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Abstract

Interest in microservices architectures has increased over the last few years, with a
signi�cant increase since 2014. An increasing number of companies is evolving their
architecture from a monolithic system to a microservice architecture. A microser-
vice architecture provides more �exibility and scalability, at the cost of having a
distributed system, eventual consistency and increased operational complexity. The
impact of the advantages and disadvantages is de�ned by the size of individual mi-
croservices. Currently the size of a microservice is de�ned by metrics that are not
related to performance and scalability. Since the large impact of the size of a microser-
vice on the performance and scalability, metrics related to these quality attributes
seem more appropriate than the existing metrics. The size of a microservice is de�ned
by the features that it o�ers. As a result of these observations, this research aims
to �nd an approach to optimize the performance of microservice architectures based
on its workload. This research proposes an approach combined with accompanying
proof-of-concept to alter a deployment to improve the performance. The proposed
approach has been validated in a case study at AFAS, an ERP vendor in the Nether-
lands. This case study has validated that the approach works and has identi�ed
several interesting options for related research.
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1 | Introduction

Interest in microservice architectures has increased over the last few years, with a
signi�cant increase since 2014 according to Google Trends (2015) and Thoughtworks
(2014). A microservice architecture is an architecture in which a single application
is designed as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms, often an HTTP resource API (Fowler, 2014).
As a result of this, every module is an independently deployable service. Combined
with the lightweight communication protocols used, every service can use its own
programming language and can be easily modi�ed and scaled.

An increasing number of companies is evolving from a monolithic system to a mi-
croservice architecture, with well known examples like Groupon, Net�ix and Amazon
(Geitgey, 2013; Mauro, 2015; Fulton, 2015). These companies provide webservices
to users all over the world. Traditional monolithic applications were unable to meet
their scalability demands, since monoliths can only scale by horizontal duplication,
running multiple identical copies of an application, or data partitioning, running mul-
tiple identical copies of an application that are each responsible for a subset of the
data. In a microservice architecture, horizontal duplication and data partitioning can
be applied to every individual microservice. This functional decomposition of the
system in microservices (Abbott and Fisher, 2009) enables scaling of the system by
only scaling parts of it.

A second reason why companies are moving to microservices, is the introduction
of DevOps. DevOps is a way of working whereby developers and IT system operators
work closely, collaboratively, and in harmony towards a common goal with little
or no organizational barriers or boundaries between them (Swartout, 2014). Every
DevOps team is responsible for both the development and operational aspects of their
work, making it logical to map teams to microservices, since microservices are self-
contained and can be redeployed individually. Introduction of Continuous integration
or Continuous deployment is often combined with DevOps. Continuous integration
(CI) means that software building and tested is automated; Continuous deployment
(CD) expands CI by also automatically deploying software changes to production
(Leppanen et al., 2015). Microservices provide a good platform to use CI or CD,
since each microservice is self-contained, and can thus be easily build individually,
tested and deployed.

However, microservices are no free lunch, as discussed in the popular article with
the same title of the CTO of Contino (Wootton, 2014). Several di�culties introduced
by a microservice architecture are related to it being a distributed system. Distributed
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systems introduce additional points of failure and communication latency, since ser-
vices need to communicate over the network. As described by the CAP theorem
(Brewer, 2000, 2012), it is impossible to maintain strong consistency in a distributed
system (Fowler, 2015) while maintaining availability and partition tolerance . Often
a weakened form of consistency, called eventual consistency, is used. Vogels (2009)
de�ned eventual consistency as a speci�c form of weak consistency; the storage sys-
tem guarantees that if no new updates are made to the object, eventually all reads
will return the last updated value. This introduces its own set of (usability) prob-
lems that need to be handled. Finally the operational complexity of a microservice
architecture is higher than a monolithic application, since many services need to be
managed, monitored and redeployed regularly and independently.

The impact of the advantages and disadvantages is de�ned by the size of individual
microservices. Having many small microservices results in more communication be-
tween services, increasing networking overhead. Furthermore small services increase
the operational complexity, since more services need to be managed.

The size of a microservice is directly de�ned by the features provided by the
service. A microservice that o�ers more features will be larger than a service with only
a few features. By moving features to other or new microservices, the performance
and scalability of the system changes. The scalability increases, since the size of the
smallest scalable unit becomes smaller. However, the e�ect on the performance of the
system depends on the relationship between features. If, for example, two features
are heavily dependent on each other, splitting them over di�erent microservices might
result in signi�cant communication overhead, resulting in a decrease of performance.
Merging two microservices results in a loss of scalability, but performance might
increase due to decreased communication overhead. Secondly the actual usage of
features by users determines the impact of moving features. If a seldom used feature
is moved, the impact is much smaller than moving a frequently used feature.

1.1 Problem statement

The term microservice indicates that services should be small. However, people are
reluctant to de�ne how small they should be (Stenberg, 2014). There are several
metrics (of varying quality) for the size of microservices, such as lines of codes, being
able to rewrite a microservice in 6 weeks or having a 2-pizza team (two pizzas are
enough to feed the entire team) per service (Fowler, 2014). Another typical answer
is that a microservice should do one thing, which leaves room for interpretation.

None of the existing metrics are related to quality attributes, but as stated in
the introduction, the size of a microservices has a direct impact on the performance
and scalability of the application. As a result of this observation, metrics related to
performance and scalability seem more appropriate than the existing metrics.

Currently there exists no framework to optimally size microservices
based on performance and scalability. This thesis aims to �ll this gap in scientifc
knowledge. To achieve this, two subproblems need to be addressed. First, relevant
metrics for measuring the performance and scalability of a microservice architecture
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have to be determined.
Based on these metrics, the second subproblem can be addressed, namely the

creation of an analysis method to optimally size microservices. Based on this analysis,
improvements should be deducible. The suggested improvements will be based on the
three observations described in the introduction:

� The number of features determines the size of a microservice.

� Placement of features in microservices has an impact on the scalability and
performance

� Actual usage of features in�uences the impact of placement of these features on
the system's performance and scalability.

Using these suggestions for improvement, the architect will be able to optimally
size the microservices with regards to performance and scalability for the actual usage
of the application.

1.2 Research questions

Based on the problem statement with related observations, the following research
question is de�ned:

RQ How to improve performance of a microservice architec-
ture by clustering features based on application workload?

The �rst subproblem mentioned in the problem statement, determining which metrics
are relevant to measure the performance and scalability of a microservice architecture,
resulted in the following subquestion:

SRQ 1
Which metrics are relevant for clustering features in microservice
architectures?

By answering this subquestion, the �rst problem is addressed. The goal of the sec-
ond subquestion is to link the obtained relevant metrics to the features that will be
analyzed as part of the second subproblem.

SRQ 2 How can metrics be linked to features?

The third subquestion aims to �nd an e�cient way to �nd performance problems
based on the metrics provided. Based on the linkage between the metrics and fea-
tures, the second part of this subquestion consists of �nding more e�cient feature
groupings by moving individual features.

SRQ 3
What is an e�ective way to �nd improvements in the grouping of
features in a microservice architecture?
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Finally, the goal of the last subquestion is to evaluate the e�ect of the modi�ca-
tions with regards to performance and scalability.

SRQ 4
What is the e�ect of the architecture modi�cations on scalability
and performance?

1.3 Relevance

This section will address both the scienti�c and the societal contribution of this thesis.

1.3.1 Scienti�c contribution

As stated in the problem statement, there exist no framework or method to optimally
size microservices based on performance and scalability. The goal of this thesis is to
�ll this gap in scienti�c knowledge. Secondly it will expand the published scienti�c
material on microservice architectures, which is still limited. This thesis combines
several �elds of research such as Microservices, Performance engineering, and Per-
formance analysis based on traces. Finally this thesis contributes to the AMUSE
Project1.

1.3.2 Societal contribution

The created framework can be used by organizations to improve the scalability and
performance of their microservice architectures. By optimizing the performance, or-
ganizations can use their hardware more e�ciently and thus reduce software operation
costs and potentially reduce their energy consumption.

1.4 Thesis overview

At �rst the research approach is discussed in chapter 2. Afterwards chapter 3 intro-
duces the running example that is used as guiding example in this thesis. Chapter
4 introduces a formal, graphical and derived technical representation of a microser-
vice architecture. In the next chapter, the other major component of this research is
addressed, measuring the workload. Chapter 6 describes the function that is used to
determine the quality of a deployment. This is followed by a description of the modi-
�cation operators on a deployment and the approach to improve the deployment for a
given workload in chapter 7. The next chapter describes the case study performed at
AFAS. This is followed by a discussion of this research in chapter 9. Finally chapter
10 will describe the conclusions of this research.

1https://amuse-project.org/
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2 | Research Approach

This chapter describes the used research methods to conduct this thesis research. As
part of this thesis a literature study and a case study are performed.

2.1 Design Science

Hevner et al. (2004) describe the two main paradigms that characterize much of the
research performed in the Information Systems �eld:

Behavioural science has as goal to create and verify theories that explain or predict
human or organizational behavior

Design science creates new and innovative artifacts with the goal of extending hu-
man and organizational capabilities.

Since the goal of this thesis is to create new artifacts that help with optimizing of
microservice architectures based on a given workload, this thesis falls in the category
of Design science. Figure 2.1 shows this thesis applied to the Information system
research framework by Hevner et al. (2004).

Figure 2.1: This thesis projected on the Information system research framework
(Hevner et al., 2004)
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2.2 Research design

The following research phases have been derived from the Information system research
framework by Hevner et al. (2004) combined with the research cycle of Polya (2014):

Problem statement The goal of the �rst phase is to describe, understand and ex-
plain the problem. The deliverable of this phase is the problem statement.

Knowledge analysis This phase aims to identify the available scienti�c knowledge
related to this problem. An overview of related literature is delivered as a result
of this phase.

Solution design In this phase the current scienti�c knowledge is extended by de-
signing candidate solutions for the problem. The second sub phase consists of
selecting the best candidate solution for the problem at hand.

Case study implementation The best candidate solution is implemented as part
of a case study in this phase.

Solution evaluation The �nal phase evaluates how well the case study implemen-
tation solves the initial problem.

Figure 2.2 shows the phases and their information �ow. The problem statement
phase is related to the Business Needs in the model of Hevner et al. (2004), since
the Business Needs result in the problem statement of this research. Secondly, the
knowledge analysis phase is related to the Knowledge Base and the related Applicable
Knowledge �ow in the model of Hevner et al. (2004). The Develop/Build phase of
Hevner's model is covered by the Solution Design phase of this thesis. The last
two phases of this research, Case study implementation and Solution evaluation, are
related to the Justify/Evaluate phase of the framework by Hevner et al. (2004).
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Figure 2.2: Research cycle

2.3 Problem statement

The goal of this phase is to describe, understand and explain the problem. This
is achieved by performing an exploratory related literature study and exploring the
problem at AFAS. The exploratory related literature study is performed using the
snowballing approach. Scienti�c search engines such as Google Scholar and DBLP
are used to search for papers based on keywords related to the problem statement.
Secondly popular blogs of industry experts will be searched for information on the
topic. This phase resulted in the project proposal.

2.4 Knowledge analysis

The goal of this phase is to �nd applicable scienti�c knowledge to the problem. Based
on the problem description, relevant literature will be studied.

2.4.1 Literature study

The performed literature study consists of two phases. The �rst phase is an ex-
ploratory study, in which relevant areas of research are identi�ed and introductory
papers are studied. For this phase an unstructured literature study, using the snow-
balling approach is used for every relevant area of research. This method is chosen
since the relevant literature is scattered in di�erent areas of research. This phase
identi�ed the following main relevant areas of research:
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� Microservice Architectures

� Software Scalabilty

� Software Performance Engineering

� Trace based performance analysis

� Software module clustering

� Self-adapting software systems

The second phase continuous on the relevant areas of research identi�ed in the
�rst phase. For each area an unstructured snowballing approach is used to obtain
relevant papers. The main goal of this phase is to gain a more in-depth insight in the
�eld of research. However, some relevant papers were identi�ed that are (partially)
located in other areas of research.

2.5 Solution design

The goal of this phase is to create a solution for the problem at hand based on existing
knowledge. The deliverable of this phase is a tool.

2.6 Solution evaluation

The goal of this phase is to evaluate the e�ect of the architecture modi�cations on
the performance and scalability of the implemented solution at AFAS.

The solution created in the Solution design phase will be used to create a new
microservice architecture. The same workload simulations will then be ran on this
modi�ed architecture. Based on the results of this phase, SRQ 5 will be answered.
The results of this phase will be used to improve the process and deliverables of the
previous phases, as well as produce an evaluation.

2.6.1 Case Study

A case study will be performed to evaluate the e�ectiveness of the created solution.
The case study will be performed at AFAS. The details of the case study context
are described in chapter 8. A speci�c form of a case study is performed, namely a
controlled experiment involving an intervention and outcome of a single system (Yin,
2013). As a result of time constraints, only a single case study can be performed.
AFAS's software provides an excellent platform to test the created framework, as
described in the case study context. Additionally this thesis aligns with the goals of
the broader AMUSE project, which is a research collaboration between AFAS, Utrecht
University and VU University Amsterdam. This makes a case study at AFAS a logical
decision.

Single case studies typically have a decreased generalizability and reproducibility.
Several measurements have been taken to increase the validity of this case study.
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External validity

Open standards and open-source components will be used in order to ease implemen-
tation in a di�erent microservice environment, increasing the reproducibility.

The created application will consist of an AFAS speci�c input module that trans-
forms their application logs to the standard format required by the analyzer and
visualizer. The analyzer and visualization component will be made open-source and
published on Github.com, making it easier for companies and researchers to reproduce
it with their environment.

Internal validity

To increase internal validity, insight will be provided in the data collection method.
Thorough insight in the analysis of the gathered data will be provided, so the process
can be reproduced and reviewed. Finally the criteria that will be used to compare
the modi�ed architecture with the original architecture (control group) will be clearly
reported.

Construct validity

To improve construct validity, existing de�nitions of measures are used whenever
available in literature. If needed, existing de�nitions will be extended. Additionally,
the rationale behind an extension of a de�nition will be provided.

Reliability

The case study protocol will be documented. The goal of this documentation is to
describe the procedures so that an auditor could follow them and reproduce the same
results. Since a large part of the method will be automated, it should be relatively
easy for an auditor to reproduce the same results.
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3 | Running example

This chapter presents a running example that will be used for clari�cation in the rest
of this thesis. The running example will provide a minimal case in which the bene�ts
of this research are clear.

3.1 Context description

Webshop.com is a large web shop with millions of customers and many concurrent
orders. They are currently making the transition to a microservice architecture. Being
a traditional web shop, customers can browse Webshop.com's catalog, view products,
add products to their shopping cart, and checkout their shopping cart.

The software architects of Webshop.com are wondering how to distribute these
functionalities of the monolith over the microservices. The provided features are
described below:

Customer This feature manages the accounts of all customers of the web shop.
It contains common customer data such as an email address, password and
(default) shipping details such as zip code, city and street name.

Product This feature contains product information such as description, images,
price and other product information.

Order The order feature enables customers to put products in their virtual shopping
cart. Secondly this feature enables customers to view their order history.

Payment This feature enables customers to checkout their shopping cart.

Delivery This feature tracks the status of a delivery starting from a paid shopping
cart till the actual delivery of the order.

Review The review feature enables customers to post a review of product.

There are several dependencies between those features, as depicted in �gure 3.1.
The customer and product features have no dependencies. The review feature requires
the data of the customer that created the review and the product that the review is
about. The order feature of the web shop requires both a reference to the customer
that made this order, and a set of products that are ordered. Finally both the payment
and delivery features need information of the order.
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sales ordersales order
agree me ntagree me nt

customercustomer
role  (person)role  (person)

deliverydelivery
ev entev ent

party

productproduct
role  (good)role  (good)

subject
direction: out
payment: yes

reviewreview
ev entev ent

subject

parcel serviceparcel service
role  (organisation)role  (organisation)

party

Figure 3.1: Model of the features of Webshop.com

The software architects foresee several actions in which transactions over multiple
features occur, that are potentially located in di�erent microservices. To tackle this
distributed data management problem, they decided to create an event driven mi-
croservice architecture. An event-driven microservice architecture is an architecture
in which feature publish an event whenever it updates its data, which can be sub-
scribed upon by other features located in di�erent microservices. These subscribed
features can then update their data based on the event (Richardson, 2014). This
however results in an eventually consistent system.
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4 | Modelling microservices

This chapter describes a mathematical description of a microservice architecture. Fur-
thermore both the graphical and technical representation of this model are discussed.

4.1 Mathematical de�nition

The basis of a microservice model is a set of features F that needs to be distributed
over the microservices. This distribution is in�uenced by the dependency graph of
the features, called R, since dependencies will typically be placed in the same mi-
croservice. Secondly a feature is de�ned as a set of properties. As a result, the set of
features F is a partitioning of the set of properties P . This means that every feature
consists of a disjoint subset of P and that the union of all features is P . This results
in the following formal de�nition of a feature model:

De�nition 4.1.1 (Feature model)
A feature model is a 3-tuple (P, F,R) with

• a set of properties P ;

• a set of features F , being a partitioning of P ;

• and the dependency graph (P,R), a directed graph.

Note that (P,R) is a dependency graph that can contain cycles. Since we consider
the dependency satis�ed if the dependant property is located in the same microservice,
cyclic dependency graphs are not a problem for our approach.

To make this de�nition more concrete, it will be applied to a part of the running
example described in chapter 3. For brevity only a part of the running example is
formalised. Three features will be formalised: the sales order (O), the customer (C),
and the delivery feature (D).

In order to keep the model small, each feature only has the bare minimum of
properties. The order has an identi�er (P1), a reference to the customer (P2), and
products (P3). The customer has an identi�er (P4), address (P5), and name (P6).
Finally the delivery component has a reference to the order (P7), reference to the
customer (P8), and delivery address (P9). The delivery address can be a reference
to the address of the customer, or it can be a manually entered alternative address.
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This model is depicted in �gure 4.1.

Figure 4.1: Feature model of a part of the running example

This example can be represented by a feature model. At �rst the set of features
F will be described. The example states that there are three features (O,C and D),
this is described by: F = {O,C,D}. Since the de�nition of a feature states that a
feature is de�ned as a set of properties and the example states that each feature has
three properties, F can be represented as {{P1, P2, P3} , {P4, P5, P6} , {P7, P8, P9}}.
The properties (P ) of the feature model are de�ned as the set of all properties in
the system. De�nition 4.1.1 states F is a partition of P . By using the property
that the union of all sets in F is P , this results in P = {P1, P2, .., P9}. The last
item of a feature model is the set of directed edges that represent the dependencies
between properties. This is described by R using (property, dependency) pairs, so in
our example this would result in R = {(P2, P4), (P7, P1), (P8, P4), (P9, P5)}.

4.1.1 Deployment

A microservice architecture is an instantiation of a feature model such that every
microservice contains one or more features with one or more properties. There exists
a special instantiation of every feature, that instantiates all properties of that feature.

In event-driven microservice architectures the logic needed to handle the events
has to be duplicated to di�erent microservices. We consider this duplicated features.
These duplicated features are however not exposed publicly, but are only available
to features inside the microservice. This implies that a feature can have multiple
instances in a deployment. Since a feature model does not allow a feature to appear
more than once, the concept of feature instances I is introduced. Each feature instance
i can either be public or internal. Additionally an internal feature might contain a
subset of the properties of the public feature. A common example is to only include
the identi�er and name of an referenced entity, instead of the entire entity.
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De�nition 4.1.2 (Microservice Architecture)
Given a feature model (P, F,R), aMicroservice Architecture is a 4-tuple (I,M, λ, h)
with:

• a set of feature instances I;

• a set of microservices M , being a partitioning of I;

• the property instantiation function λ : I → P(P ), a total function that maps
each feature instance to a set of properties;

• the public instance function h : F → I, a total function that de�nes for each
feature its public instance;

such that

• Each microservice contains all instances necessary to ful�l the dependency
requirements, i.e.

∀m ∈M : ∀i ∈ m, p ∈ λ(i), q ∈ P :
(p, q) ∈ R =⇒ ∃j ∈ m : q ∈ λ(j)

• Every microservice contains each feature at most once, i.e.

∀m ∈M : ∀i, j ∈ m : ∃f ∈ F :
( λ(i) ⊆ f ∧ λ(j) ⊆ f ) =⇒ i = j

• Each feature instance is a subset of its feature, i.e.
∀i ∈ I : ∃f ∈ F : λ(i) ⊆ f

• Each feature has a public instance that is equal to itself, i.e.,
∀f ∈ F, i ∈ I : h(f) = i =⇒ f = λ(i)

• Each microservice contains at least one public feature instance, i.e.
∀m ∈M : ∃i ∈ m, f ∈ F : λ(i) = h(f)

This de�nition will be applied to the part of the running example presented earlier
in this section. This example will describe the deployment in which every feature
will have its own microservice. Hence there will be three microservices (O,C,D). As
a result of the dependencies de�ned in the feature model, this introduces internal
feature instances in the order and delivery microservice. A public feature instance is
denoted by iX , with X being the name of the feature. Internal feature instances with
a subset of the properties are denoted by iX{1,2,3} for a feature instance of X with
three properties (1,2,3). An internal feature instance with all properties is denoted
by iX{1..n}.

For the order microservice (O) this will result in the following instances: mO ={
iO, iC{4}

}
. The customer microservice (C) can be represented as mC = {iC} and
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the delivery microservice (D) as mD =
{
iD, iO{1}, iC{4,5}

}
. Hence the entire de-

ployment with all public features in a separate microservice can be represented as
D = {mO,mC ,mD}.

A deployment in which all public feature instances are located in the same mi-
croservice, results in a simple deployment: D = {mOCD} where mOCD = {iO, iC , iD}.

A deployment in which the delivery feature and the customer feature are grouped
together in a single microservice, and the order feature in another microservice results
in the addition of two internal feature instances as a result of the dependencies.
An internal instance of the customer feature in the order microservice has to be
added as a result of P2 depending on P4. Secondly P7 depends on P1, hence an
internal order feature has to be placed in the customer and delivery microservice. This
deployment can thus be described by: D = {mCD,mO} where mCD =

{
iC , iD, iO{1}

}

and mO =
{
iO, iC{4}

}
.

4.2 Graphical representation

While the formal de�nition of the model has its bene�ts, a graphical representation
is easier to understand and communicate with other stakeholders. Hence this section
introduces a simple visualization that is designed for these use cases. It should be
noted that creating this visualization is not the focus of this thesis, hence it can be
improved by future research. This visualization is purely based on the experiences
of the author during his thesis. Figure 4.2 provides the graphical representation
of the deployment discussed above in which every feature is placed in a separate
microservice. It is important to note that the colours used can be adjusted to the
context. The visualised deployment contains three microservices, depicted by the
hexagons.

Figure 4.2: Deploymentmodel graphical representation

The darker circles inside a microservice represent publicly exposed features of a
microservice, while the lighter circles represent an internal feature. It is important to
note that properties are not displayed in this representation. If the properties would
have been included for the features, the �gure would become very large and crowded.
However, any user is free to depict properties by placing elements inside the feature,
but it is not recommended. Secondly the relations are not explicitly displayed in this
representation, since typically features have many relations, resulting in many arrows
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in the visualization. Again a user is free to depict relations as an overlay over this
representation, however it is recommended to use a di�erent type of diagram such as
a chord diagram or graph to depict these relations.

4.3 Technical representation

A technical representation of the above model has been implemented in the tool
accompanying this thesis. It uses JSON as transport format. JSON is a lightweight
data-interchange format that is easy to read and write for both humans and computers
(Crockford, 2006). Below the structure of the created model is described.

The model, called a deployment model, is expressed as an object with three top-
level attributes as shown in Listing 4.1

{

"version" : integer ,

"microservices": [{..}],

"relations": [{..}]

}

Listing 4.1: Deployment structure

The version attribute represents the version, using an integer, of this particular de-
ployment model. This attribute should be used by parsers to check whether they
are able to parse the contents of the model. The microservices attribute contains an
array of microservice objects, that will be discussed next. As shown by the mathe-
matical model, a deployment is essentially a set of microservices, hence an array is
used. Finally the relations attribute contains an array of relation objects, that will
be discussed below. Again the relations are a set of individual relations, making an
array representation a logical choice.

Every microservice in the microservices array has the structure shown in listing
4.2.

{

"id" : "string",

"name": "string",

"features": [{..}]

}

Listing 4.2: Microservice structure

A microservice has an id attribute, representing its unique identi�er. This identi�er
represents a microservice. The name attribute contains a user friendly name of the
microservice, which is not guaranteed to be unique. The last attribute, features, is
an array of all feature objects located in this microservice.

A feature object corresponds to a feature instance in the mathematical model
described above. It consists of the attributes described in listing 4.3.

{



22 81

"id" : "string",

"internal" : boolean ,

"name": "string",

"properties": [{..}]

}

Listing 4.3: Feature structure

The id attribute of this feature represents which feature this feature instance
describes. Hence a feature id is not guaranteed to be unique. A feature that has
been duplicated in another microservice must have the same id attribute as the main
public feature. The internal attribute de�nes if a feature is publicly exposed (false) or
internal (true). The name of a feature is a user friendly name, which is not guaranteed
to be unique. The properties attribute is an array of all properties of this feature.

A property is represented by the structure that is shown in listing 4.4. It contains
an id attribute that represents the property in the feature model. The name of a
property represents its non-unique user friendly name. Finally the weight represents
the weight that indicates how much processing time is required for this property. For
example a complex calculated �eld might have a higher weight than a simple boolean.

{

"id" : "string",

"name": "string",

"weight": integer

}

Listing 4.4: Property structure

Finally the relations array of a deployment model consists of relation objects, of
which the structure is shown in listing 4.5. A relation contains two attributes, an
identi�er of the source feature, and the identi�er of the target of the relation.

{

"sourceId" : "string",

"targetId": "string"

}

Listing 4.5: Property structure
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5 | Measuring the workload

As stated in the problem statement, performance and scalability related metrics are
required to optimally size microservices. This chapter �rst de�nes the concept of
workload, followed by a discussion on methods to obtain the workload. Afterwards
the link between workload and performance together with the scalability of a sys-
tem is discussed. Finally the insights obtained in this chapter are applied to the
Webshop.com running example.

5.1 De�ning a workload

Before the architecture of an application can be optimized based on the workload
of the application, the concept of workload should be clear. Intuitively the concept
of workload is �how the application is used by its users�. This raises the question
who the users of the application are. Two main groups of users can be distinguished:
human end-users that interact with the application using the user interface and other
software systems that interact with the application (API). Furthermore time is an
important dimension in the usage of an application. The usage of features over time
provides insight in patterns, that might repeat often and are worth optimizing for.
Furthermore the usage over time gives insight in peak usage, while this insight is lost
if aggregations, such as an average, are used.

As a result of the previous observations, workload is de�ned in terms of concurrent
users and used features as a function of time.

5.2 Obtaining the workload

By monitoring the operations of a system, its workload can be derived. The data
obtained from monitoring the operation of the system is collectively called Software
Operation Data (van der Schuur et al., 2011; van der Werf and Verbeek, 2015). While
Software Operation Data encompasses all data obtained by monitoring a running
system, we are only interested in the usage of features as a result of the de�nition in
the previous section. The previous section also showed that applications are used by
two main user categories: humans and other software systems. Since other software
systems typically use an API of the application instead of the user interface, measuring
the interactions with the user interface is not su�cient in general.
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In case of a client-server-model application, a model where clients interact by
requesting services of servers, which provide a set of services (Bass et al., 2007), it
is possible to measure the usage of features at the server. A typical example of a
client-server-model is the retrieval of a website by a web browser from a web server.
Most webservers have an access log, which logs a timestamp and request information.
Both requests made by humans using their web browser and other software systems
are present in this log, making it a good starting point to extract the workload.
These type of logs are also frequently used in process discovery process mining. Since
microservice architectures are typically used at the server part of the client-server-
model, a good starting point for extracting the workload are these access logs. Process
mining (Aalst, 2012), a technique that aims to discover, monitor and improve real
processes by extracting knowledge from event logs, is a technique that can be used
to extract user behaviour over time from the access logs.

5.3 Measuring the workload

While for example the access logs mentioned in the previous section provide insight in
the usage of the feature, they do not provide insight in the performance and scalability
of the system. Hence di�erent Software Operation Data is required to obtain these
insights, such as metrics.

Metrics are commonly used to monitor a running software system. However, many
de�nitions of a metric exist. We de�ne a metric as a more abstract representation,
such as an average or sum, of a time series of individual measurements. A measure-
ment is a quantitative attribute of a running software system that can be measured
automatically. An example of a metric is average response time, the average time it
takes the system to respond to a request. The measurements in this example would
be the individual response times.

The following di�erent levels of metrics, based on Meier et al. (2004), can be
identi�ed:

Application metrics Application metrics are metrics reported by the application
itself. These metrics are speci�c for the application and are typically related
to signi�cant events in the domain of the application. An example of such a
metric might be the number of products ordered per minute for a web shop.

Platform metrics Platform metrics are metrics reported by the framework or run-
time of the application. These metrics are related to signi�cant events occurring
in the runtime of the application. For example the Microsoft .Net platform re-
ports the number of exceptions thrown per second (Meier et al., 2004).

System metrics System metrics are reported by the operating system and/or hard-
ware of the server. These metrics provide information about signi�cant events
on the hardware level. The number of CPU interrupts per second is an example
of a system metric.
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Application metrics require the most e�ort of an application developer, since he
needs to implement the calculation and reporting of the metrics. However these met-
rics provide relevant insights for the business as well. Depending on the framework
or platform on which the application is build, several metrics might be available that
provide insight in technical reasons for performance problems, such as the frequency
of garbage collections. Finally system metrics are commonly used by system adminis-
trators to monitor software and the hardware, since they are easy to collect and they
indicate direct resource bottlenecks.

When a system is throughput-limited, but none of the system resources (CPU,
memory etc.) is saturated, another resource is the bottleneck of the system (Woodside
et al., 2007). A common example of such a bottleneck is database lock contention
(Cecchet et al., 2003). With database lock contention, many concurrent writes to a
single record or table are attempted, resulting in some threads or processes having to
wait until the lock is released. This waiting state does not require signi�cant CPU
or memory usage, hence it is not detectable using the system metrics. This type
of bottleneck can be detected by monitoring the metrics provided by the database
engine itself, or by application metrics that monitor the duration of database queries.

Within an application, runtime metrics can indicate abnormalities or problems.
However, such a metric does not necessarily provides insight in the cause of the abnor-
mality. For example the response time of a HTTP request might increase signi�cantly.
This metric does not provide insight in the cause of the response time increase, hence
in this case the response time is considered a symptom metric. The increased re-
sponse time might for example be caused by higher latencies or increased database
query times. The metrics that indicate the core cause of the abnormality or problem
are called causal metrics (Rob Ewaschuk, 2016).

Monitoring the performance of a distributed system, such as a microservice archi-
tecture, is a complex task (Braddock et al., 1992). A (small) performance problem
within a single microservice will cascade in reduced performance of other microservices
that depend on that microservice. With monolithic applications, one can typically
attach a pro�ler to the running system and identify the cause of the performance
problem. With a distributed system, one has to attach a pro�ler to each component
of the running system, which becomes impossible in practice.

Typically metrics are used to provide insight in the performance of a distributed
system. This requires a combination of application, platform and system metrics.
Depending on the granularity of the application metrics, these metrics mainly serve
as symptom metrics or might also provide insight in the root cause of the problem.
The platform metrics often provide insight in increased error rates in the application
itself. The system metrics act both as causal and symptom metrics. System metrics
might for example correctly indicate a saturated network link as cause of performance
problems, but in another case high CPU usage might be a result of an increased
request rate.

As shown by the previous examples, it is important to have an holistic view of the
performance of the system, since most metrics need context in order to be valuable. It
is common practice to add unique request identi�ers to incoming requests to achieve
traceability through the entire system. Using these traces, it is possible to obtain a
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(performance) stack trace of the request through the system to identify the root cause
of a performance problem.

5.4 Linking metrics to features

Platform and system metrics generally have process level as smallest granularity level.
This means that common metrics such as memory usage are available for individual
processes. A �ner level of detail can be achieved using pro�lers, however they have a
signi�cant impact on the performance of an application, making them not suitable for
production environments. While process level granularity typically provides su�cient
details for monitoring a running application, it does not provide su�cient detail to link
them to individual features, since every processes contains one or multiple features.

Depending on the type of platform metric, it might be possible to link them
to individual features using feature location techniques (Rubin and Chechik, 2013;
Dit et al., 2013). Since the application developer has full control over the application
metrics, it is possible to link them to individual features in the system. Typically these
metrics are linked to features by adding metadata to the metric. It is recommended
to use a logging and monitoring system that support structured metrics, in order
to support metadata. If the metadata contains both a unique request identi�er and
feature identifying data, the performance impact of the system's usage per feature
can be determined.

5.5 Running example

First Webshop.com needs to extract their workload. Since their application is pro-
vided as a web application, the HTTP access logs of their microservices provide a
good starting point. These access logs will not provide the full picture, because the
microservices can exchange messages using a message bus. These messages should
also be incorporated in the workload, and they should also be linked to the original
HTTP request that resulted in the message. This requires some kind of request end-
to-end traceability. Secondly they need to measure the performance of their current
architecture. Several (application level) metrics are relevant to obtain insight in the
impact of the workload on the performance:

Response time The response time of a request is an important indicator for the
user perceived performance of the system. Webshop.com does not want the
response time to increase compared to the monolithic application.

Number of requests per feature The number of requests per feature indicates
how often a feature is used, and this can be compared to the number of requests
of another feature. The number of products a customer adds to his shopping
basket is a good metric to determine the impact of combining or splitting these
features.
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Data size Since duplication of features increases the storage requirements, it is im-
portant to know how much duplication occurs.
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6 | Deployment Fitness

This chapter discusses various �tness objectives that are used to determine the quality
of a deployment. The �tness of a deployment represents the quality of a deployment,
given the de�ned objectives. At �rst candidate objectives originating from the �eld
of performance modelling using queueing theory are discussed. Secondly candidate
objectives originating from the �eld of software module clustering are described.

6.1 Queueing theory

Queueing networks are a well established method for performance modelling (Laven-
berg, 1983). As indicated by the name, it is a network of queues, hence it is part
of queueing theory, which is the mathematical study of queues (Allen, 2014) . Since
computer systems can be represented as (networks of) queues and servers, this is a
popular performance modelling technique.

The simplest queueing model is the so called M/M/1 queue. The �rst M, rep-
resenting memoryless, means that the arrivals are determined by a Poisson process.
The Poisson distribution is a discrete probability distribution for the counts of events
that occur randomly in a given interval of time (Marchini, 2008). The second M
means that the service time has an exponential distribution. Finally the 1 means
that there is one server in the system. An example of a M/M/1 queue is depicted in
�gure 6.1.

Figure 6.1: Example of a M/M/1 queue

The λ shown in �gure 6.1 is the symbol used to describe the mean arrival rate.
The mean arrival rate is the mean rate at which new customers arrive at the system
within a time unit. The mean processing rate µ describes the mean service rate of
the server, i.e. how many customers the server can handle on average within a time
unit. It should be noted that `customer' is a common term in queueing theory used
as a generic identi�er of the input of the system. In this research, `customer' can
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be replaced with `(HTTP) request'. The mean service time can be derived from the
service rate by calculating:

mean service time =
1

µ
(6.1)

Typically a �rst-in, �rst out (FIFO) queue is used, a queue in which the �rst customer
added to the queue will be served �rst.

An important concept in queueing theory is the concept of utilization. Utiliza-
tion describes the ratio of the mean arrival rate compared to the mean service rate.
Utilization is thus de�ned as:

ρ =
λ

µ
(6.2)

The mean utilization of a system should be smaller than 1, since a utilization higher
than 1 means that the mean arrival rate is greater than the mean service rate. This
will result in an ever growing queue, since more customers arrive at the system than
the system is able to process. As a result of an ever growing queue, the mean waiting
time, the mean time a customer will spend in the queue, will grow to in�nity. The
mean waiting time can be calculated using the following formula:

Wq =

ρ · 1
µ

1− ρ (6.3)

It is easy to see that if ρ approaches 1, the mean waiting time will increase sharply.
Finally the mean sojourn time is an important concept in queueing theory. The

mean sojourn time is the amount of time that a customer spends on average in the
system. This means that the sojourn time is equal to the mean waiting time plus the
mean service time. De�nition 6.1.1 provides an overview of the de�nitions given so
far.

De�nition 6.1.1 (Overview of M/M/1 queueing theory de�nitions)
λ = Mean arrival rate
µ = Mean service rate
1

µ
= Mean service duration

ρ =
λ

µ
(Utilization)

Wq =

ρ
1

µ

1− ρ (Mean waiting time)

Wq +
1

µ
= Mean sojourn time.

Based on the �eld of queueing theory, the following interesting objectives for the
�tness function have been identi�ed:
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Mean sojourn time The sojourn time is in this case the time from which a change
is con�rmed by its public feature instance, till it has been propagated to all its
internal feature instances in di�erent microservices. Especially in an eventually
consistent system, the mean sojourn time of requests should be as small as
possible. The shorter the sojourn time, the less chance there is that a user
views an inconsistent state of the system after making a change. Since the mean
waiting time is a major component of the mean sojourn time, these objectives
are both represented by this objective.

Utilization Common wisdom is to have utilization between 60 and 80 percent of
the available capacity. By optimizing for microservice utilization in this range,
the capacity of the cluster can be used more e�ciently, while having su�cient
capacity to handle peaks in the workload.

6.2 Software module clustering

In the related �eld of software module clustering, a genetic algorithm has also been
used to solve the clustering of software modules based on the relationships among the
modules (Mahdavi et al., 2003; Praditwong et al., 2011). They use several objectives
to measure the �tness:

Maximize number of intra-edges Intra-edges are dependencies within a cluster.
A high number of intra-edges indicates high cohesion.

Minimize number of inter-edges Inter-edges are dependencies between clusters.
A low number of inter-edges results in low coupling.

Maximize cluster count To prevent a single huge cluster containing all modules.

Minimize single module clusters To prevent every module becoming its own clus-
ter.

Since dependencies between microservices are resolved by adding an internal fea-
ture instance to a microservice, the number of internal feature instances re�ects the
number of inter-edges. Secondly it also determines how much data duplication oc-
curs. In case a lot of data is processed by the application, it is bene�cial to reduce
the duplication of features and thus data, to reduce hardware costs. The other two
objectives, maximizing cluster count and minimizing single module clusters, are not
considered good objective in this case, since a deployment consisting of all features in
individual microservices, or a single microservice might result in the best performance
results according to the objectives discussed before.

6.2.1 Fitness objectives

To summarize, the following objectives have been discovered in �eld of queueing
theory and software module clustering:
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• Mean sojourn time

• Mean utilization

• Number of duplicated features

The mean sojourn time is directly related to the user perceived performance of
a microservice system. As described before, this is an important factor in case of
event-driven microservice architectures, that use asynchronous messaging between
microservices to propagate changes. If the sojourn time becomes larger, it is easy to
see that a user is more likely to see an inconsistent state of the system, by viewing
data from an internal feature instance that has not processed the latest change yet.
Hence it is also desired to keep the sojourn time as low as possible from a usability
perspective.

Utilization is a measure of the used capacity. Unused capacity is basically wasted
money for companies, hence they aim to maximally use the available capacity. Typ-
ically a utilization of around 60 till 80 percent is desired, since then capacity is
e�ciently used and it ensures there is capacity left to handle peaks in the load. By
combining features together, the workload handled by a single microservice increases,
which increases the utilization of such a microservice. However a utilization higher
than 80 percent is also undesired, since that leaves too little capacity to handle un-
foreseen peaks in the workload. Hence this objective should be considered optimal
when the utilization is between 60 and 80 percent. A too high or low utilization
should be considered bad.

Finally the number of duplicated features is an indicator of how much data and
code duplication occurs. The higher the number of duplicated features, the more
asynchronous messaging between microservices has to occur, since a change needs
to be propagated to more internal feature instances in di�erent microservices. This
might result in an increase of sojourn times, since microservices might have a lot of
propagated messages in their queues. Finally duplication of features results in reduced
maintainability and increased costs of storage of the data in case the microservice
architectures handles large amounts of data.
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7 | Improving the deployment

The previous chapter described the objectives to determine the quality of a microser-
vice architecture. This chapter describes the algorithm used to search for better de-
ployments given a workload. Secondly it describes the required operators to modify
a deployment used by the optimization algorithm.

7.1 Optimization algorithm

This section examines which algorithm is suited for the problem at hand. The prob-
lem, the distribution of features over microservices, is closely related to the problem of
software module clustering. Software Module Clustering is de�ned as automatically
�nding a good clustering of software modules based on the relationships among the
modules (Mahdavi et al., 2003). In this �eld several optimization approaches have
been proposed, such as hill climbing (Mancoridis et al., 1998, 1999) and genetic al-
gorithms (Harman et al., 2002; Praditwong et al., 2011). Both methods use a �tness
function to express the quality of the clustering. Since the approach using an genetic
algorithm combined with a multi-objective approach by Praditwong et al. (2011) re-
sulted in better results than hill climbing, it was decided to use a genetic algorithm
to solve this problem. At the time this decision was made, it was still undecided
whether a combined single objective approach or a multi-objective approach would
be used, which made the genetic algorithm a better option.

7.2 Genetic algorithm

Genetic algorithms are a family of optimization algorithms inspired by Darwinian
evolution (Holland, 1975; Whitley, 1994). A genetic algorithm is schematically de-
picted in Figure 7.1. The algorithm starts with an initial population of solutions. In
genetic algorithm terms, every solution is called a chromosome. For each of these
chromosomes, the �tness is evaluated. Next the termination condition is evaluated.
In case the termination condition is met, the best chromosome from the population is
returned and the algorithm stops. In case the termination condition is not met, the
algorithm will select a subset of chromosomes from the population. These chromo-
somes will be used as input for the mutation and crossover phase. In this phase new
chromosomes will be created by mutation and crossovers operators on the selected
chromosomes. This will result in a new set of chromosomes, called o�spring, that will
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Figure 7.1: A schematic representation of a genetic algorithm

become the new population. This population will be the input for the next run of
the algorithm.

In order to apply a genetic algorithm to solve a problem, the problem should be
genetically encodable, such that the genetic operators mutation and crossover are able
to transform a chromosome in a meaningful way. This genetic encoding, as the name
states, is a representation of the problem that resembles the way DNA is represented.
Typically this is depicted as an array of bits or characters, as shown in Figure 7.2. A
bit or character in the genetic encoding, is called a gene.

Figure 7.2: Examples of genetic encoding

The selection phase in a genetic algorithm determines which chromosomes from
the population are taken as input for the crossover phase of the algorithm. It is typical
that the �tness of a chromosome is used in the selection process. This �tness describes
the quality of a solution. The �tness of a solution is calculated by a using a problem
speci�c �tness function. Several types of selection algorithms exist such as Elite,
Roulette Wheel or Tournament selection. Elite selection orders the chromosomes
by their �tness and selects a proportion of the chromosomes, which are reproduced
1/proportion times. Since Elite selection selects only the best candidates, it is likely to
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get stuck in local optima. Tournament selection is a di�erent selection algorithm that
does not su�er from this problem. With tournament selection n random chromosomes
from the population are selected. The chromosome with the best �tness will be
selected for the crossover phase. Several tournaments are held to select multiple
chromosomes till the desired crossover population size is obtained.

A crossover operator works on this genetic encoding. A crossover operator takes
one or more chromosomes from the population as input, and creates one or more
child chromosomes. This is typically done by combining the genes of the parent
chromosomes, by for example switching all genes after a �xed crossover point, as
shown in Figure 7.3.

Figure 7.3: Example of single point crossover operator

If a genetic algorithm would only use a crossover operator, the algorithm would be
sensitive to local optimal, since only chromosomes based on the original population
would be examined by the algorithm. To solve this problem, the mutation operator is
introduced. The goal of this operator is thus to increase the diversity of the chromo-
somes that are examined. A mutation operator operates on a single chromosome and
it alters one or more genes of the chromosome. Since mutation applies (semi) random
changes to a chromosome, the algorithm should visit more diverse solutions from the
solution space. A typical implementation of a mutation operator creates a random
number for every gene that determines whether this gene should be modi�ed. Figure
7.4 shows an example of a mutation applied to a chromosome, that �ips several bits
of the chromosome. The probability of an occurrence of a mutation should not be
set too high. If this value is set too high, it would result in the algorithm becoming
a random search, which will result in an ine�cient search for better deployments.

Figure 7.4: Example of mutation operator

7.3 Genetic problem encoding

In order to be able to use a genetic algorithm, the problem at hand �rst needs to
encoded in a genetic representation. This section explains the encoding used in this re-
search. A single chromosome in the population should represent a single deployment.
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As described in section 4.1, a deployment can be described as a 4-tuple (M, I, λ, h)
given a feature model FSM = (F, P,R). Chromosomes should be encoded in such a
way that it is possible to compare them.

The feature instances are thus suboptimal to represent a deployment, since the set
of feature instances di�ers per deployment. A possible solution would be to include
all feature instances in the encoding of a deployment. This would however result
in overhead in the representation, since many feature instances are not present in a
deployment.

However, the feature instances required for a deployment can be derived from the
placement of the public feature instances over the di�erent microservices combined
with the relations. If the placement of public feature instances in di�erent microser-
vices is encoded in the genetic encoding, the dependency relations can be used to
derive the internal feature instances that are required to ful�l the dependency rela-
tions for the deployment. Since the set of features of a feature model is stable across
the deployments, this representation is an e�cient encoding of the problem.

A simple representation for the placement of a public feature instance is to as-
sign every microservice a unique incremental number as identi�er. This microservice
identi�er is then used to identify in which microservice a public feature instance is
located.

Figure 7.5: Deployment of the running example

An example of this encoding is applied to a deployment of the (partial) running
example described in chapter 4. In this deployment the order feature is located in
a microservice, and the customer and delivery feature are located in another, this is
visualized in �gure 7.5.

Table 7.1 shows a encoding of this deployment using the representation method
discussed above. In this case, the order feature is represented as feature 1, the cus-
tomer feature as feature 2 and the delivery feature as feature 3.

Table 7.1: Simple genetic encoding of the running example deployment
Feature 1 2 3
Microservice 1 2 2
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However this encoding does not uniquely represent a deployment. The same de-
ployment can also be represented by the encoding shown in table 7.2. Although the
encoding is di�erent, the same features are placed together in a microservice. Since a
microservice is de�ned by the features that it contains, as de�ned in de�nition 4.1.2,
this deployment is the same as the deployment described in table 7.1.

Table 7.2: Redundant genetic encoding of the same running example deployment
Feature 1 2 3
Microservice 2 1 1

A solution having more than one representative chain in the encoding scheme
results in the encoding having redundancy (Menouar, 2010). The redundancy of this
simple encoding is large, since a deployment with m microservices, can be represented
by m! di�erent chains. Since the redundancy grows exponentially for the number of
microservices, a large part of the domain of the genetic encoding consists of duplicate
chains.

To solve this problem, the microservice identi�er should be deterministically de-
rived in such a way that the same features in a microservice result in the same mi-
croservice identi�er. Hence the identi�er should be based on the features contained
in the microservice. Instead of assigning an incremental integer as identi�er of the
cluster, the highest feature number of the features located in the microservice is cho-
sen as microservice identi�er. An example of this encoding applied to the running
example deployment is shown in table 7.3. Since feature 1 is the only feature in its
microservice, it also has the highest feature number, hence this microservice identi-
�er becomes 1. For the second microservice, there are two features: feature 2 and 3.
Since feature 3 has the highest feature number, the microservice identi�er becomes
3. It should be noted that the microservice identi�ers in this encoding are no longer
incremental. Secondly we have chosen the highest feature number arbitrarily, the
lowest feature number works equally well.

Table 7.3: Non redundant genetic encoding of the running example
Feature 1 2 3
Microservice 1 3 3

7.4 Genetic operators

As described earlier in this chapter, both the crossover operator and the mutation
operator create new chromosomes by modifying existing chromosomes. This section
describes these operators and their relation with the microservice model described in
chapter 4.



37 81

7.4.1 Crossover operator

The genetic encoding presented in the previous section is a position based encod-
ing, i.e. a particular feature must always be located at the same position in the
encoding. A crossover operator should create one or more new deployments, called
child chromosomes, based on one or more chromosomes of the current population,
called parent chromosomes. We decided to create a crossover operator that creates
two child chromosomes by merging two random microservices of two parent chromo-
somes. Combined with an initial population of chromosomes in which every feature is
located in its own microservice, this crossover operator combined with the mutation
operator resulted in an e�cient search through the search space.

This crossover operator works by �rst selecting a random microservice in the
�rst parent chromosome. This same procedure is repeated for the second parent
chromosome. Next all features of the �rst chromosome are selected that are located in
the selected microservice. The same procedure is again repeated for the second parent
chromosome. Afterwards two child chromosomes are created, one cloned from the �rst
chromosome and another cloned from the second parent chromosome. For both child
chromosomes all selected features are placed together in a single microservice.

Microservice architecture model

The crossover operator essentially performs a merge of two microservices. This section
de�nes the merge function on the microservice architecture model de�ned in chapter
4.

At �rst several primitives operators and functions on features instances I are
de�ned, since they are required for the more complex merge operation. A helper
function s is de�ned that indicates if two feature instances are of the same feature:

De�nition 7.4.1
Given two feature instances i and j, the function s, that de�nes if two feature
instances are of the same feature, is de�ned as:

s(i, j) = ∃f ∈ F : λ(j) ⊆ f ∧ λ(i) ⊆ f

The lowest level operator is the merge of two feature instances that are instances
of the same feature. The merge of an internal feature instance with its public fea-
ture instance is de�ned as the public feature instance, since the internal feature in-
stance must represent a subset of the properties of its public feature instance, i.e.
λ(iinternal) ⊆ λ(ipublic) . The result of merging of two internal feature instances is
de�ned as an internal feature instance that has the same properties as the union of
the properties of the two feature instances. The merge of two feature instances is
denoted by ⊕, as shown in de�nition 7.4.2.
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De�nition 7.4.2 (⊕ operator for feature instances)
Given two sound feature instances ij, ik such that s(ij, ik), the ⊕ operator is de-
�ned as:

ij ⊕ ik =
{
ij if ij = h(λ(ij))

il such that: ∃il ∈ I : λ(il) = λ(ij) ∪ λ(ik) otherwise

Applying the ⊕ operator to two sound feature instances should result in a sound
feature instance. The only constraint de�ned on a feature instance is that it represents
a subset of the properties of its feature. In case the ⊕ operator is applied to a public
feature instance and a internal feature instance, the resulting feature instance is the
public feature instance. Since this public feature instance is a sound feature instance
by de�nition, the �rst case of the de�nition is unable to break the constraint. In the
other case, two internal feature instances are merged, resulting in a feature instance
that represents the same properties as the union of the properties of both feature
instances. Since both feature instances contain a subset of the properties of the
feature they represent, it is easy to see that the union of these properties cannot be a
strict superset of the feature they represent. Hence ⊕ always returns a sound feature
instance when applied to two sound feature instances.

Based on the ⊕ operator, it is possible to merge microservices. A merge of two
sound microservices is de�ned as a microservice of which the feature instances repre-
sent the same properties as the union of the properties represented by the individual
microservices and that contains all public feature instances present in both microser-
vices. In case a feature is represented by a feature instance in both microservices,
these feature instances should be merged, in order to ful�l the constraint that every
microservice only contains each feature once. In case a feature is only represented in
one of the microservice, its feature instance can be added to the resulting microservice.
The merge is de�ned in de�nition 7.4.3.

De�nition 7.4.3 (Merge function for microservices)
Given two microservices mi,mj, the merge operator ] is de�ned as:

mi ]mj = {i⊕ j | i ∈ mi, j ∈ mj : s(i, j)}
∪ {i | i ∈ mi,∀j ∈ mj : ¬s(i, j)}
∪ {j | j ∈ mj,∀i ∈ mi : ¬s(i, j)}

The resulting microservice of a merge of two sound microservices should be sound
as well. The �rst constraint that a microservice should contain all feature instances
to ful�l its dependency requirements cannot be broken by merge. Both mi and mj are
sound microservices and should thus contain all feature instances needed to ful�l the
dependency requirements. In case a feature is located in both individual microser-
vices, the merged feature instance of these feature instances is placed in the merged
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microservice. As a result of the de�nition of ⊕, all properties represented by both
feature instances are represented by the merged feature instance, hence the depen-
dencies are still ful�lled. In case a feature is only represented by a feature instance
in one of the microservices, its feature instance is placed in the merged microservice.
Since both microservices are sound, this feature instance already ful�lled the depen-
dency requirements of its dependants and it will as well ful�l these in the merged
microservice.

7.4.2 Mutation operator

Since the crossover operator converges rather quickly, the goal of the mutation oper-
ator is too widen the search area. This is done by randomly selecting a gene from
the deployment. Next all features located in the same microservice are moved to a
random microservice. This might either be an existing microservice, or a new one.
While this is a mutation with a large impact, it resulted in better coverage of the
search space compared to less destructive mutations.

Microservice architecture model

Since the mutation operator moves features, the move function has to be de�ned on
the microservice architecture model.

A move of a feature is essentially removing the feature in its original microservice
followed by a insert in its new microservice. Hence both remove and insert will be
de�ned as sub-functions. At �rst the include function, that adds a feature instance
without dependencies to a microservice, is de�ned

De�nition 7.4.4 (Include function for feature instances)
Given a sound microservice m and a sound feature instance without dependencies
i, the include function is de�ned as:

include(m, i) =

{
m ∪ {i} if @j ∈ m : s(i, j)

{im|im : ¬s(i, im)} ∪ {i⊕ im|im : s(i, im)} otherwise

The include of a feature instance without dependencies i has an impact on the
constraints de�ned on a microservice and a deployment. The �rst constraint is that
every microservice contains all instances necessary to ful�l the dependency require-
ments. Since i is de�ned as a feature instance without dependencies, m still ful�ls
all dependency requirements after i being included. The second constraint is that
every feature has at most one feature instance in a microservice. If m does not con-
tain a feature instance of the same feature as i, it is easy to see that this constraint
still holds after adding i to m. In case m does already contains a feature instance
of the same feature as i, the second case of the include function is applicable, and
the new microservice is formed by all feature instances of m that are instances of
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a di�erent feature and i merged with the feature instance that represents the same
feature in m. Again it is easy to see that the feature of i is only present once in the
resulting microservice. By de�nition the included feature instance i is a subset of the
feature, and thus the constraint that every feature instance is a subset of its feature
still holds. Given a sound deployment, the addition of a feature instance is unable
to violate the constraint that every microservice contains at least one public feature
instance. However, it is possible to violate the constraints of M being a partitioning
of I, by adding a feature instance i to m that is already present in another microser-
vice. Based on include, the insert function, that correctly inserts feature instances
with dependencies, can be de�ned as shown in de�nition 7.4.5:

De�nition 7.4.5 (Insert function for feature instances)
Given a feature model (F, P,R), a sound microservice m and a sound feature in-
stance i with dependencies, the insert function is de�ned as:

insert(m, i) = include(m, i) ] ⊎
{j|λ(j)={q} where (p,q)∈R,p∈λ(i),i∈m,j 6∈m}

insert(m, j)

Since insert uses include, it can break the same constraints as include, namely
that M is no longer a partitioning of I. The other constraints are discussed below:

Every microservice should contain all feature instances to ful�l its de-
pendency requirements This constraint is met by the insert function. In case
the inserted feature instance has no dependencies, than the include is called, which
is shown above to adhere to the constraint. In case the inserted feature instance has
dependencies, the second case is applicable, which includes i itself using the include
function, and then merges the resulting microservice with all microservices that are
created by adding a dependency of i to m. Since the function recurses on the added
dependencies, all recursive dependencies are added as well. The function is capable
of handling cyclic dependency graphs, since the constraint j 6∈ m ensures that every
feature instance is only inserted once.

A microservice has at most one feature instance of a feature In the �rst
part of the function an include of i occurs, which does not violate this constraint. In
the second part two microservices are merged. Given the de�nition of merge above,
it is easy to see that merge is unable to violate this constraint as well. As a result,
insert is unable to break this constraint.

A feature instance should be a subset of its feature By de�nition i is a
subset of its feature and R contains only properties of P . This makes it impossible
to violate the constraint that every feature instance is a subset of its feature.
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In order to complete the move function, the remove function is required. The goal of
this function is to remove a feature instance from a microservice, as shown in 7.4.6.

De�nition 7.4.6 (Remove function for feature instances)
Given a sound microservicem and a sound feature instance i, remove is de�ned as:

remove(m, i) = {j|j ∈ m : j 6= i}

Since the remove function removes a feature instance from a microservice, it is
easy to see that it might remove a dependency of another feature instance. Hence the
constraint that microservice m contains all feature instances to ful�l the dependency
requirements can be violated by remove. The second constraint, that a microservice
has at most one feature instance of every feature, can not be violated by remove,
given m is a sound microservice. If m is sound, it should contain at most one feature
instance of every feature. After removing a feature instance, it is easy to see that
for every feature there is still at most one feature instance. Given that m is a sound
microservice, remove is unable to violate the constraint that every feature instance
is a subset of its feature. However, remove is able to break the constraint that each
feature has a public feature instance in a deployment, as well as the constraint that
every microservice has at least one public feature instance.

Since the removal of a feature instance in a as part of the to be de�ned move
function might result in unmet dependencies, a function is needed that reinserts all
missing dependencies as internal feature instances. The second part of insert function
reinserts all missing dependencies, so the microservice becomes sound again. This part
is extracted as a separate repair function:

De�nition 7.4.7 (Repair function for microservices)
Given a feature model (F, P,R), a microservice m in a sound deployment d, the
repair function is de�ned as:

repair(m) =
⊎

{j|λ(j)={q} where (p,q)∈R,p∈λ(i),i∈m′,j 6∈m′}
insert(m′, j)

where

• m′ = {i|i ∈ m ∧ h(λ(i)) = i}

The repair function works by �rst selecting all public feature instances in the
microservice. All dependencies of these public feature instances are then added by
calling insert for every dependency. As shown above, insert recursively adds all
dependencies. As a result, repair returns a microservice that contains all feature
instances needed to ful�l the dependency requirements. The de�nition of insert en-
sures that this function is unable to insert a feature instance of the same feature in
a microservice, but instead will merge both feature instances of the same feature.
Since j represents a single property q of P , j will always be a subset of a feature,
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hence each resulting feature is a subset of its feature. Given a microservice m in a
sound deployment d, the repair function will not remove any public feature instances,
hence every feature will still have its public feature instance. Using repair on a mi-
croservice without public feature instances will result in ∅, hence it is able to create
a deployment with a microservice that has no public feature instances.

Now all components are de�ned, the move function can be de�ned, that moves a
microservices from a microservice to another microservice:

De�nition 7.4.8 (Move function for feature instances)
Given a deployment (M, I, λ, h), two microservices mfrom,mto in M and a public
feature instance i located in mfrom , the move function is de�ned as:

move(M,mfrom,mto, i) = {f(m)|m ∈M, f(m) 6= ∅}
where

• f(m) =





repair(remove(mfrom, i)) if m = mfrom

insert(mto, i) if m = mto

m otherwise

While most of the previous functions were able to violate one or more constraints
of a sound deployment, the move function is unable to produce an invalid deployment
when applied to microservices of a sound deployment. The remove function is able
to remove dependencies of other feature instances, but any missing dependencies
are restored by the repair function. Secondly it is possible to break the constraint
that every feature has a public feature instance in the deployment, by removing it.
However since the same public feature instance is added to mto, the move function is
unable to violate this constraint. In case mto does already contain a feature instance
of the same feature, insert merges i with this feature instance. Hence move is unable
to break the constraint that a microservice contains at most one feature instance of
a feature. Since repair returns ∅ in case a microservice no longer has a public feature
instance, and empty sets are not added to the resulting partitioning, move is unable
to break this constraint as well.

7.5 Fitness calculation

The �tness function determines how �t a deployment is, i.e. the quality of the de-
ployment, given the de�ned goals. Typically the goal of the genetic algorithm is to
maximize the �tness score. The �tness function is calculated for every deployment
evaluated by the genetic algorithm, hence its speed is crucial for the speed of the
genetic algorithm. In some cases calculating an exact �tness might not be computa-
tionally feasible. In these cases an approximation of the �tness can be used.

This section describes how the �tness can be calculated for the deployments cre-
ated by the crossover and mutation operators. Of course the �tness can be calculated
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by actually implementing the deployment and executing the workload on the deploy-
ment. Based on the performance metrics, the �tness with regards to the de�ned
objectives can be determined. However evaluation of a deployment becomes very
cumbersome and time consuming. Hence approximations of the performance of a
deployment are required.

7.5.1 Queueing theory

Queueing theory is a good candidate for approximation of the performance of a de-
ployment. Although the M/M/1 model discussed earlier is the most simple queueing
model, it has been proven useful in several real life scenarios. It has been in used
for example in the performance analysis of cluster based web services (Levy et al.,
2003) and for multi-tier internet services (Urgaonkar et al., 2005). However, it is not
expressive enough to model a microservice deployment correctly.

By extending the M/M/1 model by introducing customer classes, the model be-
comes expressive enough. An example of a M/M/1 queue with multiple customer
classes is depicted in �gure 7.6.

Figure 7.6: Example of a M/M/1 queue with multiple customer classes

The standard M/M/1 model assumes that all requests are of the same type, and
have an exponential distribution. A microservice containing several features, will
process requests of di�erent types. Based on the type of requests, it is very likely
that di�erent types of requests have a di�erent exponential distribution. As in a
M/M/1 model, the arrival rate is a Poisson process which can be merged and split
(Lavenberg, 1983) based on the chance that a request has a certain class.

Thus, each class has its own service rate, denoted by µi, arrival rate, denoted by
λi, and a chance of occurring, denoted by pi. In this model, the total arrival rate of
the server is:

λ =
n∑

i=1

( pi · λi ) (7.1)

, i.e. the mean of the mean arrival rates of the di�erent customer classes. Similarly,
the service time is calculated as the weighted sum of the service times of the di�erent
classes. Hence, the mean service time of the server can be calculated using the
following formula:

µ =
n∑

i=1

( pi · λi · µi ) (7.2)
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Furthermore the mean waiting time at the server can be calculated using the same
formula as in the case of a simple M/M/1 model.

As an approximation for the chance that a request is of a certain class, we assume
the classes to be uniformly distributed, i.e.,

pi =
λi∑n
i=1 λi

(7.3)

While it is possible to retrieve the mean processing times and arrival rates per
microservice for the current deployment based on the performance metrics of the
running system, this is not possible for the new deployments generated by the mu-
tation and crossover operators. Since it takes too much time to generate the load
on an actual implementation of the suggested deployment, it should be possible to
derive the new arrival rates, processing times and resulting waiting times based on
the deployment and the performance metrics of the current deployment.

It is important to obtain the performance metrics for individual features, since
splitting performance metrics is not supported by the framework. For both modi�-
cation operators, merge and move, it needs to be determined how to calculate the
performance of the resulting microservice.

Figure 7.7: Example of merging two M/M/1 queues

In case a merge of two microservices is performed, the new arrival rate, service
rate and waiting time needs to be derived. A visual representation of such a merge
is shown in �gure 7.7. For simplicity the following notation is introduced:

mi = (λi, µi) (7.4)

This notation represents a microservice i that has a mean arrival rate λi and a mean
service rate µi. Now a merge of two microservices mi and mj with di�erent customer
types can be de�ned as:

mi ⊕mj = (λmerge , µmerge) (7.5)
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It is easy to see that λmerge is simply the sum of the arrival rates of the individual
microservices λi and λj, since the resulting microservice has to service customers of
both types.

λmerge = λi + λj (7.6)

This calculation can not be applied to the service rate, since if the service rates would
be added, the resulting microservice would be able to process at the rate of both
individual microservices combined, which is not realistic. Hence the mean of both µi
and µj seems more appropriate, i.e. the mean service rate of the merged microservice
is the mean of the service rates of both individual microservices. Although this seems
logical, it has to be improved, since the mean assumes that both type of customers
occur with 50% chance, however this assumption does not hold for all cases. It is easy
to think of a scenario in which λi is much larger than λj. µmerge would be skewed
towards µj with a simple mean. Hence a weighted mean based on the arrival rate of
the di�erent customer types seems more appropriate. This results in the following
formula:

µmerge =
λA

λA + λB
· µA +

λB
λA + λB

· µB (7.7)

Based on the calculated mean arrival rate and the mean service rate, the waiting
time can be calculated using the same formula for simple M/M/1 queues.

De�nition 7.5.1 (Merging two microservices)
Given two microservices mA = (λA, µA) and mB = (λB, µB), their merge, denoted
by mA ⊕mB is again a microservice, de�ned by

mA ⊕mB = (λA + λB,
λA

λA + λB
· µA +

λB
λA + λB

· µB)

The previous paragraph described what happens when two microservices are
merged that serve di�erent customer classes, i.e. have di�erent features. However
merging microservices that process the same customer class, requires di�erent for-
mulas. In the previous formulas, the arrival rate of a shared customer class would
be added twice, while it should be added only once. Secondly the mean service rate
would be skewed towards the mean service rate of the shared customer class, since
that would be used twice in the calculation of the weighted mean. It is easy to see
that the correct mean arrival rate can be calculated by counting the shared customer
class only once. The mean service rate is more di�cult, since both microservices have
di�erent service rates for the same customer type. It is hard to determine in general
what the e�ect is of a merge on the service rate. Depending on the type of insights
desired, it is suggested to take the minimum, mean or maximum of the service rates.
In case the minimum of both service rates is used, the most pessimistic analysis is
performed. This might be useful if worst-case scenario insights are desired. The mean
of both service rates will result in a mean service rate that in some cases might be
a bit too fast, and sometimes too slow. Hence in general the mean should result in
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reasonably good results. In case you are unsure which to use, the mean is suggested.
Finally the maximum results in the optimistic view on the system. Once again the
calculation of the utilization and the waiting time does not change.

The formulas described in this section can be used to analyse the performance of
a deployment created by crossovers and mutations based on the initial deployment
and the corresponding metrics.
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8 | Case study

A case study was performed to evaluate the approach. This chapter describes the
case study context and the results.

8.1 Case study context

This research is performed at AFAS Software B.V. The vision of AFAS is to automate
all (administrative) business processes. The main product of AFAS is an Enterprise
Resource Planning (ERP) system. The ERP system is o�ered as a Software-as-a-
Service (SaaS), called AFAS Online, or it can be hosted by the client on premise.
Since 2011 AFAS also o�ers an online expenditure book aimed at consumers, called
AFAS Personal.

In 2016, AFAS Software had a total revenue of more than 100 million euros and
a pro�t of 36 million euros. They employ 382 employees, of which 363 full-time
employees. Together these employees serve over 1 million users worldwide. Their
headquarters is located in Leusden in the Netherlands. Besides their o�ce in Leusden,
they have o�ces in Belgium, Curaçao and Aruba.

AFAS was founded in 1996 as AFAS Automatisering, as a result of a management
buyout. Shortly after the buyout, the company was renamed to AFAS Software B.V.
In 1999, AFAS Personele Systemen was founded, focusing on HR and Payroll software.
Both companies merged in 2002, resulting in AFAS Software.

8.1.1 Pro�t Next

Pro�t Next is the next version of their ERP product. The vision for Pro�t Next
is that programming should be automated, with a separation between functionality
and technique. The NEXT version of AFAS' ERP software is completely generated,
cloud-based and tailored for a particular enterprise, based on an ontological model of
that enterprise. The ontological enterprise model will be expressive enough to fully
describe the real-world enterprise of virtually any customer, and as well form the main
foundation for generating an entire software suite on a cloud infrastructure platform
of choice: AFAS NEXT is entirely platform- and database-independent. AFAS NEXT
will enable rapid model-driven application development and will drastically increase
customization �exibility for AFAS' partners and customers, based on a software gen-
eration platform that is future proof for any upcoming technologies. Currently the
generated architecture is an event driven microservice architecture using Command
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and Query Responsibility Segregation (CQRS) (Kabbedijk et al., 2012), and Event
Sourcing (Overeem et al., 2017) running on Microsoft Service Fabric at the back-end,
and a HTML5 single page application as front-end.

Pro�t Next's generator supports the generation of di�erent feature groupings at
the query side of its CQRS backend. The generator was modi�ed to support a deploy-
ment model, as described in section 4.3, as auxiliary input for the generation process.
This deployment model is used to distribute the query handlers over the di�erent
microservices. Because of the ability to modify the application generation process, it
is possible to generate many di�erent groupings of features. This makes Pro�t Next
an excellent case study environment for this research.

8.1.2 Microservice Architecture Model

The NEXT platform was used to create an application that resembles a web-shop,
depicted in �gure 8.1. It contains a customer model element that enables visitors to
create an account. A customer represents a person and consists of an email, password,
default shipping address, and other personal details. Secondly the web-shop contains
products, consisting of product information and several technical properties. These
products can be reviewed by a customer, using the review event. A customer can
create orders, consisting of one or more order lines containing an amount and a prod-
uct. Furthermore an order consists of a shipping address, by default the customers's
default shipping address. Finally an order results in a payment and a delivery. A
delivery is an event that results in goods leaving the organisation, requiring a pay-
ment in return of the other party, as depicted by the properties of delivery in �gure
8.1. A payment contains a dependency on the total price of an order. The delivery is
performed by a parcel service, and uses the shipping address provided on the order.

These six model elements result in 27 features with a total of 238 properties and
72 dependency relations between features. The maximal microservice architecture,
i.e. every feature in its own microservice if possible, is used as a baseline for the
performance tests. The resulting microservice architecture consists of 25 microser-
vices, 27 public feature instances and 55 internal feature instances, as shown in �gure
8.4(a). The number inside a feature indicates of which model element it originates.
Features with a 1 or 2 originate from the sales order model element. Features 3 to
6 are created as result of the customer model element, and features 7 till 10 are the
result of the Delivery element. The parcel service model element resulted in features
11 to 13. The review event resulted in feature 14, while the product role resulted in
15 and 16. Finally NEXT by default generates features 17 till 27, that were not used
in this workload.

8.1.3 Workload

We created an arti�cial workload, since AFAS NEXT is still under development and
not running in production. The workload we created consists of a typical scenario for
a web shop. At �rst a user creates a shopping basket and adds several products to
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Figure 8.1: Model of the created AFAS NEXT application

it. When the customer is done shopping, he pays for his order, and a delivery slip is
created. Afterwards, some users submit a review of the product.

8.1.4 Test setup

All tests are performed on a performance testing cluster. The complete testing setup is
depicted in �gure 8.2. This cluster consists of 5 virtual Windows Server 2012 machines
with four cores and 10 GB RAM. Furthermore there is a quad core Windows Server
2012 virtual machine for the database server, running PostgreSQL 9.5, having 15 GB
of RAM. The tooling created by Guelen (2015); Maddodi et al. (2016) is used to
generate load based on the speci�ed workload on the application.
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Figure 8.2: Case study test setup

The tooling by Guelen Guelen (2015) is used to generate the workload. Unfor-
tunately the tooling is currently not able to send a single request and wait till the
event has been processed by all projectors on the query side. Since the steps in the
workload require the system to be consistent after every step, this scenario had to be
converted to a batch workload to circumvent this limitation. This resulted in a phase
for every step described in the workload above, in which all concurrent users perform
that step. For example in the �rst phase all shopping carts are created, followed by
a second phase in which all products are added to all shopping carts.

Fitness function

Since this workload is a burst process, which is not a poisson distribution, we were un-
able to use our queueing theory approximation and created a simulation that simulates
the architecture of a Pro�t Next application. The output format of the simulation is
identical to the queueing theory �tness function, hence it could be easily plugged in
the genetic algorithm framework.

The simulation uses the workload as input and uses the average processing time of
all events of a certain customer class as average service time. Based on these average
service times, a discrete event simulation is created that simulates the processing
of all requests in the system. The resulting waiting time, utilization and sojourn
time of each event are calculated as part of the simulation. After the simulation has
completed, the aggregations of these metrics are calculated and used as input of the
�tness function.
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Figure 8.3: Simulation compared to reality

As described before, the simulation uses average service times, resulting in less
variation compared to an actual run. However, it follows the same trends as an
actual run, as shown in �gure 8.3. Figure 8.3 shows a part of the entire overview,
since the charting library produces an incorrect chart for the entire overview. The
graph in the right upper corner of �gure 8.3 displays the dispatcher service time.
The dispatcher is an intermediate component that distributes a single event over all
event handlers (microservices). The left upper corner depicts the waiting time at
a dispatcher. The bottom right graph displays the processing times of the event
handlers. Finally the left bottom graph shows the waiting times occurring at the
event handlers. If the actual service times were used as input of the simulation
instead of the global averages, the simulation was able to quite accurately simulate
reality. However some parts of reality are not modelled in the simulation, such as
Service Fabric rebalancing the cluster. If Service Fabric detects that the workload is
unevenly spread over the cluster, it moves microservices to other nodes on the cluster.
During this rebalancing, the balanced service temporarily has reduced throughput,
resulting in increased event waiting times. It is easy to see that this has impact on the
performance of the application, however it is outside of the scope of the simulation.

Fitness objectives

To evaluate our tool, we created an AFAS speci�c metric input module that derives
both the workload and the performance metrics from their Software Operation Data.
Based on goals of AFAS, we decided to use two �tness objectives: mean time till
consistency with a weight of one, and feature duplication with a weight of 0.2. Both
objectives had to be minimized. Furthermore the simulation was integrated in the
�tness function.
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Test variants

Before each performance test, base data is inserted in the system, such as accounts
and products. In this phase, 251 countries, 250 users, 1760 products and four parcel
services are created, that are used in the other phases of the performance test.

Three variants of the workload described in the previous subsection were used: the
low, medium, and high variant. The low variant simulates tra�c representing only a
few users. This is done by running a single load generator thread that waits uniformly
between 50 and 200 milliseconds between each request, i.e. the application has to
handle between 5 and 20 requests per second. This tests is designed to determine a
good clustering of features for small customers. Since the load on the system is low,
the system should be immediately consistent, and no signi�cant queueing of requests
should occur.

The medium variant uses four load generators with the same settings as in the low
variant case. The goal of this scenario is to create queueing at several microservices
that handle a lot of updates. The system might need some catch-up time to become
consistent, but should be quite quickly.

The high variant simulates a busy day for the web-shop. This is done by using
ten load generators with the same settings as in the low variant. As a result, the
application has to handle between 50 and 200 requests per second. The workload
should result in signi�cant queueing occurring at most places in the application. As
a result of this queueing, the system will require several minutes catch-up time to
become consistent.

For all variants, �ve runs of the performance tests on the maximal microservice
architecture depicted in �gure 8.4(a) were performed. Afterwards the run that is
the closest to the mean of the �ve runs was selected. This run was used as input
for our tool, since the metric input module operates directly on the metrics. The
microservice architecture model suggested by our tool was used as input for the AFAS
NEXT generator. The regenerated application was redeployed, and the performance
tests were re-ran on this new architecture. The following section discuss the results
for the low, medium, and high workload scenarios.

8.1.5 Results

Low Workload Scenario

The performance test results of the maximal deployment for this scenario are shown
in the left part of table 8.1. Every row in this table represents one of the phases of
the workload. The time column denotes the total time in seconds it took the system
handle this workload and become consistent. The avg. requests column denotes the
mean number of requests the system handled per second. Note that a lower time is
better, while a high number of avg. requests per seconds is better.

The metrics emitted during this test run were used as input for our tool. It
recommends to merge all features in a single microservice, resulting in a microservice
containing 27 public feature instances with zero duplication, as shown in �gure 8.4(b).
According to the simulation this should reduce the mean time till consistency from
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183 to 62 milliseconds, while reducing the number of internal features instances from
55 to zero.

The results of the performance tests on the deployment based on the suggestion of
our tool are shown in the right part of table 8.1. It should be noted that all phases of
the performance test were completed faster compared to the the initial microservice
architecture. Secondly the mean number of requests per seconds is higher for every
phase.

Table 8.1: Performance test results for the low workload variant, before and after
optimization with our tool and redeployment of the Microservice Architecture.
Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s
Order (600) 131 4.56 104 5.75
Article (1200) 270 4.44 208 5.74
Payment (600) 132 4.53 104 5.53
Delivery (600) 126 4.74 108 5.53
Review (500) 108 4.61 89 5.58

Medium Workload Scenario

The results of the medium workload scenario performance test on the maximal de-
ployment are shown in the left part of table 8.2. This table has the same layout as
table 8.1, the table denoting the results for the low workload scenario.

Based on the metrics that were emitted during the test, our tool suggests the
deployment shown in �gure 8.4(c). The mean waiting time should be reduced from
154 to 71 according to the simulation, with only a single duplicated feature. The
noti�cation component is placed in a separate microservice. This feature provides
users with noti�cations of comments among others. According to the simulation,
moving this feature to its own microservice results in a reduction of the average
sojourn time of 3 milliseconds compared to having all features in a single microservice.

The results of the performance test on the deployment suggested by our tool are
shown in the right part of table 8.2. It should be noted that again all phases of the
performance test completed in less time than in base case on the maximal deployment.

Furthermore it is interesting that the application processed less requests per second
on average, while the system has processed the entire workload earlier, as shown in
table 8.2.

High Workload Scenario

The results of the high workload scenario performance test on the maximal deploy-
ment are shown in the left part of table 8.3. This table has the same layout as table
8.1, the table denoting the results for the low workload scenario.
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Table 8.2: Performance test results for the medium workload variant, before and after
optimization with our tool and redeployment of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (2400) 138 17,3 104 5.74
Article (4800) 272 17,61 212 5.66
Payment (2400) 120 19,89 104 5.74
Delivery (2400) 123 19,41 104 5.73
Review (2000) 102 19,51 88 5.63

Table 8.3: Performance test results for the high tra�c variant, before and after opti-
mization with our tool and redeployment of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (6000) 130 45.83 121 49.30
Article (12000) 237 50.55 230 52.06
Payment (6000) 115 51.88 117 50.96
Delivery (6000) 118 50.60 116 51.43
Review (5000) 66 52.98 69 51.51

Based on the metrics that were emitted during the run, our tool recommends
the deployment shown in �gure 8.4. This microservice architecture consists of eleven
microservices, with a total of 39 duplicated internal feature instances. As can be seen
in �gure 8.4, several microservices have been merged. According to the simulation
performed by our tool, the mean time till consistency increases from 1584 milliseconds
to 1612 milliseconds. These numbers indicate that the full parallel processing capacity
of the maximal deployment is fully used to handle this workload.

The application was again regenerated and redeployed based on the deployment
suggested by our tool. The results of the performance test performed on this archi-
tecture are shown in table 8.3. The results of these tests were close to the initial
deployment, as shown in table 8.3, however with a lower number of internal feature
instances.

8.1.6 Case Study Evaluation

In case of the �rst workload scenario, the total time of the performance test is reduced
with 20% and the throughput of the system increased with 23% on average. Hence,
our tool was able to substantially improve the performance of the application. Since
this scenario only puts a low workload on the system, a single microservice is able to
process all requests without large waiting times. For this workload the overhead of
processing every request multiple times by di�erent microservices is larger than the
bene�ts gained by the increased parallel processing.
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In the medium workload scenario, the performance was improved substantially as
well, although not as much as predicted by the simulation. It is interesting to note
that the system has to handle only a quarter of the events compared to the initial
microservice architecture. This is a clear result of the fact that now less changes need
to be propagated through the system, which also reduces the total amount of events
that need to be handled by the microservices.

In the high workload scenario, the performance could not be improved substan-
tially, but the second objective of the �tness function, the duplication of feature
instances, could be reduced with 30%, from 55 to 39. As indicated by the simulation,
the full parallel processing capacity of the application is required to handle the high
workload. Combining several microservices that contain the same internal feature
instances, resulted in an substantial decrease of the duplication, without a negative
impact on the performance.

The three scenarios show that the di�erent scenarios result in a di�erent deploy-
ment, which all were able to substantially improve the overall �tness of the deployment
for the de�ned �tness goals.
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9 | Discussion & Opportunities

This chapter �rst discusses the �ndings, implications and validity of this research.
Secondly the limitations of the current research and opportunities for future research
are described.

9.1 Findings and implications

As shown in chapter 8, a redistribution based on the workload resulted in better
performance in two cases, and in less duplication in the third case. This shows that
it is possible to optimize a microservice architecture by grouping features based on
their workload. Since this research has only shown the feasibility of this approach
for a single case study, the short-term implications of this research are a call for
further research in this area. As discussed in the limitations, it needs to be applied
to multiple other cases to verify its generalizability. Secondly as discussed later in
this chapter, interesting future work in the area of self-adapting software systems can
be derived from this research. In case the success of this approach is con�rmed by
future work, the long-term implications are that organisations applying this research
will bene�t from increased performance or decreased hardware costs based on the
established goals.

9.2 Validity

This section re�ects on the tactics discussed in section 2.6.1 to ensure the validity of
this research.

9.2.1 Construct validity

All de�nitions in this research are based on existing literature, or on common def-
inition of a construct in practice. The performance metrics used in the case study
are the result of earlier scienti�c research of Maddodi et al. (2016) and developers'
experience with the system. The constructed �tness objectives are based on existing
�elds of research and feedback of developers at AFAS, but di�erent organisations
might want to use a di�erent weighting of these attributes, or add a custom metric.
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9.2.2 Internal validity

The used data collection and analysis methods are described su�ciently to reproduce
this research. Secondly all criteria are described in detail. Furthermore all tooling
that is not AFAS speci�c, will be released open-source, so anyone can verify the
process. Finally the authors believe they have described every decision in su�cient
detail.

9.2.3 External validity

Since this research describes an approach that only requires two context speci�c
components, the objectives of the �tness function and the log input transformer, it
should be quite easy to apply the created tooling in another case study company.
As mentioned above, the generic part of the tooling will be made open-source, to
stimulate other case studies. Secondly Yin (2013) recommends the usage of theory in
single-case studies to increase the external validity, therefore the created framework
is based on previous research.

9.2.4 Reliability

As mentioned in section 2.6.1, it is relatively easy to reproduce this research since
most of the process is automated. The analysis steps are all explained, and thus can be
reproduced. However it might take additional e�ort to reproduce this research in the
far future, since several products used in this research are under active development
and might change in the future.

9.3 Limitations

As a result of this research being conducted as part of a master thesis, time was a
large constraint. As a result of this time constraint, several limitations exist. First
of all the workload used in the case study is an arti�cially created workload, instead
of a real workload due to the NEXT still being under development. Secondly due
to constraints in the load generator application, the workload had to be altered to
become more batch based. As a result of these limitations, it also was not possible
to test the queueing theory �tness function, since its assumptions were too heavily
violated. The authors however remain con�dent that this model works, since it has
been applied in other researches multiple times with success.

Furthermore due to time constraints, only one base deployment was tested with
multiple workloads. Preferably, multiple workloads would have been tested on mul-
tiple deployments.
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9.4 Opportunities

As a result of the limitations of this research, many interesting opportunities for
further research exist. Further research into the robustness of the genetic algorithm
is required, such as robustness against small variations in workload, and reducing
the e�ect of non-determinism in the algorithm. More case studies are essential to
further optimize our approach, preferably with a real production workload, to con�rm
the outcome of this research. Furthermore we see opportunities for a (quantitative)
study to determine whether the proposed optimizations result in an actual reduction
of operational cost in practice.

9.4.1 Fitness objectives

While several objectives have been de�ned and implemented in the case study, more
candidate objectives exists. Several options for �tness objectives, that are worth
analysing according to the authors, are given below:

Standard deviation of requests between features in a microservice The idea
behind this objective is that microservices with features that are called equally,
result in less unnecessarily scaled features. For example assume feature A and
B are both located in the same microservice and feature A processes 1 million
requests in an hour, while feature B only processes 10 requests in an hour. In
case this microservice is scaled, because of the many requests to A, B is also
scaled, which is absolutely unnecessary. By creating microservices of features
that process around the same amount of requests, the amount of unnecessary
scaling should be reduced.

Pattern based objectives In a real workload, users typically follow patterns. For
example they �rst create an order, followed by an invoice. This also results in
a pattern in the requests, which can be used to optimize the deployment. In
case a user typically performs two, for the system unrelated, actions after each
other, these features should be located in di�erent microservices.

9.4.2 Di�erent perspectives

This research focussed on optimizing microservices with regards to performance and
data-duplication. The e�ect of these optimization on other quality attributes can be
examined. Secondly the feature grouping of microservice architectures can also be
optimized for other quality attributes, such as security and maintainability, instead
of performance.

9.4.3 Self adapting software

A self-adaptive system observes its own behavior and analyzes these observations
to determine appropriate adaptation (Oreizy et al., 1999). Salehie and Tahvildari
(2009) state that such a system must monitor itself and its context, detect signi�cant
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changes, decide how to react and act to execute such decisions. A major property of
self adapting systems is the ability to be self-optimizing according to the hierarchy
created by Salehie and Tahvildari (2009).

In case a generated software application is used, such as Pro�t Next, the created
tooling can be used to create a continuous feedback loop that alters the application
based on the workload at hand. In case the workload changes signi�cantly, the created
microservice deploymenet can be automatically altered to optimize the application
based on the de�ned goals. As a result, the application becomes self-optimizing based
on the workload at hand.
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10 | Conclusions

This chapter will answer the research questions of this master thesis.

SRQ 1
Which metrics are relevant for grouping features of microservice
architectures?

At the lowest level, performance metrics such as the service time and waiting times of
microservices and individual features are required. As discussed in chapter 6, several
higher level metrics are relevant for grouping features of microservice architectures.
The average sojourn time, the average waiting time and service time combined, is an
important metric in case of event-driven microservices architectures. Since they use
asynchronous messaging between microservices to propagate changes, an increased
average sojourn time results in slower propagation of these changes. In such a case
it is easy to see that a user is more likely to see an inconsistent state of the system,
by viewing data from an internal feature instance that has not processed the latest
change yet. Hence it is also desired to keep the sojourn time as low as possible from a
usability perspective. Furthermore the utilization of a microservice is an interesting
metric from a cost perspective, since a more e�cient usage of the available capacity
results in less unused capacity, resulting in less hardware. The duplication of features
and data is a relevant metric from a cost and maintenance perspective. Less duplica-
tion of data results in less hardware requirements, since less data needs to be stored
and processed. Furthermore less duplication of code improves the maintainability of
the application.

SRQ 2 How can metrics be linked to features?

A common requirement to link metrics to features is the option to add meta-data
to a metric. Hence it is recommended to use a logging and monitoring platform that
supports this. Depending on the type of metric, another strategy has to be used.
Three categories of metrics can be distinguished: application metrics, platform met-
rics and system metrics. Application metrics are metrics reported by the application
itself. Since these metrics are created by the developers of the application, it is easy
to add tracing meta-data to link the metric to an individual feature. In case of plat-
form metric, metrics reported by the underlying framework, it becomes a bit harder.
Depending on the metric, feature location techniques can be used to determine the
related feature. In most cases it is not possible to relate system metrics directly to
features, since most system metrics are typically available on process level. In many
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implementations of a microservice architecture, a process contains many features,
making it impossible to identify which feature is responsible for the metric. In some
cases it might be deducible by comparing the system metric with application metrics.
Based on the microservice deployment and the performance metrics, SRQ 4 can be
answered:

SRQ 3
What is an e�ective way to �nd improvements in the grouping of
features in a microservice architecture?

The �tness function described in chapter 6 can be used to evaluate the performance
of a particular microservice deployment. This �tness function is combined with a
genetic algorithm, as described in chapter 7, to search for e�cient deployments of a
set of features based on the objectives of the �tness function. Based on the �tness
function, the algorithm quickly stops searching in areas of the search space that do
not contain more e�cient deployments.

SRQ 4
What is the e�ect of the architecture modi�cations on scalability
and performance?

The suggested applications result in an architecture that is more tailored towards
the workload at hand. This is clearly shown in the case study described in chapter
8, in which a single application is adapted di�erently for three di�erent workloads.
It is thus important to have a representative workload. In general a merge of a mi-
croservice results in lower throughput of that microservice, but in cases where the
reduced throughput is su�cient to handle the workload, it becomes faster since of
the reduction in propagation messages, as shown in the medium workload scenario
of the case study. However, the total throughput capacity of the application should
be su�cient for the workload at hand. In general having the microservices as small
as possible results in more parallel capacity, but also puts more load on the system,
since all changes need to be propagated to multiple other microservices.

RQ How to group features based on application workload to
improve performance of a microservice architecture?

This question is answered by the created tooling as part of this research. It only
needs a microservice deployment model as described in chapter 4 and a workload
de�nition with the corresponding performance metrics. The tooling only requires
a case speci�c workload adapter to be able to analyse the current deployment and
suggest improvements based on the �tness function. In case a company has speci�c
optimization objectives, it is easy to alter the �tness function to take this objective
into account.
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A | Case study results

This appendix shows the individual test results for the three di�erent workload sce-
narios.

A.1 Low workload scenario

Table A.1 shows the aggregated performance metrics for the individual tests per phase
of the test. In the order phase, all orders are inserted in the system. Afterwards the
products are insert. In the payment phase, 600 payment requests are performed. In
the delivery phase, 600 deliveries are created linked to the orders. Finally in the review
phase, 500 reviews of products are created. The setup phases of users and products
are not listed in this table. The failed requests column represents the number requests
that returned an error code. The total time represents the total time in seconds it
took for each phase to complete. The requests per second columns represent the
average, minimum and maximum throughput respectively. The handletime columns
represents the average, minimum and maximum service time of the microservices. The
Eventbus waiting time represents the time the systeem required to catch up after all
requests were completed. Finally the `Max items in eventbus' column describes how
many events there were maximally during the catch-up.
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Test Failed
requests

Total time (s)
Requests/second Handletime (ms) Eventbus

waitingtime (s)
Max. items
in eventbusSubtest run # avg min max avg min max

Order
(600
request)

1 0 117 5,11 3 8 66 28 393 0 0
2 0 141 4,24 0 7 106 30 3269 0 0
3 0 124 4,81 2 7 75 29 472 0 0
4 0 131 4,56 0 7 83 33 1677 0 0
5 0 142 4,24 0 7 102 29 22406 0 0

Products
(1200
requests)

1 0 215 5,56 3 7 48 29 392 0 0
2 0 254 4,71 0 8 81 29 3449 0 0
3 0 253 4.74 0 8 78 30 1465 1 5
4 0 270 4,44 0 7 94 29 2987 0 0
5 0 293 4,09 0 7 110 28 21850 0 0

Payment
(600
requests)

1 0 104 5,74 3 8 40 28 1035 0 0
2 0 127 4,71 0 7 83 27 3358 2 1
3 0 129 4,63 0 8 80 29 2092 0 0
4 0 132 4,53 0 7 88 27 2766 0 0
5 0 124 4,82 0 7 75 29 2634 0 0

Delivery
(600
requests)

1 0 107 5,58 3 8 44 30 331 0 0
2 0 127 4,7 0 7 78 30 2067 0 0
3 0 125 4,78 0 7 73 32 1891 0 0
4 0 126 4,74 0 8 77 31 3061 0 0
5 0 160 3,74 0 8 135 31 22849 0 0

Review
(500 requests)

1 0 89 5,59 3 8 43 28 251 0 0
2 0 101 4,93 0 7 69 29 2019 0 0
3 0 101 4,93 0 8 68 29 2402 2 0
4 0 108 4,61 0 7 85 29 4159 0 0
5 0 106 4.7 0 7 80 29 1700 3 39

Table A.1: Aggregated results of the low workload tests

A.2 Medium workload scenario

Table A.2 shows the aggregated performance metrics for the individual tests per phase
of the test under a medium tra�c workload. A description of the individual columns
can be found in section A.1.

A.3 High workload scenario

Table A.3 shows the aggregated performance metrics for the individual tests per phase
of the test under a high tra�c workload. A description of the individual columns can
be found in section A.1.
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Test Failed
requests

Total time (s)
Requests/second Handletime (ms) Eventbus

waitingtime (s)
Max. items
in eventbusSubtest run # avg min max avg min max

Order
(2400
request)

1 0 138 17,3 2 26 90 36 3560 38 225
2 0 144 16,58 1 25 101 37 3599 38 185
3 0 135 17,68 2 24 92 34 3031 14 300
4 0 125 19,08 3 23 76 35 513 0 0
5 0 143 16,71 0 24 99 35 3782 0 0

Article
(4800
requests)

1 0 272 17,61 1 25 87 32 1369 41 380
2 0 253 18,95 0 24 76 31 3467 110 1041
3 0 262 18,29 2 24 83 33 5071 19 89
4 0 257 18,65 2 26 81 34 1055 82 643
5 0 300 15,97 1 25 113 32 3269 11 130

Payment
(2400
requests)

1 0 120 19,89 1 25 63 31 574 49 326
2 0 127 18,8 3 25 76 30 2687 5 10
3 0 147 16,22 5 25 112 35 3030 24 288
4 0 139 17,18 3 25 93 31 3941 117 832
5 0 135 17,67 3 27 86 31 2288 46 564

Delivery
(2400
requests)

1 0 123 19,41 4 24 70 35 389 74 613
2 0 136 17,56 2 23 90 37 1454 59 480
3 0 126 18,95 6 27 78 36 527 83 637
4 0 129 18,51 6 24 84 34 2013 84 748
5 0 125 19,11 1 26 72 37 457 21 197

Review
(500 requests)

1 0 102 19,51 2 25 68 35 629 164 989
2 0 114 17,47 1 25 89 33 1139 125 1014
3 0 137 14,53 1 24 132 35 1999 161 1125
4 0 127 15,65 3 24 113 31 2276 165 1062
5 0 102 19,49 4 25 70 33 478 106 873

Table A.2: Aggregated results of the medium workload tests

Test Failed
requests

Total time (s)
Requests/second Handletime (ms) Eventbus

waitingtime (s)
Max. items
in eventbusSubtest run # avg min max avg min max

Order
(6000
request)

1 0 130 45,83 1 56 81 37 1077 334 5037
2 0 128 46,59 7 55 77 38 426 241 3828
3 0 124 48,06 3 61 75 37 332 327 5042
4 0 127 46,94 4 58 76 36 1090 280 3631
5 0 133 44,82 2 53 86 38 1112 327 3796

Article
(12000
requests)

1 0 237 50,55 1 65 63 33 1072 348 10750
2 0 240 49,92 11 60 66 32 1055 431 9323
3 0 242 49,51 5 61 66 31 1058 352 9659
4 0 240 49,93 1 61 64 34 3121 4115 9118
5 0 239 50,11 10 60 66,0 32 386 387 9459

Payment
(6000
requests)

1 0 115 51,88 3 64 56 29 3059 156 3782
2 0 117 50,99 3 62 62 30 3189 153 4043
3 0 114 52,31 23 66 57 29 283 155 3733
4 0 117 50,97 1 66 58 30 3055 154 3578
5 0 111 53,73 15 66 55 31 398 132 3909

Delivery
(6000
requests)

1 0 118 50,6 12 61 64 33 1074 123 3811
2 0 117 50,96 1 70 61 34 365 154 4006
3 0 119 50,12 38 62 63 35 295 154 4248
4 0 118 50,56 12 60 62 33 358 128 3921
5 0 120 49,7 2 60 63 33 373 153 4149

Review
(5000 requests)

1 0 66 52,98 35 65 59 32 376 182 2854
2 0 67 52,24 9 62 58 31 359 181 2749
3 0 70 50,04 35 62 63 35 365 202 2767
4 0 68 51,44 10 63 61 32 311 179 2801
5 0 67 52,54 40 63 58 30 355 183 2753

Table A.3: Aggregated results of the high workload tests



71 81

B | Paper



Workload-based Clustering of Coherent Feature
Sets in Microservice Architectures

Sander Klock∗†, Jan Martijn E. M. van der Werf∗
, Jan Pieter Guelen† and Slinger Jansen∗

∗ Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
Email: {j.m.e.m.vanderwerf, slinger.jansen}@uu.nl

†AFAS Software, Philipsstraat 9, 3833 LC Leusden, Netherlands
Email: {s.klock, j.guelen}@afas.nl

Abstract—In a microservice architecture, each service is de-
signed to be independent of other microservices. The size of a
microservice, defined by the features it provides, directly impacts
performance and availability of the microservice. However, none
of the currently available approaches take this into account. This
paper proposes an approach to improve the performance of a
microservice architecture by workload-based feature clustering.
Given a feature model, the current microservice architecture,
and the workload, this approach recommends a deployment that
improves the performance for the given workload using a genetic
algorithm. We created MicADO, an open-source tool, in which
we implemented this approach, and applied it in a case study on
an ERP system. For different workloads, the resulting generated
microservice architectures show substantial improvements, which
sets the potential of the approach.

I. INTRODUCTION

Interest in microservice architectures has increased over the
last few years, with a significant increase since 2014 [24]. A
microservice architecture is an architecture in which a single
application is designed as a set of independent small services,
each running in its own process and communicating with
lightweight mechanisms, often an HTTP API [16]. As a result
of this, every module is an independently deployable service.
Combined with the lightweight communication protocols used,
every service can use its own programming language and can
be easily modified and scaled.

The size of a microservice is directly defined by its features,
i.e., chunks of functionality that deliver business value [4].
A microservice that offers more features will be larger than
a service with only a few features. The term microservice
indicates that services should be small. However, people are
reluctant to define how small they should be [23]. There are
several metrics for the size of microservices, such as lines of
code of a microservice, being able to rewrite a microservice in
6 weeks or having a 2-pizza team (two pizzas are enough to
feed the entire team) per service [5]. Another typical answer
is that a microservice should do one thing, which leaves room
for interpretation.

None of the existing metrics are related to quality at-
tributes [2]. However, the size of a microservices has a direct
impact on the performance and scalability of the application.
As a result of this observation, metrics related to performance

This is an AMUSE paper. See amuse-project.org for more information.

and scalability seem more appropriate than the existing met-
rics.

Moving features to other or new microservices directly
impacts the performance and scalability of the system. The
size of the smallest scalable unit becomes smaller, resulting
in an increase of scalability. The effect on the performance of
the system however depends on the relationship between its
features. If, for example, two features are heavily dependent
on each other, splitting them over different microservices
might result in significant communication overhead, and thus
performance decreases. Merging two microservices results in
a loss of scalability, but performance might increase due to
decreased communication overhead. Additionally, the actual
usage of features by users determines the impact of moving
features. If a seldom-used feature is moved, the impact is much
smaller than moving a feature that is frequently being used.

Based on these observations, this paper proposes an auto-
mated approach for optimizing the performance and scalability
of a microservice architecture by modifying the placement of
features in microservices based on the workload of a microser-
vice system. The approach is depicted in Figure 1. Based on a
feature model that describes the properties and dependencies
of the features the architecture should implement, the software
operation data collected as result of a workload on the current
system, our approach suggests a clustering of these features
in microservices, optimized for the given workload.

The remainder of this paper is structured as follows.
Section II introduces the feature model and its mapping to
microservice architectures, and Section III describes how we

Workload
Microservice ArchitectureMicroservice Architecture

MicADOMicADO

Software
Operation Data

Software
Operation Data

Feature model

Fig. 1: Overall overview of the proposed approach.
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measure the workload of a running system. The feature model
and workload are input of our genetic optimization algorithm,
which is discussed in Section IV. Our approach is validated in
a case study, of which the results are presented in Section V.
Finally Section VI provides a discussion of this research and
concludes the paper.

II. MODELING FEATURES IN MICROSERVICES

In this section, we introduce the Feature Model and a model
for Microservice Architectures.

A. Feature Model

The heart of the microservice model is formed by the set of
features that the system should implement. In a microservice
architecture, these features are distributed over different mi-
croservices. This distribution is influenced by the dependencies
between the different features. Ideally, all depending features
will be placed together in a single microservice. A feature
is represented by a set of unique properties together with
a set of features it depends upon. Since many formalisms
exist to express features and their dependencies, such as
Feature Diagrams [20], we only formalize the elements that
are required, so that architects can freely choose their favorite
notation. In our formalization, the set of features F is a
partitioning of the set of properties P , i.e., each property
belongs to exactly one feature. Similarly, the properties of
the feature determine the feature dependencies. We therefore
model the feature dependencies as a directed graph on the
properties. This results in the following definition of a Feature
Model:

Definition II.1 (Feature Model)
A feature model is a 3-tuple (P, F,R) with
• a set of properties P ;
• a set of features F , being a partitioning of P ;
• and the dependency graph (P,R), a directed graph.

Note that we allow properties to depend on properties within
the same feature. An example feature model is depicted in
Figure 2. This example has three features, A, B, and C,
with three properties each. Property P3 of feature A depends
on both property P4 of B and property P7 of C. Similarly,
property P4 and P5 of feature B depend on properties P8

AP1 P2 P3

BP4 P5 P6

CP7 P8 P9

Fig. 2: Example feature model with three features, A, B and
C, each consisting of three properties.

and P9 of C, respectively. In our model, we thus represent
feature A by {P1, P2, P3}, and the set of all features F by
{{P1, P2, P3}, {P4, P5, P6}, {P7, P8, P9}}.

B. Microservice Architectures

A microservice architecture implements a feature model, by
instantiating features in microservices. A first approach would
be to partition the features over the different microservices. Al-
though this would correctly model microservice architectures,
it is not sufficient to model event-driven microservices [19].
In this model, features publish updates to which other features
can subscribe, which results in a cascade of feature updates,
and thus in more communication between the microservices.
A common practice to avoid this cascading effect, is to
duplicate dependent features within a single microservice.
These duplicated features are internal, i.e., only available
within that microservice. The feature emitting the events is
the only feature that exposes that functionally publicly, and
contains all properties. This feature instance is the public
feature instance of a feature. Every feature thus has at least
one public feature instance and zero or more internal feature
instances. An internal feature contains a non-empty subset of
the properties of the feature, since it might only require a
part of the data from an event. This results in the following
definition of a Microservice Architecture Model:

Definition II.2 (Microservice Architecture)
Given a feature model (P, F,R), a Microservice Archi-
tecture is a 4-tuple (I,M, λ, h) with:
• a set of feature instances I;
• a set of microservices M , being a partitioning of I;
• the property instantiation function λ : I → P(P ), a

total function that maps each feature instance to a set
of properties;

• the public instance function h : F → I , a total func-
tion that defines for each feature its public instance;

such that
• Each microservice contains all instances necessary to

fulfil the dependency requirements, i.e.
∀m ∈M : ∀i ∈ m, p ∈ λ(i), q ∈ P :

(p, q) ∈ R =⇒ ∃j ∈ m : q ∈ λ(j)
• Every microservice contains each feature at most

once, i.e.
∀m ∈M : ∀i, j ∈ m : ∃f ∈ F :

( λ(i) ⊆ f ∧ λ(j) ⊆ f ) =⇒ i = j

• Each feature instance is a subset of its feature, i.e.
∀i ∈ I : ∃f ∈ F : λ(i) ⊆ f

• Each feature has a public instance that is equal to
itself, i.e.,
∀f ∈ F, i ∈ I : h(f) = i =⇒ f = λ(i)

• Each microservice contains at least one public feature
instance, i.e.
∀m ∈M : ∃i ∈ m, f ∈ F : λ(i) = h(f)

73 81



Consider again the example feature model of Figure 2. The
simplest deployment for this feature model would be to create
a microservice architecture in which all features are instanti-
ated in a single microservice, as depicted in Figure 3(a). We
call this architecture the minimal microservice architecture.
The gray elements indicate public feature instances, while the
white elements indicate internal feature instances. Another
possibility would be to deploy a microservice architecture
where each microservice has exactly one public feature, called
the maximal microservice architecture. In this case, there will
be three microservices, mA, mB and mC . As a result of the
dependencies defined in the feature model, this introduces
internal feature instances in the microservices. We denote
a feature instance by iX{P1,...,Pn}, where P1, . . . , Pn are
properties of feature X . We omit the subset of properties if it is
the complete set of properties of that feature. For microservice
mA, this results in mA =

{
iA, iB{P4}, iC{P7,P8}

}
. The other

microservices can be represented as mB =
{
iB , iC{P8,P9}

}

and mC = {iC}.

III. MEASURING WORKLOAD THROUGH SOFTWARE
OPERATION DATA

The second component of our approach is the workload of
a deployed architecture. We define the workload in terms of
concurrent users and used features as a function of time. Time
is an important dimension in the usage of an application.

One way to obtain the workload of a deployed microservice
architecture is by monitoring its operation. Monitoring the
operation of a system is not new and the use of System
Operation Data [21, 26] is widely used in software engineering
practices [3], such as maintainability [22], problem diagnosis
[27] and compliance [26]. In the remainder of this section, we
apply software operation data to obtain both the usage and the
performance of a deployed microservice architecture.

A. Feature Usage

Feature usage over time provides valuable insight in fre-
quent usage patterns, and therefore are worth optimizing for.
Usage over time provides valuable insight in peak usage, while
this is lost if aggregations, such as the mean, would be used. In
the case of a microservice architecture, most communication
is performed via lightweight mechanisms, such as the HTTP
protocol, and support logging out of the box. In essence, a
microservice architecture follows the client-server paradigm,
where clients interact by requesting services of servers, which
provide a set of services [2]. From the access log, which
contains the information which feature has been called, by
whom and when, it is possible to derive the usage of features
at the server. Process Mining [1], a set of tools and techniques
to discover, monitor and improve real processes by extracting
knowledge from event logs, allows us to analyze these access
logs to derive relevant feature usage metrics.

B. Performance Metrics

Feature usage is only one aspect of workload of a system.
Although access logs provide useful insights in feature usage,
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Fig. 3: Possible Microservice Architectures for the feature
model depicted in Figure 2.

they do not contain any information about the actual system
performance and scalability. Metrics are able to provide this
insight. We define a metric as a more abstract representation,
such as the mean or sum, of a time series of individual
measurements. A measurement is a quantitative attribute of a
running software system that can be measured automatically.
Again these metrics can be derived from system operation
data, e.g. by monitoring when a microservice executes a fea-
ture, and its duration. Based on these measures, performance
metrics can be derived. An important requirement for all
performance metrics is that all metrics should allow to be
traced back to the indivual features a microservice implements.
Different levels of performance metrics can be identified [14]:
Application metrics Application metrics are metrics reported

by the application itself. These metrics are specific for the
application and are typically related to significant events
in the domain of the application. An example of such
a metric might be the number of products ordered per
minute for a webshop.
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Platform metrics Platform metrics are metrics reported by
the framework or runtime of the application. These
metrics are related to significant events occurring in the
runtime of the application. For example the Microsoft
.Net platform reports the number of exceptions thrown
per second [14].

System metrics System metrics are reported by the operating
system and/or hardware of the server. These metrics pro-
vide information about significant events on the hardware
level. The number of CPU interrupts per second is an
example of a system metric.

Platform and system metrics typically have process level as
smallest granularity level. This means that common metrics
such as memory usage are available for individual processes.
A finer level of detail can be achieved using profilers, however
they have a significant impact on the performance of an
application, making them not suitable for production envi-
ronments. While process level granularity typically provides
sufficient details for monitoring a running application, it does
not provide sufficient detail to link them to individual features,
since every processes contains one or multiple features.

Typically these metrics are linked to features by adding
metadata to the metric. It is recommended to use a logging
and monitoring system that support structured metrics, to
support metadata, and thus the ability to link them to indi-
vidual features. If the metadata contains both a unique request
identifier and feature identifying data, the performance impact
of the system’s usage per feature can be determined using
performance or process mining tools.

IV. OPTIMIZATION ALGORITHM

Now that both the deployment and the workload have been
described, the deployment can be improved based on the
workload.

The problem at hand, the distribution of features over
microservices, is closely related to the problem of software
module clustering. Software Module Clustering is defined as
automatically finding a good clustering of software modules
based on the relationships among the modules [11]. In this
field, several optimization approaches have been proposed,
such as hill climbing [12, 13] and genetic algorithms [7, 18].
Both methods use a fitness function to express the quality of
the clustering. Since the approach using an genetic algorithm
combined with a multi-objective approach by [18] resulted in
better results than hill climbing, we decided to use a genetic
algorithm to solve this problem.

A. Genetic Algorithm

In order to apply a genetic algorithm to solve a problem,
the problem should be genetically encodable, such that the
genetic operators mutation and crossover are able to transform
a chromosome in a meaningful way. The genetic encoding is
a representation of the problem that resembles the way DNA
is represented. Typically this is depicted as an array of bits or
characters.

A single chromosome in the population should represent a
single microservice architecture. As described in Section II,
a microservice architecture can be described as a 4-tuple
(I,M, λ, h) given a feature model. Chromosomes should be
encoded in such a way that it is possible to compare them.

Different microservice architectures of the same feature
model, contain a different number of internal feature instances.
For example, the minimal microservice architecture contains
no internal feature instances, whereas the maximal microser-
vice architecture contains the most feature instances. Feature
instances are thus sub-optimal to represent a microservice
architecture. A possible solution would be to include all feature
instances in the encoding of a deployment. This would result
in overhead in the representation, as many feature instances
are not present in a deployment.

However, the feature instances required for a deployment
can be derived from the placement of the features over the
microservices and the dependency graph of the feature model.
This dependency graph encodes which features should be
created internally to obtain an independent microservice where
all dependent features are included. As the set of features
of a feature model is stable across the deployments, this
representation is an efficient encoding of the problem.

A simple representation of the placement of a feature in
a microservice is to assign an integer to every feature that
represents in which cluster it is located. As an example, for
the microservice architecture depicted in Figure 3(b), mapping
feature A to 1, B to 2 and C to 3, and microservice mA to 1
and mB,C to 2, results in the encoding shown in Table I.

TABLE I: Genetic encoding of a deployment

Feature 1 2 3
Microservice 1 2 2

However this simple representation does not uniquely iden-
tify a deployment, as shown by Table II, which gives another
encoding of the same deployment. A solution having more
than one representative chain in the encoding scheme results
in the encoding having redundancy [15]. The redundancy of
this simple encoding is large, since a deployment with m
microservices, can be represented by m! different chains.
Since the redundancy grows exponentially for the number
of microservices, a large part of the domain of the genetic
encoding consists of duplicate chains.

TABLE II: Different genetic encoding of a deployment shown
in table I

Feature 1 2 3
Microservice 2 1 1

To solve this problem, the microservice identifier should be
deterministically derived in such a way that the same features
in a microservice result in the same microservice identifier.
Hence the identifier should be based on the features contained
in the microservice. Instead of assigning an incremental integer
as identifier of the cluster, the numeric identifier of the feature
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with the highest feature number is chosen as microservice
identifier. An example of this encoding applied to the same
deployment is shown in Table III.

TABLE III: Non redundant genetic encoding of a deployment
shown in Table II

Feature 1 2 3
Microservice 1 3 3

B. Fitness Function

To compare several deployments, a function that expresses
the quality of a deployment is required. The fitness of a
deployment can be calculated by actually implementing the
deployment and executing the workload on the deployment.
Based on the performance metrics, the fitness can be deter-
mined. However, evaluation of a deployment becomes cum-
bersome and time consuming. Hence approximations of the
performance of a deployment are required.

Queueing networks is a well-established method for per-
formance modelling [9]. Since computer systems can be
represented as (networks of) queues and servers, this is a
popular performance modelling technique.

The simplest model of queueing theory, the M/M/1 model,
has proven useful in several real life scenarios. For example,
it has been used in the performance analysis of cluster-based
web services [10] and multi-tier internet services [25].

Extensions to this model are required to model a microser-
vice architecture. The standard M/M/1 model assumes that
all requests are of the same type, and have an exponential
distribution. A microservice containing several features, will
process requests of different types. Based on the type of
requests, it is likely that different types of requests have a
different exponential distribution. As in a M/M/1 model, the
arrival rate is a Poisson process which can be merged and split
[9] based on the chance that a request has a certain class. Thus,
each class has its own service rate, denoted by µi, arrival rate,
denoted by λi, and a chance of occurring, denoted by pi. In
this model, the total arrival rate of the server is:

λ =

n∑

i=1

( pi · λi ) (1)

i.e. the total arrival rate of the service equals the weighted
sum of the arrival rates of the different customer classes.
Similarly, the service time is calculated as the weighted sum
of the service times of the different classes. Hence, the mean
service time of the server can be calculated using the following
formula:

µ =

n∑

i=1

( pi · λi · µi ) (2)

The formalization of the utilization and waiting times remain
the same as for the M/M/1 case, i.e., the utilization is defined
by ρ = λ

µ .

As an approximation for the chance that a request is
of a certain class, we assume the classes to be uniformly
distributed, i.e.,

pi =
λi∑n
j=1 λi

(3)

Similarly, the arrival rate, service rate and waiting time need
to be approximated for the deployments under evaluation by
the genetic algorithm.

For brevity the following notation is introduced:

Definition IV.1 (Microservice Performance Model)
A microservice m is a 2-tuple (λ, µ), where λ denoted the
mean arrival rate, and µ denotes the mean service time.

Now, a merge of two microservices mA = (λA, µA) and
mB = (λB , µB) can be represented by

mi ⊕mj = (λmerge , µmerge) (4)

It is trivial to see that λmerge is the sum of the arrival rates of
the individual microservices, i.e., λmerge = λA+λB . Unfortu-
nately, calculating the mean service rate is more complicated.
Summing the individual service times coincides running them
in parallel, which is clearly not the case in microservices.
Hence the mean of both µA and µB seems more appropriate,
i.e. the mean service rate of the merged microservice is the
weighted mean service rate of both individual microservices.
It is easy to think of a scenario in which λA is much larger
than λB . µmerge would be skewed towards µA with a simple
mean. Hence a weighted mean based on the arrival rate of the
different customer types seems more appropriate. This results
in the following formula:

µmerge =
λA

λA + λB
· µA +

λB
λA + λB

· µB (5)

Based on the calculated mean arrival rate and the mean service
rate, the waiting time can be calculated using the same formula
for simple M/M/1 queues.

Definition IV.2 (Merging two microservices)
Given two microservices mA = (λA, µA) and mB =
(λB , µB), their merge, denoted by mA ⊕mB is again a
microservice, defined by

mA ⊕mB = (λA + λB ,
λA

λA + λB
· µA +

λB
λA + λB

· µB)

C. Assumptions and Approximations

Approximating a microservice by a queueing server is
only possible under certain assumptions. First, we assume
requests to arrive memoryless, i.e., the inter-arrival rate be-
tween two requests is independent. Additionally, we assume
each microservice has an infinite capacity. Similarly for the
service rate of a microservice, we assume that the service rate
remains independent. Thus, even if the queue is very long,
the service time remains identical. In case these assumptions
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are too heavily violated, it is always possible to use a different
approximation technique in this approach. In fact, we represent
a microservice by the distribution characteristics of the arrival
rate and service time. Changing the distribution seems straight-
forward, but the distribution for the merged microservice
becomes non-trivial and requires different analysis based on
the chosen distributions.

Another possibility is to create a (discrete event) simulation
of the application. Based on the simulation, the required
metrics can be approximated, such as the utilization and mean
waiting time. However, simulations are typically computation-
ally more expensive, resulting in an increased computation
time of the genetic algorithm. Hence it is recommended to
keep the approximation as fast as possible.

D. Fitness Objectives

Based on the fields of Queueing Theory and Software
Module Clustering, several possible objectives were studied.

An important concept in queueing theory is the mean
sojourn time, defined as total time a customer spends in the
system, i.e. the waiting and service time combined. The mean
sojourn time is directly related to the user perceived perfor-
mance of a microservice system. This is an important factor in
microservice architectures, as asynchronous messaging is used
between microservices to propagate changes. Additionally, if
the sojourn time becomes larger, a user is more likely to see
an inconsistent state of the system, by viewing data from
an internal feature instance that has not processed the latest
change yet. Hence, it is also desired to keep the sojourn time
as low as possible from a usability perspective. As the mean
waiting and service time are part of the sojourn time, these
objectives are not used individually.

Utilization, a measure of the used capacity, is another
central concept in queueing theory. Unused capacity is ba-
sically wasted money for organizations, hence they aim to
maximally use the available capacity. Typically a utilization
between 60 and 80 percent is desired, as capacity is then
efficiently used and there is always capacity to handle peaks
in the workload. By combining features in a microservice, the
workload handled by a single microservice increases, which
increases the utilization of such a microservice. Hence this
objective should be considered optimal when the utilization is
between 60 and 80 percent.

In Software Module Clustering, several objectives are used
to measure the fitness of a clustering of software mod-
ules [11][18]:
Maximize number of intra-edges Intra-edges are dependen-

cies within a cluster. A high number of intra-edges
indicates high cohesion.

Minimize number of inter-edges Inter-edges are dependen-
cies between clusters. A low number of inter-edges results
in low coupling.

Maximize cluster count To prevent a single huge cluster
containing all modules.

Minimize single module clusters To prevent every module
becoming its own cluster.

MicADO

Genetic Algorithm

Crossover Operator

Mutation Operator
Case specific 
metric input 

module

Microservice 
Architecture 

model
input module

Microservice 
Architecture
model output 

module

Fitness function
Microservice
Architecture

visualizer

Customer fitness 
function

Fig. 4: MicADO components

In the case of a microservice architecture, inter-edges, i.e.,
edges between two microservices, do not exist, as these are
resolved by adding internal feature instances to satisfy the
feature dependency graph. However, adding internal feature
instances results in data and code duplication. Which in turn
requires an increase in communication, as each feature request
needs to be propagated to more internal feature instances
in different microservices. This results in increasing sojourn
times, as microservices have more propagated messages in
their queues. Furthermore duplication of features results in
reduced maintainability. Therefore, we should minimize the
number of internal feature instances.

As the latter two objectives, maximizing cluster count and
minimizing single module clusters, are already encoded in the
utilization and sojourn time, these were discarded in the fitness
objectives.

E. MicADO

We created the open source MicADO: Microservice Archi-
tecture Deployment Optimizer 1 tool in which we implemented
this approach. An overview of the components of this tool
is depicted in Figure 4. Blocks with a dotted line indicate
customer specific modules that can be overridden.

A technical representation of the described microservice
architecture model and a workload model are the input of
this tool. The workload model requires an application specific
adapter that produces the expected workload model. After
parsing these input models, they are passed to the genetic
algorithm.

Based on the objectives of the company, our fitness function
can be used, or a different fitness function can be implemented.
Finally the ‘Microservice Architecture model output module’
outputs the best deployment suggested by the genetic algo-
rithm.

Additionally, MicADO contains a web-based microservice
architecture model viewer that visualizes the suggested mi-
croservice architecture model.

1www.architecturemining.org/tools/micado
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V. CASE STUDY

A case study was performed to evaluate the approach. This
section describes the case study context and the results.

A. Case Study Context

The case study was performed at AFAS. AFAS is a Dutch
vendor of ERP software. The privately held company currently
employs over 350 people and annually generates 100 million
of revenue. AFAS currently delivers a fully integrated ERP
suite which is used daily by more than 1.000.000 professional
users of more than 10.000 customers.

The NEXT version of AFAS’ ERP software is completely
generated, cloud-based, and tailored for a particular enterprise,
based on an ontological model of that enterprise. The onto-
logical enterprise model will be expressive enough to fully
describe the real-world enterprise of virtually any customer,
and as well form the main foundation for generating an entire
software suite on a cloud infrastructure platform of choice:
AFAS NEXT is entirely platform- and database-independent.
AFAS NEXT will enable rapid model-driven application de-
velopment and will drastically increase customization flexibil-
ity for AFAS’ partners and customers, based on a software
generation platform that is future proof for any upcoming
technologies.

B. The Architecture

Currently the generated architecture is an event driven
microservice architecture using Command and Query Respon-
sibility Segregation (CQRS) [8], and Event Sourcing [17]
running on Microsoft Service Fabric at the back-end, and a
HTML5 single page application as front-end. AFAS NEXT
supports the generation of different feature groupings at the
query side of its CQRS backend. The AFAS NEXT generation
pipeline was modified to support our microservice architecture
model as auxiliary input for the generation process. This
microservice architecture model is used to distribute the pro-
jectors over the microservices. Because of the ability to modify
the application generation process, it is possible to generate
many different groupings of features. This makes AFAS NEXT
a powerful environment for this research.

The applications ran on a five-node Service Fabric cluster,
running on virtual machines. The databases of the microser-
vices were stored on a dedicated database machine.

C. Microservice Architecture Model

The NEXT platform was used to create an application that
resembles a web-shop, depicted in Figure 5. It contains a
customer model element that enables visitors to create an
account. A customer represents a person and consists of an
email, password, default shipping address, and other personal
details. Secondly the web-shop contains products, consisting
of product information and several technical properties. These
products can be reviewed by a customer, using the review
event. A customer can create orders, consisting of one or more
order lines containing an amount and a product. Furthermore

sales ordersales order
agree me ntagree me nt

customercustomer
role  (person)role  (person)

deliverydelivery
ev entev ent

party

productproduct
role  (good)role  (good)

subject
direction: out
payment: yes

reviewreview
ev entev ent

subject

parcel serviceparcel service
role  (organisation)role  (organisation)

party

Fig. 5: Model of the created AFAS NEXT application

an order consists of a shipping address, by default the cus-
tomers’s default shipping address. Finally an order results in
an payment and a delivery. A delivery is an event that results in
goods leaving the organisation, requiring a payment in return
of the other party, as depicted by the properties of delivery in
Figure 5. A payment contains a dependency on the total price
of an order. The delivery is performed by a parcel service,
and uses the shipping address provided on the order.

These six model elements result in 27 features with a total of
238 properties and 72 dependency relations between features.
The maximal microservice architecture is used as a baseline
for the performance tests. The resulting microservice architec-
ture consists of 25 microservices, 27 public feature instances
and 55 internal feature instances, as shown in Figure 6(a). The
number inside a feature indicates of which model element it
originates. Features with a 1 or 2 originate from the sales order
model element. Features 3 to 6 are created as result of the
customer model element, and features 7 till 10 are the result
of the Delivery element. The parcel service model element
resulted in features 11 to 13. The review event resulted in
feature 14, while the product role resulted in 15 and 16. Finally
NEXT by default generates features 17 till 27, that were not
used in this workload.

D. Workload

We created an artificial workload, since AFAS NEXT is
still under development and not running in production. The
workload we created consists of a typical scenario for a web
shop. At first a user creates a shopping basket and adds several
products to it. When the customer is done shopping, he pays
for his order, and a delivery slip is created. Afterwards, some
users submit a review of the product.

E. Test setup

The tooling by Guelen [6] is used to generate the workload.
Unfortunately the tooling is currently not able to send a single
request and wait till the event has been processed by all
projectors on the query side. Since the steps in the workload
require the system to be consistent after every step, this
scenario had to be converted to a batch workload to circumvent
this limitation. This resulted in a phase for every step described
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in the workload above, in which all concurrent users perform
that step. For example in the first phase all shopping carts are
created, followed by a second phase in which all products are
added to all shopping carts.

Since this workload is a burst process, which is not a
poisson distribution, we were unable to use our queueing
theory approximation and created a simulation.

To evaluate MicADO, we created an AFAS specific metric
input module that derives both the workload and the perfor-
mance metrics from their Software Operation Data. Based
on goals of AFAS, we decided to use two fitness objectives:
mean time till consistency with a weight of one, and feature
duplication with a weight of 0.2. Both objectives had to be
minimized. Furthermore the simulation was integrated in the
fitness function.

Before each performance test, base data is inserted in the
system, such as accounts and products. In this phase, 251
countries, 250 users, 1760 products and four parcel services
are created, that are used in the other phases of the perfor-
mance test.

Two variants of the workload described in the previous
subsection were used: the low and high variant. The low
variant simulates traffic representing only a few users. This
is done by running a single load generator thread that waits
uniformly between 50 and 200 milliseconds between each
request, i.e. the application has to handle between 5 and 20
requests per second. This tests is designed to determine a
good clustering of features for small customers. Since the
load on the system is low, the system should be immediately
consistent, and no significant queueing of requests should
occur.

The high variant simulates a busy day for the web-shop.
This is done by using ten load generators with the same
settings as in the low variant. As a result, the application has to
handle between 50 and 200 requests per second. The workload
should result in significant queueing occurring at most places
in the application. As a result of this queueing, the system will
require several minutes catch-up time to become consistent.

For both variants, five runs of the performance tests on
the maximal microservice architecture depicted in Figure 6(a)
were performed. Afterwards the run that is the closest to the
mean of the five runs was selected. This run was used as
input for MicADO, since the metric input module operates
directly on the metrics. The microservice architecture model
suggested by MicADO was used as input for the AFAS NEXT
generator. The regenerated application was redeployed, and
the performance tests were re-ran on this new architecture.
The following section discuss the results for the low and high
workload scenarios.

F. Results

1) Low Workload Scenario: The performance test results
of the maximal deployment for this scenario are shown in the
left part of Table IV. Every row in this table represents one of
the phases of the workload. The time column denotes the total
time in seconds it took the system handle this workload and
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Fig. 6: Different microservice architectures for the feature
model depicted in Figure 5

become consistent. The avg. requests column denotes the mean
number of requests the system handled per second. Note that
a lower time is better, while a high number of avg. requests
per seconds is better.

The metrics emitted during this test run were used as input
for the MicADO tool. MicADO recommends to merge all
features in a single microservice, resulting in a microservice
containing 27 public feature instances with zero duplication,
as shown in Figure 6(b). According to the simulation this
should reduce the mean time till consistency from 183 to 62
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milliseconds, while reducing the number of internal features
instances from 55 to zero.

The results of the performance tests on the deployment
based on the suggestion of MicADO are shown in the right
part of Table IV. It should be noted that the time of all phases
of the performance test were completed in less time than the
initial microservice architecture. Secondly the mean number
of requests per seconds is higher for every phase.

TABLE IV: Performance test results for the low workload
variant, before and after optimization with MicADO and
redeployment of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (600) 131 4.56 104 5.75
Article (1200) 270 4.44 208 5.74
Payment (600) 132 4.53 104 5.53
Delivery (600) 126 4.74 108 5.53
Review (500) 108 4.61 89 5.58

2) High Workload Scenario: The results of the high work-
load scenario performance test on the maximal deployment
are shown in the left part of Table V. This table has the same
layout as Table IV, the table denoting the results for the low
workload scenario.

Based on the metrics that were emitted during the run,
MicADO recommends the deployment shown in Figure 6. This
microservice architecture consists of eleven microservices,
with a total of 39 duplicated internal feature instances. As can
be seen in Figure 6, several microservices have been merged.
According to the simulation performed by MicADO, the mean
time till consistency increases from 1584 milliseconds to 1612
milliseconds. These numbers indicate that the full parallel
processing capacity of the maximal deployment is fully used
to handle this workload.

The application was again regenerated and redeployed based
on the deployment suggested by MicADO. The results of the
performance test performed on this architecture are shown in
Table V. The results of these tests were close to the initial
deployment, as shown in Table V, however with a much lower
number of internal feature instances.

G. Case Study Evaluation

In case of the first workload scenario, the total time of the
performance test is reduced with 20% and the throughput of
the system increased with 23% on average. Hence MicADO
was able to substantially improve the performance of the

TABLE V: Performance test results for the high traffic variant,
before and after optimization with MicADO and redeployment
of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (6000) 130 45.83 121 49.30
Article (12000) 237 50.55 230 52.06
Payment (6000) 115 51.88 117 50.96
Delivery (6000) 118 50.60 116 51.43
Review (5000) 66 52.98 69 51.51

application. Since this scenario only puts a low workload on
the system, a single microservice is able to process all requests
without large waiting times. For this workload the overhead
of processing every request multiple times by different mi-
croservices is larger than the benefits gained by the increased
parallel processing.

In the high workload scenario, the performance could not be
improved substantially, but the second objective of the fitness
function, the duplication of feature instances, could be reduced
with 30%, from 55 to 39. As indicated by the simulation, the
full parallel processing capacity of the application is required
to handle the high workload. Combining several microservices
that contain the same internal feature instances, resulted in
an substantial decrease of the duplication, without a negative
impact on the performance.

The two previous scenarios show that the different scenarios
result in a totally different deployment, which both were able
to substantially improve the overall fitness of the deployment
for the defined fitness goals.

VI. CONCLUSIONS AND FUTURE WORK

This paper contributes to the research on microservices in
several ways. First, a formal notation to model microservice
architectures is proposed. Based on this model, modification
operators on microservices are defined. These operators, move
and merge, move a feature from a microservice to another and
merge two microservices respectively. Secondly, an approach
is proposed to optimize the performance of a microservice
architecture given its workload. This approach has two main
components as input: a microservice architecture model and a
workload with corresponding performance metrics. A genetic
algorithm searches for deployments having a better perfor-
mance for the provided workload. Since an actual execution
of the workload on a deployment is computationally expensive,
an approximation using queueing networks with multiple
customer classes is proposed as fitness function. The third
contribution is the creation of MicADO, an open source tool,
in which we implemented the proposed approach, that can be
used to easily implement the proposed approach in practice.

Finally a case study was performed to evaluate the proposed
approach and MicADO. Results of the case study show that
performance improvements up to 20% can be obtained in some
cases. This underlines the importance of an approach that takes
performance metrics into account when determining the size
of microservices.

Based on this research, we see many opportunities for future
work. Further research into the robustness of the genetic algo-
rithm is required, such as robustness against small variations
in workload, and reducing the effect of non-determinism in the
algorithm. More case studies are essential to further optimize
our approach, preferably with a real production workload, to
confirm the outcome of our research.

There are many ways of defining optimality for microser-
vices, performance and data-duplication are just two of a
plethora of possibilities. Additional objectives, such as avail-
ability, security and maintainability require new research and
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case studies. Furthermore, we believe that patterns in the
workload can be exploited to improve the feature clustering.

Further research into efficient approximations of workloads
is essential, since simulations are time consuming and are not
flawless as shown in our case study. The approach in this paper
has the potential to support self-optimizing architectures. We
envision this by automating the feedback loop and generation
of new microservice architectures based on the current and
expected workload workload of the system.
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