for the majority class is

much higher than the misclassification cost for the minority class. For this problem, a cost-sensitive

learning system can be used in order to reduce the cost of misclassified observations instead of

reducing the classification error. The class distribution in the example data set will be artificially

imbalanced to make the minority class more costly in order to reach a better classification accuracy

of the minority class. Therefore, the examples will be weighted based on the class to which they

are assigned to. Then, the classifier will be skewed toward the avoidance of errors in the minority

class in order to reduce the overall cost. Furthermore, skewed class distribution might be solved by

applying undersampling or oversampling. Both involve artificial manipulation of the example data

set. In undersampling a more balanced class distribution will be achieved by eliminating examples

of the majority class. In contrast, oversampling balances the data set by replicating examples of the

minority class.

2.1.3 Performance measure

Predictive performance of the classifier is often measured by means of the error rate, which is

the relative number of misclassifications [30, 43]. Because the classifier was based on the training

set it is important not to confound the error rate on the training data, also called the resubstitution

error, with the error rate on the test data. The opposite of the error rate, called the success rate

or accuracy, is also used to indicate predictive performance. Here, the relative number of correct

classifications is measured instead of the relative number of misclassifications.

Using the total number of errors to define the performance of a classifier might be misleading.

As illustrated in Table 2.1, there exist four di↵erent possible outcomes in a binary classification
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problem. Correct classifications can be divided into true positives and true negatives. On the

contrary, misclassifications can be divided into false positives and false negatives. False positives

occur when an observation is classified as true, while it should have been classified as false. False

negatives occur when an observation is classified as false, while it belongs in the positive class. In the

standard error rate, the costs of all errors are the same. However, a false negative error might have

more impact than a false positive. Consider for instance the question whether a patient is ill or not.

If the classification is false positive, someone will undergo unnecessary further examinations. On the

other hand, treating a patient because of a false negative error may have disastrous consequences.

Similar to the solution of a skewed distributed data set, cost-sensitive classification can be used to

solve the problem of di↵erent types of classifications.

Predicted class

True False

Correct class

True True positive False negative

False False positive True negative

Table 2.1: Confusion matrix

2.1.4 Feature representation

In addition to reflecting on the amount and distribution of training and test data, the content of

the data should also be considered. Since the model function is based on the used data, the data have

to be representative for the real world problem that the classifier is modelled for. If the training set

does not contain representative data, the function might perform perfectly on the training and test

data but lousy on real-world data. However, even if the training data are representative, the data in

its original form is rarely useful as input for the machine learning algorithm. Relevant features, which

are distinct properties of the data, should be used as input rather than just the raw texts in order to

improve the classifier’s performance [43]. The first step in this process is feature generation, which

involves transforming the data into features. However, this may lead to copious features and an in-

creased running time of the learning algorithm. Since numerous of these features are irrelevant or re-

dundant to the target concept, it will be beneficial to prune these excessive features [10]. This leads us

to the next step in the process: feature selection. In this, the number of features is reduced by taking

a subset of all features in which only features that are relevant and not redundant are selected. Both

feature generation and selection are of great importance in text mining, since learning algorithms

in this area can neither cope with flat texts nor with an over-abundant number of features as input.
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2.2 Text mining

Text mining is a subfield of data mining and can be described as the process of extracting patterns

from unstructured text documents [41]. The goal is to assign texts to the correct categories, based

on their context [12]. Whereas in data mining the data are already stored in a structured format, in

text mining the data should be preprocessed first to gain a structured set of data from unstructured

natural language [14]. The process of discovering structured information from unstructured text has

also been referred to as information extraction.

2.2.1 Pre-processing

Pre-processing is done to convert unstructured natural language into a structured form that can

be handled by text mining algorithms. Many sophisticated pre-processing techniques exist, but they

can be divided into two groups: natural language processing (NLP) and information extraction (IE)

techniques. The first involves domain-independent linguistic features, while the latter deals with

domain-specific features. A frequently used NLP technique is tokenisation, in which the continuous

stream of characters is divided into meaningful constituents. Thus, the text document is split up

in tokens, such as chapters, sentences, or words, by searching for given token delimiters [14]. Some

characters are ambiguous as token delimiters. For instance, a full stop might either denote the end

of a sentence or it is part of an abbreviation that should not be split up. The same holds for the

whitespace character, which is not as su�cient for separating words as would be expected. Although

words are separated by white space, there also exist separate words that should be considered as one

token together, such as ‘New York’. Since a lot of abbreviations are used in the medical research

area, using the correct token delimiters is particularly important for the current research.

Another important pre-processing technique is stemming. Here, the number of unique words is

diminished by reducing all words with the same root or stem to a common form. Usually, this is done

by removing the derivational and inflectional su�xes from each word [26]. Examples of stemming

are reducing plural forms to singular forms, such as ’cars’ to ’car’, or reducing past simple tenses to

simple present tenses, such as ’drove’ to ’drive’. After tokenisation, words with an equal word stem

can be treated as synonyms. This is referred to as conflation.

In order to diminish the number of features that will be generated at a subsequent stage, re-

placing synonyms can be useful. Here words will be replaced by a word that is semantically equal.

The word ’automobile’ will for instance be replaced by ’car’, but replacing synonyms also involves
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removing capitals by substituting the word ’Car’ by ’car’. When replacing synonyms, especially

stemmed words, the semantics of the text will slightly change and the syntax of the text will change

substantially. Thus, by substituting synonyms specific information will be lost. However, the num-

ber of features that the learning algorithm has to process is also diminished. Since most learning

algorithms are not capable of processing excessive numbers of features and the remaining information

is often su�cient, substituting synonyms is deemed to be a proper solution.

The final pre-processing step that will be discussed here is filtering. Filtering involves the removal

of for instance stop words and punctuation. Stop words can be described as words that are not

indicative for the subject and therefore not predictive in the classification process, for instance ’the’,

’and’, or ’of’. By removing these words, the number of generated features will be significantly

reduced.

2.2.2 Feature generation

When the texts have been transformed into tokens, in this case words, they have to be transformed

into features, since learning algorithms can not cope with unstructured text as input. The aim of

feature generation is to translate entities and relationships that are likely to be relevant into features

that learning algorithms can handle [14]. The simplest option is using the binary word frequency,

in which a term is weighted 1 if the word occurs in the document and 0 if it does not occur.

Furthermore, there is a method called “bag of words,” in which the text is represented as a set

of words combined with their corresponding frequency [2]. Thus, the term weights are calculated

based on the assumption that the more frequent a term exists in a text, the more important it is

for the classification. However, both methods do not take the direct relationship between terms into

account since the weights are not based on the frequencies of word combinations. To be able to use

these interrelationships in calculating the weights, n-grams are widely used [5]. Herein, n denotes

the length of a sequence of words. If for example the frequency of a word in combination with

both neighbours is examined, n is 3. In contrast, the bag of words method uses 1-grams, since only

the frequency of single terms is determined. Although using n-grams might produce features that

are more predictive, the number of features also increases. Therefore, selecting the most relevant

features is even more important when using n-grams.
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2.2.3 Feature selection

In order to avoid that an algorithm has to process a large number of features that are irrelevant,

the most predictive features should be selected. Several methods can be used to define whether a

feature is relevant or not [2]. To start with, the �

2 test of independence, in which the independency

between term t and a particular class is computed, is widely used. The �

2-statistic for a term t,

using binary word frequency, is given by:

�
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n · F (t)2 · (p
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In this, n is the total number of documents and p

i

(t) denotes the conditional probability of class i for

documents that contain term t. Moreover, P
i

denotes the global fraction of documents that belong

to class i, while F (t) is the global fraction of documents that contain term t. A major advantage of

this method is that the value is normalised, which ensures that these values are comparable across

terms in the same class.

Another method that can be used to quantify the discrimination level of a feature is the Gini-

index, which is defined as:

G(t) = 1�
kX
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p

i

(t)2 (2.4)

Herein, p
i

(t) denotes the conditional probability that a document belongs to class i, given that the

document contains term t. In case the classification is binary, the formula of the Gini-index can be

written in a simplified form:

G(t) = p(0|t)p(1|t) = p(0|t)(1� p(0|t)) (2.5)

The Gini index is at maximum if the documents containing term t are evenly distributed among

k classes, while a minimal Gini value implies that all documents that contain term t belong to a

particular class. Thus, the closer the Gini value is to the minimum, the more predictive a term is

for a specific class.

The last method that will be discussed here is information gain, also referred to as entropy. The

information gain for a given term t is written as:
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In this, P
i

is the global probability of class i, and p

i

(t) is the probability of class i given that the
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document contains term t. The fraction of the documents that contain term t is denoted by F (t).

The smaller the information gain, the smaller the discriminatory power of term t.

All these values can be used to select the most predictive features in order to avoid that the

algorithm has to process multiple irrelevant features. Based on either the �

2 value, the Gini-index

or the entropy, the features are ranked. A cut-o↵ value is determined and only features that have a

value higher than the cut-o↵ value will be used as input for the algorithm.

2.2.4 Learning algorithms

After generating and selecting features out of the unstructured texts, input that learning algo-

rithms can cope with is available. The next decision that has to be made is what learning algorithm

will be used to solve the classification problem. Learning algorithms are widely used in many do-

mains, but not every algorithm is suitable for each domain. It is possible for a learning algorithm

to perform well in one domain, but perform suboptimal in others [6]. Therefore, it is important to

select appropriate learning methods in order to attain satisfactory results.

One of the simplest approaches of building an automatic classification problem solver is the rule-

based approach. A so-called expert system is built, in which simple ‘if-then-else’ rules are manually

constructed. Although such an approach can achieve good results, it takes substantial time, e↵ort,

and domain knowledge to build a high-performance expert system. Moreover, the binary decisions

about category membership are rigid and di�cult to modify [12]. A more sophisticated strategy is

to use inductive learning techniques. Whereas deductive learning is truth-preserving and the classes

are predicted based on rules, inductive learning adds information by discovering the rules that best

fit the training observations and their corresponding classes.

Logistic regression

In inductive learning, which is an important technique in the field of text mining, a di↵erence

is made between linear and non-linear models. Both artificial neural networks and support vector

machines are examples of non-linear models. Whereas the dependent variable in a linear regression

model is continuous, the dependent variable in a logistic regression model is categorical. A binary

logistic regression model is used if there are two categories, whereas a multinomial logistic regression

model is used if there are more than two categories. The binary logistic regression model is written
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as:

P (C = 1|x) = e

w0+
P

wixi

1 + e

w0+
P

wixi

(2.7)

In this, C is the binary class label with value 0 or 1 and x = (x1, . . . , xp

) are the features. The coe�-

cients (w0, . . . , wp

), can be estimated from the data using the maximum likelihood estimation.

Naive Bayes

The Naive Bayes algorithm is a relatively simple model that constructs probabilistic classifiers

based on Bayes’ Theorem. This theorem uses prior knowledge of conditions that might be related

to an attribute value to describe its probability. In Naive Bayes, the Bayes’ Theorem is combined

with the independence assumption between features. In other words, it is assumed that the e↵ect

of an attribute value on a particular class is independent of the other attribute values. Thus, the

presence of a particular feature in a particular class does not depend on the presence of any other

feature. According to the Bayesian principle, a case will be assigned to the class that has the largest

posterior probability. The posterior probability is written as:

P (c|x) = P (x|c)P (c)

P (x)
(2.8)

In this, P (c) is the prior probability of class c, P (x|c) is the probability of attribute value x given

class c, and P (x) is the prior probability of attribute value x. The Naive Bayes algorithm is known

for its simplicity and stability. Especially when using a large data set, a naive Bayes classifier is quite

accurate. Although the assumption that all attribute values are independent is almost impossible

in real life, the accuracy of this algorithm is comparable to the performance of decision trees and

neural networks [25].

Neural network

The idea of an artificial neural network is based on biological neural networks. In biology,

a neuron ‘fires’ when a linear combination of inputs exceeds some threshold. Artificial neural net-

works are used to approximate functions that depend on numerous inputs. The network consists of

several layers: the input layer, the hidden layer(s), and the output layer. Nodes, also called units,

are connected by links. Each link propagates the activation ↵

j

from node j to i. Moreover, each

link has numeric weight W

j,i

, which describes the strength of the connection between the nodes

[38]. As said before, an artificial neural network is a non-linear model. Therefore, a node is active
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if all correct inputs are given and inactive if at least one of the inputs is incorrect. Otherwise, the

model would be a simple linear function. In a feedforward neural network, bidirectional connections

between the units do not exist. Therefore it is also called an acyclic model, in which the information

is only directed towards one direction. Namely, from the input layer, via the hidden layer(s), to

the output layer. In contrast to feedforward models, recurrent models contain links between units

from the same layer. The connections between the nodes form a directed cycle, from which the

model obtained its name. Assuming that the parameters of the model are selected appropriately,

an artificial neural network can be very robust. It does however take considerable time to train this

type of network.

Support vector machine

Originally, support vector machines were designed to solve binary classification problems [19].

The observations of the training set are represented in n-dimensional space, so that the examples

belonging to di↵erent classes can be separated by a hyperplane. As illustrated in Figure 2.3, there

is a margin around the hyperplane from the nearest observations of one class to the nearest obser-

vation of the other class. The support vectors are the observations that are closest to the margin

hyperplane. The optimal hyperplane is described as the hyperplane that causes the widest border.

In other words, the maximum margin hyperplane has to be found. In this example, a linear classi-

fication is illustrated. However, by applying the kernel trick, a non-linear classification can also be

performed.

x1

x2 Observations of class 0
Observations of class 1

Maximal margin

Figure 2.3: Maximal margin hyperplane
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Support vector machines are able to produce very accurate classifiers. Furthermore, they are

robust for noise and the relative amount of required positive examples is often lower than in other

learning algorithms such as neural networks. However, the computation is expensive such that

training the algorithm can be time consuming [42].



3 Data

“You can use all the quantitative data you can

get, but you still have to distrust it and use your

own intelligence and judgment.”

Alvin To✏er

Now that the main theoretical background of text mining has been discussed, the data set will be

examined here. As said before, medical texts will be analysed in order to define whether a previously

assigned activity code was correct or not. Although the final goal is to build an application that

is able to determine whether labelling a patient’s health trajectory with a specific activity code

was justified or not, it is beyond the scope of this thesis to include all activity codes. The aim of

this thesis is to build a proof of concept that evaluates whether prior assignments of observations

to activity codes were correct or not. The focus is on a specific subset of activity codes, namely

activity codes that regard suturing incisions.

3.1 Data set

To define medical activities related to stitching up a wound, three distinct codes can be chosen

by physicians. To be specific, activity code 38941, 38942, or 38943 should be used when an incision

is sutured. However, to assign these codes to a patient’s health trajectory, more detailed medical

activities are required, which are explained by the NZa. To start with, the physician has to both

inspect and disinfect the wound. Moreover, the wound has to be sutured or excision has to be

performed, combined with local anaesthesia. Summarising, there are 4 requirements: inspection,

disinfection, local anaesthesia, and suturing. Although the required medical activities are exactly

the same for these three codes and one of the three codes is justified if all requirements are met, the

situation in which the patient was treated is decisive. Activity code 38942 is about inpatient care.

In contrast, both code 38941 and 38943 concern treatments performed in an outpatient department

of a hospital. The di↵erence between those two being whether or not the patient was referred to

22
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the hospital or not. In outpatient care, the information that is required for the classification can

be found in forms that are filled in when treating a patient at the Emergency Room (ER). Since

both code 38941 and 38943 require the same medical activities in outpatient treatments, and the

di↵erence in referral can not be found in the texts that will be analysed, the information of the

Emergency Room treatment of these two codes will be combined.

To extract the relevant information from a set of 146.814 Emergency Room forms, a list of

activity codes that were assigned to patients is used. From this list, all patient numbers along with

the treatment date that corresponded to either code 38941 and 38943 were selected. Next, the ER

forms of these patients were selected from the total set of ER forms. However, since the activity

code is not stored in the ER form and patients might have been treated at the ER for di↵erent

injuries as well, the ER forms corresponding to other activity codes were also selected in some cases.

Therefore, the ER forms corresponding to the correct treatment dates were extracted. Subsequently,

the patient numbers were removed from the selected ER forms in order to anonymise the data. The

patient numbers are unnecessary in the analysis and this way, it is not possible to deduce the privacy

sensitive information to the patients. As can be seen in Table 3.1, a total of 2.659 patients have

been assigned either activity code 38941 or 38943. Respectively 1.134 and 1.326 corresponding ER

forms could be extracted from the total set of ER forms. Thus, the data set that will be used in

this thesis contains 2.460 Emergency Room forms of patients that have been treated for stitching

up wounds.

Activity code Description Patients ER forms

38941 Outpatient care, without referral 1.224 1.134

38943 Outpatient care, with referral 1.385 1.326

Table 3.1: Distribution of activity codes

An Emergency Room form is for instance used to inform a patient’s general practitioner (GP)

after an ER visit and therefore it is written as a letter. However, the information that such a

letter consists of is automatically extracted from the electronic health record. Since the structure of

these fields contains information that might be useful in classification, not the entire letters but the

separate text fields will be extracted from the EHR. Thus, the structure of the text fields is retained.

However, it is not uncommon that not all fields are filled in. Therefore, an overview of the number

of missing attributes is given in Table 3.2.
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Text field Missing Percentage

Memo 9 0.4

Anamnesis 0 0.0

Examination 0 0.0

Prescribed medication 1533 62.3

Diagnosis 2 0.1

Therapy 2 0.1

Additional information for GP 2453 99.7

Further treatment 2460 100.0

Occasion 68 2.8

Table 3.2: Available text fields of ER forms

3.2 Class label distribution

As mentioned above, the current data set merely includes examples that were assigned to code

38941 or 38943. These classifications are done by the physicians themselves, but when the health

insurance company asks for proof, the classifications are checked by other employees of the hospital.

Checking the assigned activity codes is done manually, by searching for the requirements in the text

of the electronic health record. The outcomes of these checks are used as the class labels in the

current data set. Thus, for each observation it is decided whether or not the requirements were met.

If it became clear from the texts that the wound was inspected, disinfected and stitched up with the

use of local anaesthesia, then the example was labelled as correct. However, if not all requirements

could be found, the observation was classified as incorrect. This is for instance the case if the wound

is glued instead of stitched up, or if the patient did not want local anaesthesia for example because of

pregnancy. It should be noted that it is not always immediately clear from the medical text whether

the requirements have been met because physicians can describe the performed treatment in many

di↵erent ways of varying clarity. Therefore, human interpretation is an important factor in checking

the correctness of the assigned activity codes. In many cases, the essential information was found

in the Therapy text field and the decision could be made after just investigating this field of text.

However, there were also cases in which the text regarding the therapy was inconclusive and other

text fields had to be investigated as well.

In addition to the class label, the reason of rejection is listed as well when the observation was
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classified as incorrect. As can be seen in Table 3.3, the most common reason of rejection is that the

wound is glued together instead of stitched up. In total, 8 reasons of rejection were given. However,

since some reasons do not occur often, they are paired up into three global categories. The first

being that no local anaesthesia is used. The second category consists of cases in which the wound

is not sutured, but glue, staples or plasters were used instead of stitches. The last group consists of

observations in which the wound was, for varying reasons, not treated at all.

Class label Reason of rejection Number Total Percentage

No anaesthesia

Just one suture 111
126 12.9

Anaesthesia not desired 15

No stitches

Glued 644

761 77.9Stapeled 67

Plaster sticked 50

Wound not treated

Just disinfected or bandaged 52

90 9.2Expectative 25

Translocated 13

Table 3.3: Reasons of rejecting assigned activity code

Even more important than the general statistics of the data is the distribution of correctly and

incorrectly classified cases. As can be seen in Table 3.4, 60.3 percent of the cases in the data set is

labelled as correct, which means that the activity code was justified. A staggering 39.7 percent of the

cases is assigned to the incorrect class, which means that the activity code was not justified based on

the textual information in the EHR. There exist cases in which it is possible that an observation is

rejected since it did not meet the requirements of a specific activity code, but then it can be assigned

to another activity code because it does have all requirements for that activity code. However, for

the current activity codes, it is an all-or-nothing decision. If the activity code was unjustified, the

hospital has to refund the money they received because there are no other possible activity codes

that might fit.

Since this data set only contains observations that were assigned to the codes corresponding to

suturing, only true and false positives could be detected in the set of cases that were classified by

physicians. However, a data set that contains observations that should have been assigned to this

code instead of the code that they were assigned to is not available, and thus it is not possible to

detect true and false negatives.
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Classification Number Percentage

Correct 1485 60.3

Incorrect 0977 39.7

Table 3.4: Distribution of binary class labels

3.3 Most frequent words

Since the word frequencies are very important in text mining, in Table 3.5 the top 10 of words

that occur most frequently in the examined data set are shown. In addition to the most frequent

words of the whole data set, the most frequent words for both the correct and the incorrect class

are given as well. The di↵erence between these lists can be very informative.

All classes Correctly assigned Incorrectly assigned

Word Frequency Word Frequency Word Frequency

wond 4439 wond 3188 wond 1251

hand 2846 hand 2066 hoofd 1229

gevallen 2367 intact 1515 wondje 1124

hoofd 2128 gevallen 1324 gevallen 1043

intact 2063 snijwond 1300 hand 780

snijwond 1892 ethilon 1180 snijwond 592

tetanus 1588 hechtingen 1143 intact 548

wondje 1497 tetanus 1107 bewustzijn 483

huisarts 1357 huisarts 1013 tetanus 481

ethilon 1267 gehecht 992 geplakt 471

Table 3.5: Most frequent words in EHR descriptions

As can be seen in Table 3.5, the word wond occurs most frequently, namely 4439 times. Since

this is the number of times that the word is written down in the EHR forms and not the number

of EHR forms that the word exists in, this number can be higher than the total number of EHR

forms. The di↵erences between the top features of the correctly assigned class (1) and the incorrectly

assigned class (0) seem to be informative. To start with, the word wondje is in the top 10 of the

incorrectly assigned class, but not in the top 10 of the correctly assigned class. This might be due
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to the fact that smaller wounds are more often glued or stapled instead of stitched up and thus the

activity code was incorect. The same holds for the word hoofd. A wound on the head will more

frequently be glued instead of sutured to diminish the risk of scars. On the other hand, the word

gehecht logically occurs more often in the correctly assigned class instead of the incorrectly assigned

class since it explicitly states that a wound is stitched up. Since ethilon is the brand name of nylon

sutures, the occurrence of this words indicates that the wound was sutured as well.



4 Application

“Artificial Intelligence is the attempt to make com-

puters do what people think computers cannot do.”

Douglas Baker

Before, both the underlying theory of text mining and classification using di↵erent algorithms,

and the data set that is used in this thesis have been discussed. Now, applying the aforementioned

algorithms to the data and creating an application that conducts the experiment will be discussed.

4.1 Pre-processing

The general idea of pre-processing textual data has already been discussed in Chapter 3. It is

important to execute the steps of the pre-processing phase in right order, since prior modifications

may a↵ect further transformations. Figure 4.1 visualises the sequence of executed tasks.

Remove
punctuation

Build text
corpus

Remove numbers
and replace capitals

Remove stop words
and replace synonyms

Figure 4.1: Sequence of executed pre-processing tasks

First, punctuation is replaced by white space. Although it would be obvious to simply remove

punctuation, this was not su�cient for the current data because punctuation was extensively used

without white space around it. Therefore, simply removing punctuation would cause merged words,

while they had to remain separate. Adding white space in order to prevent words from being merged

does not have a negative impact, since overflowing white space will be removed in a subsequent

stage regardless. After removing punctuation, a text corpus, a structured set of texts, was made.

Subsequently, numbers are removed and capital letters replaced by lower case letters. At first sight,

some numbers in the text seemed to be important, for instance if they said something about the

28
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number of stitches. However, too many numbers were used in a non-predictive way and therefore

the choice was made to remove them all. Subsequently, stop words are removed and synonyms are

replaced. The list of stop words can be found in Appendix I, and the list of synonyms can be found

in Appendix II. For both of these steps, it is important that the capital letters already have been

replaced by lower case letters, since searching for stop words and synonyms is case sensitive. The

lists of stop words and synonyms are constructed manually, both based on a list of word frequencies.

Words that occurred in more than 50 ER forms and that were not assumed to be informative were

added to the list of stop words. Since the stop words in medical texts are quite di↵erent from stop

words in general texts, an existing list of stop words could not be used for this purpose. Therefore,

the list of stop words is constructed manually. Unfortunately, the same holds for medical synonyms.

A general list of medical synonyms could not be found in Dutch, so the list of words that occurred

in more than 50 ER forms was manually checked for synonyms. Thus, this solution is su�cient for

the current research, but it makes it less applicable for other research problems.

Stemming is not performed because all medical texts were written in Dutch and the stemming

functions in R are not su�cient to solve Dutch stemming problems. Moreover, stemming might

delete predictive features because the di↵erence between two words will disappear. This would for

instance be disadvantageous if the word ’hechtingen’ is made equal to ’hechting’. The di↵erence

between these two words might be very important since one suture is performed without anaesthesia

and more than one suture is performed with the use of local anaesthesia. Therefore, this is an

example of a potentially distinguishing feature between a correct and an incorrect assignment of the

activity code. Another example in which stemming would remove the distinctiveness of features is

the di↵erence between ’wond’ and ’wondje. ’Wondje’ indicates that the wound is small, which will

often lead to glueing or stapling the wound instead of using stitches, while ’wond’ indicates a larger

wound that is more likely to be sutured. Since using local anaesthesia is one of the requirements,

removing the di↵erence between singular words and plural words might impede assigning a case to

the correct class. Besides, typographical errors are not replaced, since this is inherent to the research

problem. Correcting typographical errors would take lots of time and e↵ort, while this application

should be used to save time instead. Thus, since typographical errors will occur frequently in ER

forms, the algorithm should be able to handle these errors.

4.2 Feature generation and selection

After the corpus is made and transformed, a Document Term Matrix (DTM) is made. This is a

matrix in which each row corresponds to a document, in this case an EHR form, and each column
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corresponds to a term. Then, in case the 1-gram method is used, the frequency of each term is given

for each document. In case a 2-gram method is used, the frequency of every word combination is

given for each document. In contrast to the term frequencies, binary term frequencies can also be

given. In this binary form, it is merely shown whether or not a term (or combination of terms) is

present in a document. It was empirically found that using the binary form of the DTM gave the

same results as using the DTM in which the frequency was given. Since using the binary form of

the DTM is less complex and therefore faster than using the frequency DTM, it was decided to use

the binary form of the DTM.

Build DTM
Calculate
term freq

Split DTM:
train + test

Remove
sparse terms

Calculate
Gini index

Figure 4.2: Sequence of executed feature generation and feature selection tasks

The DTM is randomly divided into a training set and a test set. Then, sparse terms are re-

moved from the training set, which means that words that do not occur in more than 5% of the

documents are not recorded in the DTM. This percentage of 5% might seem very low. However, it

was empirically found that this was the most fitting parameter value. A possible explanation for

this low value is that some strongly predictive features may not occur frequently. Therefore, taking

a higher sparsity value would inadvertently remove these features. Using a low sparsity value is not

detrimental, since removing sparse terms is just the first filtering step and remaining non-predictive

sparse features will be removed in later stages. The only downside of this approach is that it may

slow down the process.

Subsequently, the Gini index was calculated and used to select the most predictive features.

The Gini index is at maximum when all observations are evenly distributed over the classes, and

it is at minimum when all observations belong to just one single class. Thus, a minimal gini index

indicates a strong relationship between the feature and the class label. Only the top k features

with the strongest relationship are selected. This cut-o↵ is set to that value that leads to the best

accuracy. This value is determined by applying cross-validation, which will be discussed in more

detail in Chapter 5. Based on the terms that remain in the DTM of the training set, the document

term matrix of the test set is made. Thus, the documents and frequencies of these matrices di↵er,

but the terms of which the frequency is given are exactly the same. Otherwise, if all terms of the

test set were also taken into account with the feature selection, the test set is also used to train the

algorithm.
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As mentioned before, the problem of a skewed class distribution could be solved in three ways.

First, examples of the majority class could be removed. Second, cases of the minority class(es)

could be added or duplicated. Both of these manners a↵ect the absolute number of cases in order

to influence the class distribution. The last way of modifying the class distribution is cost sensitive

learning, in which each example gets a weight, based on the relative amount of cases in its class. In

the current thesis, the third manner is chosen. In the binary classification part of the problem, the

desired class distribution is 50/50. Since 60.3% of the cases is assigned as correctly, each example

of this class has a weight of 0.82 and each example of the incorrectly assigned class has a weight of

1.27. In the part of the problem in which the reasons of rejection are predicted as well, each class

should have a relative size of 25%. The cases in the correctly assigned class have a weight of 0.41.

The cases of no anaesthesia, no stitches, and wound not treated respectively have a weight of 4.88,

0.81, and 6.91.

4.3 Predicting the class label

After generating the features and selecting the most predictive ones, the actual class label can

be predicted. As mentioned before, several algorithms can be used to execute this task. In this

thesis a logistic regression model, Naive Bayes algorithm, support vector machine, and a neural

network are used. All algorithms use the DTM of the training set combined with the class labels

of these training examples to predict the class labels of the test set. The Naive Bayes algorithm,

which is in the library e1707, does not require any other information. The posterior probabilities

of the categorial class variable will be be calculated from the independent predictor variables in the

training set. The predicted class label is the class with the highest posterior probability. However, the

logistic regression model, from the package glmnet, requires some additional information. Namely,

the parameter called family, which is the response type of the evaluated distribution. In case of the

binary classification, this parameter has to be set to binomial. Then, a binomial logistic regression

model is fitted for the log-odds. In case the reasons of rejection are predicted as well, the parameter

has to be set to multinomial, which will fit a logistic multinomial regression model [16]. The support

vector machine algorithm, svm from the package e1701, is used with a radial kernel and therefore

requires a cost and gamma value in addition to the training data. The former is a general penalising

parameter for this kind of classification, and the latter is the radial basic function specific kernel

parameter [28]. The last learning algorithm, the neural network, which is in the package nnet,

requires size and decay as parameters. The size indicates the number of units in the hidden layer,

and decay is the weight decay [37].
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While some parameters, for instance the response type for the logistic regression model, can

merely take one value that is known in advance, the optimal value of other parameters can be de-

pendent of the particular situation. When searching for the optimal parameter values, it is important

that the values are only based on the training set and not on the test set. Therefore, cross-validation

is applied on the training set and subsequently, the algorithms are tested with the optimal parameter

settings on the test set. In this way, it is prevented that the parameter values are fitted on the test

data as well. The same holds for selecting the most predictive features. As mentioned before, the

top k-features are selected. The question however is what value of k would give the best results.

Therefore, cross-validation on the training data is also used to find the best cut-o↵ value for the

Gini index.



5 Experimental setup

“The key to Artificial Intelligence has always

been the representation.”

Je↵ Hawkins

As Witten and Frank [43] describe, comparing performances of di↵erent machine learning meth-

ods on a given classification problem is not as easy as it sounds. To make sure that apparent

di↵erences are not caused by chance e↵ects, a sophisticated experimental setup and statistical tests

are needed. Just comparing the estimated error is not quite su�cient since this di↵erence may

simply be caused by estimation errors. Besides, it may also be important to determine whether

one learning method is really better than another on a particular problem. In the current research,

it might be the case that the best learning algorithm for the binary classification problem is not

the same as the best algorithm for the classification problem in which the reasons of rejection are

predicted as well.

5.1 Training and testing

The most common way to divide a data set into a training and test set, is to use approximately

2/3 of the data to train and the remaining 1/3 to test. Thus, in this case the training set consists

of 1640 examples and the test set contains 820 examples. Cross-validation helps more e↵ective use

of the data set and therefore, 4-fold cross-validation is applied on the training set. With the use of

cross-validation, the optimal parameter settings are determined. To start with, the optimal cut-o↵

of the Gini-index is determined. In other words, it is determined which top-k features should be

selected to expect the best results. The Gini index is a number between zero and one, and it is

increased with steps of 0.1. To be able to properly predict the accuracy, 4-fold cross-validation is

applied and therefore four accuracies on the training data for each Gini border can be calculated.

Then, the average accuracy on the training data for each Gini border is computed and the value

with the highest average accuracy on the cross-validated training data is selected. Furthermore,
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the cost and gamma values for the support vector machine, and the number of nodes in the hidden

layer and the maximum number of iterations for the neural network are determined. In case of the

general linear model and the Naive Bayes algorithm, merely the best expected Gini border is selected.

However, for the support vector machine and the neural network, other parameters are meaningful

as well. In these cases, the optimal set of both the Gini border and the other required parameter

values is selected. For the support vector machine, a radial kernel was chosen and thus, the values of

the cost and gamma had to be determined. These values are respectively chosen between 0.1 and 10,

and between 0 and 2. The values of the number of nodes in the hidden layer and the decay for the

neural network are respectively chosen between 0 and 20, and between 0 and 0.001. The maximum

number of iterations, maxit, is set to 500 and skip layer connections are permitted. After applying

cross-validation on the training set to select the optimal parameter settings, the algorithms can be

trained on the whole training set with the selected parameter values as input and subsequently it

can be tested on the test set.

In case of the binary classification, the algorithm is trained to predict whether or not the activity

code of an example was correct. When testing the algorithm, the predictions of the algorithm are

compared to the actual class labels and the accuracy of the algorithm can be calculated. Although

predicting the reason for rejection as well is a bit more complicated, the experimental setup is equal

to the setup of the binary classification problem. The algorithm is trained to assign an example to

one of the four categories. In the testing phase, the predictions of the algorithm are compared to

the actual class labels. Thus, a non-hierarchical approach was used. In other words, the examples

are directly divided into the four classes. In contrast to this, the hierarchical approach would have

been that the algorithm first predicted whether or not the activity code was correct and then, if

the activity code was predicted as incorrect, it predicted the reason for rejecting the activity code.

In Figure 5.1, the non-hierarchical model is schematically shown and in Figure 5.2, the hierarchical

model is illustrated.

Assigned activity code

Correct Incorrect A Incorrect B Incorrect C

Figure 5.1: Non-hierarchical model

Assigned activity code

Correct Incorrect

A B C

Figure 5.2: Hierarchical model
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Since the features that are predictive for a case being correct or incorrect could di↵er from

the features that are decisive in predicting the reason for rejecting a case, it was expected that

the hierarchical approach would be more beneficial than the non-hierarchical approach. However,

preliminary experiments showed that this was not the case for the current classification problem.

Therefore, it was chosen not to extend the experiment with the hierarchical approach.

As explained in Chapter 3, each EHR form consists of several fields of text. Although in data

mining it often seems to be the case that the more information the better, observing the process

of manually labelling this data set has shown the tendency that examining a particular text field

might be more beneficial than examining all information. As said, the current data set is labelled

manually. In a considerable number of these cases, the information that was required to assign an

example to a category appeared to be in the therapy text field. It might be the case that the most

important information is in this particular text field and the information in the other text fields

is not valuable or it might even deteriorate the results. As the name indicates, this text field is

about the performed medical treatment. Since all four requirements (inspection, disinfection, local

anaesthesia, and suturing) are part of the treatment, it seems to be convenient that this information

can be found in this particular text field. However, sometimes significant information had to be

stored in another text field, or a physician failed to comply with the structure of the text fields.

Although the information in the other text fields was only needed in a minority of the examples, it

would be of great value to know whether or not a machine learning algorithm needs all information

there is or that is just needs the part that seems to be most valuable for humans. To be able to

compare these situations, the learning algorithms are trained and tested on both the whole data set

and the data set in which only the therapy text field was selected.

5.2 Balance between accuracy and human work

Up until now, it was proposed that the application would entirely replace human work in classi-

fying the activity codes corresponding to the text in ER forms. However, the accuracy of the model

could be increased if cases are redirected to a human if the confidence of the classification is below

a certain value. Combining the power of both humans and computers can lead to the best results.

When expanding the model with the possibility to address classifications to a human, the balance

between the number of correct classifications and the amount of residual work is important. The

accuracy of classifications should be maximised, while simultaneously the number of cases that has

to be categorised manually should be minimised. The level of confidence can be used to decide

whether or not a human opinion is necessary. Thus, a boundary should be set for the algorithm
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to know when to redirect a case. In this, there are two extremes possible. On the one hand, the

boundary is set in a way that every case is redirected. In other words, even if the algorithm is 100%

sure that the classification is correct, the case will be redirected. This will lead to a 100% accuracy,

assuming that humans categorise everything correctly. Nevertheless, the amount of human work will

not decrease compared to the amount of work without using the algorithm. On the other hand, the

boundary can be set in a way that not a single case will be redirected. Thus, even if the model has a

very low level of confidence, the case will not be redirected. This might lead to a low accuracy, but

no human work remains. The question now is what the optimal split is. When does the algorithm

have to redirect a case, based on it’s level of confidence? The optimal balance should be found in

order to reduce the amount of human work and simultaneously maximise the number of correct

classifications.



6 Results

“Intelligence is the art of good guesswork.”

Horace Barlow

6.1 Binary classification

6.1.1 Performance with feature selection

In Table 6.1 the results of the binary classification are given. For each algorithm, the accuracy

is given for both the model in which all text fields are analysed and the model in which only the

therapy text field is included. In the last column, the p-values of the binomial probability test are

shown to define whether there was a significanct di↵erence in performance between analysing all

text fields and analysing the therapy text field.

All text fields Therapy text field p-value

Binomial Logistic Regression 0.910 0.922 0.110

Naive Bayes 0.905 0.915 0.200

Support Vector Machine 0.915 0.918 0.743

Neural Network 0.926 0.933 0.405

Table 6.1: Performance on the test set for binary classification. P-value ⇤ indicates a signifi-
cant di↵erence between all text fields and the therapy text field

The best accuracy, 0.933, is achieved when a neural network is used to analyse only the therapy

text field. For analysing all text fields, a neural network also yields the best result with an accuracy

of 0.926. To compare performances, statistical tests were performed with ↵ = 0.05. Although for

all models the performance of analysing the therapy text field was better than the performance of

analysing all text fields, no significant di↵erences were found.
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For both approaches, analysing all text fields and analysing the therapy text field, the neural

network model yields the best performance. For analysing all text fields, the neural network model

performed significantly better than the binomial logistic regression model and the Naive Bayes model.

In case only the therapy text field was included, the neural network model performed significantly

better than all other models. An overview of all p-values of the performed binomial probability tests

is shown in Table 6.2

Model 1 Model 2 All Therapy

Binomial Logistic Regression Naive Bayes 0.597 0.327

Binomial Logistic Regression Support Vector Machine 0.585 0.711

Binomial Logistic Regression Neural Network 0.024⇤ 0.049⇤

Naive Bayes Support Vector Machine 0.302 0.250

Naive Bayes Neural Network 0.012⇤ 0.003⇤

Support Vector Machine Neural Network 0.233 0.012⇤

Table 6.2: P-values of comparing all models for binary classification. P-value ⇤ indicates a
significant di↵erence between model 1 and model 2.

To analyse the errors of the model, in Table 6.3 and Table 6.4 the confusion matrices of the best

performing models are given. For analysing all text fields as well as for analysing just the therapy

text field, the numbers of false positives and false negatives are almost the same. In other words, if

the model is used to check whether the assigned activity code was correct or not, both approving in-

correctly assigned activity codes and rejecting correctly assigned activity codes occur almost as often.

Predicted

Correct Incorrect

Label

Correct 439 25

Incorrect 36 320

Table 6.3: Confusion matrix of the binary
classification for all text fields

Predicted

Correct Incorrect

Label

Correct 445 25

Incorrect 30 320

Table 6.4: Confusion matrix of the binary
classification for the therapy text field

6.1.2 Performance without feature selection

Since selecting the most predictive features could be more important than selecting the best

fitting algorithm, it is also interesting to compare the above mentioned accuracies in which feature

selection is applied, with the performance of models in which no feature selection is applied. In
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Table 6.5, the results of all models without feature selection are shown, along with the p-value of

the comparison between feature selection and no feature selection.

All p-value Therapy p-value

Binomial Logistic Regression 0.851 1.66e�6⇤ 0.920 0.832

Naive Bayes 0.862 3.88e�5⇤ 0.889 0.001⇤

Support Vector Machine 0.872 1.11e�5⇤ 0.929 0.093

Neural Network 0.900 0.012⇤ 0.923 0.115

Table 6.5: Performance on test set for binary classification without feature selection. P-
value ⇤ indicates a significant di↵erence between feature selection and no feature selection.

For analysing all text fields, all models that select the most predictive features have a significantly

better performance than the models that do not use feature selection. However, for analysing the

therapy text field this significant di↵erence was only found for the Naive Bayes model.

6.1.3 Comparing features

If feature selection is not applied, the number of features that is used as input is 242 in case all

text fields are included and 49 in case the therapy text field is analysed. In Table 6.6, the number

of features in case feature selection is applied is shown for each algorithm. The list of all features

for each model can be found in Appendix III.

All text fields Therapy text field

Binomial Logistic Regression 15 14

Naive Bayes 15 7

Support Vector Machine 56 7

Neural Network 15 14

Table 6.6: Number of features used as input for binary classification

In Table 6.7, the coe�cients of the binomial logistic regression model are given. Since all features

have the same possible values, namely 0 or 1, the coe�cients are standardised and can therefore be

used to compare the importance of the features.
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Feature Coe�cient all

Intercept -2.083

Hechtingen 3.812

Gelijmd -3.482

Ethilon 2.473

Lidocaine 2.462

Klinibond -2.316

Vicryl 1.787

Gehecht 1.686

Geplakt -1.680

Hechten 1.389

Augmentin 1.113

Distaal 1.071

Hechting -0.891

Timmers 0.714

Verwijderen -0.641

Verdoving 0.086

Table 6.7: Binomial logistic
regression model for all text fields

Feature Coe�cient

Intercept -2.278

Hechtingen 4.224

Gehecht 2.871

Ethilon 2.608

Lidocaine 2.479

Klinibond -2.320

Vicryl 1.893

Geplakt -1.687

Hechten 1.450

Augmentin 0.890

Timmers 0.821

Verwijderen -0.809

Dagen 0.687

Hechting -0.615

Maal 0.544

Table 6.8: Binomial logistic
regression model for the
therapy text field

As shown in Table 6.8, the binomial logistic regression model for the therapy text uses almost

the same features as for all text fields. Features that have a positive sign are most predictive for

the correct class, while features that have a negative sign are most predictive for the incorrect class.

Distaal, gelijmd and verdoving are not used when the therapy text field is analysed, while dagen,

and maal are not used in case all text fields are analysed. The features used in both models di↵er in

magnitude, but the sign is always the same. According to the coe�cients, hechtingen, gelijmd, and

ethilon are the most important features in case all text fields are included. In case only the therapy

text field is analysed, the most important features are hechtingen, gehecht, and ethilon. According

to both the sign and the magnitude of the coe�cients, hechtingen is the most important feature

for the correct class for both analysing all text fields and analysing the therapy text fields. For the

incorrect class, gelijmd is most predictive in case all text fields are included, while klinibond is most

predictive when only the therapy text field is analysed.
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6.2 Multi-class classification

6.2.1 Performance with feature selection

In Table 6.9, the accuracies of the multi-class classification are given. A sifnigicant di↵erence

between all text fields and the therapy text field was only found for the Naive Bayes and the support

vector machine models.

All text fields Therapy text field p-value

Multinomial Logistic Regression 0.751 0.728 0.224

Naive Bayes 0.791 0.874 9.29e�11⇤

Support Vector Machine 0.830 0.862 0.001⇤

Neural Network 0.820 0.815 0.794

Table 6.9: Performance on the test set for multi-class classification. P-value ⇤ indicates a
significant di↵erence between all text fields and the therapy text field.

With the exception of between the support vector machine model and the neural network, sig-

nificant di↵erences were found between all models in case all text fields were included. In case only

the therapy text field was included, significant di↵erences were found between all models, except for

comparing the Naive Bayes and the support vector machine models. In Table 6.10, an overview of

all p-values of the performed binomial probability test is shown.

Model 1 Model 2 All Therapy

Multinomial Logistic Regression Naive Bayes 0.014⇤ 6.91e�20⇤

Multinomial Logistic Regression Support Vector Machine 4.66e�9⇤ 3.12e�15⇤

Multinomial Logistic Regression Neural Network 1.46e�5⇤ 4.43e�10⇤

Naive Bayes Support Vector Machine 0.004⇤ 0.164

Naive Bayes Neural Network 0.043⇤ 2.96e�6⇤

Support Vector Machine Neural Network 0.444 0.001⇤

Table 6.10: P-values of comparing all models for the multi-class classification. P-value ⇤
indicates a significant di↵erence between model 1 and model 2.

In Table 6.11, for all text fields, and Table 6.12, for the therapy text field, the confusion matrices

of the best performing models are given. It is notable that no case is predicted as ’wound not treated’.
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Label

No anaesthesia No stitches Wound not treated Correct

Predicted

No anaesthesia 5 0 0 2

No stitches 6 233 30 30

Wound not treated 0 0 0 0

Correct 38 30 3 443

Table 6.11: Confusion matrix of the multi-class classification for all text fields

Label

No anaesthesia No stitches Wound not treated Correct

Predicted

No anaesthesia 27 0 0 7

No stitches 4 247 33 25

Wound not treated 0 0 0 0

Correct 18 16 0 443

Table 6.12: Confusion matrix of the multi-class classification for the therapy text fields

6.2.2 Performance without feature selection

As well as for the binary classification, comparing the results of models that use feature selection

and models that do not use feature selection is interesting for the multi-class classification. In Table

6.13, the accuracies of all models without feature selection are given along with the the p-values of

the comparison between applying feature selection and no feature selection.

All p-value Therapy p-value

Multinomial Logistic Regression 0.751 1.000 0.727 1.000

Naive Bayes 0.780 0.049⇤ 0.861 0.061

Support Vector Machine 0.827 1.000 0.867 0.219

Neural Network 0.804 0.241 0.801 0.185

Table 6.13: Performance on test set for multi-class classification without feature selection.
P-value ⇤ indicates significant di↵erence between feature selection and no feature selection.

In contrast to the binary classification, no significant di↵erences between feature selection and

no feature selection when analysing all text fields were found, except for the Naive Bayes model. In
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case only the therapy text field is analysed, no significant di↵erences were found between feature

selection and no feature selection for any model.

6.2.3 Comparing features

In case feature selection is not applied, the total number of features is 242 for all text fields and

49 for the therapy text field. Table 6.14 shows the number of features in case feature selection is

applied for each algorithm. In Appendix IV, the features itself are listed.

All text fields Therapy text field

Multinomial Logistic Regression 231 49

Naive Bayes 231 11

Support Vector Machine 231 49

Neural Network 115 49

Table 6.14: Number of features used as input for multi-class classification

For both all text fields and the therapy text field, the multinomial logistic regression gives the

worst performance. However, the number of features that is used as input is similar to the input

of other models. The model that performs best, the Naive Bayes model, uses the fewest features as

input.

6.3 Optimal balance between performance and human work

As mentioned before, expanding models with the opportunity to redirect cases to humans can

increase the accuracy of the model. In Figure 6.1 and Figure 6.2, the balance between human work

and the accuracy of the model is shown. Both graphs are based on the best performing model. On

the x-axis, the percentage of manual work is shown, and on the y-axis the performance can be seen.

If all cases are classified by the algorithm, the level of confidence cut-o↵ is 0, and no manual work

has to be done. In that case the performance is the same as the performance as given above. For the

binary classification this means that the accuracy is 92.6% in case no classifications are done by hand

and for the multi-class classifications the accuracy is 84.3%. If no case is classified by the algorithm,

both the amount of work and the accuracy will be 100%, assuming that a human makes no mistakes.

Increasing the level of confidence cut-o↵ means that the amount of manual work increases as well.

In the graphs, the amount of manual work, corresponding to a given level of confidence cut-o↵, is
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plotted against the performance of the algorithm.

Figure 6.1: Manual work against
accuracy for binary classification
with neural network

Figure 6.2: Manual work against
accuracy for multi classification
with support vector machine

If the optimal cut-o↵ value is defined as a maximal increase in accuracy with a minimal increase

of manual work, for the binary classification the optimal cut-o↵ value seems to be 0.87. This leads

to an accuracy of 95.3% corresponding to a manual amount of work of 13.5%. For the multi-class

classification, the optimal cut-o↵ value is 0.74, corresponding to an accuracy of 88.7% and a manual

amount of work of 12.3%. However, determining the exact optimal balance between performance

and human work is up to the hospital. It depends on both the adverse e↵ects of assigning cases

incorrectly and the desire to diminish the amount of human work.



7 Conclusion & Discussion

“By far the greatest danger of Artificial

Intelligence is that people conclude too early that

they understand it.”

Eliezer Yudkowsky

7.1 Performance on the binary classification problem

The main research question of this thesis was: Is it possible to develop an automatic classification

system, using supervised machine learning algorithms, that determines whether an activity code was

assigned correctly or not, based on digital unstructured text stored in the electronic health record? The

main research question of this thesis assessed the binary classification problem. When analysing all

text fields, as was the initial approach, the best performance that a model achieved was an accuracy

of 0.926. This performance level a�rmed that it is possible to develop an automatic classification

system that determines whether or not an activity code was assigned correctly. Moreover, in case not

all text fields but only the therapy text field is analysed, the performance increased to an accuracy

of 0.933.

Although such high accuracy reveals opportunities for the future, this performance is possibly

not proficient enough to convince health insurance companies that a machine learning algorithm can

replace humans in checking activity codes. However, making mistakes is inherent to being human.

Therefore, it should be questioned what the average error rate of a human being is. It would have

been ideal if the error rate of the manually constructed data set had been available. Unfortunately,

this was not the case and hence it remains unknown whether manual and automated error rates di↵er

significantly or not. Besides, it is nearly impossible that the manually constructed data set that was

used is free of errors. Therefore, it can be safely assumed that the algorithm was trained on a data

set that contained some errors and hence did not reach its full potential yet. Moreover, the confusion

matrix can be used to convince health insurance companies. Although mistakes were made by the
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algorithm, the number of false positives and false negatives were almost the same. Therefore, health

insurance companies pay for incorrect assigned activity codes, but they also save money because

hospitals have to refund the money they received for correctly assigned activity codes. The mistakes

balance each other out.

7.2 Performance on the multi-class classification

In addition to the binary classification, it was also investigated whether the reason of rejection

for incorrectly assigned activity codes could be predicted as well. This question expands the binary

classification problem to a multi-class classification. Although the number of labels increased from

2 to 4, the performance remained promising. In case only the therapy text field was analysed, the

Naive Bayes model performed best with an accuracy of 0.874. When all text fields were included

the best accuracy was 0.830, achieved by a support vector machine model. Therefore, it can also

be concluded that it is possible to build a classification system that is able to predict the reason of

rejection for incorrectly assigned cases. While hospitals use the reasons for rejection as additional

information, they are not required to deliver it to health insurance companies. This part of the

research was hence conducted to see whether or not we could deliver this supportive information.

An accuracy of 0.874 is su�ciently high to be informative.

The best performing model for all text fields and the optimal one for the therapy text field

both never predicted a case as wound not treated. At first glance, it might seem that this was

caused by not using appropriate weights to solve the skewed class distribution problem. However,

the no anaesthesia class is also very small, but models do assign examples to the no anaesthesia

class. Because there exist several subreasons why a wound was not treated, it is most likely that no

common characteristics could be found between these cases and therefore no cases were assigned to

the class.

7.3 Comparing models

Regarding the subquestion in which it was questioned which supervised machine learning algo-

rithm would achieve the best performance, the neural network turned out to perform best on the

binary classification problem. For the multi-class classification problem the support vector machine

performed best on analysing all text fields and the Naive Bayes model performed best on analysing
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the therapy text field.

In case all text fields are included, the neural network only performed significantly better than the

logistic regression model and the Naive Bayes model. In case the therapy text field was analysed,

the neural network performed significantly better than all other models. However, no significant

di↵erences were found between other models. The fact that only these significant di↵erences in

performance were found indicates that the choice between algorithms is not strongly influencing

performance.

The accuracy on the test set was also influenced by the analysed text. Although feature selection

was applied, models that included only the therapy text field outperformed most of the models

that analysed all text fields, for both the binary and the multi-class classification. However, for the

binary classification it did not reach significance. For the multi-class classification only a significant

di↵erence was found for the Naive Bayes and the support vector machine model. The small number

of significant di↵erences can be explained by the fact that most information is indeed extracted from

the therapy text field if assigning class labels manually, but in a lot of cases information from other

text fields is also needed for definite proof.

7.4 Importance of feature selection

We have focused on the di↵erences between several machine learning algorithms as well as the

di↵erence between analysing all text fields and only the therapy text field. However, generating and

selecting predictive features is even more important than choosing the right learning algorithm and

text field. Therefore, models have been developed that take all features as input. For the binary

classification problem, all predictive models with feature selection performed significantly better

than models without feature selection if all text fields where analysed. However, for the therapy text

field, this significant di↵erence could only be found for the Naive Bayes model. This can be explained

by the di↵erence in numbers of features between feature selection and no feature selection. The total

number of features for the therapy text field is 49 while it is 242 for all text fields. Therefore, the

di↵erence between the number of features in case the therapy text field is analysed is likely to be

smaller than in case all therapy text fields are analysed. For the multi-class classification, only a

significant di↵erence was found between feature selection and no feature selection in case the Naive

Bayes model analysed all text fields. No significant di↵erences were found for the therapy field. The

fact that the impact of feature selection is lower for the multi-class classification than for the binary

classification can be due to the number of features that was used if feature selection was applied.



7. Conclusion & Discussion 48

If feature selection was applied on the multi-class classification, many features were selected and

therefore the number of features was almost the same if no feature selection was applied. Therefore,

the models and thus the performances did not di↵er significantly.

The number of features that each model used as input is diverse. It varied between 15 and 56

for the binary classification, and between 115 and 231 for the multi-class classification. To answer

the subquestion in which it was questioned which features are most predictive, the best performing

models are compared to the simplest models, namely the logistic regression models. The binomial

logistic regression model uses 15 features. The coe�cients of the regression models describe the

relationship between the feature and the class label. Because binary feature frequency was used,

we can compare the coe�cients because the values of the features are all on the same scale. In

the binomial logistic regression model, gelijmd, geplakt, hechting, klinibond, and verwijderen have a

negative coe�cient, which indicates that they are predictive for the incorrectly assigned class. All

of these negative features are indeed important when manually searching for incorrectly assigned

activity codes. If the features are ranked according to their coe�cients, hechtingen, gelijmd, and

ethilon turned out to be the most important features. This suits with the keywords that are searched

for if assigning the class labels was done manually.

The di↵erence between the weight of hechting (-0.891) and hechtingen (3.812) supports the

idea that stemming could be disadvantageous to the current research aims. Whereas hechting is a

predictive feature for the incorrect class label, the feature hechtingen is a predictive feature for the

correct class label. Another notable feature that is used as input for binomial logistic regression

model is Timmers. This is the name of a physician and since the weight of this feature is positive,

it is possibly someone who is often asked to suture large wounds.

7.5 Redirecting cases to humans

The performance of the current models could be improved by redirecting di�cult cases to humans.

A remaining question concerns the optimal balance between human labor and predictive, automated

performance. It is up to hospitals to decide, but examining the labor plotted against accuracy shows

that improvements in performance could be achieved with a relatively small amount of human work.

For the binary classification, assigning 13.5% of the cases manually will lead to an accuracy of 95.3%.

With a 13.5% increase of the amount of manual work, the performance can be increased with 3.1%.

In case of the multi label classification, the amount of work would be around 12.3% to achieve an

accuracy of 88.7%. In other words, increasing the amount of work with 12.3% would lead to a



performance improvement of 4.3%. However, it should be taken into account that these estimates

are based on the assumption that humans classify every case correctly. Since in reality this is not

plausible, the improvement in performance would be lower in real world scenario’s.

7.6 Future work

The highest accuracy was 0.933, which was achieved with a neural network on the binary clas-

sification problem analysing only the therapy text field. The goal of the experiment conducted in

this thesis was to give a proof of concept for using machine learning and text mining to predict

whether activity codes were assigned correctly. Although it was beyond the scope of this thesis

to examine other activity codes, it would be interesting to examine EHR forms corresponding to

other activity codes as well. Since health insurance companies adapt the rules and regulations every

year, it would be of great advantage if the verification part of their process could be automated.

In order to be able to extend the current experiment to investigate alternative activity codes, the

pre-processing phase is kept quite general. The only pre-processing approach that can be beneficial

for other activity codes but not for the current activity code, is stemming. However, including it

would require minimal changes.

In case the current results fail to convince health insurance companies to fully automatise manual

work, the application might be useful in preventing the problem of incorrectly assigned activity codes.

In the current situation approximately 40 percent of the assigned activity codes is incorrect. It might

be advantageous to use the application to prevent physicians from making these mistakes in the first

place instead of correcting them later. As in the current situation, the physician would fill in the

EHR form and would assign the performed treatment to a particular activity code. In contrast, the

algorithm could subsequently be used to predict whether this activity code is correct or not. In this,

a cut-o↵ level of confidence could be set. In case the level of confidence is above the cut-o↵ level,

everything is fine. Otherwise, there will be a pop-up on the screen to warn the physician. Then the

physician is able to change the activity code or add missing information to the EHR form, possibly

based on the predicted reason for rejection.
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Appendix I - Stopwords

a

aa

aan

al

aldaar

alhier

all

alle

allen

alles

als

altijd

ander

andere

anders

bdz

beide

bekend

bij

bijna

blanco

boven

buiten

cc

circa

cm

cwk

daar

daarbij

daardoor

daarmee

daarna

daarnaast

daarom

daarvan

dan

danwel

dat

de

der

deze

dezelfde

dhr

die

digimapje

dit

diverse

door

dus

e

echter

een

eerder

eerdere

eerst

eigenlijk

eigenlijk

elders

elkaar

elke

en

enige

enof

er

eraf

erbij

ergens

erin

erop

ertussen

eruit

etc

even

evenals

eventueel

evt

gaan

gaarne

geen

gegaan

gehad

gekomen

gekregen

geleden

geweest

goed

gr

graag

haar

had

heb

hebben

heeft

heel

heen

hele

helemaal

hem

het

hier

hierbij

hierdoor

hierna

hiervan

hiervoor

hij

hoe

hoeft

iemand

iets

in

indien

indien

inmiddels

iom

ipv

is

ivm

jhk

kan

kg

klein

kmh

komt

kon

kreeg

krijgen

krijgt

kwam

l

langs

li

liet

linker

links

m

maar

mag

man

med

mede

mee

meer

met

mevr

mevrouw

mg

middels

midden

mij

mocht

moeder

moest

moet

moeten

mogelijk

mogelijke

na

naar

naast

nadat

nadien

name

nav

nee

neemt

nergens

net

niet

nieuw

nieuwe

niks

nog

nogmaals

nooit

nu

of

oma

omdat

omver

ondanks

onder

onduidelijk

onduidelijke

ong

ongeveer

ook

op

opa

opeens

os

over

overig

overige

p

paar

pas

pat
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patient

patiente

per

plots

plotseling

pte

re

rechter

rechts

reeds

rond

rvk

seh

sinds

sindsdien

tal

te

tegen

ten

ter

terwijl

tevens

thv

tijdens

toch

toe

toen

tot

totaal

totale

tussen

uit

uur

vader

van

vanaf

vanuit

vanwege

vanzelf

veel

ver

verder

verdere

vervolgens

vg

via

vind

vinden

vindt

volgens

vond

voor

vooraf

vooral

waar

waarbij

waardoor

waarna

waarom

waarop

waarschijnlijk

waarvan

waarvoor

wanneer

want

was

wat

weer

wegens

wel

welke

werd

wil

wilde

willen

word

worden

wordt

wou

zal

zeker

zelf

zich

zichzelf

zie

zij

zijn

zoals

zojuist

zonder

zou

zover

zowel
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Appendix II - Synonyms

word

replaced by

agraves aggraves

blok block

dgn dagen

ethylon ethilon

exp expectatief

fraxi fraxiparine

hibiset hibicet

ha huisarts

lido lidocaine

pcm paracetamol

proleen prolene

steriestrips steristrips

tetanusinjectie tetanus

tetanusvaccin tetanus

tetanustoxoid tetanus

staples nietjes
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Appendix III - Binary features

Binomial logistic regression, Naive Bayes and Neural Network

augmentin

distaal

ethilon

gehecht

gelijmd

geplakt

hechten

hechting

hechtingen

klinibond

lidocaine

timmers

verdoving

verwijderen

vicryl

Support Vector Machine

augmentin

been

bewegen

chirurg

dagen

desinfectie

diclofenac

diepe

distaal

distale

dorsale

drukverband

ethilon

extensie

flexie

forse

gehecht

gelijmd

geplakt

gevoel

hechten

hechting

hechtingen

hechtwond

huisarts

hypertensie

intact

klinibond

koorts

laten

lidocaine

lijkt

nagel

neurovasculair

onderarm

ono

ossale

phalanx

poli

pulm

roodheid

sensibiliteit

snijwonden

timmers

tpv

verband

verdoving

verwijderen

vicryl

vinger

vingers

volaire

volledig

vue

week

zijde
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Appendix IV - Multi features

Multinomial logistic regression model, Naive Bayes and

Support Vector Machine

aangezicht

aanw

abd

abdomen

achter

achterhoofd

actief

advies

afwijkingen

alcohol

alert

alleen

ambu

amnesie

anamnese

arm

armen

arts

augmentin

auto

avd

barstwond

been

behaarde

bekken

benen

bewegen

bewustzijn

bewustzijnsverlies

bijgeluiden

bloed

bloedend

bloedende

bloeding

braken

brein

buik

capitis

cerebrum

chirurg

contact

controle

cor

dagen

desinfectie

deur

diclofenac

diepe

digi

digimap

direct

distaal

distale

dorsale

dossier

drukpijn

drukpijnlijk

drukverband

duim

eigen

erg

ethilon

extensie

fiets

flexie

flink

fors

forse

fractuur

functie

gebeurd

gebloed

gebraakt

gebruikt

gedaan

gedronken

gegeven

gehecht

gelaat

gelijmd

gemaakt

geplakt

geslagen

gesloten

gesneden

gestoten

gestruikeld

gevallen

gevoel

gezicht

gezien

gezond

glas

goede

grote

hand

hechten

hechting

hechtingen

hechtwond

helm

hematoom

hoofd

hoofdpijn

hoofdwond

huid

huis

huisarts

hypertensie

infectie

instructies

intact

isocoor

jaar

kin

klachten

kleine

klinibond

knie

koorts

kracht

laatste

lab

laceratie

laten

lateralisatie

letsel

licht

lidocaine

ligt

lijkt

maal

max

mes

min

misselijk

morgen

motoriek

nag

nagel

nek

neuroloog

neurovasculair

neus

nodig

normaal

normale

observatie

onbekend

onderarm

onderzoek

ongestoord

ono

oog

open

opgelopen

opname

oppervlakkig

oppervlakkige

oraal

orbita

ossale

paracetamol

phalanx

pijn

pijnlijk

pijnlijke

pijnstilling

poli

pols

pulm

pupillen

retour

roodheid
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sat

scherpe

schoongemaakt

sens

sensibiliteit

snijwond

snijwonden

soepel

steristrips

symmetrisch

teen

tekenen

terecht

tetanus

thorax

thuis

timmers

top

toxoid

tpv

trap

trauma

twee

uitleg

val

vanavond

vandaag

vanmorgen

verband

verbonden

verdoving

verwijderen

vicryl

viel

vinger

vingers

volaire

volledig

voorhoofd

vrij
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