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1 Introduction

1.1 Data assimilation

Data assimilation is the process of continuously gathering data, calculating pre-
dictions based on dynamical models and updating these predictions with new
data. The method of data assimilation for a model with multiple degrees of
freedom is as follows.
First a measurement is taken of a predetermined number of the degrees of free-
dom. These measurements are used to approximate the current state of the
entire system. Based on this approximation, a prediction is made for the sys-
tem after one time-step using the model. After one time-step has passed, a new
measurement is taken in the same manner as the first one. Also a new approxi-
mation is made. This new approximation is compared to the predictions made
at the previous time-steps to generate a better approximation of the current
state and a better prediction of the coming states. This process is continuously
repeated to generate better predictions and approximations of the system then
would normally have been possible using either the data or the model alone.
An example of where data assimilation is used is in weather forecasting [1],
where the current state of the system is not accurately known, because weather
models have a very high number of degrees of freedom. The weather models
model the entire atmosphere so any reasonable discretization of these states are
bound to have far more degrees of freedom than the number of weather stations
that are available. So data assimilation is an ideal method to make weather
predictions more accurate.
Another example of where data assimilation is used is ocean flows, which have
almost identical complications to the weather forecasting system.
In this paper we will focus on the stability of such discretized partial differen-
tial equations and in particular their Lyapunov spectrum. With the Lyapunov
spectrum we will calculate the Kaplan-Yorke dimension (more on this in section
2.5). The Lyapunov spectrum is a valuable asset in data assimilation, because
“[...] the requisite number of tracking observations is closely related to the num-
ber and magnitude of the system’s positive Lyapunov exponents.” ([2] section
1B). We have created a program that we used to test how the unstable space
(and Kaplan-Yorke dimension) of one dimensional partial differential equations
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scales with the resolution (more on this in the next section).

1.2 The program

Alongside this paper we created a program, based on numerical techniques found
in e.g. [3] and [10], that can be used to estimate the Lyapunov exponents of one
dimensional models and used this program to analyze three (1+1)-dimensional
partial differential equations. A (1+1)-dimensional equation is an equation that
has one spatial and one temporal dimension. The test equations we used were
the damped forced Burgers-Hopf equation, the stochastic Burgers equation and
the Kuramoto-Sivashinsky equation (more on these equations in section 4). To
create this program we studied Lyapunov exponents, in particular numerical
methods for approximating these exponents. We also needed to use a special
integration technique (implicit-explicit Runge-Kutta method) in order to ac-
curately and efficiently integrate the Kuramoto-Sivashinsky equation. In this
paper we will extensively discuss both these subjects.

1.3 Outline

This paper is organized as follows.
In section 2 we will discuss the Lyapunov exponents. In the corresponding sub-
sections we will discuss the following. In section 2.1 we will start by explaining
what Lyapunov exponents are and how to derive a definition for them, that will
be useful to approximate them numerically. Section 2.2 will be about the nu-
merical method we used to approximate the Lyapunov exponents. This method
is called the discrete QR-method and relies on the QR-decomposition of matri-
ces. The Modified Gram-Schmidt method is the decomposition method we used
and is explained in section 2.3. As seen in section 2.2 we will need to find the
Jacobian matrix corresponding to the partial differential equations. Because
these Jacobian matrices will be mostly empty, explicitly calculating them dra-
matically decreases efficiency. Section 2.4 will explain the method we used to
avoid this problem. To approximate the dimension of the attractor for our test
equations we used the Kaplan-Yorke conjecture. Section 2.5 will discuss this
subject.
Section 3 is about the implicit-explicit Runge-Kutta (IMEX RK) integration
methods, which are schemes used for partial differential equations where one
part is stiff and linear, but which also have a non-stiff (and non-linear) part.
This section is made up of seven subsections. A subsection on the explicit
Runge-Kutta 4 method, which we used for the equations that did not require
an IMEX method (section 3.1). This section is followed by an introduction to
IMEX RK schemes, explaining the advantages and disadvantages of these meth-
ods compared to a regular explicit (or implicit) method (section 3.2). After the
introduction we will show how these methods can be created by taking an im-
plicit method and coupling it with a corresponding explicit method (section
3.3). Then we will show how this combination of methods can be applied to an
equation by using the implicit scheme for the stiff part and the explicit scheme
for the non-stiff part (section 3.4). Some examples of IMEX RK combinations
are given section 3.5. The stability of those examples will be reviewed in section
3.6. We conclude this section with section 3.7, a section about more efficiently
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computing the solution to the matrix equation that arises when applying an
IMEX RK method, by using a fast Fourier transform.
In section 4 we will discuss the three test equations we analyzed with our pro-
gram. In the subsections 4.1, 4.2 and 4.3 we discuss the damped forced Burgers-
Hopf equation, the stochastic Burgers equation and the Kuramoto-Sivashinsky
equation respectively.
The numerical results of our program are reported in section 5. We start this
section off by outlining the discretizations of the test equations we used in sec-
tion 5.1 and the different values for e.g. the number of degrees of freedom we
used in section 5.2. The actual results are reported and discussed in section 5.3.

2 Lyapunov exponents

2.1 Introduction to Lyapunov exponents

In this section we shall give the definition of Lyapunov exponents and derive a
definition that will be of use when numerically approximating them. Readers
who wish to directly look at how Lyapunov exponents are calculated may skip
to the next section.
Lyapunov exponents are numbers associated with the stability of dynamical
systems. In a multidimensional system there is one Lyapunov exponent per
dimension. Each of these Lyapunov exponents defines the exponential growth
of an infinitesimal initial separation between 2 trajectories in phase space in
its respective dimension. In this paper we will be looking at m-dimensional
discretizations of continues partial differential equations in the form

u̇ = f(u), u(0) = u0 (1)

With u ∈ Rm. Following the introduction of [3] the Lyapunov exponents can
be approximated by looking at the linearized problem

ẏ = A(t)y, y(0) = y0 (2)

Where y ∈ Rm and A(t) ∈ Rm×m is the Jacobian matrix of f in u(t). The
definition we will use to approximate the Lyapunov exponents is given in [5]:
“If we have a regular system with upper triangular coefficient matrix B(t) :

ẋ = B(t)x (3)

Then, for i = 1, ..., n, its Lyapunov exponents are given by

λi = lim
t→∞

1

t

∫ t

0

Bii(s)ds” (4)

Since A(t) is not necessarily in upper triangular form this requires us to apply
a Lyapunov transformation to (2) (more on this in section 2.2).

2.2 Discrete QR method

In this section we will discuss the discrete QR method we used to numerically
approximate the Lyapunov exponents.
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In order to find the Lyapunov exponents using (4) we will need to apply a change
of variables that will transform A(t) to an upper triangular matrix. This change
of variables also has to preserve the Lyapunov exponents and therefore has to
be a Lyapunov transformation as defined in [4] (definition 2.4): “A smooth
invertible change of variables T−1y → x is called a Lyapunov transformation if
T , T−1 and Ṫ , are bounded”. In this paper we used the discrete QR method
as described in [3], that will achieve this change of variables through a QR
decomposition. In the discrete QR method we will look at the following system.

Ẏ = A(t)Y, Y (0) = Y0 (5)

With Y ∈ Rm×n (n 6 m is the number of Lyapunov exponents we want to
compute). We will now show why a QR decomposition of Y will result in a
system with an upper triangular matrix B(t). Filling Y = QR, with Q ∈
Rm×n, R ∈ Rn×n, into (5) we get

Q̇R+QṘ = A(t)QR (6)

Which will give us an equation for R

Ṙ = (QTA(t)Q−QT Q̇)R, R(0) = R0 (7)

Since both R and Ṙ are upper triangular matrices, the matrix (QTA(t)Q −
QT Q̇) = B(t) ∈ Rn×n is also upper triangular. Because the QR decomposition
is a Lyapunov transformation and the larger Lyapunov exponents are more
dominant, the Lyapunov exponents of (7) are the n largest Lyapunov exponents
of (2).
For the QR-decomposition we used the modified Gram-Schmidt process (more
on this in section 2.3), because the modified Gram-Schmidt process preserves
the ordering of the matrices involved. Therefore it ensures that the Lyapunov
exponents come out ordered and we can compute the n largest exponents.
The iterative process for the discrete QR method is as follows.
First we pick a Y0 randomly in order “[...]to guarantee that all possible growth
behavior is represented in the growth of the columns of Y (t), and that the n
most dominant exponents will emerge, ordered, during integration.” ([3] page
8) and compute the QR decomposition Y0 = Q0R̂0. (We will do 1000 iterations
on the system before we will start to calculate the Lyapunov exponent in order
to eliminate spikes created by the randomly chosen Y0.)
Next we let tj = jh with h the time-step and for j = 0, ..., k we will define
Zj+1(tj) = Qj and simultaneously integrate (1) and

Żj+1 = A(t)Zj+1 (8)

With Z : t ∈ [tj , tj+1] → Rm×n over one time-step (from tj to tj+1) and do
another QR decomposition on Zj+1(tj+1)

Zj+1(tj+1) = Qj+1R̂j+1 (9)

This will define the QR decomposition of Y (tk+1) as

Y (tk+1) = Qk+1[R̂k+1R̂k...R̂1R̂0] (10)
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The system (8) we used is slightly different from the system suggested in [3],
but our system ensures the validity of (10), because Y (0) = Y0 = Q0R̂0 and
Z1(0) = Q0 and if

Y (tl) = Ql[R̂lR̂l−1...R̂1R̂0] (11)

And
Zl+1(tl) = Ql (12)

For any value of l then

Ẏ (tl) = A(tl)Ql[R̂lR̂l−1...R̂1R̂0]

Żl+1(tl) = A(tl)Ql

(13)

And because both are linear systems this will give

Y (tl+1) = C(tl)Ql[R̂lR̂l−1...R̂1R̂0]

Zl+1(tl+1) = C(tl)Ql

(14)

With C(tl) ∈ Rm×m a matrix that depends on A(tl) and the integration scheme
used. Using (14) and (9) we get (10) through induction.
After the first 1000 iterations we will start forming a one dimensional array of

length n by adding
1

tmax
log (R̂j)ii to the ith element of this originally empty

array after each time-step. With
tmax

h
= k � 0 and k the number of iterations

after the first 1000. This will define the Lyapunov exponents based on the
relation.

λi = lim
k→∞

1

tk

k∑
j=1

log (R̂j)ii, i = 1, ..., n (15)

Which is equivalent to (4), because Ṙ = BR. (15) is once more slightly different
from the equation given in [3], but as we will show it is equivalent to (4). Because
both B and R are upper triangular matrices, the diagonal elements of R can be
described by a system of n separate one dimensional differential equations

Ṙii = BiiRii, i = 1, ..., n (16)

With as solutions

Rii(tk) = (R0)iie
∫ tk
0 Bii(s)ds, i = 1, ..., n (17)

Rii(tk) is defined as the product
∏k
j=0(R̂j)ii (from (10)). Taking the natural

logarithm of (17) and filling in this product will give

k∑
j=0

log (R̂j)ii = log (R̂0) +

∫ tk

0

Bii(s)ds, i = 1, ..., n (18)

Which combined with (15) will give (4).
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2.3 Modified Gram-Schmidt QR-decomposition

In this section we will show how the modified Gram-Schmidt QR-decomposition
is computed.
The modified Gram-Schmidt process is a more numerically stable variant of
the regular Gram-Schmidt process and is a method used for orthonormalising
a set of vectors. This process is also applicable to the QR-decomposition of
matrices by combining this orthonormalized set in a matrix Q and defining R
by V = QR where V ∈ Rm×n is the matrix to be decomposed. To find the
QR-decomposition we first need to define the projection operator as.

proju(v) =
vTu

uTu
u (19)

With this projection operator we define the following vector. Referring to the
columns of V as vectors V = [v1, ..., vn].

u
(0)
k = vk (20)

Next for k = 2, ..., n we compute uk by progressively evaluating the following
equation.

u
(i)
k = u

(i−1)
k − projui

(u
(i−1)
k ) (21)

uk will now be defined as u
(k−1)
k . We will also define

ei =
ui

||ui||
(22)

After computing all uk and all ei we can compute the matrices Q and R in the
following way. Q will be the matrix defined by

Q = [e1, ..., en] (23)

And R will be

R =


eT1 v1 eT1 v2 eT1 v3 · · · eT1 vn

0 eT2 v2 eT2 v3 · · · eT2 vn
0 0 eT3 v3 · · · eT3 vn
...

...
...

. . .
...

0 0 0 · · · eTnvn

 (24)

2.4 Avoiding the Jacobian matrix

In this section we will discuss why it is more efficient to avoid explicitly forming
the Jacobian matrix and how we implemented functions for the Jacobian matrix
for each of the analyzed partial differential equations in this paper.
In section 2.2 we used a Y (t) ∈ Rm×n and solution to (5) to approximate only
the n largest Lyapunov exponents. Since we want to find the Kaplan-Yorke
dimension of the test equations (more on this in section 2.5), it is sufficient to
only look for the n 6 m largest Lyapunov exponents and in some cases even the
n� m largest Lyapunov exponents.
As indicated in [3] this makes explicitly calculating the Jacobian matrix at ev-
ery time-step inherently inefficient, because calculating the Jacobian matrix will
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take at least O(m2) operations and calculating AV , with A ∈ Rm×m the Jaco-
bian and V element of Rm×n will take O(m2n). Formulating an equation that
directly calculates AV will do this in O(mn), so for the discretization of each
of the partial differential equations implemented in our program we formed a
function that would calculate AV in O(mn).
As an example we will show how we did this with the finite difference discretiza-
tion of the damped forced Burgers-Hopf equation

ut = uux − u+ F (25)

The discretization is as indicated in [6] assuming periodic boundary conditions.

dui
dt

= f(ui) =
ui+1 − ui−2

3∆x
ui−1 − ui + F (26)

It is clear to see that when forming a Jacobian matrix of this discretization there
will only be four non-zero terms per row. Namely for the ith row the terms at
positions i− 2, ..., i+ 1. Therefore the equation for AV will turn into

(AV )i,j = Vi−2,j
∂f(ui)

∂ui−2
+ Vi−1,j

∂f(ui)

∂ui−1
+ Vi,j

∂f(ui)

∂ui
+ Vi+1,j

∂f(ui)

∂ui+1
(27)

Or

(AV )i,j = −Vi−2,j
ui−1

3∆x
+ Vi−1,j

ui+1 − ui−2

3∆x
− Vi,j + Vi+1,j

ui−1

3∆x
(28)

A similar method was applied to the other equations.

2.5 Kaplan-Yorke dimension

In this section we will discuss what the Kaplan-Yorke dimension is and how to
calculate it using the Lyapunov spectrum.
A Lyapunov spectrum λ1 6 λ2 6 ... 6 λn−1 6 λn can be used to calculate the
Kaplan-Yorke dimension, which is an estimate for the dimension of the chaotic
attractor of the system. An attractor is a multidimensional space that attracts
initial conditions, close enough to it, towards it. These initial conditions will
be bounded to this attractor after transients have died out. In this attractor
the bounded initial conditions can either exibit periodic or chaotic behaviour.
The dimension of such an attractor can be approximated by the Kaplan-York
conjecture [8].

DKY = k +

∑k
i=1 λi

|λk+1|
(29)

Where k is the index of the Lyapunov exponent for which
∑k
i=n λi > 0 and∑k+1

i=n λi < 0.

3 Implicit explicit Runge-Kutta methods

3.1 Runge-Kutta 4

For the damped forced Burgers-Hopf equation we used the famous Runge-Kutta
four (RK4) method. This method has the following Butcher tableau.
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0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

This method is fourth order accurate and is used to integrate a differential
equation in the form of (1) for one time-step (from tn till tn+1 = tn + h by
computing 

K1 = f(yn)

K2 = f(yn + h
2K1)

K3 = f(yn + h
2K2)

K4 = f(yn + hK3)

yn+1 = yn + h
6 (K1 + 2K2 + 2K3 +K4)

(30)

Since this is an explicit method it was not suitable to integrate the Kuramoto-
Sivashinky equation, because it has a very stiff term. In order to integrate over
this equation we needed an implicit-explicit (IMEX) differentiation scheme.

3.2 Introduction to IMEX RK schemes

In this section we will review what the applications of IMEX RK methods are
and what advantages they have over regular implicit or explicit RK schemes.
Reader who wish to directly look at how IMEX RK schemes are created may
skip to the next section.
IMEX RK methods are associated with discretizised partial differential equa-
tions in the form

u̇ = Gu+ f(u) (31)

With u ∈ Rm. Where G is a stiff and linear matrix and f is non-stiff and
nonlinear. “An IMEX scheme consists of applying an implicit discretization for
G and an explicit one for f” ([10] section 1). An IMEX scheme is needed in a
situation like this, because integrating G explicitly will result in stability issues
unless a unacceptable small time-step is used. Trying to do the entire integration
implicitly, however, requires solving an expensive nonlinear algebraic system
in each time-step. Although stiffness is not well-defined it has to do with the
necessity of picking much smaller time-steps then normally expected, in relation
to the smoothness of the solution, in order to achieve stable integration over the
system. Explicit methods are especially susceptible to this phenomenon, while
implicit methods generally perform reasonably well even for larger time-steps.
There are special cases of implicit methods (A-stable and L-stable methods)
which have the best stability properties for stiff systems. The disadvantage of
implicit methods is that, when applied to (31), they require a system of the
following form to be solved for z ∈ Rm.

z = G(a+ z) + f(a+ z) (32)

With a ∈ Rm. This will be difficult to solve if f is not a linear function. Because
(31) has both stiff (linear) and non-stiff (nonlinear) terms a solution seems to
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be to use a combination of both implicit and explicit schemes.

3.3 Creating an IMEX RK scheme

In this section we will show the technique for creating an IMEX RK scheme.
Following [10] we will show how to create an IMEX RK scheme. We start with
an s-stage diagonally implicit Runge-Kutta (DIRK) scheme for G in the Butcher
notation with coefficients A ∈ Rs×s, c, b ∈ Rs. Next we pick an (s + 1)-stage
explicit Runge-Kutta scheme and define σ = s+ 1. We pick the explicit scheme

so that its abscissae satisfies ĉ =

(
0
c

)
with coefficients Â ∈ Rσ×σ, b̂ ∈ Rσ. We

now pad the DIRK scheme with zeros to obtain the IMEX RK scheme

0 0 0 0 · · · 0

c1 0 a11 0 · · · 0

c2 0 a21 a22 · · · 0

...
...

...
...

. . .
...

cs 0 as,1 as,2 · · · as,s

0 b1 b2 · · · bs

Implicit

0 0 0 · · · 0 0

c1 â21 0 · · · 0 0

c2 â31 â32 · · · 0 0

...
...

...
. . .

...
...

cs âσ,1 âσ,2 · · · âσ,s 0

b̂1 b̂2 · · · b̂s b̂σ

Explicit

We will refer to the coefficients of the implicit tableau padded with zeros as
Ã ∈ Rσ×σ, b̃, c̃ ∈ Rσ.

3.4 Applying an IMEX RK scheme

In this section we will show how to integrate for one time-step using an IMEX
RK scheme as shown in [10]. We will show how to integrate a function in the
form of (31) for one step from tn−1 to tn = tn−1 + h. To do so we will first
define

K̂1 = f(un−1) (33)

Next for i = 1, ..., s we will solve

Ki = Gui (34)

For Ki, with

ui = un−1 + h

i∑
j=1

ai,jKj + h

i∑
j=1

âi+1,jK̂j (35)

And define
K̂i+1 = f(ui) (36)

After doing the above two steps for all i we will evaluate

un = un−1 + h

s∑
j=1

bjKj + h

σ∑
j=1

b̂jK̂j (37)
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When forming IMEX RK methods it helps to pick them so that they fall into
two strongly different families of methods as also shown in [10], namely those

methods in which b̃ = b̂ and thus b̂1 = 0 which will simplify (37) to

un = un−1 + h

s∑
j=1

bj(Kj + K̂j+1) (38)

And those methods in which b̂s+1 = 0 so that K̂s+1 does not need to be calcu-
lated. For these methods we also require

bj = as,j , b̂j = âs+1,j , j = 1, ..., s (39)

Substituting (39) into (35) for i = s we get (37) implying that

un = us (40)

Which is useful for very stiff equations. Since we do not need to calculate K̂s+1

anymore we can simplify the explicit scheme to an s-stage scheme

0 0 0 · · · 0 0

c1 â21 0 · · · 0 0

c2 â31 â32 · · · 0 0

...
...

...
. . .

...
...

cs−1 âs,1 âs,2 · · · âs,s 0

b̂1 b̂2 · · · b̂s−1 b̂s
When solving (34) we need to find the inverse of

I − hai,iG, i = 1, ..., s (41)

Something that could decrease efficiency is picking a DIRK scheme that has
different values at ai,i for different i. Therefore all the schemes mentioned in
the next section will have the same values for each ai,i. Since the matrix G is a
cyclic matrix in our application, we could avoid inverting this matrix altogether
by using a fast Fourier transform (more on this in section 3.7).

3.5 Examples of IMEX RK schemes

In this section we will show some examples of IMEX RK schemes from [10].
In order to refer to these schemes we shall use the following notation (s, σ, p)
to identify a combination of an s-stage implicit scheme with a σ-stage explicit
scheme. So if σ = s+ 1 it is part of the family for which (38) holds and if σ = s
it is part of the famlily for which (40) holds. p is the combined order of the
IMEX RK scheme.

3.5.1 Forward backward Euler (1,1,1) and (1,2,1)

The forward Euler and backward Euler can be combined in two different IMEX
RK schemes (one scheme for each of the families). The forward-backward Euler
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(1,1,1)

0 0 0

1 0 1

0 1

Implicit

0 0 0

1 1 0

1 0

Explicit

And the forward-backward Euler (1,2,1)

0 0 0

1 0 1

0 1

Implicit

0 0 0

1 1 0

0 1

Explicit

Both are first order accurate, but because of the relation (40) the forward-
backward Euler (1,1,1) method needs only one computation of f whereas the
(1,2,1) method needs two.

3.5.2 Implicit-explicit midpoint (1,2,2)

The implicit-explicit midpoint is a combination of two second order accurate
integration schemes and therefore it is itself second order accurate. The IMEX
RK scheme that corresponds to this method is as follows

0 0 0

1
2 0 1

2

0 1

Implicit

0 0 0

1
2

1
2 0

0 1

Explicit

This scheme has some good symmetry properties and performs reasonably well
considering it is still just a (1,2)-stage scheme.

3.5.3 A third order combination (2,3,3)

The (2,3)-stage third order accurate scheme with the best damping properties is

0 0 0 0

γ 0 γ 0

1− γ 0 1− 2γ γ

0 1
2

1
2

Implicit

0 0 0 0

γ γ 0 0

1− γ γ − 1 2(1− γ) 0

0 1
2

1
2

Explicit

With γ =
3 +
√

3

6
. This scheme is both third order accurate and also has

some attenuation at the stiffness limit of ∞ and is therefore quite suitable for
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stiff problems.

3.5.4 L-stable, two-stage, second-order DIRK (2,3,2)

For very stiff problems the attenuation of the previous scheme might not be
sufficient to guarantee stability therefore we used the following scheme based on
an L-stable, two-stage, second-order DIRK (diagonally-implicit Runge-Kutta)
for the integration of the Kuramoto-Sivashinsky equation.

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

Implicit

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

0 1− γ γ

Explicit

With γ =
2−
√

2

2
and δ =

− 2
√

2

3
. Because of L-stability, this scheme ensured

accurate integration over the Kuramoto-Sivashinsky equation. Even though this
system is only second order accurate.

3.5.5 L-stable, two-stage, second-order DIRK (2,2,2)

Another second order accurate scheme we considered is the following scheme
based on the same L-stable, two-stage, second-order DIRK with the same γ
as the previous scheme. The difference is that this scheme has been chosen to
satisfy (40) in stead of (38), which would help in the case of an extremely stiff
G and requires one less evaluation of f(ui) which makes it easier implementable.

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

Implicit

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

Explicit

With δ = 1 −
1

2γ
. This scheme turned out to not differ that much in sta-

bility compared to the (2,3,2) scheme, in the case of the Kuramoto-Sivashinsky
equation. Furthermore it required more time-steps to reach the same Lyapunov
exponents, so we chose to use the (2,3,2) scheme instead.

3.5.6 Higher order schemes (3,4,3) and (4,4,3)

For completion we shall also include the higher order schemes given in [10].
Both these schemes are third order accurate and based on an L-stable DIRK

(3,4,3)
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0 0 0 0 0

0.4358665215 0 0.4358665215 0 0

0.7179332608 0 0.2820667392 0.4358665215 0

1 0 1.208496649 -0.644363171 0.4358665215

0 1.208496649 -0.644363171 0.4358665215

Implicit

0 0 0 0 0

0.4358665215 0.4358665215 0 0 0

0.7179332608 0.3212788860 0.3966543747 0 0

1 -0.105858296 0.5529291479 0.5529291479 0

0 1.208496649 -0.644363171 0.4358665215

Explicit

(4,4,3)

0 0 0 0 0 0

1
2 0 1

2 0 0 0

2
3 0 1

6
1
2 0 0

1
2 0 − 1

2
1
2

1
2 0

1 0 3
2 − 3

2
1
2

1
2

0 3
2 − 3

2
1
2

1
2

Implicit

0 0 0 0 0 0

1
2

1
2 0 0 0 0

2
3

11
18

1
18 0 0 0

1
2

5
6 − 5

6
1
2 0 0

1 1
4

7
4

3
4 − 7

4 0

1
4

7
4

3
4 − 7

4 0

Explicit

The first scheme is part of the family that satisfies (40) while the second scheme
satisfies (38). Even though these schemes are much more accurate than the
second order schemes, for us it was not necessary to use any of them.

3.6 Stability

In this section we will present some graphs from [10]. These graphs will show
the stability of the above mentioned IMEX RK schemes and help justify our
choice of the (2,3,2) scheme for the Kuramoto-Sivashinsky equation.
Using the simple test equation

f = iβu, g = αu (42)

With α, β ∈ R, α 6 0, b > 0 and i the imaginary number. The paper [10]
devised some graphs regarding the relation between the time-step restriction
and the fraction α

β (Figures 1 and 2). They made these graphs for the IMEX
RK schemes mentioned in the last section.
In these graphs we can see that when the function of g dominates over the
function of f the IMEX RK schemes that belong to the family that satisfies
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Figure 1: From [10] the time-step restrictions for the family of IMEX RK
schemes that satisfy (40), k = h is the time-step size.

(40) perform much better than the functions of the family that satisfies (38),
but this family in turn has better overall stability. In the case of the Kuramoto-
Sivashinsky equation the function of g is the sum of a second and fourth order
spatial derivative and f is the multiplication of a first order derivative with the
current value of u. For limited values of u both are of about the same order as u
and α

β ≈ 1. Therefore we can use both families to integrate this problem, slightly

favoring the family that satisfies (38). When comparing second order schemes
from both families the scheme from the family that satisfies (38) performed the
best so we chose to use the (2,3,2) scheme. We also considered using a higher
order scheme like the (3,4,3) scheme but this proved to be unnecessary and
therefore redundant.

3.7 Circulant matrix

In this section we will discuss how we used the discrete Fourier transform to
more efficiently solve (34).
We can rewrite (34), by filling in (35) to read

(I − hG)Ki = G(un−1 + h

i−1∑
j=1

ai,jKj + h

i∑
j=1

âi+1,jK̂j) (43)

Where I ∈ Rm ×m is the identity matrix. In order to solve this problem we
would ordinarily need to compute the inverse of I − hai,iG. This should, in
order to maintain efficiency turn into a similar function as the one we composed
for the Jacobian matrix in section 2.4. This is because, even though this inverse
needs to be computed only once, computing a full matrix multiplication of
(I − hai,iG)−1v with (I − hai,iG)−1 ∈ Rm×m and v ∈ Rm would take O(m2)
operations. For the Kuramoto-Sivashinsky equation and the (2,3,2) scheme the
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Figure 2: From [10] the time-step restrictions for the family of IMEX RK
schemes that satisfy (38), k = h is the time-step size.

matrix to be inverted would turn into

q p r 0 · · · r p
p q p r 0 · · · r

r p q p r
. . . 0

0 r p q
. . .

. . .
...

... 0 r
. . .

. . . p r

r
...

. . .
. . . p q p

p r 0 · · · r p q


(44)

Where q =
6γh

∆x4
−

2γh

∆x2
+ 1, p =

− 4γh

∆x4
+

γh

∆x2
and r =

γh

∆x2
. This matrix is a

circulant matrix which means that we can rewrite the problem (43) in circulant
form

c ? Ki = b (45)

Where b = G(un−1+h
∑i−1
j=1 ai,jKj+h

∑i
j=1 âi+1,jK̂j) and c ∈ Rm is the vector

that composes the first column of the matrix (I−hai,iG). To solve this equation
we can use the discrete Fourier transform as shown in [7] to rewrite (45) to

Fn(c ? Ki) = Fn(c)Fn(Ki) = Fn(b) (46)

Which makes it a component-wise multiplication so we can find the solution to
(43) directly via

K1 = F−1
n (
Fn(b)

Fn(c)
) (47)

With the division a component-wise division. This combined with the fast
Fourier transform algorithms from [17] implemented using [16] reduces this from
O(m2) to O(m logm).
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4 The test equations

In this section we will discuss the partial differential equations we analyzed
with our program. We will discuss the properties these equations have and
their physical relevance.

4.1 The damped forced Burgers-Hopf equation (L96 model)

The first equation we used is the damped forced Burgers-Hopf equation assum-
ing periodic boundary conditions from [6].

ut = uux − u+ F (48)

This is a special case of the Burgers-Hopf equation with a force term F and a
damping term −u. We chose this equation because of the nontraditional finite
difference discretization seen in section 5.1. This equation has a nontraditional
discretization that is equal to the Lorenz 96 model for a specific ∆x. The Lorenz
96 model is given by

u̇i = −ui−2ui−1 + ui−1ui+1 − ui + F (49)

Using the following approximations to ui−1, ui+1 and ui−2
ui−1 = u−∆xux +O(∆x2)

ui+1 = u+ ∆xux + ∆x2

2 uxx +O(∆x3)

ui−2 = u− 2∆xux − 2∆x2uxx +O(∆x3)

(50)

We can rewrite (49) as

ut = 3∆xuux +
∆x2

2
(5uuxx + 6u2

x) +O(∆x3)− u+ F (51)

Looking at this equation we can see that, when dividing the first two terms of
(49) by 3∆x (as we will do for our discretization), we get something resembling
(48). We will not be looking at the actual damped forced Burgers-Hopf equation,
as we are using a nonstandard discretization. The Lorenz 96 model is known
to have chaotic behavior for F = 8 and is a relatively simple model originally
introduced by Edward Lorenz to study predictability in weather forecasting.
The variables ui are designed to describe some atmospheric quantity inm sectors
of a latitude circle, with m the system size. It does not contain the real physics
of the atmosphere, it is only correlated because it has external forcing (F ),
internal dissipation (ui) and advection (ui−2ui−1 and ui−1ui+1) conserving the
total energy. Since this model has been shown to have extensive chaos [14] we
expect to see the same in our finite difference discretization of the Burgers-Hopf
equation.

4.2 The stochastic Burgers equation

The second equation we used is the stochastic Burgers equation with periodic
boundary conditions as seen in [13]

ut = −uux + vuxx + aẆ (t, x) (52)
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Where a and v are positive scalars, with v the viscosity, and Ẇ (t, x) represents
space-time white noise. We used a standard Gaussian distribution for this noise,
with µ = 0 and σ = 1. The original Burgers equation (in the case where a = 0)
was introduced by J.M. Burgers as an “[...]extremely simplified model describing
the interaction of dissipative and non-linear inertial terms in the motion of the
fluid” ([15] section 1). Adding random forcing to this equation is also an idea
from Burgers and is referred to as Burgers turbulence, because it is a way to
model and investigate turbulence [13].

4.3 The Kuramoto-Sivashinsky equation

The third equation we used is the Kuramoto-Sivashinsky equation in derivative
form.

ut = −uux − uxx − vuxxxx (53)

Also assuming periodic boundary conditions. This equation is characterized by
a destabilizing diffusion (uxx), a stabilizing dissipation (uxxxx) and a coupling
term (uux). v is a positive scalar denoting the viscosity of the system. The main
use for this equation is the investigation of global attractors and inertial man-
ifolds. “An inertial manifold is a finite-dimensional Lipschitz manifold which
attracts all orbits exponentially, and is positively invariant under the flow” ([12]
section 1). This means that if an equation has inertial manifolds we can com-
pose a finite dimensional dynamic system, which contains all the asymptotic
dynamics even if the original system itself has infinite dimension. Since it has
been shown in [12] that the Kuramoto-Sivashinsky equation has inertial mani-
folds, this indicates that it has a finite number of positive Lyapunov exponents
and finite Kaplan-Yorke dimension scaling only with period length and not with
degrees of freedom, as all the asymptotic dynamics can be described by a finite
dimensional system independent of the dimension of the discretization.

5 Numerical results

5.1 The implementations of the test equations

In this section we will discuss the discretizations we used as well as the direct
functions for the multiplication of the Jacobian matrix as explained in section
2.4.

5.1.1 The damped forced Burgers-Hopf equation

Our discretization of the damped forced Burgers-Hopf equation from section 4.1
is as indicated in [6]

f(ui) =
ui+1 − ui−2

3∆x
ui−1 − ui + F (54)

This discretization is equal to (49) for ∆x = 1
3 . To integrate this discretization

we used the standard Runge-Kutta 4 (RK4) method as described in section 3.1.

17



Since there are no stiff terms in this discretization this method performed well
within expectations.

(AV )i,j = −Vi−2,j
ui−1

3∆x
+ Vi−1,j

ui+1 − ui−2

3∆x
− Vi,j + Vi+1,j

ui−1

3∆x
(55)

We also tried to use a more conventional finite difference discretization of the
same system (one that is not equivalent to the Lorenz 96 model for any ∆x) to
investigate how a difference in discretization might influence the stable direc-
tions. Following is the alternative discretization we used.

f(ui) =
ui+1 − ui−1

2∆x
ui − ui + F (56)

With Jacobian matrix multiplication function.

(AV )i,j = −Vi−1,j
ui

2∆x
+ Vi,j

ui+1 − ui−1

2∆x
− Vi,j + Vi+1,j

ui
2∆x

(57)

This discretization, however, did not present chaos and grew very quickly to the
stable solution of ui = F . We have therefore excluded this discretization from
the final results.

5.1.2 The stochastic Burgers equation

Since the stochastic Burgers equation has a stiff term (uxx) we considered us-
ing an IMEX RK method for the integration, but upon testing this equation
with the standard RK4 method we achieved sufficiently efficient and accurate
results. Therefore we did not have to split this equation in two parts and the
discretization simply reads

f(ui) = −ui
ui+1 − ui−1

2∆x
+ v

ui+1 − 2ui + ui−1

∆x2
+ a
√
−2 log (r1) sin (2πr2) (58)

With r1 and r2 machine generated random doubles on the interval [0, 1]. The
Jacobian matrix multiplication function for this discretization is

(AV )i,j = −Vi−1,j

ui

2∆x
+Vi,j

ui+1 − ui−1

2∆x
+Vi+1,j

ui

2∆x
+v

Vi−1,j − 2Vi,j + Vi+1,j

∆x2

(59)

5.1.3 The Kuramoto-Sivashinsky equation

For this equation we needed the IMEX RK methods discussed in section 3
because both the second and fourth order derivative terms are stiff. The fourth
order derivative being so stiff that in order to get a stable approximation by
using only a explicit integration scheme, we would require a time-step so small
that we could not reasonably integrate to large t. By putting both of these stiff
terms in G (from (31) we managed to ensure more stable integration for larger
time-steps and smaller spatial-steps. This lead to two discretized equations.
One for f and one for Gui.

f(ui) = −ui
ui+1 − ui−1

2∆x

Gui = −
ui+1 − 2ui + ui−1

∆x2
− v

ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4

(60)
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Since this discretization contains two equations and both are used in a different
integration scheme, we have to generate two Jacobian matrix multiplication
functions as well.

(AV )i,j = −Vi−1,j

ui

2∆x
+ Vi,j

ui+1 − ui−1

2∆x
+ Vi+1,j

ui

2∆x

(GV )i,j = −v
Vi−2,j − 4Vi−1,j + 6Vi,j − 4Vi+1,j + Vi+2,j

∆x4
−
Vi−1,j − 2Vi,j + Vi+1,j

∆x2

(61)
Where A is the Jacobian matrix of f .

5.2 Setup of the numerical approximations

In this section we will discuss what initial conditions we used for the test equa-
tions and what values we used for e.g. the time-step and period lengths.
Since all of our test equations assumed periodic boundary conditions we decided
to use the following periodic initial condition for each equation.

ui = cos (
2π∆xi

L
)(1− sin (

2π∆xi

L
)) (62)

With L the period length and ∆x the step size. Taking m = L
∆x the dimension

of the system. For the Burgers-Hopf and the stochastic Burgers equations we
chose the first m = 50, but for the Kuramoto-Sivashinsky equation we chose
the first m = 150. Next we picked the number of Lyapunov exponents to be
calculated n. The value we picked for n was a value we had previously seen to
be larger than the number of Lyapunov exponents needed for the Kaplan-Yorke
dimension for the first m. After the program had approximated the Lyapunov
exponents we let it decrease m by one and picked n to be 5 larger than the
number of Lyapunov exponents needed for the previous m and repeated the
program. This ensured we found all the Lyapunov exponents needed for all m.
We continued this until we had 40 results or until the system became unstable.
We experimented some with the time-step h as well as with the integration
length tmax. We found h = 1

64 to give accurate and stable results without
being too time-consuming for all three equations. tmax = 1000 gave the same
results as tmax = 10000 for numerous test-cases and was therefore accepted as a
correct value. Finally we experimented some with different L for both systems.
For the Kuramoto-Sivashinsky equation we used L = 22, 50, 100 and for the
Burgers-Hopf equation we used L = 5, 9, 15 all of these results are included in
section 5.3. For the stochastic Burgers equation we used L = 25, 50, 100. For
the Burgers-Hopf equation we also tried some different values for the force term
F . We used F = 5, 8, 10. For both the Kuramoto-Sivashinsky equation and the
stochastic Burgers equation we experimented some with different values of v.
We used v = 1, 2. For the stochastic Burgers equation we used a = 0.1 for the
scaling in the white noise.

5.3 Results

In this section we will show and discuss the graphs we generated with the data
obtained from our program.
We can see from figures 3, 4, 5 and 6 that for the Kuramoto-Sivashinsky equa-
tion both the Kaplan-York dimension and the dimension of the unstable space
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is invariant under the resolution. We do however see that they both change with
the period length L and the viscosity v. In figures 3 and 4 it is visible that, when
L is doubled, both the dimension of the unstable space and the Kaplan-Yorke
dimension double as well. From figures 5 and 6 we can see that if the viscosity
is doubled the Kaplan-Yorke dimension and the dimension of the unstable space
decreases.
For the damped forced Burgers-Hopf equation we expected extensive chaos
based on the resemblances between our nonstandard discretization and the
Lorenz 96 model. Furthermore we expected to see almost purely extensive
chaos for F > 8 and mostly extensive chaos with certain values for m where
there was periodic behavior for F = 5 (based on [14]). Contrarily we found the
behavior that for the real Lorenz 96 model was only found for F = 5 (in [14]) for
all values of F , and only for a small enough resolution. As is visible in figures 7,
8, 9 and 10 for a certain value of m = m0 the fluctuating chaotic/periodic be-
havior transforms to purely extensive chaos. The value m0 where this happens
depends on L and F . The equation for m0 seems to be (based on the graphs)

m0 ≈
15L

F
(63)

For the stochastic Burgers equation we found purely extensive chaos that only
scaled with m. As illustrated in figures 11, 12, 13 and 14 both the Kaplan-
Yorke dimension and the dimension of the unstable space did not change when
either the viscosity or the period length changed (the plotted linear model in
all of these graphs is λp = 0.42m for the dimension of the unstable space and
DKY = 0.79m for the Kaplan-Yorke dimension). The maximum Lyapunov
exponent however did change in these cases, as seen in figures 15 and 16. By
halving the period length the maximum Lyapunov exponent increased fourfold
and by doubling the viscosity the maximum Lyapunov exponent also doubled.

20



5.3.1 Graphs
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110 120 130 140 150
m0

5

10

15

20

Pλ

(b) L = 100 and v = 1

Figure 3: Dimension of the unstable space of the Kuramoto-Sivashinsky equation
for different period lengths.
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(b) L = 100, v = 1

Figure 4: Kaplan-Yorke dimension of the Kuramoto-Sivashinsky equation for
different period lengths.
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Figure 5: Dimension of the unstable space of the Kuramoto-Sivashinsky equation
for different viscosities.
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(b) L = 22, v = 2

Figure 6: Kaplan-Yorke dimension of the Kuramoto-Sivashinsky equation for
different viscosities.
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Figure 7: Dimension of the unstable space of the damped forced Burgers-Hopf
equation for different period lengths. The blue line is a linear model based on
the values where purely extensive chaos occurs.
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(b) L = 9, F = 5

Figure 8: Kaplan-Yorke dimension of the damped forced Burgers-Hopf equation
for different period lengths. The blue line is a linear model based on the values
where purely extensive chaos occurs.
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(a) L = 15, F = 8
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Figure 9: Dimension of the unstable space of the damped forced Burgers-Hopf
equation for different forcing. The blue line is a linear model based on the values
where purely extensive chaos occurs.
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Figure 10: Kaplan-Yorke dimension of the damped forced Burgers-Hopf equation
for different forcing. The blue line is a linear model based on the values where
purely extensive chaos occurs.
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Figure 11: Dimension of the unstable space of the stochastic Burgers equation
for different period lengths. The blue line is a linear model of the values.
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Figure 12: Kaplan-Yorke dimension of the stochastic Burgers equation for dif-
ferent period lengths. The blue line is a linear model of the values.
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Figure 13: Dimension of the unstable space of the stochastic Burgers equation
for different viscosities. The blue line is a linear model of the values.
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Figure 14: Kaplan-Yorke dimension of the stochastic Burgers equation for dif-
ferent viscosities. The blue line is a linear model of the values.
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(a) L = 25, v = 2
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Figure 15: Maximum Lyapunov exponent of the stochastic Burgers equation for
different period lengths.
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Figure 16: Maximum Lyapunov exponent of the stochastic Burgers equation for
different viscosities.
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