
Cellulose Nanocrystals and the Depletion Interaction
Colloidal Liquid Crystals and Colloidal Crystals

Bachelorthesis

Kari-Anne van der Zon

Supervised by

Jasper Landman

Dr. Andrei V. Petukhov

Prof. Dr. Willem K. Kegel

August 31, 2015

Van 't Hoff Laboratory for Physical and Colloid Chemistry

Utrecht University



Abstract

In this thesis, the production of cellulose nanocrystals (CNCs) with an average length of 440 nm is
reported, as well as the formation of tactoids of the cholesteric phase of the produced CNCs in the
prescence and absence of dextran. Moreover, the sedimentation of hollow silica cubes into rotator
hexagonal phases at the top of the sediments and rhombic phases lower in the sediments, both in the
prescence and absence of CNCs, is shown through analysis of Small-Angle X-ray Scattering patterns.

1



Contents

1 Introduction by means of a Dialogue 6

2 Theory 10

2.1 Building Blocks and Depletants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Cellulose Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Dextran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Hollow Silica Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Superballs and Superdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Self-Organisation of Colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Depletion Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Electrostatic Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Liquid Crystals of Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Formation of Colloidal Liquid Crystals of Rods . . . . . . . . . . . . . . . . . . . 14

2.2.6 Formation of Layered Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.7 Two-Dimensional Lattices of Superdisks in Real Space . . . . . . . . . . . . . . . 15

2.2.8 Two-Dimensional Lattices of Superdisks in Reciprocal Space . . . . . . . . . . . . 17

2.2.9 Miller Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



2.3.2 Microscopy with Crossed Polarizers . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Small Angle X-ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Form Factor of a Superball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Form Factor of a Hollow Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Experimental: Isotropic-Nematic Phase Transition of CNCs in prescence of Dex-
tran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Theoretical: Dense Packings of Superdisks . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Simulated: Phase Behavior of Rounded Hard Cubes . . . . . . . . . . . . . . . . 23

2.4.4 Experimental: Layered Crystals of Hollow Silica Cubes . . . . . . . . . . . . . . 24

3 Experimental 27

3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Chemicals and Laboratory Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Hollow Silica Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Cellulose Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Fluorescent Cellulose Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Cellulose Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Hollow Silica Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Depletion Series of Cellulose Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Depletions Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Microscopy Slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Polarization Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Sedimentation Capillaries with Hollow Silica Cubes . . . . . . . . . . . . . . . . . . . . . 30

3.6 X-ray Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Transmission X-ray Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 Small-Angle X-ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



3.6.3 Processing of SAXS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results and Discussion 34

4.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Tactoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 In�uence of Depletant Concentration on Tactiod Size . . . . . . . . . . . . . . . . 35

4.2.2 Growth of Tactiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 SAXS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 No Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Rotator Hexagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Rhombic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Double Rhombic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.5 Unresolved Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.6 In�uence of TMAH on Crystal Structure . . . . . . . . . . . . . . . . . . . . . . 43

4.3.7 In�uence of Cellulose Nanocrystals on Crystal Stucture . . . . . . . . . . . . . . 43

4.3.8 Rotation Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusions 48

6 Outlook 49

6.1 Regarding the Spherically Con�ned Cholesteric of CNCs . . . . . . . . . . . . . . . . . . 49

6.2 Regarding Crystallization of HSCs in presence of CNCs . . . . . . . . . . . . . . . . . . 50

7 Acknowledgements 51

8 Appendices 57

8.1 Real Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1.1 Calculation of Debye Screening Length for Sedimentation Capillaries 1 and 3 . . 57

8.1.2 Calculation of the Gravitational Length for Simple Models of the Colloids . . . . 58

8.1.3 Order of Magnitude Estimates of Depletion Interaction . . . . . . . . . . . . . . 58

4



8.1.4 Calculation of Size Ration between Superball and Depletant . . . . . . . . . . . . 60

8.2 Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2.1 Notation: Scattering and Crystallography . . . . . . . . . . . . . . . . . . . . . . 61

8.2.2 Assumption of E�ect of Hollowness on Form Factor . . . . . . . . . . . . . . . . 61

8.3 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5



Chapter 1

Introduction by means of a Dialogue

�Hey Kari-Anne! Can I sit next to you?"
�Of course! I haven't seen you for a while."
�Well, life is busy. How are you?�
�Good. Busy as well. I'm writing my bachelorthesis at the moment.�
�Oh, what is it about?"
�It is about some colloids an..."
�Wait, wait, colloids?"
�Colloids are just small particles in some medium. Bigger than molecules, but still small. Let's say
with at least one dimension between about one nanometer and one micrion. Actually, systems with
discontinuities at distances between a nanometer and a micron are called colloidal as well. [1]
�Ok, colloids. So, what kind of colloids are you working with?"
�Ehm, actually I switched topics during the project. I started with cellulose nanocrystals, but later on
I also did experiments with hollow silica cubes."
�Cellulose is from plants, right?"
�True. Cellulose is present in like all plant cell walls. Bacteria, algae and some sea animals called
tunicates make it as well. The organisms make this really strong [2] polymer by joining together
β-glucose units via a kind of chemical reaction called condensation polymerization. And then these
polymer chains attract each other because they have hydrogen bonding groups and form ordered, or
crystalline, structures. However, some of the chains do not order and between the crystalline parts
amorphous parts are present. [3] [4]"
�And how did you make the colloids out of the cellulose?"
�Using a quite old recipe. For more than sixty years [5], scientist have dissolved the amorphous parts
with acid in order to get negatively charged crystalline rods that can form stable suspensions. [6] We
call the rods nanocrystals, but others call them nanowhiskers, nano�bres [3], crystalline nanoparti-
cles [6] and formerly micro�brils [7]."
�That must be confusing."
�It is. Luckily the hollow silica cubes are only known under one name. They are really something
new, only in invented a few year ago [8] in the group where I'm doing the project. People make them
by �rst preparing pseudocubic particles of hematite, an iron oxide. Then they coat them with silica
and remove the hematite core. The resulting particles are not really cubic, actually. [9] Ever heard of
superballs?"
�Sounds like a toy."
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(a) C0 lattice (b) C1 lattice

Figure 1.1: C0 and C1 lattice packings of superballs. Reproduced from [11].

�It's a shape you can describe with this mathematical expression that works both for spheres and
cubes. The hollow silica cubes are cubic, but with rounded edges. They are really cool because they
can form all kinds of structures, even this very rare simple cubic structure [8] ... You look di�cult,
are you still following?"
�Ehm, I was wondering how the tiny cubes can form ordered structures. Do they attract or something?
�No, they even repel."
�Seriously?"
�Yes. All negatively charged. They order because of the concentration. If the concentration of parti-
cles is high enough, the particles all have more space if they are in an ordered structure. When they
crystallize they win in what is called free-volume entropy."
�Wait, I know something about entropy, but I always thought that becoming ordered meant losing
entropy."
�Yeah, you're right. The particles loose in con�gurational and/or orientational entropy upon ordering,
but they gain so much free-volume entropy that they spontaneously crystallize." [10]
�If the concentration is good, isn't it?"
�You got it! One of the simplest ways to make the concentration right is by sedimentation. [10] Gravity
pulls the cubes down. However, one of the features of colloids it that they possess intrinsic motion,
Brownian motion. That counteracts gravity. [10] It's kind of a battle."
�Gravity vs. Brownian motion. Who wins?"
�They balance. The result is a concentration gradient. At the bottom there are many particles packed
together and at the top there are only few. At the right concentration, the particles crystallize, into
the interesting structures."
�How do you know the structures?"
�Well, �rst people performed simulations to �nd the densest structure superballs can possibly form.
The researchgroup of Jiao found that, depending on the roundness of the corners, one of two crystal
lattices, named C0 and C1, is the densest packing for superballs. Both lattices can be obtained by
deformation of a face centered cubic packing, but the C0 lattice possesses twofold rotational symmetry
and while the C1 has threefold." [11]
�Sorry, but those lattices are still not clear to me."
�I`ll show you a picture." (see �gure 1.1)
�Thank you. So... the superballs in both lattices have twelve touching neighbours. Am I correct?"
�Yes!" [11]
�Are these lattices only found from theory?"
�No, other research groups [12] [13] found by simulation that these C0 and C1 crystals are indeed
the thermodynamically stable phases. Experimentally the C1 phase was observed for several kinds of
cubic-like particles." [14] [15]
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�And do your cubes form that phase as well?"
�Well, Janne-Mieke, a former PhD student at our group investigated the structures formed by hollow
silica cubes. She did not �nd the C0 and C1 lattices."
�Why not?"
�She found the two-dimensional analogs, the lattices named Λ0 and Λ1. [10] These were predicted
by simulation in two dimensions. [16] [17] Janne-Mieke has induced crystallization of the cubes via
various methods. Sedimentation was used for example. Now, sedimentation was carried out in glass
capillaries. The cubes started to crystallize at the glass wall, forming layered structures. Within the
layers, the particles ordered in two dimensions and formed these Λ0 and Λ1 lattices." [10]
�How did she �nd out?"
�Small-Angle X-ray Scattering, SAXS"
�And that is?"
�Ehm, it is a scattering technique. The crystal is radiated with X-rays. Then, the electrons in the
crystal scatter radiation in all directions. However, the scattered rays interfere with each other. That
works the same as visible light interference. Do you know what that is?"
�Yes."
�Because the structure is periodic, the interference is only constructive in a number of directions. [18]
That results in a scattering pattern, from which the crystal structure can be determined. Actually,
a scattering pattern from a crystal should be called a di�raction pattern. [19] The small angles had
to be used because a colloidal crystal was investigated. The length scales are much larger than the
wavelenght of the X-rays. Therefore, positive di�raction occurs in directions that make a very small
angle with the unscattered beam. You know what was really awesome? I went along to Grenoble to
do SAXS as well."
�Cool! Did you also investigate the hollow silica cubes there?"
�Yes. We thought it interesting to research the e�ect of cellulose nanocrystals on their crystallization.
Do you know what depletion interaction is?"
�Nope"
�Well, Daan Frenkel has come up with a really cool analogy explaining depletion interaction. [1] It
goes like this. Imagine a room in a restaurant with tables arranged in a typical dining set-up. At one
night the room is booked for a party with many guests. What happens with the tables?"
�Ehm, they are pushed next to each other near the wall?"
�Indeed, because the people like to have more space. Now, this is what happens to the colloids as well.
When they are surrounded by some smaller particles, called depletants, they are pushed together."
�So, in the analogy the cubes are the tables and the cellulose nanocrystals... the people?"
�Exactly! However, I told you I switched topics, right? In the beginning of the project the cellulose
nanocrystals were the "tables" and dextran, a branched polymer of glucose units, [20] was used as a
depletant.
�And did the cellulose nanocrystals crystallize as well?"
�Ehm, they did not sediment into crystals. Yet, they formed what is called a chiral nematic liquid
crystal." [7]
�Huh, how can a crystal be liquid?"
�Crystalline means ordered, remember? True crystals consists of particles that are ordered in terms
of orientation and position. Liquid crystalls are less ordered. For example, nematic liquid crystals
only posses orientational order. They can consist of rods having their long axes pointing in the same
direction. [21]"
�And the cellulose nanocrystals align and form a nematic liquid crystal?"
�Almost, and when the formation of a liquid crystal of cellulose nanocrystals was �rst reported in
1959 [23], people thought it was nematic. But, it's chiral nematic, meaning that there is a twist in
the orientation of the rods. The cellulose nanocrystals assemble into helicoids [7], say winding stairs.
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(a) Nemate (b) Chiral Nemate

Figure 1.2: Schematic representations of liquid crystals of rods. Images reproduced from [22].

I`ll show you an image of the liquid crystalline phases (see �gure 1.2). The chiral nematic phase is
sometimes called cholesteric because it was �rst recognized in suspensions of cholesterol." [21]
�But, if people already in in 1959 found this cholesteric phase of your particles, why did you make it
again?"
�Well, the phase behavior of the cholesteric of cellulose nanocrystals was researched quite exten-
sively [24] [25] [26] [27] [28] [29] [30], but it is still debated why the CNCs form a cholesteric phase
instead of a nematic. Cellulose molecules are chiral, but it is not sure how this chirality is transferred to
the colloidal length scale. [21] Some hypotheses involve a twisted shape of the nanocrystals [7] [31] [32],
a twisted distribution of charges on the rods [7] or the presence of small amounts of cellulose oligomers
at the surface of the nanocrystals. [21] In order to �nd the source of chirality, we intended to investigate
the e�ect of perturbation on the chiral nematic phase. Our �rst step was to con�ne it spherically."
�How did you con�ne a liquid crystal?"
�When the cholesteric forms, droplets, called tactoids, in which the liquid crystal is con�ned spheri-
cally, arise. Tactoids of the CNC cholesteric phase are mentioned in a few articles. [7] [29] However,
we added dextran as a depletant and we intended to do experiments with external �elds and look at
the coalescence of the droplets."
�And, what was the result?"
�We did make the tactoids. However, they are slow, too slow for a ten week project in fact. I did not
do perturbation experiments nor wait for the tactoids to coalesce, but switched topics."
�And looked at the e�ect of CNCs on hollow silica cube crystallization, right? Did you write your
thesis about both subjects?"
�Yes, the thesis comprises both systems. It has just the normal chapters, you know, theory, exper-
imental, results, etcetera, but all chapters treat both experiments on the CNCs plus dextran and
sedimentation of the cubes in prescence of the CNCs. The focus is more on the second system, though.
The results chapter especially includes a long analysis of the SAXS data."
�Hey, I have to disembark at this station. Hmm, you still didn't tell what structures your cubes formed
in prescence of CNCs. Anyways, it was really interesting to learn about your research."
�There really is a lot I didn't tell you. If you wish to know more about the project and the results,
you should read my thesis."
�Yeah, would like to read it!"
�Cool. I'll send you a copy. See you!"
�Bye!"
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Chapter 2

Theory

This chapter comprises four sections. The �rst section deals with the properties of the colloidal building
blocks and the depletants described in this thesis. In the second section, general concepts governing
the self-ordering of colloids are treated. The theory behind the research methods used in the project is
explained in the third section and structures expected to be formed by the building blocks in prescence
of depletants are described in the last section.

2.1 Building Blocks and Depletants

Research on two systems of building blocks and depletants is described in thesis. Cellulose nanocrystals
are the building blocks and dextran polymers the depletants of the �rst system. In the other system,
hollow silica cubes are the building blocks and the cellulose nanocrystals the depletants. The properties
of cellulose nanocrystals, dextran and hollow silica cubes are described in this section.

2.1.1 Cellulose Nanocrystals

Cellulose is a β-1,4 linked polymer of glucose with a relatively rigid stucture. [33] The chemical structure
of cellulose is presented in �gure 2.1. Cellulose nanocrystals (CNCs) are rodlike colloids in which the
cellulose chains are aligned due to hydrogen bonds. [20] The exact crystal structure of the CNCs can
be found in literature, for example in [33] or [32]. Cellulose nanocrystals can be prepared by acid
hydrolysis of a cellulose source, for example cotton. Natively, both crystalline and amorphous patches
of cellulose are present. [3] [4] The amorphous parts are more loosely packed and dissolve faster in
acid. Quenched acid hydrolysis with sulphuric acid results in cellulose nanocrystals with sulphate
groups remaining. The negative charge of the sulphate groups enables the formation of stable cellulose
nanocrystal suspensions. [34] [21] When the volume fraction is above a certain value, the suspensions
spontaneously phase separate into an upper isotropic and lower anisotropic phase. The anisotropic
phase is a chiral nematic liquid crystal. [7] This phase is described in subsection 2.2.4.
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Figure 2.1: Molecular structure of cellulose. Figure adapted from [32].

2.1.2 Dextran

Like cellulose, dextran is a glucose polymer. However, it has a branched coil-like conformation. The
glucose units are mainly linked via α-1,6 bonds, but some of the glucose units are connected to a third
neighbour via α-1,3 linkages. This α-1,3 branching can be seen in �gure 2.2.

Figure 2.2: Molecular structure of dextran with an α-1,3 branched glucose unit, R. Figure adapted
from [35].

2.1.3 Hollow Silica Cubes

Figure 2.3: TEM image of hollow silica cubes with m=3.5. Scalebar is 1 µm. Reproduced from [36].

Figure 2.3 shows a TEM image of hollow cube-like colloids are made of porous silica. These colloids
are called hollow silica cubes (HSCs). The porous silica has a density of about ρ=1.6 gcm−3. [37] The
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pH in all experiments described in this thesis was high enough to give the cubes a negative charge.
Silica has a point of zero charge around pH 1.7-3.5. [38] The hollow silica cubes not technically cubic.
The HSCs can be described quite well by the superball shape. However, in this thesis they are still
called cubes.

2.1.4 Superballs and Superdisks

�Superball" is as well the generic term for a d-dimensional body as its 3-dimensional version. 2-
dimensional superballs are called superdisks. [11] A d-dimensional superball is de�ned as a body that
occupies in d-dimensional space the region:

|x1
r
|m + |x2

r
|m + ...+ |xd

r
|m ≤ 1

Wherem is the deformation parameter and r half the edge length. The deformation parameter indicates
to what extent the shape deviates from a d-dimensional sphere. Spheres have a deformation parameter
of 2 and cubes of ∞. [10] Figure 2.4 shows a selection of three-dimensional shapes as function of the
deformation parameter. In literature other variables, such as p [16] [14] and q [12] [13] are used to
describe the roundedness of superballs as well.

Figure 2.4: Three-dimensional superball shape as function of m. Figure reproduced from [9].

2.2 Self-Organisation of Colloids

Concentrated suspensions of colloids can spontaneously transform from �uid-like structures to those
exhibiting long range orientational or spatial and orientational order: colloidal liquid crystals and
colloidal crystals. [10] In this section factors in�uencing the crystallization of colloids are explained and
structures of the liquid crystals and crystals mentioned further in the text are described. Furthermore,
the crystal structures are described in reciprocal space and the use of Miller indices is introduced.

2.2.1 Depletion Interaction

Depletion interaction can promote self-organization of colloids. [9] The general mechanism responsible
for depletion attraction is explained with �gure 2.5. This �gure represents colloids, depicted as grey
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Figure 2.5: Schematic illustration of depletion interaction between colloids in presence of polymers.
Reproduced from [1].

�lled circles, in a solution of polymer chains. Around each colloid, there is a layer in which the centres
of the depletants are unlikely to be found. This layer, called depletion layer is indicated by dashed
lines in the �gure. When the colloids are close together and the depletion layers overlap, the volume
available for the depletants increases. This is entropically bene�cial. Therefore, there is an attraction
between the colloids. For small depletant concentrations, this attraction equals the product of the
osmotic pressure of the depletants and the overlap volume of the depletion layers. The following
expression is called the Asakura-Oosawa-Vrij (AOV) depletion potential:

Wdep(h) =

 0 if h ≥ 2δ
-ΠVov(h) if 0 ≤ h ≤ 2δ
∞ if h<0


with h the distance between two colloids and δ the thickness of the depletion layer. [1] In section 8.1.3,
AOV depletion potentials are estimated for cylindrical colloids in the prescence of ideal polymers and
cubic colloids in the prescence of hard rods.

2.2.2 Sedimentation

Sedimentation can induce self-assembly of colloids as well. [10] Sedimentation of colloids is counteracted
by Brownian motion. This leads to a concentration pro�le in equlibrium. The concentration pro�le
in a column of colloids in eqilibrium can be described by a Boltzmann distribution. The distance
between the bottom of the column and the height at which the concentration is a factor e lower than
at the bottom is called the gravitational length. In fact, it is the average distance from the colloids
to the bottom. [37] In section 8.1.2 the sedimentation lengths of simple models of the CNCs and
HSCs are calculated. Perfect cellulose cylinders with a length of 440 nm and a radius of 5 nm have
a sedimentation length on the order of centimeters. The sedimentation length of perfect hollow silica
cubes with edgelengths of 1000 nm and silica layer thickness of 100 nm is on the order of microns. The
cellulose nanocrystals described in this thesis do not sediment under gravity, the hollow silica cubes
do.
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2.2.3 Electrostatic Repulsion

The CNCs and HSCs in all experimental conditions described in this thesis possess negatively charged
surfaces. Debye screening lengths of two aqueous electrolyte solutions, approximating media surround-
ing the HSCs in experiments described in this thesis are calculated in section 8.1.1. The calculated
Debye screening lengths are on the order of 10−8 or 10−9 m. This means that the electrical double
layers surrounding the HSC are small enough for the anisotropy of the particles to be apparent. The
surrounding media of the CNCs are not well de�ned. Therefore the Debye screening lengths in systems
of CNCs and dextran are not calculated.

2.2.4 Liquid Crystals of Rods

What is meant by rods in this text are , characterized by a length, L, and radius, R. Upon concen-
trating a dilute rod suspension for L

R > 7 the phase states schematically depicted in �gure 2.6 will be
encountered: the isotropic liquid state, the nematic and smectic liquid crystalline states and a crys-
talline solid state. [1] Only the isotropic and nematic phases are referred to further in the text. In the
nematic phase, the rods only possess orientational order. Their long axes point in the same direction,
called the nematic director.

The chiral nematic phase, shown in �gure 1.2b, is a special case of the nematic phase. In contrast to
the normal nematic phase, the director rotates helicoidally around a �xed axis in the chiral nematic
phase. The phase is chiral because there are two directions in which the director can possibly rotate,
left-handed and right-handed. The chiral nematic phase is also called the cholesteric phase because it
was �rst found in cholesterol. [21]

Liquid crystals can be thermotropic or lyotropic. The phase transition into a thermotropic liquid
crystalline phase is induced by a temparature change, while the phase transition into a lyotropic liquid
crystal is brought about by a change in concentration. [39] The cholesteric phase formed by CNCs is
lyotropic.

(a) Isotropic (b) Nematic (c) Smectic (d) Crystalline

Figure 2.6: Phase states of hard rod suspensions. Figure reproduced from [1].

2.2.5 Formation of Colloidal Liquid Crystals of Rods

The formation of a lyotropic nematic liquid crystalline phase in a relatively dilute suspension of rigid
linear colloid was �rst explained by Lars Onsager in a 1949 paper [40]. Onsager demonstrated that
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the isotropic-nematic phase transition spontaneously occurs due to a gain in free-volume entropy that
compensates the loss of orientational entropy. The rod number density above which the nematic phase
is entropically more favourable than the isotropic phase is on the order of 1

L2R . [41] Multiplying this
critical concentration by the volume of a single rod results in the critical volume fraction.

For typical CNCs, the critical volume fraction is on the order of 10−2. However, the isotropic-liquid
crystalline transition of CNCs can not exactly be described by Onsager theory. The CNCs are charged
and tend to form a chiral nematic phase instead of a nematic phase. Moreover, they are very poly-
disperse, causing a wide range of number densities at which the two phases coexist. The prescence of
depletants can lower the number density at which the isotropic-nematic phase transition occurs. [1]

2.2.6 Formation of Layered Crystals

When sedimented in glass capillaries with �at glass walls, cubic colloids may form layered structures.
The layeres are formed when the cubes anchor at the glass wall and orient with two faces parallel to
the wall. If the capillary is thin with respect to the cube diameter, the wall anchoring in expected to
have a strong e�ect on the overall structure. [10]

2.2.7 Two-Dimensional Lattices of Superdisks in Real Space

Three two-dimensional phases of superdisks are shown in �gure 2.7 and explained in this subsection:
the rotator hexagonal, Λ0 and Λ1 phases.

(a) Rotator hexagonal phase (b) Λ0 phase (c) Λ1 phase

Figure 2.7: Rotator hexagonal, Λ0 and Λ1 phases of superdisks with lattice vectors ~a1 and ~a2 indicated.

Rotator Hexagonal Phase

Anisotropic particles in a rotator hexagonal phase, shown in �gure 2.7a, are positioned in a hexagonal
lattice. The particles can rotate freely around their centers of mass and e�ectively sweep circular
areas. [17] The hexagonal lattice can be described by two lattice vectors of equal length, ~a1 and ~a2,
that make an angle of 120 degrees.
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Λ0 Phase

The Λ0 lattice, shown in �gure 2.7b, consists of rows of particles that are o�set by half the particle
diameter. [10] It can be described by two lattice vectors, ~a1 and ~a2, with ~a2 > ~a1.

Λ1 Phase

The Λ1 lattice packing, also called rhombic lattice packing in this thesis, is shown in �gure 2.7c. The
lattice can be constructed from two vectors of equal length:

~a1 = (2−1/m − 21/2s)i+ (2−1/m + 21/2s)j

~a2 = (2−1/m + 21/2s)i+ (2−1/m − 21/2s)j

where i and i are unit vectors along the x1 and x2 direction, respectively. s is the smallest positive
root of the following equation:

|2−(1+1/m) − 2−1/2s|m + |21+1/m + 2−1/2s|m = 1

Stacking of Λ1 layers

In �gure 2.8 three possible stacking fashions for Λ1 lattices are shown. The centres of cubes in top site
stacked layers are situated above each other. With bridge site stacking, overlying cubes lie on top of
the corners of four underlying cubes. The centres of hollow site stacked cubes are located above the
hollow between three underlying cubes. When the layers are stacked randomly, sliding planes are said
to be present.

(a) Top site (b) Bridge site
(c) Hollow Site

Figure 2.8: Possible stackings of Λ1 lattices. Dots indicate the centres of the cubes in overlying layers.
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2.2.8 Two-Dimensional Lattices of Superdisks in Reciprocal Space

In the following, some crystallographic concepts are mentioned and applied to the hexagonal and
rhombic lattices. The two lattices are described in reciprocal space. Reciprocal space, a mathematical
concept, is the space in which the Fourier transform of a spatial function is represented.

The periodic arrangement of the building blocks of a crystal can be described by unit cell vectors
spanning a lattice. The points that are obtained by adding an integer number of unit cell vectors are
called lattice points. Planes passing through lattice points are called lattice planes. [18]

Two-Dimensional Hexagonal and Rhombic Bravais Lattices in Reciprocal Space

The two-dimensional hexagonal Bravais lattice, of which an unit cell is shown in �gure 2.10a, can be
described by two unit cell vectors of equal length, ~a1 and ~a2 that make an angle of 120 degrees. The
reciprocal of this lattice is described by ~b1 and ~b2. ~b1 makes an angle of 90 degrees with ~a2 and ~b2
makes a right angle with ~a1. Therefore, the angle between ~b1 and ~b2 is 60 degrees, as shown in �gure
2.10b.

The rhombic lattice is very similar to the hexagonal lattice. The only di�erence is that the angle
between ~a1 and ~a2 is between 90 o and 120o. The reciprocal unit cell of the rhombic lattice is similar
to �gure 2.10b, but the angle between ~b1 and ~b2 is larger than 60 degrees.

(a) Real space unit cell. (b) Reciprocal unit cell.

Figure 2.9: Unit cells of the two-dimensional hexagonal Bravais lattice and corresponding reciprocal
lattice.

2.2.9 Miller Indices

Lattice planes in two-dimensional lattices can be labeled with two Miller indices, the integers h and k.
If a series of lattice planes divides ~a1 in h sections and ~a2 in k sections, the series of planes is labeled
hk. The perpendicular distance between two consecutive planes in a series of lattice planes is called
the lattice spacing dhk. The vector ~dhk, perpendicular to the lattice planes with length equal to the
lattice spacing can be used to de�ne lattice planes.
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The relationship between the lattice planes and the reciprocal lattice is given by:

~1

d(hk)
= h~b1 + k~b2

Therefore, a series of lattice planes (hk) de�ned in the real space lattice can be represented by one
point (hk) in the reciprocal lattice. [18] As an example, this is illustrated for three lattice planes in
the hexagonal lattice and corresponding points in reciprocal space in �gure 2.10.

(a) 10, 01 and 1̄1 lattice planes of the real space lattice.
(b) 10, 01 and 1̄1 points of the
reciprocal lattice.

Figure 2.10: Miller indices indicated for lattice planes in real space and corresponding points in recip-
rocal space for the two-dimensional hexagonal Bravais lattice.

2.3 Research Methods

Both cellulose nanocrystals and hollow silica cubes are characterized by transmission electron mi-
croscopy. The system of CNCs in the prescence of dextran is researched using microscopy with crossed
polarizers. The hollow silica cubes in the prescence of CNCs are investigated using small angle x-ray
scattering.

2.3.1 Transmission Electron Microscopy

In a Transmission Electron Microscope electrons travel through a sample and are collected at the
rear side. This resluts in a two-dimensional projection of the three-dimensional sample. [42] Electron
blocking parts of the sample appear black on this projection.
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Figure 2.11: Crossed polarizers

2.3.2 Microscopy with Crossed Polarizers

Figure 2.11 illustrates how two polarizers can be used to visualize a sample that alters the polarization
of light. The light arriving at the sample is linearly polarized due to the �rst polarizer. The second
polarizer is rotated 90◦ with respect to the �rst one. Therefore, when the sample does not alter the
polarization of the incoming light, there will be no light passing through the second polarizer. Cellulose
nanocrystals aligned perpendicular to the direction of observation show birefrigence. They refract the
incoming polarized light into two orthogonal polarizations. One of the polarizations is parallel to
polarization direction of the second polarizer, and can pass through this polarizer. When the axis of
the chiral nematic is approximately perpendicular to the direction of observation, the liquid crystal
is periodically birefrigent and not birefrigent along the axis. Figure 2.12 shows how a striped pattern
results from the helical ordering of the particles in the cholesteric. [21]

Figure 2.12: The alignment of the nanocrystals is periodically perpendicular and perpendicular to the
direction of observation, causing a striped pattern. p stands for pitch and the direction of observation
is from left to right. Figure reproduced from [21].

Using an optical microscopy setup in which two polarizers are placed as depicted in �gure 2.11 chiral
nematic liquid crystals can be identi�ed and studied by the striped pattern.
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2.3.3 Small Angle X-ray Scattering

In a SAXS set-up, a sample is irradiated with X-rays. The electrons in the sample scatter the radiation
elastically. The scattered radiation is recorded and provides information in reciprocal space. Recorded
SAXS patterns are usually represented as function of the scattering vector, ~q. ~q is de�ned as the
vector pointing from the wavevector of the incoming X-rays to the wavevector of the scattered rays.
It's magnitude is given by:

q =
4π

λ
sin

θ

2

with λ the wavelength of the X-rays and θ the angle between the incident beam and di�racted beam. [19]

Small angle X-ray scattering patterns recorded from colloidal crystals can provide information on the
shape and size of the particles and the spatial con�guration of the particles. [10] The particle form
factor, P (~q), results from the intraparticle structure while the structure factor, S(~q), originates from
the interparcticle structure. The scattered intensity, I(~q), is proportional to both the form factor and
structure factor:

I(~q) ∝ P (~q)S(~q)

2.3.4 Form Factor of a Superball

Figure 2.13a shows the theoretical two-dimensional form factor of an amorphous superball withm=3.6,
oriented as shown in �gure 2.13b. Two features are apparent from the �gure, namely the cross shaped
area of increased intensity and the anisotropic shape of the form factor maxima. The cross shaped
intensity modulation is caused by the �at faces of the cubes. Faces parallel to the X-ray beam scatter
most intense. The shape anisotropy is caused by the di�erent dimensions within the cubes. The
diagonals are longer than the edgelengths, resulting in shorter diagonal distances bewteen the form
factor maxima and longer horizontal distances.

2.3.5 Form Factor of a Hollow Particle

In section 8.2.2, the form factors of a full sphere and hollow spheres with di�erent wall thicknesses are
calculated. For the spheres it is clear that with increasing hollowness, the form factor minima move
to lower q-values.

Structure Factor of a Crystal

Crystalline structures give rise to intense spots, called Bragg re�ections or peaks, at speci�c q-values.
The scattering vector, ~qhk, describing a re�ecion appears to be equal to the vector ~1

dhk
describing

the lattice planes causing that re�ection. The peaks appear because the waves scattered from the
periodically ordered particles only interfere positively when Bragg's law is ful�lled:

2d sin
θ

2
= nλ

with d the distance between two subsequent lattice planes, θ the angle between the scattered and
unscattered beam and n an integer. [18]
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(a) Form factor calculated by Janne-Mieke Meijer (not yet published). (b) A superdisk

Figure 2.13: Form factor of a superdisk oriented as depicted.

Relation between Lattice Spacings and q-Values of Corresponding Peaks

For �rst-order re�ections, for which n=1, Bragg's law can be rearranged:

dhk =
λ

2 sin θhk

2

The equation for the magnitude of the scattering vector, given on page 20, can be rearranged as well:

λ

2 sin θhk

2

=
2π

qhk

Therefore, the real space lattice spacing of lattice planes giving rise to a certain Bragg re�ection can
be calculated from it's q-value:

dhk =
2π

qhk
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The Third Dimension

The two-dimenional SAXS pattern can be in�uenced by the stacking of crystal layers. When rays
scattered from di�erent layers interfere negatively, peaks disappear from the scattering pattern. Figure
2.14, shows the 10 lattice planes in Λ1 lattices of superballs stacked as described in section 2.2.7. For
top site stacking, the lattice planes of all layers have the same periodicities. The scattering patterns
resulting from top site stacked layers are the same as patterns resulting from a single layer. However,
the periodicities of the 10 lattice planes of overlying layers are between those of underlying layers for
brigde site and top site stacked Λ1 lattices. This causes negative interference of waves scattered from
the di�erent layers and absence of the 10 peak from the scattering patterns. Similar reasoning can
predict the absence of peaks emerging from other lattice planes. For example, 1̄1 re�ections are absent
on patterns recorded from hollow site stacked layers, but present in patterns recorded from bridge site
stacked layers.

(a) Top site. (b) Bridge site. (c) Hollow site.

Figure 2.14: 10 lattice planes in top site, bridge site and hollow site stacked Λ1 layers of superballs.

Bragg Rods

Three-dimensional information on the crystal structure can be extracted from rotation scans. During
such scan the sample is rotated along it's vertical axis. SAXS patterns are recorded at several rotation
angles, ω. ω is de�ned zero for the position in which the �at capillary wall is perpendicular to the
beam.

Stacking disorder in scattering experiments manifests itself as the smearing out of some of the Bragg
re�ections along so-called Bragg scattering rods in the direction perpendicular to the planar stacking
faults. [43] Whether Bragg rods are present or not can be found out from the rotation scans. Figure
2.15 schematically shows three Bragg rods in blue, viewed from the direction perpendicular to the
crystal layers. From the �gure, it can be deduced that if a Bragg rod is present, the x-position of the
qhk re�ection as function of ω is described by:

qx =
qx,ω0

cosω
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Figure 2.15: Increase of the horizonal q-value of a re�ection by rotation of a random stacked sample
by an angle ω. Bragg rods indicated by blue bars, horizontal axis of sample at ω0=0 and ω by black
and red line respectively and incoming beam indicated by a red arrow.

2.4 Previous Research

Previous theoretical, simulated and experimental work on systems similar to those described in this
thesis is described in this section.

2.4.1 Experimental: Isotropic-Nematic Phase Transition of CNCs in pres-

cence of Dextran

In a 2002 paper [20], Edgar and Gray have shown that addition of blue dextran to CNC dispersions in
the biphasic regime widens the biphasic regime and that the dextran preferentially partitions in the
isotropic phase. Figure 2.16 shows the widening of the biphasic regime. Blue dextran contains nonionic
covalently bound Recative Blue 2 dye randomly attached to the hydroxyl groups of dextran. [44] Edgar
and Gray used 2000 kDa blue dextran and cellulose nanocrystals with an average length of 110 nm
and diameter of 10 nm, prepared by acid hydrolysis of cotton paper.

2.4.2 Theoretical: Dense Packings of Superdisks

The Λ0 and Λ1 highly dense superdisk lattice packings were found from simulations by the group of
Jiao [16]. For nearly all m-values, the densest packing is the Λ1 lattice, as shown in �gure 2.17.

2.4.3 Simulated: Phase Behavior of Rounded Hard Cubes

Avendaño et al. [17] simulated the phase behavior of rounded hard cubes. The group composed the
outlines of the rounded cubes from four cylinders and four spheres. The cylinders of length L were
used for the �at faces and the spheres of diameter σ for the rounded corners. The roundness of the
corners is described by aspect ratio L∗ = L

σ . The simulations were performed as function of L∗ and
η, the packing fraction. η is the inverse of the packing density, φ, used by Jiao et al. [16]. Figure
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Figure 2.16: Partial phase diagram of a CNC suspension with blue dextran added. Rg is the radius of
gyration of the dextran coil. I stands for isotropic region and N for the chiral nematic region. Figure
reproduced from [20].

2.18 shows that for low η the rhombic phase, which is similar to the Λ1 phase, was found. At higher
packing fractions an rotator hexagonal phase was found.

2.4.4 Experimental: Layered Crystals of Hollow Silica Cubes

Evidence for the glass anchoring theory described in subsection 2.2.6 was provided from sedimentation
experiments in which the cross-section of the capillaries was the only variable. Hollow silica cubes
formed polycrystalline structures when sedimented in capillaries with circular cross-section and layered
structures when sedimented in capilllaries with �at walls. [10]

Depletion induced crystallisation of hollow silica cubes may also lead to two-dimensional structures.
As shown in �gure 2.19, both the Λ1 and Λ0 as well as a simple cubic structure can form when hollow
silica cubes sediment on a horizontal �at glass bottom at low cube concentrations in prescence of
depletants. The q in the diagram is the size ratio q =

2Rg

D , with Rg the polymer depletant radius of
gyration and D the superdisk edgelength.
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Figure 2.17: Packing denisty versus deformation parameter for the Λ0 and Λ1 lattice packings of
superdiscs. Figure adapted from [16].

Figure 2.18: Simulated phases of rounded hard spheres as function of η and L∗. Figure adapted
from [17].
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Figure 2.19: Comparison between experimental observations, bulk crystal simulations, and calculated
phase diagram for superballs at di�erentm and q values. Circles indicate the experimental results, open
circles indicate simulation results, and the background colours indicate phases predicted by calculation.
Figure reproduced from [9].
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Chapter 3

Experimental

3.1 Materials

Details of the chemicals, laboratory items and hollow silica cubes mentioned in this thesis can be found
in this section.

3.1.1 Chemicals and Laboratory Items

The water used in all experiments was puri�ed by a Synergy Millipore system. The other chemicals
mentioned in this thesis are listed in table 3.1. The laboratory items used in the experiments are
speci�ed in table 3.2.

Table 3.1: Chemicals

Name Formula CAS # Purity Supplier
Sulphuric acid H2SO4 7664-93-9 96 % ACROS
Rhodamine B ITC C28H31ClN2O3 36877-69-7 Mixed isomers Sigma-Aldrich
Sodium Hydroxide NaOH 1310-73-2
Dextran 70 (C6H10O5)n 9004-54-0 Applichem Lifescience
Sodium Azide NaN3 26628-22-8 99% Fisher Scienti�c
Pleuronic F-127 9003-11-6 BioReagent Sigma-Aldrich
Tetramethylammonium Hydroxide N(CH3)4OH 75-59-2
Sodium Chloride NaCl 7647-14-5

3.1.2 Hollow Silica Cubes

For all experiments with cubes described in this thesis, hollow silica cubes from one batch made by
Janne-Mieke Meijer and Vera Meester were used. The synthesis was started with the production of
hematite cubes according to the gel-sol method used by Sugimoto et al. [45]. This resulted in cubic
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Table 3.2: Items

Item Supplier Speci�cation Catalog number
Filter paper Whatman Ashless clippings �lter aids 1703-050
Filter Sartorius stedim Minisart NML syringe �lters 16555
Microscope slide Thermo scienti�c British Standard Slides 76 x 7 mm 10144633AF
Spacer VWR international Cover glass # 0, 22x 22 mm 631-0123
Cover glass Menzel Gläser Coverslips # 1.5, 22 x 22 mm BB022022A1
UV glue Norland Optical adhesive 81
Capillary VitroCom VitroTubes 0.2 x 4.0 x 100 mm 3524

particles with an average edge length of 932 nm and a polydispersity of 5.5 % [46].Then the cubes were
functionalized with polyvinylpyrrolidone and coated with amorphous silica using an adaptation of the
Stöber synthesis. In a third step, the hematite cores were dissolved with hydrochloric acid. Details
on the synthesis can be found in the PhD thesis of Janne-Mieke Meijer [10] or masterthesis of Vera
Meester [46] .The hollow silica cubes used for the experiments described in this thesis had been stored
in ethanol for two years.

3.2 Cellulose Nanocrystals

The cellulose nanocrystals (CNCs) were obtained by acid hydrolysis of cotton cellulose. A synthesis
procedure based on a procedure from dr.Ahu Gümrah Parry was used. 20 grams of �lter paper was
cut into pieces of about half a centimeter by half a centimeter. The paper snippets, a stirring bean and
200 grams of 64 % sulphuric acid were put in a 2 liter bottle. The bottle was closed and for one hour
it was put in a waterbath of 45 ◦C while the contents were stirred. Then, 1800 mL of water was added
to quench the acid hydrolysis and the white dispersion was stirred shortly. The dispersion was left to
stand overnight and it's clear top layer that was decanted. The bottom layer was centrifuged for half an
hour at 3000 rpm. Subsequently, the supernatant was decanted again and the residue was redispersed
in water. Two more times the dispersion was reconcentrated and redispersed in this manner. Then
the dispersion was centrifuged for eight hours at 3750 rpm in order to make the cellulose settle out
again. The supernatant was decanted and and the bottom layer was put in a piece of dialysis tube
that had been in water for half an hour. The tube was put in a 2 liters cylinder with water that was
refreshed twice a week. The pH of the water was measured every time before it was replaced. After
one week the pH was 5 and it did not change till the cellulose was removed from the tube after three
weeks. The cellulose was �ltered with 1.20 µm �lters and subsequently with 0.45 µm �lters. Next, it
was concentraded by centrifugation for two and a half hour at 17010 rpm. The gel was stored in the
fridge.

3.2.1 Fluorescent Cellulose Nanocrystals

Fluorescent cellulose nanocrystals were prepared using the same procedure, but instead if adding water
to quench the acid hydrolysis, 180 g of 1 M NaOH solution, 1 g of Rhodamine B ITC and 1620 g of water
were added to the dispersion. The bottle was covered with aluminium foil to prevent photobleaching
of the dye and its contents were stirred for three days. The dyed cellulose was concentrated by
centrifugation for half an hour at 3000 rpm and redispersed in water twice. The dispersion was
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centrifuged for half hour at 3750 rpm in order to reconcentrate. The supernatant was decanted and
the residue was put in dialysis tube that had been immerged in water. The tube was put in a cylinder
with water and the cylinder was covered with aluminium foil. The water was refreshed twice a week.
After three weeks the pH had increased from 3 to 7 and the pink gel was �ltered with 1.20 µm �lters.
It was not possible to �lter it with 0.45 µm �lters because �lters would break when tried to use for
�ltering the gel. The gel was concentraded by centrifugation for two and a half hour at 17010 rpm and
stored in the fridge.

3.3 Characterization

In this section experimental details on the characterization of the cellulose nanocrystals and hollow
silica cubes are given.

3.3.1 Cellulose Nanocrystals

Small amounts of non�uorescent and �uorescent CNC gel were weighted and heated under a heat lamp
until the weights did not change anymore. Using this method, the weightpercentages of compounds
that do not vaporize under a heat lamp were determined.

For transmission electron microscopy (TEM) a small amount of gel was put in a vial and diluted with
water. A series of dilutions was prepared and a drop of each dilution was put on a polymer coated
copper grid. The grid was put under a heat lamp till the droplet had vaporized. With a Philps-FEI
Tecnai 10 transmission electron microscope the CNCs were made visible. Length determination of the
non�uorescent particles was performed with iTEM. Low contrast and clustering complicated imaging.

3.3.2 Hollow Silica Cubes

The shape and size of the hollow silica cubes were investigated with TEM. Since hollow silica cubes
shrink upon illumination with an electron beam, [47] TEM was performed on silica coated cubes with
the hematite cores still in it. It has been shown that dissolving the hematite cores does not alter the
shape of the cubes. [47] TEM samples were prepared by drying a dilute drop of dispersion on a polymer
coated copper grid under a heat lamp. 160 pictures of single cubes were made. With iTEM the edge
length of the cubes was determined. A Matlab script written by William T. M. Irvine could �t the
deformation parameter and aspect ratio of 120 of the pictures. The script �ts the circumference of the
two dimensional TEM projection according to:

| x
r1
|m + | y

r2
|m = 1

with r1 and r2 (r1 ≥ r2)the semiaxes of the particle, r1
r2

the aspect ratio and m the deformation
parameter.
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3.4 Depletion Series of Cellulose Nanocrystals

In this section the preparation of a series of depletion samples with varying amounts of cellulose
nanocrystals and dextran 70 are described. Also technical information on the polarization microscopy
performed on the samples is given.

3.4.1 Depletions Samples

A set of vials was �lled with sodium azide solution, water and varying amounts of CNCs and dextran 70.
The sodium azide concentration in all samples was 0.02 wt%. It was aimed to vary the concentration
of CNCs between 2.5 and 5 wt% in steps of 0.5 wt% and the concentration of dextran 70 from 0 to
3 wt% in steps of the same size. Only the depletion samples mentioned later on in this thesis are
speci�ed in table 3.3.

Table 3.3: CNCs and Dextran in Depletion Samples

Label Cellulose Nanocrystals (wt%) Dextran 70 (wt%)
A 5.03 0.00
B 5.02 1.31
C 5.01 1.77
D 4.48 1.40

3.4.2 Microscopy Slides

Microscopy slides of the depletion series were made a couple of days after the mixtures had been
prepared. Each slide was made by glueing two spacers on top of a microscopy glass and pipetting a
drop of the mixture in between. Then a cover glass was glued on top and the slide was put onder a
UV lamp until the glue had polymerized.

3.4.3 Polarization Microscope

A Nikon Eclipse Ti-E inverted microscope equipped with a polarizer placed after the Nikon Intensilight
C-HGFI lamp and a second polarizer, rotated 90 degrees with respect to the �rst, placed after the
Nikon CFI Plan Fluor 40 x objective was used to make all polarization micrographs in this thesis.

3.5 Sedimentation Capillaries with Hollow Silica Cubes

This section comprises the preparation of the sedimentation capilliaries. X-ray experiments performed
on the capillaries are described in a separate section.

Firstly, the hollow silica cubes in ethanol were centrifuged for 20 minutes at 1600 rpm. Then, the super-
natant was decanted and the sediment was dispersed in water. Again, the dispersion was centrifuged

30



at 1600 rpm, now for 30 minutes, the supernatant was discarded and the residue redispersed. The
dispersion was let to stand over night and the next day the top part was decanted, aiming to get rid
of the smallest cubes. Once more, the particles were redispersed, centrifuged, disposed of supernatant
and redispersed.

Then, Eppendorf tubes were �lled with 500 µL of the dispersion and centrifuged for 1 minute at
10000 rpm. The supernatant was removed with a pipette and a solution of pleuronics was added.
The pleuronics solution was added because at the same time samples with polyethylene oxide, not
described in this thesis, were prepared. Pleuronics is a commercial surfactant that is not expected
to in�uence the phase behaviour. Depending on the tube, TMAH and/or CNCs were added or not.
Water and sodium chloride solution were added to all tubes. The tubes were vortex mixed and placed
in an ultrasonic bath. Table 3.4 lists the TMAH and CNC concentrations of the samples mentioned
later on in this thesis. All samples contained 5 x 10−2 wt% pleuronics and 10−4 M NaCl.

Table 3.4: TMAH and CNCs in Sedimentation Capillaries

Label TMAH (M) Cellulose Nanocrystals (wt%)
1 0 0
2 0 2 x 10−2

3 10−3 0
4 10−3 2 x 10−2

Glass capillaries were �lled with the samples and the ends were closed by melting and sealed with
a drop of nailpolish. They were placed with their long axis vertically and within days the cubes in
the samples listed in table 3.4 settled out in sediments that showed patches of iridescent colour. The
iridescence is caused by Bragg re�ections and indicates the prescence of long range order.

3.6 X-ray Experiments

Transmission X-ray Microscopy and Small-Angle X-ray Scattering were performed at beamline ID11
of the European Synchotron Radiation Facility (ESRF) in Grenoble, France. ID11 is a multipurpose,
high �ux, high energy, materials science beamline. [48] X-rays with an energy of 25 keV, or a wavelenth
of 0.50 Å were used for all experiments and a the detector was a 16 bit CCD camera (Photonic Science,
Xios II) with 4008 x 2671 pixels with a size of 9 µm x 9 µm. A schematic overview of the beamline and
the hutches is shown in �gure 3.1.

3.6.1 Transmission X-ray Microscopy

For the TXM experiments, the samle and a set of compound refractive lenses were placed in experi-
mental hutch 2 and the detector was placed in experimental hutch 3. The distance between the sample
and the lenses was 1 m and the distance between the detector and the lenses was 50 m. The TXM
set-up is shown schematically in �gure 3.2.
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Figure 3.1: Overview of Experimental Hutches (EH) and Optical Hutches (OH) along Beamline ID11.
Image reproduced from [48].

Figure 3.2: Illustration of the TXM set-up. Images adapted from [49], [50] and [51].

It was very hard to perform X-ray microscopy. The Siemens star was visualised succesfully and after
some trying it was possible to observe the edges of the capillaries. Moreover, by taking 20 exposures
at the same spot, adding their signal and dividing this signal by the signal of 20 added background
exposures taken without sample, it was possible to discern features that resemble a lattice spacing,
matching the lattice spacing expected in these samples. However, no useful information could be
obtained from the X-ray microscopy data. Therefore, the TXM results are not discussed in chapter 4.

3.6.2 Small-Angle X-ray Scattering

Figure 3.3: Illustration of the SAXS set-up. Images adapted from [49], [50] and [51].

In order to do Small-Angle X-ray Scattering, the samples were placed in experimental hutch 3 on a
distance of about 6 meters from the detector. The compound refractive lenses used for TXM were
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removed and a beamstop was put in front of the detector. The detector could not be placed further
away from the sample and only a small part of the detector was used. With their long axis vertically, the
capillaries were placed on a stage that could move in x, y and z direction and rotate about the vertical
axis. For normal incidence measurements, the direction of the X-ray beam was perpendicular to the
�at faces of the capillaries. Scattering patterns were recorded from several heights in the sediments of
samples. Rotation scans were made by rotating the capillaries in steps of 1o from a rotation angle, ω,
of -70o to an ω of 70o, where the zero of ω is the normal incidence angle.

Microscopy slide D, described on page 30, was placed on the sample stage, but even with an exposure
time of 65 seconds, no scattering was observed from the cellulose. On beamline ID10 with an X-ray
energy of 8 keV and a smaller sample to detector distance no scattering could be noticed too. However,
the sedimentation capillaries, described on page 31, would give rise to beautiful patterns, especially
when recorded from iridescent coloured parts of the sediment. The results of the scattering experiments
on the sedimentation samples are described in chapter 4.

3.6.3 Processing of SAXS data

One way of performing data correction is described by the following formula:

IS,corrected(~q) = (IS(~q)−DC(~q))− (IBG(~q)−DC(~q))

(ICS/ICBG)

in which I(~q) is the recorded intensity as function of the scattering vector, S stands for sample and
BG for background. Dark current, DC, is the intensity recorded by the detector when the X-rays are
blocked from the experimental hutch. IC is the signal from the ion chamber, a device that measures
the amount of X-ray radiation used in the experiments. [52] However, dark current was not measured,
no ion chamber was used and information required for other kinds of extensive data correction, such
as described in [53], was not collected. Therefore, background substraction was performed described
by:

IS,corrected(~q) = IS(~q)− IBG(~q)

Backgrounds were recorded from the liquid above the sediment. All SAXS patterns shown in this
thesis were processed using a Mathemathica script written by Jasper Landman. After performing the
backgroung substraction, the script would rescale the levels in the image to cover the range 0 to 1.
Next, it would mulitply the values of all pixels by 10, raise it by 1 and take the 10log of the result.
Finally, the script would colour the pictures with Mathematica's 'SunsetColors'.

For quantitative analysis, the position of the beam centre was determined with Fit2d in 14 scattering
patterns, using symmetry between re�ections or the circular shape of from factor minima. The found
position had a standard deviation of 0.5 pixel in the x-direction and 0.3 in the y-direction. Another
script written by Jasper Landman was used to �t a multivariate normal distribution to any peak of
interest and determine the position of its mean, as to calculate the q-values of the peaks and the
azimuthal angles between the peaks.
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Chapter 4

Results and Discussion

In this chapter results of the preparation and characterization of cellulose nanocrystals are discussed
together with the results of the characterization of the silica cubes. Furthermore, tactoid formation
in the depletion samples is shown through polarization micrographs. The main body of this chaper
consists of analysis of the SAXS patterns recorded from the sedimentation samples at the ESRF.

4.1 Characterization

The gels of non�uorescent and �uorescent cellulose nanocrystals produced as described on page 28 had
a weight percentage of 10.6 ± 0.2 and 17.6 ± 0.9, respectively.

Figure 4.1a shows TEM images of the cellulose nanocrystals and a silica cube with hematite core. The
length of the cellullose nanocrystals was determined to be 0.44 ± 0.03 µm. This is large in comparison
with average lengths of 90 to 300 µm mostly found in literature. [7] [20] [26] [28] [54] [21] However, the
dimensions of CNCs are known to vary widely, depending on cellulose source and reaction conditions
used for their production. [24] [25] [32] For example, Edgar and Gray reported on cellulose nanocrystals
with an average length of 110 nm, made with a very similar producedure. [20] An explanation for their
shorter CNCs might be that they ground the �lter paper before adding sulfuric acid.

The edgelength of the silica cubes was measured to be 1.046 ± 0.007 µm. Using the Matlab script
written by William T. M. Irvine, the aspect ratio between the two edgelengths in the plane of the
picture and the m-value of the superdisks �tted to the projection of the silica cubes were determined
to be 1.0042 ± 0.0030 and 3.5287 ± 0.0068 respectively. In real, the projections of the silica cubes are
not exactly superdisk shaped. Because of the growth mechanism of the hematite cores [55] the space
diagonals do not have the precise same length and the corners are not equally rounded.
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500 nm

(a) Cellulose nanocrystals

500 nm

(b) silica cube with hematite core

Figure 4.1: TEM pictures of cellulose nanocrystals and a silica cube with hematite core.

4.2 Tactoids

Using the polarization micropscopy setup described in section 3.4.3, the depletion samples described
on page 30 were studied. Within 5 weeks after preparation tactoids were observed in samples A, B,
C and D. After more than three months still no tactoids were discovered in samples with a cellulose
nanocrystal concentration lower than 4.5 wt%.

4.2.1 In�uence of Depletant Concentration on Tactiod Size

Whether tactoids form, how many tactoids form and the size of the tactoids formed appear dependent
on the dextran concentration in the depletion sample, as can be seen in �gure 4.2. None of the samples
with a dextran concentration higher than 2 wt% gave rise to tactoids. Sample A without dextran,
shown in �gure 4.2a, is very crowded with tactoids. Figure 4.3 shows an decreas in tactoid size with
increasing depletant concentration in samples A, B and C. We do not have an explanation for these
observations. It is not known whether repetition of the experiments results in the same observations.
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100 um

(a) No Dextran (A)

100 um

(b) 1.3 wt% Dextran (B)

100 um

(c) 1.8 wt% Dextran (C)

Figure 4.2: Polarization micrographs of tactoids from depletion samples A, B and C with di�erent
concentrations of depletant. Recorded 5 weeks after sample preparation.

Figure 4.3: Avarage area of 2-dimensional projection of tactoid on polarization micrographs of samples
A, B and C.

4.2.2 Growth of Tactiods

As can be seen in �gure 4.4 the tactoids grow over time and the number of birefrigent bands seems to
increase. However, no quantitative analysis was performed on tactoid growth.
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100 um

(a) After 3 Weeks

100 um

(b) After 4 Weeks

100 um

(c) After 5 Weeks

100 um

(d) After 3 Months

Figure 4.4: Growth of tactoids in time. Polarization micrographs of depletion sample D. Recorded at
moments after sample preparation indicated.

4.3 SAXS analysis

Typical SAXS patterns from the sedimentation capillaries recorded and processed as described on page
32 are shown in �gure 4.5. For each sample, the patterns are arranged in one column. The patterns
placed higher in the �gure are recorded at higher positions in the sediment, although the exact heights
are not known. The wedge-shaped patch of zero intensity visible in each pattern is the shadow of the
beam stop.

From this �gure, it is clear that similar patterns are recorded from all samples. In this section the two
dimensional structures that give rise to the patterns are decuded qualitatively, based on the patterns
recorded from sample 4. The patterns are not treated in order of height, but in an sequence that is
more convenient for explanation. The e�ects of TMAH and cellulose nanocrystals on the structures
are treated in a separate subsection. Additionally, two rotation scans recorded from sample 4 and the
three dimensional structure of the crystals giving rise to them are discussed.

4.3.1 No Order

Figure 4.6: SAXS pattern recorded at the bottom of the sediment of sample 4.
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Figure 4.5: Overview of the typical SAXS patterns recorded from samples 1 to 4.
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Figure 4.6 shows a di�raction pattern that is recorded typically from the bottoms of the samples. In
this �gure, no Bragg re�ections are visible, indicating an absence of long range order. As described
on page 20, the hollow silica cubes used in the experiments should give rise to a cross-shaped form
factor when oriented in the same direction. However, an isotropic form factor is visible. Therefore we
can say that the cubes are oriented randomly. The prescence of isotropic phases at the bottoms of the
samples can be understood from the fast compression of this part of the sediment. [10]

4.3.2 Rotator Hexagonal

(a) Di�raction pattern recorded
from the top of the sediment of
sample 4.

(b) Bragg re�ections from 4.7a

with reciprocal vectors ~b1 and
~b2 de�ned and Miller indices as-
signed.

(c) Real space hexagonal lat-
tice with randomly oriented su-
perdisks and real space vectors ~a1
and ~a2.

Figure 4.7: Rotator Hexagonal lattice assigned to pattern recorded from the top of the sediment of
capillary 4. Re�ections in 4.7b and corresponding lattice planes in 4.7c have the same colour.

Figure 4.7a is a typical SAXS pattern recorded from the top of the sediment. Like the patterns
recorded from the bottoms of the capillaries it shows an isotropic form factor, indicating randomly
oriented cubes. The clear di�raction peaks indicate long range order. Figures 4.7b and 4.7c explain
schematically how a hexagonal Bravais lattice can be assigned to the di�raction peaks. The �ve
re�ections in 4.7a and a sixth re�ection that would have been blocked by the beam stop are drawn in
4.7b. The six re�ections can be described by two reciprocal lattice vectors, ~b1 and ~b2, de�ned as shown
in the same �gure, and Miller indices, also displayed, can be assigned to them. The angles between the
100 and 010 peak, the 010 and 110 peak and the 110 and 100 peak found using the method described
in subsection 2.2.9 are slightly less than 60 degrees. This is most probably because the analysis method
is not precise enough. Symmetry would dictate the angle between the 100 and 100 peak to be 180
degrees and we assume the aforementioned angles to be 60 degrees. From the reciprocal lattice vectors
real space vectors can be calculated as described on page 21. The real space vectors ~a1 and ~a2 are
drawn and the lattice planes that give rise to the 100, 010 and 110 re�ections are depicted in 4.7c in
the colours of the corresponding re�ections in 4.7b. The combination of hexagonal long range order
and random orientation of the anisotropic particles can be explained by a rotator hexagonal phase, in
which rotating cubes e�ectively occupy a spherical piece of space. We think it plausbile that at the
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top of the sediment the pressure is low, that the hollow silica cubes can rotate and that they have
formed rotator hexagonal phases, in line with the simulations described on page 23.

4.3.3 Rhombic

In this subsection, a pattern recorded from the middle of the sediment of sample 3 is analysed ahead
of the pattern from sample 4 because it is more easy to interpret.

(a) Di�raction pattern recorded
from the middle the sediment of
sample 3.

(b) Brightest re�ections from

4.8a with reciprocal vectors ~b1
and ~b2 de�ned and Miller indices
assigned.

(c) Real space crystal lattice with real
space vectors ~a1 and ~a2 and superdisks
of �xed orientation.

Figure 4.8: Rhombic lattice assigned to SAXS pattern recorded from the middle of the sediment of
capillary 3. Re�ections in 4.8b and corresponding lattice planes in 4.8c have the same colour.

Figure 4.8 shows how a rhombic structure can be assigned to the SAXS pattern recorded from the
middle of the sediment of sample 3. The cross shaped from factor and clear structure peaks indicate
in the two dimensions perpendicular to beam a crystalline lattice of cubes with �xed orientation. Like
the hexagonal pattern, the structure factor can be described by two reciprocal lattice vectors, ~b1 and
~b2, of equal length, as drawn in �gure 4.8b. However, the angle between the reciprocal lattice vectors
is not 60 degrees. Therefore, the two dimensional crystal structure is not hexagonal but rhombic. The
rhombic structure with the cubes oriented in the direction that would give rise to the form factor of
�gure 4.8a is shown in 4.8c.
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Figure 4.9: SAXS pattern recorded from the middle of the sediment of sample 4.

We are still not sure how to interpret the SAXS pattern displayed in �gure 4.9. For sure, the orientation
of the cubes is �xed and certainly two-dimensional long range order is present. The pattern could be
interpreted as caused by a rhombic Bravais lattice, just like the SAXS pattern in �gure 4.8a. In
accord with this interpretation, reciprocal lattice vectors can be de�ned and Miller indices can be
assigned as shown in �gure 4.9. However, the prescence of the 010 and 210 re�ections is puzzling.
Are the re�ections visible due to a stacking feature? Or due to overlap with a form factor maximum?
Why is there no 100 peak visible? Is the pattern maybe caused by several crystal domains? Perhaps
quantitative analysis of the pattern can answer these questions.

4.3.4 Double Rhombic

The SAXS pattern shown in �gure 4.10a can be explained by the prescence of two rhombic crystal
domains within the sediment irradiated with X-rays. The eight brightest re�ections can be recognised
as two sets of four re�ections. The two sets, coloured orange and blue, discerned in �gure 4.10b.
Each set can be assigned to a rhombic lattice, as explained in �gure 4.8. Figure 4.10c shows two real
space superdisk lattices that can cause the re�ections. The orientations of the cubes in the �orange"
and �blue" domains are quite alike. The prescence of two crystal orientations above the height in
the sediment at which single rhomic crystal domains are found can be explained by a lower osmotic
pressure, that results in larege free volume for the cubes, in this part of the sediment.
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(a) SAXS pattern recorded above the
middle of the sediment of sample 4.

(b) Brightest re�ections from 4.10a

with two sets of reciprocal vectors ~b1
and ~b2 de�ned and Miller indices as-
signed.

(c) Two rhombic lattices de-
scribed by two sets of real
space vectors ~a1 and ~a2 and
superdisks in two orienta-
tions.

Figure 4.10: Rhombic lattice assigned to pattern recorded from the middle of the sediment of capillary
3. Re�ections in 4.8b and corresponding lattice planes in 4.8c are displayed in the same colour.

4.3.5 Unresolved Structure

Figure 4.11: SAXS pattern recorded below the middle of the sediment of sample 4. Bragg re�ections
are labeled A to I.

As stated in the heading of this subsection, the pattern shown in �gure 4.11 is still unresolved. The
patterns shows an anisotropic form factor of threefold symmetry. Cubes oriented with their space
diagonal in the direction of the beam could give rise to this form factor. Figure 4.12 provides an
illustration of this orientation. Three crystal domains of cubes orientated 120o relative to each other
could explain the observed form factor as well.
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Figure 4.12: Threefold symmetry of a cube with rounded edges oriented with it's space diagonal
pointing in the direction of the beam.

The nine structure factor peaks labeled with letters indicate long range order. The q-values of A, C,
E, G and I are approximately equal and the q-values of the four inner peaks too. We tried to measure
the angles between A, C, E, G and I, but since angles measured between A, D and G deviated too
much from symmetry dictated sense, we do not trust these measurements. The pattern is quite sililar
to the pattern in �gure 4.9. The rotation scan recorded from the same position dicussed op page 45
provides some additional infromation.

4.3.6 In�uence of TMAH on Crystal Structure

Figure 4.5 shows that the patterns showing the most distinct re�ections are recorded from samples 3
and 4. We observed that sediments formed in the prescense of 10−3 M TMAH possess more long range
order than sediments formed without TMAH. Tetramethylammonium hydroxide is a salt and a stong
base. Being a salt, TMAH lowers the Debye screening length and increases attraction between the
cubes. Being a base, TMAH increases the negative charge on the cubes (and CNCs, if present) and
increases repulsion between the cubes. Attraction can lead to aggregation and when too much NaCl
was added to the sedimentation capillaries, the hollow silica cubes would aggregate. Therefore, it is
the alkaline property of TMAH that makes the crystals more ordered.

4.3.7 In�uence of Cellulose Nanocrystals on Crystal Stucture

As can be seen in �gure 4.5, the patterns recorded from the sedimentation capillaries with and without
CNCs are much alike. Only for the pattern recorded from sample 4 and described in subsection 4.3.5
no counterpart was found in sample 3. But, since we do not know what cyrstal structure caused this
pattern we cannot conclude anything about the in�uence of the CNCs from this speci�c pattern. In
order to test if the CNCs in�uence the lattice spacing of the crystal, a quick comparison was made
of the q-values of corresponding peaks in the �rhombic" and �double rhombic" patterns recorded from
sample 3 and 4. No systematic di�erences in q-values were observed. The depletion interaction due to
the concentration CNCs used in the experiment, as estimated on page 60, might be too low to in�uence
the structures formed.
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4.3.8 Rotation Scans

In this subsection the results of two rotation scans are discussed. The scans were made at di�erent
heights in sample 4. The upper scan was recorded 2 mm from the bottom of the capillary and the
lower scan 0.7 mm. The sediment had a height of about 2.2 mm.

Upper Scan

Figure 4.13 shows the patterns obtained at certain rotation angles, ω, from the upper scan. The
zero of ω is de�ned as the angle at wich the �at faces of the capillary were oriented approximately
perpendicular to the beam.

Figure 4.13: Sample 4, upper scan: SAXS patterns obtained at several rotation angles. Miller indices
are assigned to the brightest peaks in the pattern recorded at an ω of 0. In the other patterns, white
circles indicate the 110 peak of which the x position is depicted in �gure 4.14.

The SAXS pattern recorded at ω = 0 is is very similar to the pattern discussed on page 42. Therefore,
it can be interpreted as a pattern caused by two rhombic crystal domains with di�erent orientations.

There are no 100 and 010 re�ections visible in the patterns. These absences may be caused by bridge
stacking of the layers, described in subsection 2.2.7 or by overlap with a form factor minimum.

The intensity of the 110 and 110 re�ections increases initially and decreases subsequently with increas-
ing absolute value of ω. The intensities in �gure 4.13 are normalised, but the intensity modulation is
also visible in the raw data. Higher intensity can be interpreted as caused by an increment in order in
the plane perpendicular to the direction of observation. When a crystal of periodically stacked layers
is rotated, there are certain angles at which certain lattice planes are perpendicular to the direction
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of observation.Therefore, the intensity modulation is an indication for periodic stacking. However, the
modulation occurs over a broad range of rotation angles, so the periodicity between layers is not as
regular as the periodicity within the layers.

Another feature that can be observed in the scans is that, with increasing ω, the 110, 110, 110 and
110 peaks move away from the center in horizontal direction. The 110 re�ections and 110 re�ection
disapper at an rotation angle of about |45o| and reappear at |60o|. That is because the peaks move
into a form factor minimum. The movement of the 110 re�ection, indicated with the white circles in
�gure 4.13, is shown in graph 4.14.

Figure 4.14: Sample 4, upper scan: horizontal position of the 110 re�ection as function of rotation
angle.

The sampled horizontal positions of the 110 re�ection in blue are in very good agreement with the red
line. The red line shows the theoretical horizontal position as function of ω of this re�ection caused
by sliding phases, as described on page 22.

All in all, we �nd in this rotation scan one indication for bridge site stacking, one general indication
for approximately periodic stacking and one indication for the prescence of sliding planes. We suggest
that there is some brigde site stacking of the layers, but that there is no truely consequent stacking
of the layers at the height at which this scan was recorded. More analysis of the e�ect of the form
factor and the intensity modulations of the structure factor could give more clues to uncover the 3D
structure of the crystal.

Lower Scan

Figure 4.15 shows the patterns obtained at certain rotation angles, ω, from the lower scan. The crystal
structure that gave rise to the SAXS pattern recorded at ω = 0 is from the same mysterious part of
the crystal as the pattern described on page 42. Even with extra information from the rotation scan,
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we do not know this structure yet. In the following, some possible interpretations of the patterns are
discussed.

Figure 4.15: Sample 4, lower scan: SAXS patterns obtained at several rotation angles. White circles
indicate the peak of which the x position is depicted in �gure 4.16.

Just as for the upper scan, the horizontal movement of the peak marked by the white circle was
followed as fuction of the rotation angle. The result, shown in �gure 4.16, resembles the horizontal
movement of the ~q of a Bragg rod as function of ω very much. This indicates the prescence of sliding
planes. However, the threefold symmetry of the form factor in the pattern recorded at ω = 0 may
be caused by cubes pointing with their space diagonal in the direction perpendicular to the �at faced
of the capillary, see �gure 4.12. Cubes oriented in that direction logically cannot form sliding planes.
The other explanation for the threefold symmetry of the structure factor mentioned was the prescence
of three di�erently orented rhombic lattices. That contrasts to the observation that �double rhombic"
patterns were recorded from higher positions than single rhombic patterns. All in all, a comprehensive
interpretation of this scan is still missing.
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Figure 4.16: Sample 4, lower scan: horizontal position of the re�ection indicated by the white circle in
�gure 4.15 as function of rotation angle.
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Chapter 5

Conclusions

Cellulose nanocrystals (CNCs) and �uorescently labeled CNCs were prepared via acid hydrolysis of
cotton paper. Using transmission electron microscopy (TEM), the length of the non�uorescent CNCs
was determined to be 0.44 ± 0.03 µm. Hollow silica cubes (HSCs) were characterized by TEM and a
superdisk shape was �tted to the TEM pictures. The edgelength of the HSCs was 1.046 ± 0.007 µm,
their m-value 3.5287 ± 0.0068 and the aspect ratio between the two edgelengths 1.0042 ± 0.0030.

Concentration series of mixtures of CNCs and dextran 70 were prepared. Microscopy with crossed
polarizers showed formation of cholesteric tactiods within the isotropic phase of samples with a CNC
concentration of 5.0 wt% and a dextran concentration between 0.0 and 1.8 wt% dextran and a sample
with a CNC concentration of 4.5 wt% a dextran concentration of 1.4 wt%. Tactoid formation and
growth was observed to take place on timescales of weeks and months.

Small angle X-ray scattering (SAXS) studies have shown the presence of sedimentation induced layered
crystals of HSCs in capillaries with �at walls. Similar SAXS patterns were recorded from HSC crystals
formed in prescence and absence of CNCs. Theoretical superdisk form factors were recognized in the
patterns and were used to determine particle orientation. Structure factors of hexagonal and rhombic
two-dimensionals crystal lattices were identi�ed as well. From the top to the bottom of the sediments,
rotator hexagonal phases, bi-domain rhombic phases, single domain rhombic phases and unordered
phases could be identi�ed. Rotation scans indicated prescence of bridge site stacking and random
stacking of the rhombic lattices in the bi-domain rhombic region.

The presense of rotator hexagonal phases at the top of the sediment and rhombic phases lower in
the sediment is in good agreement with results from simulations perfomed by Avedaño et al. [17].
The rhombic crystal lattice can be identi�ed as the dense packed Λ1 superdisk lattice predicted by
Jiao et al. [16]. All identi�ed crystal structures equal structures found by Janne-Mieke Meijer [10]
in sedimentation induced HSC crystals in absence of depletants. The Λ1 phase was also found in
depletion induced HSC crystals with polymer depletants by Rossi et al. [9]. All in all, more research
is needed to conclude on the in�uence of CNCs on HSC crystallization.
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Chapter 6

Outlook

Since this thesis comprises research on two distinct topics, the outlook is divided into two sections.

6.1 Regarding the Spherically Con�ned Cholesteric of CNCs

The CNCs described in this thesis should be characterized better when used in future experiments.
Their diameters remain unknown and the �uorescently labeled ones are not characterized at all. Good
AFM measurements would be a superior source of information.

Systems containing cholesteric tactoids of CNCs could be optimized further by analysis of tactoid
abundancy and pitch lenth as function of CNC and dextran concentration. Experiments described
in this thesis should be reproduced, other depletants could be used and �uorescently labeled CNCs
and depletants could be utilized to clarify the in�uence of depletion interaction on the formation of
cholesteric tactoids.

Nevertheless, the tactoid containing systems described in this thesis are far from being researched
su�ciently. Lyotropic nematic tactoids have been studied and their shapes can be explained and used
to derive interesting material parameters. [56] [57] [58] [59] [60] [61] [62] [63] However, tactoids of chiral
nematic phases do not seem to be investigated systematically. In line of the work described in [61],
tactoid shapes could be analysed, experiments with external �elds could be performed and droplet
coalescence could be studied. Yet, some theorizing and computer simulating should be performed
beforehand and long timescales must be taken into account.

Although it was not accomplished during the beam trip described in this thesis, it certrainly is possible
to investigate CNCs [6] and their cholesteric phase [64] using SAXS. Therefore, it would be a good
idea to try to achieve scattering signal from the depletion series using another SAXS set-up. Perhaps
better data correction, SAXS dedicated equipment, a less intense X-ray beam, longer exposure times
or larger sample volumes could improve the signal. Small angle neutron scattering can be used to
study the CNC cholesteric [65] and may also be an interesting technique to research the tactoids.

Besides tactoids, other means of con�nement of the cholesteric of CNCs may be interesting as well.
Pilot attempts were made to con�ne CNCs dispersed in a hydrophilic phase in droplets within an
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hydrophobic phase. No stable emulsions were obtained, but it could be interesting to try again or use
other solvents.

6.2 Regarding Crystallization of HSCs in presence of CNCs

The vast majority of the SAXS patterns recorded from the sedimentation samples described in this
thesis is still waiting to be analysed. Quantitative analysis of the q-values and calculation of the lattice
spacings would be very interesting. One of the reasons to perform quantitative analysis would be that
it could lead to full understanding of the structures giving rise to patterns such as �gure 4.9 and 4.11.
Another reason is that quantitative analysis is needed to compare the structures formed in the di�erent
sedimentation samples described in this thesis. Bragg rod analysis, such as performed in [43], may
provide comprehensive information on the stacking of layers.

To investigate the in�uence of CNCs on the crystallization of HSCs, higher CNCs concentrations,
providing stronger depletion interactions, would be interesting. Moreover, CNCs could be compared
to other depletants. Results of experiments with polyethylene oxide are still waiting to be analysed.
Microscopy studies, like performed by Laura Rossi et al. [8], can be performed to �nd out whether
CNCs can induce crystallization of hollow silica cubes under circumstances that would not lead to
crystallization without depletants. Perhaps it would be interesting to induce crystallization using
convective assembly in mixtures of cellulose nanocrystals and hollow silica cubes.
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Chapter 8

Appendices

These appendices comprise simple calculations in real and reciprocal space and a list of the symbols
used in this thesis.

8.1 Real Space

In this section, Debye screening lengths are calculated for systems containing hollow silica cubes and
gravitational lengths and depletion potentials are estimated for models of both sytems described in
this thesis.

8.1.1 Calculation of Debye Screening Length for Sedimentation Capillaries

1 and 3

The Debye screening length, κ−1 can be calculated using:

κ−1 =

√
ε0εrkT

2NAe2I

For the permittivity of vacuum, ε0, a value of 8.85 Fm−1 is used, for εr, the dielectric constant of the
solvent, 80.4 is used. Values of 1.38 x 10−23 m2 kgms−2K−1 for the Boltzmann constant, k, 300 K
for the temperature, T , 6.02 x 1023 mol−1 for Avogadro's constant, NA, and 1.60 x 10−19 C for the
elementary charge, e, are used. I, the ionic strength of the solution can be calculated with:

I =
1

2

n∑
i=1

ciz
2
i

where ci is the concentration of ion i and zi its charge number. Both NaCl and TMAH are 1:1 salts
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and the ionic strength is just the total salt concentration.

The Debye screening length in a solution of 1.0 x 10−4 M NaCl, like in sedimentation capillary 1, 30
nm. If, like in sample 3, 1 x 10−3 M TMAH is present as well, κ−1 is 9 nm.

8.1.2 Calculation of the Gravitational Length for Simple Models of the

Colloids

The gravitational length, Lg, can be calculated using:

Lg =
kT

∆mg

For the Boltzmann constant, k, a value of 1.38 x 10−23 m2 kgms−2K−1 is used, for the gravitational
acceleration 9.81 ms−2 and for the temperature, T , 300 K. The density of the solvent is assumed to
be 1 gcm−3.

The cellulose nanocrystals are modelled as cylinders with a length of 440 nm and a radius of 5 nm.
When 1.5 gcm−3 is used for the density, ∆m is 1.73 x 10−20 kg and the cylinders have a gravitational
length of 2.4 cm.

As a model for the hollow silica cubes, perfect cubes with an edgelength of 1000 nm and a silica layer
thickness of 100 nm are used. Using 1.6 gcm−3 for the density of silica, ∆m is 1.63 x 10−16 kg, which
leads to a gravitational length of 2.6 µm.

8.1.3 Order of Magnitude Estimates of Depletion Interaction

In this subsection Asakura-Oosawa-Vrij (AOV) depletion potentials are calculated for a system of
colloidal cylinders in the prescence of ideal polymers as a model for the CNCs with dextran in the
�depletion series" and for a system of colloidal cubes in the surrouded by hard rods as a model for the
hollow silica cubes and CNCs in the �sedimentation experiment". As described op page 12 the AOV
depletion potential is given by:

Wdep(h) =

 0 if h ≥ 2δ
-ΠVov(h) if 0 ≤ h ≤ 2δ
∞ if h<0


with h the distance between two colloids and δ the thickness of the depletion layer. The ideal osmotic
pressure, Π, of depletants can be calculated with:

Π = nbkT

where n$(b is the bulk number density of the depletant, k, the Boltzmann constant and T the tem-
perature. [1]
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Depletion Interaction between Cylinders due to Ideal Polymers

(a) h ≥ 2δ. (b) 0 ≤ h ≤ 2δ. (c) h=0

Figure 8.1: Illustration of depletion interaction between cylinders, in green, and ideal polymers, in
blue. The depletion layers surrounding the cylinders are indicated with dashed lines and the overlap
volume is coloured purple.

(a) Overlap Volume of Depletion Layers of
two Cylinders.

(b) Horizontal Segment of a Cylinder.

Figure 8.2: Overlap volume of depletion layers of two cylinders can be calculated as twice the volume
of a horizontal segment of a cylinder. Overlap volume and segment volume are marked purple.

1.5 wt% ideal polymer with a molecular mass of 70000 gmol−1 causes an osmotic pressure of 5.4 hPa.
The thickness of the depletion layer is equal to the radius of gyration of the polymer. The overlap
volume of the depletion layers in the situation depicted in �gure 8.1b is illustrated more clearly in
�gure 8.2. Note that �gures are not to scale. From the �gure it may be clear that the overlap volume
can be calculated as two times the volume of a horizontal segment of a cylinder. Therefore, the overlap
volume, Vov, can be calculated using [66]:

Vov = 2L

(
R2 cos −1

(
R− x
R

)
− (R− x)

√
2Rx− x2

)

where R is the radius of the cylinder, L it's length and x the height of the segment. When the rods
have a length of 440 nm and a diameter of 10 nm and the radius of gyration of the polymer is 8 nm, the
depletion layer has outer dimensions of L=456 nm and R=18 nm. When the cylinders touch (h=0),
see �gure 8.1b, x equals the thickness of the depletion layer, 8 nm in this calculation. The di�erence
in energy between this situation and the situation in which the depletion volumes just touch (h=2δ)
is 1.4 x 10−19 J, or 35 times kT .
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Depletion Intercation between Cubes due to Hard Rods

(a) h ≥ 2δ. (b) 0 ≤ h ≤ 2δ. (c) h=0

Figure 8.3: Illustration of depletion interaction between cubes, in orange, and rods, in green. The
dashed lines around the cubes inducate depletion layers and the dashed lines around the rods mark
the spheres assumed to be occupied by the rods. The overlap volume is marked purple.

In this calculation, it is assumed that the rods can rotate freely and e�ectively occupy a spherical piece
of space. A dispersion with a density of 1 kgL−1, that contains 2 x 10−2 wt% rods with length 440
nm, diameter 10 nm and density 1.5 gcm−1 has an osmotic pressure of 16 Pa. The overlap volume
is approximated as twice the area of one face of the cube times the thickness of the depletion layer.
When two cubes with edge lengths of 1 µm touch (h=0), see �gure 8.3c, the overlap volume is 1.6 x
10−20 m. Therefore, a depletion attraction of 3 x 10−21 J, or 0.6 kT is found.

8.1.4 Calculation of Size Ration between Superball and Depletant

Rossi et al. [9] found that the structures into which superballs crystallized in prescence of depletants
depended on size ratio:

q =
2Rg

D

with Rg the radius of gyration of the depletant and D the edgelength of the superball. For cylinders,
the the radius of gyration is given by:

R2
g =

R2

2
+
L2

12

with R the radius and L the length of the cylinder. [67] For cylinders with R= 5.0 nm and L=440 nm
and superballs with D=1.0 µm, q=0.25.
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8.2 Reciprocal Space

8.2.1 Notation: Scattering and Crystallography

In literature on scattering and literature on crystallography di�erent de�nitions are used. The greek
letter θ is used for both the scattering angle used by scatterers and the Bragg angle used by crystal-
lographers. As can be seen in �gure 8.4, the scattering angle is twice the Bragg angle. [19]

Figure 8.4: De�ning the Bragg angle, θB, and scattering angle, θS. The dotted lines indicate the
incoming, di�racted and not di�racted X-rays. The green spheres represent a crystal and the line
through them the crystal plane that di�racts the rays.

Also the conversion from real to reciprocal space is performed di�erently in the two �elds. When a
translational lattice can be described by the axes ~a1, ~a2 and ~a3, crystallographers [18] tend to de�ne
the reciprocal lattice vectors as:

~b1 =
~a2 × ~a3
V

~b2 =
~a3 × ~a1
V

~b3 =
~a1 × ~a2
V

with V the volume of the real space unit cell:

V = ~a1 · |~a2 × ~a3|

However, in scattering, these reciprocal vectors are multiplied by a factor 2π.

8.2.2 Assumption of E�ect of Hollowness on Form Factor

The e�ect of hollowness on the form factor can be estimated for a spherical model particle. That is
because the form factor of a sphere can be calculated analytically. The unnormalised form factor of a
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homogeneous sphere with radius a and scattering length density ζ is [19] :

P (~q) =

∣∣∣∣4π3 a3∆ζ

∣∣∣∣2(3
sin qa− qa cos qa

(qa)3

)2

The scattering amplitude of a hollow sphere is the scattering amplitude of the sphere with radius a
minus the scattering amplitude of a smaller sphere with radius ηa. The scattered intensity of the hollow
sphere is its scattering amplitude multiplied by its complex conjungate, or its scattering amplitude
squared:

P (~q) =

∣∣∣∣4π3 a3∆ζ

∣∣∣∣2 [3sin qa− qa cos qa

(qa)3
− 3η3

sin qηa− qηa cos qηa

(qηa)3

]2

=

∣∣∣∣4π3 a3∆ζ

∣∣∣∣2 [3sin qa− qa cos qa− η3(sin qηa− qηa cos qηa)

(qa)3

]2

Figure 8.5: Unnormalized form factor of �lled (η = 0) or hollow (η = 0.8, η = 0.9) spheres.
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Figure 8.6: Position of the nth form factor minimum for several values of η.

In �gure 8.5
[
3 sin qa−qa cos qa−η3(sin qηa−qηa cos qηa)

(qa)3

]2
is plotted as function of qa for several values of

η. From this �gure, it is clear that with increasing hollowness, the form factor minima move to lower
q-values. The positions of the form factor minima are shown in �gure 8.6.
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8.3 List of Symbols

a radius of sphere
−→a 1,−→a 2,−→a 3 crystal axes
−→
b 1,
−→
b 2,
−→
b 3 reciprocal axes

c concentration
dhkl distance between lattice planes
g gravitational constant
D edgelength
δ thickness of depletion layer
e elementary charge
ε0 permittivity of vacuum
εr dielectric constant of solvent
ζ scattering length density
η ratio inner and outer radius of hollow sphere
θ, θs scattering angle
θB Bragg angle
h distance between two colloids
hkl Miller indices
I ionic strength
I(−→q ) scattered intensity
k Boltzmann constant
κ−1 Debye length
L length of cylinder
Lg gravitational length
λ wavelength
m deformation parameter
∆m particle mass corrected for buoyancy
nb bulk number density
NA Avogdro's constant
P (−→q ) form factor
Π osmotic pressure
−→q scattering vector
q size ratio between depletant and superball
R radius of cylinder
r semiaxis of superball
r1, r2 semiaxes of superdisk
s a parameter
S(−→q ) structure factor
T temperature
V volume
V ov overlap volume
φ packing density
W dep depletion potential
x height horizontal segment of cylinder
z charge number
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