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Abstract 

The Physarum Polycephalum organism and the collective behavior of pedestrians are both able to construct 

minimal path networks. Models have been created of both concepts to simulate their individual network 

constructing behavior. This paper presents an implementation of a combined model, which simulates both 

the particle-based slime mold model and the Paths model. A qualitative analysis is conducted, which 

visually compares the networks constructed by the slime mold and the pedestrians. A measurement called 

“path coincidence” is introduced to measure the similarity of the constructed networks. This measurement 

is used to statistically support the results of the qualitative analysis. The results study the influences of four 

specific parameters. The visual comparison suggested that some of the parameters greatly affect the 

similarity in network construction. These results are supported by the statistical analysis, which found the 

same level of influence for each parameter. The experiment may provide some insight in the circumstances 

that affect the similarity of the path networks constructed by the particle-based Physarum Polycephalum 

model and the Paths model. 
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1 Introduction 

The Physarum Polycephalum is a single-celled myxomycete organism. Myxomycetes are a grouping of 

slime molds which develop a plasmodium during the vegetative stage. This plasmodium is capable of 

exploring nutrient-rich environments by growing exploratory branches. It can absorb the nutrients which 

enable it to grow and construct a transport network. The branches try to cover all available nutrient 

sources while minimizing the transportation cost of the nutrients through the network. Recently, these 

transport networks have been subject to research, because they exhibit complex patterning and adaptive 

behavior.  

Examples of such researches cover maze solving, road planning and network optimization. In 

general, the Physarum Polycephalum organism is often used to tackle NP-hard problems. For example, 

Adamatzky has shown that the slime mold is capable of constructing spanning trees and other types of 

proximity graphs (Adamatzky, 2009). Nakagaki et al. have shown evidence of slime molds finding the 

shortest path between two selected points in a labyrinth (Nakagaki et al, 2001). The plasmodial branches 

of the organism in the dead ends of the maze are shrunk, which then eventually results in a minimum-

length path between the selected points. Other research has shown that the plasmodium can reconstruct 

man-made road networks (Adamatzky and Jones, 2009). An interesting property of these approximated 

road networks is that they succeed in minimizing the nutrient transportation cost. In other words, they can 

find the most optimized network. 

This network minimizing behavior is not unique to the Physarum Polycephalum. Recently, 

researchers have suggested that so-called “desire paths” might be a solution to walkways construction. 

Sivers stated that decisions should be made when the most information is available (Sivers, 2009). This 

was based on the idea to not make any walkways in advance, but to analyze the movement of pedestrians 

and pave those paths instead. The paths created by pedestrians have recently been researched by Nichols, 

who calls them “social desire paths”. These paths are often formed when pedestrians want better and 

more expedient routes (Nichols, 2014) and usually represent the shortest routes between two points. 

The plasmodium created by the Physarum Polycephalum organism and the path network created by 

pedestrians seem to exhibit similar properties. Both are capable of constructing networks among two or 

multiple points. For the plasmodium, it has been suggested that it succeeds in building a minimal 

network. The pedestrian network will in most cases be minimal, because desire paths on flat surfaces 

usually serve as shortcuts. However, no research has been conducted on comparing these two concepts so 

far. It is difficult to compare these two concepts because their construction level is not the same. The 

Physarum Polycephalum is a tiny organism, whereas the pedestrian network is man-made. An unbiased 
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comparison could only be done when both networks are constructed in the same environment, under the 

same circumstances. 

This unbiased environment can be realized by creating a computational model of the concepts. 

Computational models of the Physarum Polycephalum already exists and has been researched several 

times. The specific model addressed in this paper is a multi-agent system. This is a concept often used in 

the Artificial Intelligence field. The computerized system consists of multiple intelligent agents. The 

agents in the Physarum Polycephalum model are called particles and together they represent the slime 

mold. Research has been conducted using this particle-based model, to study the emergent properties of 

the slime mold. For example, Jones has shown that the construction of the network was strongly 

influenced by relative node position (Jones, 2011). Nodes being the points around which the network is 

constructed. However, this research does not include a comparison with the pedestrian model. This is not 

due to the lack of computational models for the walkways. In fact, a Paths model has recently been 

introduced by Grider (2015). This model is a multi-agent system as well, with pedestrians instead of 

particles. The collective behavior of the pedestrians is responsible for creating a walkway network. 

As stated before, no research has been done comparing the two models or concepts. The question 

arises as to how similar these models are. Do the paths constructed by the Paths model overlap with the 

slime mold network? If so, what circumstances influence this overlap? 

This paper presents a computational model, which compares the virtual plasmodium of the 

Physarum Polycephalum with the walkways constructed by the walkers. This is done by combining the 

implementation of the slime mold model as described by Jones (2011), with the implementation of the 

Paths model as presented by Grider (2015). This paper will show a qualitative and statistical analysis of 

the similarity between the models. A measure called “path coincidence” will be introduced to conduct this 

statistical analysis. The focus of this paper lies on four specific parameters, which are shown to influence 

the similarity of the networks.   

Both models contain certain terminology which have to be explained to avoid ambiguity. This will 

be done in Section 2. The setup and details on the experiment will be presented in Section 3. This 

includes the details on how the two models were combined to allow comparison. Section 4 will present 

the qualitative and statistical results of the experiment described in the Section 3. This paper will be 

completed with a discussion. This includes a summary of the results and will present subjects for further 

research. 
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2 Models 

This section discusses the Models and terminology used in this paper. Two existing models will be 

discussed, that were used to conduct the experiment described in Section 3. The first model is the Paths 

model as presented by Grider in (Grider, Netlogo Paths model, 2015). The second model is based on the 

particle-based Physarum Polycephalum model as described in (Jones, 2011). 

First, a brief explanation of the main concept of both models is given. After that, the models are 

defined in more detail in several sections. Each section will describe the situation for both the Paths 

model and the Physarum model. This approach was chosen because this paper focusses on the similarity 

between the path networks constructed by the two models. To proof that this comparison is logical and 

viable, this approach will show that the models are built in the same unbiased environment. Moreover, it 

will show that the mechanisms of the models are very similar. 

Section 2.1 will elaborate on the creation and behavior logic of the agents. Section 2.2 will explain 

how the simulation environment is managed. Finally, Section 2.3 will introduce the concept of nodes. 

The Paths model is inspired on a phenomenon called “desire paths”. This term is used by landscape 

architects to describe dirt paths that develop overtime (Nichols, 2014). These dirt paths are created when 

travelers bypass sidewalks and prefer to take a shortcut. These paths are then positively reinforced as 

people tend to takes routes other travelers have taken before them.  

The model of the Physarum Polycephalum is modelled as a multi-agent system, consisting of a 

large population of particles. All particles follow the same simple rules. These simple rules will be 

defined in the next sections. Together these particles create a network of chemoattractant paths, without a 

central control structure dictating how individual agents should behave. 

Both models are run in a simulation environment. This environment consists of a two-dimensional 

plane. This 2D plane is a grid consisting of cells, which are called patches. These patches have multiple 

standard properties such as a color, but can also have model specific properties – see Section 2.2. The 

environment can be imagined as a torus, meaning that the edges of the surface are connected to each 

other. The simulation is run in two steps. First the simulation is initialized. During this initialization stage 

the patches and the agents are created and their properties are set to their base values. This is followed by 

the step stage of the simulation. During the first step the agents will follow the simple rules assigned to 

them. The observer asks the agents in a random order to process these rules, so no agents move 

simultaneously. Each step in the simulation repeats these simple rules, causing both models to eventually 

create paths. The details of these rules and path creation are given in the next few subsections. 
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2.1 Agents 
This section will elaborate more on the behavior and movement of the agents used in both models. To 

differentiate between the agents used in the Paths model and the agents used in the Physarum model, they 

are given different names. The Paths model agents will be called walkers and the Physarum model agents 

will be called ants. If the word agent is used, this refers to both the walkers and the ants.  

In both models one agent occupies only a single patch in the grid. This is the current location of the 

agent, specified in an x- and an y-coordinate. During the initialization stage, all agents are given a random 

location in the grid, as well as a random direction. The ants are colored orange and the walkers are 

colored blue. Once initialization is complete the simulation can be run and the first step is started. Every 

simulation step the same rules are processed. Because these rules differ per model, they will be addressed 

separately in the next few paragraphs. After all agents have processed and executed the rules, the next 

step is started. The simulation must be stopped manually, e.g. after the paths of both models have 

converged. 

 

Figure 1: (a) Paths created by walkers, (b) Paths created by ants 

 

The walkers each select a destination at random. This goal is one of the patches in the grid, unless 

there are nodes (so called buildings) present in the environment. Nodes will be discussed in Section 2.3 

and are not considered in this subsection. On each step in the simulation the walker moves closer to its 

goal by a predefined step size (in pixels). However, if the walker detects a blue patch ahead on its way 

towards the goal, it will move there instead. It only detects patches in its current direction. The detection 

distance depends on the walker-vision-distance parameter. A blue patch represents an established path, 

which means that it is a commonly visited patch. Every patch, as explained before, has properties. In the 

Paths model, all patches have the variable popularity. This value indicates how popular a given patch is. 
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Every time a patch is visited by a walker, the popularity of the patch is increased by a constant amount. If 

this amount is above a certain threshold, the patch is turned blue. This means that established paths will 

be positively reinforced. However, if a patch is not visited for a while the popularity of this patch will 

decay, causing the patch to lose its blue color. 

The rules that determine the behavior of the ants are a little more complicated than the walker rules. 

The patches in this model have a property called “pheromone”. This so-called pheromone is similar to the 

popularity property of the Paths model. The pheromone value on a patch represents a chemoattractant that 

attracts ants but is also created by ants. The ants leave a chemoattract trail as they walk, positively 

reinforcing the paths. This eventually creates a virtual plasmodium network that models the organic 

plasmodium very well (Jones, 2011).  

The movement of the ant can be separated into two different stages, the sensory stage and the motor 

stage. During the sensory stage the ants sense the amount of pheromone on the patches in front of them. 

The ant uses three sensors of a specified length (sensor offset, SO). One sensor is placed directly in front 

of the ant. The two other sensors are placed to the left and right of the first sensor given a specified angle 

(sensor angle, SA). The ant senses the pheromone on all patches at the end of the sensors, within a 

specified range (sensor width, SW). The sensor (left, right or front) that detects the highest amount of 

pheromone affects the direction of the ant. If the most pheromone is detected by the front sensor, the 

heading of the ant does not change. If the left or the right sensor senses the most instead, the direction of 

the ant is rotated by a positive or negative rotation angle (RA) respectively. 

 

 

Figure 2: Sensors of the ants 

After the sense stage is complete, the motor stage is executed. During this stage the ants attempt to 

move forward by the specified step-size (in pixels). Moving forward is only successful if the new patch is 

not occupied by another ant. If moving fails, the ant remains on the same patch and is given a new 

random heading. But if moving succeeds, pheromone is dropped on the new patch and the total amount of 
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pheromone on the patch is updated. The ants are addressed in a random order during both stages, to avoid 

possible collisions among ants. The pheromone on the patches is made visible by scaling a color to the 

amount of pheromone. This makes sure that ants leave a trail of slime as they are walking, creating the 

virtual plasmodium. 

It should also be noted that during the sensing stage, all ants have a very small probability to be 

removed from the simulation. At that start of the simulation the removal rate will be high, because the ant 

population is big. But as the simulation continues the ant population shrinks and so does that rate of 

removal. This causes the virtual plasmodium to minimize. Walkers do not have this removal probability 

and collision among walkers is also allowed.  

 

2.2 Environment management 
After the agent updates are complete, the simulation will continue with the environment updates. These 

updates address the patches. As explained in Section 2.1, patches have two properties unique to the 

models, popularity and pheromone. These values are updated during this stage. When a path in Paths 

model becomes less visited, it will eventually disappear. This effect is created by diminishing the 

popularity value on the patches. This is done by asking the patches whether there are currently any 

walkers visiting and if not, to decrease the popularity value by the popularity-decay-rate. If a patch is blue 

and its popularity rate is less than 1, the patch is recolored to black. 

The pheromone value on the patches is adjusted in two phases. First, the pheromone is diffused. 

This means that all patches drop some of their own pheromone value to their eight neighboring patches. 

This causes some paths to fade, but can also minimize the width of a path. The second phase asks the 

patches to evaporate a percentage of their pheromone. This pheromone is not added to any neighboring 

patches, but simply disappears. After this, the color of the virtual plasmodium is updated again using a 

color scale.  

The Physarum Polycephalum model has a parameter which prohibits the border patches to have a 

positive amount of pheromone. This prevents the slime mold paths to bypass the grid walls. This is shown 

in Figure 3. If this parameter is FALSE, all patches are allowed to have a positive amount of pheromone. 

However, if this parameter is TRUE the pheromone is removed from the border. Specifically, during the 

environment updates the patches in this border set are asked to reset their pheromone value to 0. After the 

environment updates are complete, the simulation continues to the next step and repeats all steps 

described in Section 2.1 and 2.2. 
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Figure 3: (a) suckPheromone False, (b) suckPheromone True 

 

2.3 Nodes 
One important parameter in both models is the presence or absence of nodes. Nodes can be defined as a 

point in the network at which paths intersect. There are two different types of nodes in both models: 

nodes created at random during the simulation and preplaced nodes. These preplaced nodes are placed at 

the setup of the simulation. When the term “nodes” is used in this paper, its referring to preplaced nodes. 

In the Physarum model a total of seven nodes is placed at setup. The amount is usually variable, 

but in the conducted experiment the number of nodes will be fixed. The nodes in this model are called 

food sources or food. The food sources are bigger than the ants and cover multiple patches. The nodes are 

objects on the grid, shaped as circles. On creation, the simulation creates and places the food sources 

close to each other. It is, however, not possible for two food sources to intersect. After the food has been 

positioned, all patches in its radius are given a positive amount of pheromone. This makes the food 

attractive to ants. When ants pass a food source, they become blessed. Only when an ant is blessed, it is 

allowed to drop pheromone. Section 2.1 explained that ants drop pheromone when moving forward. 

However, this only happens if the ants are blessed. If an ant has not passed a food source yet, it will not 

drop pheromone on the patches it comes across. The amount pheromone that an ant drops on a food 

source patch is higher than the amount dropped on a normal patch. This amount is based on the regular 

pheromone-deposit-rate of the ant multiplied by the pheromone-factor-at-food. Because the amount of 

pheromone present on food patches is higher than on regular patches, the virtual plasmodium paths are 

created around these nodes. Therefore, nodes are an important influence in path creation. When preplaced 

nodes are absent in the model, the ants are pre-blessed. This allows ants to drop pheromone from the start 

of the simulation. It should also be noted that the ants and the food sources both emit the same 
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chemoattractant. This is a signification simplification with respect to the organic plasmodium (Jones, 

2011, p. 1350). 

It is also possible to add nodes to the Paths model simulation. These nodes are called “buildings”. 

The buildings are placed on the exact same spots as the food sources. The reason behind this is explained 

in Section 3.1. A building covers only one patch and is visualized by coloring the corresponding patch 

red. Food works differently. Food objects cover multiple patches and have a visible shape on the grid. 

When two or multiple buildings are present in the Paths model, the behavior of the walker changes. In a 

simulation without nodes – as explained in Section 2.1 – the walkers select a random patch as their goal. 

If nodes are present, the walkers select one of the buildings as their goal instead. The difference in path 

creation is clearly visible, see Figure 4. The blue patches, which indicate an established path, are still 

preferred over black patches. Therefore, they still affect the positively reinforce the path creation. 

 

 

Figure 4: (a): Physarum Polycephalum model with nodes (b): Paths model with nodes  
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3 Methods 

As stated in the introduction, the goal of this paper is compare the paths created by the Physarum 

Polycephalum model and the paths created by the Paths model. Specifically, the goal is to analyze what 

parameters influence the path overlap between the models. The two models have been combined and their 

overlap has been tested using the path coincidence measurement. This measurement will be explained in 

Section 3.2. How the models were combined is elaborated in Section 3.1. Using this combined model and 

the new measurement an experiment was executed. The details on this experiment are described in 

Section 3.3. A statistical analysis was conducted to support the results from this experiment. The details 

of this analysis are given in Section 3.4. The answers to the research question will be given and 

interpreted in Section 4, “Results”. 

3.1 Combined model 
This paper focusses on comparing the Physarum Polycephalum model with the Paths model. The best 

way to this visually, is to combine the two models. The combined model that was created, runs both 

models in the same simulation environment. It simulates the construction of the pathways created by 

walkers and the construction of the virtual plasmodium created by ants. Both individual models use the 

color property of the patches, as explained in the previous section. Due to this, a few changes had to be 

made to the original coloration of the models. This does not affect any of the rules or agent behavior in 

either of the models.  

The patches in the simulation environment have been given three new properties, an R, G and B 

value. These values correspond to the red, green and blue factor in a specific color. All values range from 

0 to 255. If a patch is given the values [R: 0, G: 255, B: 0], its colors will be green. If a patch is given the 

color [R: 0, G: 255, B: 255], its color will be cyan. These RGB values were used to draw the models on 

top of each other. The virtual plasmodium network created by the ants is mapped on the G-value. This G-

value is scaled to the amount of pheromone on a patch. The network created by the walkers is mapped on 

the B-value. If the amount of popularity on a patch is above the threshold, the B-value of this patch is set 

to 255. Otherwise the B-value is equal to 0. Using these new properties, the slime mold paths will be 

green and pathways will be blue. If the paths from both models intersect, the patches in this intersection 

will color cyan. An example of this is shown in Figure 5. 
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Figure 5: Green paths: Slime mold, Blue paths: Pathways, Cyan paths: Both models 

Besides the coloration change in this combined model, a change to nodes positioning was made as well., 

It is important that the nodes of both models are in the same spots to be able to qualitatively compare the 

coincidence of the models. During the initialization stage, the food sources are added before the buildings. 

After the food sources have been placed, the buildings are added on the exact same positions as the food 

nodes. The buildings are, however, not visible in the combined simulation because they are visualized 

using the R-value of the patches. The food sources cover these red patches, because they are drawn as 

objects on top of the grid. This does not cause any complications, because the locations of the buildings 

are known due to food source positioning. 

3.2 Path coincidence 
The coincidence of the paths created by the models, will be measured by a value called “path 

coincidence”. The Models section explained that the patches own two path specific values, called 

“popularity” and “pheromone”. These two properties are used to calculate the path coincidence of one 

simulation run. Each patch in the two-dimensional plane is asked to multiply its amount of pheromone 

with its amount of popularity. After that, all multiplied patch values are summed up. This total is divided 

by the number of patches in the simulation. The final outcome represents the path coincidence. 

The path coincidence value will be high for simulations with a great overlap between the paths of 

both models. For example, if one patch has a high amount of pheromone and a high amount of popularity, 

multiplying these results in a high path coincidence value. However, if one of the values, pheromone or 

popularity, is absent or very small, the path coincidence will not be high either. For this reason, path 

coincidence seems to be a great measurement for calculating the overlap between paths. 
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3.3 Experiment setup and output 
Section 3.1 explained how the models were combined, but not how the experiment was setup. Interesting 

parameters in the simulation were varied during the experiment while others were kept constant. The 

Physarum Polycephalum model has a lot of optional parameters, which are not addressed in this paper. 

But for reference, all parameter values can be found in appendix A. There are a few important variable 

parameters in this experiment. Each of them will be briefly explained. 

withNodes – This parameter indicates whether nodes are present in the simulation or not. The 

parameter can have two possible values, True and False. If the parameter is set to True, nodes (food 

sources and buildings) are placed in the simulation during the initialization stage. If the parameter is set to 

False, no nodes will be placed in the simulation. This is the only parameter that also effects the Paths 

model. 

suckPheromone – As stated in Section 2, this parameter either allows or prohibits border patches to 

have a positive amount of pheromone. This parameter is also a boolean, meaning it has two possible 

values, True and False. If set to True, the pheromone is removed from the border and slime mold paths 

cannot bypass the edges of the grid. Otherwise, the slime mold model has no restrictions. 

SA and RA – Also known as sensor angle and rotation angle respectively. These parameters have 

already been explained in Section 2.1. During the experiment, the parameters were given three possible 

values: 20, 45 and 60. They vary independently, for example SA can be set to 20 while RA is set to 45. 

The experiment consisted of several runs, varying these parameters. All possible parameter 

combinations were tried, meaning there is total of 36 different runs (2x2x3x3=36). Each run was stopped 

after 1000 steps, as the paths seemed to have converged after this amount of time for most parameter 

settings. Every combination was repeated 10 times, resulting in 360 different outputs. The output consists 

of several categorical and numerical values, including the parameter settings. An important and notable 

output value is the path coincidence as explained in the section above. Besides a table containing all 

values, a snapshot was taken after every run. This snapshot provides a clear picture of what the networks 

of both models looked like at the end of the simulation run. These snapshots are used to qualitatively 

analyze the overlap of the paths. The path coincidence outputs were used for the statistical analysis, which 

is addressed in the next subsection. 

 

3.4 Statistical analysis 
The 360 different numerical results are difficult to interpret when viewed as a table. Therefore, a 

statistical analysis was done. This analysis summarizes the results and can visualize the effects of all 

parameters. Besides visualizing the data, a statistical analysis is also necessary to confirm that the 

qualitative analysis of the snapshots is interpreted correctly. It also ensures that the apparent influences 
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are significant. Furthermore, as specified a set of 360 snapshots was used to conduct the qualitative 

analysis. This set is only a sample of the infinite set of snapshots. Therefore, statistical analysis is 

necessary to estimate the influences on the entire set, using this sample set. In other words, it is able to 

obtain a best estimate of the influences within the infinite set of runs. 

The best approach to find the most influencing parameters is by creating a predictive model. The 

varying parameters, withNodes, suckPheromone, SA and RA, are used as the variables of this model. The 

path coincidence is used as the predicting value of this model. Because there are both categorical and 

numerical variables and since the output is numerical, the most suitable method is multiple regression. 

The model output includes coefficients for all parameters. These coefficients will be used to support the 

qualitative snapshot analysis in the results. Other than coefficients, the model was visualized to show the 

effect of different parameters of the path coincidence. These visualizations will also be used as supporting 

evidence for the observation in the Results section. 

4 Results 

In this section the results of the experiment, defined in the previous section, will be presented. The results 

have been divided in multiple sections. Each section will address observations based on one specific 

parameter, with the exception of Section 4.3. This section is instead based on two parameters, SA and 

RA, because they seem to influence each other. Section 4.1 will address the influences of the withNodes 

parameter and Section 4.2 will discuss the effect of the suckPheromone parameter. Every observation is 

based on multiple visual snapshots obtained by the experiment. The snapshots have chosen manually. The 

suggested observations are then supported by the statistical analysis on the path coincidence. 

4.1 withNodes 
The most notable result is the effect of the withNodes parameter. It is clearly visible that the paths overlap 

the most when the withNodes parameter is set to True, meaning that nodes are present in the simulation. 

This effect is clearly visualized in Figure 6. As shown, the walker paths lie on top of the slime mold paths 

in Figure 6 (a) and (b). The opposite is true for Figure 6 (c) and (d), were the walker paths seem 

disconnected and chaotic. The overlap between the models in the last two figures is presumably 

accidental. 
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Figure 6: Snapshots of the influence of the withNodes parameter 

(a): withNodes True, suckPheromone False (b) withNodes True, suckPheromone True  

(c): withNodes False, suckPheromone False (d): withNodes False, suckPheromone True 

 

The large influence of the withNodes parameter could have been expected by analyzing the 

algorithms of both models. As stated in the Models section, the walkers choose a random building as their 

goal when nodes are present. This causes the walker network to be constructed around the nodes. Nodes 

are placed in the center of the simulation grid and close to each other, which causes the walker network to 

only cover a small area of the grid. The ants are also heavenly influenced by the presence of the nodes, 

because they contain a high level of pheromone. Therefore, the paths created by the ants are also 

constructed around these nodes. This is in contrast with the networks shown in Figure 6 (c) and (d). Both 

the ants and walkers have created paths covering the whole grid. The models cannot communicate with 

each other, so the location of their networks is independent of each other. This causes the overlap of the 

paths to be purely random and accidental. 

The withNodes parameter seems to be independent of the other parameters, suckPheromone, SA 

and RA. In other words, in all snapshots the simulations with nodes visually overlap more than the 

simulations without nodes. Figure 6 also shows this specifically for the suckPheromone parameter. Figure 

(a) and (c) have suckPheromone turned off, whereas Figure (b) and d have pheromone removed from the 

border. In both cases, the paths clearly overlap more when withNodes is set to True. This phenomenon 

was found in all snapshot results, the pictures in Figure 6 were just selected because they illustrated this 
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effect the clearest. This result suggests that the withNodes is the most influential parameter compared to 

the other three. 

Statistical evidence will be provided, to support the observation made above. As stated before, 

multiple regression was used, based on four parameters. The output of this regression model consists of 

coefficients. A large positive coefficient was found for the withNodes parameter. This implies that the 

withNodes parameter has a significant effect on the path coincidence value. The coefficient was also the 

largest compared to the coefficients of the other parameters. Therefore, it is suggested that the withNodes 

parameter is most influential parameter. This agrees with the visual observations stated before. All 

coefficients of the multiple regression function can be found in appendix B. 

The influence of withNodes is visualized in Figure 7. The figure shows the RA plotted against the 

path coincidence value. The influence of RA will be discussed in a later subsection. The most important 

part in this figure is the difference between the blue and the red line. These lines are the different levels of 

the withNodes parameter, True and False. It is clearly visible that the blue line rises way above the red 

line. This suggests that the path coincidence of withNodes is True, is much greater than the path 

coincidence of withNodes is False. Moreover, the blue and red area around the lines, show the 95%-

confidence interval of the path coincidence. Both bands are rather small, meaning that the lines are 

significant and a good predictor for the path coincidence based on the withNodes parameter. Therefore, 

this statistical analysis also implies that the withNodes parameter is the most influencing factor. 

    

Figure 7: Path coincidence plotted against RA with confidence bands of 95% with different withNodes values 

4.2 suckPheromone 
The previous section stated that the influence of the withNodes parameter is independent of the other 

parameters. However, this does not suggest that the other parameters do not influence the path 

coincidence value at all. This subsection will discuss the influence of the suckPheromone parameter. For 
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clearer visualization purposes, only snapshots of simulations with nodes were selected. The statistical 

analysis is still based on all data. 

The snapshots in Figure 8 suggest that the suckPheromone parameter has no significant influence 

on the path coincidence. In Figure (a) and (b), the pathways seem to lie on top of the virtual plasmodium 

network. Visually, the simulations seem to overlap equally. As stated before, the walkers of the Paths 

model tend to construct a minimal network around the nodes. Since the nodes are always located close to 

the center of the two-dimensional grid, this network is also formed in the center of the grid. The 

suckPheromone parameter prevents pheromone from stacking on the border of the grid, but it has no 

effect on the pheromone in the center. Therefore, the virtual plasmodium network is still created around 

the nodes located in the middle. Because both networks are created around these nodes, independent of 

the suckPheromone parameter, the paths of both models will visually overlap each other in the same 

degree. This suggests that the suckPheromone parameter has no influence on the path coincidence value. 

 

Figure 8: Snapshots of the influence of the suckPheromone parameter 

(a) suckPheromone False (b): suckPheromone True 

 

The statistical analysis also suggests that the suckPheromone parameter has no significant 

influence on the path coincidence. Multiple regression found a relatively small and negative coefficient 

for the parameter. The regression model has been visualized in the Figure 9, to show that this coefficient 

is indeed insignificant. Again, the RA parameter has been used in the plot, but it will not be considered 

yet. The colored lines illustrate the different levels of the suckPheromone parameter. The red line appears 

above the blue line in the grid, implying that the suckPheromone is False has a positive effect. However, 

the figure also shows the 95%-confidence interval of both lines, illustrated with the colored areas. Both 

areas are relatively large and cover the line of opposite color. This implies that the influence of the 

suckPheromone parameter is indeed insignificant and negligible. 
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Figure 9: Path coincidence plotted against RA with confidence bands of 95% with different suckPheromone values 

4.3 Sensor- and rotation angle 
The remaining two parameters, SA and RA, will not be considered individually. As explained in section 

2, the SA is used to sense pheromone in angled directions. If the most pheromone is detected to the left or 

right of the ant, the heading of the ant is then rotated by the RA. This implies that SA and RA are 

connected. Therefore, the observations made with a varying RA might also depend on the current SA or 

their ratio. The results presented in this section will vary the SA or RA while the other parameter is kept 

constant. The interval in which the parameters can vary is [20, 45, 60]. The constant parameter is kept at 

45. First, the results for a varying SA parameter will be presented. Followed by the results for a varying 

RA parameter. This subsection will be completed with an overall observation of the RA parameter. 
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Figure 10: Path Coincidence with varying SA and RA 

(a) SA 20, RA 45. (b) SA 45, RA 45. (c) SA 60, RA 45. (d) SA 45, RA 60. (e) SA 45, RA 20. 

Figure 10 shows all combinations for SA and RA using the interval [20, 45, 60] and a constant of 

45. First, the top row will be discussed. In this row of pictures the RA is kept constant at 45, while the SA 

varies. Figure (a) has the largest lacunae in the virtual plasmodium network compared to Figure (b) and 

(c). In fact, the lacunae seem to become smaller as the SA rises. Simulations with larger lacunae in the 

virtual plasmodium seem to have a greater path coincidence compared to simulations with smaller 

lacunae. These small lacunae in the virtual plasmodium are associated with multiple shorter paths which 

result in a less minimized network. This is the exact opposite of the network created by walkers, which is 

extremely minimal. This is also shown in Figure (a) to (c), the paths created by the Paths model lie 

perfectly on of the virtual plasmodium, with the exception of a few path branches. Whereas, Figure (c) 

shows lots of smaller lacunae which are not covered by the pathways. These observations suggest that a 

smaller SA with respect to RA achieves the best results. 

The next step is to vary the RA parameter. Figures (d) and (e) have a constant SA of 45 and a RA 

of 60 and 20 respectively. The third case of both angles equaling 45, was already shown in Figure (b). 

Figure (e) is in agreement with the previous observation. Its RA is smaller than its SA and this seems to 

cause further disorientation in the network. The lacunae have become so small that it is difficult to 
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separate established paths. The virtual plasmodium shows very slight shades of green and looks chaotic. 

The paths of both models are completely different in construction, which results in a very low path 

coincidence. In Figure (d), the opposite is true. The lacunae in the virtual plasmodium have increased in 

size. The slime mold network seems to have minimized compared to Figure (a). In Figure (d), the two 

networks seem to share a lot of their paths, except for the path that bypasses the wall. The walkers 

network also has a path in the middle that is not covered by the virtual plasmodium. These observations 

combined suggest that a simulation with SA < RA seems to create the greatest path coincidence. 

Through snapshots it is difficult to see the difference in path coincidence between Figure (a) and 

(d). Therefore, the suggestions made, will have to be confirmed by statistics. Another notable observation 

that statistics might confirm is if a greater RA parameter results in better path coincidence overall. 

Visually, the best presenting networks seem to be Figure (a) and (d). These networks have a large RA 

compared to its SA. The networks that seem to achieve the least overlap are Figure (c) and (e), which 

both have a small RA compared to their SA. Figure (b) seems to be right in the middle, which could 

indicate that RA has a linear positive effect on the path coincidence. 

A plot has been created (see Figure 11), to confirm whether RA and path coincidence are linearly 

connected. It shows RA plotted against the path coincidence value. This plot is based on the same 

multiple linear regression model mentioned in the other results. Figure 11 shows non-horizontal line, 

confirming a positive effect of RA on path coincidence. In other words, a higher RA will result in a 

higher path coincidence value. It should be noted that the grey area around the blue line visualizes the 

95%-confidence interval. The grey area is relatively large, meaning RA may not always affect the 

coincidence as much. This is probably caused by the settings of the other parameters. Because the large 

confidence bands may be caused by the SA parameter, an extra small statistical test was run. An extra 

column was added to the data which stated if the SA was great than (GT), equal to (EQ) or less than (LT) 

the RA parameter. This column was then added to the multiple regression function as an extra parameter 

and plotted. Figure 12 shows the results. Again, the RA was plotted against the path coincidence. 

However, in this plot several levels were used: EQ, GT and LT. As shown in the figure, the lines lie rather 

close to each other. Moreover, the confidence bands of all lines are enormous and they overlap each other 

greatly. This suggests that ratio of the SA and RA parameter do not seem to influence the path 

coincidence significantly. The RA parameter does, however, still show a positive effect in all three cases. 

It should also be noted that the RA (and SA) have only been tested for an interval of [20, 45, 60]. 

Meaning, that the linear effect of RA on path coincidence may only exists within this interval. No 

statements can be made about the effect of RA (or SA) outside this area. This is subject for further 

research. 
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Figure 11: Path coincidence plotted against RA with a confidence band of 95% 

 

 

  

Figure 12: Path coincidence plotted against RA with confidence bands of 95% with different SA/RA-comparisons  
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5 Discussion and further research 

Recently, the Physarum Polycephalum organism has been subject to research because of its unique 

capabilities. Its emergent properties allow the organism to construct minimal transportation networks. A 

particle-based model based on the plasmodium, also shows these properties. Research on this model 

suggested that network construction is influenced by relative node position. Constructing minimal 

networks is not unique to the slime mold. It is suggested that the collective behavior of pedestrians can 

also construct this. A model simulating this collective behavior has already been created. 

In this paper the particle-based Physarum Polycephalum model and the model simulating 

pedestrian movement were combined. This combined model allowed the two similar networks to be 

compared in an unbiased environment. This thesis presented a qualitative analysis consisting of 

snapshots, visually comparing the two similar network constructions. Besides, a qualitative analysis, a 

statistical analysis was conducted using a self-defined measurement called “path coincidence”. The 

presented results focused on the influences of four specific parameters: withNodes, suckPheromone, SA 

and RA. 

Results of the experiment suggested that the withNodes parameter is the most influencing 

parameter. When nodes were present in the simulation, the path coincidence of the networks was 

drastically increased. The influence of the suckPheromone parameter seemed to be insignificant and 

negligible. This implies that removing pheromone from the border does neither increase or decrease the 

path coincidence. The results also suggested that the ratio between SA and RA parameters does not affect 

the similarity of the networks. However, a positive linear effect was found when analyzing the RA 

parameter separately.  

It should be noted that only four parameters were used. The found results can only suggest the 

influence of these four parameters on the path coincidence. To find what other circumstances optimize the 

similarity between the networks, more research has to be conducted. This is subject for further research. 

Another subject for research is the interval of the SA and RA parameters. In the conducted experiment the 

parameters were only varied in a finite interval of [20, 45, 60]. Therefore, the suggested influences of 

these parameters are only applicable for this interval. No implications can be made about the influence of 

the SA and RA parameters outside this interval. Future work could research whether the found effects 

also exist in wider angle ranges.  
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Appendix 
 

A. Parameter settings experiment 

Parameter Name Description Experiment Value 

Nr-of-ants Size of ant population 1000 

Probability-of-death Probability of an ant dying each step 4.1E-4 

Ant-step-size Step size of the ants 3.00 

Sensor-offset Length of the sensors 10 

Co-location-allowed Allows ants on the same patch False 

Start-dispersed? Ants start at random locations True 

Nr-of-food Amount of food sources 7 

Radius-of-food Size of food sources 4.0 

Pheromone-deposit-rate Amount of pheromone dropped per ant step 50 

Evaporation-rate Amount of pheromone evaporated per step 0.90 

Diffusion-rate Amount of pheromone diffused per step 0.05 

Pheromone-factor-at-food Multiplied with pheromone-dropped 100 

Popularity-decay-rate Amount of pheromone decayed per step 4 

Popularity-per-step Popularity added to a patch per walker step 20 

Minimum-route-popularity Popularity coloration threshold 50 

Walker-count Size of walker population 500 

Walker-vision-dist Distance walker senses popularity ahead 10 

 

B. Multiple regression details 

Parameter Coefficient 

Intercept -14,279 

withNodesTRUE 100,357 

SA 0,004 

RA 0,825 

suckPheromoneTRUE -3,777 

 

To carry out the multiple regression, a linear function was fitted as follows: 

path coincidence = β0 + withNodesTRUE*β1 + SA*β2 + RA*β3 + suckPheromoneTrue*β4 

β1 – β4 are the coefficients. The values found through multiple regression are given in the table above. 

For further details on the multiple regression, see https://github.com/MaaikeBurghoorn/Path-Coincidence-

Thesis 

https://github.com/MaaikeBurghoorn/Path-Coincidence-Thesis
https://github.com/MaaikeBurghoorn/Path-Coincidence-Thesis

