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1 Introduction

Due to the massive amounts of neurons present in human brains (1011), many

difficulties arise when trying to model single neurons in a network of spiking neurons.

It became hence a popular approach to consider a continuous space and spiking

rates of neurons. This approach was largely introduced in the 1970s by the works

of Wilson and Cowan [11],[12], Nunez [13] and Amari [14]; the models were called

neural fields equations.

Amari focussed especially on mixed population models in interacting excitatory

and inhibitory neurons, with a Mexican hat connectivity function; furthermore

he formulated a voltage based model for activity with a sigmoidal firing rate

function. These models where formulated as integro-differential equations and

studied intensively in the succeeding years. For example, taking into consideration

the natural delays that arise in the brain, due to the finite velocity of the impulses,

the neural fields equations where modified into delay differential equations. Gils et

al. [1] recently developed a local bifurcation theory for a class of abstract delay

differential equations that cover neural field equations. Dijkstra et al. [2], later,

showed how the computation done by Gils could be simplified if an odd sigmoidal

firing rate function would be considered and symmetry arguments applied. In this

paper spatial diffusion has been further added to the neural fields equations. Using

the symmetries arguments presented in [2], local bifurcation theory with examples

taken from both [1] and [2] will be analysed and the influence of diffusion on the

solutions studied.

2 General Model

We will study the evolution of the synaptic current of a single population of neurons

affected by spatial diffusion in a bounded open domain Ω ⊂ R, described by the

system

∂V

∂t
(t, x) = D

∂2V

∂x2
(t, x)− αV (t, x) +

∫
Ω

J(x, y)S(V (t− τ(x, y), y))dy,

D
∂V

∂x
(t, x) = 0, for t > 0, on x ∈ ∂Ω.

(NFE)

For neurons positioned at a point x ∈ Ω, let V (t, x) be their averaged pre-synaptic

membrane potential at time t > 0. The synaptic decay rate is given by α > 0 and D

is the diffusion coefficient. The spatial diffusion acts on the synaptic currents, hence

we can consider it as an electrical current diffusion on the interval (−1, 1). The time

it takes for a signal to travel from a neuron at location y ∈ Ω to a neuron at location
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x ∈ Ω is described by the propagation delay τ(x, y), with τ ∈ C(Ω×Ω). Obviously,

being a time measure, τ > 0, holds, furthermore we define h := sup
(x,y)∈Ω

τ(x, y) as

the maximal delay and assume that this is a finite number. The strength of the

neural signal is given by J ∈ C(Ω × Ω). The firing rate of the neurons is given

by the function S ∈ C∞(R) and, by assumption, its k-th derivative is bounded.

It follows that S(V (t, x)) describes the averaged firing rate of neurons at position

x ∈ Ω and time t, given its pre-synaptic membrane potential V (t, x). Furthermore,

by setting S(0) = 0, V (t, x) represents the deviation from the background state

potential.

We use Neumann boundary condition because there is no flux at the boundary.

Furthermore it is necessary to multiply the Neumann condition times D, such that

for D = 0, the system (NFE) corresponds to system (NFE,[2]).

Now let Y := {y ∈ C2(Ω) | y′(∂Ω) = 0} and X := C([−h, 0];Y ). For notational

simplicity, define the non-linear operator G : X → Y as

G(φ)(x) :=

∫
Ω

J(x, y)S(φ(t− τ(x, y), y))dy ∀φ ∈ X, ∀x, y ∈ Ω. (1)

From ([1], Proposition 11) it follows that G is well defined by (1) and that G ∈
C∞(X, Y ). Of course G depends on S and for S = 0 it follows that G(0). We

will analyse with greater care the function S later in this section. For k ∈ N, the

operator G is k−times Frechet differentiable with its derivative at a point φ ∈ X
given by

(DkG(φ)(ϕ1, . . . , ϕk))(x) =

∫
Ω

J(x, y)S(k)(φ(−τ(x, y), y))
k∏
i=1

ϕi(−τ(x, y), y)dy

(2)

with (ϕ1, . . . , ϕk) ∈ X and x ∈ Ω.

Hence we will work with following system
V̇ (t) = D d2

dx2
Vt(0)− αVt(0) +G(Vt) for t ≥ 0, x ∈ Ω

D ∂V
∂x

(t, x) = 0 for t ≥ 0 on ∂Ω,

V (t) = φ(t) for t ∈ [−h, 0]

(3)

with φ(t) being the initial condition of the problem and

Vt(θ) := V (t+ θ) ∀t ≥ 0, and θ ∈ [−h, 0].

The aim of this thesis is to deliver an explicit characterization of the normal

forms occurring at bifurcation points. The first step will therefore be to deliver a
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detailed spectral analysis of the problem. For this, the system (NFE) needs to be

linearised around its trivial equilibrium which yields the characteristic equation

and polynomial. The roots of the characteristic polynomial are the eigenvalues of

the problem; various symmetry arguments will facilitate the computation of the

eigenvalues.

2.1 Z2 symmetries

For the non-diffusive problem, [2] has shown the presence of symmetries. More

precisely due to the choice of an odd firing rate Z2-symmetries are generated by

involutions κ1,2 ∈ L(Y ) defined by

(κ1f)(x) := f(−x), (κ2f)(x) := −f(−x). (4)

The fixed subspaces of the involutions κ1 and κ2 are composed of even and odd

functions respectively. Now, if κ̃1,2 ∈ L(Y ) are involutions defined by

(κ̃1φ)(θ, x) := φ(θ)(−x), (κ̃2φ)(θ, x) := −φ(θ)(−x), (5)

then the (NFE) has the symmetries

κiF (φ) = F (κ̃iφ). (6)

The addition of diffusion does not change the above mentioned symmetry arguments

and hence we can use the same methods used in [2].

3 Characteristic Equation

Let A be the infinitesimal generator of the solution semi-group, the standard nota-

tion will be used when discussing spectral theory, where ρ(A) ⊂ C, σ(A) and σp(A)

are the resolvent set, the spectrum and the point spectrum of A, respectively. As

usual for z ∈ ρ(A), R(z, A) = (z − A)−1 denotes the resolvent of A at z.

In this thesis only one dimensional problems will be considered. The delay is com-

posed by two parts: the conductance delay caused by the finite propagation speed

of the action potentials and an ”intrinsic” delay τ0 caused by synaptic processes

and dendritic integration. Space and time is rescaled such that Ω = [−1, 1]. All

together we get

∂V

∂t
(t, x) = D

∂2V

∂x2
(t, x)− αV (t, x) +

1∫
−1

J(x, y)S(V (t− τ(x, y), y))dy, (7)

with

τ(x, y) = τ0 + |x− y|, ∀x, y ∈ Ω . (8)
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The function S : R→ (0, 1) is defined in [8] as an odd function

S(z) =
1

1 + e−rz
− 1

2
, (9)

with r > 0 being the steepness of the firing rate function. Furthermore, we chose

J to be homogeneous, isotropic and given by a linear combination of N ∈ N
exponentials [1]:

J(x, y) = Ĵ(x− y) =
N∑
j=1

cje
−µj |x−y|, ∀x, y ∈ (−1, 1), (10)

where cj, µj ∈ C are chosen such that J is real. Further define following set:

ς :=
{
z ∈ C : ∃l, j ∈ {1, . . . , N}, l 6= j such that k2

l = k2
j

}
. (11)

Here ki := z + µi and cj := ĉj · S ′(0) = ĉj · r4 . Linearising (7) around the trivial

equilibrium yields the characteristic equation

∆(z)q = 0, (12)

where ∆(z) : Y → Y is defined as follows

(∆(z)q)(x) = (z + α)q(x)−D d2

dx2
q(x)−

1∫
−1

Ĵ(x− y)e−zτ0e−z|x−y|q(y)dy. (13)

Before further computations two known propositions taken from [1] but also valid

for the diffusive case will be stated.

Proposition 1. ([[1], Proposition 21]). All solutions q ∈ Y of the equation

(∆(z)q)(x) = 0 are in fact in C∞(Ω). 2

Proposition 2. ([[4], Proposition VI.6.7]). The complex number z ∈ σ(A) if and

only if 0 ∈ σ(∆(z)) and ψ ∈ D(A) is an eigenfunction corresponding to z if and

only if ψ = {θ 7→ eθzqz} where the non-trivial qz ∈ Y satisfies ∆(z)qz = 0. 2

Theorem 3. ([[1], Proposition 25]). Whenever z /∈ ς, (∆(z)q(x)) = 0 implies

βN+1q
(2N+2)
z + βNq

(2N)
z + · · ·+ β1q

(2)
z + β0qz = 0, (14)

for some unique vector β ∈ CN+1 depending on z and q
(k)
z denoting the k-th

derivative of qz with respect to the spatial variable. 2

Eigenvalues of the linear ODE (14) are roots of the characteristic polynomial

Pz given by the following proposition:
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Proposition 4. For z /∈ ς the characteristic polynomial Pz of (14) is given by

Pz(ρ) = (z+α)ezτ0
N∏
i=1

(
ρ2 − k2

i

)
−Dezτ0ρ2

N∏
i=1

(
ρ2 − k2

i

)
−2

N∑
i=1

ciki

N∏
j=1
j 6=i

(
ρ2 − k2

i (z)
)
.

(15)

Proof. First define

Li :=
(
∂2
x − k2

i (z)
)
, (16)

and

K :=
N∑
i=1

Ki, with Ki(q)(z) :=

∫
Ω

cie
−(µi+z)|x−y|e−zτ0q(y)dy, (17)

for all i = 1, . . . , N .

Notice now that

∂2
xe
−(µi+z)|x−y| = ∂2

xe
−ki|x−y| = [k2

i − 2kiδ(x− y)]e∂
2
xe
−ki|x−y| , (18)

and hence

Lj(Kj(q)(z)) = −k2
j

∫
Ω

cje
−kj |x−y|e−zτ0q(y) + cj[k

2
j − 2kjδ(x− y)]e−kj |x−y|e−zτ0q(y)dy

= −2cjkj

∫
Ω

e−kj |x−y|e−zτ0q(y).

(19)

so applying all different L〉 to (13) yields the following ODE(z + α)ezτ0
N∏
i=1

Li −Dezτ0 ∂2
x

N∏
i=1

Li − 2
N∑
i=1

ciki

N∏
j=1
j 6=i

Li

 q. (20)

Hence the characteristic polynomial is

Pz(ρ) = (z+α)ezτ0
N∏
i=1

(
ρ2 − k2

i

)
−Dezτ0ρ2

N∏
i=1

(
ρ2 − k2

i

)
−2

N∑
i=1

ciki

N∏
j=1
j 6=i

(
ρ2 − k2

i (z)
)
.

(21)

�
By adding diffusivity, the characteristic polynomial increases of two orders with

respect to the non-diffusive case, thus there will be a pair of roots, hence a pair of

eigenvalues, more than in [2].
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Proposition 5. If the characteristic polynomial Pz(ρ) has 2N + 2 distinct roots

for some z ∈ C, then kl(z) 6= 0 for all l = 1, . . . , N .

Proof. Assume that kl(z) = 0 for some l = 1, . . . , N , then without loss of

generality set l = N , then the characteristic polynomial becomes

Pz(ρ) = (z + α)ezτ0ρ2

N−1∏
i=1

(
ρ2 − k2

i

)
−Dezτ0ρ4

N−1∏
i=1

(
ρ2 − k2

i

)
− 2

N−1∑
i=1

ciki

N−1∏
j=1
j 6=i

(
ρ2 − k2

j (z)
)
ρ2.

(22)

Clearly ρ2 is a common factor of the characteristic polynomial, hence a double root

at ρ = 0 must exist. However the order of the polynomial is 2N + 2, meaning that

it should have 2N roots away from 0; hence ki(z) 6= 0 for all i = 1, . . . , N . �

Proposition 6. Let z /∈ ς and if the characteristic polynomial has 2N + 2 distinct

roots ±ρ1, . . . ,±ρN+1, then kj(z) 6= ±ρm, for all m = 1, . . . , N+1 and j = 1, . . . , N .

Proof. Clearly if Pz(kl) 6= 0 for all l = 1, . . . , N , then kl is not a root and

hence kj(z) 6= ±ρm. We must hence show Pz(kl) 6= 0. Without loss of generality

let l = N , then the characteristic polynomial takes following form

Pz(kN) = (z + α)ezτ0
N∏
i=1

(
k2
N − k2

i

)
−Dezτ0k2

N

N∏
i=1

(
k2
N − k2

i

)
− 2

N∑
i=1

ciki

N∏
j=1
j 6=i

(
k2
N − k2

j (z)
)

= −2cN · kN
N−1∏
j=1

(k2
N − k2

j ).

(23)

By definition cN 6= 0 and from the previous proposition we know that kN 6= 0 and

hence Pz(kl) 6= 0. �

Lemma 7. If z /∈ ς and the characteristic polynomial Pz has 2N + 2 distinct roots

±ρ1(z), . . . ,±ρN+1(z), then the general solution to (13) is of the form

qz(x) =
N+1∑
i=1

[ai cosh(ρi(z)x) + bi sinh(ρi(z)x)] , (24)

where the coefficients ai, bi ∈ C are arbitrary. 2
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Theorem 8. Suppose that z /∈ ς and the characteristic polynomial Pz has 2N + 2

distinct roots denoted by ±ρi(z) for i = 1, . . . , N + 1, then z is an eigenvalue of A

if and only if

det

[
Ŝez

[ρi sinh(ρi)]i

]
det

[
Ŝoz

[ρi cosh(ρi)]i

]
= 0. (25)

Furthermore, {θ 7→ eθzqz} ∈ X is a corresponding eigenfunction with qz ∈ Y

as in (24). If (25) holds then the coefficients a = [a1, a2, . . . , aN+1] and b =

[b1, b2, . . . bN+1] are a non-trivial solution of the system of equations
Ŝez 0

[ρi sinh(ρi)]i 0

0 [ρi cosh(ρi)]i
0 Ŝoz


[
a

b

]
= 0, (26)

Remarks

• Ŝez and Ŝoz will be defined more precisely later on, in the proof.

• [ρi sinh(ρi)]i and [ρi cosh(ρi)]i are vectors of length N + 1 and are both derived

from the Neumann boundary condition, as it will be shown later in the proof.

• To determine the exact solution it is necessary to compute the coefficients

a := [a1, . . . , aN+1] and b := [b1, . . . , bN+1]. Proposition 2 gives a necessary

condition these coefficients need to full-fill

Proof.

Inserting qz into (13) and using (10), gives

0 = (z + α)ezτ0
N+1∑
i=1

[ai cosh(ρi(z)x) + bi sinh(ρi(z)x)]

−Dezτ0 d
2

dx2
(
N+1∑
i=1

[ai cosh(ρi(z)x) + bi sinh(ρi(z)x)])

+
N∑
j=1

cj

1∫
−1

e−kj(z)|x−y|
N+1∑
i=1

[ai cosh(ρi(z)y) + bi sinh(ρi(z)y)] dy.

(27)

The second derivative can be easily calculated as follows

d2

dx2
(
N+1∑
i=1

[ai cosh(ρix) + bi sinh(ρix)]) = (
N+1∑
i=1

[
aiρ

2
i cosh(ρix) + biρ

2
i sinh(ρix)

]
).

(28)
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Integrating by parts and splitting (27) gives

0 =
N+1∑
i=1

{
ai cosh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

]

+ bi sinh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

]}

−Dezτ0(
N+1∑
i=1

[
aiρ

2
i cosh(ρix) + biρ

2
i sinh(ρix)

]
)

+
N∑
j=1

cje
−kj
{
ekjx

[
N+1∑
i=1

ai [S
e
z ]j,i +

N+1∑
i=1

bi [S
o
z ]j,i

]

+ e−kjx

[
N+1∑
i=1

ai [S
e
z ]j,i +

N+1∑
i=1

bi [S
o
z ]j,i

]}
,

(29)

where the dependency on z has been omitted when obvious, and[
Ŝez

]
j,i

:=
kj(z) cosh(ρi(z)) + ρi(z) sinh(ρi(z))

kj(z)2 − ρi(z)2
,[

Ŝoz

]
j,i

:=
kj(z) sinh(ρi(z)) + ρi(z) cosh(ρi(z))

kj(z)2 − ρi(z)2
,

(30)

with i = 1, . . . , N + 1 and j = 1, . . . , N .

The expression (29) can be rewritten as

0 =
N+1∑
i=1

{
ai cosh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]

+ bi sinh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]}

+
N∑
j=1

cje
−kj
{
ekjx

[
N+1∑
i=1

ai

[
Ŝez

]
j,i

+
N+1∑
i=1

bi

[
Ŝoz

]
j,i

]

+ e−kjx

[
N+1∑
i=1

ai

[
Ŝez

]
j,i

+
N+1∑
i=1

bi

[
Ŝoz

]
j,i

]}
.

(31)

The first part of (31) is equal to 0 iff[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]
= 0. (32)
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Now a quick computation shows

N∑
j=1

2cjkj
k2
j − ρ2

i

N∏
j=1

[
k2
j − ρ2

i

]
=

2c1k1

k2
1 − ρ2

i

N∏
j=1

[
k2
j − ρ2

i

]
+

2c2k2

k2
2 − ρ2

i

N∏
j=1

[
k2
j − ρ2

i

]
+ . . .

= 2c1k1

N∏
j=2

[
k2
j − ρ2

i

]
+ 2c2k2

N∏
j=1
j 6=2

[
k2
j − ρ2

i

]
+ . . .

=
N∑
i=1

2ciki

N∏
j=1
j 6=i

[
k2
j − ρ2

i

]
,

(33)

and hence multiplying (32) with
N∏
j=1

[
k2
j − ρ2

i

]
and using the above equation, gives

0 =
N∏
j=1

[
k2
j − ρ2

i

] [
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]

= ezτ0(z + α)
N∏
j=1

[
k2
j − ρ2

i

]
−

N∑
i=1

2ciki

N∏
j=1
j 6=i

[
k2
j − ρ2

i

]
−Dezτ0ρ2

i

N∏
j=1

[
k2
j − ρ2

i

]
,

(34)

and then (32) holds because of Proposition 4. On the other hand considering

a := [a1, a2, . . . , aN+1] and b := [b1, b2, . . . , bN+1], it is clear that the last line in (31)

vanishes if and only if [
Ŝez 0

0 Ŝoz

][
a

b

]
= 0, (35)

with Ŝ :=

[
Ŝez 0

0 Ŝoz

]
, a (2N)× (2N + 2) matrix and a, b as before.

The matrix S̃ is not quadratic. By taking into consideration the boundary condition

the matrix can be made quadratic. From the Neumann boundary conditions it

follows that

0 = D
dV

dx

∣∣∣∣
x=±1

= D
d

dx
ezτ0q(x)

∣∣∣∣
x=±1

= Dezτ0q′(x)

∣∣∣∣
x=±1

, (36)
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hence

0 = Dezτ0
d

dx
q(x)

∣∣∣∣
x=1

= Dezτ0
d

dx

N+1∑
i=1

[ai cosh(ρix) + bi sinh(ρix)]

= Dezτ0
N+1∑
i=1

[aipi sinh(ρi) + bipi cosh(ρi)] .

(37)

Therefore in order for (37) to hold it follows that:

[ρi sinh(ρi)]i · a = 0,

[ρi cosh(ρi)]i · b = 0,
(38)

with [ρi cosh(ρi)]i and [ρi sinh(ρi)]i N + 1 vectors.

Plugging these two equations into (35) gives
Ŝez 0

[ρi sinh(ρi)]i 0

0 [ρi cosh(ρi)]i
0 Ŝoz


[
a

b

]
= 0, (39)

System (39), therefore, has a non trivial solution if and only if

det

[
Ŝez

[ρi sinh(ρi)]i

]
det

[
Ŝoz

[ρi cosh(ρi)]i

]
= 0. (40)

�
It is hence possible to determine the characteristic equation and to compute

eigenvalues by solving (40). Depending whether

det

[
Ŝez

[ρi sinh(ρi)]i

]
= 0, (41)

or

det

[
Ŝoz

[ρi cosh(ρi)]i

]
= 0, (42)

we say the eigenvalue is even or odd, respectively. The implementation will be

carried forward using Matlab, later on.

4 Normal forms Coefficients

4.1 Andronov-Hopf Normal Forms

This part is entirely taken from [1] and only the results are repeated. In the case

where σ(A) contains only a simple pair of purely imaginary eigenvalues λ1,2 = ±iω0,
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with ω0 > 0 and no other eigenvalue on the imaginary axis, then the restriction

of (NFE) on the critical centre manifold is smoothly equivalent to the Poincarè

Normal Form given by

ż = iω0z + g21z|z|2 +O(|z|4). (43)

Using the fact that S is an odd function one gets

g21 =
1

2
〈ψ�1 , C(ψ1, ψ1, ψ̄1)〉 =

1

2
〈ψ�1 , (y11, 0)〉, (44)

where

y11 := D3G(0)(ψ1, ψ1, ψ̄1), (45)

with D3G(0) described in (2) and ψ1 being the eigenfunction normalized such that

< ψ�1 , jψ1 >= 1. (46)

4.2 Pitchfork-Hopf Normal Form

It has been shown in [2] that for a Pitchfork-Hopf bifurcation the restriction of

(NFE) onto the critical centre manifold is equivalent to the symmetric normal form{
ω̇ = g300ω

3 + g111ω|z|2 + O(|ω, z, z̄|5),

ż = iωz + g210zw
2 + g021z|z|2 + O(|ω, z, z̄|5),

(47)

where ω ∈ R, z ∈ C [9]. Using [[1], Lemma 33], [2] shows that

g300 =
1

6
〈ψ�1 , C(ψ1, ψ1, ψ1)〉 =

1

6
〈ψ�1 , (y11, 0)〉,

g111 = 〈ψ�1 , C(ψ1, ψ2, ψ̄2)〉 = 〈ψ�1 , (y12, 0)〉,

g210 =
1

2
〈ψ�2 , C(ψ2, ψ1, ψ1)〉 =

1

2
〈ψ�2 , (y21, 0)〉,

g021 =
1

2
〈ψ�2 , C(ψ2, ψ2, ψ̄2)〉 =

1

2
〈ψ�2 , (y22, 0)〉,

(48)

where
y11 := D3G(0)(ψ1, ψ1, ψ1),

y12 := D3G(0)(ψ1, ψ2, ψ̄2),

y21 := D3G(0)(ψ2, ψ1, ψ1),

y22 := D3G(0)(ψ2, ψ2, ψ̄2),

(49)
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with D3G(0) described in (2).

It will be our aim to find the various values of the g’s in (44) and (48) . The

eigenfunction ψi for all i = 1, 2 is known and has been described in the section

before; however it is not possible to calculate ψ� explicitly, where ψ� is one of

the eigenfunctions . Nevertheless we know from [2] that for some ν ∈ C, following

holds

〈ψ�, φ�∗〉 = 〈P�ψ�, φ�∗〉 (50)

= 〈ψ�, P�∗φ�∗〉 = ν〈ψ�, jψ〉 = ν, (51)

and hence, taking g300 as an example, we get

g300 =
1

6
〈ψ�1 , (y11, 0)〉 =

1

6
ν300. (52)

Clearly to calculate the normal forms coefficients we have to compute the specific

ν. The following Lemma or a variant of it, is necessary when calculating ν. We are

not sure how to define F and there are some functional analytical considerations to

make, which will not be made here. A forthcoming paper in this topics is expected

to be published soon.

Lemma 9. Suppose that z ∈ ρ(A). For each y ∈ Y the function ϕ = {θ →
eθz4(z)−1y} is the unique solution in C1([−h, 0];Y ) of the system{

zϕ(0)−DF (0)ϕ = y,

zϕ− ϕ′ = 0.
(53)

Moreover, ϕ�∗ = jϕ is the unique solution in D(A�∗) of (z −A�∗)ϕ�∗ = (y, 0), i.e

ϕ�∗ = R(z, A�∗)(y, 0). �

Everything stated until now in this section, together with following equality

P�∗φ�∗ =
1

2πi

∮
∂Cλ

R(z, A�∗)φ�∗dz = νjψ, (54)

gives us following representation

1

2πi

∮
∂Cλ

4(z)−1y dz = νψ(0), (55)

with Cλ a sufficiently small open disk centred at λ.
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5 Resolvent Equation

We notice that equation (55) describes a similar situation to the homogeneous case:

it is necessary to solve an integral equation for qz := 4(z)−1y ∈ Y , which means

solving the resolvent equation

(∆(z)q)(x) = (z+α)qz(x)−Dq′′z (x)−
1∫

−1

Ĵ0(x−r)e−zτ0e−z|x−r|qz(r)dr = y(x), (56)

for all x ∈ Ω̄. Adjusting the previous ansatz to the inhomogeneous case, we take

qz(x) =
y(x)

z + α
+

N+1∑
i=1

[ai(x) cosh(ρi(z)x) + bi(x) sinh(ρi(z)x)] , (57)

as the general solution.

Note that both a, b ∈ Y := {y ∈ C2(Ω) | y′(∂Ω) = 0}. They are not constants like

in Lemma (7), but depend on x.
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Inserting the solution (57) into the characteristic equation gives

0 =
N+1∑
i=1

{
ai(x) cosh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

]

+ bi(x) sinh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

]}

−D · ezτ0 ·
(
y′′(x)

z + α
+

N+1∑
i=1

[
ai(x)ρ2

i cosh(ρix) + bi(x)ρ2
i sinh(ρix)

]
+ 2ρi [a

′
i(x) sinh(ρix) + b′i(x) cosh(ρix)] + [a′′i (x) cosh(ρix) + b′′i (x) sinh(ρix)]

)
+

N∑
j=1

cje
−kj
∫ x

−1

ekjr
[
−y(r)

z + α
+

N+1∑
i=1

a′i(r)

k2
j − ρ2

i

× (kj cosh(ρir)− ρi sinh(ρir))

+
N+1∑
i=1

b′i(r)

k2
j − ρ2

i

× (kj sinh(ρir)− ρi cosh(ρir))

]
dr

−
N∑
j=1

cje
kj

∫ 1

x

e−kjr
[
y(r)

z + α
+

N+1∑
i=1

a′i(r)

k2
j − ρ2

i

× (kj cosh(ρir)− ρi sinh(ρir))

+
N+1∑
i=1

b′i(r)

k2
j − ρ2

i

× (kj sinh(ρir)− ρi cosh(ρir))

]
dr

+
N∑
j=1

cje
−kj(1+x)

[
N+1∑
i=1

ai(−1) [Sez ]j,i −
N+1∑
i=1

bi(−1) [Soz ]j,i

]

+
N∑
j=1

cje
−kj(1−x)

[
N+1∑
i=1

ai(1) [Sez ]j,i +
N+1∑
i=1

bi(1) [Soz ]j,i

]
,

(58)

where the dependence on z has been omitted when clear.

We have to find values of a(x) := [a1(x), . . . , aN+1(x)] and b(x) := [b1(x), . . . , bN+1(x)]

such that the above equation is satisfied.
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The first three lines in (58) can be rewritten in the form:

0 =
N+1∑
i=1

{
ai(x) cosh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]

+ bi(x) sinh(ρix)

[
ezτ0(z + α)−

N∑
j=1

2cjkj
k2
j − ρ2

i

−Dezτ0ρ2
i

]}

−D · ezτ0 ·
(
y′′(x)

z + α
+

N+1∑
i=1

2ρi [a
′
i(x) sinh(ρix) + b′i(x) cosh(ρix)]

+ [a′′i (x) cosh(ρix) + b′′i (x) sinh(ρix)]

)
,

(59)

and through Proposition 4 we know that the first part of (59) vanishes. The rest

of (58) can be written as following system of equations:

K̂z[Az(x)a′(x) +Bzb
′(x)] = 0, (60a)

M̂z[Bz(x)a′(x) + Az(x)b′(x)] = − y(x)

z + α
1, (60b)

N+1∑
i=1

2ρi [a
′
i(x) sinh(ρix) + b′i(x) cosh(ρix)]

+ [a′′i (x) cosh(ρix) + b′′i (x) sinh(ρix)] = −y
′′(x)

z + α
, (60c)

with following boundary conditions derived from the last two lines of (58)

Ŝeza(1) + Ŝozb(1) = 0, (61)

Ŝeza(−1)− Ŝozb(−1) = 0. (62)

Here 1 ∈ RN is the vector with one at each entry, and for all i = 1, . . . , N + 1 and

j = 1, . . . , N

[K̂z]j,i :=
kj(z)

kj(z)2 − ρi(z)2
, [M̂z]j,i :=

ρi(z)

kj(z)2 − ρi(z)2
, (63)

and

Az(x) :=

cosh(ρ1(z)x) 0
. . .

0 cosh(ρN+1(z)x)

 ,
Bz(x) :=

sinh(ρ1(z)x) 0
. . .

0 sinh(ρN+1(z)x)

 .
(64)
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It is our aim now to find non trivial a(x), b(x) that solve the above system. We first

notice that both K̂ and M̂ are N × (N + 1) matrices. For further computation it

would be convenient to incorporate (60c) into K̂, M̂ , making both matrices square;

to do this we will reformulate equation (60c). Exploiting that for all i = 1, . . . , N+1

a′′i (x) cosh(ρix) = (a′i(x) cosh(ρix))′ − ρia′i sinh(ρix),

and analogously

b′′i (x) sinh(ρix) = (b′i(x) sinh(ρix))′ − ρib′i cosh(ρix),

equation (60c) becomes

N+1∑
i=1

ρi [a
′
i(x) sinh(ρix) + b′i(x) cosh(ρix)]

+ [a′i(x) cosh(ρix) + b′i(x) sinh(ρix)]
′
= −y

′′(x)

z + α
.

(65)

At this stage we need the assumption that
N+1∑
i=1

[a′i(x)ρi sinh(ρix) + b′i(x)ρi cosh(ρix)] = 0,

N+1∑
i=1

[a′i(x) cosh(ρix) + b′i(x) sinh(ρix)]′ + y′′(x)
z+α

= 0.

(66)

Rewriting the above system into matrix vector form gives{
ρ
[
Az(x)b′(x) +Bz(x)a′(x)

]
= 0,

[1>[Az(x)a′(x) +Bz(x)b′(x)]]′ + y′′(x)
z+α

= 0,
(67)

where

ρ := [ρ1, . . . , ρN+1], and 1> := [1, . . . , 1], (68)

(N + 1) vectors. From the second equation of system (67) we derive

1>[Az(x)a′(x) +Bz(x)b′(x)] +
y′(x)

z + α
= C, (69)

for a C ∈ R and all x ∈ Ω. (69) holds for all x ∈ Ω, hence also for x = 1. Because

a, b, y ∈ Y we know that a′(1) = b′(1) = y′(1) = 0; it then follows that

C = 1>[Az(1)a′(1) +Bz(1)b′(1)] +
y′(1)

z + α
= 0, (70)
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hence C = 0 for all x ∈ Ω.

Thus we can rewrite system (67) as{
ρ
[
Az(x)b′(x) +Bz(x)a′(x)

]
= 0,

1>[Az(x)a′(x) +Bz(x)b′(x)] = −y′(x)
z+α

.
(71)

It is now possible to augment M̂z and K̂z in order to make them quadratic. Adding

the vector ρ = [ρ1, ρ2, . . . , ρn+1] as another row in M̂z, and [1 1 . . . 1]> as an extra

row in K̂z gives a system for a(x), b(x), given by

Kz[Az(x)a′(x) +Bzb
′(x)] = − y

′(x)

z + α

0

0

1

 , (72a)

Mz[Bz(x)a′(x) + Az(x)b′(x)] = − y(x)

z + α

1

1

0

 , (72b)

with

[Kz]j,i :=


kj(z)

kj(z)2 − ρi(z)2
∀i, j,

1 ∀i, j = N + 1,

[Mz]j,i :=


ρi(z)

kj(z)2 − ρi(z)2
∀i, j,

ρi ∀i, j = N + 1.

(73)

Before continuing we want to proof the invertability of the, now, square matrices

Kz,Mz.

Lemma 10. Suppose that z /∈ ς and that the characteristic polynomial Pz has

2N + 2 different roots ±ρ1, . . . ,±ρN+1, then the matrices Kz and Mz are invertible.

Proof. See Appendix 7.2 �
We want to reformulate system (72a) and (72b) in order to get a representation

of a′(x), b′(x). To achieve that we first multiply (AzKz)
−1 with (72a), (remember:

Az, Bz are diagonal matrices and hence they follow the commutative rule as well

as being invertible), and get

a′(x) = −(Az(x)Kz)
−1 y

′(x)

z + α

0

0

1

− A−1
z (x)Bz(x)b′(x). (74)
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Inserting (74) into (72b) to get b′(x) delivers

Mz[Bz(x)
[
−(Az(x)Kz)

−1 y
′(x)

z + α

0

0

1

−A−1
z (x)Bz(x)b′(x)

]
+Az(x)b′(x)] = − y(x)

z + α

1

1

0

 ,
(75)

multiplying with M−1
z and separating b′(x) gives

[Az(x)− A−1
z (x)B2

z (x)]b′(x) = −M−1
z

y(x)

z + α

1

1

0

+Bz(x)(Az(x)Kz)
−1 y

′(x)

z + α

0

0

1

 ,
(76)

multiplying both sides with Az(x) and exploiting that A2
z(x)−B2

z (x) = 1 gives

b′(x) = −Az(x)M−1
z

y(x)

z + α

1

1

0

+Bz(x)K−1
z

y′(x)

z + α

0

0

1

 . (77)

Re-substituting (77) into (74) gives

a′(x) =− (Az(x)Kz)
−1 y

′(x)

z + α

0

0

1

+ A−1
z (x)Bz(x)

[
Az(x)M−1

z

y(x)

z + α

1

1

0


+Bz(x)K−1

z

y′(x)

z + α

0

0

1

 ],
(78)

grouping the terms containing K−1
z together gives

a′(x) = −A−1
z (x)[1 +B2

z (x)]K−1
z

y′(x)

z + α

0

0

1

+Bz(x)M−1
z

y(x)

z + α

1

1

0

 , (79)

exploiting again A2
z(x) = 1 +B2

z (x) we get

a′(x) = −Az(x)K−1
z

y′(x)

z + α

0

0

1

+Bz(x)M−1
z

y(x)

z + α

1

1

0

 . (80)
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Recapitulating we define

aa(x) := −Az(x)K−1
z

y′(x)

z + α

0

0

1

+Bz(x)M−1
z

y(x)

z + α

1

1

0

 , (81)

bb(x) := −Az(x)M−1
z

y(x)

z + α

1

1

0

+Bz(x)K−1
z

y′(x)

z + α

0

0

1

 , (82)

and hence

a(x) = a0,z +
1

2

(∫ x

−1

aa(r)dr −
∫ 1

x

aa(r)dr

)
, (83)

b(x) = b0,z +
1

2

(∫ x

−1

bb(r)dr −
∫ 1

x

bb(r)dr

)
. (84)

We would like now to compute the exact form of both a0,z and b0,z; to do this we

finally need to focus on the boundary condition.

From (61) and (62) it is known that for the non-square matrices Ŝez and Ŝoz as in

(30), it holds that

Ŝeza(1) + Sozb(1) = 0, (85)

Ŝeza(−1)− Sozb(−1) = 0. (86)

As with the matrices K̂z, M̂z we would like to augment Ŝez and Ŝoz into square

matrices; for this case, similar as in the homogeneous situation, the Neumann

boundary condition comes to aid. We will consider

D
dq

dx
(x)

∣∣∣∣
x=±1

= 0. (87)

Inserting the Ansatz q(x) in equation (87) and dividing both sides by D 6= 0 gives

0 =
y′(x)

z + α
+

N+1∑
i=1

[
a′i(x) cosh(ρi(z)x) + ρiai(x) sinh(ρi(z)x)

+ b′i(x) sinh(ρi(z)x) + ρibi(x) cosh(ρi(z)x)
]∣∣∣∣
x=±1

.

(88)

Rewriting it into matrix-vector form as done earlier gives

0 =
y′(±1)

z + α
+ρ[Bz(±1)a(±1)+Az(±1)b(±1)]+1>[Az(±1)a′(±1)+Bz(±1)b′(±1)].

(89)

21



Again, because both a, b, y ∈ Y := {y ∈ C2(Ω)|y′(±1) = 0)}, it holds that

0 = +ρ[Bz(±1)a(±1) + Az(±1)b(±1)], (90)

and because Az(−1) = Az(1) and Bz(−1) = −Bz(1) it follows that

0 = ρ[Bz(1)a(1) + Az(1)b(1)], (91)

0 = ρ[−Bz(1)a(−1) + Az(1)b(−1)]. (92)

This shows that the coefficients a, b ∈ Y need to satisfy following systems on the

boundary {
Ŝeza(1) + Ŝozb(1) = 0,

ρ[Bz(1)a(1) + Az(1)b(1)] = 0,
(93)

and {
Ŝeza(−1)− Ŝozb(−1) = 0,

ρ[−Bz(1)a(−1) + Az(1)b(−1)] = 0.
(94)

Again we modify Ŝez and Ŝoz such as to make them quadratic. We hence define

Sez :=

[
Ŝez

[ρi sinh(ρi)]i

]
, (95)

Soz :=

[
Ŝoz

[ρi cosh(ρi)]i

]
, (96)

getting

Se
z a(1) + So

z b(1) = 0, (97)

and

Se
z a(−1)− So

z b(−1) = 0. (98)

By substituting (83) and (84) into (97) and (98), it is now possible to determine

a0,z and b0,z.

It follows that

Se
z a0,z +

1

2
Se

z

(∫ 1

−1

aa(r)dr

)
+ So

z b0,z +
1

2
So

z

(∫ 1

−1

bb(r)dr

)
= 0, (99)

Se
z a0,z −

1

2
Se

z

(∫ 1

−1

aa(r)dr

)
− So

z b0,z +
1

2
So

z

(∫ 1

−1

bb(r)dr

)
= 0. (100)

Next, we respectively, add (99) to (100) or subtract (99) to (100) to obtain

2 Se
z a0,z + So

z

(∫ 1

−1

bb(r)dr

)
= 0, (101)

Se
z

(∫ 1

−1

aa(r)dr

)
+ 2 So

z b0,z = 0, (102)
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respectively. From the above two equalities we finally get

a0,z = −1

2
Se

z
−1 So

z

(∫ 1

−1

bb(r)dr

)
, (103)

b0,z = −1

2
So

z
−1 Se

z

(∫ 1

−1

aa(r)dr

)
. (104)

This yields

a(x) = −1

2
Se

z
−1 So

z

(∫ 1

−1

bb(r)dr

)
+

1

2

(∫ x

−1

aa(r)dr −
∫ 1

x

aa(r)dr

)
, (105)

b(x) = −1

2
So

z
−1 Se

z

(∫ 1

−1

aa(r)dr

)
+

1

2

(∫ x

−1

bb(r)dr −
∫ 1

x

bb(r)dr

)
. (106)

with aa(x), bb(x) as in (81) and (82).

For completeness we have to check if the choices for a(x), b(x), with these a0,z, b0,z

really solve systems (72a) and (72b). It comprises nothing else than substituting

a(x), b(x) into the system and can be found in the Appendix.

6 Numerical Analysis

It is possible to numerically analyse an approximated solution of the delayed

diffusion neural field equation as done similarly in [2] and [1]. To do this we have

to discretize Ω = [−1, 1] and by doing this we get a system of equations with m+ 1

delays. Some derivation and a deeper inside into the discretization process are

explained in [5] and [8]. The system (NFE) discretized has following form

dVi
dt

(t) = −αVi(t)−
D

h2
MV + h

m+1∑
j=1

ξjĴ(|i− j|h)× S(Vj(t− τ0 − |i− j|h)). (107)

for i = 1, . . . ,m+ 1 and

ξj =

{
1
2

if j ∈ {1,m+ 1},
1 otherwise,

and h = 2
m

the discretization of Ω in m equally long segments. M is a tridiagonal

matrix with ones on the lower and upper diagonal, and −2 on the main diagonal,

with the exclusion of M11 = Mnn = −1. The diffusive part has been discretized

through a centred finite difference method. We take N = 2 and Ĵ : R → R as in

(10); more precisely we will use

J1(x) = 12.5 · e−2|x| − 10 · e−|x|, (108)

J2(x) = 3 · e−0.5|x| − 5.5 · e−|x|, (109)
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where J1 is a Mexican-hat type function and J2 is an inverted Mexican-hat type

function (Figure 1). This section will be structured as following: first we will

Fig. 1. Connectivity functions J1 and J2, respectively.

show how for D → 0, the ”diffusive spectrum” converges towards the non-diffusive

spectrum computed in [2] and [1]. After that, we will proceed with a bifurcation

analysis for both J1, J2. We will show the presence of a fold bifurcation as well as

Hopf bifurcation. Finally we will concentrate on co-dimension 2 bifurcations by

finding a Pitchfork-Hopf bifurcation for J1.

6.1 Convergence of Spectrum

It is in our interest to understand the influence of the diffusion term D on the

spectrum of the problem. We will show that for D → 0 the spectrum converges

towards the spectrum of the non diffusive problem. We will however run into

some difficulties for small D and we will try to explain the origin of this. First we

will check if the same convergences applies to the Hopf bifurcation of [1], for J2;

next we will study the Pitchfork-Hopf bifurcation occurring for J1 in [2] . In [1] a

Parameter α ĉ1 ĉ2 µ1 µ2 r τ0
J1 1 12.5 -10 2 1 2.5169 2.5939

J2 1 3 -5.5 0.5 1 4.2202 1

Table 1: Parameters computed in [2] and [1] for which in the non-diffusive case (D = 0) a Pitchfork-Hopf

and a Hopf Bifurcation appear, respectively.

Hopf-Bifurcation was found for connectivity J2 and parameters as in Table 1. We

calculated analytically the spectrum and confirmed the results in [1], by finding

the Hopf bifurcation, as shown in Figure 2.
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Fig. 2. Left: spectrum for connectivity J2 and parameters as in Table 1. Right: spectrum computed

analytically for low diffusive case D = 0.005. (Even and odd eigenvalues are shown as red circles and blue

stars, respectively.)

.

Figure 2 confirms that the discretisation (107) is valid and it also confirms the pres-

ence of an ”accumulation region” near the point −α, (for α = 2 the accumulation

region is near −2). We notice that the position of the eigenvalues which are not on

the x-axis has varied little from the non-diffusive case; however the accumulation

region has been spread more and pushed to the left.

In [2] a Pitchfork-Hopf bifurcation was found for parameters as in Table 1 and

connectivity J1, without diffusion (D = 0). By keeping the parameters unchanged

but varying the diffusion coefficient D, it is easy to see that the eigenvalues converge

towards the Pitchfork-Hopf bifurcation for D → 0, (See Figure 3). Analytically it

was possible to compute the eigenvalues up to D = 0.005; for lower values the error

increases dramatically due to the very small third root of the characteristic polyno-

mial. With the aid of a numerical bifurcation package for Matlab named Biftool

[10], we were able to show the convergence for even lower values D < 0.0001.

In Figure 3 (b), the nearly critical eigenvalue z1 and nearly critical z2 are

z1 = −0.0069± 0i, (110)

z2 = −0.0001± 0.6879i. (111)

The fact that both z1, z2 are nearly the same as λ1, λ2 in [2] furthermore confirms

the convergence of the spectrum.

6.2 Fold, Hopf and Pitchfork-Hopf bifurcations

Before we start with the actual spectrum analysis some minor remarks are necessary:
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(a) D = 0.1 (b) D = 0.05

(c) D = 0.0001. Computed through Biftool (d) D = 0

Fig. 3. Spectra for connectivity J1, parameters as in Table 1 and various D. Unfortunately Biftool

does not recognize which eigenvalue is ”even” and which ”odd”, hence the difference in colour from the

other figures.(Even and odd eigenvalues are shown as red circles and blue stars, respectively.)
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Remark 11.

• An increase in the value of r causes a movement of all eigenvalues towards

the right half plane.

• A change in the value of D affects mostly only the eigenvalues on the x-axis

• τ0 instead affects the eigenvalues that are not on the axis.

6.2.1 Fold Bifurcation

α ĉ1 ĉ2 µ1 µ2 r τ0 D

1 12.5 -10 2 1 3.28 1 0.08

Table 2: Parameters for which a fold-bifurcation appears.

For parameters as in Table 2 we notice the presence of a fold-bifurcation

equivalent to a zero ”odd” eigenvalue. We will not study this bifurcation further.

6.2.2 Hopf Bifurcation

We are free of using whatever parameters as our free bifurcation parameters. First

we use only τ and r with the other parameters and especially D fixed like in Table

3. We get the expected Hopf branches as depicted in Figure 4.

If however we fix r and the other values and use τ and D as bifurcation parameters

α ĉ1 ĉ2 µ1 µ2 r τ0 D

J1 1 12.5 -10 2 1 2.5169 2.5517 1

J2 1 3 -5.5 0.5 1 3.559 1.5 0.5

Table 3: Parameters for which a Hopf-bifurcation appears, with τ and r bifurcation parameters.

we get also Hopf branches as depicted in Figure 5, where the spectrum was

α ĉ1 ĉ2 µ1 µ2 r τ0 D

J̃1 1 12.5 -10 2 1 3.28 0.7532 0.7

J̃2 1 3 -5.5 0.5 1 4.2202 1.0655 0.7

Table 4: Parameters for which a Hopf-bifurcation appears, with D and τ bifurcation parameters.

computed with parameters having values as in Table 4. We see that in all the
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Fig. 4. Left: Hopf curves on the background state for connectivity J1 and J2, respectively. Right:

eigenvalues for parameters as in Table 3.(Even and odd eigenvalues are shown as red circles and blue

stars, respectively.)

spectra the purely imaginary eigenvalues are ”even”. We will hence calculate the

various coefficients a1, a2, a3; to do this we will take the values of J1 in Table 3,

where the free parameters where τ and r, and the values of J̃2 in Table 4. We get

± λ1 = 0.6958i, ±λ2 = 1.5850i, (112)

respectively. Computations with λ1 then gives for connectivity J1,

ρ
(1)
1 = 2.4463− 0.1750i, a

(1)
1 = −0.0319,

ρ
(1)
2 = 0.1380− 0.6938i, and a

(1)
2 = −0.8351− 0.5437i,

ρ
(1)
3 = 1.6548 + 1.7882i, a

(1)
3 = −0.0589 + 0.0499i,

(113)

and for J̃2 and λ2 we get

ρ
(2)
1 = 0.1905 + 1.8950i, a

(2)
1 = −0.1557,

ρ
(2)
2 = 2.0529 + 1.6136i, and a

(2)
2 = −0.0139 + 0.0530i,

ρ
(2)
3 = 0.2414− 0.6783i, a

(2)
3 = −0.6382− 0.7520i.

(114)

Having computed the coefficients for both connectivity, and due to the same parity

condition of the critical eigenvalue, it is possible to write down the general form of
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Fig. 5. Left: Hopf curve on the background state for connectivity J̃1. Right: Hopf curve on the

background state for J̃2, respectively.

the complex eigenfunction of both connectivities as

ψλj(t, x)) := eλjt
(
a

(j)
1 cosh(ρ

(j)
1 x) + a

(j)
2 cosh(ρ

(j)
2 x) + a

(j)
3 cosh(ρ

(j)
3 x)

)
, (115)

for j = {1, 2} and t ∈ [−h, 0]. The two different eigenfunction can be seen in Figure

7

6.2.3 Pitchfork-Hopf Bifurcation

Most interesting is the situation of a co-dimension 2 bifurcation. Similarly to [2]

we will find a Pitchfork-Hopf bifurcation for connectivity J1.

α ĉ1 ĉ2 µ1 µ2 r τ0 D

1 12.5 -10 2 1 3.28 0.802 0.08

Table 5: Parameters for which a Pitchfork Hopf-bifurcation appears.

Solving (26) for values as in Table 5 delivers an ”odd” zero eigenvalue and two

”even” purely imaginary eigenvalues

λ1 = 0, ±λ2 = 1.2091i. (116)

Continuation of the bifurcation curves are shown in Figure 8, the corresponding

eigenfunctions have the form

ψ1(x, t) = b1 sinh(ρ1x) + b2 sinh(ρ2x) + b3 sinh(ρ3x), (117)

ψ2(x, t) = eλ2t
(
a1 cosh(ρ

(2)
1 x) + a2 cosh(ρ

(2)
2 x) + a3 cosh(ρ

(2)
3 x)

)
. (118)

(119)
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Fig. 6. Left: Spectrum computed analytically for parameters as in Table 4. (Even and odd eigenvalues

are shown as red circles and blue stars, respectively.) Right: Spectrum computed through Biftool.

(Stable and unstable eigenvalues are shown in red and blue, respectively).

A quick computation gives for λ1 = 0,

ρ1 = 5.1902, b1 = −0.0018− 0.0035i,

ρ2 = 2.7784i, and b2 = −0.7053 + 0.3696i,

ρ3 = −1.3111i, b3 = 0.5358− 0.2808i,

(120)

and for λ2 = 1.2091i,

ρ
(2)
1 = 4.9760 + 0.5701i, a1 = −0.0010 + 0.0022i,

ρ
(2)
2 = 0.2638− 0.8660i, and a2 = −0.8695− 0.4911i,

ρ
(2)
3 = 2.2665 + 3.7837i, a3 = 0.04931.

(121)

The eigenfunction can be seen in Figure 9. It is possible to solve the discretization

problem, as done before, using a classical DDE Matlab solver like dde23. This

delay differential equation solver is derived from the more known ODE solver ode23.

The solver dde23 wa used with default relative tolerance of 1e-3 and an absolute

tolerance of 1e-6. The input variables were the history function (initial condition),

the lags, the delays and of course the discretized system.

30



Fig. 7. Left complex-valued eigenfunction (115) for connectivity J1 as in Table 3. Right: complex-valued

eigenfunction (115) for connectivity J̃2 as in Table 4.

Fig. 8. Left: Pitchfork-Hopf curves for background state. Middle: analytically computed eigenvalues

for parameters as in Table 5.(Even and odd eigenvalues are shown as red circles and blue stars, respectively).

Right: Spectrum computed through Biftool. (Stable and unstable eigenvalues are shown in red and

blue, respectively).

We chose as initial conditions following functions

V (x, t) = 0.05 · (0.99 · ψλ1(0) + 0.01 · ψλ2(0)), (122)

V (x, t) = 0.05 · (0.01 · ψλ1(0) + 0.99 · ψλ2(0)), (123)

with t ∈ [−(τ0 + 2), 0]. We will see the behaviour of the solution for the various

regimes shown in Figure 8. We first chose a time interval of [0, 300] however after

having run the code we realize that in some occasions more time was needed for the

solution to stabilize, hence we ultimately chose different time intervals for different

regions; The discretization was m = 50.

In region 1 we see that all solutions decay to zero for initial condition (122) while

for initial condition (123) the only stable solution is a periodic oscillating solution

(Figure 10). When passing from region 1 to region 2 we cross the Hopf-curve of

Figure 8; the solution for (122) remains similar to the one of region 1, except that

the solution decays relatively faster. For (123) instead it is possible to see how the

periodic solutions slowly decays towards zero, with the firing rates becoming weaker
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Fig. 9. Left: real-valued eigenfunction (117) for zero eigenvalue λ1. Right: complex-valued eigenfunction

(118) for imaginary eigenvalue λ2.

(Figure 11 ). More interesting is the crossing of the fold-curve seen in Figure 12;

here for the initial condition (122) we notice bi-stability: a stable stationary and a

periodic solution appear. Interestingly enough the periodic solution for the second

initial condition (123) appears to decay for increasing time, while for the other

initial conditions the solution increases in strength. The final region 4 is similar to

region 3 and is also characterized by bi-stability, however here for initial condition

(123) the periodic solution stabilizes itself instead of decaying (Figure 13).

6.3 Influence of diffusion on spectrum

The addition of diffusion on NFE appears not to have any influence on the stability

of the solution; however it does influence the spectrum in quite some other way.

Take Figure 6 as an example: we clearly notice how the diffusion spreads the

eigenvalues on the x-axis making the accumulation point near α disappear. The

spread of the eigenvalue is however not only viewable in on the axis; if for example

we take Figure 2 we notice how the eigenvalues increase in height (respective to

the y-axis) when the diffusion coefficient is added.

None of the bifurcations disappear with addition of diffusion and both Hopf and

Pitchfork-Hopf bifurcations can be found also with diffusion. When analysing

however the solution through DDE23, as done above, we notice how in region 2,

the solution needs more time than in the other regions to converge towards a

stable state. It is however problematic to work with low values of D, as shortly

commented before. For values of D smaller than 10−4 it becomes impossible to

calculate analytically the eigenvalues; we encountered, for example, conditions

number up to 1021 for the matrices Se and So. The characteristic polynomial

converges for D → 0 towards a polynomial of one lower order, and hence one of
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Fig. 10. Simulation of region 1 with D = 0.15 and τ0 = 0.802. The top and the bottom panels correspond

to initial conditions (122) with a time interval of [0, 300] and (123) with a time interval of [0, 1000],

respectively.

the roots converges towards 0, destabilizing the whole calculations done in this

thesis; hence if working with low values of D it is necessary to use some numerical

analysis package like, in our case, Biftool. In both figure 6 and 8 we notice how

the eigenvalues computed analytically using the system (39) and equation (40),

coincide with the one computed numerically through Biftool.

7 Discussion

This paper has studied the behaviour of one dimensional delay neural fields equation

with diffusion.

We have shown how the computation of the spectrum changes once diffusion is

added to the equation and how the symmetry arguments brought forward by

Dijkstra in [2] can still be applied to this new situation.

Further we have shown how the analytically computed eigenvalues coincide with

the numerically computed eigenvalues, using Biftool.

As done in many previous works an odd firing rate has been used, mainly because

it is handy when working with symmetric arguments; there is however no biological

reason to assume an odd parity of the firing rate, but it is common use to assume
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Fig. 11. Simulation of region 2 with D = 0.15 and τ0 = 0.76, both on a time interval of [0, 1000]. The

top and the bottom panels correspond to initial conditions (122) and (123), respectively.

it. This was not the only assumption made in this paper; as mentioned in section

5.1, we made a big assumption when splitting (60c) into the system (66). Also here

the mathematical assumption is (still) not backed up by biological reasoning and

this should be extensively studied in future works.

Furthermore it has been shown how the addition of diffusion in the (NFE) does not

change the type of bifurcation that appear and neither their stability. However it

has of course an effect on the spectrum, it mostly ”stretches” it. The accumulation

area present on the x-axis of the Pitchfork-Hopf bifurcation in [1] is dispersed. Also,

when analysing the behaviour of the solution we saw how because of the diffusion

parameter more time is needed for the solutions to stabilize.

Again, as in [1] and [2] multi-stability of the solution has been observed. This

means that the addition of an external input I(x, t) would change permanently the

dynamics of the solution; in many paper this external input has been taken into

consideration and it would for sure be interesting to analyse in combination with

diffusion. In our case, without the input factor we saw how a solution can switch

from a stable stationary solution to a large scale oscillation, usually, biologically,

attributed to an epileptic seizure [15].
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Fig. 12. Simulation of region 3 with D = 0.05 and τ0 = 0.76, both on a time interval of [0, 300]. The

top and the bottom panels correspond to initial conditions (122) and (123), respectively.

Fig. 13. Simulation of region 4 and D = 0.05 and τ0 = 0.9. The top and the bottom panels correspond

to initial conditions (122) and (123), respectively.
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8 Appendix

8.1 Correctness of a(x), b(x)

We want to show that

a(x) = a0,z +
1

2

(∫ x

−1

aa(r)dr −
∫ 1

x

aa(r)dr

)
, (124)

b(x) = b0,z +
1

2

(∫ x

−1

bb(r)dr −
∫ 1

x

bb(r)dr

)
, (125)

with

a0,z = −1

2
Se

z
−1 So

z

(∫ 1

−1

bb(r)dr

)
, (126)

b0,z = −1

2
So

z
−1 Se

z

(∫ 1

−1

aa(r)dr

)
, (127)

actually do solve the resolvent equation (55). We hence need to plug a(x), b(x) in

the systems (72b, 72a); these two system however have aa(x), bb(x) as arguments.

From (81) we know that

aa(x) = −Az(x)K−1
z

y′(x)

z + α

0

0

1

+Bz(x)M−1
z

y(x)

z + α

1

1

0

 , (128)

b′(x) = −Az(x)M−1
z

y(x)

z + α

1

1

0

+Bz(x)K−1
z

y′(x)

z + α

0

0

1

 . (129)

Plugging them into (72a) gives

Kz[Az(x)[−Az(x)K−1
z

y′(x)

z + α

0

0

1

+Bz(x)M−1
z

y(x)

z + α

1

1

0

]

−Bz(x)[Az(x)M−1
z

y(x)

z + α

1

1

0

−Bz(x)K−1
z

y′(x)

z + α

0

0

1

]] =

[
0 · 1
−y′(x)

z+α

]
.

(130)
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Expanding the above form gives

− A2
z(x)− y′(x)

z + α

0

0

1

KzAz(x)Bz(x)M−1
z

y(x)

z + α

1

1

0

]

−KzBz(x)Az(x)M−1
z

y(x)

z + α

1

1

0

+B2
z (x)

y′(x)

z + α

0

0

1

]] = − y
′(x)

z + α

0

0

1

 .
(131)

Hence,

− (A2
z(x)−B2

z (x))
y′(x)

z + α

0

0

1

 = − y
′(x)

z + α

0

0

1

 , (132)

and exploiting again that A2
z(x)−B2

z (x) = 1 gives

− y′(x)

z + α

0

0

1

 = − y
′(x)

z + α

0

0

1

 (133)

Analogously, plugging (81) into (72b) gives

Mz[−Bz(x)
(
Az(x)K−1

z

y′(x)

z + α

0

0

1

−Bz(x)M−1
z

[
− y(x)
z+α

1

0

] )

− Az(x)
(
Az(x)M−1

z

y(x)

z + α

1

1

0

+Bz(x)K−1
z

y′(x)

z + α

0

0

1

)] = − y(x)

z + α

1

1

0

 ,
(134)

expansion gives

+MzBz(x)Az(x)K−1
z

y′(x)

z + α

0

0

1

+B2
z (x)

y(x)

z + α

1

1

0


−A2

z(x)
y(x)

z + α

1

1

0

−MzAz(x)Bz(x)K−1
z

y′(x)

z + α

0

0

1

 = − y(x)

z + α

1

1

0

 ,
(135)

and using A2
z(x)−B2

z (x) = 1 gives

y(x)

z + α

1

1

0

 =
y(x)

z + α

1

1

0

 . (136)
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This shows that the solutions a(x), b(x) computed in (105,106) solve the systems

(72a,72b). We will quickly show now that also the boundary condition is satisfied for

the chosen values of a(x), b(x). The proceeding is the same: we plug the functions

into the boundary systems (97,98). We begin with (97):

Se
z a(1) + So

z b(1) =− 1

2
So

z

∫ 1

−1

bb(r)dr +
1

2
Se

z

∫ 1

−1

aa(r)dr − 1

2
Se

z

∫ 1

−1

aa(r)dr

+
1

2
So

z

∫ 1

−1

bb(r)dr = 0.

(137)

For (98), we instead get

Se
z a(−1)− So

z b(−1) =− 1

2
So

z

∫ 1

−1

bb(r)dr − 1

2
Se

z

∫ 1

−1

aa(r)dr +
1

2
Se

z

∫ 1

−1

aa(r)dr

+
1

2
So

z

∫ 1

−1

bb(r)dr = 0.

(138)

We have shown hence, that for all y ∈ Y , a(x) and b(x) as in (105) and (106) solve

the systems (72b, 72a). �

8.2 Invertability of K,M

We want to proof the claims of Proposition 10; hence we want to proof that both

K,M as in (73) are invertible. We will proof it for the matrix K and N = 2.

Recall that

Kz =


k1

k21−ρ21
k1

k21−ρ22
k1

k21−ρ23
k2

k22−ρ21
k2

k22−ρ22
k2

k22−ρ23
1 1 1

 (139)

For convenience define

nj := k2
j , mi := ρ2

i for j = 1, . . . , N, i = 1, . . . , N + 1, (140)

and for a matrix Q write |Q| for the determinant.

First we notice that

• Because z /∈ ς we have

ni = k2
i 6= k2

j = nj for all i 6= j.

• All mi are distinct since ρi 6= ρj for all i 6= j.
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• nj −mi 6= 0 for all i, j, because of Proposition 6.

We want to show that det(K) 6= 0, hence

det(K) =

∣∣∣∣∣∣∣
k1

k21−ρ21
k1

k21−ρ22
k1

k21−ρ23
k2

k22−ρ21
k2

k22−ρ22
k2

k22−ρ23
1 1 1

∣∣∣∣∣∣∣ = k1 · k2 ·

∣∣∣∣∣∣∣
1

k21−ρ21
1

k21−ρ22
1

k21−ρ23
1

k22−ρ21
1

k22−ρ22
1

k22−ρ23
1 1 1

∣∣∣∣∣∣∣ , (141)

Now using (140) and transposing the matrix, we can rewrite (141) as

det(K) = k1 · k2 ·

∣∣∣∣∣∣
1

n1−m1

1
n1−m2

1
n1−m3

1
n2−m1

1
n2−m2

1
n2−m3

1 1 1

∣∣∣∣∣∣ = k1 · k2 ·

∣∣∣∣∣∣∣
1

n1−m1

1
n2−m1

1
1

n1−m2

1
n2−m2

1
1

n1−m3

1
n2−m3

1

∣∣∣∣∣∣∣ . (142)

Switching column one with column three, changes the sign of the determinant,

hence

det(K) = −k1 · k2 ·

∣∣∣∣∣∣∣
1 1

n2−m1

1
n1−m1

1 1
n2−m2

1
n1−m2

1 1
n2−m3

1
n1−m3

∣∣∣∣∣∣∣ . (143)

It is now possible to subtract row one to row 2 and 3, without changing the

determinant,

det(K) = −k1 · k2 ·

∣∣∣∣∣∣∣
1 1

n2−m1

1
n1−m1

0 1
n2−m2

− 1
n2−m1

1
n1−m2

− 1
n1−m1

0 1
n2−m3

− 1
n2−m1

1
n1−m3

− 1
n1−m1

∣∣∣∣∣∣∣ , (144)

and noticing that

1

nj −mi

− 1

nj −m1

=
mi −m1

(nj −mi)(nj −m1)
, (145)

we write

det(K) = −k1 · k2 ·

∣∣∣∣∣∣∣
1 1

n2−m1

1
n1−m1

0 m2−m1

(n2−m2)(n2−m1)
m2−m1

(n1−m2)(n1−m1)

0 m3−m1

(n2−m3)(n2−m1)
m3−m1

(n1−m3)(n1−m1)

∣∣∣∣∣∣∣ . (146)

Finally it follows that

det(K) = −k1 · k2 · (m2 −m1)(m3 −m1) · 1

(n2 −m1)(n1 −m1)

∣∣∣∣∣∣
1 1 1

0 1
n2−m2

1
n1−m2

0 1
n2−m3

1
n1−m3

∣∣∣∣∣∣
=
−k1 · k2 · (m2 −m1)(m3 −m1)

(n2 −m1)(n1 −m1)

∣∣∣∣∣ 1
n2−m2

1
n1−m2

1
n2−m3

1
n1−m3

∣∣∣∣∣ .
(147)
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The matrix

Q1 =

[
1

n2−m2

1
n1−m2

1
n2−m3

1
n1−m3

]
(148)

is a Cauchy matrix, hence has non zero determinant. It follows that

det(Q) =
−k1 · k2 · (m2 −m1)(m3 −m1)

(n2 −m1)(n1 −m1)
det(Q1) 6= 0. (149)

The proof is analogous for matrix M . The steps of the proof have to be repeated

for each row/column for general N . �
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