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A B S T R A C T

In current machine learning approaches to visual smile detection the training data gener-
ally consists of a variety of different faces displaying a smile or neutral expression, and the
target data introduces a new face to classify. Although this approach has shown promis-
ing results towards correctly classifying the newly introduced target face, we believe that
performance can be improved by acknowledging that there are differences in smile-styles
and facial differences throughout the training process. In this research we aim to do so by
applying transfer learning. This entails first training a classifier on a data set showing a
wide variety of smiling and non-smiling faces, as is the general approach. Afterwards we
apply transfer learning, by means of an Adaptive SVM, where a small number of labeled
instances from the target face is provided as to make the classifier more specific to the tar-
get face. To make transfer learning effective we use low-level geometric features which we
expect to capture the difference between smiles and no-smile in a variety of different faces
and smile styles.

We evaluate our approach by comparing performance against alternative strategies. We
find that using a traditional classifier trained on an aggregated data set containing the gen-
eral and target data outperforms our baseline and our suggested transfer learning approach
for each of the test videos. A big problem for the transfer learning approach seems to be
the quality of the labeled data of the target face used during training. The aggregated ap-
proach seems less effected by it, making it a preferred approach for real-life applications
where labeled target data will be sparse and difficult to select. However, its performance
improvements does not outweigh its efforts in current experiments, and further research
should focus on the choice of target data to use during the training process.
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1
I N T R O D U C T I O N

1.1 S M I L E D E T E C T I O N

Smile detection is part of the research field of affect recognition, in which a person’s facial
features, pose, and speech data are studied to determine what underlying emotions the
person is experiencing. In this context, emotions are mostly treated as a discrete category,
where a person can be experiencing one of few distinct emotions, for example, sadness,
happiness, angry, etc. This idea of discrete emotion categories stems from psychological
research in the field of emotion expression.

In the typical machine learning approach to affect recognition, a classifier is trained on
a training set of facial features (extracted from a single picture or over a couple of video
frames) from different faces showing a variety of pre-determined prototypical emotion cat-
egories. Then, the classifier is applied on test data, often consisting of feature data of a face
not used during training, and this outputs the most likely emotion(s) that the face is dis-
playing. In early affect recognition studies, the training data consisted of emotions acted
out by actors in a controlled setting. An example of such a data set, that has been widely
used in different researches, is the Cohn-Kanade data set, where the labels consists out of 6
basic emotions: happiness, surprise, sadness, disgust, anger, and fear[20].

Although lots of studies reported high accuracy when detecting these different types of
emotions using such highly controlled data sets[22][4][42], the contribution to real world
scenarios is rather limiting, as emotions are often more subtle to detect, and don’t always
belong to one of the basic categories in particular. What is more, the interpretation of a fa-
cial expression can mean different things depending on its context. In recent years a shift to-
wards more practical research can be witnessed, with studies focusing now on spontaneous
emotion data, specialising research into detecting specific emotions (e.g. smile detection or
pain detection[23]) and abandoning the holistic emotion categories by recognizing emotions
inside a specific context (e.g. spotting the difference in genuine or posed emotions[14][43],
determining the meaning of a smile[18][33]).

1.2 G O A L

In this thesis, we aim to improve upon the existing body of research on spontaneous smile
detection, by acknowledging the difference in smile-styles and facial differences throughout
the training process. Although most smile detection approaches use spontaneous facial data
during the training process, these approaches often assume that a single generic decision
model is sufficient to distinguish between smiles in a variety of different faces. A single
generic model means a single classifier is fed training data from a wide variety of faces
showing smiles and non-smiles, with disregard of how these faces might differ. Figure 1
depicts the diversity that can occur in such smile data; the smiling faces all differ in mouth
area, mouth shape, the direction of the mouth corners in comparison to the center of the
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1.2 G O A L 7

upper and lower lip, eye area, etc. but in all cases it is apparent that the face depicts a smile.
These differences seem to stem from difference in smile-styles (e.g. clenching the lower jaw,
smirking), but similar smile-styles also look different on different faces due to geometrical
facial differences.

Figure 1.: Diversity in smiles of different people (taken from the GENKI data set).

We argue that disregarding this diversity during the training process will cause subopti-
mal results. To this end, our objective in this research is to improve the detection rate for smiles
over a big variety of faces by explicitly focusing on the aforementioned geometric differences seen in
spontaneous smiles. We approach this by constructing a person-specific classification, that
uses information about the person to be classified. We coin the term individualized smile de-
tection for our research effort, as it conveys the approach of our proposed solution to smile
detection.

As a side note; although recent research on spontaneous smile detection has combined
this challenge with improving performance on ”in the wild” difficulties (like illumination,
occlusion, and diversity in appearance like facial hair and glasses), overcoming these chal-
lenges is not the aim of this research. We assume that we deal with perfect geometrically
acquired data from our data sets and prune data to acquire this, if necessary.

The importance of researching individualized smile detection is apparent when looking
at the use cases of affect recognition in current research applications. The main applica-
tion fields are the improvement of Human-Computer/Robot Interaction(HCI/HRI), and
for assisted diagnosing and self help applications in the field of psychiatry[42]. Studies inte-
grating visual affect recognition of the former category have applied it to detect student en-
gagement in a computer-aided classroom[5], to create emotional aware virtual conversation
partners[32][17] and to create a affect-sensitive robotic game companion[7]. An example of
the latter, is diagnosing depression by recognizing subtle changes in facial expression[26].

Such applications would benefit from individualized affect recognition, as in all cases
these applications deal with a wide variety of users, and should perform well for each of
them. Often these use cases do not easily allow for the user to inform the system that the
detected emotion is wrong, and even if such a feedback loop is in place, repeating mistakes
can lead to frustration on the user’s part or even distrust in the system, ceasing interaction
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altogether. In the assisted diagnosis and self-help tool case, it is even more crucial for the
system to be an accurate aid without outside interference, or its reliability can be taken into
questioning.

1.3 M E T H O D

There are several ways to go about making a more individualized approach towards smile
detection. A naive solution consists of training a single classifier for each new user by using
their face data exclusively in the training process. This is, however, not a feasible approach:
it requires copious amounts of data that show the diversity of face configurations possible
during smiles and non-smiles for a single person, which is not easily attainable for the real
life use cases mentioned in the previous section. Moreover, such an approach would not
be able to exploit the fact that smiles from different people do contain similarities up to a
point. Previous work has shown that there are some fundamental elements present in what
makes a smile, for instance the raising of the cheeks[15], so we could still benefit from a
large, generic data set with versatile smiling data.

Hence, we take an alternative approach: First, we train a single model on a pre-existing
data set of smiling and non-smiling faces, as is the general approach for most research stud-
ies creating emotion detection methods. Afterwards, a technique called transfer learning is
applied to adapt this general model to novel persons in the test data. Transfer learning is a
class of algorithms that is used for adapting existing models to a new task that is in some
sense similar to the original task (by for example having the same feature space), but differs
in the distribution of feature values. This essentially is the case for our objective, and comes
with several benefits. Firstly, it draws knowledge from existing information about what
comprises a smile. Secondly, transfer learning can reduce training times, as the retraining
process does not involve an enormous amount of data.

In this thesis, we will explore the appropriateness of transfer learning as a solution for
individualized smile detection. To this end, we take a practical approach throughout the
research; we will create our own generic smile classifier, finding features we deem neces-
sary for the purpose of the research, and then apply some form of transfer learning on the
acquired classifier. To guide the research and to clarify how we intent to evaluate perfor-
mance, we have proposed fundamental research questions which will be clarified in the
following section.

1.4 R E S E A R C H Q U E S T I O N S

The first research question is an all encapsulating question that summarizes the goal and
method of our research:

Research Question. Can transfer learning improve the detection rate of spontaneous smiles when
applied on a generically trained classifier trained with geometric features?

To thoroughly answer this research question, we distinguish between two different sub
questions to be answered separately. Our first sub question reflects the ambition to resolve
what features work best for our research goals:

Sub-Question 1. What geometric features prove effective in personalized smile detection?

There are a wide variety of geometrical features applicable to detecting if a face is smiling
or not. Previous work has shown approaches using distances between facial landmarks (e.g.
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inner eye points, mouth corners) and temporal features in video data, by extracting such
geometric features over the course of a few consecutive frames. The geometric features that
we will consider should be able to capture differences not only between the smile/no-smile
binary, but should be sensitive enough to capture the differences in smiling faces. For our
approach of transfer learning, this means that the features we use must have a measurable
difference in value distribution. For this reason, our choice of features will divert slightly
from earlier research, as this was not a criteria necessary for these earlier researches.

The second research question reflects the desire to evaluate the choice of transfer learning
for individualized smile detection:

Sub-Question 2. How does transfer learning compare to alternative approaches of individualized
smile detection?

To determine the effectiveness of transfer learning, its performance has to be evaluated
against a baseline. This baseline will be a generic classifier that does not use the added
step of transfer learning, and performance evaluation consists of comparing scores over a
series of different faces. This approach however, does not give insight in how well transfer
learning performs in comparison to other individualization methods. For this reason we
use an evaluation structure as is used in [40] where their transfer learning approach is pitted
against alternative techniques.

1.5 C O N T R I B U T I O N

The contribution of this thesis is to provide insight into what improvements the addition
of transfer learning can make on regular machine learning in the field of affect recognition.
The implementation used throughout this research is not to be considered a state-of-the-
art approach, but it should rather be valued for the insight it gives towards answering
the posed research questions. As such, the answers to the sub questions are limited in
scope; sub-question 1 will not be exhaustively tested, but on a limited amount of feature
sets which we expect will perform decently for our objective. Similarly, sub-question 2 is
only answered specifically for the transfer learning approach that we decide to implement
for our problem. We do not guarantee using an optimal feature set or classifier, but try to
set the first steps in the right direction for achieving individualized smile detection.

1.6 O V E RV I E W

This thesis is structured as follows. First, Chapter 2 explores the existing body of work
in the fields of smile detection and transfer learning. Chapter 3 gives an overview of the
data used throughout this research for training and evaluation purposes and explains the
rationale behind choosing these data sets. Chapter 4 describes the approach taken towards
answering the research questions. Chapter 5 describes the evaluation conditions, depicts
the resulting outcome of the performed tests and discusses the results by relating them to
the proposed research question. Finally, Chapter 6 concludes our research.



2
B A C K G R O U N D

2.1 V I S U A L S M I L E D E T E C T I O N

The general approach to visual smile detection is applying some form of machine learning
that is able to distinguish between the different classes, usually smile or no-smile. The
quality of a trained classifier depends on the selection of training data, features and the
type of classifier chosen. Figure 2 shows the general pipeline for existing research in smile
detection. In this section we will discuss the specific steps of this pipeline, for instance
the different feature choices, the choice of classifiers, the detection goal and how successful
these approaches are.

Train Data

Eye detection Image 
registration

Feature 
extraction

Face point 
detection

Face point 
normalization

Feature 
extraction

Feature vectors

Appearance - 
based

Geometric - 
based

Train
Classifier 

Target Data Normalization & 
feature extraction

Trained Classifier

Classifiy target 
instance(s)Feature vector(s)

Same approach as 
taken during training

Classification 
label

Video frames or
pictures e.g.

- smile / no-smile
- legitimate / forced-smile
- delight / frustration

e.g.
- Boosting (appearance 
based)
- SVM
- HMM, D-SVM (temporal)

Per frame, or
per segment (temporal)

e.g. 
- LBP, 
- Haar-like,
- Pixel differencing

eye alignment,
cropping, 
rotation

Using e.g.
- Chehra,
- clmtracker,
- CLM-GAVAM

translation,
scaling, 
orientation

e.g.
- distances, angles 
(low-level), 
- AU, temporal 
(high-level)

Labeled video frames or      
labeled pictures 

Normalization & feature extraction

Figure 2.: The general pipeline of training and testing for visual smile detection.

2.1.1 Visual Features

Visual features used for smile detection can basically be divided in two different categories:
appearance-based and geometric-based.
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2.1.1.1 Appearance Based Features

Appearance based features describe texture information of an image. In case of facial data,
these features encode textural data like wrinkles, bulges and furrows[42]. The following
appearance based approaches have been used specifically in smile detection research:

Local Binary Patterns(LBP)[25][38]: Provide a way of encoding textural information
by expressing the difference in gray-scale value between a center pixel and its neigh-
bouring pixels along a radius and sampling interval chosen by the user. It encodes
this difference with the use of a single binary digit; writing down a 1 if a neighbours
gray-scale value is higher than that of the center pixel, and otherwise a 0. By encoding
multiple pixels in a region in this way, a histogram can be constructed, which becomes
an LBP feature.[27]

Gabor Energy Filters[38]: A filter for edge detection that models the cells of a pri-
mate’s visual cortex. The filter consists of a combination of a Gaussian filter and a
sinusoid function with configurable orientation, variance, and frequency. When ap-
plying Gabor Energy Filters for machine learning, a bank of filters has to be created
with different frequencies and orientation, so that edges in each direction and with
correct sensitivity can be successfully detected throughout the image.

Haar-like features[38]: Takes the sum of differences between adjacent, same-sized
rectangular regions in a gray-scale image as a single feature. Different types of rect-
angular configurations are possible, which are able to detect light-to-dark transition
boundaries, in different directions of the image (horizontal, diagonal, vertical). Haar-
like features are known for their application in face detection[37], where the most
important rectangular features use intensity difference between eye and cheek region
and intensity between eyes and nose bridge to determine if a face is depicted in a
picture.

Edge Orientation Histograms[38]: After performing edge detection on an image, the
resulting edge representation is divided in sub-windows, and each pixel of the sub-
window is binned in a histogram (one per sub-window) corresponding to its edge
orientation and intensity. As different edge orientations and intensity are expected
for different facial expressions, e.g. diagonal oriented lower lip line while smiling,
such a feature could be able to distinguish between different smile styles.

Pixel Differencing[34]: A single feature consists of taking the difference between any
two pixels in an image. Compared to for example Haar-features a single pixel differ-
encing feature does not tell us much about regional structures or edges, but by tak-
ing the difference between a large amount of pairs of pixels, expected values can be
extracted that correspond to intensity found for facial topologies; for instance differ-
encing pixels in the cheek area (mostly lighter) with those around the mouth and eye
area (mostly darker). For pixel differencing to work consistently, some pre-processing
has to be applied that normalized illumination conditions.

Generally speaking, an appearance-based approach extract an extensive amount of fea-
tures. For instance, in the pixel based difference approach of [34] over 300, 000 features
are created for just a single image size of 24x24 pixels. Not all of these features will be of
importance, and each of them will only contribute a small bit to making the final classifi-
cation, at best. Consequentially, appearance based features are often used with Boosting
algorithms[38][37][34][39]. Boosting works by iteratively selecting features that perform
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better than random and combining them into a single classifier that performs well in sepa-
rating the different labels. Using boosting, it is also possible to get a sense of which weak
classifiers are considered important for classification, as those end up prominently in the
final classifier.

Appearance based features are not without limitation. All images used in the train and
test process have to be proficiently normalized (i.e. normalizing scale, position and orien-
tation), as it is expected that local information present the same regions of the face in all
of the data. This is done by first detecting the eye positions in each image, then rotating
and cropping the images so that all eyes are aligned. Whitehall et al. compare different
appearance based features in their research, and found that successful image registration
is an important part of successful classification[38]; automatic registration (by locating eye
position automatically) caused a drop in performance to manual registration in their evalu-
ation with a data set varying strongly in image conditions. Additionally, Shan et al. applied
pixel differencing and found that pose variation influenced the classification performance,
with less mistakes being made in the frontal case [34]. Difference in orientation can be hard
to recover from with appearance based features, as there is no in-frame normalization of
rotation possible from the image data. A possible solution that comes to mind is detecting
strong in-frame rotations and using a classifier trained on similarly orientated data, but this
will require a lot of additional data variety.

2.1.1.2 Geometric Features

Geometric features consider the shape and relation between specific landmarks in the face
or body. A first step in creating such features is reliably detecting landmarks, and accurately
tracking them over multiple frames in the case of video data. This differs from face registra-
tion as mentioned in the appearance based feature section, as this data needs to be of higher
resolution so that there is great certainty about the precise places of the jaw line, mouth
corners, Cupid’s bow, etc. Some examples of existing face tracking software are Chehra[2],
CLM-GAVAM tracker[3] and clmtracker1[31].

Geometric features can be constructed on various abstraction levels. On the lowest level,
the features are extracted on a frame-to-frame basis, and consist of elementary calculations,
e.g. distance calculations between the facial landmarks [18][35], the angle between two
landmarks (with regards to the x-axis)[14], and extracted rotational values (pitch, yaw roll)
of the head itself [35]. The per-frame feature vectors can be used for training a variety of
classifiers, of which Support Vector Machines are often used[35][18].

Low-level features are straightforward to extract, but do not contain a lot of information
on their own. As such it can be difficult to understand how a classifier uses this informa-
tion to learn. As an extra step, low-level features can be combined to create higher level,
semantically interpretable features. In the works of Valstar et al., face point displacement
and the distances between points over multiple frames are used to detect the presence of
Action Units[36]. Action Units are part of the Facial Action Coding System and represent
muscle movement in the face[20]. The action units detected by Valstar et al. are directly
related to the detection of a smile[15], and represent lip corner pull and cheek puffing
respectively[9][35][36]. These AUs are then used as features for the final smile detection
classification.

Another way of combining these low-level features is by combining them temporally. The
most straightforward way of doing this would be by considering a sequence of per-frame
extracted features during training. Hoque et al. developed an alternative technique in

1 https://github.com/auduno/clmtrackr
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which distance features from 30 consecutive smiling frames (a segment) were combined into
new features that specified information about these segments[18]. Such features included
the percentage of frames in the segment having a higher smile intensity than the average
intensity of the whole smile sequence, mean smile intensity in the segment, the gradient
over the whole segment and the max intensity ratio of the segment compared to the whole
smile duration.

Temporal features require a classifier that is able to model the temporal nature of the
data. One such a model used in smile detection research is the Hidden Markov Model
(HMM). HMMs are finite state machines where the states are hidden and we only have
direct access to a sequence of observations [13]. When classifying a temporal sequence
using a HMM, each class results in a single HMM of which the transition probability and
observation probability for all states and observations are calculated using the instances of
that class. During classification the observed sequence in the target data is assigned the
class of the HMM that results in the highest probable state sequence.

Using geometric features also has its downside. Their performance depend on the accu-
racy of the facial tracker, and it is not unlikely for tracking to be negatively influenced by
lighting, occlusion, quick facial movements, facial features (like facial hair and glasses), and
extreme head rotations[2]. When the accuracy drops, the face points that the geometric fea-
tures are based on can cause errors in the final classification, so a robust technique that can
automatically recover from errors is of great importance for successful tracking. Another
downside of geometric features is that they disregard textural information. Smiling consists
of more than just translation and rotation of points; dimples, exposed teeth, crow’s feet, and
forehead wrinkles can all help uncover if someone is showing a smile and this data can not
easily, or not at all, be determined by tracking facial points.

2.1.1.3 Combined features

Given the complementary nature of geometric and appearance based features, combining
these features would seem to improve performance. Zhang et al. have compared perfor-
mance of 36 facial coordinates to gabor wavelet features, to a combined approach for facial
expression recognition, and found that the combined approach resulted in about the same
performance as just using the gabor wavelet features (93%), with only the coordinates per-
forming significantly worse (73.3%) [44]. The results from this research are by no means
conclusive about the importance of geometric features, as the most basic type of geometric
features were extracted for experimenting.

Ashraf et al. employ an active appearance model(AAM) to decouple shape and appear-
ance of a face for pain detection[1]. The active appearance model is a triangulated mesh
that can be linearly deformed to fit a face in an image, see Figure 3a. By adjusting the
linearly deforming shape parameters of the mask, a sense of geometrical deformation is
gathered from the face. This appearance base model results in three feature sets; the models
vertex coordinates of the AAM fitted on a face with head rotation, scale and translation re-
moved(Figure 3b(top)), the raw pixel values of the face image warped so as to remove these
rotations(Figure 3b(bottom)), and the raw pixel values of the isolated fame image warped
in a way so it presents a neutral representation of the face(Figure 3c(bottom)). The first two
have been evaluated separately, the latter only in combination with the geometric feature
points obtained in the first feature set. It was found that this last combination of geometric
features and the raw pixel values performed the best. This latter approach circumvents the
limitation of using appearance based features when faces are heavily rotated; by warping



2.1 V I S U A L S M I L E D E T E C T I O N 14

a) AAM fitted to frame (top), the 
frame used(bottom) 

b) AAM normalized 
(top) and face deformed 
to fit normalized AAM 
(bottom)

c) neutral AAM (top), face 
deformed according to 
neutral AAM (bottom)

Figure 3.: Example of AAM derived representations, taken from [1].

the face back to a full-frontal position, the facial features can be aligned, making classifica-
tion more straightforward.

2.1.2 Smile Detection Research Topics

The research field of smile detection has been less focusing on distinguishing between smil-
ing faces from neutral faces in controlled environments, and more on detailed analysis; like
detecting smiles in the wild, differentiating between legitimated and posed smiles and de-
tecting meaning behind smiles. Here we discuss related works based on these objectives,
their approach and the results from their experiments.

2.1.2.1 Improving In-The-Wild Detection

Whitehill et al. set the first steps towards in-the-wild smile detection by creating a data set
(GENKI) of 25,000 pictures of people acquired from online repositories, manually labeled
for the occurrence of a smile[38] and evaluated different variables, e.g. different appearance
based feature types, amount of training data used and type of classifier. In their research,
Whitehill et al. found that when trained using GentleBoost, Edge Orientation Histograms,
Haar-like features and a combination of the two performed equally well with around 97%
accuracy when using at least 2000 instances of training data. When using a Linear SVM,
the same accuracy could be detected using Gabor Energy Filters. Additionally, they test
the generalizing performance of a classifier trained on GENKI by testing it on the Cohn-
Kanade[20] data set and, vice versa, by training on Cohn-Kanade and testing on GENKI,
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finding that 98.4% of the Cohn-Kanade data set can be classified correctly using GENKI,
and only 84.9% the other way around. This indicates that the GENKI data set is more
universally applicable for smile detection than the heavily controlled Cohn-Kanade data
set. Figure 4 shows the diversity in smile style and environmental conditions in the GENKI
data set over the Cohn-Kanade data set. Although the GENKI data set is a step in the right
direction with regards to in-the-wild detection, it can not be called completely spontaneous,
as most smiles gathered consists of a rather forced picture-style smile instead of complete
spontaneity.

Figure 4.: Top: Frames depicting a smile from the Cohn-Kanade dataset[20] ( c©Jeffrey
Cohn).
Bottom: Frames depicting a smile from the GENKI data set.

In the same vain, the research of Shan et al. [34] continues the improvement of in-the-wild
smile detection by testing pixel differencing with AdaBoost on a public subset of the GENKI
data set. The evaluation was done by comparing their approach to the Local Binary Pattern
and Gabor Energy Filters as used in [38]. The accuracy of the raw pixel value was around
80% against 87.10% and 89% for LBP and Gabor respectively when trained using a Linear
SVM. Using the top 500 features, pixel differences perform with 89.7% accuracy, but already
85% with only 20 pairs of pixels, making the classification process a lot faster. A mentioned
limitation of their approach is difficulty in correctly handling pose variation. Another limi-
tation is that pixel differencing is not easily expendable for improvements, like for example
tracking pixel differences over multiple frames to develop a temporal approach.

2.1.2.2 Legitimate Smile Detection

A smile is usually an indication of an underlying emotional state, i.e. being in a happy
mood or amused. When this underlying state is the cause of the smile it can be considered
legitimate. When a person forces a smile, for example out of social compliance, we speak of
an illegitimate smile that misses the expected emotional state. Research has been conducted
to differ between the two types of smiles.

In the works of Valstar et al.[35] geometric features are used to distinguish between acted
and legitimate smile video data. Valstar et al track 12 points on the face (4 on each eye and
around the mouth), together with the head orientation, scale and position and 5 landmark
points around the shoulder. The authors create low- and high-level abstraction techniques.
The low-level abstraction techniques contain the position of the tracked data points and the
distances between face and shoulder points. In the high abstraction strategy, the authors
transfer the low-level features into Action Units, and train a specific classifier per segment
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of a smile; the onset, offset and apex. The strategies were evaluated on videos from the
MMI-facial expression database, and it was found that the abstract strategy performed best
in distinguishing between spontaneous and posed smile, with a classification rate of 93%.
The authors also experimented with different combinations of the modalities and found
that the head motion data aligned is the most important, but combining all three together
delivers the best result, regardless of the abstraction level used.

Dibeklioğlu et al. research the same objective of distinguishing between posed and spon-
taneous smiles, but focus on eyelid movement, as it was observed by Duchenne that specific
contractions in the eyelid only occur in spontaneous smiles[14]. The authors limit them-
selves to geometric features, used both on high- and low-level abstractions. Firstly, the
performance of eyelid movement for classification was compared to that of movement in
the mouth, eyebrows and cheeks, using Continuous Hidden Markov Models and face point
position as the features. It was found that eyelid movement features performed best with
around 86% accuracy with 6 hidden states when testing on the Cohn-Kanade and BBC smile
data set. Additionally, temporal eyelid features were extracted for both eyes; the distance of
the upper-eyelid center to the center line between upper and inner eye corner, and an angle
that indicates how far each eye is opened. Using a naive Bayes approach a classification
accuracy of 91.3% was achieved using the standard deviation, minimum, maximum and
mean value over a sequence of these features.

2.1.2.3 Different Smile Categories

Hoque et al. try to distinguish between frustrated and delighted smiles[18]. To do so, the
researchers gather their own data, recording people while exposing them to a task inciting
frustration and delight and labeling the data accordingly. The authors then extracted a
smile intensity using the SHORE API[16], and distance features between 22 face points.
From these features per frame the average was calculated over a whole video showing
frustrated/delighted smiles for the final feature vector. Testing a variety of classifiers, the
highest accuracy achieved was 48.1% using an SVM.

Additionally, the authors tested temporal patterns by cutting the video up in sequences
that differentiate between smiles and non-smiles, and split the smile sequences up in seg-
ments of 1 second long. For each of these 1-second segment four features are extracted:
percentage of frames in 1-second segment above mean of the whole smile sequence, mean
smile intensity during the 1-second segment, gradient across segment, and max smile in-
tensity comparison between segment and complete sequence. The best accuracy of this
temporal approach was 92.30% and obtained by means of a D-SVM and outperformed hu-
man judgement. Instead of averaging out the feature values for each smile-sequence like
for the SVM, the D-SVM appended all the temporary features encoded for each of the se-
quences and used Principal Component Analysis to reduce the dimensionality to the first
4 principal components. The resulting classifier is considered pseudo-dynamic as the D-
SVM does not use the features values of the 1-second segments temporal like when using
an HMM for classifying, but it is able to encode the shape of the data-variance better than
the mean-approach of the SVM, resulting in about 7% improvement in accuracy.

2.2 T R A N S F E R L E A R N I N G

The basic premise of transfer learning is that a classifier is learned on one set of data, which
we will call the auxiliary data (Da), while we want it to perform well on a different data set of
never before seen data, called the primary data (Dp), that differs in some way from Da. Dif-
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ference in different data sets means that the feature space might differ, or the distributions
of the data sets[28], which the next section will expand upon.

A reason to apply transfer learning, instead of learning a new classifier from Dp only,
is that no or few labeled instances might be available in this data set. This is a common
problem in machine learning, as acquiring and labeling data is time consuming and not
always a viable solution. In this case, transferring knowledge from existing data that is
related will be more meaningful than training with just the limited data inDp, which might
cause overfitting. The meaning of the term related is not uni-vocally defined within transfer
learning. According to Yang et al. a good heuristics for relatedness is the performance
on Dp of a classifier trained with Da, with a high performance indicating a good basis for
transfer learning as apparently feature distribution and conditional probabilities are similar
[40]. This definition is however difficult to apply, as ”high performance” is not well-defined
and not something that can be straightforwardly tested for Dp when there is no labeling
available (as is the case for practical applications). Additionally, there are cases of transfer
learning where the feature spaces differ, and another measure of similarity needs to be used.

Regardless, finding related auxiliary data for training is not an impossible task. For in-
stance, in the field of object recognition, Da might consist of images of objects captured
under perfect (i.e. uniform lighting, non-occluded, isolated) conditions gathered from an
online merchant, while Dp might consist of in-the-wild picture data, shot with a different
camera in a home environment with varying perspectives[21]. In such condition, the clas-
sifier trained on Da will perform sub-optimal out-of-the-box, but can be readjusted with
transfer learning to better handle the variances in feature representation of the the new
environment, reducing the original false classifications. Note that transfer learning will si-
multaneously likely reduce the results on Da, but we are only interested in the results on
the primary data set. There are several ways of using the primary data when transfer learn-
ing. We will limit our description to the inductive case, as it is the approach we will take
throughout the research. In the inductive case, a small (and on its own insignificant) portion
of Dp is labeled (Dp

l ) so it can be utilised throughout the transfer learning process, and will
improve performance on the unlabeled part (Dp

u).

2.2.1 Conditions

When considering how data sets can be different, Pan et al. distinguish between differences
in the domain and in the task[28]. They define a domain as a tuple D = {X , P(X)} where
X is the feature space and P(X) is the marginal probability distribution of the feature data.
The task is defined as T = {Y , P(y|x)}, where Y is the set of labels assigned to the instances,
and P(y|x) is the conditional probability of label y ∈ Y belonging to instance x ∈ X . During
feature extraction and labeling of a data set, the X , P(X), and Y terms are assigned. The
P(y|x) is learned by a classifier applied on the data set. Consequentially, both Da and Dp

have their own domain and task, which will be indicated by Da, Ta and Dp, Tp respectively.
A difference in domain between Da and Dp can mean one of two things. It could mean

that X a 6= X p, i.e. the feature spaces are not the same. This occurs in the works of Dai
et al.[11] where transfer learning is applied on cross-language text classification. Here, Da

consists of texts in the English language and Dp consists of German texts. The feature
spaces in this example differ, while X a consists solely of English terms, and X p of German
terms. When learning a traditional classifier on Da, it is not able to classify instances with a
different set of features, and transfer learning can remedy this problem.

A difference in domain could also happen when feature spaces match, but instead Pa(X) 6=
Pp(X). An example of this can be found in the research of Yang et al. where transfer learning
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is applied to determine the presence of a specific concept (like ’studio-segment’, ’outside’)
in fragments of different television programs[40]. The same set of gabor wavelet features
and color moments are extracted from the video frames (i.e. X a = X p), but because train-
ing and classifying is done on different television shows Pa(X) 6= Pp(X). For example, if
the program in Da has a blue studio backdrop, while the one in Dp contains shades of red,
the feature distribution of the color moments will differ, and possibly not even overlap. In
such a case, a traditional classifier might make mistakes as its decision function is making
decisions based on data that is not representative of the new instances.

A difference in task means that the classifier that was trained onDa does not directly map
to the classification task we want to perform on Dp. This can manifest itself in two ways.
Firstly, this could mean that Y a 6= Y p. An example can be found in the works of Raina et al.
where Da consists of handwritten letters and Dp consists of handwritten numbers[30]. In
their research X a = X p, as features in both data sets consist of pixel intensities from 28x28
gray scale images. However, the classes differ; Y a consists of 24 classes, indicating which
letter is shown, and Y p consists of 10 classes, indicating which number is shown. From this
it can also be assumed that Pa(X) 6= Pp(X).

Secondly, a task difference could instead mean that the probability of a certain label be-
longing to a certain instance not equal in both data sets, i.e. Pa(y|x) 6= Pp(y|x). This entails
that labels Y p have been assigned under different conditions than Y a.

In the caseDa andDp differs in neither task nor domain, the classification problem can be
regarded as a traditional machine learning problem where no transfer learning is necessary.

2.2.2 Limitations

Transfer learning is not without limitations. Although we have described some guidelines
above on when transfer learning can be applied, this does not mean that applying trans-
fer learning will improve results directly. It is difficult to determine how much two data
sets differ from each other; even though we might be able to show that marginal distribu-
tions differ, there is not a unified metric that indicates if transfer learning is appropriate to
apply[10]. In fact, it might even be that an effect called negative transfer might occur, which
means that the addition of transfer learning can cause a worse performance than not using
it at all. This can happen due to the auxiliary and target data not being similar enough. An-
other risk in that in the case of inductive transfer learning,Dp

l might not be representative of
Dp. If this is the case, than Pp

l (X) 6= Pp
u (X), and transfer learning is not applied effectively.

Currently, the exact limitations of transfer learning are still being researched[10].

2.2.3 Approaches

Transfer learning can be applied in various ways. Which one to use depends both on how
auxiliary and target data differ. We here discuss four categories of transfer learning that use
different strategies for transfer learning; instance transfer, feature representation and parameter
transfer which have been suggested by Pan et al, and a fourth category called model transfer.

2.2.3.1 Instance Transfer

Instance transfer makes use of the assumption that some instances in Da are more impor-
tant for correct classifications in Dp than other instances. By determining which of the
instances, a weighting of importance can take place in the auxiliary data set, improving the
performance of the final classifier.
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An example of an approach that works on this principal is created by Dai et al, where a
classifier called TrAdaBoost[12] is trained on Da ∪Dp

l . Their approach is based on AdaBoost,
which assigns weights to different instances so that the final classifier performs well on the
test data (in this case Dp

u). AdaBoost assumes that the feature distribution in the train and
test data are similar (as in traditional machine learning), which is not the case when using
transfer learning. For this reason, the algorithm is slightly modified.

Normally in AdaBoost, after training the classifier each iteration, the instances that were
wrongly classified get their weights increased to boost their importance in the next itera-
tion. This still happens for the instances in Dp

l , but the instances wrongly classified in Da

have their weight reduced. This way, instances from the auxiliary data that seem to clash
with the primary data, will influence the classifier less each iteration. Dai et al. test the
performance of TrAdaBoost on a variety of textual machine learning problems, and show
that in case there is a lot less labeled primary data to auxiliary data, the TrAdaBoost out-
performs a SVM baseline considerably, which shows that TrAdaBoost can be successful in
distinguishing between helpful and unhelpful data in the auxiliary data set. The authors
mention two downsides of their technique. First, they report that the performance of the
classifier learned with TrAdaBoost is sensitive to the quality of the auxiliary data, meaning
that if Pa(X) differs too much from Pp(X), TrAdaBoost might not increase performance,
and it is not clear what the conditions for this are. Secondly, the convergence can be slow.

Yao et al. extend the research of Dai et al. [41], trying to combat the possibility of negative
transfer by using multiple auxiliary data sets in the transfer learning process and calling this
addition MultiSourceTrAdaBoost. Where the original TradaBoost only uses the combination
of the single auxiliary data set and the labeled primary data when learning the weak clas-
sifiers, the approach of Yao et al. learns the weak classifier over the combination auxiliary
data that fits (i.e. reduces the error to) the target data best in the current iteration. The idea
here is to reduce the chance of negative transfer, because at each iteration the best auxil-
iary candidate data is applied. Yao et al. evaluate their approach using an object category
recognition problem; the primary data consists of an image category to recognize, and the
auxiliary data consists of other object categories. From these, the bag-of-words method is
used for feature extraction. The authors use AdaBoost (which only uses the target data to
learn) and TrAdaboost (which combines all auxiliary data into one set) as their baseline,
with an linear SVM as the used classifier in all cases, and vary the amount of auxiliary data
sets (1 to 10) and number of positive instances (1 to 50) in the labeled target training data.
Their results show that MultiSourceTrAdaBoost performs the same as TrAdaBoost when
only a single auxiliary data set is used (as to be expected), and when more are available,
it performs significantly better than TrAdaBoost when few positive training samples are
available in the target labeled data. Moreover, its accuracy and consistency grows when the
number of auxiliary sets grows and only a single positive instance is available in the target
data.

2.2.3.2 Feature Representation Transfer

When transferring feature representations, the primary and auxiliary data are both mapped
to the same feature space, which levels out the features used and the distribution. Zhong
et al. try to find a kernel mapping of both data sets to a new, third, feature space where
the marginal distribution is similar of both data sets [45]. This is done using Kernel Dis-
criminant Analysis. Afterwards, two different strategies are applied. In the first approach,
called KMapEnsemble, the auxiliary instances that have a dissimilar conditional probability
to the target data are determined and removed before training a classifier. These instances
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are found using Bisecting K-Means clustering; all labeled data starts off as one big cluster,
and then gets split into two clusters using K-Means in case the sum of squared error is
reduced for the new clusters or if the current purity is below a certain threshold (i.e. the
cluster contains too many instances of different classes). After the algorithm terminates, the
auxiliary instances in a cluster that match the prevailing target instance in that cluster are
used during training. A second approach, called KMapWeighted does not use the Bisecting
K-Means, but uses the TrAdaBoost approach on the new feature space by lowering auxil-
iary instances that are wrongly classified. Zhong et al. evaluate their method with a text
categorization task, and its outcome is compared to a variety of traditional machine learn-
ing techniques and TrAdaBoost. The results show that KMapEnsemble is in most cases (24
out of 27 different data set and base classifier test) the best performing classifier with up
to a 25% increase in accuracy. The comparison of the KMapWeighted approach and TrAd-
aBoost show the difference it makes to map both data sets to the new feature space. In most
cases, KMapWeighted performs better than TrAdaBoost, but often with a smaller margin
than KMapEnsemble. The authors also compare the KMapEnsemble case to a case without
the clustering procedure and a case that does not use the feature mapping and evaluate at
least 5% increase in accuracy using the KMapEnsemble technique.

2.2.3.3 Parameter Transfer

Parameter Transfer works on the assumption that the classifier trained on the auxiliary data
will share similar parameters with a classifier trained on the primary data. What exactly
this entails, depends a great deal on the model applied. Yao et al. create an approach
based on TrAdaBoost, and call it TaskTrAdaBoost. Similar to their MultiSourceTrAdaBoost,
this approach consists of multiple auxiliary data sets. In a first phase, all possible weak
classifiers are constructed individually over each auxiliary data set (by essentially using
AdaBoost), keeping only those that perform well enough given a specific threshold. In the
second phase, TrAdaBoost is applied, but with a different weak classifier selection criterion:
in each iteration the best performing weak classifier from phase 1 on the labeled target data
is chosen to incorporate into the classifier. In this second phase, the auxiliary data is not
used in the instance weighting process. The parameter that is assumed to be shared in
this case between source and target, are the weak classifiers learned for each of the source
data sets; The second phase only needs to determine which of the parameters are shared
between source and target. This approach is pitted against the MultiSourceTrAdaBoost in
the object category detection challenge mentioned earlier, and shows about the same results,
with the addition that that it is less prone to over-fitting than MultiSourceTrAdaBoost when
few positive instances are available in the target data.

2.2.3.4 Model Transfer

In model transfer, the auxiliary data is not used directly in the transfer learning process, but
rather the classifier trained on the auxiliary data. The decision function of this classifier is
in some way adapted to increase performance on the primary data.

Yang et al. [40] developed Adaptive Support Vector Machines (A-SVM) that use a regular
SVM on the auxiliary data. Then, this classifier is fed to the Adaptive SVM, which adds
another term to the decision function learned by the regular SVM. This extra term is in
essence the same decision function, but only learned on Dp

l , and its influence is minimized
as much as possible, so that the final decision boundary will be similar to the one learned
onDa. The user can fine-tune the influence by choosing the value C of the decision function
learned on Dp

l . Additionally, multiple auxiliary data sets can be utilised in this approach,
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by making the base classifier a weighted sum of all auxiliary classifiers learned, and tagging
along the extra decision function for Dp in the same manner.

Yang et al. evaluate the Adaptive SVM approach using the domain of video semantics
analysis, where a different news program is trained with the auxiliary data than in the
primary data. X here consists of gabor wavelet features and color moments extracted from
key frames, and Y is a binary label that denotes the presence of a concept, for example
presence of environmental ques, genre, and presence of objects. The prediction process
consists of deciding for each frame if a chosen concept is shown in that frame. Yang et
al found that the Adaptive SVM approach improves performance compared to training a
regular SVM with Dp

l or with Da. The Adaptive SVM performs similar when training a
regular SVM on Da ∪ Dp

l . Due to the reduced training time (about ten times faster), the
re-usability of the auxiliary classifiers and reduced influence of SVM’s C parameter, they
consider the Adaptive SVM a better choice than the single SVM classifier that combines Da

and Dp
l .



3

D ATA

For this research a combination of two data sets containing smile and non-smile data has
been utilised for both train and evaluation purposes.

3.1 G E N K I D ATA S E T

The GENKI data set has been created by Whitehill et al. with the intention of collecting smile
data in a variety of different environments, i.e. indoors and outdoors, as well as of people
of varying age, gender, ethnicity and appearances, like facial hair and glasses [38]. The
original GENKI data set used in their research consists of 63.000 images in total collected
from public online repositories. An online version is offered for external use, containing a
subset of 4000 pictures in total. These images have been hand labeled by the researchers as
either showing a smile or no-smile. In this research the labels are used as provided by the
data set.

The GENKI data set provides this research with an extensive data set of different faces,
making it possible to easily train a general classifier. Because the GENKI data set consists
mostly of smiles that are posed for pictures, see Figure 1, it can not be called completely
spontaneous, but it is still diverse, i.e. the portrayed smiles differ in intensity and display
unique smiling styles per person. A limitation of this data set is that it inhibits us from
using temporal feature data during the training process, making the geometric feature data
quite limited when used for a classifier.

3.2 A M - F E D D ATA S E T

The Affectiva-MIT Facial Expression Dataset (AM-FED)[24] was gathered as part of the
research by McDuff et al. in which they created a framework for crowd sourcing and ana-
lyzing smile data[25]. The data set shows people recorded in front of their web cam while
watching one of three humorous Super Bowl commercials provided throughout the exper-
iment. The data set contains 242 different videos, containing in total 168,359 frames. The
AM-FED data set provides the video files, various hand-labeled FACS features, self-report
data from the subjects and two sets of smile labels. One of the sets of labels was manu-
ally generated and the other by a classifier trained on LBP features around the mouth area.
Although their evaluation indicates an AUC performance of 89.9% on the AM-FED data
set with the automatically generated smile data, we opted to use the manually provided
labeling instead, as the automatically generated labeling seems inconsistent for some of the
faces, and the manual labels also were used as ground truth in their own research.

The manually labeled smiles have a value ranging between 0% and 100%, with 0 meaning
none of the labelers believe the subject was smiling at that point in time, and 100 indicating
all of them believe the subject was smiling. For our purposes, we chose to categorize all

22
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labels in the range 75%− 100% as a smile, and everything below that as a no smile. Mostly,
all preceding and subsequent frames gradually drop in a lower score, meaning the majority
is centered around the moment of apex, which is good enough for our purposes. Because
the data was only labeled at a time instance where the value changed (so when one of the
labelers decided the subject started or stopped smiling) we generate frame-by-frame labels
from this data.

Because not all videos in the data set contain a lot of smile data, and even less so after
setting the aforementioned smile threshold, only a small set of videos ended up useful for
our purposes. To determine which videos are suitable, we take the following criteria into
consideration. Firstly, the data should contain a lot of smile ”patches” (i.e. number of
uninterrupted frames classified as a smile). A lot of the data consists of two apex moments
at the end of the video (presumably where the video climax takes place), and this leaves
little data to evaluate with cross-validation, as each fold should contain enough smile data
during transfer learning, and we do not want to shuffle the data. Secondly, we would like
the final selected data to be diverse, so that transfer learning will make sense. Based on
these criteria, we removed videos of which less than 40% and more than 70% of the frames
were labeled as a smile. From the remaining videos, the amount of smile patches were
calculated and a manual selection of videos was made that ensured a diverse set of smiles
and a large number of smile segments to work with. The videos shown in Figure 5 have
been selected. Table 18 in Appendix A provides some extra information about the videos.



3.2 A M - F E D D ATA S E T 24

Video 1 Video 2

Video 3 Video 4 Video 5

Video 6 Video 7 Video 8

Video 9 Video 10

Figure 5.: Frames labeled as a smile from all selected AM-FED data.



4

A P P R O A C H

Chapter 2 discussed the general flow of current approaches towards smile detection; the ac-
quisition of train data with smiling and non smiling faces, the feature choice i.e. appearance
based or geometric based, the classification process and their performance measures. In our
research, we will take novel decisions for these steps, which we will discuss and motivate
in this chapter.

4.1 C H O I C E O V E RV I E W A N D M O T I VAT I O N

4.1.1 Transfer Learning

The biggest change with regards to earlier research in smile detection is the choice of apply-
ing transfer learning, rather than traditional machine learning. Our motivation for using
transfer learning is based on the idea that no two faces are exactly alike during smiling.
When we train on different faces than that the classifier will be used on, we are expecting
that the feature distributions will not match up perfectly, i.e. Pa(X) 6= Pp(X) where Pa(X)

is the marginal probability distribution of the train data instances, and Pp(X) that of the
target data. Additionally, even in the unlikely case that feature distribution is similar in
different faces, this might mean that Pa(y|x) 6= Pp(y|x), i.e. the same facial features do
not indicate a smile in different faces due to distinct smile styles (as displayed in Figure 1).
Both of these are conditions under which transfer learning can offer a better solution than
traditional machine learning, which makes it a viable approach to investigate.

We regard the challenge of individualized smile detection as an inductive transfer learn-
ing problem, meaning that there will be a small amount of Dp

l available during the transfer
learning process. Using no labeled data for the primary set would make the transfer task
transductive, which has the use case restriction Ta = Tp[28], meaning that the probability of
assigning classification label y is as likely in both domains (i.e. Pa(y|x) = Pp(y|x)). This is
an assumption we cannot make, as mentioned in the previous paragraph. Moreover, when
considering the applications that might benefit from individualized smile detection, specifi-
cally when using it for diagnostics in a self-therapy tool, we believe adding a short, one-time
calibration phase to determine Dp

l is a reasonable trade-off between user involvement and
reliability of the final smile detection.

Chapter 2 provides an overview of different strategies available for performing inductive
transfer learning. From these, we choose to apply a model-based transfer approach by
means of the Adaptive SVM, developed by Yang et al.[40]. We prefer using a model-based
approach over instance-based approaches, like TrAdaBoost, as the latter views all data in
Dp

l equally during training. As Dp
l will consists only of a small amount of data, outliers

that do not represent Dp
u might have a big effect when TradaBoost increases the weight of

instances for multiple iterations. Although the authors show that TradaBoost trained with
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an SVM performs better using a small amount ofDp
l than a regular SVM trained onDa ∪Dp

l ,
we believe that setting the parameters of an Adaptive SVM to regulate over-fitting a more
intuitive and possible better performing approach.

Applying the KmapEnsemble approach for feature representation transfer would seem
like a good alternative to consider for individualized smile detection; the approach of trans-
ferring Dp

l and Da to a feature space and selecting only those instances in Da that match
with Pp(y|x) would seem to solve both our problems of differences in the domain as well
as in the task. However, it is less clear to foresee its performance on the domain of smile
detection rather than text classification. Additionally, Support Vector Machines have been
used in various previous researches in smile detection, and although that does not mean it
is appropriate for our specific research, it seems a safer approach to take.

A last benefit of using A-SVMs is that it provides a lot of re-usability and accordingly
saves us a lot of computation time, as the SVM trained on Da data can be reused each time
we change parameters or primary data sets in the adaptive transfer trials for evaluation
purposes.

Section 4.3 will explain how the transfer learning pipeline using the Adaptive SVM is
performed for classification purposes.

4.1.2 Feature Choice

Chapter 2 has discussed both geometrical and appearance-based features as candidates for
visual smile detection. In this research we limit ourselves to low-level geometrical fea-
tures. Although appearance-based features have shown promising performance in past
research[38][25][34], these features were extracted in a black box fashion, where a boosting
algorithm takes care of determining the underlying value of each of the features. We, how-
ever, want to test our hypothesis that a specific set of low-level geometrical features results
in unique feature distributions between different people, so that Pa(X) 6= Pp(X) in case the
auxiliary data set and primary data set consists of different faces. By selecting low level
features which we expect cause a difference in probability estimates, like mouth corner ori-
entation and distance, we can apply transfer learning to learn this difference in probability
estimates. Combining these low level features into temporal or AU features possibly causes
a same discrepancy in feature value distribution, but doing so adds an extra abstraction
level to be analyzed when results are not as expected. Given our first steps towards indi-
vidualized smile detection, we limit ourselves first to testing the basic premise. In case the
expected behaviour is found, we can continue from there.

We create a few different feature sets to gain understanding of the impact of different
feature types, like face rotations and face point distances when trying to classify smiles.
In Section 4.2 the process of extracting features from the data is explained, as well as an
explanation of the the specific low-level geometric features that are chosen.

4.1.3 Label Choice

Although related research has become more specific in detecting the meaning behind the
smile data, i.e. focusing on different types of smiles or the legitimacy of a smile, we will
regard all images in each of the data sets using the classes Y = {smile, no-smile}. Although
this might seem like a step backwards compared to the more specific research interest of
recent smile detection research, it is not important for us to know the intention behind
a smile to learn the impact of our research for the improvement of individualized smile
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detection. Our choice for labeling is straightforward to implement as both the GENKI data
set already utilises the same binary labels, and the smile intensity provided by AM-FED
was thresholded as stated in the previous chapter.

4.2 F E AT U R E E X T R A C T I O N P I P E L I N E

When training a classifier with geometric feature data, all frames of the data set have to un-
dergo a process of face point extraction, data normalization and feature extraction. Figure 6
visualizes this process on a single picture from the GENKI data set. An in depth explanation
of the different steps is provided in this following section.

Extract Facepoint 
Data

Normalize 
Facepoint Data

Extract 
Geometrical 

Features
Frame Data Features

Figure 6.: The feature normalization pipeline demonstrated on a single picture of the
GENKI data set.

4.2.1 Point Data Extraction

A geometrical approach towards smile detection requires information about important fa-
cial landmarks in each frame; like eye and mouth corner position. There are several meth-
ods for point data extraction mentioned in Chapter 2, from which this thesis utilises the
Chehra face tracker developed by Asthana et al.[2]. The Chehra tracker was chosen for its
high dimensional face point data, and its ability to converge quickly and accurately while
being able to recover from short occlusions during informal tests with webcam data. The
resulting detection when using Chehra consists of 49 face points, of which 5 points are
tracked per eyebrow, 6 points per eye, 9 points for the nose, 6 for the inner lip and 12 for the
outer lip line. Additionally, Chehra tracks the 3D position of the face each frame and thus
provides us with yaw, pitch and roll data as well. Figure 7 shows the face points extracted
by Chehra.

The Chehra face tracker has been applied on all picture data provided by the GENKI
and AM-FED data set. Because Chehra utilises consecutive frames for improved face point
placement accuracy, correct placement of face points was impossible on a sizable portion
of the GENKI images. All images were manually inspected and instances with incorrectly
placed face points or no detected face points were discarded from further use. This left us
with 2963 images from the initial 4000 in the data set that are used throughout this research;
1610 images showing smiles and 1353 images showing no smile.
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Figure 7.: Facepoint data on a frame of AM-FED Video 1.

Performing face tracking with Chehra on the AM-FED data also failed sometimes, often
because of overexposure, facial hair, multiple people entering the screen and facial occlu-
sions. Prior to selecting the 10 data sets mentioned in Chapter 3, we ran the face tracker on
a sizable set of AM-FED videos, and kept the ones where tracking performed well enough
in most frames. From these we pruned the few frames that badly presented the actual face
points of the frames. Then from this data we made the video selection with the criteria
explained in Chapter 3. See Table 18 in Appendix A for information about the amount of
frames pruned for each video. Removing these frames does not cause a lot of problems as
we don’t extract any temporal information during the training process.

4.2.2 Point Data Normalization

The extracted face point data by Chehra has to undergo normalization before we are able
to extract meaningful geometric feature data. If normalization is not applied, the danger
exists that features extracted from the face point data are obscured by undesirable defor-
mation that can have effect on the final classification process. For example, features using
distances between points can encode variance with regards to how close a face is towards
the camera, making it unsuitable for smile detection. The point normalization consists of 3
steps; normalizing translational variance, scale variance and rotational variance.

Translational variance is removed by making the center nose tip (point 14 in Figure 7) the
origin of all the face point frames. Afterwards, the scale variance is removed by scaling the
size of the nose bridge to be 30 pixels for each of the face point sets (the length between
point 11 and point 14 in Figure 7). The rationale behind this is that this distance is not
subjected to change throughout a video, and thus scaling this to be uniform does not affect
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the geometrical makeup of a smiling face. Only in frames with strong pitch rotation might
this cause a problem, as the pitch rotation might optically shorten the nose. Unfortunately,
no set of points in the face can be used without having some kind of distance change in case
of extreme head rotations. The effect of these two normalizations for Video 7 is shown in
Figure 8 with the results scaled up by a factor of 10, so as to clearly show the resulting face
point distributions.

 

Raw Face Point Data 

Normalize 
Translation

Normalize 
Scale

Translation Invariant 
Face Point Data

Translation- and Scale Invariant Face 
Point Data

Figure 8.: Translation and scale normalization for Video 7.

Lastly, the rotation variance needs to be removed from the face point data. By applying
Principal Component Analysis (PCA) one can restructure data in such a way that the axis of
the data align with the directions in which the variance is highest. By considering our trans-
lation and scale invariant face points as a single point in an 98 dimensional space (where
the x and y value of each face point are considered their own dimension) we are able to
show these variances, and remove the principal components that contain the variances that
need to be removed; the yaw, pitch and roll. Figure 9 shows the first three principal compo-
nents of the GENKI data set which represent the pitch, yaw, and roll respectively. The black
outline shows the average face, the blue lines the variance contained by the principal com-
ponent and the red outline shows the face with the variance applied. A standard deviation
of 100 was used, to exaggerate the information contained in the the principal component
applied.

pitch yaw roll

Figure 9.: Visualisation of the first three Principal Components of the GENKI data, showing
the pitch, yaw and roll variance respectively.

Once the principal components containing the rotation variance are established, removal
of these variances is as follows. During PCA the average face is calculated, and for each
of the face points the weight for each principal component is revealed. The data is then
reconstructed and the weights of the undesired principal components are set to zero. This
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results in the data as seen in Figure 10. The removal of these principal components can also
remove non-rotational variances when the rotational variances are not cleanly separated in
the principal components. The pitch visualisation in Figure 10 seems to show this, as the
mouth corners seem to move upwards more than to be expected of only a pitch-rotation.
There also seems to be a little bit of scale variance left in this principal components, which
might be caused by frames with big pitch rotations (of which the difficulty with regards
to scale rotation normalization has been clarified previously). Looking at the resulting face
point distribution helps determine the impact of removing the variance and if enough di-
versity is kept in the data set to work with. Figure 10 shows the end result of the rotation
normalization on GENKI. Using the representation of these final face points it can be deter-
mined if the rotation was successfully removed, and if the smile variance is still contained
in the reconstructed data. In the case of GENKI it is a bit more difficult to see due to the
different faces that are contained in the data, causing a diverse end result.

Normalize 
Rotation

Scale and Translation invariant Face Point Data Transform Invariant Face Point Data

Figure 10.: Visualisation of the GENKI face point data before and after rotational normaliza-
tion

Normalization has to be performed on both the train and test data using the same ap-
proach in both cases. For the translation and scale normalization this is done by using the
same reference points in both cases; the ones that we have described above. In the rotational
variance normalization we have to remove the same eigenvectors in both train and test data,
else the resulting data becomes incomparable. We approach this as follows. We determine
the eigenvectors containing the rotational variance in the data we will be using for train-
ing, and remove the same eigenvectors in the test set. In practice this usually consists of
removing the first 3 eigenvectors.

4.2.3 Feature Extraction

We believe that low-level geometric features extracted from the normalized face point data
will be appropriate for transfer learning, as there exists geometrical data in the face that
will create different marginal distributions when different faces and different smile styles
are presented. Such features would be difficult to learn under traditional machine learning
conditions, but are very discriminative in nature, otherwise. For example one might expect
that the distance between the lower lip center (point 41 extracted with the Chehra face
tracker) and mouth corner (point 31 or 38) is discriminative during smiles and non smiles,
but the boundary might be different for two people with distinct smile styles. Figure 11



4.2 F E AT U R E E X T R A C T I O N P I P E L I N E 31

shows that this is indeed the case for AM-FED Video 9 and Video 10. In both cases the
feature is discriminative, but its marginal distribution (in blue) and conditional probability
(red and green) differ. During feature selection we hand-pick features which we expect
behave similar in a similar fashion.

Frame 810

Frame 260

Frame 810

distance(38, 41) = 39.82

distance(38, 41) = 22.57

Smiling frame Normalized Face Points

Figure 11.: Conditional and feature distribution for the distance between points 38 and 41
of Video 9(top) and Video 10(bottom).
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Video 6 Video 7

Video 1 Video 3

Figure 12.: No-smile(red) and smile(green) face comparison for Video 1, 3, 6 and 7.

We will use the following 5 feature sets:

• Distances: This set is based on distances between facial points. By looking at a few
examples of smile vs neutral facial deformations in our AM-FED data set, see Figure
12, we created a small set of distance features which seem to capture the essence of
distance changes during smiles, and of which the exact value seems to vary from
face to face. If we compare the smiling frames with the neutral frames, in most cases
the eyes contract, the upper lip moves closer to the nose, the mouth opens, the mouth
shape elongates, and in some cases the mouth corners pull upwards relative to the rest
of the mouth (Video 1 and Video 7). From this, we gathered the candidate distance
features, presented in Figure 13 accompanied with a table of the face point numbers.
The eyebrow distance features were added for good measure.

• Angles: A feature set that calculates the angle between a line segments of face points
and the x-axis. Figure 14 shows the features used in this data set. In this feature set We
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Distance Distance Distance
p1 p2 p1 p2 p1 p2

1 32 35 41 34 16
10 38 36 40 35 17
32 38 37 39 36 18
35 17 21 25 37 19
48 45 22 24 32 35
49 44 27 31 38 35
32 43 28 30 32 41
38 39 20 1 38 41
45 48 21 3 32 20
46 47 22 4 38 29
5 11 23 5 34 42
6 11 26 6 33 15
1 14 27 7 33 43
10 14 28 8 29 10

Figure 13 & Table 1: Distance features used for feature set Distances

are mostly interested in the angular orientation of the mouth corners, the eyes and eye-
brows. The orientation between line segments in the mouth and the x-axis provides
us with the orientation of the mouth corners with respect to the upper and lower lip,
which is more difficult to model with only distances, but can be a telltale sign of some-
one smiling due to cheek raising[15]. The angules that we calculate for the eyes are
inspired by [14], where a similar approach is used to determine the openness of the
eyes during fake and real smiles. By checking the angle with the x-axis for both the
upper and lower eyelid, we can distinguish between blinking, which is caused mostly
by the upper eyelid, and the contraction of only the lower lid that actually indicates
smiling [15]. We use the x-axis as a frame of reference rather than the head orienta-
tion, as we believe our image normalization aligns eyes and mouth about level with
the x-axis. Again, the addition of angular data on the eyebrows is not something we
expect specific values of, but might help distinguish between faces that do not contain
smiles, but rather other emotions that might be confused for smiling behaviour that
occurs in our data.

• Orientation: A smile can be paired to a specific head orientation, especially when the
smile originates from intense emotions; for example throwing back your head in a
fit of laughter. We create an orientation feature set that only consists of the head
pitch, roll and yaw, as extracted by Chehra to determine the role of orientation for
individualized smile detection. We expect, however, to not get much performance
out of this data alone, especially since in both our AM-FED and GENKI data set each
of the participant have their focus set on a fixed target, the camera in GENKI, and the
video fragment in AM-FED.
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Angle w.r.t x-axis Angle w.r.t x-axis
p1 p2 p1 p2

32 41 26 27
32 35 28 29
38 41 26 31
38 35 30 29
20 25 1 3
23 24 3 5
20 21 6 8
22 23 8 10

Figure 14 & Table 2: Angle features used for feature set Angles

• Combined: Contains the above three feature sets, merged together in a single feature
set. We expect an improved result with regards to the above three sets, given the novel
information that each of the sets contains.

• All: The distance and angle extracted between all pairs of face points, together with
head orientation. This will contain a lot of redundant information, like the distance
between different nose points, which might cause a negative effect of the transfer
learning. We keep it around to check the performance of our manually chosen feature
set in comparison to one that does not explicitly consist of features that seem to be
useful for transfer learning.

4.3 T R A I N I N G P R O C E S S

Now that we have established what features to use, and how we extract these from the
initial data, we can talk about the training process. To explain the application of transfer
learning for our use cases, we first talk about the traditional training process using a regular
SVM, as transfer learning adds an extra step to this process.

4.3.1 Traditional Machine Learning Using SVM

An SVM is a supervised learning method that performs binary classification. Figure 15
shows the general process of training and classifying using an SVM. We start with auxiliary
data set Da which in this example consists of images from the GENKI data set. The figure
visualises a few instances of GENKI, and their corresponding ground truth label, either
smile (y = 1) or no-smile (y = 0). We perform the feature pipeline discussed in the previous
chapter for one of the chosen feature sets, and this returns the feature data per instance in
the GENKI set (Xa). This becomes the input for the SVM, together with the corresponding
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ground truth labels Ya, which will learn a decision boundary between the two different
classes of labels. In this stage, the classifier is ready to classify unseen data. When using
the classifier for classification purposes, we expect to receive unlabeled data from a different
sourceDp

u than was used for training, of which we want to know the correct classification of.
In Figure 15, Dp

u consists of a single image from Video 1 as an example target set. The same
feature pipeline is then applied to Dp

u , as was done for Da, with the same set of features,
and with the same principal components removed during the rotation normalization of the
face. The SVM receives the feature data, and outputs the most likely label according to the
SVM for each instance. Figure 15 shows the output y = 0, in this case the SVM incorrectly
predicted that no smile was depicted, while the ground truth indicated a smile was present
in the frame. How the SVM makes this classification, will be discussed next.

Train SVMPerform Feature Pipeline

SVM

Classify
Instance(s)

Label(s)

Unlabeled Primary
Instances

Perform Feature Pipeline
Unlabeled Feature
Vectors

Video 1

Labeled Auxiliary
Instances

Labeled Feature
Vectors

GENKI
frames labels GENKI

Figure 15.: Steps for performing supervised machine learning by means of an SVM, result-
ing in an unesired labeling.
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4.3.2 Support Vector Machine

An SVM[6] is a binary classifier that sets out to find a decision boundary that maximizes the
margin between two classes, i.e. the closest instances of each class should be as far away
to the decision boundary as possible. The classification is made by the decision function
f (~x) = ~wT~x− b, where ~x is the feature vector to be classified, ~w is the vector normal to the
separating hyperplane, b

||~w|| is the offset to the origin from the hyperplane along ~w, and the
sign of f (~x) indicates the class to which the feature vector belongs according to the SVM.

In the case that the two classes are linearly separable, we can choose the parameters of
the hyperplane ~wT~x− b = 0 by setting the constraint that all instances should be correctly
classified, i.e. ∀yiyi(~wT~xi − b) ≥ 1 where yi ∈ {−1, 1}. Additionally, we want the distance
between the decision boundary and the closest instances of each class, i.e. the support
vectors, to the boundary to be maximal. By solving

min
~w

1
2
||~w||2

with the above mentioned constraint, we can find the decision function with the largest
minimal margin using, for instance, quadratic programming techniques.

For real world problems maximizing the margins between the support vectors and as-
suming perfect separability of the two classes is a naive approach to take; it is likely that
both classes contain outliers that do not represent the overall shape of the class distribution.
In this case, using ∀yiyi(~wT~x− b) ≥ 1 as a hard constraint will cause an overfit of the data,
or might even be impossible to adhere to in case the data is not linearly separable at all. To
cope with this, the equation to solve for is changed to:

min
~w

1
2
||~w||2 + C

N

∑
i=1

ε i (1)

The first term is the same as before, and tries to maximize the distance between the deci-
sion boundary and the support vectors. The second term is added to minimize the errors
made by the SVM. The value of ε i is the classification error made on instance ~xi of the train-
ing data set of size N, calculated by ε i = max(0, 1− yi(~wT~xi − b)). The value of ε i does not
go below 0, so as not to penalize instances that are classified on the right side of the decision
boundary. The term C is added to regulate between the maximizing of the margin to the
support vectors, and the resulting classification errors from that decision function. When a
large value is chosen for C, it will minimize the error but might overfit the decision function
by valuing outliers too much.

When the data is not linearly separable, insisting on a linear decision boundary can give
bad results. A possible solution is to map the feature data using a function φ, both during
training and classification, into a higher dimension in which the data is linearly separable,
or improves linear separability. Because mapping each instance to a higher dimension can
become computationally expensive, SVMs apply a kernel ’trick’, rather than applying φ

directly on all instances. Applying a kernel k(~xi,~xj) does not explicitly map each of the
instances to the higher feature space, but when applied to two feature vectors, it returns the
same result as taking the dot product in higher order, i.e k(~xi,~xj) = φ(~xi) · φ(~xj). Part of
solving Equation 1 using quadratic programming consists of taking the summation of the
dot products between all combination of instances. By substituting this dot product for the
kernel instead, the classifier considers the data in the desired elevated dimension, without
explicitly using φ.
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In our research we use a Radial Basis Function (RBF) as the kernel, which maps the data
using a Gaussian model. It is considered a good first kernel choice when the data contains
more instances than features [19], which is the case for most of the classifiers that we will
train. When using an RBF Kernel, we have two parameters to decide on, namely C, the
value that is used to trade-off between classification error and possible overfitting of the
hyperplane, and a value for γ that is specific to the RBF and determines the influence of
instances. For a high value of γ, training instances having a small reach, possibly causing
the decision function to overfit to the points nearest to the decision boundary. For a low
value of γ the training instances will have a large reach, which causes the decision boundary
to consider the general shape of the data sets more1. Choosing the value for C and γ is often
done using a grid-search, where various combinations of the two parameters are trained
using cross-validation and the best performing values are chosen for the final classifier. This
is the route that we will take as well, as will be explained in Section 4.4. To implement our
SVM we use LIBSVM by [8].

Lastly, when the data the SVM is trained with is not well balanced, it might cause the
classifier to return the most likely class, no matter the feature value of the to-be-classified
instance. Even though our data sets are not extremely unbalanced we take preventive mea-
sures by setting the C value separately for a class in relation to how many instances there
are. For instance, if there are 5 times less amount of instances for label y = 0, its C value
becomes 5 times as high respective to the y = 1 instances. This means the classifier will
penalize mistakes 5 times as much for negative labels. LIBSVM has a built-in method2 for
this operation which we use to balance the data.

4.3.3 Transfer Learning using A-SVM

Figure 16 shows the process of applying inductive transfer learning by means of an A-SVM.
Most of the process is identical to the one shown in Figure 15; the newly added steps are lo-
cated in the colored block. The traditional case uses two different sets of data; the train data
Da and the target instance(s) Dp

u for which classification is desired. The inductive transfer
learning step adds a second training set Dp

l that contains manually labeled instances of the
same face as the target face that we want to classify (Video 1 in this example). The features
are computed from these instances, and become the input of the A-SVM classifier, together
with the SVM trained on Da. The A-SVM then trains a new classifier; adapting the decision
function in the SVM to take into account the instances in Dp

l as to improve the performance
on Dp

u .

4.3.4 A-SVM

In Section 4.3.2 we have discussed the general idea of how SVMs are trained. Let us refer
to the decision function trained in the SVM step as f a(x). Now, the decision function in the
adaptive case adds an extra term to f a(x) [40]:

f (~x) = f a(~x) + ∆ f (~x)

= f a(~x) + ~wT~x− b
(2)

1 http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

2 https://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html#f410

http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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Figure 16.: Steps for performing inductive transfer learning by means of an A-SVM.

Here, the values for ~w and b are different from the parameter values learned in f a(~x). In
essence, f (~x) consists of a single decision boundary constructed from two separate decision
boundaries, of which f a(~x) only trained on Da, and ∆ f (~x) only trained on Dp

l .
To find the values ~w and b for ∆ f (x), the same equation is solved as before (Eq. 1), but

with a new unrelated value C, that now determines the influence of the newly introduced
data Dp

l ,and with a different meaning for ε i. Previously we saw that the error consisted
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of the distance to the decision boundary for wrongly classified instances. In the adaptive
SVM, this changes to include the boundary error made by f a(x) as well, i.e:

ε i = max(0, 1− yi f a(~xi)− yi∆ f (~xi))

= max(0, 1− yi f (~xi))
(3)

Here, yi f a(~xi) does not change throughout the learning process, as it is not influenced by
the values learned for ~w. As a result, when the value of C is high, the final classification
of f (~x) will be influenced more by the decisions made by ∆ f (~x), as it tries to compensate
each individual error in Dp

l made by f a(~x) , rather than adhering to the decision boundary
learned by f a(~x). When the value of C is low, the decision boundary of f (~x) will be similar
to f a(~x) [40].

The A-SVM has the ability to use multiple auxiliary data set. The final decision function
is similar to Equation 3, but instead of having one auxiliary decision function f a(x), there
are multiple of which the values are summed. In our research we only apply the single aux-
iliary case, as our research does not focus on experimenting with the contents of different
auxiliary data.

4.3.5 Choosing Dp
l

The data to consider for Dp
l depends on a few factors. First, we would like to reduce the

number of instances as much as possible, as this requires manual effort from the user of
the smile detector. Moreover, the assumption that not a lot of data is available is one of
the main reasons to consider the transfer learning approach in the first place. Secondly,
the data contained in Dp

l should be a good representation of the data that the classifier
will be used for, i.e. Pp

l (X) = Pp
u (X) and Pp

l (y|x) = Pp
u (y|x). However, choosing Dp

l in
this way is not trivial. Although in our case Dp is labeled and we thus can easily verify if
Pp

l (X) = Pp
u (X) for each proposed Dp

l , when using the classifier in a real world setting no
labels are available to test Pp

l (y|x) against. For this reason we steer clear from matching the
probability estimates of the labeled and unlabeled portions and test the performance of a
more general approach.

An alternative approach that we could consider, is to use instances that the classifier
was not very sure about while classifying, i.e. are close to the decision hyperplane. These
instances have a higher probability of being wrongly classified. Although there is merit to
this approach, we can not easily evaluate this in our research. If we purposely add instances
from Dp to Dp

l of which the probability is high that these are wrongly classified, then the
instances in Dp

u will most likely perform better, as most of the problematic data is not part
of it anymore. Additionally, the data in AM-FED is not abundant enough to divide these
on-the-edge label assignment in a unlabeled and labeled data set.

Just splitting up Dp into 10 folds and using cross-validation to check performance, ig-
nores our assumption of having little data available, so the approach we take is a little
different. We decide upon a number of smiling frames beforehand and the total number of
instances to include into Dp

l . A same approach was taken by Yang et al, who tested 1, 3,
5, and 10 positive instances for different trials, and 16 times as much negative instances for
each of the trials. In our research, we use 75 instances in total forDp

l , of which 15 are labeled
as smiles. We chose the data a bit more balanced compared to Yang et al., as the occurrence
of our classes is less exclusive than in their case. Although Yang et al. construct Dp

l by
randomly selecting instances from their data set until Dp

l is filled with the desired ratio of
data, we decide against this due to the temporal nature of our AM-FED data. When picking
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instances at random,Dp
u andDp

l can consist of multiple consecutive frames of which the fea-
tures are a lot a like, making it more likely that the classifier will over-fit the data, and seem
to perform better than is actually the case. Instead, we use the following approach. Given
Dp, we apply a sliding window of size 75 on top of the temporally ordered frames. When
the 75 frames do not contain precisely 15 smiling instances the window is incremented by a
single frame. When it contains 15 instances, the instances inside the window are registered
as a candidate Dp

l , and the window jumps to the first subsequent frame that was not regis-
tered. Because not all consecutive smiling segments in the data will have 15 frames or more
of smile data, we also register the frames in the window in case it contains one complete
smiling patch. Algorithm 1 shows the algorithm with which candidates are found for Dp

l .
Figure 17 visualizes 3 consecutive steps of the algorithm in an example scenario.

Algorithm 1: Determining candidates for Dp
l

Data: yp ; // vector containing ground truth labels of Dp

Result: One or more candidates for Dp
l

1 i← 0 ; // start index sliding window

2 while i < length(yp)− 75 do
3 yp

window ← yp[i . . . i + 75];
4 if containsSmilePatch(yp

window) then
5 Register Dp[i . . . i + 75] as candidate Dp

l ;
6 i← i + 75;
7 else if smileCount(yp

window) = 15 then
8 Register Dp[i . . . i + 75] as candidate Dp

l ;
9 i← i + 75;

10 else
11 i← i + 1;
12 end
13 end

......

......

next step: shift window by 1 (line 11).

next step: shift window by 75 line(9).

... ...

Step 1:

Step 3:

Step 2:

Figure 17.: Visualisation of sliding window on consecutive frame data . Step 1 corresponds
to line 10 of Algorithm 1, Step 2 corresponds to line 7, and Step 3 corresponds to
line 9

As Algorithm 1 shows, there are multiple candidates for Dp
l ; our assumption is that simi-

lar performance can be expected from any of these. The next section will describe how this
will be verified during our tests.
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A risk to mention of our approach is that the rather limited number of smiling instances
that are extracted in a consecutive fashion might mean that Dp

l only consists of transitional
data; it does not grab the full apex of a smile, rather only the few frames before or after
the apex has set in, when transitioning to or from the smile. We assume that this is not a
big problem, since the AM-FED smile labeling has been rather conservatively thresholded,
only labeling a frame as a smile when at least 75 % of researchers agreed it contains a smile;
making the frames labeled smile contain mostly the apexes.

4.4 T E S T I N G

To determine the appropriateness of transfer learning for our objective of individualizing
smile detection, we have to have some measure of performance. We recall research Sub-
Question 2:

Sub-Question 2. How does transfer learning compare to alternative approaches of individualized
smile detection?

Only comparing the performance of the A-SVM trained on Da ∪Dp
l with an SVM trained

on only Da does not give us a lot of insight. The A-SVM is at an advantage of having
more data available, so we can expect performance is better (as long as no negative transfer
occurs). For this reason we propose a few different evaluation trials, as have been proposed
by Yang et al. In short, these are: (i) training on Da, testing on Dp (aux) (ii) training on
Dp

l , testing on Dp
u (prim) (iii) training on Da ∪ Dp

l , testing on Dp
u (aggr) (iv) training on Da,

transfer step using Dp
l , testing on Dp

u (adapt). The first three evaluations are traditional
machine learning, where just the data sets for training differ. Only the last one consists of
the extra transfer learning step. Each of these strategies will be used with each of the five
feature sets covered in Section 4.2.3 (Distances, Angles, Orientation, Combined, All).

4.4.1 Data Division

For each of the different strategies, we will need to divide our data into train and test sets.
We will refer to these sets as auxiliary and primary sets respectively, to keep it similar to the
transfer learning literature.

We construct 10 different primary sets; each being one of the 10 selected and processed
AM-FED videos as discussed in Chapter 3. We use them as separate data sets so that Dp

l ,
which will be used during transfer learning, consists only of a single new face, as to opti-
mally test our improvement to individualized smile detection. Utilising 10 different sets
also helps us generalize our findings over multiple distinct faces.

For the auxiliary data set, we use the GENKI data. The GENKI data set can provide us
insight how transfer learning influences performance when the auxiliary data consists of a
big amount of varied data. We expect a rather good baseline performance from a classifier
trained on GENKI alone. In case transfer learning can improve performance on a never
before seen face when GENKI fulfils the function of Da, than there is evidence that transfer
learning is successful in making the classifier ’adapt’ to a new face.
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4.4.2 Strategies

4.4.2.1 Aux

In the aux strategy we learn an SVM using auxiliary data only, and test its performance
using the primary data. This boils down to a traditional machine learning approach as
explained in section 4.3.1. The aux strategy establishes a baseline of how much performance
can be gained when considering an individualized approach.

Figure 18 shows what the aux process is like during evaluation. This strategy will be
applied using GENKI as the auxiliary data and each of the 10 AM-FED videos as separate
primary test sets. This will result in 50 different scores, as each combination is tested with
each of the 5 different feature sets. The resulting F1-score calculated from our predicted
classification and ground truth labels will indicate performance in each case, giving us a
baseline in performance for each of the different feature sets and videos.

4.4.2.2 Prim

The prim strategy consists of dividing up the primary data in a setDp
l for training andDp

u for
testing. The auxiliary data is left out, to see how well performance is without any additional
information available to support the limited data in Dp

l . In prim we should split up the data
in the exact same way as will be done during transfer learning, to keep conditions the same.
Section 4.3.5 explained our strategy for dividing up the data, and is what we will use to
divide each of our primary data sets. This approach generates multiple candidates for Dp

l ,
which we will all test. The prim diagram shown in Figure 18 will thus be applied during
evaluation for each of the 10 primary data sets, and for the each set of Dp

l and Dp
u that was

generated for each of these primary data sets. For instance, when we want to evaluate the
prim strategy for Video 1, we run Algorithm 1 to get all possible candidates for Dp

l . For
Video 1 we find 6 of such candidates for the total video. Each of these candidates are then
used to apply the steps in Figure 18, where Dp

u = Dp − Dp
l . We thus receive an F1-score

for each Dp
l , so for Video 1 6 scores in total, which we report the average and standard

deviation of. Our expectations for prim are that this amount of data is not enough, and
that the classifier benefits from a larger auxiliary data set to improve its performance, even
though this auxiliary data does not originate from the same face.

4.4.2.3 Aggr

The aggr strategy data set combines an auxiliary data set and a candidate forDp
l from which

a single traditional classifier is learned, and evaluated on the corresponding Dp
u . The ap-

proach of Yang et al. utilises a weight for the auxiliary and primary data during learning,
so that classification errors in Dp

l are considered more significant. This way, the perfor-
mance is improved on the data that actually matters. We mimic this idea by up sampling
Dp

l to be a more prominent size of the training set. In our evaluation we will use a ratio of
2 : 1 for auxiliary and primary data respectively.

4.4.2.4 Adapt

The adapt strategy is the only configuration that uses transfer learning, and its performance
will indicate the value of transfer learning for individualized smile detection. Each primary
video will be split up between Dp

l and Dp
u as in the prim strategy. Then, each of the Dp

l
candidates is paired up with the GENKI auxiliary set. The F1-score is again calculated over
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all trials where different Dp
l candidates are used. Our expectation is that the adapt strategy

will perform better than just using prim or aux, and possibly similar to the aggr.

4.4.3 Parameters Across Training

Each of the different strategies trains a new classifier. To make sure that results are com-
parable, the values for C and γ should be chosen consistently. We do that as follows: All
(Adaptive) Support Vectors are trained with an RBF Kernel. We determine a single optimal
value for γ for each of the 5 different feature sets; so 5 different values for γ. These values
are kept consistent over the different evaluation strategies. The value of C for the SVMs
is learned specific for each combination of auxiliary data set and feature data, so again 5
different values for C. These learned values for C are used consistently in the modes where
the SVMs are used, thus strategy aux, aggr and adapt. The value of C for the primary data, so
each combination of AM-FED and feature set, is also learned during cross validating, giv-
ing 50 different values for C, and the same C values are applied during the prim and adapt
settings.

The values for γ and C are learned by performing a grid search, that tries all combinations
of values for the two parameters during training, and selects the one with highest accuracy
over 5 folds. In our research we set the bounds as follows:

C ∈ {2−5, . . . 215} × γ ∈ {2−15 . . . 23}, stepsize = 2 (4)

To learn the values for γ, we evaluate the accuracy using 5-fold cross-validation on each
combination of feature set and GENKI data set only, as we believe other data sets, like the
individual AM-FED video will have the tendency to overfit the data more and decrease per-
formance on other data sets. As the GENKI performance for smile detection is our baseline,
being able to surpass its performance even when parameters are optimized for it would only
help confirming our hypothesis. After the optimal γ parameters are selected, the value of
γ becomes fixed in other grid searches for determining the optimal value of C. The grid
search is performed using the grid-search tool provided as part of LIBSVM.
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Adapt

Figure 18.: The 4 different test strategies used for evaluation.



5

E VA L U AT I O N & R E S U LT S

Recall that the goal of our research consists of answering the following research question:

Research Question. Can transfer learning improve the detection rate of spontaneous smiles when
applied on a generically trained classifier trained with geometric features?

We aim to find the answer with the support of the following two research questions:

Sub-Question 1. What geometric features prove effective in personalized smile detection?

Sub-Question 2. How does transfer learning compare to alternative approaches of individualized
smile detection?

Research SQ 1 has led us to explore different low-level features, of which we have ended
up with 5 different feature sets to evaluate: Distances, Angles, Orientation, Combined and All.

Research SQ 2 has resulted in four different evaluation strategies that are deemed to give
a good perspective on the actual benefit of transfer learning: aux, prim, aggr, and adapt. In
this section each evaluation strategy and feature set is combined to aid in answering the
overarching research question. First we discuss the results of these strategy and feature
sets. Afterwards we discuss possible improvements for selecting Dp

l and lastly we use the
discussed findings to recap and answer the research questions.

5.1 PA R A M E T E R C H O I C E

Before the evaluation can take place, we perform trials to find the optimal parameters to
use during training and testing. This commences with determining the best performing γ

for each feature set using the GENKI data. Figure 19 shows the mapped out search space
when performing a grid search using the combination of values from Equation 4.

For the Distances, Combined and All feature sets a (local) maximal accuracy is not com-
pletely contained in the search grid, and in all cases could have been found by lowering
the minimum value of γ and increasing the maximum value of C. We refrain from doing
this, as the accuracy currently found is deemed satisfactory and the pay off would be rather
limited for even more extreme values of γ.

The optimal parameters and resulting accuracy of these trials are shown in Table 3. We
report the accuracy rather than the F1-score as the grid-search tool bundled with LIBSVM
uses accuracy for determining the best performing parameters. These reported parameters
are used for all subsequent evaluations in aux, aggr, and adapt.

Now that an optimal value of γ is determined for each of the different feature sets with
the GENKI data set, we fix this value to the optimal γ in further grid searches. Table 4 shows
the grid search for C for each of the primary data sets, that will be applied during the prim
and adapt strategy. The grid search for the primary set has in most cases resulted in a maxed
out value C = 215. Although this might indicate a tendency to overfit all instances of the

45
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Distances Angles

Orientation Combined

All

Figure 19.: Grid search results for the different feature sets on Genki Data.
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Table 3.: Result of grid-search with k-fold cross-validation with k = 5 on the GENKI data
set.

Distances Angles Orientation Combined All
C 23 27 2−3 25 23

γ 2−11 2−1 2−7 2−13 2−15

Accuracy 92.811% 87.0402% 65.2042% 94.465% 93.554%

data, it might actually prove beneficial during the adapt strategy, by having the decision
function of f a be more heavily influenced by Dp

l . Overall, the performance of the different
feature sets are promising. For each of the data sets All and Combined perform similarly as
expected; with a maximum of 2% difference. The Combined feature set performs consistently
better than Distances, Angles and Orientation, which seems to indicate that these data sets act
complementary when combined. However, to answer research SQ 1 we will have to check
feature performance over the different strategies.

As a last remark, seeing that the performance per primary data set is rather high when
there is a large amount of data (as we see now during cross-validation) it provides us with
a good base for testing the prim strategy, to see how lower amounts of data influence per-
formance, and how precisely transfer learning can help here.

Table 4.: Result of k-fold cross-validation with k = 5 on Primary data sets.
Feature Sets

Data set Distances Angles Orientation Combined All Average

Video1
C 213 215 211 215 29

Accuracy 94.46% 92.838% 89.054% 96.216% 95.946% 93.703%

Video2
C 215 211 215 215 211

Accuracy 87.147% 81.975% 76.175% 87.931% 89.969% 84.639%

Video3
C 215 215 213 215 29

Accuracy 83.155% 74.198% 88.235% 95.187% 95.989% 87.353%

Video4
C 215 27 215 215 29

Accuracy 94.927% 89.853% 85.682% 95.378% 96.505% 92.469%

Video5
C 215 215 29 215 211

Accuracy 90.81% 86.82% 81.741% 92.261% 92.745% 88.875%

Video6
C 215 215 211 215 29

Accuracy 79.68% 74.772% 80.48% 91.324% 93.151% 83.881%

Video7
C 215 215 23 215 29

Accuracy 86.996% 81.128% 85.27% 92.98% 91.715% 87.618%

Video8
C 29 215 215 211 27

Accuracy 98.396% 97.594% 94.96% 98.74% 98.625% 97.663%

Video9
C 215 215 215 215 27

Accuracy 89.952% 83.852% 79.785% 95.454% 94.019% 88.612%

Video10
C 213 215 23 215 211

Accuracy 94.851% 96.453% 94.05% 96.682% 98.627% 96.133%

Average 90.038% 85.948% 85.543% 94.215% 94.729%
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5.2 A U X S T R AT E G Y E VA L U AT I O N

Recall that the aux strategy builds a classifier from the auxiliary data only, and tests this
on the primary data (Figure 18). Table 5 shows the result of the auxiliary data trained
using the choice of parameters set out in Table 3, and evaluated on each of the AM-FED
videos (i.e. our primary data). A few things come to attention immediately. Firstly, for
each video, all of the feature sets perform worse than in the GENKI cross-validation results
(Table 3) and in the primary data cross-validation results (Table 4). This is expected to
some degree; although in both the cross-validation and the aux case the evaluation consists
of unseen data, the aux data consists of only a singular type of smile; in case this does
not suit the classifier trained on GENKI, the hit-rate will be consistently lower than when
evaluating on multiple random faces displaying multiple smile-styles. This in turn also
explains the higher fluctuation rate between different feature sets and primary videos in the
aux strategies. Video 7 contains a open-mouth style smile (refer to Figure 5) that is rather
typical for the GENKI data set as well, while Video 6 only shows a slight smirk on the apex,
which is not caught by GENKI as it does not seem to capture subtle different between the
two classes.

Although the performance per face fluctuates a lot, the performance of each feature set
stays relatively similar with respect to the performance of the other features set: Combined
and All perform similar and better than Distances and Angles, indicating that smile traits
learned in GENKI in some way relate to each of the AM-FED videos. The odd one out
seems to be the Orientation feature set, which fluctuates between being the worst and best
performing feature set between each of the video. On closer inspection the F1-score of this
feature set is rather misleading. The classifier always returns the label smile for Video 4,
Video 5 and Video 10, which makes the classifier useless and the scores have been set to
zero. For Video 2 and Video 7 the biggest majority was also labeled as a smile, which makes
the F1-score assigned for those videos less meaningful as well. The unreliability of this
feature set was as expected; having only head-orientation data is too limiting of a factor
on its own, although it might very well help in the Combined set. For this reason we omit
reporting on this feature set in the next strategy evaluations.

Table 5.: aux: F1-score of GENKI classifiers on AM-FED videos.
Feature Sets

Primary Data Distances Angles Orientation Combined All Average F1-score
Video1 0.278 0.251 0.363 0.356 0.323 0.314
Video2 0.573 0.719 0.685 0.678 0.728 0.677
Video3 0.625 0.513 0.797 0.69 0.677 0.66
Video4 0.588 0.25 0.0 0.396 0.517 0.35
Video5 0.667 0.67 0.0 0.69 0.692 0.544
Video6 0.0 0.0 0.273 0.047 0.297 0.123
Video7 0.871 0.868 0.739 0.866 0.829 0.835
Video8 0.367 0.398 0.09 0.372 0.368 0.319
Video9 0.745 0.812 0.364 0.804 0.778 0.7

Video10 0.613 0.3 0.0 0.471 0.439 0.365

Average F1-score 0.533 0.478 0.331 0.537 0.565

To get a better insight into the classification errors, we look at the generated probability
estimate for each feature set. The probability estimate is a score from 0 to 1 that indicates
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how likely an instance belongs to one of the two classes. In normal circumstances, an SVM
outputs a discrete value that indicates the side of the margin the instance lies on. It is pos-
sible to output a probability estimate for each instance instead. To do so, one can consider
the distance of the object to the margin instead of only the side of the hyperplane it is on.
Platt uses this value as the input for a parametrized sigmoid function to retrieve a proba-
bility estimate[29] between 0 (lowest probability the instance shows a smile) and 1 (highest
probability instance shows a smile). This is the option we use for generating the probability
estimates, and is readily available in the LIBSVM library.

We look at the probability estimate generated for a few of these AM-FED videos. Figure
20 shows the probability estimates generated by the Combined Genki classifier for AM-FED
Video 1, 6, 7 and 10. The plotted probability estimates are accompanied by a couple of
highlighted frames which were assigned a high, low or in the middle probability estimate.
The red line indicates the threshold that would result in an optimal F1-score for each of
the videos. This is calculated by selecting each occurring probability estimate from each
of the classified instances and using it as the discriminating threshold between smiles and
non-smiles. The red line indicates the threshold that would result in the most correct classi-
fications.

For Video 1, the probability estimates are maxed out around patches that contain ground
truth smiling data, and the lowest scores show distinct non-smiling faces. This indicates
that the classifier is able to distinguish between the apex smile and very light, closed mouth
smiles, but the classifier is not discriminative enough. The difference in label style in in
GENKI and AM-FED seems to play a role in this. For instance, frame 163, 439, and 576
arguable depict a smile, but were not labeled as such by the majority of labelers of AM-
FED. If a classifier can get a better sense of the labeling-style used in the primary data using
transfer learning and as a result only contain the actual apex as part of the smile, this might
be positively influence the performance. The same observation can be made for Video 8; it
also matches out on the ground truth smiles, but also triggers some false positives which
arguably depict an apex smile.

For video 6 and 10 a main issue seems to be noise; consecutive frames jump around a
lot in value. For Video 6 almost none of the frames is actually detected as a smile, as its
traits are very subtle. It is expected that transfer learning might smooth out these plots, as
the classifier can learn that those minor changes are not indications of smiling behaviour.
It seems unlikely that this jumpiness is the result of noise in face point placement that can
not be distinguished from the subtle smiles depicted, as a 91.324% accuracy was achieved
during cross validation for this Video (see Table 4)

5.3 P R I M S T R AT E G Y E VA L U AT I O N

In the prim case, a section of each of the AM-FED videos is selected for training using the
strategy discussed in Section 4.3.5. We assume that its performance will be lacking, as it
is not certain that the small number of selected instances will be a good representation of
smile behaviour over the whole video and there is no additional data that provides a general
decision function for smile detection. On a first glance Table 6 confirms our expectations.
Although we draw data from the set we evaluate on, the performance is in most cases
worse than using the auxiliary data. Table 7 highlights this difference in performance by
subtracting the average F1-score from the prim strategy to those reported in the aux case.
Only Video 1 and Video 6 perform better. The fact that for Video 6 using only primary data
for classification improves overall classification performance is promising for the impact
that transfer learning might have.
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(a) Video 1 (b) Video 6

(c) Video 8 (d) Video 10

Figure 20.: Probability estimates of videos 1, 6, 8 and 10 of AM-FED data set using aux.
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Table 6.: prim: Average F1-scores and their standard deviation using only primary data for
training.

Feature Sets
Primary data Distances Angles Combined All Average F1-score

Video1 0.446± 0.13 0.357± 0.21 0.504± 0.15 0.523± 0.1 0.457± 0.17
Video2 0.301± 0.24 0.421± 0.07 0.446± 0.24 0.295± 0.19 0.366± 0.21
Video3 0.288± 0.17 0.38± 0.15 0.553± 0.23 0.284± 0.15 0.376± 0.21
Video4 0.213± 0.08 0.212± 0.1 0.257± 0.04 0.27± 0.08 0.238± 0.08
Video5 0.304± 0.14 0.312± 0.11 0.457± 0.16 0.278± 0.17 0.338± 0.16
Video6 0.178± 0.06 0.199± 0.09 0.275± 0.14 0.18± 0.08 0.208± 0.11
Video7 0.603± 0.15 0.543± 0.19 0.785± 0.08 0.638± 0.15 0.642± 0.17
Video8 0.222± 0.12 0.244± 0.04 0.172± 0.11 0.358± 0.12 0.249± 0.12
Video9 0.567± 0.13 0.405± 0.2 0.561± 0.12 0.54± 0.12 0.518± 0.16

Video10 0.169± 0.15 0.172± 0.05 0.271± 0.15 0.249± 0.09 0.215± 0.13

Average F1-score 0.356± 0.21 0.334± 0.19 0.453± 0.23 0.389± 0.2

Table 7.: prim performance diff with aux.
Feature Sets

Primary data Distances Angles Combined All Average F1-Diff
Video1 0.168 0.106 0.148 0.2 0.156
Video2 −0.272 −0.297 −0.233 −0.433 −0.309
Video3 −0.337 −0.133 −0.137 −0.393 −0.25
Video4 −0.375 −0.038 −0.139 −0.246 −0.2
Video5 −0.362 −0.357 −0.232 −0.415 −0.341
Video6 0.178 0.199 0.229 −0.117 0.122
Video7 −0.268 −0.325 −0.081 −0.191 −0.216
Video8 −0.145 −0.155 −0.2 −0.01 −0.128
Video9 −0.177 −0.407 −0.243 −0.237 −0.266

Video10 −0.444 −0.128 −0.2 −0.19 −0.24

Average F1-diff −0.203 −0.153 −0.109 −0.203
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Looking at the average performance of prim does not tell the whole story. By considering
the performance of the individual folds, we can get some insight in the performance of our
chosen candidates for Dp

l . As the standard deviation in the results of Table 6 indicate, the
F1-score fluctuates a lot between the different folds. This seems to mean that the quality
for candidates of Dp

l is not consistent, even though our intention was to create equal per-
forming ones. Table 11 shows the individual fold performance for the prim case, and shows
how big of a difference different folds can make. For instance, for Video 2, the performance
drops more than 0.4 between different folds.

5.4 A G G R S T R AT E G Y E VA L U AT I O N

The aggregated case combines the aux and prim strategy to create a single classifier from the
aggregated data to test the remaining primary data on. As mentioned before, we artificially
expand the primary data to improve its importance during the training process. In our
trials, we made the ratio of GENKI auxiliary data to training primary data 2 : 1. The results
from these trials can be seen in Table 8. If we compare average performance to that of the
aux, we get the difference shown in Table 9.

Table 8.: aggr: Average F1-scores and their standard deviation using an aggregation of aux-
iliary and primary data for training.

Feature Sets
Primary data Distances Angles Combined All Average F1-score

Video1 0.584± 0.11 0.535± 0.05 0.555± 0.24 0.601± 0.06 0.569± 0.14
Video2 0.577± 0.14 0.611± 0.13 0.59± 0.12 0.441± 0.28 0.555± 0.19
Video3 0.561± 0.31 0.629± 0.12 0.569± 0.32 0.599± 0.23 0.589± 0.26
Video4 0.575± 0.08 0.567± 0.11 0.572± 0.1 0.589± 0.09 0.576± 0.1
Video5 0.541± 0.16 0.574± 0.11 0.568± 0.12 0.574± 0.11 0.564± 0.13
Video6 0.328± 0.17 0.191± 0.13 0.406± 0.12 0.328± 0.22 0.313± 0.18
Video7 0.748± 0.22 0.746± 0.15 0.786± 0.14 0.795± 0.07 0.769± 0.15
Video8 0.389± 0.08 0.349± 0.07 0.404± 0.05 0.427± 0.07 0.392± 0.07
Video9 0.729± 0.11 0.774± 0.04 0.78± 0.06 0.75± 0.09 0.758± 0.08

Video10 0.431± 0.25 0.459± 0.23 0.287± 0.29 0.46± 0.22 0.409± 0.26

Average F1-score 0.566± 0.22 0.564± 0.2 0.569± 0.24 0.584± 0.2

The standard deviation of the F1-score in Table 8 indicates that like in the prim case, the ac-
tual candidate selected for Dp

l matters a lot for performance. When observing the outcome
per fold in Table 11 and comparing it to the prim strategy, the fluctuation occurs similarly
for the different folds. On average, the aggr case outperforms the prim data, as well as for
the majority of folds. This indicates that using the GENKI data as part of the training data
does have a positive effect on the primary data.

To get a better idea of how aggregated data can improve learning, we revisit the prob-
ability estimate for Video 1, 6, 8 and 10 under the aggregated condition for only the best
performing folds. The best performing folds gave F1-score of 0.700, 0.492, 0.478 and 0.588
for the four videos, which outperforms the aux strategy in all cases by at least 0.1 and at max
0.417. Figure 21 shows these probability estimates. Video 10 seems to have had the most
benefit from the aggr strategy; all values with high probability estimates are centered around
instances with a smile ground truth, and the estimates jump around less. Although around
the 750 frame mark there is a drop when the smile actually appears, it is clear that overall



5.5 A D A P T S T R AT E G Y E VA L U AT I O N 53

Table 9.: aggr F1-score difference with aux.
Feature Sets

Primary data Distances Angles Combined All Average F1-diff
Video1 0.306 0.285 0.2 0.278 0.267
Video2 0.004 −0.108 −0.089 −0.287 −0.12
Video3 −0.064 0.116 −0.121 −0.078 −0.037
Video4 −0.013 0.317 0.176 0.072 0.138
Video5 −0.126 −0.096 −0.122 −0.118 −0.115
Video6 0.328 0.191 0.36 0.03 0.227
Video7 −0.123 −0.122 −0.079 −0.034 −0.089
Video8 0.022 −0.049 0.032 0.059 0.016
Video9 −0.015 −0.038 −0.024 −0.028 −0.026

Video10 −0.182 0.158 −0.183 0.02 −0.047

Average F1-diff 0.014 0.065 0.015 −0.009

the probability estimates are better paired with actual smile data than can be observed in
Figure 20. To some extent the same can be said for Video 6, but the smiling data seems
still very difficult to detect due to noise in the facial data. The values still jump around a
lot. Looking at the probability estimate for Video 1 and Video 8, their performances seem
to have suffered a bit, even though their F1-scores have increased as well. The probability
estimates no longer get maxed out around smile segments. However, false positives are
reduced. For Video 1 it even seems that the after-apex motions can be detected; the slow
detraction of the lips gives a slow reduction of the probability estimates over the whole
smile.

5.5 A D A P T S T R AT E G Y E VA L U AT I O N

In the adapt strategy the classifiers trained for aux are combined with the data used in prim
using an A-SVM. The results of these trials can be viewed in Table 10 and show the worst
and most fluctuating performance as of yet. Table 11 shows that the transfer learning ap-
proach in most cases outputs a performance of 0, and rather underwhelming performances
in most of the non-zero folds. This is rather surprising, since we expected a performance
similar to aggr. This leads to the belief that training the A-SVM currently does not benefit
from the data, and negative transfer takes place.

To research this further, we compare the aux and adapt strategy by evaluating their perfor-
mances on the auxiliary (GENKI) data, rather than the primary data sets. Normally, testing
on the same instances used during training is bad practice for assessing the performance
of a classifier, but in this specific case it shows us how the auxiliary data is influenced by
the transfer learning process. Table 12 shows the F1-scores obtained over the auxiliary data
in the aux strategy. The difference in F1-score between the different feature sets is about
similar to the difference in accuracy reported in the cross-validation results of Table 3. The
fact that not a perfect F1-score of 1 was obtained tells us that no perfect separability was
achieved during training, even with the applied RBF kernel.

Table 13 shows the performance of the adapt strategy on the auxiliary data set (GENKI),
with the same Dp

l as used in the previous evaluated strategies. The table should be read
the same way as Table 10, with the difference that the reported F1-scores does not depict
the average on Dp

u for each fold, but the average score achieved on the GENKI data instead.
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(a) Video 1 (b) Video 6

(c) Video 8 (d) Video 10

Figure 21.: Probability Estimates of videos 1, 6, 8 and 10 of AM-FED data set using aggr.
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Table 10.: adapt: Average F1-scores and their standard deviation using transfer learning.
Feature Sets

Primary data Distances Angles Combined All Average F1-score
Video1 0.105± 0.19 0.152± 0.14 0.194± 0.27 0.415± 0.3 0.216± 0.26
Video2 0.301± 0.3 0.236± 0.2 0.301± 0.3 0.308± 0.28 0.287± 0.28
Video3 0.292± 0.3 0.174± 0.15 0.28± 0.34 0.48± 0.28 0.306± 0.3
Video4 0.211± 0.2 0.146± 0.25 0.258± 0.23 0.576± 0.07 0.298± 0.26
Video5 0.002± 0.0 0.096± 0.1 0.311± 0.27 0.345± 0.27 0.188± 0.24
Video6 0.0± 0.0 0.01± 0.01 0.044± 0.02 0.122± 0.14 0.044± 0.08
Video7 0.133± 0.22 0.119± 0.12 0.237± 0.26 0.51± 0.29 0.25± 0.28
Video8 0.049± 0.07 0.239± 0.17 0.024± 0.03 0.249± 0.18 0.14± 0.17
Video9 0.144± 0.28 0.25± 0.19 0.322± 0.22 0.56± 0.29 0.319± 0.29

Video10 0.178± 0.19 0.211± 0.21 0.11± 0.19 0.265± 0.27 0.191± 0.23

Average F1-score 0.137± 0.23 0.162± 0.18 0.215± 0.26 0.406± 0.29

The F1-scores depicted in this table are dramatically lower than in the aux case, suggesting
that the Adapt SVM used the Dp

l to learn a new decision boundary that differs from the
original SVM to diminish performance on the auxiliary data, but does not actually improve
performance.

Table 13 shows a high standard deviation for some of the videos, indicating that the per-
formance fluctuates per fold, similar as in Table 10. This suggests that it might be possible
that F1-scores between the primary data and the auxiliary data during the adapt strategy
might be connected in some way. For instance, a low score on the GENKI data might mean
a high performance on the primary data, as the new decision boundary classifies very dif-
ferently than before. The per fold F1-score for the auxiliary data is reported in Table 11)
under the name Da. In these per-fold results there does not seem to be a strong connection
present between the adapt Da and adapt performance; low F1-scores on the auxiliary data
can mean both low and high F1-scores on the primary data.
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Table 11.: Individual fold performance for prim, aggr, adapt and adapt tested on GENKI (adapt
Dp

a ) with the Combined feature set. Best performing strategy per fold is indicated
in bold (adapt Dp

a not considered).
Video Strategy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Average

Video1

prim 0.561 0.412 0.697 0.29 0.382 0.679 0.503
aggr 0.701 0.643 0.696 0.02 0.644 0.629 0.555
adapt 0.0 0.0 0.682 0.0 0.46 0.022 0.194

adapt Dp
a 0.517 0.614 0.238 0.641 0.44 0.328 0.463

Video2

prim 0.688 0.204 0.446
aggr 0.711 0.468 0.59
adapt 0.603 0.0 0.301

adapt Dp
a 0.562 0.026 0.294

Video3

prim 0.741 0.811 0.275 0.384 0.553
aggr 0.742 0.799 0.014 0.719 0.569
adapt 0.841 0.272 0.0 0.007 0.28

adapt Dp
a 0.631 0.313 0.111 0.249 0.326

Video4

prim 0.271 0.297 0.201 0.26 0.257
aggr 0.418 0.704 0.571 0.595 0.572
adapt 0.464 0.059 0.0 0.509 0.258

adapt Dp
a 0.16 0.0 0.0 0.581 0.185

Video5

prim 0.192 0.601 0.489 0.547 0.457
aggr 0.376 0.656 0.676 0.564 0.568
adapt 0.081 0.604 0.56 0.0 0.311

adapt Dp
a 0.063 0.821 0.661 0.0 0.386

Video6

prim 0.071 0.383 0.372 0.275
aggr 0.487 0.492 0.24 0.406
adapt 0.025 0.036 0.072 0.044

adapt Dp
a 0.05 0.529 0.77 0.45

Video7

prim 0.873 0.782 0.795 0.83 0.643 0.785
aggr 0.866 0.84 0.865 0.857 0.504 0.786
adapt 0.194 0.185 0.737 0.018 0.052 0.237

adapt Dp
a 0.009 0.047 0.743 0.034 0.004 0.167

Video8

prim 0.031 0.177 0.306 0.171
aggr 0.387 0.478 0.347 0.404
adapt 0.0 0.0 0.073 0.024

adapt Dp
a 0.714 0.553 0.249 0.505

Video9

prim 0.603 0.479 0.508 0.776 0.439 0.561
aggr 0.814 0.753 0.69 0.852 0.791 0.78
adapt 0.295 0.073 0.182 0.728 0.33 0.322

adapt Dp
a 0.357 0.052 0.239 0.041 0.059 0.15

Video10

prim 0.529 0.211 0.118 0.224 0.271
aggr 0.588 0.561 0.0 0.0 0.287
adapt 0.0 0.44 0.0 0.0 0.11

adapt Dp
a 0.131 0.191 0.691 0.011 0.256
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Table 12.: Performance of aux strategy on the GENKI data set.
Distances Angles Combined All

F1-Score 0.941 0.909 0.958 0.977

Table 13.: Performance of adapt on the GENKI data set.
Feature Sets

Dp
l Distances Angles Combined All Average F1-score

Video1 0.113± 0.13 0.123± 0.12 0.463± 0.15 0.453± 0.28 0.288± 0.25
Video2 0.383± 0.38 0.207± 0.2 0.294± 0.27 0.253± 0.1 0.284± 0.27
Video3 0.119± 0.1 0.162± 0.13 0.326± 0.19 0.159± 0.24 0.191± 0.19
Video4 0.269± 0.28 0.399± 0.35 0.185± 0.24 0.366± 0.26 0.305± 0.3
Video5 0.009± 0.02 0.266± 0.3 0.386± 0.36 0.419± 0.37 0.27± 0.34
Video6 0.0± 0.0 0.641± 0.08 0.45± 0.3 0.302± 0.22 0.348± 0.3
Video7 0.162± 0.23 0.462± 0.29 0.167± 0.29 0.205± 0.3 0.249± 0.31
Video8 0.282± 0.28 0.575± 0.01 0.505± 0.19 0.234± 0.28 0.399± 0.26
Video9 0.007± 0.01 0.299± 0.25 0.15± 0.13 0.067± 0.05 0.131± 0.18

Video10 0.295± 0.23 0.541± 0.15 0.256± 0.26 0.297± 0.21 0.347± 0.24

Average F1-score 0.148± 0.23 0.352± 0.28 0.311± 0.27 0.279± 0.28

5.6 C H O I C E O F D p
l R E V I S I T E D

After evaluating the aux, prim, aggr and adapt strategies, evidence seem to suggest that the
last three strategies, especially adapt, are very susceptible to the choice of D p

l , and using a
similar amount of smile and non-smile data is not enough to guarantee consistent perfor-
mance over different folds, or good performance at all.

To get a better understanding of how performance can be improved, we analyze the issue
with the current used folds. Our current strategy for selecting D p

l ends up in three differ-
ent types of data; a data set with a complete smile segment, where the number of smile
instances is smaller than 15, the before-apex moment, and the after-apex moment. Table 14
shows the occurrences of any of these types of candidates per fold. These occurrences do
not seem to coincide consistently with bad performance when comparing it to the F1-scores
obtained in Table 11, so moment of apex for D p

l does not seem to (only) play a deciding
factor.

Table 14.: Results of transfer learning
Video Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6
Video1 before apex before apex after apex segment before apex before apex
Video2 after apex before apex
Video3 before apex after apex segment before apex
Video4 before apex after apex before apex before apex
Video5 before apex segment after apex before apex
Video6 before apex before apex before apex
Video7 before apex after apex after apex segment before apex
Video8 before apex before apex after apex
Video9 segment before apex segment before apex before apex
Video10 before apex after apex before apex segment
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When looking at badly performing vs. good performing folds for the same video, it be-
comes more clear what might be the issue; some normalized face points of the non-smile
and smile instances looks exactly the same in the worse performing folds. See Figure 22,
where there is almost no visible difference between all of the no-smile and smile instances
in fold 4 of Video 3. To a lesser degree this can be seen for fold 4 of Video 1 as well, al-
though with some differing instances as well. This similarity of instances with different
labels is likely caused by the use of consecutive instances during training while applying a
hard threshold. Consecutive frames with very little change can be labeled differently and
instead of these consecutive instances helping us recognize only the apex of the smile, as
previously assumed, the classifier has become more likely to not classify a smile correctly
at all, especially so in the adapt case.

The lack of clear performance between negative and positive instances during trainings
seems the most obvious issue for hindered performance, and is worth investigating. Using
a continuous measure of smile likelihood (by means of a score between 0 and 1) would
remove the limitations of the hard threshold, but is labor intensive and subjective to the
labeler. As an alternative approach, we try to resolve this issue by keeping the same labeling
and trying out two altnerative approaches for choosing Dp

l instead.

1. By increasing the size of Dp
l : We include 100 non-smiling instances and 35 smiling

instances, using the same selection technique as before. Complete segments are not
considered.

2. By seperating the data more: We choose 60 consecutive non-smiling instances, and 15
consecutive smiling instances (same as before), but the non-smiling frames have to be
at least 50 frames away of any of the smiling segments, so that it is unlikely that any
transitional data is included.

The per-fold performance of the first new candidate selection using the Combined feature
data can be observed in Table 15 on the left, the second one on the right. Unfortunately, in
both cases the adapt case does not benefit from the extra and possible more distinct data at
all, which indicates that there is another problem at hand. The aggregation does seem to
benefit from the extra available data in both cases. Table 17 repeats the results from aux,
aggr with our first proposed strategy for Dp

l and the alternative approaches for side-by-side
comparison. Overall, the aggr with increased size of Dp

l performs best, with a 0.076 better
performance than aux. Unfortunately this is not a very significant increase overall, and
additionally it does not guarantee better performance over all the videos.
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Fold 3 (best)

Fold 4 (worst)

Video 1

Fold 2 (best)

Fold 4 (worst)

Video 3

Figure 22.: Instances of normalized instances in Dp
l for best and worst performing folds.

Green shows the smiling instances. Red shows the non smiling instances.
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Table 15.: Individual fold performance for prim, aggr and adapt with the Combined feature set
for the alternative proposed strategies for selecting Dp

l .
Video Fold 1 Fold 2 Fold 3 Average

Video1
prim 0.598 0.509 0.553
aggr 0.705 0.659 0.682
adapt 0.16 0.0 0.08

Video2
prim 0.655 0.26 0.458
aggr 0.679 0.404 0.542
adapt 0.624 0.0 0.312

Video3
prim 0.739 0.739 0.739
aggr 0.726 0.798 0.762
adapt 0.82 0.295 0.557

Video4
prim 0.25 0.222 0.057 0.176
aggr 0.407 0.79 0.475 0.557
adapt 0.469 0.1 0.19 0.253

Video5
prim 0.485 0.448 0.548 0.494
aggr 0.565 0.654 0.613 0.611
adapt 0.229 0.525 0.034 0.263

Video6
prim 0.477 0.477
aggr 0.387 0.387
adapt 0.02 0.02

Video7
prim 0.869 0.557 0.713
aggr 0.86 0.674 0.767
adapt 0.191 0.0 0.096

Video8
prim 0.255 0.255
aggr 0.324 0.324
adapt 0.0 0.0

Video9
prim 0.493 0.766 0.752 0.67
aggr 0.868 0.823 0.851 0.847
adapt 0.064 0.33 0.0 0.131

Video10
prim 0.386 0.174 0.28
aggr 0.485 0.136 0.31
adapt 0.178 0.0 0.089

(a) Results of increasing size of Dp
l to 100 (Alternative 1).

Video Fold 1 Fold 2 Fold 3 Fold 4 Average

Video1
prim 0.414 0.486 0.582 0.494
aggr 0.451 0.437 0.431 0.44
adapt 0.02 0.0 0.0 0.007

Video2
prim 0.416 0.416
aggr 0.717 0.717
adapt 0.0 0.0

Video3
prim 0.625 0.731 0.678
aggr 0.714 0.749 0.732
adapt 0.0 0.0 0.0

Video4
prim 0.258 0.377 0.244 0.226 0.276
aggr 0.315 0.728 0.5 0.528 0.518
adapt 0.026 0.0 0.48 0.0 0.127

Video5
prim 0.387 0.614 0.418 0.473
aggr 0.681 0.668 0.678 0.676
adapt 0.459 0.26 0.051 0.257

Video6
prim 0.568 0.719 0.328 0.538
aggr 0.706 0.726 0.7 0.711
adapt 0.0 0.0 0.0 0.0

Video7
prim 0.796 0.796
aggr 0.862 0.862
adapt 0.0 0.0

Video8
prim 0.249 0.281 0.265
aggr 0.311 0.287 0.299
adapt 0.257 0.0 0.129

Video9
prim 0.692 0.691 0.692
aggr 0.715 0.729 0.722
adapt 0.108 0.0 0.054

Video10
prim 0.46 0.246 0.17 0.292
aggr 0.401 0.315 0.596 0.437
adapt 0.0 0.0 0.225 0.075

(b) Results of nonconsecutive smile and non-smile instances selection
in Dp

l (Alternative 2).

Table 17.: Performance of aux and aggr strategy using different approaches to choosing in-
stances for Dp

l with the Combined feature set.

Video aux
aggr

original Dp
l

aggr increased
size of Dp

l

aggr nonconsecutive
instance selection Dp

l
Video 1 0.356 0.555 0.682 0.44
Video 2 0.678 0.59 0.542 0.717
Video 3 0.69 0.569 0.762 0.732
Video 4 0.396 0.572 0.557 0.518
Video 5 0.69 0.568 0.611 0.676
Video 6 0.047 0.406 0.387 0.711
Video 7 0.866 0.786 0.767 0.862
Video 8 0.372 0.404 0.324 0.299
Video 9 0.804 0.78 0.847 0.722
Video 10 0.471 0.287 0.31 0.437

Average F1-score 0.537 0.569 0.613 0.581
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5.7 R E V I S I T I N G T H E R E S E A R C H Q U E S T I O N S .

After reporting and discussing the results of the different evaluation strategies, and the
exploration of some additional improvements, we are ready to revisit the research question
of this thesis:

Research Question. Can transfer learning improve the detection rate of spontaneous smiles when
applied on a generically trained classifier trained with geometric features?

First off, performing the aux strategy has shown us that there is indeed merit to the idea
that a general classifier does not perform well out of the box for each and every face. The
GENKI data set has been used in multiple researches as a general, all purpose data set
with high performance rate, but now that it is used in a context where it has to consistently
perform well on a single face over multiple frames and smile segments, it becomes clear that
smiles in faces like Video 6 and Video 10 are difficult to detect, causing consistent failure.
However, the application of transfer learning as a solve-all technique is problematic, as can
be understood from the above discussed results. We will support this further by focusing
on Research SQ 2:

Sub-Question 2. How does transfer learning compare to alternative approaches of individualized
smile detection?

The proposed alternatives to transfer learning have been prim and aggr of which the sec-
ond has outperformed our transfer learning efforts for each of the primary data sets, and
was more reliable across different folds. Yang et al. have noticed in their own research that
the aggr strategy performs similar to adapt, but this is not the case for us. Possibly this might
mean a problem in options that have no been further explored like parameter choice dur-
ing training, or negative transfer learning due to the primary data not being representative
enough for the rest of the data. However, when using transfer learning for individualized
smile detection in real life applications, such parameter tweaking or finding a representative
subset is not something that can be easily performed. On the other side, given the promis-
ing result of aggr without putting in much fine-tune effort seems to be a better alternative,
even though training might take longer. Additionally the influence of aggr is more easily
tunable by duplicating the used primary data less or more. For this reason, transfer learning
by means of an A-SVM does not seem like the most appropriate method for individualized
smile detection.

Nevertheless, it is important to mention that aggr is a better, but a not perfect solution
either for individualized smile detection in our evaluation, as it does overall improve per-
formance with regards to the auxiliary data, but only slightly, and with out any guarantee
that it will outperform the aux strategy for every case. In its current form adding a portion
of the primary data during is more trouble than the performance boost that it might give.
Further experiments with auxiliary and primary data ratios for aggregated learning might
prove effective in improving the benefit of the aggr strategy. Additionally, more research
towards choosing a good heuristic for Dp

l could mean a more consistent performance, even
for different faces.

Another issue that influenced our results negatively is the different labeling efforts in the
AM-FED and GENKI data set that we have witnessed, for example, in Video 1, where closed
smiles were not labeled as smiles, but were considered smiles nonetheless, in all likelihood
because the auxiliary data includes samples of closed smiles labeled as smiles. In retrospect
an instance-based transfer learning approach might have helped us exclude these instances
for consideration during transfer learning in these cases.
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We now discuss the SQ:

Sub-Question 1. What geometric features prove effective in personalized smile detection?

From the feature sets we tested, we can say that Combined and All perform well enough
to compare to the state of the art when enough training data is available during training on
the primary data set (see Table 3 and 4), so as a baseline they perform well. We created the
Combined set as a compressed case of All to contain the most distinct features to distinguish
between smiles and non smiles. The fact that their performance is similar seems to mean
we succeeded in this regard. The lower score of Distances, Angles and Orientation compared
to Combined indicate that there is information to be gained from the different feature sets;
which is as expected. A concern of our geometric-based feature approach was possible
noise in face point placement causing errors in smile detection for faces showing only very
subtle smiles. This, however, did not pose a problem, as the cross-validation for each of the
AM-FED videos resulted in at least 87% accuracy with the Combined feature set, even for
Video 6 and 10 that only show subtle smiles.

That the feature sets are appropriate for individualized smile detection can be concluded
from the improved performance for each of the videos in the aggr strategy compared to the
aux one. The performance becomes better when more instances from the primary data are
available in the training set, which shows that some important variances are available in
the feature set that helps the classification process for new faces.



6
C O N C L U S I O N

In our research we aimed to improve smile detection performance on individual faces by
applying transfer learning as an additional step in the machine learning process. We started
out with training a Support Vector Machine on a large generic set of smile data, called the
auxiliary data, and used this to train an Adaptive SVM, together with a subset of data of
the target face, called the primary data. We then tried out a variety of geometric low level
feature sets like angular, distance and head-orientation data, which we expected to capture
the differences between different people’s smiles well. The data used during evaluation
consists of the GENKI data set as our auxiliary data set over all trials, and 10 videos from
the AM-FED data set as 10 separate primary data sets.

We evaluated our approach of transfer learning by means of an A-SVM (adapt) by compar-
ing it to the performance of the SVM trained on auxiliary data alone (aux) an SVM trained
on some primary data alone (prim), and to an SVM trained on the combination of the auxil-
iary data and primary (aggr). We found that the aggr case performed best over all different
strategies, with least fluctuation and best F1-score improvement compared to the aux case
over each of the different methods. Previous research has suggested that an approach like
aggr should perform similar to adapt, but in our research we were not able to get the same
performance. The most likely cause seems to be the result of negative transfer, likely caused
by bad choices for Dp

l . More research in how to choose good values for Dp
l that are repre-

sentative for Dp but doesn’t require complete knowledge about the primary data might be
a possible solution. This should also be the strategy to take for improving the aggr strategy
performance, as in its current form the effort of adding primary data during training does
not out weight the benefits. Additionally, our current research seemed to suffer from incon-
sistent labeling between the AM-FED and GENKI data set, which might be better resolved
using an instance-based transfer learning approach than by applying the A-SVM.
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Name AMFED ID
Frames
Before

Pruning

Frames
After

Pruning
Smile Frames Segments Apex

Video 1
1e7bf94c-02a5-

48de-92bd-
b0234354dbd5

740 740 104 5

Video 2
d880e27b-f6f3-

4c35-b400-
af0e19f05d41

856 638 355 3

Video 3
502ba501-f30c-

4abb-af2f-
d725456d1b5a

876 748 288 4

Video 4
516fc1bb-cfcc-

4a70-b466-
a0a69112e074

887 887 147 3

Video 5
4294f380-8e04-

41ff-a453-
3d7ad4b0a0d3

871 827 316 4

Video 6
24d782fd-cf97-

4c64-b54a-
cb422ac479d6

876 876 334 3

Video 7
ee5e0ebd-5f86-

4a0c-8690-
a13c8639cc82

869 869 506 4
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Name AMFED ID
Frames
Before

Pruning

Frames
After

Pruning
Smile Frames Segments Apex

Video 8

845dd4d7-
2e42-4d31-

a96d-
47c5ecf722e6

873 873 53 2

Video 9

2bde5de6-
0d0c-497a-

82bd-
8cc441b8b0f3

846 836 277 5

Video 10
5540d693-8f69-

47bd-aa95-
24227a949290

874 874 76 3

Table 18.: Amfed Data used
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