
Extensive Comparison of Trajectory Simplification Algorithms

Rence van Hunnik

Utrecht University
ICA-3820882

February 9, 2017

Abstract

In this study we compare ten simplification algorithms consisting of both line and trajectory simplification
algorithms. Namely, Uniform Sampling, Douglas-Peucker, Visvalingam-Whyatt, Imai-Iri, TD-TR, SQUISH-E(µ),
STTrace, OPW-TR, OPW-SP, and a newly introduced algorithm VW-TS. This newly introduced algorithm is
an adaptation of the Visvalingam-Whyatt algorithm that uses Time-Space. This comparison is performed using
three distinct real world datasets. Also, five error metrics are described and used to compare the simplifications’
performance. These five error metrics are: Spatial Distance, Temporal Distance, Speed Deviation, Heading
Deviation, and Acceleration Deviation. TD-TR, VW-TS, and SQUISH-E(µ) prove to have the lowest error across
all but one error metric. On the Acceleration Deviation metric, OPW-SP gives the lowest error with a significant
margin.

1 Introduction

More than ever people are capable of tracking location
with small affordable GPS trackers. Nowadays it is in-
creasingly normal to at all times know the location of
your car, pet, postal deliveries, etc. It is even possi-
ble to equip your children with a GPS tracker that can
make you aware of their whereabouts. Companies on
the other hand have more insight into their logistics,
with the goal of streamlining processes and coordinat-
ing employees beyond what they were capable of before
GPS tracking. This data is often stored and processed
to gain high level information in the long run.

When both latitude, longitude, and time are stored
in data type Double, one sample uses 3 ∗ 8 Bytes = 24
Bytes of storage. When the location of a smartphone
is stored with a sample rate of every 1 second, a day of
samples uses 2.07 MegaByte of storage. Combine this
with the knowledge that in a small country like the
Netherlands there are approximately ten milion smart-
phones [1], and storing a years worth of all of these
locations uses an approximate 7.5 PetaByte. While
not a very real world example, a clear need for com-
pression is indicated for companies like Google that do
store enormous amounts of data about their users.

As we have seen, the storage size of the data is a
good motivation for compression, but there are a few
more reasons why it is important to make use of simpli-
fication algorithms to shrink the size. Data is usually

collected on small portable devices and often by using
wireless connections. A couple of examples can be given
why it is preferable that the data that is transmitted is
as small as possible in size. One could think of an ap-
plication where a connection is scarce and unreliable, in
this case having to upload a smaller file, would improve
the chance of successful transmission. A different sce-
nario could be where it is simply preferred to have the
least amount of background data transmission as pos-
sible, like in consumer smartphones where it consumes
both mobile data and battery life.

Even when storage size is not a factor and data is
not collected in a decentralized manner, having to work
with large data caches can prove cumbersome. Col-
lected data is usually subject to computation, finding
patterns or outliers is in itself already quite computa-
tionally intensive. Having to do it on data sets that are
larger than necessary would make it even harder.

Now that we have clearly motivated why it is prefer-
able to compress raw trajectory data, we will discuss
how a compression of this data is possible. On a high
level, trajectory data compression is done by reducing
the number of sampled data points which will lead to
a simplified trajectory. In this paper, we will use the
term simplification to refer to the compression because
the compression used is not lossless and produces a
simplified approximation of the original trajectories.

Different algorithms have been devised around

1



choosing which of the original data points to keep, and
which to discard. Because these algorithms are lossy
we need to know how much the simplified data differs
from the original data, and how well one algorithm per-
forms compared to the next. For this we use various
error metrics that each describe distance (error), on a
particular value, to the original sample data.

This study makes the following contributions: We
evaluate different simplification algorithms on their
performance on different error metrics while perform-
ing both high and moderate compression on real world
data. Among the algorithms for simplifying trajecto-
ries we have modified an algorithm ourselves to perform
better on the different error criteria. The results of this
comparison study give indications on algorithms which
might be preferred in certain situations. Overall, when
no specific error metric is more important than another,
TD-TR, SQUISH-E(µ) and VW-TS (the modified al-
gorithm introduced in this paper) perform well on most
metrics.

In this study we have used C# for implementing
the algorithms, and the surrounding experiment envi-
ronment. We also use three widely distributed datasets.

The remainder of this paper is organized as follows:
In Section 2 we will look at error metrics that will be
used in this study for comparing. In Section 3 the
basics of the chosen simplification algorithms for this
study are explained. Section 4 gives an overview of re-
lated work containing similar empirical studies. In Sec-
tion 5 we give insight into our research method and data
used in the study. Section 6 will discuss and present the
results of the study. The paper concludes in Section 7
with a conclusion.

2 Error Metrics
In this section we will go into detail about the compar-
ison of a trajectory and its simplified companion. In
this study a Trajectory is represented as a polyline P
that is a sequence of points {p1, ..., pn}, where point pi
consist of Xi, Yi, and ti that are respectively longitude,
latitude, and sample time-stamp. The simplification of
a trajectory is referred to as approximation A, and is
a subset of P , the polyline of the original trajectory.
Approximation A must also contain both p1 and pn of
the original trajectory.

In our study we compare trajectories and their sim-
plifications on five error metrics that cover all basic
aspects of a trajectory. These are: Spatial Distance,
Temporal Distance, Speed Deviation, Heading Devia-
tion, and Acceleration Deviation. To calculate some of
these metrics we need the following definitions.

• The length of edge E{pi, pj} is defined as

√
(Xj −Xi)2 + (Yj − Yi)2.

• The speed at point pi is defined as the
speed on the edge E{pi, pi+1}, defined as
edgeLength(E{pi, pi+1})/(ti+1 − ti).

• The speed at any time t between pi and pi+1 is
the same as the speed at pi.

• The acceleration at point pi is defined as the in-
crease of speed on the surrounding two edges.
speed(pi+1)− speed(pi).

• The heading at point pi is defined as the angle
between the edge E{pi, pi+1} and the origin.

To calculate error we need a point pi from the orig-
inal trajectory, and a point ai from the approximation.
For most error metrics we use points pi and ai that are
synchronous in time, meaning that they have the same
time-stamp value. These can be used to answer the
question “where_at”, meaning where was the moving
object at a particular time. However, for the tempo-
ral distance we use points that have a similar location.
This is usually referred to as the “when_at” question,
when was the moving object at a particular location.
Using these points we can calculate error on the dis-
cussed metrics as follows.

• The Spatial Distance between pi and ai is the
length of the edge E{pi, ai}.

• The Temporal Distance between pi and aj is
abs(t − t′), where t is the time at pi and t′ is
the time at aj .

• The Speed Deviation between pi and ai is
abs(speed(pi)− speed(ai)).

• The Heading Deviation between pi and ai is
abs(heading(pi)− heading(ai)).

• The Acceleration Deviation between pi and ai is
abs(acceleration(pi)− acceleration(ai)).

Section 5 will describe how the metrics are used to
give a numerical score to approximations on the metric
that is used. Comparing the score of an approxima-
tion made by a certain algorithm to an approximation
made by a different algorithm, will give an indication
on the performance of the algorithm on the individual
metrics. This can be useful information when choosing
an algorithm for your application.

2



Algorithm Time Complexity Error Metrics Online
Uniform Sampling O(n) None Yes
Douglas-Peucker O(n log n) Spatial distance No
Visvalingam-Whyatt O(n log n) Spatial distance No
Imai and Iri O(n2) Spatial distance No
TD-TR O(n2) Time distance ratio No
SQUISH-E(µ) O(n log n) Time distance ratio No

STTrace O(n)
Synchronous Euclidean
distance, Heading, Speed Yes

OPW-TR O(n2) Time distance ratio Yes

OPW-SP O(n2)
Time distance ratio,
Maximum speed Yes

VW-TS O(n log n) Time distance ratio No

Table 1: Simplification algorithm summary

3 Simplification Algorithms

In this study we will compare some well documented
algorithms that are used both for line and trajectory
simplification, and one new, adapted algorithm. These
algorithms are shown in Table 1. Of these algorithms
the Douglas-Peucker, Visvalingam-Whyatt, and Imai-
Iri algorithms are designed for line simplification, and
therefore only guarantee spatial distance. The remain-
ing algorithms are trajectory simplification algorithms
that are designed with different error criteria in mind.
In the following subsections we will describe how these
simplification algorithms function.

3.1 Uniform Sampling

Uniform Sampling is a basic algorithm, and does not
guarantee any criteria other than reduction in points.
This algorithm takes a polyline P , a sequence of points
{p1, ..., pn}, and a user defined reduction ratio. The
points are considered in order and points are uniformly
added to the approximation in accordance with the re-
duction ratio.

3.2 Douglas-Peucker

The Douglas-Peucker algorithm [2][3] takes a polyline
P a sequence of points {p1, ..., pn}, and a user defined
allowed spatial error, ε > 0. The algorithm builds an
approximation polyline P ′, initially consisting of p1 and
pn. It continues adding the point pi out of the orig-
inal polyline that has the largest shortest-euclidean-
distance to P ′ until that distance is smaller than ε as
demonstrated in Figure 1.

Figure 1: Illustration of how the Douglas-Peucker algo-
rithm iteratively simplifies a line. The allowed spatial
error ε is depicted with green circles.

3.3 Visvalingam-Whyatt

The Visvalingam-Whyatt algorithm [4] uses the con-
cept of ‘effective area’, which is the area of the triangle
formed by a point and its two neighbors. The algorithm
takes a polyline P a sequence of points {p1, ..., pn}, and
a user defined allowed spatial displacement error, ε > 0.
For every set of three consecutive points {pi−1, pi, pi+1}
a triangle is formed with its surface being the ‘effective
area’. Iteratively point pi is dropped that results in
the least areal displacement to form an approximation
as illustrated in Figure 2. This process halts when the
‘effective area’ is larger than ε.

3



Figure 2: Illustration of how the Visvalingam-Whyatt
algorithm iteratively simplifies the line.

3.4 Imai-Iri

The basis of the Imai-Iri algorithm [5] lies in the con-
struction of an unweighted directed acyclic graph G.
This graph is constructed by connecting all combina-
tions of two points that would create an allowed short-
cut. A breadth-first search is done on this graph to
compute the shortest path connecting the first and last
point, resulting in the approximation.

This algorithm takes a polyline P a sequence of
points {p1, ..., pn}, and a user defined allowed spatial
error, ε > 0. For each combination of two points (pi
and pj) it checks if a line between them intersects all
circles with radius ε that center on the points that lie
between them {px > pi, px < pj}. When this is the
case, the line pipj is an allowed shortcut and is added
to the graph G, see Figure 3.2. After all allowed short-
cuts are added to graph G, breadth-first search is done
to find the shortest path through the graph from p1 to
pn.

Figure 3: Illustration of how the Imai-Iri algorithm gen-
erates shortcuts. Green lines are allowed shortcuts, red
lines are not allowed.

3.5 TD-TR

The TD-TR algorithm [6] functions in the same way
as the Douglas-Peucker algorithm. The difference be-
tween them is that where the Douglas-Peucker algo-
rithm uses the Euclidean distance to calculate the
shortest distance between point pi and the approxima-
tion, the TD-TR algorithm uses a time-synchronous
Euclidean distance, as seen in Figure 4. This distance
measure can guarantee both a maximum spatial dis-
tance as well as a maximum temporal error distance.

Figure 4: The distance measures used in the Douglas-
Peucker and TD-TR algorithms are demonstrated here.
The dashed lines show the Euclidean distance. The
solid lines show the time-synchronous Euclidean dis-
tance when the original points have an equal sample
rate.

3.6 SQUISH-E(µ)

The SQUISH-E(µ) algorithm [7] is a derivative of the
SQUISH algorithm [8].

SQUISH-E(µ) takes a polyline P a sequence of
points {p1, ..., pn}, and a user defined allowed priority
error, µ > 0. The algorithm assigns a priority score to

4



each of the points from P and orders pointers to them
in a priority queue from low to high. The priority of
point pi is the sum of two values. The first value is
the time-synchronous Euclidean distance of pi to a line
between pi−1 and pi+1. The second value is the maxi-
mum of the priorities that the neighboring points of pi
had when they were removed, if pi has neighbors that
have been removed.

The algorithm removes point pi from P that has
the lowest priority, and recalculates its neighbors’ pri-
ority score accordingly. The algorithm is halted when
the lowest priority score in the priority queue is higher
than µ. This results in a polyline A, that is an approx-
imation of the polyline P .

3.7 STTrace

The STTrace algorithm [9] determines which points of
the original polyline are discarded from the approxi-
mation, by calculating if they are predictable within
a certain error margin. This is done by constructing
a ‘safe area’, the area where a point is predicted to
be by its three original predecessors. From the origi-
nal polyline, points with at least three predecessors are
considered in order, and only the unpredictable points
are added to the approximation.

This algorithm takes a polyline P a sequence of
points {p1, ..., pn}, an α > 0 and a 0 < β < 360, where
α and β are respectively the user defined allowed speed
and heading error. A point pi is considered predictable
when it is inside of the ‘safe area’ which is the intersec-
tion of two prediction polygons called Ai−2 and Ai−1.

These prediction polygons are annular sectors, that
are constructed from two concentric circles, a heading,
and an angle, see Figure 5. Annular sector Ai−1 is cen-
tered on pi−1 and its two concentric circles have radii
of length of edge pi−2pi−1 plus and minus α/2. Annu-
lar sector Ai−1 its heading is vector −−−−−→pi−2pi−1 and has
angle β. Annular sector Ai−2 is constructed the same
way and is also centered on pi−1, but for its two con-
centric circles it uses radii of length of edge pi−3pi−2
plus and minus α/2, and its heading is vector −−−−−→pi−3pi−2.

When point pi is not considered predictable, it is
deemed necessary in the approximation. Vice versa,
when point pi is predictable it is omitted from the ap-
proximation.

Figure 5: The annular sectors constructed by the
STTrace algorithm are colored yellow (Ai−1) and blue
(Ai−2). Three scenarios are drawn for point pi. In
both scenarios with pi′′ and pi′′′, point pi is only pre-
dicted by one of the two annular sectors, hence point pi
should be added to the approximation. In the scenario
of pi′, point pi is within both annular sectors and would
therefore be omitted from the approximation.

3.8 OPW-TR

The OPW-TR algorithm [6] is an Opening Window
(OPW) algorithm. The basic idea behind OPW al-
gorithms is that they grow a window from a starting
point called the anchor by incrementally progressing
the so-called float point, and stop when some halting
condition is met. The OPW-TR algorithm uses the
time-synchronous Euclidean distance measure as halt-
ing condition.

This algorithm takes a polyline P a sequence of
points {p1, ..., pn}, and a user defined allowed time-
synchronous spatial error, ε > 0. A window is grown
from the anchor pa, that starts out as p1. The halt-
ing condition is triggered when a point pi between the
anchor and the float pf has a time-synchronous Eu-
clidean distance larger than ε to edge papf . When this
happens point pi is added to the approximation, as
demonstrated in Figure 6.

5



Figure 6: An approximation using the Opening Win-
dow algorithm where the red dotted lines exceed the
error threshold.

3.9 OPW-SP

The OPW-SP algorithm [6] is an Opening Window al-
gorithm just like the OPW-TR algorithm. This SP
variant uses a halting condition based on the speed dif-
ference between two consecutive points.

This algorithm takes a polyline P a sequence of
points {p1, ..., pn}, and a user defined allowed speed dif-
ference, ε > 0. The speed difference between point pi
and pi+1 is calculated in order. When this speed differ-
ence is higher than ε the halting condition is triggered,
and point pi is added to the approximation.

3.10 VW-TS

The VW-TS algorithm is a variation on the
Visvalingam-Whyatt algorithm that takes the temporal
component of a trajectory into account. This algorithm
is not yet described in literature.

The original Visvalingam-Whyatt algorithm uses
the two spatial coordinates (X,Y ) to represent the
polyline, and discards the time-stamps of points. This
will most likely result in simplifications that have a
higher error on the temporal components. VW-TS uses
a third dimension, Z. This dimension represents the
progression in time of the polyline, where a point pi
being farther in time than point pj will result in the z
coordinate of pi being larger than the z coordinate of
pj .

Like the Visvalingam-Whyatt algorithm, this adap-
tation calculates, the ‘effective area’ the surface area of

a triangle between three consecutive points. The orig-
inal algorithm however calculates the surface area of
the triangle in its two dimensions, where the adapted
algorithm calculates this surface in three dimensional
space.

Like the Visvalingam-Whyatt algorithm, VW-TS
progressively removes point pi that formed triangle
pi−1, pi, pi+1 that results in the smallest ‘effective area’
until this area is larger than ε, a user defined spatial
temporal displacement error.

This addition makes the consideration of the tem-
poral component possible, since a variation in the tem-
poral component now also results in a variation in tri-
angle surface area. Thus this adaptation provides the
simplification of points that are close in time as well as
in space.

Figure 7: Illustration of how the VW-TS algorithm it-
eratively simplifies the line until the turquoise effective
area is larger than ε.

6



4 Related Work

There are three studies done by Meratnia and de By
(2004) [6], Muckell et al. (2010) [10], and Muckell et
al. (2013) [7] that also compare algorithms in an ex-
perimental setting.

4.1 Meratnia and de By, Time-Ratio
Algorithms (2004)

One of the first experimental studies for comparing tra-
jectory compression algorithms is performed by Merat-
nia and de By in 2004 [6].

They introduced a distance metric that takes into
account the position of a point as well as its time-
stamp of the original trajectory and the new trajec-
tory. This is the same distance measure as described
under the name ’time-synchronous Euclidean distance’
in Section 3.5. This new distance metric introduces a
class of algorithms that can be called time-ratio algo-
rithms. They applied this to two algorithms and named
them TD-TR and OPW-TR, as discussed in Section
3.5 and 3.8. TD-TR is obtained through the appli-
cation of the time-ratio distance measuring technique
on the Douglas-Peucker algorithm and OPW-TR is an
opening window algorithm with the time-ratio distance
metric applied.

Next to the time-ratio algorithm, they introduced
a speed difference threshold, the spatio-temporal algo-
rithm, indicating above which speed difference the data
point will always be retained. They applied this algo-
rithm to the top down and opening window algorithm
and named the algorithms TD-SP and OPW-SP.

In their experimental study, they have done three
experiments in which they tested on ten real world
trajectories three experiments. They applied fifteen
different spatial threshold values ranging from 30 to
100m and three speed difference threshold values rang-
ing from 5 to 25m/s.

In their first experiment, they compared Douglas-
Peucker with their improved version, TD-TR. In this
comparison, the TD-TR algorithm has lower errors but
the compression is somewhat lower on a particular dis-
tance threshold.

In their second experiment, they analyzed the
choice of breakpoint in opening window algorithms.
They compared the Normal Opening Window algo-
rithm (NOPW), removing the data point that causes
the threshold violation, with the Before Opening Win-
dow algorithm (BOPW), removing the sample-point
just before the sample-point causing a threshold vio-
lation. They have found that the BOPW algorithm
achieves higher compression but has worse errors than
the NOPW algorithm.

The last experiment concerned comparing their im-
proved opening window algorithm, OPW-TR, with the
Normal Opening Window algorithm (NOPW). Their
results show that OPW-TR is superior to the NOPW
algorithm. The results of the OPW-TR algorithm
shows that choosing a higher threshold does not have
a huge impact on the amount of error.

They also applied their second algorithm, the
spatio-temporal algorithm (SP), to the top-down algo-
rithm, resulting in TD-SP, and to the opening window
algorithm, resulting in OPW-SP. The TD-SP algorithm
showed high sensitivity towards speed thresholds for
both error and compression. For OPW-SP, changes in
speed threshold value did not show high changes in the
results.

Comparing TD-TR, OPW-TR and OPW-SP, TD-
TR ranks slightly better because of better compression
rates. The results of their study show that algorithms
with spatio-temporal characteristics outperform other
algorithms.

4.2 Muckell et al., Algorithms for
Compressing GPS Trajectory Data
(2010)

The experimental research done by Muckell et al.
(2010) [10] is a comprehensive empirical evaluation of
compression algorithms such as the Douglas-Peucker al-
gorithm, Bellman’s algorithm, STTrace algorithm and
the Opening Windows algorithms. They have analyzed
these algorithms on how well they preserve the spatio-
temporal information, on their execution time, and on
error metrics.

They have used two datasets, one is obtained from
a fleet of buses in Albany (Public-Transit dataset) and
another was obtained from 24 volunteers at the New
York Metropolitan Transportation Council (NYMTC
dataset). Three groups of trajectories were created
from both datasets, each group representing one travel
mode and each trajectory consists of 5000 points. In
total 14 trajectories were selected.

To compare the execution times, a common com-
pression ratio of 7 was chosen. There was no signifi-
cant difference in the execution time performance for
any algorithm among the different travel modes. How-
ever, between the different algorithms, substantial dif-
ferences in execution time were observed. STTrace is
by far the slowest algorithm (40 seconds) and Uniform
Sampling was the fastest (0.002 seconds). Significant
differences were not apparent in algorithms that are a
modification of each other. Douglas-Peucker (2.2 sec-
onds) and TD-TR (2.5 seconds), as well as the Opening
Window algorithms OPW-TR (0.4 seconds) and OPW-
SP (0.5 seconds) do not differ very much in their me-

7



dian execution time. Finally, the Bellman’s algorithm
had an execution time of 3.2 seconds.

A comparison of the algorithms on the synchronized
Euclidean distance (SED) error metric shows that there
are significant differences between the algorithms as
well as the travel modes. Again, all algorithms were
compared having the same compression ratio of 7. The
bus travel mode has the highest degree of error, fol-
lowed by the pedestrian travel mode, and the multi-
modal dataset had the least amount of error. When
comparing the algorithms, OPW-SP has a high SED er-
ror. Another notable result was that Douglas-Peucker
performed better than the modified version TD-TR.
Douglas-Peucker also outperformed the OPW-TR al-
gorithm.

Comparing the travel modes on the speed met-
ric shows that the bus dataset again has the high-
est error rate compared to the pedestrian and multi-
model datasets. Comparing the algorithms shows that
STTrace has the most consistent speed results and Bell-
man and Douglas-Peucker both have low speed errors.
Comparing the opening window algorithms, OPW-SP
performed slightly better than OPW-TR.

Analyzing the error in direction or heading shows
that the bus travel mode has the lowest error and that
Bellman’s algorithm has the best performance followed
by STTrace, however only for small compression ratios.
When compression ratios are larger there is no signifi-
cant advantage in heading accuracy between Douglas-
Peucker, TD-TR, OPW-TR and OPW-SP compared to
Uniform Sampling.

4.3 Muckell et al., SQUISH-E (2013)

The study done by Muckell et al. (2013) [7] is more
recent and they compared a number of algorithms,
namely Uniform Sampling, Douglas-Peucker, TD-TR,
and Opening Window algorithms, while also introduc-
ing their own new algorithm SQUISH-E of which a ver-
sion is described in this paper in Section 3.6. They have
chosen these algorithms because they argued that these
algorithms have unique benefits in balancing compres-
sion time and the degree of error.

The datasets chosen by Muckell et al. represent
different transportation modes (bus, urban commuter,
and multi-modal). They have selected 71 trajectories
each containing around 20,000 points for their experi-
ment.

They compare the algorithms in terms of compres-
sion time and error metrics. To be able to compare the
algorithms on SED, average speed, and average spa-
tial error metric, they have used a compression ratio
of 10 for each algorithm. For the algorithms that did
not take a target compression ratio as an input param-

eter, they repeatedly executed those algorithms while
modifying the error bound parameter until the desired
compression ratio was achieved.

In terms of compression time, their observation is
that the fastest algorithm is the Uniform Sampling al-
gorithm and the slowest algorithm is TD-TR. They also
have found that the synchronized Euclidean distance
(SED) metric requires more computation than spatial
metric. Uniform Sampling and Opening Window were
the fastest algorithms. They also acknowledge that de-
spite their speed benefits, Uniform Sampling and Open-
ing Window have fundamental limitations in control-
ling the growth or errors during compression. Further-
more, they found that their own algorithm, SQUISH-
E, was faster than the other algorithms that use SED.
They argue that this speed benefit is due to the use of a
priority queue which enables fast and effective removal
of points.

In terms of comparison of algorithms across metrics,
TD-TR and SQUISH-E(µ) outperform the algorithms
in case of overall accuracy. Next to that, they found
that the SED error metric has the benefit of incorpo-
rating temporal data into error calculation. Algorithms
that take into account the SED error metric keep spa-
tial error at a relatively low level. According to their
results, Douglas-Peucker and TD-TR have most accu-
rate compressions in terms of the spatial error metric
and the SED error metric, respectively.

5 Experimental Comparisons

In this section we will describe on which data we have
experimented and give detailed insight in how our ex-
periments are set up that lead to the results described
in Section 6.

5.1 The Data

In this study three distinct datasets are used, GeoLife
[11][12][13], GoTrack [14], and TaxiServiceTrajectory
(TST) [15]. First the data is filtered, trajectories with
irregularities like large jumps in both time and space
as well as trajectories with a unsuitably small number
of points are omitted from this study.

The GeoLife dataset was collected by 182 users in a
period of over five years. The dataset contains 17,621
unique trajectories collected by different GPS loggers
and GPS phones. 91.5 percent of the total trajectory
set is sampled every 1 ∼ 5 seconds. This dataset con-
tains data collected while traveling by foot, bike, bus,
car, train, and airplane.

The GoTrack dataset was obtained via the use of
the Android app called Go!Track, and contains 163

8



unique trajectories. The trajectories are evenly col-
lected by car or bus, and have a sample rate of approx-
imately 5 seconds.

The TST dataset was obtained by a taxi company
in Portugal that installed telematics in their vehicles.
The data was acquired over a continuous period of nine
months and contains 320 unique trajectories. The data
is sampled every 15 seconds.

5.2 Research Method

5.2.1 Data Preparation

All three datasets made use of the geographic coor-
dinate system (GCS) and had time-stamps that were
altogether not that friendly for calculations. So some
preprocessing was done to make calculations easier and
to represent the trajectories from the three databases in
the same way. Because the GCS coordinates have their
origin as a mapping on a spheroid (earth), this data
was remapped to an orthogonal plane and refactored
to be in meters. As a time-stamp system, all trajec-
tories are remapped to number of seconds passed since
the start of the trajectory, and start at zero seconds.

Experiments were done in three fold without com-
bining datasets as a means of being able to compare
results across different datasets.

5.2.2 Trajectory Subdivision

When a simplification algorithm returns an approxima-
tion A that is a simplified version of P , it is likely that
A consist of less points than P . This is exactly the pur-
pose of simplification. However, we need to score the
approximation A against the original trajectory P and
we would like both trajectories to have an equal number
of points on which the error metrics can be calculated.
Not only do we have the requirement that both A and
P need an equal number of points to score an approx-
imation. We also require the error score to represent
the whole of the error between A and P , and not only
error on the existing, potentially sparse, sample points.

To accurately calculate an error score that repre-
sents the whole of the error, we synchronously subdi-
vide both A and P to gain more sample points ai and
pi on which the error metric can be calculated. This
subdivision is done into very small subsections to gain
a larger number of sample points ai pi on which to cal-
culate a near continuous comparison. Because we need
both points ai and pi synchronized in time as well as
synchronized in space, we have to make two separate
subdivisions.

The subdivision that is used for the metrics that are
related to the “where_at” question subdivides both A
and P in sections that are 0.1 seconds. The location of

the new sample points ai and pi are linearly interpo-
lated along A and P respectively. Ignoring the original
points form A and P , this will result in an equal num-
ber of points in A and P because both their start and
finish time are the same.

For the temporal error metric we need a subdivision
that can answer the “when_at” question, so we sub-
divide the original trajectory P in sections with length
0.1 meter. We cannot simply subdivide approximation
A in sections with length 0.1 meter because this would
result in far less sample points since the total length
of A is likely to be shorter than that of P . To sub-
divide A in a way that creates sample points that are
synchronous in space to the sample points of P we cal-
culate X = Length(A)/Lenght(P ), and subdivide A
in sections of length 0.1X meter. The time of the new
sample points ai and pi are linear interpolated along
respectively A and P . This will result in two subdivi-
sions synchronous in space that have an equal number
of sample points.

5.2.3 Simplification Error Metric Score

We have shown how we can calculate the error of ai in
relation to pi on the five chosen metrics in Section 2.
In the previous subsection we have shown how we sub-
divide both A and P to gain enough sample points for
scoring the entire simplification accurately. In this sec-
tion this information is used to calculate a numerical
value that is a score Sc(A ↔ P ) of how well simpli-
fication A represents the original data that made up
trajectory P , where a lower score means a smaller dis-
tance between ai and pi.

The score Sc(A ↔ P ) of simplification A is calcu-
lated using the root mean square (RMS). This is done
by summing the root of the distance metric between
ai and pi, where, from the subdivided polyline, i is in
order from 1 to n. This sum is divided by the number
of samples in the subdivision to get the mean. And fi-
nally we take the root of this mean to end up with the
score of simplification A. Because we used the RMS to
calculate the score, a high local error in ai and pi will
disproportionately increase score Sc(A↔ P ). This re-
sults in lower scores for approximations that have low
local maxima and minima, and higher scores for ap-
proximations that have high local maxima en minima
in their error distance.

5.2.4 Comparing Simplification Algorithms

Now we know how to calculate the RMS score Sc(A↔
P ) of a simplification on a specific error metric. This
score Sc(A↔ P ) can be compared to the score of sim-
plifications obtained by other simplification algorithms.

9



Number of sample points returned by simplification algorithm, from 0 to n

R
M
S
er
ro
r
sc
or
e

Figure 8: The RMS score ranges for all 10 simplification algorithms on the temporal error metric.

Table 2: Significance table

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II STT OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP VW-TS DP
VW II STT OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR STT SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS VW-TS
TD-TR

However, this is only fair when both simplifications con-
sist of an equal number of points.

In order to be able to compare simplification al-
gorithms we would like to have multiple simplification
algorithms simplify one original trajectory, and have
them each produce a simplification that has a similar
reduction in terms of number of sample points in A.
Only then it is fair to compare their RMS score.

Each of the algorithms has either one or two param-
eters that is user defined, adjusting these parameters
will influence the number of sample points in its sim-
plification A. Because most of the simplification algo-
rithms do not allow a reduction parameter as input, the
particular parameters that a simplification algorithm
does allow must be used to influence the reduction in
number of sample-points.

For this study we have devised a method to be able
to compare simplification algorithms’ RMS scores over
the entire range from, returning the original trajectory,
to returning only the first and last sample point from P .
To collect this entire range of RMS scores, we have gen-
erated simplifications with small increments in the al-
gorithms’ user defined parameter. In combination with
linear interpolation this allows us to compare simplifi-
cation algorithms on any given reduction percentage.

This data can be graphed as can be seen in Figure 7.

6 Results

In this section, the algorithms described in Section 3 are
experimentally evaluated and compared as described in
Section 5.

For all three databases a mild reduction ratio of 7
is chosen, this is common practice in the literature. A
second strong reduction ratio is chosen according to
average trajectory length, the GeoLife dataset has a
second reduction ratio of 25, GoTrack and TST have
a reduction ratio of 14 since their average trajectory
length does not support a reduction ratio of 25.

6.1 Significance Tables

A two-sided t-test with an α = 0.01 is used to deter-
mine for all combinations of two algorithms, if one algo-
rithm has a significantly better Sc(A↔ P ) score than
another algorithm on a metric, at a specified reduction
ratio. These tests result in the data that is shown in Ta-
bles 2 and 9-14. A green cell in these tables indicates
that the algorithm in that cell is significantly better

10



Table 3: GeoLife with reduction ratio 7

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 1.9593 -31.41 -16.48 -541.8 57.465 -204.4 70.998 72.573 72.557
Temporal 0 53.887 -17.90 26.034 -30.60 34.030 -60.04 48.293 39.364 49.084
Speed 0 16.129 17.262 11.098 -22.40 47.065 40.014 58.247 40.784 55.544
Heading 0 31.008 -6.675 16.252 0.9605 17.658 -13.57 28.017 31.257 28.618
Acceleration 0 19.582 18.492 16.950 17.861 36.407 60.231 47.930 27.987 43.136

than the one it was up against. A non-colored cell in-
dicates that between the two algorithms there was no
significant winner. The full set of tables can be found
in the appendix (Tables 9-14).

Using these tables we can determine a ranking for
each metric. The top three is shown for each dataset
in Table 4. The full set of tables can be found in the
appendix (Tables 5-8). There we can see that from the
ten simplification algorithms tested only six appear in
at least one top three. Namely, TD-TR, SQUISH-E(µ)
(SQ), VW-TS, Douglas-Peucker (DP), OPW-SP, and
OPW-TR. From these TD-TR, SQ, and VW-TS make
up 78% of the table. Noteworthy is the appearance of
the Douglas-Peucker algorithm as a line simplification
algorithm among trajectory simplification algorithms.
The OPW-SP algorithm clearly shows that it is specifi-
cally designed with a speed metric in mind, it performs
the best on the acceleration metric across the datasets.
However, it does not appear in the top three on the
speed metric itself.

Among the three datasets used, similarity can be
observed. In particular on the GoTrack and TST
datasets, the algorithms perform almost identically.
This supports the validity of the ranking in general.

Table 4: Metric top three for all datasets on reduction
ratio 7

Metric
Dataset GeoLife GoTrack TST

Spatial 1. VW-TS TD-TR TD-TR
2. TD-TR VW-TS VW-TS
3. SQ SQ SQ

Temporal 1. DP TD-TR TD-TR
2. TD-TR SQ SQ
3. SQ VW-TS DP

Speed 1. SQ SQ SQ
2. TD-TR TD-TR TD-TR
3. OPW-TR VW-TS OPW-TR

Heading 1. VW-TS DP DP
2. DP TD-TR SQ
3. TD-TR VW-TS VW-TS

Acceleration 1. OPW-SP OPW-SP OPW-SP
2. SQ SQ SQ
3. TD-TR TD-TR TD-TR

6.2 Percentage Table

As a second method of comparing the algo-
rithms, we have calculated the percentage improve-
ment/deterioration of an algorithm’s Sc(A↔ P ) com-
pared to Uniform Sampling, using the following for-
mula: ((USSc(A ↔ P ) − XSc(A ↔ P ))/USSc(A ↔
P )) ∗ 100 where X is the algorithm which is compared.
For each dataset and reduction ratio, these percent-
ages are calculated and stored in separate Tables 3 and
15-20. The coloring of the cells indicate whether the
value is positive or negative. The highest percentage
is marked in bold. The complete set of tables can be
found in the appendix (Tables 15-20).

These tables can be used in future work since they
are implementation independent, and only indicate per-
formance improvement against Uniform Sampling.

These tables offer a more compact representation
than the previously mentioned significance tables, while
retaining most of the information needed for indicating
both the algorithms that perform well, and algorithms
that perform poorly. On top of this, the top three rank-
ing gained from the significance tables are in most cases
identical to a ranking on percentage improvement. The
only places where the percentage tables and significance
tables are in disagreement, are places where the signif-
icance tables have a non-significant improvement.

7 Conclusion

In this paper we gave an extensive comparison of tra-
jectory data simplification algorithms, in combination
with five error metrics that describe most aspects of
a trajectory. We provided detailed insight into the
methods used to accommodate the comparison and pre-
sented our calculations for scoring approximations. We
also introduced a new adaptation of the Visvalingam-
Whyatt algorithm named VW-TS.

This VW-TS algorithm is an adaptation of the
Visvalingam-Whyatt algorithm that uses the time as-
pect as a third dimension which is usually referred to
as Time-Space. The comparison described in this pa-
per shows that this VW-TS algorithm performs well
on most error metrics, and can be considered a strong

11



trajectory simplification algorithm.
This study shows that the Imai-Iri and

Visvalingam-Whyatt algorithms that are traditionally
line simplification algorithms generally perform worse
than Uniform Sampling when simplifying trajectory
data. On the other hand, the Douglas-Peucker algo-
rithm shows that it can still compete against trajectory
simplification algorithms on some error metrics.

Among the trajectory simplification algorithms
STTrace can be considered a weak algorithm since it
induces error much faster than the other trajectory
simplification algorithms. The TD-TR, VW-TS, and
SQUISH-E(µ) algorithms prove to be very all-round,
as they perform very well on all five of the error met-
rics. They appear as the top 3 on most error metrics.

Another result is that OPW-SP outperforms all other
simplification algorithms on the acceleration metric.

However, in the results it is shown that some sim-
plification algorithms, in particular the line simplifica-
tion algorithms, perform quite bad on the spatial met-
ric. This research has the limitation that the temporal
component had an unintended influence on the spatial
metric scoring. Future work can improve the way that
the spatial metric is calculated, to see if there is a sig-
nificant performance difference on the spatial metric
among trajectory and line simplification algorithms.

Next to this, future work can increase the validity
of this study by performing a comparative study on dif-
ferent trajectory datasets to see if their findings are in
line with the results of this study.

12



References
[1] R. Bosman and S. de Bruyckere. (2015) Dutch smartphone user 2015 q1. [Online]. Available:

www.telecompaper.com/research/dutch-smartphone-user-2015-q1–1086938

[2] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent
a digitized line or its caricature,” Cartographica: The International Journal for Geographic Information and
Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[3] J. Hershberger and J. Snoeyink, “An o (n log n) implementation of the douglas-peucker algorithm for line simpli-
fication,” in Proceedings of the tenth annual symposium on Computational geometry. ACM, 1994, pp. 383–384.

[4] M. Visvalingam and J. Whyatt, “Line generalisation by repeated elimination of points,” The Cartographic Journal,
vol. 30, no. 1, pp. 46–51, 1993.

[5] H. Imai and M. Iri, “Computational-geometric methods for polygonal approximations of a curve,” Computer
Vision, Graphics, and Image Processing, vol. 36, no. 1, pp. 31–41, 1986.

[6] N. Meratnia and A. Rolf, “Spatiotemporal compression techniques for moving point objects,” in Advances in
Database Technology-EDBT 2004. Springer, 2004, pp. 765–782.

[7] J.-H. Hwang, C. T. Lawson, J. Muckell, P. W. Olsen Jr, and S. Ravi, “Compression of trajectory data: a
comprehensive evaluation and new approach,” GeoInformatica, vol. 18, no. 3, pp. 435–460, 2014.

[8] J.-H. Hwang, C. T. Lawson, J. Muckell, V. Patil, F. Ping, and S. Ravi, “Squish: an online approach for gps
trajectory compression,” in Proceedings of the 2nd International Conference on Computing for Geospatial Research
& Applications. ACM, 2011, p. 13.

[9] K. Patroumpas, M. Potamias, and T. Sellis, “Sampling trajectory streams with spatiotemporal criteria,” in
Scientific and Statistical Database Management, 2006. 18th International Conference on. IEEE, 2006, pp.
275–284.

[10] J.-H. Hwang, C. T. Lawson, J. Muckell, and S. Ravi, “Algorithms for compressing gps trajectory data: an em-
pirical evaluation,” in Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2010, pp. 402–405.

[11] W.-Y. Ma, X. Xie, L. Zhang, and Y. Zheng, “Mining interesting locations and travel sequences from gps trajec-
tories,” in Proceedings of the 18th international conference on World wide web. ACM, 2009, pp. 791–800.

[12] Y. Chen, Q. Li, W.-Y. Ma, X. Xie, and Y. Zheng, “Understanding mobility based on gps data,” in Proceedings
of the 10th international conference on Ubiquitous computing. ACM, 2008, pp. 312–321.

[13] W.-Y. Ma, X. Xie, and Y. Zheng, “Geolife: A collaborative social networking service among user, location and
trajectory,” in IEEE Data Engineering Bulletin 33, 2, 2010, pp. 32–40.

[14] M. O. Cruz, A. P. Guimares, and H. Macedo, “Grouping similar trajectories for carpooling purposes,” in Pro-
ceedings of Brazilian Conference on Intelligent Systems, 2015, pp. 234–239.

[15] L. Damas, M. Ferreira, J. Gama, Jand Mendes-Moreira, and L. Moreira-Matias, “Predicting taxi-passenger
demand using streaming datapredicting taxiâĂŞpassenger demand using streaming data,” IEEE Transactions on
Intelligent Transportation Systems 14. 3, pp. 1393–1402, 2013.

13



8 Appendix

Table 5: Metric top three for GeoLife on reduction ratio 7 and 25

Metric
Ratio

1/7 1/25

Spatial 1. VW-TS VW-TS
2. TD-TR TD-TR
3. SQ SQ

Temporal 1. DP DP
2. TD-TR TD-TR
3. SQ SQ

Speed 1. SQ SQ
2. TD-TR TD-TR
3. OPW-TR OPW-TR

Heading 1. VW-TS VW-TS
2. DP DP
3. TD-TR TD-TR

Acceleration 1. OPW-SP OPW-SP
2. SQ SQ
3. TD-TR TD-TR

Table 6: Metric top three for GoTrack on reduction ratio 7 and 14

Metric
Ratio

1/7 1/14

Spatial 1. TD-TR TD-TR
2. VW-TS SQ
3. SQ VW-TS

Temporal 1. TD-TR TD-TR
2. SQ SQ
3. VW-TS VW-TS

Speed 1. SQ SQ
2. TD-TR TD-TR
3. VW-TS OPW-TR

Heading 1. DP DP
2. TD-TR VW-TS
3. VW-TS SQ

Acceleration 1. OPW-SP OPW-SP
2. SQ SQ
3. TD-TR TD-TR

14



Table 7: Metric top three for TST on reduction ratio 7 and 14

Metric
Ratio

1/7 1/14

Spatial 1. TD-TR TD-TR
2. VW-TS VW-TS
3. SQ SQ

Temporal 1. TD-TR SQ
2. SQ TD-TR
3. DP OPW-TR

Speed 1. SQ SQ
2. TD-TR TD-TR
3. OPW-TR OPW-TR

Heading 1. DP DP
2. SQ SQ
3. VW-TS OPW-TR

Acceleration 1. OPW-SP OPW-SP
2. SQ SQ
3. TD-TR TD-TR

Table 8: Metric top three for all datasets and reduction ratios

Metric
Dataset GeoLife GoTrack TST

1/7 1/25 1/7 1/14 1/7 1/14

Spatial 1. VW-ST VW-TS TD-TR TD-TR TD-TR TD-TR
2. TD-TR TD-TR VW-TS SQ VW-TS VW-TS
3. SQ SQ SQ VW-TS SQ SQ

Temporal 1. DP DP TD-TR TD-TR TD-TR SQ
2. TD-TR TD-TR SQ SQ SQ TD-TR
3. SQ SQ VW-TS VW-TS DP OPW-TR

Speed 1. SQ SQ SQ SQ SQ SQ
2. TD-TR TD-TR TD-TR TD-TR TD-TR TD-TR
3. OPW-TR OPW-TR VW-TS OPW-TR OPW-TR OPW-TR

Heading 1. VW-TS VW-TS DP DP DP DP
2. DP DP TD-TR VW-TS SQ SQ
3. TD-TR TD-TR VW-TS SQ VW-TS OPW-TR

Acceleration 1. OPW-SP OPW-SP OPW-SP OPW-SP OPW-SP OPW-SP
2. SQ SQ SQ SQ SQ SQ
3. TD-TR TD-TR TD-TR TD-TR TD-TR TD-TR

15



Table 9: GeoLife significance table with reduction ratio 7

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS VW-TS
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP DP DP
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR STT SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II STT OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP VW-TS DP
VW II STT OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR STT SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS VW-TS
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II STT OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ OPW-TR TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 16



Table 10: GeoLife significance table with reduction ratio 25

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US US US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS VW-TS
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP DP DP
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP VW-TS DP
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS VW-TS
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP STT OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW TD-TR
II STT OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ OPW-TR TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 17



Table 11: GoTrack significance table with reduction ratio 7

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US US US US US OPW-TR US SQ VW-TS TD-TR
DP VW DP DP OPW-TR DP SQ VW-TS TD-TR
VW VW VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS TD-TR
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW US US OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP DP DP
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II II II SQ VW-TS TD-TR
STT OPW-TR STT SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS TD-TR
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP VW DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 18



Table 12: GoTrack significance table with reduction ratio 14

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US US US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW VW VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW US US OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP DP DP
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS SQ
VW-TS VW-TS
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW US STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP STT OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW STT OPW-TR OPW-SP SQ VW-TS TD-TR
II STT OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 19



Table 13: TST significance table with reduction ratio 7

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US US US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS TD-TR
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP DP DP SQ DP TD-TR
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ TD-TR
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US US US US US SQ VW-TS US
DP DP DP DP DP DP DP DP DP
VW II VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR STT SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS VW-TS
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP OPW-TR OPW-SP SQ VW-TS TD-TR
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ OPW-TR TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 20



Table 14: TST significance table with reduction ratio 14

Spatial US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ VW-TS TD-TR
OPW-SP SQ VW-TS TD-TR
SQ VW-TS TD-TR
VW-TS TD-TR
TD-TR

Temporal US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ DP TD-TR
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Speed US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW II US OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP DP OPW-TR DP SQ VW-TS TD-TR
VW II VW OPW-TR OPW-SP SQ VW-TS TD-TR
II II OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR TD-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Heading US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP US US US OPW-TR US SQ VW-TS TD-TR
DP DP DP DP DP DP DP DP DP
VW VW VW OPW-TR VW SQ VW-TS TD-TR
II II OPW-TR II SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-TR SQ OPW-TR OPW-TR
OPW-SP SQ VW-TS TD-TR
SQ SQ SQ
VW-TS TD-TR
TD-TR

Acceleration US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR
US DP VW US STT OPW-TR OPW-SP SQ VW-TS TD-TR
DP DP DP STT OPW-TR OPW-SP SQ VW-TS TD-TR
VW VW STT OPW-TR OPW-SP SQ VW-TS TD-TR
II STT OPW-TR OPW-SP SQ VW-TS TD-TR
STT OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-TR OPW-SP SQ VW-TS TD-TR
OPW-SP OPW-SP OPW-SP OPW-SP
SQ SQ SQ
VW-TS TD-TR
TD-TR 21



Table 15: GeoLife with reduction ratio 7

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 1.9593 -31.41 -16.48 -541.8 57.465 -204.4 70.998 72.573 72.557
Temporal 0 53.887 -17.90 26.034 -30.60 34.030 -60.04 48.293 39.364 49.084
Speed 0 16.129 17.262 11.098 -22.40 47.065 40.014 58.247 40.784 55.544
Heading 0 31.008 -6.675 16.252 0.9605 17.658 -13.57 28.017 31.257 28.618
Acceleration 0 19.582 18.492 16.950 17.861 36.407 60.231 47.930 27.987 43.136

Table 16: GeoLife with reduction ratio 25

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 -26.70 -102.0 -40.42 -1766. 40.709 -308.1 48.432 56.521 53.692
Temporal 0 26.036 -38.53 -7.189 -127.7 13.726 -61.74 22.310 24.431 26.430
Speed 0 5.9416 3.2165 1.7214 -33.71 26.636 10.075 35.618 21.496 33.509
Heading 0 26.964 -5.246 7.0779 -12.67 8.5790 -10.82 15.095 30.374 19.278
Acceleration 0 4.9976 5.8879 4.1051 6.3741 9.5933 39.650 17.398 7.0229 12.969

Table 17: GoTrack with reduction ratio 7

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 -60.19 -46.75 -72.68 -386.9 35.684 -81.11 50.188 51.035 53.621
Temporal 0 -1.565 -29.10 -18.27 -115.7 11.139 -60.96 27.814 27.805 33.994
Speed 0 -0.564 2.2388 -4.319 -31.14 29.172 22.206 41.971 33.223 40.149
Heading 0 10.076 0.5027 3.1870 -2.533 2.3245 -9.905 4.8445 4.7945 5.8999
Acceleration 0 5.3361 5.6543 3.7473 3.8255 15.527 34.104 25.091 17.808 21.484

Table 18: GoTrack with reduction ratio 14

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 -18.05 -43.96 -43.88 -260.6 27.212 -103.5 32.987 33.561 36.699
Temporal 0 -0.867 -45.33 -28.02 -118.3 4.3191 -70.91 10.512 9.5965 13.603
Speed 0 4.8354 1.6495 -0.587 -19.78 20.678 6.2334 28.846 20.713 27.165
Heading 0 9.6724 1.4338 2.0847 -6.475 2.9394 -5.745 5.0527 6.2439 4.9210
Acceleration 0 0.3046 -0.432 -0.342 1.7660 4.3516 16.568 10.249 6.0539 7.4770

Table 19: TST with reduction ratio 7

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 -8.151 -37.12 -20.00 -396.7 45.271 -66.86 52.999 54.096 56.022
Temporal 0 11.565 -12.17 6.2397 -74.50 28.487 -16.74 30.272 24.376 27.836
Speed 0 18.200 14.852 15.541 -36.05 36.036 31.158 46.087 34.807 43.007
Heading 0 6.2634 -2.418 -2.632 -6.343 0.8893 -7.905 2.6692 1.5896 1.5366
Acceleration 0 8.2236 8.0072 7.0783 2.4677 19.250 38.847 29.353 17.111 25.409

Table 20: TST with reduction ratio 14

Metric
Algorithm US DP VW II STT OPW-TR OPW-SP SQ VW-TS TD-TR

Spatial 0 -0.608 -70.82 -19.20 -639.2 32.332 -82.03 35.326 38.872 42.245
Temporal 0 -4.688 -37.84 -22.12 -196.2 4.0973 -27.60 4.7402 1.7239 3.9220
Speed 0 15.856 4.9811 9.4851 -40.15 25.190 11.175 32.842 24.598 30.607
Heading 0 9.6659 -0.736 -1.556 -12.06 3.5082 -4.481 5.0556 2.2584 3.6490
Acceleration 0 1.1062 1.0995 -0.174 2.1710 6.1258 20.549 13.368 6.4580 9.9283

22


