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Abstract

The purpose of this study, was to improve the efficiency of simulations of
stochastic differential equations. We first explain what such equations and
their properties are. Then we derive some methods to simulate them. The
first couple of these methods are generalizations of numerical integration
methods, which are not new. After these methods we derive new methods
with a different approach. To test these methods, we generate the stationary
probability distribution of the process, and compare it to the theory. We
do see improvements in terms of stability and accuracy in some cases, but
further research into their efficiency is needed to be conclusive.
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1 Introduction

The main object of study of this thesis, is a quantity X(t) that is placed
in a potential V (X(t)), but also exhibits random fluctuations. To be more
precise, the quantity X(t) is governed by a continuous stochastic differen-
tial equation (SDE). What these equations are will be defined in Chapter 2.
These equations arise in fields as mathematical finance, probability theory,
ecology, and most notably microphysics. Causes of the random fluctuations
in an otherwise deterministic system can be such as human action, under-
lying complex systems and in the last case collisions with myriad smaller
particles.

An intuitive, but mathematically wrong way to write down a SDE is

dX(t)

dt
= F (X(t)) + L(t) (1)

Where F (x) = −dV (x)/dx is the force due to the potential, and L(t) is a
force that causes the random fluctuations in X(t). The problem with this
approach is that X(t) is unlikely to be differentiable.

We will not go into the nuances of existence and uniqueness problems of
SDEs and simply assume that for our purposes a unique solution exists.
The solution to a SDE is a stochastic process. It is however very rarely the
case that this solution can be written down explicitly, and thus it can only be
approximated numerically. The goal of this thesis is to discuss algorithms to
simulate the process X(t). Since the standard algorithms for this problem
only accurately simulate the properties of the model for very small steps
in time, we are especially interested in finding an algorithm that can take
larger timesteps accurately.
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2 The Model

In the introduction, we briefly discussed what kind of process we want to
model. Now we shall give a more complete picture of what the properties of
this process must be. Without losing generality we shall call the quantity
X(t) the location of a particle.

2.1 Brownian motion

For simplicity we first assume that the potential is constant, and hence
does not exert any force on the particle. The movement from the particle
are thus random fluctuations. We call this movement Brownian motion. A
good mathematical definition for Brownian motion comes from the symmet-
ric random walk (i.e. every timestep a ’particle’ has equal probability going
a unit step right as going a unit step left). One takes the limit to infinity
of the number of steps (n) per unit time, while scaling the process with

√
n

so that the number of steps of the process does not influence the expected
displacement per unit time. Intuitively this gives the idea of the particle
experiencing many small collisions. Thankss to a central limit theorem, one
can prove that the process one ends up with is normally distributed with
mean at the start location and variance equal to the time that has past. A
rigorous derivation and proof can be red in reference [4] Chapter 3, up to
and including theorem 3.2.1.(Central limit).

If the steps of the process are not of unit length, then one can scale the
location with a factor σ. In thermodynamics, by Einstein’s relation (see [3]
section 3.1.1), we know that σ ∼ kBT where kB is Boltzmann’s constant, and
T is the temperature. The proportionality factor depends on other physical
quantities of the system (i.e. (kinetic) energy and (non-conservative) forces).
We will only look at SDEs with constant diffusion coefficient σ2/2.

If the steps are of unit length, or σ = 1, we call the process ’standard Brown-
ian motion’ or the ’Wiener process’, which can be defined from its properties
in the following way.

Definition 1 (Wiener Process). The Wiener process (or standard Brownian
motion process), is the stochastic process {B(t)|t ∈ [0,∞)} that has the
following properties.
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i) B(t) is continuous in t and B(0) = 0 almost surely

ii) for all 0 = t0 < t1 < ... < tm the time increments

B(t1)−B(t0), B(t2)−B(t1), ..., B(tm)−B(tm−1)

are independent

iii) and each time increment is normally distributed with B(t+τ)−B(t) ∼
N(0, τ) for each t and positive τ .

It can be shown that the Wiener process is (almost surely) not differentiable
to the time parameter. A rigorous proof involves a bit of measure theory
which we are not going through here. A heuristic way to explain why the
Wiener process is not differentiable, is that the symmetric walk changes
direction in a non differentiable way. The Wiener process is the limit of
infinitely many of these direction changes (up to a set of measure 0), and
hence it is not surprising that there is no derivative of the paths of Brownian
motion.

2.2 The Itô integral

For constant potential V , we thus have that X(t) = σB(t) for some constant
σ depending on the specifics. But since Brownian motion is not differen-
tiable, we cannot write dX(t)/dt = L(t) as suggested in the introduction.
The way to get around this problem is by defining an integral with respect
to Brownian motion, and write the differential equation in integral form as∫ t

s=0
dX(s) =

∫ t

s=0
σdB(s)

or in differential notation, which is just a quick way of writing down the
integral expression for general interval of integration

dX(t) = σdB(t) (2)

This integral is called the Itô integral, which is very similar to the Riemann-
Stieltjes integral. It is a limit in probability of the Riemann-sums, for the
partition 0 < t1 < ... < tn = T going to infinitely many fragments.∫ T

0
g(t)dB(t) := lim

n→∞

n∑
i=0

g(ti)(B(ti+1)−B(ti))
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In chapter 4 of reference [4] some important properties of Itô integrals are
proved. Most notably theorems 4.3.1. and 4.4.9. We will sum them up in
the following theorem.

Theorem 1 (properties of Itô integrals). Let g(t) be a square integrable
function, that is either nonrandom, or a stochastic process. Then the Itô
integral I(t) =

∫ t
0 g(t)dB(t) has the following properties.

i) (Continuity) I(t) is continuous in t.

ii) (Linearity) Addition and multiplication with a constant work the same
as in ordenary (Riemann/Lebesgue) integrals.

iii) (Martingale) I(t) is a martingale, i.e. E(I(t)|I(s)) = I(s) for s ≤ t.

iv) (Itô isometry) EI2(t) = E
∫ t

0 g
2(u)du.

v) (deterministic integrand) For g(t) a nonrandom function of time, we
have that I(t) ∼ N (0,

∫ t
0 g

2(u)du), i.e. I(t) is normally distributed.

In the case that the potential is not constant, there is a ’force’, or drift,
F (x) = −dV (x)/dx acting on the particle. Adding this term to equation 2,
we have now rigorously defined the law that governs the quantity X(t)

dX(t) = F (X(t))dt+ σdB(t) (3)

integrated over any continuous interval.

Physicist often do not mind and still perform calculus with the derivative
of Brownian motion B′(t) = η(t), which has expected value Eη(t) = 0. The
other important property of this ’derivative’ is that the autocorrelation is
given by E(η(t)η(s)) = δ(t− s) where δ is the Dirac-δ. This approach works
because η(t)dt can be interpreted as dB(t) and then the properties of η(t)
follow from the properties of dB(t). By definition 1 we have

EdB(t) = 0

E(dB(s)dB(t)) = 0 for s 6= t by independence of increments, and

E(dB(t)dB(t)) = dt = δ(t− s)dsdt

where the last property follows because Brownian motion has quadratic vari-
ance [B,B](t) = t, a result that is defined and proved in reference [4] section
3.4.2.
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Note that we described a ’force’ F that is proportional to the change in X(t).
A more specific name for this term in a stochastic differential equations is
the drift coefficient, while the term σ2/2 is called the diffusion coefficient.

2.3 The Itô-Doeblin formula

Before we can really derive some results about X(t), we need some sort of
chain rule for functions of Brownian motion. One would expect that for a
differentiable function f we would have

df(B(t)) = f ′(B(t))dB(t)

but unfortunately, because Brownian motion has quadratic variation [B,B](t) =
t, we must take into account another term

df(B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt

For a rigorous definition of quadratic variation and a proof that Brownian
motion has quadratic variation, see reference [4] section 3.4.2. Informally
it means that, while normally expressions with second order differential fall
off to zero, in stochastic calculus dB(t)dB(t)) = dt, while all other higher
order differentials fall off to zero1.

Theorem 2 (Itô-Doeblin formula). For f(x, t) a three times differentiable
function in both arguments, and the SDE dX(t) = F (X(t))dt+ σdB(t), the
differential df(X(t), t) is given by

df = (ft + F (X(t))fx +
σ2

2
fxx)dt+ σfxdB(t)

where the subscripts denote partial differentiation, and the arguments of f
are left out for convenience.

Proof. Let f(t, x) be three differentiable to both it’s arguments, then we
have that

df = ftdt+ fxdx+
1

2
fxxdx

2 +O(dt2, dxdt, dx3) (4)

1The identity dB(t)dB(t)) = dt may seem contradictory, because the right side is
deterministic and the left side is not. But when one integrates over these differentials, one
get the exact result (almost surely) by the rule of large numbers

6



Now let x = X(t) and dX(t) = F (X(t))dt+ σdB(t), then (4) becomes

df = ftdt+ (fx) · (F (X(t))dt+ σdB(t)) +
1

2
(fxx) · (F (X(t))dt+ σdB(t))2 +O(dt2, dX(t)dt, dX(t)3)

= ftdt+ (fx) · F (X(t))dt+ (fx) · σdB(t) +
1

2
(fxx) · σ2dt+O(dt2, dX(t)dt, dX(t)3, dB(t)dt)

All temrs in O(dt2, dX(t)dt, dX(t)3, dB(t)dt) fall off to zero, and what we
are left with is the Itô-Doeblin formula.
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3 Ornstein-Uhlenbeck processes

An Ornstein-Uhlenbeck process is a stochestic process X(t) that satisfies
the SDE

X(t) = γ(µ−X(t))dt+ σdB(t), for γ > 0 (5)

Because the drift F (x) = γ(µ− x) is linear, the process is simple enough so
that we can write down an explicit solution. Equation 5 can be solved by
Lagrange’s method of variation of constants. We first solve the inhomoge-
neous differential equation dX(t) = −γX(t)dt which gives Xhom(t) = e−γt.
The real solution can now be obtained by the substition

X(t) = Xhom(t)C(t)

for a function C(t) that is defined by C(x, t) = xeγt for x = X(t). Normally
we would take the derivative of function C, but since we are performing
stochastic calculus, we have to apply the Itô-Doeblin formula, and find

dC(X(t), t) = (∂C(X(t), t)/∂t)dt+ (∂C(X(t), t)/∂x))dX(t) +
1

2
(∂2C(X(t), t)/∂x2)dX(t)dX(t)

= γxeγtdt+ eγtdX(t) + 0 · dX(t)dX(t)

= γxeγtdt− γxeγtdt+ γµeγtdt+ eγtσdB(t)

= γµeγtdt+ eγtσdB(t)

And hence

C(t) = C(0) +

∫ t

0
γµeγsds+

∫ t

0
eγsσdB(s)

Filling in the definition of C(t), we yield

X(t) = X(0)e−γt + µ(1− e−γt) + e−γt
∫ t

0
eγsσdB(s)

Which is the explicit solution of equation 5. Not that because ∂2C/∂x2 = 0,
the Itô-Doeblin lemma has the same result as the ordinary chain rule.

Using theorem 1v we get that X(t) ∼ N (X(0)e−γt + µ(1 − e−γt), σ2

2γ (1 −
e−2γt))

Note that when we take −γ > 0, although the process is not called an
Ornstein-Uhlenbeck process, we do obtain the same explicit solution.
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4 Some theorems we have used

In this section, we derive some known results that we have used to tackle
the proposed problem. We derive the Fokker-Planck equation which is a
partial differential equation in the probability density function, that gives
an equivalent description of the process X(t). We use this equation to get
an expression for the stationary state of X(t), and we elaborate on time
reversibility and the detailed balance.

4.1 The Fokker-Planck equation

Another way to describe the process X(t), is by a partial differential equa-
tion (PDE) in its probability density function of X(t). There are more then
one such PDEs, but the one that is the most use to us is the Fokker-Planck
equation (or more generally the Kolmogorov forward equation 2). We will
now define this equation and prove that it is correct. The proof is based on
multiple applications of the Itô-Doeblin formula (theorem 2).

Theorem 3 (Fokker-Planck equation). For the general STE

dX(t) = F (t,X(t))dt+ σ(t,X(t))dB(t)

the probability density function p = P(X(t) = y) satisfies the Fokker-Planck
equation

∂

∂t
p = − ∂

∂y
(F (t, y)p) +

1

2

∂2

∂y2
(σ(t, y)2p)

Proof. For b > 0 let hb : R → R be a twice differentiable function with
support3 supphb = (0, b). We use this function as a help function to prove
our theorem. By the Itô-Doeblin formula:

dhb(X(u)) = h′b(X(u))dX(u) +
1

2
h′′b (X(u))dX(u)dX(u)

= h′b(X(u)) (F (u,X(u))du+ σ(u,X(u))dB(u)) +
1

2
h′′b (X(u))σ(u,X(u))2du

=

[
h′b(X(u))F (u,X(u)) +

1

2
h′′b (X(u))σ(u,X(u))2

]
du+ h′b(X(u))σ(u,X(u))dB(u)

2As the name implies there is also a Kolmogorov backward equation.
3The support of a function g is the subset of its domain where g is unequal to zero.

suppg = {x ∈ Domg|g(x) 6= 0}
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Integrating from 0 to t gives

hb(X(t))−hb(0) =

∫ t

0

[
h′b(X(u))F (u,X(u)) +

1

2
h′′b (X(u))σ(u,X(u))2

]
du+M

where M is the integral w.r.t. Brownian motion, and thus by theorem 1iii
has expected value 0. Since we are now going to take the expected value of
both sides, this term disappears. Moreover since hb = 0 outside (0, b), we
can integrate over (0, b) in stead of (−∞,∞).

E [hb(X(t))− hb(0)] =

∫ b

0
hb(y)P{X(t) = y}dy − hb(0)

= E
∫ t

0

[
h′b(X(u))F (u,X(u)) +

1

2
h′′b (X(u))σ(u,X(u))2

]
du

thus, after changing the order of integration

E [hb(X(t))− hb(0)] =

∫ t

0

∫ b

0

[
h′b(y)F (u, y) +

1

2
h′′b (y)σ(u, y)2

]
P{X(t) = y}dydu

(6)
Using integration by parts on both parts of integrals from 0 to b, where the
boundary terms disappear since hb(0) = hb(b) = 0, we get∫ b

0
h′b(y)F (u, y)P{X(t) = y}dy = −

∫ b

0
hb(y)

∂

∂y
(F (u, y)P{X(t) = y})dy∫ b

0

1

2
h′′b (y)σ(u, y)2P{X(t) = y}dy = −

∫ b

0

1

2
h′b(y)

∂

∂y
(σ(u, y)2P{X(t) = y})dy

=

∫ b

0

1

2
hb(y)

∂2

∂y2
(σ(u, y)2P{X(t) = y})dy

Substitution these results back into (6) we get

∫ b

0
hb(y)P{X(t) = y}dy = hb(0)+∫ t

0

∫ b

0

[
− ∂

∂y
(F (u, y)P{X(t) = y}) +

1

2

∂2

∂y2
(σ(u, y)2P{X(t) = y})

]
hb(y)dydu

Taking the derivative w.r.t t gives∫ b

0
hb(y)

∂

∂t
pdy =

∫ b

0

[
− ∂

∂y
(F (t, y)p) +

1

2

∂2

∂y2
(σ(t, y)2p)

]
hb(y)dy
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And since this has to be true for every hb with given properties, the only
way this equation can hold is if

∂

∂t
p = − ∂

∂y
(F (t, y)p) +

1

2

∂2

∂y2
(σ(t, y)2p)

Which concludes the proof.

In the case of a linear F (y), the process X(t) is an Ornstein-Uhlenbeck pro-
cess. In this case a Fourier transform can be used to simplify the partial
differential equation, so that an explicit solution can be written down. Of
course, we already know that this solution is going to be a normal curve.

Solving the Fokker-Planck equation is equivalent to solving our SDE. During
this study, we did not manage to get new insights from this approach, but
for more information one can consult reference [3].

Definition 2 (Probability current). The Fokker-Planck equation can also
be written in the form

∂

∂t
p = − ∂

∂y
S(x, y, t)

where S(x, y, t) = f(t, y)p + (1/2)(∂/∂y)(σ(t, y)2p) is called the probability
current.

4.2 The stationary distribution

Observe that the probability current (definition 2) can be written

S(x, y, t) =
σ2

2
e−

2
σ2 V (y) ∂

∂y

(
e

2
σ2 V (y)p(x→ y, t)

)
(7)

Where V ′(y) = −F (y), and p(x → y, t) = P(X(t) = y|X(0) = x). If p is a
stationary solution, i.e. ∂p/∂t = 0, then it follows from the Fokker-Planck
equation that S(x, y, t) = S(y) = S is constant 4. A particular solution to
the differential equation 7 for constant S, is

pp(y) = S · 2

σ2
e−

2
σ2 V (y)

∫
e

2
σ2 V (y)dy

4It can be shown that a stationary distribution exists, as long as all states commute
with each other, and the mean return time of any state is finite. This result comes from
the theory on continuous-time Markov chains.
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The homogeneous solution (i.e.solution for S = 0) can be found by direct
integration:

ph(y) = Ne−2V (y)/σ2

where N is the normalisation. The general solution is the sum of the homo-
geneous and particular solution. Since this is a probability density function,
if we integrate it over the whole space it yields 1, which is the same for the
homogeneous solution. Therefore, the particular solution should integrate
to 0, but since the integral and exponential are both positive, we must have
that S = 0. Hence, the general solution is equal to the homogeneous solu-
tion of 7. We have now proved the following theorem.

Theorem 4. For the SDE

dX(t) = F (X(t))dt+ σdB(t)

and potential V (x), the probability density function π(y) given by

π(y) =
e−2V (y)/σ2∫∞

−∞ e
−2V (ξ)/σ2dξ

is the stationary distribution of X(t), provided that the integral converge.

4.3 Time-reversibility

Definition 3. A stochastic process X(t) is said to be time-reversible, if the
following joint probabilities are equal.

P(X(t) = y,X(0) = x) = P(X(t) = x,X(0) = y)

For all x, y in the state space of X, and all t.

From definition 3 it follows that a time-reversible stochastic process X(t)
with stationary probability distribution π, adheres to the following identity.

P(X(t) = y|X(0) = x)π(x) = P(X(t) = x|X(0) = y)π(y)

The following theorem is due to Kolmogorov. A proof can be found in ref-
erence [5].
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Theorem 5. Let f be Lipschitz continuous, and let X(t) be the solution to
the SDE

dX(t) = f(X(t))dt+ σdB(t)

Then X(t) is reversible and has stationary distribution π, iff there is a func-
tion V such that f = −∇V with dπ = e−2V (x)dx, and∫ ∞

−∞
e−2V (x)dx <∞

From theorem 5 it follows that any process with a polynomial potential
with positive highest order coefficient, is time-reversible. By theorem 4, the
stationary probabilities follow a distribution π(x) ∼ e−2V (x)/σ2

. Combining
this with the reversability we find

P(X(t) = y|X(0) = x)

P(X(t) = x|X(0) = y)
=
π(y)

π(x)
= e−2(V (y)−V (x))/σ2

We call this identity the detailed balance.
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5 Simulation methods based on integration

In this Chapter, we take a look into the most natural ways of simulating
X(t). The methods we are discussing are generalizations of the methods nor-
mally used for ordinary differential equations (ODE). All first order ODEs
have the form dy/dx = f(y, x), and schemes for numerical approximations of
its solution are derived by approximations of dy/dx and higher order deriva-
tives d2y/dx2 = df/dx = ∂f/∂x+ ∂f/∂y · dy/dx = ∂f/∂x+ f · ∂f/∂y, and
so on. Unfortunately for us, these derivations cannot be easily generalized
for a SDE, since in our case

dX(t) = F (X(t))dt+ σdB(t)

the process X(t) is almost surely not differentiable, and the chain rule does
not hold (but we do have the Itô-Doeblin formula, theorem 2). Indeed, our
process is defined only in integral form

X(t) = X(0) +

∫ t

0
F (X(s))ds+ σ

∫ t

0
dB(s)

where X(0) is nonrandom, and we know that
∫ t

0 dB(s) = B(t) ∼ N(0, t).
This knowledge reduces the problem of simulating down to finding a good
method to approximate the Lebesgue integral

∫ t
0 F (X(s))ds. Luckily, meth-

ods for solving ODEs often have an analogous method for computing inte-
grals. Here we will use the known order of convergence for the midpoint
method, and for Simpson’s rule. These methods are covered in for instance
reference [1] Chapter 15.

Another useful result comes from the Itô-Doeblin formula (theorem 2), we
get

F (X(t)) = F (X(0))+

∫ t

0

(
F ′(X(s))F (X(s)) +

σ2

2
F ′′(X(s))

)
ds+

∫ t

0
F ′(X(s))σdB(s)

5.1 Simulating the path of one particle

Before discussing different methods to simulate X(t) on step further in time,
we shall go through some general information about how we carry out these
simulation. First of all, for convenience we often specify t = 0 to be the
starting point. For simulations of multiple steps, the method is of course
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repetitively applied, where the starting point ts is the end point of the pre-
vious timestep.

Secondly, to simulate the Wiener process
∫
dB(t) ∼ N (0, t) we use a pseudo-

random number generator. The specific method to generate a standard
Gaussian random number is explained in reference [2] chapter 7, (sections
7.1 and 7.2).

And lastly, the SDE

dX(t) = −kF (X(t))dt+ σdB(t)

is equivalent to

dY (t) = −F (Y (t))dt+
σ√
k
dB(t)

by the transformation Y (t) ≡ X(t/k); meaning that these random variables
have the same distribution.
Let k = σ2 and we have a process of unit diffusion. This will be the standard
in our simulations, so that different methods will be compared with each
other for the same diffusion coefficient.

5.2 The Euler Forward method

The simplest way to approximate the integral is∫ ∆t

0
F (X(t))dt ≈ F (X(0)) ·∆t

By the Itô-Doeblin result above, the error is given by∫ ∆t

0

[∫ t

0

(
F ′(X(s))F (X(s)) +

σ2

2
F ′′(X(s))

)
ds+

∫ t

0
F ′(X(s))σdB(s)

]
dt

Because X(s) is continuous, the mean value theorem holds for the left side
of the expression, and therefore there is c ∈ [0, t] such that the error is∫ ∆t

0

[(
F ′(X(c))F (X(c)) +

σ2

2
F ′′(X(c))

)
· t+

∫ t

0
F ′(X(s))σdB(s)

]
dt

It can now be seen that the left integral converges with at least orderO(∆t2).
Keep in mind that c is also dependent on t, but since it is always true that
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c ∈ [0,∆t] this dependence can be eliminated when determining the order by
taking a supremum over [0,∆t]. The Itô integral on the right is less straight
forward to determine. From theorem 1iii (martingale property) we see that
the expected value is 0, and from theorem 1iv (Itô isometry) we deduce that
the variance is E

∫ t
0 σ

2F ′(X(s))2ds ≈ σ2tF (X(0))2.

We have now shown that the Euler forward method converges with order at
least 2, and also the variance of the error goes to zero.

5.3 The Midpoint method

From numerical integration, we know that the midpoint method is superior
to the Euler method. The error term in the midpoint method is over order
O(∆t3) for ODEs/deterministic integrals. A precise estimate of the error
(f ′′(ξ)∆t3/24 for ξ between 0 and ∆t) cannot be given in our case, since
the derivative to t has no meaning. To ad further complication, in the case
of our integral of interest, the midpoint method uses the value of X(∆t/2),
which we cannot generally compute precisely. We can however simulate it
with the Euler method discussed above. Here we find

∫ ∆t

0
F (X(t)dt = ∆t · F (X(∆t/2)) +O(∆t3)

= ∆t · F

(
X(0) +

∫ ∆t/2

0
F (X(t))dt+ σ

∫ ∆t/2

0
dB(t)

)
+O(∆t3)

= ∆t · F

(
X(0) + F (X(0)) · ∆t

2
+O(∆t2) + σ

∫ ∆t/2

0
dB(t)

)
+O(∆t3)

= ∆t · F

(
X(0) + F (X(0)) · ∆t

2
+ σ

∫ ∆t/2

0
dB(t)

)
+O(∆t3)

A method of order at least 3.

5.4 Simpson’s rule/Runge Kutta

Much like the way we generalized the midpoint method for SDEs, we can
use Simpson’s rule to find a method that in deterministic ODEs would be
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the 4th order Runge-Kutta method.∫ ∆t

0
F (X(t)dt =

∆t

6
[F (X(0)) + 4F (X(∆t/2)) + F (X(∆t))] +O(∆t5)

=
∆t

6
[F (X(0)) + 4F

(
X(0) +

∆t2

2
F (X(0)) +O(∆t2) +

∫ ∆t/2

0
σdB(t)

)

+ F

(
X(0) + ∆tF (X(0)) +O(∆t) +

∫ ∆t

0
σdB(t)

)
] +O(∆t5)

=
∆t

6
[F (X(0)) + 4F

(
X(0) +

∆t

2
F (X(0)) +

∫ ∆t/2

0
σdB(t)

)

+ F

(
X(0) + ∆tF (X(0)) +

∫ ∆t

0
σdB(t)

)
] +O(∆t3)

A method of order is still at least 3, because unlike a deterministic integrand,
we need still use Euler’s method to simulate parts of the process X(t).
Intuitively we expect that Simpson’s rule gives a better approximation per
step size. The set back is that it is much more computationally expensive.

5.5 Simulations

To test the proposed methods to simulate X(t), we first simulate the sta-
tionary state for a quadratic potential. This is done by simulation 1 million
particles and collecting their locations after they reach a stationary distri-
bution. The results are plotted in figures 1, 2 and 3. We see significant
improvement from the Euler method to the midpoint method, and slighter
improvement in the Simpson’s rule method.

From the theory, we know that
∫
F (X(t))dt is well approximated by all

methods, when F (x) is relatively constant. For high values of x this is not
the case, and we will therefore test the proposed methods for a smaller time
step (∆t = 0.4), starting at X(0) = 1. The generated distributions are
plotted in figure 4.
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Figure 1: Using the Euler forward method for different stepsizes h, we sim-
ulated 1 million particles with F (x) = −2x and σ = 1 until a stationary
distribution is reached. Then a probability distribution was generated form
their locations and plotted against the theoretical distribution. We see that
for stepsizes h > 0.1 the Euler forward method is not very reliable, but for
smaller stepsizes we get an accurate stationary probability distribution. The
results suggest quadratic convergence. We would like to see other methods
do better for larger timesteps.
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Figure 2: In this figure, we generated the stationary probability density
function for X(t) for the same specification as in figure 1, only this time we
used the midpoint method (section 5.3). Compared to the Euler forward
method, we see substantial improvement, with the stationary distribution
becoming quite accurate for h < 0.3 which looks like an improvement with
a factor 3.
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Figure 3: In this figure, we generated the stationary probability density
function for X(t) for the same specification as in figure 1 (and 2), only this
time we used the Simpson’s rule method (section 5.4). For h = 0.6 the
Simpson’s rule method does quite a bit better than the midpoint method,
but for higher h it deteriorates quickly. Although this method is slower
that the midpoint method, we do expect that in most cases it is a (slight)
improvement.
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Figure 4: In this figure, we generated the probability density function for
X(0.4) for X(0) = 1, F (x) = −2x and σ = 1 using different methods
at stepsizes where they accurately generated the stationary distribution in
earlier simulation. We compare these generated distribution with the the-
oretical distribution, and see that all methods are less accurate than in
earlier simulations. We expect that this is due to the high value of F in
this simulation, compared to the earlier ones. Especially the Euler forward
method performs poorly, which can be explained by the big difference in
the used (constant) drift, and the real linear drift. The midpoint method
does very well, and the Simpson’s rule method fail to perform better than
the midpoint method. We argue that this is the case because the drift is
linear, and for more complicated drift coefficients the Simpson’s rule method
would overtake the midpoint method in performance with relatively large
stepsizes.
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6 Simulation methods based on approximating the
drift

If we look into the literature about methods to simulate SDEs, we come
across methods described in section 5. For a quadratic potential V , or
equivalently said a linear drift F , these methods have no use since we know
the explicit solutionX(t) of such a SDE and can easily simulate it directly. In
this section we elaborate on the idea to do the same thing for a more general
potential V (or drift F ). In this case we do not know X(t) explicitly, but if
we approximate V locally, we can use the explicit solution nonetheless. We
might yield a simulation method that is more efficient than those proposed
thus far. To our knowledge, such methods have not been used before, and
so there are few theorems that can be used and still many ways to fine-tune
and test the proposed algorithms. We are interested in methods to get an
idea of the error of this approach, and in ways we can get the error as low
as possible without compromising too much efficiency.

6.1 Taylor expanding the potential

While we tried to think of ways to get better algorithms to simulate X(t), we
came upon the idea to Taylor expand the potential to second order around
X(0) = x.

V (y) = V (x) + εV ′(x) + ε2
V ′′(x)

2
+ ε3

V ′′′(ξ)

6

where ε = y − x and ξ lies between x and y. Therefore

F (y) = −V ′(y) = −∂εV (x+ ε) = −V ′(x)− εV ′′(x)− ε2V
′′′(ξ)

2

If we leave out the last term, we obtain a linear drift, for which we know
that the solution of the SDE is given by the Ornstein-Uhlenbeck process.
For a path X(t) that stays close to X(0), this Ornstein-Uhlenbeck process
is going to be a good approximation. The solution of this approximation is
given by

XOU (t) ∼ N (µ(X(0), t),Σ(X(0), t)2)

with mean

µ(x, t) = xe−V
′′(x)t +

(
V ′(x)

V ′′(x)
− x
)(

e−V
′′(x)t − 1

)
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and variance

Σ(x, t)2 =
σ2

2V ′′(x)

(
1− e−2V ′′(x)t

)

We have tested this method in the double-well potential V (x) = x4/4− x2.
The generated stationary distribution for different stepsizes is plotted in
figure 5.

Figure 5: In this figure, we generated the stationary distribution for X(t) in
a double well potential V (x) = x4/4 − x2. We approximated X(t) with an
Ornstein-Uhlenbeck process as described in section 6.1, for different stepsizes
h. As stepsizes become smaller, the smaller the neighbourhood in which
X(t) becomes, and thus the better the approximation of the potential is.
We see that for this method to be accurate, we have to use smaller stepsizes
(h < 0.2).

6.2 Controling the error with the detailed balance

In section 4.3 we discussed the detailed balance

p(x→ y, t) = e−2(V (y)−V (x))/σ2
p(y → x, t)
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where p(x → y, t) = P(X(t) = y|X(0) = x) for all x, y. Now, we are going
to use this identity.

let pOU (x→ y, t) be the probability density function of XOU (t), the approx-
imation of X(t) that we described in section 6.1, for given X(0) = x. We
define the relative error in the detailed balance edb, by

pOU (x→ y, t) = e−2(V (y)−V (x))/σ2
pOU (y → x, t) + edb · pOU (x→ y, t)

If |edb| ≈ 1, then our approximation fails to satisfy the detailed balance by
an error of the order pOU (x→ y, t). We have to be careful however: in the
above identity we use two terms that are approximations; pOU (x → y, t)
and pOU (y → x, t). It could very well be the case that the error in the first
cancels out to the error in the latter, so that edb will be very small, in this
case we could mistakenly think that pOU (x→ y, t) is a good approximation.
It could also be the case that the error in the first is small, but the error in
the latter is big, so that edb is large, which is misleading as well. That being
said, if the potential between the points x and y is well approximated by
an expansion around X(0) = x, then it seems intuitive that the error |edb|
should be small. If the expansion is a bad approximation for the potential,
then the Taylor series should look quite different around X(0) = y, and thus
|edb| should be large.

A way to use the detailed balance in an algorithm to simulate X(t), is by
rejecting the outcome for X(t) = y if edb is too large. But if we do this,
without a proper way of correcting for the rejected values, we get probability
distributions that are too high in the acceptance region, and 0 in the rejec-
tion region, which is not accurate. In stead, for a rejected step we now take
two steps with half the timestep, so that the potential is approximated more
precise. We also use the same random number again, to keep the integral∫
σdB(t) normally distributed.

Using this method, the stationary distribution for the double-well poten-
tial has been generated in figure 6. In our simulations with this method,
we have not observed better results compared to the Ornstein-Uhlenbeck
approximation of section 6.1, while is should have been an improvement.
Further research into this approach is needed to be more conclusive.
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Figure 6: In this figure, we generated the stationary distribution for X(t) in
a double well potential V (x) = x4/4− x2. We approximated X(t) with the
acceptance rejection method from section 6.2. Here we see the method for
stepsize h = 0.05 and maximal error edb = 0.05. Unfortunately, we have not
found any values for which they yield a good approximation of the process.
Moreover, we see symmetry breaking which we cannot explain. In figure 7
we symmetrized the data.

Figure 7: In this figure, we see the symmetrized data from figure 6. The
Acceptance rejection method seems not to give significant progress. However
we cannot be conclusive, and further research might pay off.
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6.3 Using the Fokker-Planck equation

A big part of this study has been devoted to using the Fokker-Planck equa-
tion (3) to get a grip of the probability distribution compared to the distribu-
tion we obtain from approximating the process with an Ornstein-Uhlenbeck
process. Unfortunately this has not provided significant steps forward.

If we substitute the approximate potential from section 6.1 into the Fokker-
Planck equation, we get

∂tp(x→ y, t) = ∂y

(
(V ′(x) + εV ′′(x) + ε2

V ′′′(ξ(y, t))

2
)p(x→ y, t)

)
+
σ2

2
∂2
yp(x→ y, t)

With ε = y − x and ξ(y, t) between x and y. The probability density
function p(x → y, t) is given by p(x → y, t) =

∫ t
0 ∂sp(x → y, s)ds, where

the integrand is given by the Fokker-Planck equation above. The truncation
error in p(x→ y, t) is given by

etrunc =

∫ t

0
∂y

(
V ′′′(ξ(y, s))

2
ε2p(x→ y, s)

)
ds

for x 6= y. This expression for the error term is unfortunately very complex,
and we did not manage to get any results from it.
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6.4 Another Orstein-Uhlenbeck approximation

The algorithm suggested in section 6.1 uses a Taylor expansion of the po-
tential at X(0). The farther the particle travels from the location X(0), the
less accurate the algorithm becomes. In this section we propose a different
approximation to the potential, that still makes us of the explicit solution
of our SDE when the drift F is linear. The idea is to simulate X(t) = y first
with an efficient, but not so accurate method (Euler forward or the midpoint
method with a large stepsize), and then approximating the drift term with
a line through X(0) = x0 and y. This line is given by

L(x) = ax+ b, a =
F (y)− F (x0)

y − x0
, b = F (x0)− ax0

With F (x) ≈ L(x) the drift term F is well approximated in the neighbour-
hoods of both x0 and y. Our y is however not an accurate approximation
of X(t), and we find a better approximation by using the same value for∫ t

0 σdB(s) =: B ∼ N (0, σ2t), but making use of the explicit solution

X(t) ∼ N (X(0)e−at,
σ2

2a
(e2at−1))

thus we get

X(t) =

√
σ2

2a
(e2at−1)B +X(0)e−at

as our approximation. Although this method is computationally more ex-
pensive, it might pay off. In figure 8 the stationary probability density
function has been generated for different timesteps, using this method. We
see an accurate generation of the stationary distribution for h = 0.4!
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Figure 8: In this figure, we generated the stationary distribution for X(t)
in a double well potential with the method described in section 6.4. We
used the midpoint method for the approximation of the drift by a linear
function, and then use the explicit solution to generate the actual point
X(t) = y. This method performs better than the Taylor expansion of the
potential/drift.
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6.5 Comparison with section 5 methods

In this section we compare the methods of section 5 with the methods of
this section. We shall call the method of section 6.1 where we Taylor ex-
pand the potential and then simulate X(t) as an Ornstein-Uhlenbeck process
the OU-method, and we shall call the method of section 6.4, the MMOU-
method, as it is a combination of the midpoint method and the OU-method.

When we used the Simpson’s rule method and the midpoint method in the
double well potential V (x) = x4/4− x2, we found that they become unsta-
ble very quickly when we used larges stepsizes. For h = 0.2 the generated
stationary distribution was very accurate, but for h > 0.2 both methods
would sometimes blow up. The logic explanation is that the potential be-
comes steeper much more quickly than a quadratic potentialr, which is where∫
F (X(t))dt is harder to approximate. The MMOU-method shows the same

blow-ups at stepsizes larger than h > 0.8, and interestingly the OU-method
begins to blow up for h > 4, which is very high. A possible explanation for
this, is the fact that the quadratic potential does go up again, whereas for
the Euler forward and the midpoint method, we approximate the integral∫
F (X(t))dt with a linear one; for the Simpson’s rule method this is more

subtle, and therefore it is unlikely that this is a complete explanation.

In figure 9 we see the generated stationary distributions for the methods in
this section for high stepsizes where they do not yet blow up. In the following
table, we summarize the observed behaviour of the different methods in the
described double well potential for different stepsizes, in simulations of the
stationary state.

h MM SR OU MMOU

accurate < 0.2 < 0.2 < 0.1 ∼ 0.2 < 0.4

poor - - 0.2 ∼ 4 0.5 ∼ 0.8

explode > 0.2 > 0.2 > 4 > 0.8
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Figure 9: In this figure, we generated the stationary distribution for X(t) in
a double well potential with the methods described in this section, for large
stepsizes where they do not yet explode. We discovered that the methods
from section 5 blow up for relatively small stepsizes in the double well po-
tential. The most interesting finding, is that the OU-method doesn blow up
until stepsizes were highered to h = 4. Nevertheless the generated stationary
distributions for high stepsizes far from accurate.
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7 Conclusions

The problem of simulating SDEs

dX(t) = F (X(t))dt+ σdB(t)

for nonlinear drift terms F (X(t)), remains a very difficult problem. We will
now concisely summerize our findings.

We have found that methods based on approximating the Lebesgue integral∫
F (X(t))dt, section 5, are a good way to go, although for accurate simu-

lations, they can be slow. The newly conceived methods of section 6 have
the potential to provide a useful alternative, although more tests are needed
to be conclusive. In tests where we generated the stationary distribution
of the double-well potential, we found that the Ornstein-Uhlenbeck solution
of a Taylor expanded potential provides an algorithm that is much more
stable than other known methods, although for accurate approximations we
still need to use relatively small stepsizes. Using the detailed balance and
acceptance-rejection sampling, section 6.2, we did not manage to improve
this method, although the approach could be improved by further research.
In section 6.4, we found that combining the two approaches yields a method
that is accurate for approximately twice as large stepsizes; but we have not
yet answered the question as to how efficient this method is compared to
other methods.
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