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Abstract

In order to investigate light-matter coupling, a cavity is required
with a high Q-factor to support the modes for a certain wavelength.
Here, we construct a mirror out of a silicon nitride (SI3N4) ridge-
waveguide, which has a refractive index of n = 2. The mirror may then
be used to construct a cavity. The mirror has a height h = 200nm.
Since the cavity will be used in experiments with Rubidium-87 atoms,
the goal is to obtain a mirror with a band gap centred at λ = 780nm,
where λ denotes the wavelength. For the design of the mirror finite-
diference time-domain (FDTD) simulations are performed to investi-
gate the effect of individual structural components on the band gap.
With the results obtained from these FDTD simulations we designed
a mirror with a band gap centred at λ = 780nm while keeping scatter-
ing losses in the order of 10−3. By extending the mirror size we show
that these losses even have the potential to be reduced further by one
order of magnitude, i.e. 10−4.
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1 Introduction

Since even before the discovery of the atom, light-matter interactions where
a fascinating subject in physics. Interactions such as the photoelectric effect
are at the basis of quantum mechanics[1] which is one of the most successful
theories in modern physics.

More recently a different kind of interaction has caught the attention of
researchers and engineers alike. The light matter coupling is a regime within
which confined photonic modes and excitation states of matter are coupled[2].
The investigation of a single atom interacting with a single electromagnetic
field mode is the main subject of cavity quantum electrodynamics (QED)[3].

Currently there is a lot of research in the field of cavity QED[2,4,5]. In
fact the awarded noble Prize in physics of 2012 was related to this field[6].
Revolutionary developments such as quantum information processing[7] as
well as the design for tools such as the nanocavity lasers[8,9] rely on these
interactions.

An important factor to achieve coupling is off course the confinement of
the modes in a cavity[10]. So the realisation of a system that contains such
cavity is essential to the coupling process. The origin of these optical cavities
are defects in the structure of photonic crystals. Yet the use of crystals
such as the multilayer film[10] is unpractical. The fabrication methods[11,12]
make the implementation of a defect and the dictation of the structural size
challenging.

Fortunately there are alternative designs[13,14]. The most applied one is
made out of a ridge-waveguide with an array of cylindrical air holes drilled
periodically into them. The cavity here is a spacing between two holes that
is larger than the separation of the other holes. This introduces a defect in
otherwise a periodic system. The holes on either side of the defect act as
frequency specific mirrors effectively creating a band gap[10]. Because the
periodicity of the system is along one direction, the defect is known as a one
dimensional cavity.

There is a great focus on designing cavities of this structure with ultra
high Q factors[4,15]. The quality of the cavity, that is to say the rate of
energy loss, is given by this Q factor. Ultimately one wants a cavity with a
high Q factor to promote light mater coupling. As neatly demonstrated by
McCutcheon and Lončar for a one dimensional construction, the quality of
the cavity can significantly improve when a taper is introduced in the design.
The tapers job is to smooth over the transition of the effective index between
the cavity and the mirror to prevent scattering. This results to a better
reflection on the mirrors part and thus a higher Q factor for the cavity.

A great feature of this design is the relative ease with which the system
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can be realised and customised in comparison to multilayer film. There is
however a drawback. Whereas the cavity modes of a multilayer structure
have an analytically solution[10], the modes in this model do not. One has
to resort to simulations to find these modes before the actual construction of
the cavity.

McCutcheon and Lončar intend to use their cavity to realise a coupling
with the nitrogen-vacancy in a diamond nano-crystal. This requires them to
centre the band gap of their mirror at a 637 nm wavelength[4]. The research
group I am working with is interested in a high quality cavity that supports
coupling to Rubidium-87 atoms. The band gap for this cavity has to be at
780 nm. Normally, by the scale invariance of the Maxwell equations[10], an
easy rescaling of McCutcheon and Lončar design would provide the required
band gap. However the strips used to make these cavity structures are cut
out of a plate of silicon nitride. The plates available to us have a thickness
of 200 nm which is about 44 nm short of what is required.

The subject of this thesis is then to find an alternative construction of
the same design that provides us with a band-gap centered at 780 nm while
keeping the height below 200 nm. To be more specific, we are looking for the
width and the height of the wave guide along with the radius and separation
of the holes. In the process of doing so, we will also investigate the effect of
structural components on the band-gap and scattering loss. These may then
be used for optimisation and gap-relocation purposes.

Once the mirror structure is specified and optimised one can use it to find
the cavity that supports the required modes. Note that the two sides of the
cavity are symmetric and therefore finding one will suffice. The system as a
whole can be optimised again to improve the quality of the cavity.

2 Theory

The design that we are interested in is of a cavity in a periodic dielectric
waveguide. The concept of a cavity however, is much easier explained in
terms of a defect in a multilayer film. So we will start by explaining the
basic concept of a photonic crystal. After that we write down the Maxwell
equations and derive them to a more appropriate form. In subsection 2.2 the
multilayer model will be used to explain band-gaps and eventually cavities.
Finally we will compare the multilayer model with the periodic dielectric
waveguide and discuss how the shared properties can be used to support
localised modes in the cavity of the waveguide.

Most of the explanations in this section are conceptual and there are no
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explicit calculations. Moreover, the details are kept to those necessary for
the understanding of band-gaps.

2.1 Photonic Crystal and the Maxwell equations.

Figure 1: Examples of one- two- and three dimensional photonic
crystals.The different colours represent materials with different dielectric

constants. Image from [10].

Much like the solid crystalline, the photonic crystal has repeating struc-
ture. The pattern consists of altering dielectric constants. This pattern re-
peats itself along one, two or three axes which correspond to a one-, two- or
three dimensional photonic crystal as displayed in figure 1. Mathematically
the structure can be described with a function of the dielectric constant[10].
In three dimension this function takes the form ε(r).

The main difference between atomic and photonic crystals are their re-
spective length scales. The solid crystalline has a repeating structure of atoms
whereas the photonic crystal repeats itself at a macroscopic scale. This dif-
ference also dictates the scale on which the two crystals are applied. For
instance, some atomic crystals may be used for scatter electrons[16,17]. In
crystallography[18] however electron scattering is used to study the crystals
structure. What ever the case may be, the de Broglie wavelengths of the
scatted electrons are in the pm (10−12) range whereas the photonic crystal
operate in the nm (10−9) range.

Indeed the main use of photonic crystals involves reflection and scattering
of light. Since light is an electromagnetic wave its properties are governed
by the Maxwell equations[10].

∇ ·B = 0, ∇× E +
∂B

∂t
= 0,

∇ ·D = ρ, ∇×H− ∂D

∂t
= J.

(2.1)
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Where E is the electric field, H the magnetic field, D the displacement field
and B the induction field. ρ and J are the free charge and current density
respectively. These two will be set to zero since we are considering crystals
that are not charged and do not have a current running trough them.

Now we relate D to E via a power series

Di

ε0
=

∑
j

εijEj +
∑
j,k

χijkEjEk +O(E3) (2.2)

This equation relates the Di component of the Displacement field to the
Ei component of the electric field. Where ε0 ≈ 8.854 × 10−12 F/m is the
permittivity of vacuum. Note that a similar equation can be written to
relate B to H[10].

For many dielectrics it is reasonable to make some approximations[10].
First assumption is that the field strength in the crystal is small enough to
ignore all but the linear terms on the right hand side of Equation 2.2. Also
you can assume that the medium is macroscopic and isotropic. In that case E
and D are related by the dielectric function ε(r, ω) multiplied by the permit-
tivity of vacuum. The function ε(r, ω) is known as the relative permittivity.
Further approximation can be made by ignoring material dispersion. Instead
one just chooses a dielectric constant appropriate for the size of the system
under consideration. We will also only consider transparent mediums and so
the relative permittivity is real and positive.

To the system we are considering all these approximations are applicable
and so we may proceed to get[10]:

D(r) = ε0ε(r)E(r), B(r) = µ0µ(r)H(r). (2.3)

Where µ0 = 4π× 10−7 H/m is the permeability of vacuum. But for the most
dialectics of interest µ will be close to 1 so we may omit it from the equation
above that relates to B(r). In that case the relative permittivity becomes the
square of the refraction index. Now we can rewrite the Maxwell equations
as:

∇× E(r, t) +
∂B(r, t)

∂t
= 0, ∇×H(r, t)− ∂D(r, t)

∂t
= 0,

∇ ·D(r, t) = 0, ∇ ·B(r, t) = 0.
(2.4)

Because the Maxwell equations are linear we can separate the time de-
pendence from the spatial dependence and express the fields as harmonic
modes[10]. Since all functions can be expressed in a set harmonic modes,
this wont limit our fields. Furthermore, for mathematical convenience we
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will write the fields down as complex functions of spatial pattern multiplied
my a complex exponential and take the real part for physical fields.

H(r, t) = H(r)eiωt, E(r, t) = E(r)eiωt. (2.5)

Putting Equations 2.5 in the divergence Equations of 2.4 gives us the re-
quirement that the waves are transverse[10], which is a known fact for light
waves. The two Equation in 2.4 that involve the curl of the fields can be
used to relates E to H. Using all this we get:

∇×∇× E(r)− ε(r)k20E = 0,

∇× 1

ε(r)
∇×H(r)− k20H = 0

(2.6)

with k20 = ε0µ0ω
2.

Solving Equation 2.6 for a given structure ε(r) provides an analytic solu-
tions for the modes[10]. The modes of the electrical field are solved by the
equation involving E(r) and that of the magnetic field by the one involving
H(r). However it is customary to only solve the modes of the magnetic field.
The electric field can than be taken trough the relation between the two
fields. Yet this has to do with mathematical convenience and in principle
both Equations can be solved separately.

Note that equation 2.6 is scale invariant. If we were to rescale the struc-
ture of the crystal by some scalar constant, then the modes and there fre-
quencies will scale accordingly but equation 2.6 will stay the same. Therefore
if you find the solution at one length scale you have found them at all macro-
scopic length scales. This is known as the scale invariance of the Maxwell
equations[19].

2.2 One dimensional crystal and photonic band-gaps

A one dimensional crystal can be represented by a multilayer film with al-
tering permittivity along a single axis. An image is shown in figure 2. Such
an object can mathematical be described by
ε(z + Z) = ε(z)
Taking the z-axis to be perpendicular to the film layers and Z any integer
multiple of the spatial periodicity a. This indicates a displacement symmetry
with a displacement vector Z in the direction of z.

Within a periodic structure the modes that makes up the wave functions
take the form[10]

Hnkzk||(r) = eik||·peikzzunkzk||(z). (2.7)
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Figure 2: The multilayer film consisting of alternating layers of materials
with different dielectric constants. The crystal extends to infinity in all

directions. Image from [10].

This is known as the Bloch form with n the nth eigenstate or mode of the
field which corresponds to the nth eigenvalue of frequency ωn. The wave
vector k is divided in k|| that contains the components parallel to the films
and kz is the z component. Also p is parallel to the film and u(z) is a
periodic function with periodicity a. Note that we didn’t write down the
eigenstates of the electrical field. However both fields can be written in this
form. Moreover the fields are related and can easily be converted into one
another. Equation 2.7 is known as TM-modes and the electric counter parts
are called TE-modes[10].

For a crystal that is big in comparison to the size of modes and therefore
can be considered as infinitely large, the continuous translation symmetry
allows for k|| to take any value. On the other hand kz may be restricted to a
finite interval due to the discrete translation symmetry of the crystal along
the z axis. For now lets consider the case that k|| is zero. This will leave
us with a wave which is parallel to the film layers and is propagating in the
z direction only. Looking at Equation 2.7 we see that the exponential with
the k|| argument becomes equal to one and thus vanishes from the Equation.
The remainder is a product of two periodic functions in z that have a periodic
dependence on a. More specifically, there is no physical difference between
the Bloch states with wave vector kz and wave vector kz + 2πm/a, with m
any integer constant. The mode frequency is off course also the same. For
this reason we only consider kz in an interval of [−π/a, π/a]. this is known
as the Brillouin zone[20].

At the border of these Brillouin zones were kz = π/a the modes have
a wave length of 2a. In order to maintain symmetry of the unit cell about
its centre, the mode can take only two configurations[10]. One is having
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its node at the centre of the low ε and the other is at the centre of the
high ε medium. As can be seen figure 3 (a) and (b). These two separate
configurations,although having the same wavelength, are not the same. They
are in fact two different modes. There is a clear difference in the distribution
of energy over the unit cell between the two modes as shown in figure 3 (c)
and (d).

In general, low frequency modes concentrate there energies in high ε re-
gions while high frequencies tend to have large fraction of there energies in
the low ε regions[10]. This effectively creates a gap in possible frequencies
that the modes can have. This is known as the photonic band gap[14]. A
similar feature occurs in solid state physics where the electron state can not
exist in a certain energy region[21]. This energy gap is confined between the
valance band and the conducting band of an insulator or a semiconductor.
Anyways, the size of the photonic band gap depends greatly on the contras
of permittivity within the crystal. This size is often expressed as the ratio of
the width and central frequency of the gap. This is the so called gap-midgap
ratio[10].

With regards to the off-axis propagation, all that we need to know is that
there is no band gap in the directions where there is no spatial periodic-
ity[10]. The details of this are not relevant to our goal and so we will proceed
without discussing them.

So far we have only considered perfect infinite size crystals. However
some interesting and useful properties are obtained by creating a crystals
with a defect in its structure. First lets take a one dimensional crystal that
has a finite size in the periodic direction. We can now send a pulse of light
with a range of frequencies through the surface of the crystal. As before
we are considering plane waves that are propagating in the z-direction (on-
axis propagation). As the pulse enters the crystal the modes outside of the
band gap will extend trough the crystal and are therefore called the extended
modes. The modes that have their frequencies in the band gap will decay
exponentially. The closer the modes are to the centre of the gap the faster
they will decay. These are known as the evanescent states[10].

Now suppose that we have an otherwise perfect crystal except for layer
of film that has a different width than the rest. A sketch is shown in figure
4. Far from this defect we expect the crystal to behave as a perfect crystal.
However in the vicinity of the defect, symmetry is clearly broken and that
may lead to localisation of modes in that region. In general the system can
been seen as two perfect crystals lined up and between them is the defect
layer also known as the cavity. Modes trapped inside the cavity will just
bounce back and forth. The two sides act as frequencies specific mirrors.
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Figure 3: (a) The lowest TE-mode band 1; (b) the highest TE-mode of
band 2; (c) electric field energy density of the lowest TE mode of band 1; (d)
electric field energy density of the highest mode of band 2. Where band 1 is

under the band gap and band 2 is above the band gap. Image from [10].
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This may lead to the quantisation of the modes to discrete frequency that lie
in the perfect crystals band gap. A state density graph is sketched in figure
5. These modes are known as localised modes[10].

Figure 4: A on dimensional crystal with a defect layer. Image from [10].

Figure 5: A plot of the density of state as a function of frequency inside the
cavity. The mode labelled as the defect state is a localised mode . Image

from [10].

2.3 Periodic waveguide

In the previous subsection I discussed the properties of the multilayer film.
We intend to use the periodic dielectric waveguide as an alternative design to
the multilayer film. This is off course only possible it the two models share
the necessary properties. In this subsection we discuss these properties and
show how they are shared by both systems.
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First consider the 3 dimensional waveguide[22] without the cylindrical
holes. This is basically a long dielectric medium. Given that the medium
has a larger index than its surroundings, total internal reflection will provide
waves that propagate closely along the long axis of the waveguide.

Adding the holes, the system gains a periodicity along the long axis.
This periodic dielectric waveguide[22] resembles the one dimensional photonic
crystal in that it has discreet translational symmetry along its long axis.
Much like in the multilayer film, this symmetry will lead to extended modes
and photonic band-gaps[10]. Figure 6 shows the two modes at edge of the
Brilluoin zone for the periodic waveguide. This is equivalent to Figure 3
where the modes at the edge of the Brilluoin zone for the multilayer film
were shown.

Figure 6: The two TE-modes at the edge of the Brilluoin zone. The left
image shows the mode just under the gap. The right image shows the mode

just above the gap. Image from [10].

Consider now the periodic dielectric waveguide with a cavity[14] some-
where in the middle of its structure. This off course disturbs the periodicity
just as the defect layer did for the multilayer film. When I discussed localised
modes in the last Subsection, I mentioned that the two sides of the cavity
in the multilayer film form a frequency specific mirror. The periodic waveg-
uide does the same but suffers greatly from scattering losses. This limits the
systems capability to support localised modes.

Fortunately we know this can be reduced significantly by using a taper[4].
Figure 7 shows the one dimensional cavity design for a periodic waveguide
with the mirror and taper included. The taper is made from an array of holes
with increasing radius and separation. The taper is placed between the cavity
and the mirror to smooth the transition between the effective index of the
cavity modes and the mirror. Using the structure of Figure 7 we can create
cavity modes similar to the localised modes in the defect of the multilayer
film.

It turns out that the periodic dielectric waveguide provides everything
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Figure 7: The structure of a cavity made out of a dielectric waveguide.

necessary to construct cavities. The challenge now is to use this design to
find a cavity with a high Q-factor that supports specific modes. Usually this
is done using simulation software since there is no analytic solution to the
structure.

3 Simulations and FDTD

3.1 Simulations

To find the localised modes in the cavity of a periodic deictic waveguide, one
has to resort to numerical methods. Fortunately one does not need to be a
skilled programmer to apply them. There are user friendly software packages
that have these methods implanted. So when familiar with the interface of
the package, the modes can be found without any actual programming on
the users part.

One such software package is the MIT electromagnetic equation propa-
gation (Meep). The numerical method that Meep uses is the finite difference
time domain (FDTD)[24,25,26]. The main use of this software package is
the computing of transition, reflection and scattering spectra in addition to
the resonant modes. These are the exact features that one needs to find the
band gap and cavity modes of the system considered in this thesis.

While there is no need to program the method yourself, it is always a
good idea to understand the scheme on a mathematical level. This will help
detemining accuracy and is neccesery to explain unexpected deviations if
they are due to the numerical method. Therefore the next subsection is a
bief introduction to the FDTD method.

3.2 FDTD

As the names suggests, the FDTD belongs to the class of grid-based finite
difference methods. These methods are used to find approximate solutions
to differential equations[26]. This comes down to replacing the derivatives
by a finite difference equations. It is also a time domain method which
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basically takes the Maxwell Equations and evolves them over time in a finite
computational region. So the FDTD approximates both the spatial and
the time derivatives[24] in the Maxwell Equation by finite differences. In one
dimension this approximation can be derived by Taylor expanding a function
around a point x0 with a small offset δ

2
. Actually the function is expand twice,

once with a positive and once with a negative offset.

f(x0 +
δ

2
) = f(x0) +

δ

2
f

′
(x0) +

δ

2!
f

′
(x0)

′ +
δ

3!
f

′′′
(x0)....,

f(x0 −
δ

2
) = f(x0)−

δ

2
f

′
(x0) +

δ

2!
f

′
(x0)

′ − δ

3!
f

′′′
(x0)....

(3.1)

where the number of primes indicate the degree of the derivatives. By sub-
tracting the second by the firs Equation and dividing by δ we get:

f(x0 + δ
2
)− f(x0 − δ

2
)

δ
= f

′
(x0) +

δ2

2 ∗ 3!
f

′′′
(x0).... (3.2)

The first term on the right is just the first derivative of f at x0. All the other
terms on the right side are the higher derivatives at x0 multiplied with δ of
order 2 and higher. When all these higher derivatives are summed up and
Equation 9 is rearranged we can write down the identity as

df(x)

dx
|x=x0 =

f(x+ δ
2
)− f(x− δ

2
)

δ
+ σ(δ2) (3.3)

where σ denotes the infinite sum of higher derivatives. Note that this sum
get smaller with δ. At the limit both δ and σ go to zero. In that case we just
get the definition of the derivative. When δ is taken to be sufficiently small
we can thus approximate the derivative by[24]

df(x)

dx
|x=x0 ≈

f(x+ δ
2
)− f(x− δ

2
)

δ
(3.4)

This is known as central difference, as you approach x0 from both sides.
A similar approximation can be made by approaching x0 from the left or
the right. These are known as forward and backward difference respectively.
Higher derivatives can be approximated by similar fashion.

Notice the term σ that was ignored is in fact the error of the approxi-
mation. It gives an indication to the relative improvement as δ gets smaller.
Loosely speaking, if you reduce the δ by a factor of 10 the error will reduce by
a factor of 100. This is off course due to the lowest order of δ in σ which was
2. Therefore this approximation is said to have a second order accuracy[26].

This concludes the introduction to FDTD. Yet there is still a lot to con-
template about before one decides to use a scheme for a particular system.
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Aspects as stability and suitability must be considered. Fortunately this
has all been done for me. The software package (Meep) that I am using is
specifically designed to model electromagnetic systems such as the one under
consideration. Therefore I will proceed without considering these matters.

4 Simulations and results

4.1 Goal

In Subsection 2.3 a frequency specific mirror made out of a periodic dielectric
waveguide was discussed. My goal is to find the specific structure of this
mirror such that its centre-gap frequency has a wavelength of 780 nm while
keeping loss by scattering to a minimum. By finding the specific structure I
mean determining the width of the waveguide w, the height h, the radius of
the cylindrical holes r and the centre to centre distance of the cylinders d.
The general structure is shown in figure 8. The mirror is made out of SiNx

which has a refraction index of 2 and its height must not be larger than 200
nm.

Figure 8: The periodic dielectric mirror with a taper.

4.2 Simulation geometry

To find this specific structure I have used a simulation software that makes
use of the finite-difference time-domain (FDTD) method. See section 3 for
more details about FDTD simulations. The geometry of the simulated struc-
ture consist of the periodic waveguide as show in figure 8. Note that this
image only shows the mirror and taper side of the system. In addition to
this, there is a source at the opposite end of the waveguide. The part of
the waveguide in between the taper and the source is roughly six times the
size of the mirror. Furthermore, the light pulse must have an equal intensity
in a specific range of frequencies. Either the source provides such pulse or
one has to normalise it before making calculations. Also note that the simu-
lated region has a width and height that is about five times the width of the
waveguide. A perfect matched layer (PML), a fictional layer which absorbs
the electromagnetic waves, forms the boundary of this region. However the
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waveguide starts at one side of the region and ends at the other side. One
has to make sure that the source and the mirror are placed at a distance
from the boundary so that they do not get covered by the PML.

4.3 Replication

Figure 9: The graph of McCutcheon and Lončar on 5 differnt design for the
photonic crystal mirrors. Image from [4].

In a series of 5 simulation, McCutcheon and Lončar have shown the effect
of taper size (number of holes) on the reflectivity of the mirror[4]. Their graph
is shown in Figure 9. As the taper increases from zero to seven there is a
clear and strong impact on the structure of the band-gap as whole. Not only
does an increase in taper size decrease scattering, effectively increasing the
Q factor, but also changes the centre wavelength of the band gap. This is
explained as mismatch between the effective index of the Bloch modes and
the effective index of the mirror[27]. The mismatch can be smooth over by
changing the effective index gradually rather than suddenly. There is however
no need to make the taper much bigger as the effect becomes insignificant
once the transition is smooth enough.

We reproduced the results by McCutcheon et al. for a mirror with seven
tapers. A graph of the band-gap can be seen in figure 10 and the dimensions
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Figure 10: The band gap structure of the periodic dielectric mirror
including the structural dimensions

of the waveguide are listed there as well. Note that the results are not
identical as I choose a 7 hole mirror whereas they used 14 holes. Also the
resolution they used for their simulations was not specified, yet I suspect
their simulations to be at a higher resolution.

When more holes are added to the mirror a sort of oscillation forms in
the structure of the band-gap. This will make an accurate determination
of the minimum impossible. The issue can be solved using a higher reso-
lution. Doubling the resolution however, results in 16 times the simulation
time. Considering the processing power at my disposal, it will take 8 days
of simulation time per set. This is the reason we limited the mirror size to 7
holes.

Despite all that, the structure and location of the band-gaps are in agree-
ment. Both are centred around 635 nm wavelength and both have similar
widths close to the centre of the gap. However its clear that one reflects bet-
ter than the other. McCutcheon and Lončar reach a Loss as small as 10−3

whereas my system does not quite reach that quality. This is not surprising,
they have after all used 7 more mirror holes than i did.

Nonetheless the agreements are good enough to proceed in this fashion.
At this stage the main concern is the location of the band gap rather than
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its optimisation. Once we figure out how to relocate the band-gap, we can
always add more holes to the mirror and increase resolution to get a better
results.

4.4 Structural effects

In the last subsection a structure of the mirror was presented. A variation
of each structural component individually from it, revealed their effects on
the form and location of the band-gap. The results of a variation of a small
fraction (≈ 10%) to the radius and separation of the holes are shown in figure
11. It seems that the centre-gap wavelength is not very sensitive to a small
change of these components. On the other hand the scattering is. Which
leads to the conclusion that the radius and separation are better suited for
optimisation of the mirror rather then the relocation of the band-gap.

Figure 11: A fractional variation of ≈ 10% to the separation is shown in
the left plot and to the radius in the right plot.

Variations regarding the height and width of the waveguide results in
similar scattering issues with the very important distinction that the latter
two do have a significant impact on the location of the band-gap. An increase
in height or width of the waveguide will take the gap to larger wavelengths.
The results will be presented with more detail in the next subsection.

It was expected that any change resulting in a higher effective index of
the waveguide would lead to an increase of the gaps wavelength. Yet we did
not know how much this increase would be or how it would effect scattering.

4.5 Rescaling

By the scale invariance of the Maxwell equations, one could rescale the mirror
of presented in Subsection 4.3 to fit the desired band gap. This will however
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result on a height of the structure larger than 200 nm. Fortunately, the effect
of the structural components are known. Once the system is rescaled, the
height can be decreased to its maximum value and the width can be increased
to compensate. This will come at the expense of the mirrors efficiency but
the loss can somewhat be confined by optimisation.

In figure 12 a graph of the gaps centre wavelength is shown as a function
of the width. The corresponding loss is included as well. This is of the
rescaled structure with the height at its maximum. The structural values
can be seen in table 1.
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Figure 12: The centre gap wavelength as a function of the width of the
waveguide in addition to the corresponding loss shown on the right vertical

axis.

This graph shows that a width of 450 nm will bring the centre-gap wave-
length to a close proximity of 780 nm. Moreover, it does so without a sig-
nificant increase in scattering. Also notable is the linearity in the increase
of the wavelength which lead to a interesting feature. Consider rescaling the
waveguide listed in Figure 10 to have its centre-gap wavelength at 780 nm
without limiting the height. It turns out that this waveguide has almost the
same cross-section area as the 200 by 450 nm waveguide. That is to say,
both mirrors have there band gap centred at 780 nm wavelength and also
have nearly the same cross-section area.

This hints towards a relationship between the cross-section area and the
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location of the band-gap. This relationship must naturally include the cylin-
drical holes somehow. So it is most likely that the relationship involves the
effective index rather than cross-section area. This was of course expected
as noted earlier. Note however that if this is true, then the linearity in the
increase of the wavelength is going to break down at large widths. In the
limit of the width going to infinity, the effective index is just going to reach
the index of a homogeneous medium made out of nitrogen silicon.

Table 1: The structural dimensions of the dielectric waveguide mirror.

4.6 Optimisation

With the width set at 450 nm the focus is on minimising the loss. First
consider the graph of figure 13. This is similar to the one in figure 12. Only
this time the radius is varied rather than the width. What we observe from
Figure 13 is that the radius already has its optimal value for r = 84nm.
With this value for the mirror radius, losses are minimised.

Following the same procedure by varying the separation of the holes re-
sults in the graph shown in figure 14. The graph shows that the reflection
is at its best when the centre to centre distance has a value of d = 303nm.
Admittedly a decrease of the order 10−4 in loss is not very significant. On
the other hand the minimum is just 1% off from the 300 nm. It turns out
that we already were very close to the minimum.

This concludes the optimisation of the mirror. Yet in Subsection 4.3
we mentioned that adding more holes to the mirror will certainly improve
reflection. The reason that we limited the mirror size in the first place was
due to simulation time. However if one does have the time or the tools to
run at higher resolutions, there will be room for improvement.

4.7 Results

With all the structural components at their optimal size, we have the struc-
ture we set out to find. Altogether the waveguide produces a band-gap with
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Figure 13: The centre gap wavelength as a function of the radius of the
holes in addition to the corresponding loss shown on the right vertical axis.
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Figure 14: The centre gap wavelength as a function of the separation of the
holes in addition to the corresponding loss shown on the right vertical axis.
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its structure shown in figure 15. The final dimensions of design can be found
in Table 2 in addition to some property values of the associated band-gap.
Note that the centre gap wavelength is not at 782 nm while we set out to
find it at 780 nm. This however does not result in a significant loss. The
Difference in loss is about 10−4. Even at wavelengths between 776 nm to 788
nm the loss is less than 10−3 higher that the minimum loss. This is why we
are not concerned by the 2 nm deviation.

Figure 15: The band gap structure of the final dielectric waveguide mirror.

Before concluding this section, there are still some matters that need to
be attended. Returning to Figure 13 of the last subsection, two points in the
graph seem to deviate from the rest. At the radius of 85 nm the wavelength
is about 1 nm higher than expected. yet one can hardly consider this as a
deviation once the width of the band-gap is considered. The width is simply
to broad for this to matter. Similarly at a radius of 88 nm the Loss is 10−4

lower then expected. This is once again an insignificant deviation and its
relatively far from the radius of the minimum. Same arguments apply to the
deviation point of Figure 14.

A second notable feature of Figure 13 is the relation of the radius size
with the wavelength. In this graph the wavelength only has a range of 4.5
nm . Its too short to say anything conclusive about the actual relationship.
Yet there is no denying that the wavelength is decreasing as the radius gets
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Table 2: The structural dimensions of the final the dielectric waveguide
mirror.

larger. This does agree with the statement made earlier about effective index
of the waveguide. So does the increasing of the wavelength with increasing
separation as shown in Figure 14. It seems that the wavelength of the band
gap indeed increases as the effective index of the waveguide gets larger.

We set out to find the mirror made out of a silicon nitride waveguide
with its height not larger than 200 nm and its band gap centred at 780 nm
wavelength. The structure given by Table 2 satisfies these requirements.
Moreover, a comparison between the graph of figure 15 and that of figure 10
shows that we successfully relocated the band gap while keeping the loss at
the same order of magnitude. This means that a cavity can be constructed
using these mirrors. However one may need to use a larger size mirror to
get a higher Q-factor for the cavity. This should not change the centre gap
wavelength significantly as indicated by a comparison between the graph of
Figure 9 and that of Figure 10. This comparison also shows that the shape
of the band gap does not change significantly close to the centre of the gap.
Considering the width of the gap close to its centre, one does not need to
concern oneself with a deviations of several nm from this centre.
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[9] Hatice Altug and Jelena Vučković : Photonic crystal nanocavity array
laser.

[10] John D.Joannopoulos , Stecen G Johnson, Joshua N. Winn , Robert
D.Meade : Photonic Crystals: molding the flow of light.

[11] Peng Jiang, Gordana N. Ostojic, Roxana Narat, Daniel M. Mittleman,
and Vicki L. Colvin : The Fabrication and Bandgap Engineering of
Photonic Multilayers.

[12] H̊avard Granlund : Fabrication of a Photonic Crystal using self-
assembly.

24



[13] Stefan Prorok : Photonic Crystal Cavities.

[14] J.D. Joannopoulos, Pierre R. Villeneuve, Shanhui Fan : Photonic crys-
tals: putting a new twist on light.

[15] Igal Bayn and Joseph Salzman :Ultra high-Q photonic crystal nanocavity
design: The effect of a low- slab material.

[16] J. M. Cowley AND A. F. Moodie : The Scattering of Electrons by Atoms
and Crystals. I. A New Theoretical Approach.

[17] Vincent H. Crespi, J. G. Hou, X.-D. Xiang, Marvin L. Cohen, and A.
Zettl : Electron-scattering mechanisms in single-crystal K3C60.

[18] Leonid A. Bendersky and Frank W. Gayle : Electron Diffraction Using
Transmission Electron Microscopy.

[19] Jean-Francois Fortin, Benjamın Grinstein and Andreas Stergiou : Scale
without Conformal Invariance : An Example.

[20] M.G. Jurado-Taracena : On brillouin zones and related constructions.

[21] C. Kittel : Introduction to Solid State Physics. Eighth edition

[22] Peter Hertel : Dielectric Waveguides.

[23] Shanhui Fan, Joshua N. Winn, Adrian Devenyi, J. C. Chen, Robert D.
Meade, and J. D. Joannopoulos : Guided and defect modes in periodic
dielectric waveguides.

[24] John B. Schneider : Understanding the Finite-Difference Time-Domain
Method.

[25] S.T. Chu and S.K. Chaudhuri : Finite-Difference Time-Domain method
for optical waveguide analysis.

[26] S. Gonzalez Garcıa, A. Rubio Bretones, B. Garcıa Olmedo R. Gomez
Martın : Finite difference time domain methods.

[27] C. Sauvan, G. Lecamp, P. Lalanne and J.P. Hugonin : Modal-reflectivity
enhancement by geometry tuning in Photonic Crystal microcavities.

25


	Introduction
	Theory
	Photonic Crystal and the Maxwell equations.
	One dimensional crystal and photonic band-gaps
	Periodic waveguide

	Simulations and FDTD
	Simulations
	FDTD

	Simulations and results
	Goal
	Simulation geometry
	Replication
	Structural effects
	Rescaling
	Optimisation
	Results

	reference 

