
Linking Nitrogen Oxide Emissions 
and Future Urban Growth: 
How Present Day Land Use Development Choices 
Influence Future Emissions 

Anne-Marie J. Melief – 4296362 
a.melief@students.uu.nl 

Sustainable Development, Global Change & Ecosystems 
Supervisor: Dr. Maria J. Santos 

Second Reader: Dr. Karin Rebel 



Summary 
The world’s population is becoming increasingly urbanized, with 66% of the global 
population expected to reside in urban areas by 2050. City planners and policy makers must 
consider how cities can accommodate such growth to minimize the city’s contribution to 
climate change through greenhouse gas emissions and the consumption of ecologically 
valuable and agriculturally productive lands. On a regional scale, the horizontal expansion of 
urban areas creates fragmentation of agricultural lands and endangers vulnerable plants and 
animals by encroaching upon natural habits and biodiversity corridors The concentration of 
transportation networks and industry in heavily urbanized areas cause cities to point sources 
of pollution on a global scale. Numerous polluting gases that can lead to climate change are 
produced in cities: sulphur dioxide, carbon dioxide, volatile organic carbons, and nitrogen 
oxides. Nitrogen oxides, produced largely through the combustion of fossil fuels in 
automobiles, are of particular concern as they lead to a host of other gases that pose 
significant risk to human and environmental health. The projected growth of cities has 
already been modeled with consideration for agriculture lands, urban sprawl and 
biodiversity, but the emissions associated with the changes in land use associated with such 
growth have not been thoroughly investigated. A land-use regression (LUR) model can be 
utilized to calculate future NO2 emissions associated with changes in land use in an urban 
setting. For Los Angeles County, nine predictor variables on five spatial scales were selected 
to be correlated to the two-week average NO2 concentrations. The developed LUR model 
was used to calculate NO2 emissions for five future growth scenarios for Los Angeles County. 
The Smart Growth scenario demonstrated the lowest average NO2 concentration, suggesting 
that city development constrained to already urban areas will preserve green spaces that 
reduce emissions and restricts the urban sprawl associated with higher NO2 emissions. 
However, urban density was not included in this study and could play a vital role in 
determining NO2 emissions on a finer spatial scale.  
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I. Introduction 
 
The world’s population is increasingly concentrated in urban areas and cities, with 54% of 
the total global population residing in urban areas in 2014, a figure projected to be 66% by 
2050 (UN, 2014). The concentration of transportation networks and industry in heavily 
urbanized areas cause cities to be point sources of pollution on a global scale (Grimm, 2008). 
Indeed, the world’s 8038 urban areas with more than 50,000 residents produce 
approximately 40% of the anthropogenic pollution of nitrogen oxides (NOx), volatile organic 
carbons (VOCs), and sulphur dioxide (SO2), three potent polluting gases (Sarzynski, 2012). 
These are only three of a whole host of polluting gases and compounds produced by cities; 
carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), and fine particulate matter (PM10) 
are also produced in large quantities in urban areas due to high resource use, extensive land 
development, and high reliance on vehicles (Molina, 2004). As the world’s population shifts 
towards urban areas, it becomes more pressing to make city development decisions today 
that will limit future emissions.  
 
In particular, the family of compounds known as nitrogen oxides (NOx) pose a significant risk 
to human and environmental health (W.H.O., 2003). NOx is a family of compounds that 
includes nitrogen dioxide (NO2) and nitric oxide (NO); as the most stable of these compounds 
this family is often referred to NOx/NO2, or simply NO2. Nitrogen oxide (NO) is formed 
through the combustion of fossil fuels, which then quickly oxidizes in the atmosphere to 
form nitrogen dioxide. In the presence of sunlight, NO2 breaks down into nitric oxide (NO) 
and an oxygen radical (O). The free oxygen radical again quickly reacts with atmospheric 
oxygen (O2) to form ozone (O3). This chain of chemical reactions is instigated by the burning 
of fossil fuels, and thus decreasing these emission at the source will in turn decrease a host 
of other harmful gases.  
 
NOx/NO2 produced by vehicular traffic is linked to respiratory problems and is significantly 
associated with increasing all- cause mortality (Gauderman et al., 2002; Stieb, Judek, & 
Burnett, 2002). Additionally, NOx is a precuser for a host of other harmful and long lasting 
greenhouse gases including ozone (O3), acid rain (HNO3) and smog, all of which pose a 
significant risk to both human and environmental health (Environmental Protection Agency, 
1999).  In the United States, despite the fact that the US Environmental Protection Agency 
(EPA) has taken action to curb NO emissions from combustion in vehicles the weekday 
ambient air concentration of ozone is projected to remain unchanged from 2012 to 2020 
due to the availability of NOx in the atmosphere (Fujita, Campbell, Stockwell, & Lawson, 
2012). In addition to the United States several western nations have enacted policies to 
reduce NOx/NO2 emissions from vehicles; however, the effects of today’s NOx/NO2 emissions 
will last into the future as secondary gases and compounds persist in densely populated 
areas. 
 
As with all gases, the concentration and reaction rate of traffic produced NO2 emissions in 
the atmosphere is dependent upon a host of atmospheric, topographic, and human behavior 
variables. For example, sunnier days will instigate the reaction of NO2 into ozone. Wind 
speed and direction also move polluting gases from their origin point (a car) to nearby 
development, making exposure estimation less predictable and more complex. Traffic 
behavior also influences the amount of NOx emissions; in a 2014 study in Seoul, South Korea 
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it was found that the greatest increase in NOx emissions was when the vehicle transitioned 
from idling to acceleration than in any other transition state (Kim, Lee, Woo, & Bae, 2014). 
Different landscapes also alter NOx concentrations; in Taipei, green space has been shown to 
significantly decrease NOx exposure, while monitoring stations located in street canyons (ie, 
streets with buildings of five or more stories on either side) recorded higher concentrations 
(Lee, et. al., 2014). It has also been shown that urban trees in street canyons help to remove 
air pollutants at ground level by filtering pollutive gases such as sulphur dioxide, nitrogen 
dioxide, and particulate matter (Nowak, Crane, & Stevens, 2006). With these many variables 
influencing NO2 concentrations, a way to model the interaction of emissions, the 
atmosphere, and various types of land use is needed to inform present day decisions for 
future urban growth that will minimaze the concentration of NO2. 
 
To understand the ramifications of the world’s incresingly urban areas, city planners and 
policy makers utilize models that can project how a city can develop depending on the needs 
of the future population. Cities can grow without restraint, can develop to limit urban 
sprawl, preserve native wildlife, or can adapt and grow with consideration for future climate 
change effects. The future urban landscape and how avialble land is utilized will change as 
choices are made today as to how cities will develop. As urban areas change, so too will its 
effect on emissions. To understand the influence of future urban landscapes on NOx/NO2  
emissions, a land use regression model has high potential. This study tested the applicability 
of land use regression model in projecting future emissions based on changes in land use 
while also investigating the difference in NO2 concentration for five growth scenarios in an 
urban setting. The land use regression model utilized should be statisitcially comparable to 
existing land use regression models in urban areas of similar size.  Due to the ability of green 
space to reduce emissions, it is expected that the growth scenario favoring to protect and 
enchance green space will result in the lowest concentration of NO2, while the growth 
scenario favoring intensive urban development will result in the least amount of NO2. 

II. Methodology 

Study Area 
To project the effect of changes in land use in urban areas on NOx/NO2 emissions a land use 
regression model was applied to the outputs of the UPlan land use change model for the 
chosen study area of Los Angeles. Specifically, the county of Los Angeles rather than just the 
city of Los Angeles was chosen to maximize the available sample size from the air monitoring 
network and to include data on a variety of urban densities. Los Angeles and the surrounding 
area are of particular interest for a study on NOx/NO2 emissions as it is one of the mega 
cities of the world, is notoriously reliant on the automobile, and is known for heavy 
pollution. Additionally, this area provides a good contrast in land use types with residential, 
industrial, commercial, a large water body (i.e. the Pacific Ocean) and open green space in 
fairly close proximity to each other. With an area of 12,305 km2, Los Angeles County had a 
population of 9.8 million in the base year of 2010, with a projected population of 13.5 
million in 2050 (Census.gov; Thorne, Bjorkman, & Roth, 2012).  
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Data Collection 
A set of variables was chosen based on the geography of the study and from studies of 
NOx/NO2 land use regression models applied to similar sized urban areas. These variables 
were then combined in a linear regression equation that represents the relationship 
between a set of predictor variables and recorded NO2 in the base year of 2010. This 
relationship was then used to calculate NO2 in 2050 for several growth scenarios for the city 
of Los Angeles given data on the predictor variables. All data processing and collection was 
done through ESRI’s Geographic Information System (GIS) application. The predictor 
variables chosen were: 

• Length of Major Road (km) 
• Length of Road (km) 
• Length of All Roads (km) 
• Distance to Major Road (km) 
• Distance to Road (km) 
• Distance to Pacific Ocean (km) 
• Elevation (km) 
• Urban Area (km2) 
• Green Space (km2) 

Figure 1: Study Area of Los Angeles County with air monitoring stations 
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Future Urban Growth 
The UPlan land use change model is a rule based GIS application that allocates different land 
use type categories following the rules set by a defined growth scenario or a preference for a 
certain type of land (Table 1). In this model, the urban area extent (no distinction between 
type of land use) in the year 2000 is chosen as the base year; land use types are then 
allocated following the rules set by each scenario to areas available for (re)development 
given the projected social demographic data for 2050. For each scenario, then, an output is 
generated which shows the distribution of land use by type in the year 2050. The land use 
types used by UPlan are: 

• Industrial 
• Commercial High 
• Commercial Low 
• Residential of varying densities: 50, 20, 10, 5, 1, .5, and .1 

 
For residential areas, “50” denotes apartments with 50+ units at one end of the spectrum 
while “.1” denotes a single family home on 10+ acres of land.  A 50m x 50m resolution raster 
is generated for each scenario, with each pixel representing one of the above land use types. 
The published version of the UPlan outputs were utilized (Thorne, Bjorkman, & Roth, 2012). 
 
To maintain the same predictor variables between the base year of 2000 and the projected 
year of 2050, for 2050 all land types were generalized as urban. This allows for the 
relationship established for the year 2000 to be applied to 2050.  
 
The UPlan model has a base year of 2000, but for this study the base year was adjusted to 
2010 as several external data sets were only available beginning that year. The urban extent 
was adjusted to reflect any growth that may have occurred in those ten years by masking 
the NDVI raster layer for 2010 with the urban area raster layer for 2000 to generate a 
combined NDVI/urban area raster layer that was then used to collect data on Urban Area 
and Green Space for the base year of 2010.  
 
 
Table 1: The Five Growth Scenarios utilized in the UPlan land use model  

Scenario Definition 
Agriculture Preference for preserving climate change sensitive agricultural areas 

Biodiversity Focus on the conservation of native California plant species; includes future climate 
change ramifications 

Business as Usual (BAU) No policy effort made to restrict growth from sprawling outside of city limits 

Infill/Redevelopment Intensive measures towards compact growth and reduction of sprawl; new 
development occurs within the existing urban extent 

Smart Growth Policy efforts somewhat restrict growth into rural areas and encourage growth 
closer to city centers; encourage reduction of urban sprawl 
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Green Space 
A 50m x 50m NDVI raster layer was created in GIS by processing a Landsat 4-5 satellite image 
for the Los Angeles area for February 2010 (https://earthexplorer.usgs.gov/). The original 
three  band Landsat image with a 60m resolution was recolored  
to create an NDVI image; the original band 1 (green), band 2 (red), and band 3 (near 
infrared) were processed via the NDVI tool in GIS. The NDVI tool is a standardized index 
which generates an image displaying greenness (relative biomass) by visualizing the contrast 
of the chlorophyll pigment absorption of the red band and high reflectively of the plant 
materials in the near infrared band (desktop.arcgis.com). The NDVI image was then 
reclassified to create a raster layer with four land cover categories: water, non-organic 
(buildings, roads, and other built areas), light vegetation, and heavy vegetation (Table 2). The 
NDVI raster layer was also resized to a 50m resolution to match the resolution of the UPlan 
raster layers. Finally, the NDVI raster layer was then masked with each of the UPlan growth 
scenario raster layers to create a combined Urban and NDVI layer for each scenario 
containing the following land cover categories: Water, non-organic (now representing just 
roads), light vegetation, heavy vegetation, Industrial, Commercial High, Commercial Low, 
and Residential of varying densities: 50, 20, 10, 5, 1, .5, and .1. For each buffer, the zonal 
histogram tool was then run to collect the number of pixels of each type of land cover. 
Finally, the area of Green Space (consisting of light vegetation and heavy vegetation pixels) 
and Urban area (consisting of the UPlan land use type pixels) were calculated. It was 
assumed that the NDVI in February would not greatly differ between 2010 and 2050 leading 
to the same NDVI being used for both base year 2010 and projected year 2050. 
 
Table 2: Range of NDVI values assigned to each Land Use Category 

 
 
 
 
 
 
 

Nitrogen Dioxide 
The recorded nitrogen dioxide (NO2) concentration for fifteen monitoring stations across the 
study area was collected for a two-week period in February 2010. Nitrogen dioxide was 
chosen as it is the most stable nitrogen oxide and the recorded values were therefore the 
most reliable. The reported value for each day is the maximum one hour average 
concentration. Recorded data on greenhouse gas emissions is freely available on the 
California Air Resources Board website (https://www.arb.ca.gov/adam/index.html). The 
collected NO2 values were then averaged to create a two-week average concentration at 
each of the fifteen stations.  
 
To test the influence of the surrounding  area on the recorded NO2 values, several buffers 
around each station were chosen: 250m, 500m, 1000m, 1500m, and 3000m. These specific 
radii were chosen based on what has been done in other NO2 linear regression studies.

Land Use Category NDVI value 
Water -.984 –  -.098 

Non-Organic -.098 – 0.113 

Light Vegetation 113 – .318 
Heavy Vegetation .318 – 1 
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a) b)  c) 

d) e)   

 

Figure 2: Combined NDVI and UPlan Land Use raster layers for a) Agriculture, b) Business As Usual, c) Biodiveristy, d) Redevelopment, and e) Smart Growth    
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Road Network 
The Tigerline shapefiles provided by the U.S. Census Bureau were used to generate a road 
network for the year 2010 (https://www.census.gov/geo/maps-data/data/tiger-line.html). 
The Tigerline class codes of “Primary” and “Secondary” were categorized as Major Roads, 
while the class codes of “Local Neighborhood Roads” and “Ramps” were categorized as 
Roads. From this road network, length of road and length of major road were calculated 
within each buffer; additionally, length of all roads was recorded to test the a priori 
assumption that major roads produce more emissions than standard roads.  
 
Road length was used as a proxy for traffic as traffic count data for 2050 on the spatial scale 
required by this study was not freely available. Several studies have similarly also used road 
length in lieu of traffic count data with generally positive results (Hoek et. al., 2008). A 
distinction was made between road types to reflect traffic intensities. Distance to road and 
distance to major road from stations was also recorded to take note of how far the nearest 
source of traffic emissions was. Finally, no major road construction projects are planned for 
the greater Los Angeles area in the coming decades. Therefore, the road network used for 
2010 was also used for 2050. 

Elevation and Ocean Proximity 
Elevation was recorded at each monitoring station to account for the effects of the proximity 
to the San Gabriel mountain range on the edge of the Los Angeles downtown area. Elevation 
of each station was available from the California Air Resource Board website 
(https://www.arb.ca.gov/adam/index.html). The distance of each station to the ocean was 
also recorded to account for the effects of sea breeze (ie, humidity and wind). Coastal winds 
blowing from the west shift air pollution eastwards, causing stations near the coast to 
receive relatively clean ocean air while stations further away receive air and pollution from 
all areas westwards; Ross et. al. included distance to coast for the same reason in San Diego 
County (Ross et. al., 2006).  Distance to Ocean was calculated in GIS from each monitoring 
station to the coast. Both Elevation and Distance to Ocean are static variables in that they 
remain the same at each spatial scale of data collection.  
 
Overall, nine predictor variables were selected. The variables Elevation and Distance to 
Ocean do not vary as the buffers change and are therefore static; the remaining seven 
variables do change depending on the buffer. Seven variables were then recorded at five 
different spatial scales, while the remaining two variables remained the same each time. 
Data was recorded for each of the nine variables for the base year of 2010 and for projected 
year of 2050. 

Statistical Analysis 
Statistical analysis was done in SPSS. First, each predictor variable was investigated for 
normality by running the Shapiro-Wilk test. Predictor variables were considered normally 
distributed when the significance is greater than 0.05. Variables that are not normally 
distributed are transformed until normality was achieved.  
 
Univariate regression analysis was conducted such that each predictor variable at each 
spatial scale was regressed against the recorded NO2 concentration. The ANOVA test was 
used as a part of the univariate regression to test the null hypothesis. Predictor variables are 
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considered to be significantly correlated to NO2 concentration when R2 > 0.25 and the P-
value < 0.05. The predictor variables meeting these standards were selected for the initial 
model, with the same model tested at five spatial scales. Adjustments to the model were 
made through a leave one out process; one predictor variable would be excluded from the 
model at a time to investigate its statistical significance in combination with other variables. 
Multivariate regression analysis was conducted for each rendition of the model until the 
highest possible R2 was achieved.  
 
Two models in particular were investigated to test the influence of road types. Model one 
consisted of Urban Area, Green Space, Distance from Ocean, Length of Major Road, Length 
of Road, and Elevation. Model Two consisted of Urban Area, Green Space, Distance from 
Ocean, Length of All Roads, and Elevation. These models were run for the 1000m, 1500m, 
and 3000m buffers. 
 
The model with the highest R2 was then utilized to calculate NO2 concentrations for five 
growth scenarios for Los Angeles County. 

III. Results 

Statistical Results 
Out of all variables elevation, length of all roads, green space, and distance to ocean have a 
significant relationship to the recorded two-week average NO2 concentration. Elevation and 
Distance to Ocean demonstrate this relationship in all buffers. The three remaining variables 
with a recorded significant linear relationship to recorded NO2 values are Length of All Roads 
in the 1500m and 3000m buffer and Green Space in the 1500m buffer.  
 
The 250m and 500m buffers both had predictor variables that did not obey normality, even 
after extensive data transformation. This is largely due in part to both buffers having a high 
number of recorded zeros in several variables. These zeros highly skewed the data, and did 
not lend itself to any regression that would also fit the other buffers. As such, the 250m and 
500m buffers were excluded from subsequent analysis. 
 
Elevation did not exhibit normality in any buffer, and was log transformed to achieve 
normality. Similarly, Distance to Major Road did not obey normality and was log 
transformed. Green Space in the 1000m and 3000m buffers also did not obey normality, and 
were also log transformed. Urban Area in the 1000m buffer was also log transformed to 
attain normality. These transformed variables were used for further analysis.  
 
Out of all variables, Elevation has the strongest correlation with NO2 (R2=0.327), while 
Distance to Major Road has the lowest (R2=0.012). Length of All Roads in the 1500m and 
3000m buffer are the variables most highly correlated with NO2 (R2=0.300 and R2=0.293 
respectively), followed by Green Space in the 1500m buffer (R2=0.283). Of all the buffers, the 
1500m and 3000m buffers have the most variables with the highest R2 value.  
 
Of the nine variables tested, four variables show a significant relationship to recorded NO2 
values as indicated by the p-value: Elevation in every buffer (p=.026), Length of All Roads in 
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the 1500m and 3000m buffers (p=.034 and p=.037 respectively), Green Space in the 1500m 
buffer (p=.041), and Distance to Ocean (p=.042) in all buffers.   
 
Urban Area and Green Space demonstrated the expected relationship to NO2 concentration 
with Urban Area increasing NO2  and Green Space decreasing NO2 concentration (Figure 3).  
 
Table 3: Results of Univariate Regression Analysis 

Buffer Variable R2 P-Value 

1000 

Length of Major Road 0.019 0.621 
Length of Road 0.227 0.072 

Length of All Roads 0.243 0.062 
Distance to Major Road 0.012 0.703 

Distance to Road 0.185 0.109 
Distance to Ocean 0.281 0.042 

Elevation 0.327 0.026 
Green Space 0.047 0.439 
Urban Area 0.080 0.308 

1500 

Length of Major Road 0.200 0.095 
Length of Road 0.217 0.080 

Length of All Roads 0.300 0.034 
Distance to Major Road 0.012 0.703 

Distance to Road 0.185 0.109 
Distance to Ocean 0.281 0.042 

Elevation 0.327 0.026 
Green Space 0.283 0.041 
Urban Area 0.138 0.173 

3000 

Length of Major Road 0.226 0.073 
Length of Road 0.249 0.058 

Length of All Roads 0.293 0.037 
Distance to Major Road 0.012 0.703 

Distance to Road 0.185 0.109 
Distance to Ocean 0.281 0.042 

Elevation 0.327 0.026 
Green Space 0.208 0.088 
Urban Area 0.229 0.071 

 
 

 
 
Figure 3: Correlation of Green Space and Urban Area to recorded NO2 concentrations for the 1000m, 1500m and 3000m 
buffers 
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Two linear regression models were created from the predictor variables with the highest 
statistical significance. Model one consisted of Urban Area, Green Space, Distance from 
Ocean, Length of Major Road, Length of Road, and Elevation. Model Two consisted of Urban 
Area, Green Space, Distance from Ocean, Length of All Roads, and Elevation. In both model 
one and two, the 1500m buffer demonstrates statistical significance with a high R2 value in 
addition to having the lowest p-value. Between model 1 and model 2 in the 1500m buffer, 
model 1 demonstrates the best fit with the highest R2 value (R2=.721) and lowest p-value 
(p=.055). Model one in the 1500m buffer is then statistically most suited for application to 
the five UPlan growth scenarios and NO2 calculation. 
 
Table 4: Results of final two linear regression models 

 
 
 
 
 
 
 
 
 
Table 5: Linear Regression Equation for Model 1  for the 1000m, 1500m, and 3000m buffers; MRL =Length of Major Road, 
RL =Length of Road, OD =Distance to Ocean, Elog =Elevationlog, GS =Green Space, UA =Urban Area 

 
 

Future Urban Growth & NO2 Concentration 
Nitrogen dioxide was calculated for each of the five growth scenarios at each of the fifteen 
monitoring station using the aforementioned linear regression model in the 1500m buffer. 
Calculated NO2 was nearly identical at each station in the Agriculture, Business as Usual 
(BAU) and Biodiversity scenarios. The redevelopment scenario demonstrated a slight 
decrease in calculated NO2 at most stations compared to the Agriculture, BAU, and 
Biodiversity scenarios. In comparing the Redevelopment and Biodiversity scenarios (with 
Biodiversity representing Agriculture and BAU as data is identical), the greatest percent 
decrease in calculated NO2 is at the Lancaster station (10.4% decrease) while the greatest 
percent increase was at the LA_North Main Street station (5.1% increase). Out of all five 
growth scenarios, the Smart Growth Scenario demonstrated the least amount of calculated 

Model Buffer R2 P-Value 

1 

1000m 0.542 0.269 

1500m 0.721 0.055 

3000m 0.707 0.065 

2 

1000m 0.43 0.324 

1500m 0.567 0.124 

3000m 0.549 0.144 

Model Buffer Linear Equation R2 P-Value 

1 

1000m 30.965+(0.572*MRL)+(-0.064*RL)+(0.172*OD)+(-0.714*Elog) 
+(-0.222*GS)+(-0.454*UA) 0.542 0.269 

1500m 12.076+(0.612* MRL )+(0.057* RL )+(-0.121* OD )+(-0.166* 
Elog)+(-0.143* GS )+(0.5* UA ) 0.721 0.055 

3000m -5.812+(0.68* MRL )+(-0.363* RL )+(0.482* OD )+(-0.75* Elog) 
+(0.162* GS )+(0.973* UA ) 0.707 0.065 
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NO2 at every station.  When compared to the Biodiversity scenario, the Smart Growth 
scenario demonstrates the largest percent decrease at the Lancaster station, and the least 
percentage decrease at the Compton station.  
 
The calculated average NO2 was identical for the Agriculture and Biodiversity scenarios, and 
the Business as Usual scenario was nearly identical. The Redevelopment scenario 
demonstrated a slightly lower average NO2, while the Smart Growth scenario demonstrated 
the lowest average NO2 (Figure 4).   
 
Table 6: Calculated NO2 concentration at each monitoring station for each growth scenario 

 
 

 
 
Figure 4: Average NO2  in 2050 for each of the growth scenarios  
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NO2 (ppb) 

Scenarios 

Average NO2 

Station Agriculture BAU Biodiversity Redevelopment Smart Growth 
Azusa 16.248 16.248 16.248 16.156 15.817 

Burbank 23.380 23.380 23.380 23.356 23.134 

Compton 20.673 20.673 20.673 20.572 20.531 

Glendora 13.461 13.461 13.461 12.936 13.105 

Lancaster 10.528 10.528 10.528 9.431 9.393 

Long Beach 22.919 22.919 22.919 22.976 22.501 

LA_North Main Street 22.914 22.914 22.914 24.074 22.542 

LA_Westchester Parkway 20.755 20.755 20.755 20.449 20.438 

North Long Beach 22.031 22.031 22.031 22.364 21.792 

Pasadena 14.924 14.924 14.924 14.788 14.627 

Pico Rivera 21.890 21.890 21.890 22.154 21.642 

Pomona 17.602 17.602 17.602 18.134 17.311 

Reseda 20.983 20.983 20.983 20.692 20.682 

Santa Clarita 15.478 15.472 15.478 14.883 14.793 

West Los Angeles 23.388 23.388 23.388 23.697 23.129  
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As expected the growth scenarios that limit urban sprawl and encourage growth in existing 
urban areas demonstrate the lowest concentration of NO2. The Smart Growth scenario 
restricts growth into rural areas and encourages growth closer to city centers (Thorne, 
Santos, & Bjorkman, 2017); this policy results in urban areas that are more densely 
populated and built up rather than allowing available space to be use; in other words, 
growth is upwards instead of outwards (Thorne, Santos, & Bjorkman, 2013). As such, green 
space in urban areas is not developed upon. Similarly, the redevelopment scenario 
encourages compact growth and the reduction of urban sprawl; growth and development 
occurs in spaces that are already urban but are not filled being fully utilized. Again, green 
space in urban areas is not developed upon. The availability of green space in both these 
scenarios, then, reduces the average NO2. 
 
Over all, a land use regression model is a useful means to projecting future emissions based 
on land use change in an urban setting. The statistical significance of the final model 
(R2=0.72) is comparable to that of similar NO2 land-use regression models in similar sized 
urban areas (Table 7). 
 
Table 7: Studies that have utilized land-use regression models for projecting NO2; adapted from Hoek et al., 2008 

IV. Discussion 
This study explored the effects of changes in land use on nitrogen dioxide (NO2) 
concentrations in an urban setting. A land-use regression model was built using six predictor 
variables that were proven to be significantly correlated to NO2 concentration. This model 
was used in conjunction with five future growth scenarios for Los Angeles county to project 
NO2 concentrations. Results showed that the Smart Growth scenario produced the lowest 
average NO2 concentration. 
 
The elevation at each monitoring station and the distance to the ocean were used as a proxy 
for the possible collection of air pollution shifted eastwards by the coastal winds. As a 
coastal valley, Los Angeles county experiences a complex interaction of sea breeze and 
mountain circulation conditional of changing temperatures and winds. Within the same day, 
changing temperatures and shifts in wind direction can cause pollution lifted into the 
troposphere earlier in the day to be circulated back over the valley basin by night time (Lu & 
Turco, 1995). With elevation and distance to ocean both showing a high degree of 

Reference Study Area Variables in Final Model R2 of model 

Briggs et al. 
(1997) 

Amsterdam Length major roads 50,200,350m + Distance major road + 
built up land, 100m 0.62 

Huddersfield Traffic volume 300m + land cover factor, 300m + altitude + 
sampling height 0.61 

   

Prague Traffic volume, 60m + traffic volume 60-120m + land cover 
factor + altitude 0.72 

Ross et al. 
(2006) 

San Diego 
County 

Traffic Density, 40-300m + traffic density, 300-1000m + road 
length, 40m + distance to Pacific coast 0.79 

Jerrett et al. 
(2007) Toronto 

Expressway, 200m + major road, 50m + industrial land use, 
750m + household density, 2000m + X-coordinate + 

downwind within 1500m expressway + traffic density, 500m 
0.69 

Henderson et al. 
(2007) Vancouver 

Length expressway, 100m + length expressway, 1000m + 
length major roads, 200m + population density, 2500m + 

commercial area, 750m + altitude +  X-coordinate 
0.56 
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correlation to recorded NO2 concentrations, this suggests that both these predictor variables 
are a useful, if perhaps oversimplified, proxy for the sea breeze and mountain circulation 
interaction in the Los Angles downtown area. Generally, stations located in the valley basin 
record higher NO2 concentrations as air pollution collects there, while those near the coast 
have generally lower NO2.  
 
Roads were important predictors of NO2 concentrations. Length of roads (major and overall) 
were used as a proxy for traffic intensity to predict its current and future effect on NO2 
emissions. This was shown to be a good proxy as model results are comparable to models 
applied in similar sized urban areas (Hoek et al., 2008). Henderson et. al. also showed that in 
the absence of traffic count data, road length can effectively be used to represent the traffic 
variable in a LUR model as both road length and traffic count were equally able to explain 
small-scale variability in pollutant concentrations (Henderson et. al, 2007). Model 
performance improved when length of major road and length of road were included 
separately as opposed to one category for all roads. Congestion is also a large contributing 
factor, as stop and go traffic produces more NO emissions than vehicles traveling at a 
constant speed (Seakins et al., 2002). Major roads (highways and multilane roads) produce 
more NO2 emissions (Westerdahl et al., 2005; Seakins et al., 2002); accounting for this fact 
by dividing roads into major and minor more accurately captures the higher emissions from 
major roads than from smaller roads.  
 
Urban Area and Green Space demonstrated the expected relationship to NO2 concentration, 
with Urban Area increasing NO2 and Green Space decreasing NO2 concentration. This 
relationship became more pronounced at larger spatial scales, suggesting that small-scale 
variations in land use do not heavily influence NO2 concentrations at a point recording 
station. Instead, larger areas of urban or green space may be necessary to influence air 
pollution levels. However, NO2 can vary on a fine spatial scale and a large buffer could dilute 
this variability, allowing NO2 to be more highly correlated to the two-week average that was 
used in this study. The results could have been affected by the two-week average values for 
NOx, as averaging might lead to higher correlation between a land use and NO2 
concentration.  
 
The small sample size of the record stations within Los Angeles restricted the power and 
generalizability of this study. Fifteen sampling sites across a 12,305 km2 study area of over 
10 million people was not a dense enough network to accurately capture the small scale 
variations in air pollution. Other similar studies have had the ability to set up their own 
monitoring networks, with between 37 and 107 monitoring stations across the study area 
(Hoek et. al, 2008). This suggests that interpretation of the results needs to be careful and 
future studies should consider own instrumentation or augmenting existing instrumentation 
network. For example, NASA’s Megacities Project is developing their network of sensors 
which could complement the state recording stations 
(https://megacities.jpl.nasa.gov/portal/). 
 
Different types of urban land use could also influence NOx emissions. However, the 
distinction between types of urban land use (i.e., commercial, residential, or industrial) was 
not made due to lack of information on their representation in the base year of 2010. It 
would have been interesting to separate the relative contributions of each urban and use 
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type in, for example, assessing the influence of industry on NO2 concentrations. Additionally, 
making a distinction between types of urban land use would allow for estimate exposure 
risks in residential areas. 
 
The smaller scale buffers could not be considered for analysis because of the lack of fine 
scale predictor data. This is unfortunate as NO2 concentrations might vary on a fine spatial 
scale, and I could not disentangle such dynamics from my results. In some areas, NO2 can 
decrease to background levels with 100m from major urban roads or 500m from a major 
freeway (Hoek et. al, 2008). 
 
Surprisingly, the Agriculture, and Biodiversity growth scenarios had nearly identical 
calculated NO2 concentrations at all fifteen monitoring stations, and these values were 
similar to the Business-as-usual values. This is likely because both the agriculture and the 
biodiversity scenarios are about responses to climate change, and these mostly occur 
outside of already developed urban areas. Additionally, Los Angeles has very few patches of 
urban agriculture. The biodiversity scenario looked into potential movement corridors for 
plants to move as a response to changes in their preferred climatic conditions. Moving 
through a city like Los Angeles would be quite difficult for plants, however, other studies 
have shown that this is possible in the San Francisco Bay area for plants and butterflies 
(Weiss, 1999).  
 
Among the five growth scenarios investigated, the Smart Growth scenario demonstrated the 
lowest average NO2 concentration. This likely resulted from this scenario having the most 
green space in comparison to the other scenarios. However, the urban density of each 
scenario was not incorporated in the LUR model, but the inclusion of this variable may have 
generated different results. Indeed, in a study by Thorne, Santos, and Bjorkman published in 
2013 the Smart Growth scenario preserved only marginally more open space than the 
Business-as-Usual Scenario in the San Francisco Bay Area. It is possible that more green 
space was conserved in the Los Angeles area than in the San Francisco Bay Area in the Smart 
Growth scenario. However, this deduction requires further investigation into the area of 
green space in both regions within this scenario before a definite conclusion can be reached.  
A repeat of this study with a predictor variables for urban density and land use type would 
likely generate different results. The inclusion of urban density could be a pathway to 
including heavier traffic due to higher population densities within the same area. A high 
urban density could also lead to taller buildings that can create street canyons; on a small 
scale this would alter NO2 concentrations. Land use type would also allow for the inclusion of 
the effects of industrial areas, which can also produce NOx/NO2  emissions from the 
combustion of fossil fuels. 
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