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Introduction

In many medical settings, people are interested in analysing data and making
predictions about the future with this information. The precautions one has to
take in drawing conclusions is illustrated in a story mentioned in [6]: a
centenarian on his 100th birthday [was] proclaiming that he was looking
forward to many more years ahead because “I read the obituaries every day,
and you almost never see someone over 100 listed there”. In this thesis we
focus on prediction in a model in which we deal with incomplete data. We
want to predict the chance of some event happening to a selected patient,
given certain information about this patient.

By using a model we simplify and categorize reality to be able to understand a
part of the process. In this thesis this will be done by choosing a Markov chain
model with a finite number of states. We take (part of) the life cycle of a
patient by describing that patient being in a certain state and making
transitions from one state to another state when an event (or condition) of
interest happens. We call this a multi-state model, which will be explained in
more detail in this thesis.

In a simplified model, the two-state model alive-death illustrated in figure 1
where all patients start at the same point and all information is available, one
could easily estimate a probability of surviving by the proportion of people
still alive in the sample. In a medical setting this is typically not the case;
patients leave the study too early, data at the start is missing or the study
stops before a patient experiences the event that we are interested in, etc..
This is a problem of ‘censored data’. Because of these complications we need
an ad-hoc model, in this thesis we choose the multi-state Markov model with
hazard based estimation.

As an example of the theory of these multi-state models we will use a dataset
from the European Society for Blood and Marrow Transplantation, ebmt4,
available through the R-package mstate. [4] This example will be used
throughout this thesis as an illustration of the various concepts that are
introduced.
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Figure 1: two-state model

Aim and structure of the thesis

The problem of censoring causes estimating transition probabilities to be
interesting and complicated. The main focus of this thesis will be on
developing theory for a hazard based multi-state model, a useful estimator of
the transition probabilities and how to combine this with extra information
available of an individual.

We start Chapter 1 with an introduction of the concept of a multi-state model,
together with a more detailed introduction of the ebmt4 dataset example. In
Section 1.1 we go more into the mathematical background by introducing some
random variables together with the notion of filtrations, counting processes
and the definition of a Markov process. In Section 1.2 we write about the
hazard rate and related variables in the context of multi-state models. In
Chapter 2 we focus on estimators. As we aim to estimate the transition
probability, we explain this estimator in Section 2.3. As a preliminary we have
to introduce two other estimators in Section 2.1 and Section 2.2, respectively
the Kaplan-Meier and the Nelson-Aalen estimators. As a last step we want to
be able to take the influence of various physical characteristics of a patient into
account, by using the Cox model in Section 2.4. We conclude with a discussion
of the possibilities and the flaws of the chosen model. The programming code
used to produce pictures and data can be found in Appendix 1.
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Chapter 1

Multi-state Models

The model we will use to analyze data in this thesis is a multi-state model, in
which we assume the data to be a finite state stochastic process. This model is
built up out of a finite number of states and some possible ways to make a
transition between them. The most basic form of this model is the
”alive-death” model mentioned in the introduction. Another possibility is a
‘competing risks’ model, this is a multi-state model where only one transition
is made out of the initial state, but there is more than one possible absorbing
state. This is illustrated in figure 1.1. We won’t build separate theory for the
competing risk or the alive-death model, because it is a variation of the more
general multi-state model. Many examples of the practical use of a multi-state
model can be found, detailed examples are given in [1]. A few examples in
different fields of research are listed below:

• Medical: Many disease processes can be modelled, in such a way that
different complications or different levels of a disease, sometimes
including recovery, are chosen as the different states a patient could be
in. The ebmt4 dataset is a good example of this concept, we will look
into it in further detail below.

• Animal behaviour: In a certain situation one can model the different
possible reactions of animals and the consequences of that behaviour as
different states.

• Technical: In an industrial setting, you could be interested in the
different kind of possible failures a machine can have. Which of those will
occur first? And if a machine can still be productive after a first failure
and reparation, what would be the second type of failure to come up?

• Economic: If a company changes something for their employees, what
will their reaction be? This could be modelled in a competing risk model.
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Figure 1.1: competing risk model

In multi-state models the first state is called the initial state. People enter a
study for example by having a surgery or by being born. States from which
one can move to another state are transient states. An absorbing state is, as
the name suggests, a final state where making a transition to move out is not
possible. The state ‘death’ is an example of this state.

Figure 1.2: multi-state model for dataset ebmt4, source: [8]

In our main example the initial state is entered by patients having a
transplantation. After this treatment they move to the other states in figure
1.2. Because arrows going both ways would complicate the computations and
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analysis later on, we solve this problem by creating the new state ‘recovery and
adverse event’. If the patient experiences a relapse and dies as a consequence,
we register this only as going into the absorbing state ‘relapse’. To get an idea
what the ebmt4 dataset looks like, we show the first few lines of it in figure
1.3. The first 11 columns are about tracking down when a patient makes a
transition into another state. The columns with 0/1 entries are about data
(not) being censored. Censored data is non-complete data, we will speak about
that in further detail in Section 1.3. The last columns are other data that
might be relevant for estimation, those will be taken into account in the Cox
model in Section 2.4. We will not get into the technical details of arranging
such a dataset in a form that could be used for calculating, neither will we get
into the details of the programming language R. Although these are used to
produce examples and graphics for the thesis, they are more of a practical
matter, explained well in [9] and [8]. Another practical matter is the way of
writing down the transition times. In a clock-reset setting, the time is set to
zero every time a patient steps to a new state. In the clock -forward setting we
just register the transition times in relation to the starting time at the initial
state. For simplicity reasons we will use the second approach in this text.

Figure 1.3: printed head of dataset ebmt4

1.1 Mathematical Notions and Notations

Here we introduce some mathematical theory we will need for our multi-state
model. We fix the continuous time interval on which an experiment is done as
T = [0, τ ]. We take the stochastic process {X(t), t}. This can be viewed as a
time-indexed collection of random variables, registering the state a patient is
in at time t. These random variables are defined on the probability space
(Ω,F , P ), with the sample space Ω = {1, ..., k} the k possible states of the
model, F being the filtration of all possible history paths and P the
probability measure. We explain these notions in a little more detail below:
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Sample space: This is a set of possible outcomes of the experiment, so
these are the values that the random variable can give as an output.

Filtration and σ-algebra’s: To briefly explain the use of the word
filtration; by this we mean an increasing family of sub-σ-algebra’s, indexed by
time. This is a family of subsets of Ω including the empty set, which is closed
under complement and closed under countable unions and intersections. The
increasing property can be written as

if s ≤ t,Fs ⊆ Ft (1.1)

This property is important in this context, because we view this filtration as
the history of the process. A set Ft contains all possible paths with only the
events for times s ≤ t fixed. One could think of this as a description of the
past and present (s ≤ t) with an open future (s > t).

Probability measure: This is a real valued function which assigns
probabilities to the various outcomes of the experiment. We assume the reader
is familiar with this concept.

Counting process: A useful mathematical approach to these multi-state
models is to look at them as a counting process, N = (N1, ...Nk). We define
S = 1, ..., n the different numbered states of the model. The Ni represent the n
different states in the model, registering every patient jumping out of this
state. We have a stochastic process {Ni(t), t} with t and Ni nonnegative, but
now with the sample space defined by Ω = {1, 2, ...}, F again being the
filtration of possible history paths. We assume that no two patients make a
transition at the same time, so every process Ni is piecewise constant,
non-decreasing and only jumps with +1 at a time. In this thesis we assume
that we will work with a finite number of states, patients and transitions, so
our counting processes will be finite. This holds for N. =

∑k
i=1Ni as well, so

we look at this total process of all states together as a counting process as
well. Later on we will refer to this last counting process as N(t). We
summarize some of the properties mentioned above:

Ni(t) ≥ 0 and t ≥ 0 (1.2)

N(t) ∈ N (1.3)

N(t) ≤ N(s) if s ≤ t (1.4)

Cadlag is an abbreviation of ‘continu à droite, limité à gauche’. A function
is cadlag if the right limit exists for all t and is given by lims↓t f(s) = f(t), and
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the left limit lims↑t f(s) exists, but is not necessarily equal to f(t). This is the
case for our functions, as they jump to a new value at the exact times ti and
are continuous at all other times with no jumps. In the diagram below (figure
1.4) this is visualised.

Figure 1.4: Visualisation of process N(t), cadlag

Markov process: We make the assumption we have a Markov model: the
future depends on the history only through the present. This will be useful
when we start estimation in the model. To write this property down more
formally, we denote the history of the process until time s as a filtration Fs−
in the probability space of a stochastic process X(t) as defined above. We
define the transition probability of going from state g to h in the interval (u, v]
with the patient history until time u Fu−

Pgh(u, v) = P (X(v) = h|X(u) = g,Fu−) (1.5)

A process X(t) is Markov if the history had no influence on the probability
above:

P (X(v) = h|X(u) = g,Fu−) = P (X(v) = h|X(u) = g) for all Fu− (1.6)

The probabilities in the two equations above are transition probabilities. We
could also look at occupation probabilities P (X(t) = c), but we focus on the
first because this is the most flexible approach in the practical analysis later
on.
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Markov multi-state process Combining the two notions above, we arrive
at the model we will use in this thesis; a counting process viewed as a
multi-state model in which we assume the process to be Markov.

1.2 Hazard rates in Multi-state Models

As we want to make calculations in our model , we will introduce some basic
notations. First, we look at them in the basic alive-death model, afterwards I
will explain some modifications for our more complicated multi-state example.
We look in a more detailed way at patients making transitions and introduce
the concept of a hazard rate. As we will see that we can look at the
multi-state model as a hazard based model, this will be an important concept
when we start with estimation. We define another random variable T , being
the time of the alive-death transition in the basic model. This random variable
is defined on a probability space (Ω,F , P ) with Ω = [0, τ ], F the family of all
history paths, and P the probability measure. The survival function is defined
as a probability function

S(t) = P (T > t). (1.7)

Naturally, the failure function is given by

F (t) = 1− S(t) = P (T ≤ t). (1.8)

Both functions are not measured directly in data. More easily accessible from
the data is the hazard rate function

α(t) = lim
∆t→0

P (T ≤ t+ ∆t|T ≥ t)
∆t

, (1.9)

which can be thought of as the instantaneous probability of going to the next
state per time unit. There is a relation between S(t) and α(t), shown in the

next few steps. As we know that P (A|B) = P (A∩B)
P (B) , we rewrite the numerator

of α as

α(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t)

P (T ≥ t)∆t
(1.10)

and define f as the probability density function of F . In this way we can
substitute:

α(t) =
f(t)

S(t)
. (1.11)

Because S′(t) = (1− F (t))′ = −f(t) we can now derive

α(t) =
f(t)

S(t)
=
−S′(t)
S(t)

=
d

dt
− ln(S(t)). (1.12)

Rewriting this to a function of S we get

S(t) = e−
∫ t
0
α(u)du. (1.13)
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Although from a mathematical point of view the function S(t) could feel like a
logical starting point, in applications much more emphasis is on α(t), as this is
the accessible measure in the survival data. We will go deeper into this subject
in the next chapter. We define a cumulative hazard rate

A(t) =

∫ t

0

α(s)ds. (1.14)

As we step to a more complicated multi-state model, we will use indices to
explain from and to which state the transition is made. When writing αij we
mean the hazard rate of the transition from state i to state j. If we have a
situation where from a state i different transitions j, ...,K are possible, it is
not possible to find a uniquely determined joint distribution of those
transitions without further assumptions. For explanation on this statement I
refer to [1]. We will not get into the details of this theory, but just focus on
the separate transitions, which we can estimate. We can still use a survival
function for a state i in the same interpretation as before, but modified to the
situation where more than one hazard cause is possible:

Si(t) = e−
∑K

n=j Ain . (1.15)

This formula can now be interpreted as the probability to not have made any
transition at time t. If we want to say something about a specific cause we can
use the cumulative incidence function,

Iij(t) =

∫ t

0

αij(s)Si(s)ds, (1.16)

the probability of making a transition from state i to j before t. The last two
formulas we will introduce are that of the intensity process λ

λij(t) = Yi(t)αij(t), (1.17)

and the cumulative intensity process Λ

Λ(t) =

∫ t

0

λ(s)ds, (1.18)

with Yi(t) being the number of patients at risk in state i at time t. To keep
these formulas clear of confusion; α is a proportion of patients making a
transition, λ is a measure for the actual number of patients making a
transition. Most variables of the above formula’s are only known at the time
they happen, but Yi(t) is known ”just before” t. We write this as t− and
mention that Y (t−) = Y (t), which makes Y a predictable process.

1.3 Censoring

As mentioned before, a main issue which makes the analysis of survival data
difficult, is the problem of censoring. In a basic alive-death model with full
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data information, we would estimate the probability of surviving by the
proportion of the people still alive in the database. In all kinds of situations,
data cannot be fully observed. We define two random variables, the event time
of an individual as T and the censoring time as C, both on the interval
T = [0, θ]. In the next examples, in which we distinguish two main kinds of
censoring, we show what the actually observed time T̃ would be.

• Right censoring: The event of interest has not happened yet. In the
embt4 example this could be a patient still being alive at the end of the
study. The observed transition time is given by T̃ = min(T,C).

• Left censoring: The starting point of an individual is unknown. This
could be the case if one wants patients to be in the initial state if an
infection occurs, but as the consequences of this infections are only
noticed at a later time, the precise starting time will be never known.
We have T̃ = max(T,C) with in this case T the starting point and C the
time of entering the study.

If one wants to be explicit about the censoring data, we can write (X̃i, Di). If
Di = 1, we actually observed Xi = X̃i. If Di = 0 the data was censored; we
only know that Xi > X̃i. Other types of censoring can be seen as a
combination of the two stated above. In this thesis we will focus on the right
censoring, which is present in many datasets.

To be able to make calculations, we later on need an assumption of
independent right censoring. In other words, we assume that the probability
distributions of C and T , as defined at the start of this paragraph, are
independent.

T ⊥ C =⇒ for all t and c P (T ≥ t, C ≥ c) = P (T ≥ t)P (C ≥ c) (1.19)

If we define G = P (C > t) we could write

P (T̃ > t) = S(t)G(t) (1.20)

In this assumption, we want the uncensored data to be representative for the
dataset if there had been no censoring. This is the case if the censoring
distribution is independent of the survival time distribution. If the data is
censored because the study has ended, the independence assumptions is often
safely made. If patients step out of the study by themselves we have to take
more caution. If, for instance, people who know they will die in a short
timespan go home to spend their last time with their family, this is not a case
of independent censoring. The dataset that remains is not representative for
the whole dataset, because people with a relatively high chance of dying left
the study. This leads to a bias in our estimators later on. Another case where
caution is needed is when an competing event has occurred. This means that
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the event of interest cannot happen any more. We could be interested in the
occurrence of a specific cancer type, but some patients will die of other causes.
If we treat these cases as censored, this is certainly not a case of independent
censoring. We assume that the patients that remain have the same chance of
an event happening as the whole population including the censored data. This
means that the censored data must have the same survival distribution as the
remaining data. As the competing event prevents the event of interest of
happening, the distribution is clearly not the same.

To be clear about the notation of time in our database we look at figure 1.5
and 1.6. The closed dots are deaths, the open dots a censoring. Here we see
what could happen with censoring due to follow up, which means the study
has ended. In the database the data is not stored by calendar time, but by the
time since transplantation.

The last thing we want to add here is that we will assume that the data will
come in three components (t̃, d, z). Here we define t̃ the observed transition
time, d the censoring indicator and z a vector of covariates. The covariate
vector contains extra information, which could for example be age, length,
other diseases which a patient has. In the last section of Chapter 2 we explain
a model in which these are taken into account.
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Figure 1.5: visualisation censoring, calendar time

Figure 1.6: visualisation censoring, time since transplantation
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Chapter 2

Estimation of Transition
Probabilities

In this chapter we will focus on estimating transition probabilities. In the case
of complete data we could estimate this probability by computing the
empirical average, but as we have censored data we would overestimate the
hazard rate if we do so. The estimator we will use to compute transition
probabilities is the Aalen-Johanson estimator. Explaining this estimator and
its basic properties are the main goals of this chapter. To guide the reader into
the subject we will start with explaining the Kaplan-Meier and Nelson-Aalen
estimators. The Kaplan-Meier estimator helps the reader to develop some
understanding of the subject and we will use it to introduce the product
integral. In Section 2.3 we will see that this first estimator is a special case of
the Aalen-Johanson estimator. The Nelson-Aalen estimator is needed in the
Aalen-Johanson estimator, so we explain this estimator before starting with
the last one as well. As we want to take other information than the transition
times about the patient into account as well, we conclude the chapter with an
explanation of the Cox-model. We combine the non-parametric multi-state
model with this semi-parametric model to write a final overview of estimation
in our example of ebmt4 data.

2.1 Kaplan-Meier Estimator

This first estimator estimates S(t), which can be used in the basic alive-death
model of figure 1. This concept is generalised to the Aalen-Johansen estimator
for multi-state models in Section 2.3. We take T as a random variable
registering the transition times ti ∈ R of an individual. To explain the
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estimator we assume an ordered list of transition times 0 < t1 < t2 < ... < tN
from a dataset. From a probabilistic point of view, we can split the formula
S(t) into a product:

S(tj) = P (T ≥ tj) = P (T ≥ tj |T ≥ tj−1)P (T ≥ tj−1) (2.1)

S(tj) ≈ (1− α(tj))S(tj−1) (2.2)

Because we make the independent censoring assumption, we assume that the
uncensored part of the data is representative for the original dataset of
patients. This means we can easily estimate the probability of failing as a
proportion of transitions made in relation to the total of patients at risk at
that time. We define dj as the number of observed events at time tj , which
will be one in this set-up of discrete time and the assumed absence of ties. The
number of uncensored patients at risk just before tj is defined as nj . We
combine this with the repeated use of the recurrence relation of S in 2.2 and
arrive at:

Ŝ(tj) =

i=j∏
i=1

(1− di
ni

) (2.3)

If there are many events in the chosen time interval, this estimator will come
closer to a product-integral, which uses a continuous distribution. This
approach is used later in the Aalen-Johanson estimator. We state the
definition of this product-integral as given in [1]. We will not need the matrix
notation in this context yet as we work with scalar values now, but still write
it in this form because it will be useful later on.

Definition 2.1.1 (product-integral). Let X(t), t ∈ T , be a p× p matrix of
cadlag functions of locally bounded variation. We define

Y = P(I + dX), (2.4)

the product-integral of X over intervals of the form [0, t], t ∈ T , as the
following p× p matrix function:

Y(t) = P
s∈[0,t]

(I + X(ds)) = lim
max|ti−ti−1|→0

∏
(I + X(ti)−X(ti−1)), (2.5)

where 0 = t0 < t1 < ... < tn = t is a partition of [0, t] and the matrix product
is taken in its natural order from left to right. In the leftmost term of the
product, X(0) must to be replaced by X(0−) = 0 because the left endpoint 0
is included in the interval [0, t].

This product integral was introduced by Volterra as the unique solution Y of
the equation

Y (t) = 1 +

∫
s∈]0,t]

Y (s−)X(dtn). (2.6)
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In our model Y (t) is our probability function and X(dt) is representing the
hazard rate. More on the topic of this equation and the appliance of product
integration is found in [3].

In case of a continuous distribution of A(t) we could write the Kaplan Meier
estimator as:

Ŝ(t) = P
s≤t

(1− dÂ(s)) (2.7)

If we assume A a jump function, the times s when there is a contribution to
the outcome of the estimator are when the function Â makes a jump. In other
cases, when dÂ = 0, this factor can be ignored in multiplication. The
estimator is still a finite product of scalar values, as in Section 2.3. The two
formulas for the Kaplan-Meier estimator bring us to a next question; how can
we estimate A(t)? We go into this subject in the next paragraph.

2.2 Nelson-Aalen Estimator

The Nelson-Aalen estimator is estimating A(t). We need this estimator again
because of censored data in our dataset. If we take the empirical average we
overestimate the failure rate because some of the drop-out times are due to
censoring, not to dying. First we will start with a more intuitive definition of
Â, afterwards writing this in a more formal and suitable way to proceed with
the analysis of the Aalen-Johansen estimator.

If we are interested in the cumulative hazard rate, we want to sum up all
deaths and compare them in a ratio with the total number of patients.
Because of censoring this cannot be done directly, after every transition the
ratio ‘transition out of state/total number of patients in the state’ has to be
recomputed. We use the same notation as with the first way of writing down
the Kaplan-Meier estimator. This leads to the estimator

Â(tj) =

j∑
i=1

di
ni
. (2.8)

In the same way as the Kaplan-Meier estimator approaches a continuous
distribution in case of many jumps in a given time interval, we can write the
Nelson-Aalen estimator in another form. We defined Yh(t) and Nh(t) as the
number of patients at risk in state h and the jumps made out of state h. This
leads to

Âh(t) =

∫ t

0

dNh(s)

Yh(s)
, (2.9)

which still comes down to equation 2.8 if we look at it from a jump-function
perspective. The notation of formula 2.9 is used in proofs of several properties
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of the Nelson-Aalen estimator. These proofs involve martingales and
compensators, for this theory I refer to [1].

We define consistency here to state the second property of the estimator:

Definition 2.2.1 (consistency). An estimator θ̂n of θ with sample size n is
consistent if

P (|θ̂ − θ| > ε)→ 0 as n→∞. (2.10)

In this definition we want the estimator to converge to the real value of the
parameter as we increase the sample size to infinity. Consistency implies
asymptotically unbiasedness. [5] The Nelson-Aalen estimator as defined above
is consistent.

2.3 Aalen-Johansen Estimator

In this paragraph we arrive at estimating transition probabilities pij(s, t) from
state i to state j. The difference between αij(t) and pij(s, t) is that the first is
an instantaneous hazard rate and the second the chance of a transition in a
given time interval (s, t] These probabilities form the transition probability
matrix P with pij being the element on the i’th row and j’th column. Analogue
we define A to be the matrix with on the i’th row and j’th column the element
Aij . In figure 2.1 we write all possible transitions down in matrix notation
assigning them a number, NA indicating that no transition is possible.

Figure 2.1: transition matrix of dataset ebmt4

An example of the information that a reader can extract here is that in our
model the transition from ‘adverse event’ to recovery cannot be made, but
that the transition ‘adverse event’ to ‘adverse event and recovery’ is possible
and has got the number 8 assigned to it. To understand how the
Aalen-Johansen estimator works, we take the same approach as with the
Kaplan-Meier estimator.

We start with a small example to create some understanding and will give the
formal definition of the Aalen-Johansen estimator afterwards. For the sake of
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simplicity we take a situation with only two transition times here. We want to
emphasize this is a discrete approach to create understanding, the final
estimator of P will be defined for continuous time. A doctor or patient could
be interested in P (X(4) = 6|X(2) = 3). In words, the chance of being dead at
t = 4, if the patient is in the state ‘adverse event’ at t = 2. This could be
calculated by adding the probabilities of the time paths that lead from ‘AE’ to
‘Death’.

• t = 3 no transition, t = 4 transition to death

• t = 3 recovery, t = 4 death

• t = 3 transition to death, t = 4 no transition

giving
P [X(4) = 6|X(2) = 3] = (2.11)

P [X(3) = 3|X(2) = 3]P [X(4) = 6|X(3) = 3]+ (2.12)

P [X(3) = 4|X(2) = 3]P [X(4) = 6|X(2) = 4]+ (2.13)

P [X(4) = 6|X(2) = 3]P [X(4) = 6|X(2) = 6] (2.14)

Now we take two matrices for t = 3 and t = 4, with the transition numbers
changed for the instantaneous transition probabilities and on the diagonal the
chance of not making a transition at that time. If we multiply these matrices
to get P and look at the calculation made for p3,6 we get a computation
similar to 2.16. This is an intuitive way of understanding the logic of the
chosen definition of the Aalen-Johanson estimator in the next paragraph.
From here we take a continuous approach again.

We define Aij(t) =
∫ t

0
αijds for all i 6= j, with αii(t) = −

∑
i 6=j Aij . Then the

transition probability matrix is given by

P(s, t) = P
(s,t]

(I + dA(u)) (2.15)

This suggests to estimate P by

P̂(s, t) = P
(s,t]

(I + dÂ(u)) (2.16)

with the elements of Â the Nelson-Aalen estimator Âij . Just as the product
integral notation of the Kaplan-Meier estimator still came down to a finite
product of scalar values, the Aalen-Johansen estimator comes down to a finite
product of matrices. At times when there is no transition in the model, the
matrix dA is one with all elements estimated zero. This comes down to
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multiplying with the identity matrix, which has no effect on the outcome of P̂.
Only the transition times have to be taken into account while estimating P.

We stated above that the Nelson-Aalen estimator is consistent, which can be
carried through to the Aalen-Johansen estimator. For proofs, we refer to [1]
again. We will state a possible formula (Greenwood) to calculate the
covariances of the Aalen-Johansen estimator beneath, for which more details
can be found in the reference as well. Another way of computing is via the
Aalen covariance formula, but these are approximate equal to each other in
practice. The proofs of these formulas and statements are beyond the scope of
this thesis and because of the same reason cannot give full information on the
notation and meaning of this formula here. The benefit of the formula
beneath, which is why we state it here, is that it is a closed formula, so the
covariance can be computed directly without the need to simulate.

ĉov(P̂(s, t)) =

∫ t

s

P̂(u, t)> ⊗ P̂(s, u−)ĉov(dÂ(u))P̂(u, t)⊗ P̂(s, u−)> (2.17)

2.4 Cox Proportional Hazard Model

Until this point we have been focussing on estimating the transition
probabilities in the multi-state model. Another interesting question is how
other factors, for example age or sex, from now on called covariate values,
influence the hazard rates. Given the data as a vector (t̃, d, z) as introduced in
Section 1.3, we could ask for P (X(t) = c|X(t) = b, z), or the Aalen-Johansen
estimator now being P̂(s, t) = P(s,t](I + dÂ(u, z)). We will look at this
question through the Cox proportional hazard model. This is a
semi-parametric model because we assume the baseline hazard rate α0(t) as
non-parametric (not making any assumptions on the form of the function) and
the influence of the specific covariates multiplicative and parametric in an
exponential model. We denote the values of the covariates of an individual Xi

in a vector zi = (zi1, ..., zin) and define a vector with scalar values who
influence the effect of the covariates on the hazard rate: β = (β1, ..., βn) This
brings us to the Cox Model:

αi(t) = α0(t) exp(ziβ
T ) = α0(t) exp(zi1β1 + zi2β2 + ...+ zinβn) (2.18)

This model is called a proportional hazard model because we can calculate the
influence of the covariates in relation to another covariate. As we will see
further down, we do not need to specify or estimate the baseline hazard to do
this, which is an advantage of the model. First we will propose a way to
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estimate β. Note that this model assumes that the influence of the covariates
are not varying over time. We take a discrete approach again by defining the
event-times 0 < t1 < t2 < ... < tN and denote the set of index numbers of
patients at risk just before time t by Rt. Now to explain how we estimate β
through a maximum likelihood estimate, we state that at time ti an individual
makes a transition. Given that there is a transition, the conditional
probability of this to be the specific individual Xj is

αj∑
k∈Rti

αk
=

α0 exp(zjβ
T )∑

k∈R α0 exp(zkβT )
. (2.19)

In this formula, the baseline hazard cancels out. Cox proposed to take the
product of these probabilities and maximize this so called ’partial likelihood’
to find an estimate for β.

L(β) =

N∏
i=1

(
exp(zjβ

T )∑
k∈Rti

exp(zkβT )
)Cj (2.20)

The model is chosen in such a way that the influence of the covariates is not
changing over time. We use this fact in the interpretation of the proportional
hazards. In a comparison we want to fix all but one element of the vector Zi
and Zj , with the only different element in these vector being Zik and Zjk.
Assuming we have estimated the vector β, we calculate the proportion of these
two hazard rates by

αi
αj

=
α0 exp(ziβ

T )

α0 exp(zjβT )
=

exp(ziβ
T )

exp(zjβT )
= exp(β(Zik − Zjk)). (2.21)

The outcome of this formula is the factor that the hazard rate will be
multiplied with, every time that the covariate value Zik jumps a step of
Zik − Zjk.

2.5 A Practical Example of Estimation using R

To illustrate the theory of estimation and the partial likelihood formula above,
we will conclude this chapter with a further discussion of our example. We
start with a subgroup analysis. Estimation just after having a transplant is
sometimes not very informative. If we use dynamic prediction, we could asses
the situation again after a 100 days. Now, the prospects for a patient still
being in state 1, or a patient already in state 4 could be very different. We
take another factor into account, for example the difference between patients
in age class 20− 40 and age class > 40. To generate this picture, we first
selected the subgroups with the covariance factors we are interested in and
perform estimation on this group(see appendix 1). This yields to the diagrams
in figure 2.2.
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Figure 2.2: Estimation in ebmt4, age class 20 − 40 on the left, age class > 40
on the right
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We can see, as expected, that people in age class 20-40 have a better
perspective, as well as people not having had any transitions. A problem in
this analysis is that by selecting a subgroup the dataset gets smaller, which is
not desirable. The next step we take is the Cox model, in this estimation we
take all data into account. We can ask the programming language R to
estimate the covariate values in the Cox model for our ebmt4 data set and
show part of the output in figure 2.3. We concentrate on the age subgroups
again, the first twelve lines representing the transitions for patients with age
20− 40, the next twelve for patients > 40. We show part of the output, which
contains, amongst other things, the standard error and p-value, marking the
significant values in the table with stars. Positive regression factors cause the
hazard rate to be higher. Negative ones are of a protective nature, causing the
hazard rate to be lower. This table can serve as an indication of which
parameters are interesting to further investigate. We can see that for example
the regression coefficients of transition 8 are quite similar, the predictions will
be much alike. For transition 7 and 12, the prediction for different age classes
will be interesting, because the regression coefficients, and therefore the
prediction, differ a lot here.

To continue our investigation of the influence of age we plot the perspective of
these patients, being in state 1 after 100 days again, in figure 2.4. We see the
estimation is more smooth than in figure 2.2, which is caused by the use of the
whole dataset instead of selecting a subgroup at the start of estimating.
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Figure 2.3: Estimation in ebmt4 covariates in Cox model
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Figure 2.4: Estimation in ebmt4 using the Cox model
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Chapter 3

Discussion

In this thesis we have seen a hazard based multi-state model which can be
used in varying practical situations with incomplete data. We can make
predictions taking time and other covariates into account, which makes it very
useful for getting insight in, for example, the course of a disease. The reader
should keep in mind that this model is still a simplification of reality, and
some assumptions are made. Sometimes these are doubtful for the application
we want to model, so we want to advance or change the model. A big
assumption is made by stating our model is Markov. For example, we don’t
take into account the history of where and how long a patient has been in
earlier states, but this might be very relevant for the prediction of diseases. A
starting point to learn more about non-Markov multi-state models is [7].
Another assumption we made was the use of a semi-parametric Cox model.
We assume that the influence of these covariates are proportional in a specific
way and that this influence doesn’t change over time. If, on the other hand,
the influence changes a lot over time, we have to take another approach. In [2]
the Cox-model is studied in more detail and with time dependent covariates as
well. Another problem that might occur is the long time of calculation of the
covariance of the Aalen-Johansen estimator. Solutions for this problem have
been found, of which information can be found in, amongst others, [1]. We
conclude that the model of this thesis is a good starting point in estimating
transition probabilities with censored data, with a broad range of refinement
and possibilities to investigate from here.
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Appendix 1

library("mstate")

data("ebmt4")

head(ebmt4)

ebmt <- ebmt4

tmat <- transMat(x = list(c(2, 3, 5, 6), c(4, 5, 6),

c(4, 5, 6), c(5, 6), c(), c()),

names = c("Tx", "Rec", "AE", "Rec+AE", "Rel", "Death"))

print(tmat)

msebmt <- msprep(data = ebmt, trans = tmat, time = c(NA, "rec", "ae",

"recae", "rel", "srv"), status = c(NA, "rec.s", "ae.s", "recae.s",

"rel.s", "srv.s"), keep = c("match", "proph", "year", "agecl"))

covs <- c("match", "proph", "year", "agecl")

msebmt <- expand.covs(msebmt, covs, longnames = FALSE)

msebmt[, c("Tstart", "Tstop", "time")] <- msebmt[, c("Tstart","Tstop",

"time")]/365.25

msebmt0 <- msebmt[msebmt$agecl == "20-40", -c(15:48, 61:84)]

msebmt1 <- msebmt[msebmt$agecl == ">40", -c(15:48, 61:84)]

c0 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data = msebmt0,

method = "breslow")

msf0a <- msfit(object = c0, vartype = "aalen", trans = tmat)

c1 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans),

data = msebmt1, method = "breslow")

msf1a <- msfit(object = c1, vartype = "aalen", trans = tmat)

library("colorspace")

statecols <- heat_hcl(6, c = c(80, 30), l = c(30, 90),

power = c(1/5, 2))[c(6, 5, 3, 4, 2, 1)]
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pt100a <- probtrans(msf0a, predt = 100/365.25, method = "aalen")

plot(pt100a, ord = c(2, 4, 3, 5, 6, 1), xlab = "Years since transplantation",

main = "Starting from transplant", xlim = c(0, 10), las = 1,

type = "filled", col = statecols[ord])

pt100b <- probtrans(msf1a, predt = 100/365.25, method = "aalen")

plot(pt100b, ord = c(2, 4, 3, 5, 6, 1), xlab = "Years since transplantation",

main = "Starting from transplant", xlim = c(0, 10), las = 1,

type = "filled", col = statecols[ord])

plot(pt100a, from = 3, ord = c(2, 4, 3, 5, 6, 1),

xlab = "Years since transplantation",

main = "Starting from AE", xlim = c(0, 10), las = 1,

type = "filled", col = statecols[ord])

plot(pt100b, from = 3, ord = c(2, 4, 3, 5, 6, 1),

xlab = "Years since transplantation",

main = "Starting from AE", xlim = c(0, 10), las = 1,

type = "filled", col = statecols[ord])

cfull <- coxph(Surv(Tstart, Tstop, status) ~ match.1 +

match.2 + match.3 + match.4 + match.5 + match.6 + match.7 +

match.8 + match.9 + match.10 + match.11 + match.12 +

proph.1 + proph.2 + proph.3 + proph.4 + proph.5 + proph.6 +

proph.7 + proph.8 + proph.9 + proph.10 + proph.11 +

proph.12 + year1.1 + year1.2 + year1.3 + year1.4 +

year1.5 + year1.6 + year1.7 + year1.8 + year1.9 + year1.10 +

year1.11 + year1.12 + year2.1 + year2.2 + year2.3 +

year2.4 + year2.5 + year2.6 + year2.7 + year2.8 + year2.9 +

year2.10 + year2.11 + year2.12 + agecl1.1 + agecl1.2 +

agecl1.3 + agecl1.4 + agecl1.5 + agecl1.6 + agecl1.7 +

agecl1.8 + agecl1.9 + agecl1.10 + agecl1.11 + agecl1.12 +

agecl2.1 + agecl2.2 + agecl2.3 + agecl2.4 + agecl2.5 +

agecl2.6 + agecl2.7 + agecl2.8 + agecl2.9 + agecl2.10 +

agecl2.11 + agecl2.12 + strata(trans), data = msebmt,

method = "breslow")

whA <- which(msebmt$agecl == "20-40")

patA <- msebmt[rep(whA[1],12),9:12]

patA$trans <- 1:12

attr(patA, "trans") <- tmat

patA <- expand.covs(patA, covs, longnames = FALSE)

patA$strata <- patA$trans

msfA <- msfit(cfull, patA, trans = tmat)

ptA <- probtrans(msfA, predt = 100/365.25)

plot(ptA, ord = c(2,4,3,5,6,1), main = "Patient age 20-40", las = 1,
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xlab = "Years since transplantation", xlim = c(0,10),

type = "filled", col = statecols[ord])

whB <- which(msebmt$agecl == ">40")

patB <- msebmt[rep(whB[1],12),9:12]

patB$trans <- 1:12

attr(patB, "trans") <- tmat

patB <- expand.covs(patB, covs, longnames = FALSE)

patB$strata <- patB$trans

msfB <- msfit(cfull, patB, trans = tmat)

ptB <- probtrans(msfB, predt = 100/365.25)

plot(ptB, ord = c(2,4,3,5,6,1), main = "Patient age >40", las = 1,

xlab = "Years since transplantation", xlim = c(0,10),

type = "filled", col = statecols[ord])
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