
A New Method to Determine Maximum Perturbation Growth in a

Quasi-Geostrophic Ocean Model

Aleid Oosterwijk

July 13, 2016

Abstract

Analysing growth of initial perturbations in dynamical systems is an important aspect of predictability
theory because it tells us which perturbations have the strongest influence on the system. For linear
systems, these perturbation are the modes with the largest eigenvalues. For nonlinear systems, we
consider the conditional nonlinear perturbation (CNOP). These can be found by solving a nonlinear
constrained maximization problem, which is typically done using sequential quadratic programming
(SQP), a routine that requires an adjoint model. Such adjoint models are not always available. Therefore,
we study two adjoint-free methods: PSO and COBYLA. Because such methods typically work best on
low-dimensional problems, we apply dimension reduction. We use the proposed methodology to find the
CNOPs of a quasi-geostrophic ocean model. We find that COBYLA outperforms PSO and is able to
find reasonable CNOPs, although at a higher computational cost than conventional adjoint-based methods.

1 Introduction

Dynamical systems are widely used to describe physi-
cal systems such as the atmosphere, ocean and biolog-
ical processes. The evolution and future states of the
system depend on the initial state: variations in the
initial state can lead to different future states. Study-
ing the growth of initial perturbations is important
in predictability theory, for example in weather fore-
casting. The European Centre for Medium-Range
Weather Forecast (ECMWF) uses linear singular vec-
tors (LSV) for generating the fastest growing initial
perturbations for the ensemble forecast [13]. The
LSV method is based on a linearisation of the sys-
tem, the tangent linear model (TLM) [5]. The valid-
ity of this linearisation however, is subject to discus-
sion [13]. Therefore, nonlinear equivalents of the LSV
have been developed to determine the fastest growing
initial perturbations, for example nonlinear singular
values (NSVA) [12], and conditional nonlinear opti-
mal perturbations (CNOPs) [13]. The CNOP can be
obtained by maximising an objective function sub-

ject to constraints. This is a constrained optimisation
problem and can be solved by several numerical op-
timisation techniques. A common method is sequen-
tial quadratic programming (SQP) [13, 14, 18]. This
method however, is only suitable for models for which
an adjoint model is available. The adjoint model is
the transpose of the tangent linear model, and can
be used to obtain gradients of the objective function
with respect to the initial condition, from gradients
with respect to the output [8]. In this way the ini-
tial input which optimises the objective function can
be efficiently determined. However, for many models
the calculation of the adjoint model is not straight-
forward. For these models derivative-free methods
are needed.

In this paper two of such methods are investigated,
particle swarm optimisation (PSO) and constrained
optimisation by linear approximation (COBYLA).
PSO has recently been successfully applied for de-
termining CNOPs [11]. PSO is inspired on the be-
haviour of swarms, such as flocks of birds or schools
of fish, in which each individual seeks to improve its

1

position and responds to the behaviour of its neigh-
bours. COBYLA [16] is based on the Nelder-Mead
simplex method [14], but adapted for constrained op-
timisation. Also other derivative-free optimisation
methods could be considered to find CNOPs of mod-
els for which no adjoint model is available. One could
think of adapted local search methods, such as sim-
ulated annealing, or other ensemble based methods,
such as genetic algorithms. Many of these are de-
scribed in Nocedal and Wright [14]. The efficiency
of these methods largely depends on the size of the
search space, i.e. the dimension of the domain of the
objective function. The performance of derivative-
free optimisation algorithms quickly decreases when
the dimension of the search space is increased. This is
known as ‘the curse of dimensionality’, which is less
present in derivative-based methods. Therefore, in
order to apply PSO and COBYLA to large systems,
dimension reduction is necessary. Based on Mu et al.
[11], this will be done applying PCA (principal com-
ponent analysis).

As shown by Mu et al. [11], a combination of PCA
and PSO can be applied to calculate CNOPs of the
ZC model, to find the optimal precursor of ENSO
events. They show that an increase of the search
space dimensionality leads to a smaller error and
larger running time. The optimal amount of dimen-
sions is found to be 30, the original dimension of the
search space is 1080. The spatial structure of the
CNOPs found is comparable to the CNOPs found by
SQP, the objective value is significantly lower due to
the dimension reduction, but converges to an accept-
able solution in 85% of the cases. The runtime is
approximately three times larger for the PCA based
PSO than for SQP.

The derivative-free methods under investigation,
COBYLA and PSO, are compared, in terms of ac-
curacy and speed, to SQP, which requires the ad-
joint model. The methods are applied to a quasi-
geostrophic ocean model. In Section 2 the model and
the CNOP will be defined. In Section 3 we will ex-
plain the algorithms of PSO and constrained opti-
mization by linear approximation (COBYLA) [16],
as well as the dimension reduction methods. In Sec-
tion 4 the effect of different termination conditions
and dimensionality on the performance of COBYLA

is discussed, as well as the results for PSO. Then
we will conclude that COBYLA is able to obtain the
CNOPs, albeit at higher computational cost and with
less accuracy than SQP. We will end with a discus-
sion about the performance of COBYLA and the ap-
plicability of COBYLA to solving CNOPs in other
systems.

2 Theory

The explanation of CNOP is based on Mu et al. [13]
and Terwisscha van Scheltinga and Dijkstra [18].

2.1 CNOP

Assume the system can be described by the following
model, which is discretised in space:

∂w

∂t
+ F (w) = 0, (1a)

w|t=0 = w0 (1b)

where w(t) = (w1(t), . . . , wn(t)), with
(wi, t) ∈ Λ × [0, T], F is a nonlinear opera-
tor, w0 is the initial state, Λ is a domain in Rd
and T ∈ R+. Note that in our implementation
w is the state vector consisting of values of ψ at
each gridpoint and d = 2400. Suppose the initial
value problem is well-posed and M is the nonlinear
propagator from 0 to time T , so w(T) = M(w0)(T)
is well-defined. Let x̄(t) and x̃(t) be two solutions of
the system, with initial conditions x̄0 and x̄0 + x0,
respectively. Choose x̄0 a specific (in our case, steady
state) solution to the system and x0 a small initial
perturbation to this state. Integrating the state and
the perturbed state is done by applying the nonlinear
propagator, i.e. M(x̄0)(T) and M(x̄0 + x0)(T).

The goal is to find the initial perturbation which
causes the largest perturbation after time T . Of
course, the initial perturbation should be restricted
to study physically realistic situations. We choose the
constraint condition ||x0|| ≤ δ, for a chosen norm
||.||. The conditional nonlinear optimal perturbation
(CNOP) is defined as the perturbation xδ0 such that

J(xδ0) = max
||x0||≤δ

J(x0), (2)

2

where

J(x0) = ||M(x̄0 + x0)(T)−M(x̄0)(T)||. (3)

We see that finding the CNOPs of a system is a con-
strained optimisation problem.

2.2 Quasi-Geostrophic Model

We will apply our techniques to a quasi-geostrophic
ocean model, as described in detail in Terwisscha van
Scheltinga and Dijkstra [18].

The model has a domain which is a rectangular
ocean basin of size L × L and depth D. It is sit-
uated on a midlatitude β-plane with θ0 = 45◦N ,
f0 = 2Ω sin θ0 where Ω is the angular veloc-
ity of the rotation of the Earth. The meridional
gradient of the Coriolis parameter is denoted by
β0. We assume constant density and a wind-forcing
τ = τ0[τx(x, y), τy(x, y)], where τ0 is a typical am-
plitude. The symmetric wind-stress profile is given
by

τx = − cos(2πy/L),

τy = 0.

The governing equations are made dimensionless.
This is done with horizontal length scale L, vertical
length scale D, horizontal velocity scale U , advective
timescale L/U and characteristic wind stress vector
amplitude τ0.

The dimensionless barotropic quasi-geostrophic
model of the flow for the vorticity ζ and the
geostrophic streamfunction ψ is[

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
[ζ + βy]

= Re−1∇2ζ + ατ

(
∂τy

∂x
− ∂τx

∂y

)
(4a)

ζ = ∇2ψ, (4b)

which can be found in Dijkstra [4] as (6.3), where we
use that there is no bottom topography, no bottom
friction and a rigid lid approximation, which means
we assume no surface deformation.

The horizontal velocities are given by

u = −∂ψ
∂y

, v =
∂ψ

∂x
.

The parameters in the governing equation, Re, the
Reynolds number, β, the planetary vorticity gradient
parameter and ατ , the wind stress forcing strength,
are defined as follows.

Re =
UL

AH
, β =

β0L
2

U
, ατ =

τ0L

ρDU2
.

Here g is the gravitational acceleration, AH is the
lateral friction coefficient. Under the assumption
of a Sverdrup balance, which means the vorticity
change by wind stress is compensated with merid-
ional transport, the horizontal velocity scaling be-
comes U = τ0

ρDβ0L
, from which it follows that

ατ = β. All parameter values are chosen equal to
the values in Terwisscha van Scheltinga and Dijkstra
[18].

The boundary conditions are given by

ψ =
∂ψ

∂x
= 0 at x = 0 and x = 1, (5a)

ψ = ζ = 0 at y = 0 and y = 1. (5b)

The space-discretisation is done using second or-
der central differences. The gridsize that is used in
the implementation is 60× 40. This implies that our
state vector, which consists of the ψ values at the
gridpoints, has length 2400. Time integration is done
using Crank-Nicolson [18], with time-steps of 0.001,
or in dimensional units, 1.75 days. The CNOPs will
be calculated for Re = 25 and Re = 50. The
steady states of the model at these values of Re are
shown in Figures 1 and 2.

The norm that is implemented is the kinetic en-
ergy norm as used in Terwisscha van Scheltinga and
Dijkstra [18], which is based on the kinetic energy
E = 1

2

∫
V

(u2
0 + v20)dxdy.

For the discretised QG model with state vector x0

the kinetic energy norm is calculated as follows. Let
K be a linear operator that maps x0 to the velocity
vector, calculated from neighbouring gridpoints. The

3

Figure 1: Streamfunction of the steady state at
Re = 25 of the quasi-geostrophic ocean model

Figure 2: Streamfunction of the jet-up steady state
at Re = 50 of the quasi-geostrophic ocean model

kinetic energy norm1 then is

||x0||E =
1

2
∆x∆y(Kx0 ·Kx0)

=
1

2
∆x∆y||Kx0||22. (6)

3 Methods

We will compare the performance of the adjoint-free
methods PSO (which has been implemented in Mu
et al. [11] the calculate CNOPs) and COBYLA [16] to
SQP, an algorithm that requires the adjoint model. A
detailed description of the SQP method can be found
in Mu et al. [13], Nocedal and Wright [14]. An appli-
cation of the SQP method to the QG model can be
found in Terwisscha van Scheltinga and Dijkstra [18].
The algorithms of PSO and COBYLA are described
below, and are illustrated using a 2D optimisation
problem.

3.1 Particle Swarm Optimisation

Following the methods in Mu et al. [11] we have im-
plemented PSO to solve the optimisation problem.
PSO is based on swarm behaviour. The algorithm
works as follows. Start with a randomly chosen, uni-
formly distributed, group of points in the domain,
called the swarm. Each point has a velocity, cho-
sen randomly from a uniform distribution. In each
iteration, the objective value of each particle is eval-
uated. If there is improvement in objective value,
the best global position and the best position of each
particle is updated. The particle speeds are adapted
to go towards the best global and the best local posi-
tion. Subsequently the particle positions are updated
using the newly determined velocities, checking the
constraint condition and, if necessary, adapting po-
sitions to meet the constraint. Then the objective
values are calculated again, starting the next itera-
tion. An illustration of the PSO algorithm in 2D is
shown in Figure 3. A more detailed description of the
implementation can be found in Nocedal and Wright
[14]. The advantage of this method is that it is very

1Note that this is actually a 2-seminorm. However, it can
still be used to measure the constraint and objective value.

4

global best

adapt velocities and positions

to local best

to local best

Figure 3: Illustration of PSO algorithm iteration in
2D. The blue dots denote particles. The darker blue
arrows denote their velocities. The blue dashed ar-
rows denote the velocity towards the global best po-
sition. The purple dashed arrows denote the velocity
towards the local best position. The lighter blue dot
denotes the particle at the global best position.

intuitive and requires no further information on the
problem other than the constraint and objective func-
tion. The drawback is that it might not be optimal
in terms of accuracy and speed, the algorithm is very
sensitive to the parameter choices. Some literature is
available determining some of the optimal parameter
settings. In this study we used the values described
in Li-Ping et al. [10]. However, many parameters are
problem-dependent and are therefore unknown a pri-
ori. A few workarounds have been added to make
sure the algorithm does not get trapped in a local
optimum prematurely, but still there is no guaran-
tee that the solution found is indeed the global op-
timum. An example of a workaround is the inclu-
sion of ‘scouts’, based on the cognitive-only version
in Engelbrecht [6] and different ways of handling the
constraint, as described in Coath and Halgamuge [3].

3.2 COBYLA

Constrained optimization by linear approximation,
COBYLA, is an optimisation algorithm that itera-
tively defines a simplex on which the objective func-
tion is linearised and optimised, after which a new
simplex is chosen. The new simplex is chosen in or-

der to improve the objective value or the shape of the
simplex. The size of the simplex vertices is reduced
during the process, starting from size ρstart. The pro-
cess terminates when the vertices have size ρend. An
illustration of this process in 2D is shown in Figure 4.
The constraint is implemented using a penalty func-
tion, which is adapted during the iteration process.
A detailed description of the method can be found in
Powell [16]. COBYLA is based on Nelder-Mead [14].
For the Nelder-Mead method convergence has been
proved for strictly convex functions in one and two
dimensions [9]. This clearly does not apply to our
objective function, but Nelder-Mead is widely used
and generally shows good convergence results [14].
The COBYLA routine has been implemented using
ρstart = 0.1, and varying ρend. The method is ini-
tialised with a position in the search space, randomly
chosen from a uniform distribution. A step-by-step
guide for the implementation of COBYLA in combi-
nation with PCA can be found in Appendix B. Com-
paring COBYLA to PSO, observe that in COBYLA
there are much less parameters that can be tuned.
Only the initial step size and the final step size can
be chosen, ρstart and ρend. This step size translates
roughly to the size of the simplex. Another difference
with PSO is that while both algorithms find only lo-
cal optima, PSO can be thought of as more global.
This is because PSO covers a large parts of the search
space simultaneously. This means that theoretically
we would expect PSO to perform better on functions
with many local optima, while we expect COBYLA
needs less objective function evaluations. As a last
remark, it should be noted that we do not expect
PSO and COBYLA to perform as good as the SQP
method, as this makes use of the adjoint model, while
PSO and COBYLA do not.

3.3 Results 2D Optimisation Problem

To illustrate COBYLA and PSO, a suitable 2D con-
straint optimisation problem has been selected. It
is based on the Simionescu function [17], which is
adapted to be slightly asymmetric. It is a minimisa-

5

 	

2

1

3
 ρ st

ar
t

ρ
end iterations

Figure 4: Illustration of COBYLA algorithm in 2D.
The initial simplex with vertices of size ρstart is de-
noted by 1, subsequent simplexes in light blue are
denoted by 2 and 3. The final simplex has vertex
length ρend.

tion of

F (x, y) = 0.1xy,

subject to the constraint

x2 + y2 ≤
(

1 + 0.2 cos

(
8 arctan

(
x

y + 0.1

)))2

.

In Figures 5 and 6 an example run of both PSO and
COBYLA is shown on this test function. The func-
tion values of the Simionescu function are depicted by
the colors, the white shape is the constraint boundary
and the plus-signs denote objective function calls. In
Figure 5 all particles are shown, their colors chang-
ing from dark blue in the first iteration to dark red in
the last iteration. In Figure 6 one optimisation run
by COBYLA is shown, the final solution shown as the
red plus-sign. Note that PSO uses many more objec-
tive function calls than COBYLA. This implies that
the algorithm is less efficient. On the other hand,
we see that PSO finds both the optimal and the sub-
optimal solution, while COBYLA finds only the opti-
mal one. This means that while COBYLA could get
stuck in the sub-optimal solution, PSO finds both
and therefore will be more likely to return the right
optimum. Furthermore, note that if one would be
interested in finding multiple good solutions, instead
of only the global optimum, PSO would therefore be
more efficient as it finds several good solutions in one

Figure 5: Example PSO optimisation run on Simi-
unescu function with contour plot of function values
and constraint boundary in white. The plus-signs de-
note objective function calls. All particles are shown,
depicted in dark blue in the first iteration, changing
color up to red in the last iteration.

optimisation run. Of course this result could also
be obtained by running COBYLA several times with
different initial conditions.

3.4 Dimension Reduction

Because in general derivative-free optimisation algo-
rithms do not perform very well on large-dimensional
search spaces, a dimension reduction is necessary be-
fore applying COBYLA and PSO. As argued in Os-
borne and Pastorello [15], in a driven dissipative sys-
tem like the QG model, any state can be approxi-
mated in a low dimensional space. This space con-
sists of attractors of the system. The system can,
after long evolution, get into a steady state that con-
sists of these attractors. Using a training set, a ma-
trix consisting of data of a long evolution, we obtain
these attractors as the principal components of the
data set. According to Osborne and Pastorello [15],
these attractors are a good low-dimensional approxi-
mation to the system. The original search space has
2400 dimensions (40×60). This we will reduce to 50
up to 200 dimensions, to see which amount of dimen-
sions yields the optimal results during optimisation.

6

Figure 6: Example COBYLA optimisation run on
Simiunescu function with contour plot of function
values and constraint boundary in white. The plus-
signs denote objective function calls. The red plus
sign is the final solution.

PCA is implemented as dimension reduction
method, because it is a widely used and effective
dimension reduction method. PCA in combination
with PSO has been implemented for a different model
in Mu et al. [11]. For PCA, a training set is used,
which is a matrix of a data set generated by integrat-
ing the model for 10 years with an additional noise
on the wind-stress. The dimensionless wind stress is
τx = − cos(2πy) + rtζ sin(2πy) where rt = 0.1 is
the wind stress parameter and ζ is a random vari-
able from a Gaussian distribution with mean 0 and
variance 1. In this way the training set is obtained.
Each column of the training set is a state vector at
a certain time. All rows of the training set are cen-
tered (the mean of each grid point is shifted to zero),
to obtain the centered training set X. The principal
components (PCs) are obtained using an eigenvalue
decomposition of the matrix XXT , which is similar
to the covariance matrix of X.

XXTa = λa

The eigenvectors ai, i = 1, . . . , d obtained this way
are called empirical orthogonal funcions (EOFs). The
EOFs corresponding to the largest k eigenvalues ac-
count for a fraction of the variance in the data equal

to the fraction of the sum of the corresponding eigen-
values and the sum of all eigenvalues. So PCA is a
reduction method that conserves as much variance as
possible. The principal component ci corresponding
to the EOF ai is the projection of X onto this EOF:

ci = Xai

Now any state x can be approximated in k dimen-
sions as

x ≈ xR =

k∑
i=1

αiai

where xR is the reduced state, ai is the ith EOF and
αi is the contribution of ai to xred. When k = d, the
coordinate transformation is exact and xred = x. A
detailed description of PCA can be found in Hannachi
[7].

To quantify the loss of precision due to dimension
reduction we introduce a measure of the relative error
like in Mu et al. [11]:

ER =
||X −XR||22
||X||22

(7)

where XR is the approximation of X in reduced di-
mensionality, XR =

∑k
i=1Xai.

The dimension reduction is done for a training set
for the case Re = 25 and a training set for the
case Re = 50. These are the regimes for which
the CNOPs will be calculated. The CNOPs as cal-
culated with SQP are projected onto the EOFs and
the contribution of the principal components to the
CNOPs are shown in Figure 7. Both for Re = 25
and for Re = 50 we observe a steep decrease in
contribution in approximately the first 50 PCs, show-
ing that at 100 PCs already the contribution is quite
low. The contribution of PCs between 200 and 400
is larger for Re = 50 than for Re = 25. From
500 PCs onward the contribution seems comparable
again. However, we are not able to draw strong con-
clusions about the differences in the projections for
both Reynolds numbers. It should be noted that the
variance of the training sets is small. Only as many
as 10 PCs are needed to account for more than 90% of
the total variance in the data sets, for both Re = 25
and Re = 50.

7

Principal component
0 100 200 300 400 500 600 700 800

C
on

tr
ib

ut
io

n

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Re = 25
Re = 50

Figure 7: Contribution of first 800 principle com-
ponents to the CNOP calculated by SQP as shown
in Figures 10 and 9, projected onto the EOFs for
Re = 25 and Re = 50, respectively.

3.4.1 Fourier modes

In addition to PCA, also other methods to reduce the
dimensionality of the problem have been considered.
Fourier modes have also been used as basis functions
instead of EOFs. These are defined as

φnm = sin(nπx) sin(mπy), (8)

with x, y ∈ [0, 1] and n,m ∈ N. The effectiveness
of Fourier modes has been compared to principal
component analysis by reducing a CNOP found by
the SQP algorithm to a varying number of dimen-
sions. The Fourier modes are ordered by increasing
k, k = n2 +m2, so that φ22 < φ31. Note that the use
of Fourier modes is restricted by the gridsize. When,
for example, using m = 40, aliasing will occur as the
y-axis is discretised in 40 steps.

In Figure 8 we see that up to 80 dimensions, the
reduction method using Fourier modes leads to a
smaller error. However, when the projected space
is larger than 80 dimensions, it is favourable to use
PCA. This means that PCA will be used in this study,
as this would for more precise results be the best re-
duction method. Another advantage of PCA is that it
would work for any kind of data, while Fourier modes
only work because the streamfunction field can be
easily written as sums of Fourier modes. An advan-

0 50 100 150 200 250

Number of modes

10-5

10-4

10-3

10-2

10-1

100

E
R

Projection error Fourier modes
Projection error PCA

Figure 8: Error of projected CNOP against number
of Fourier modes and principal components

tage of Fourier modes is that no pre-computation is
necessary, contrary to PCA.

4 Results

In this section we will compare the performance of
the adjoint-free methods COBYLA and PSO to the
adjoint-based method SQP, which is used as a bench-
mark. The CNOPs that are calculated with all meth-
ods for the comparison are the CNOP at δ = 0.1,
T = 7 days, Re = 25, and the CNOP at δ = 0.1,
T = 7 days, Re = 50. Different values of Re
are taken into account, to study different stability
regimes. In this way the influence of the stability
of the model on the performance of the optimisation
methods can be observed. The CNOPs for these set-
tings, as calculated by SQP, are shown in Figures
9 and 10. The SQP algorithm needs approximately
600 objective function calls to find the CNOP for
Re = 25, and 200 objective function calls to find
the CNOP for Re = 50. The solution of the SQP
algorithm is reliable, as the algorithm performs very
consistently. In Terwisscha van Scheltinga and Dijk-
stra [18] the solution is assumed to be the correct one,
i.e. the global maximum, in this study this assump-
tion is done as well. In this way we can assess the

8

x
0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 9: CNOP of jet-up state at Re = 50 with
δ = 0.1 and T = 7 days. The colors depict the
streamfunction values at the gridpoints. x, y are the
normalised spatial coordinates.

solutions of COBYLA and PSO by their resemblance
to the SQP solution.

Different parameter settings and dimensions have
been tested in COBYLA and have been compared
to SQP. First, we will discuss the different values
of ρend that have been used. Secondly the differ-
ent search space dimensions that have been tested
for both Re = 25 and Re = 50. Before turning to
the results, we will discuss how the results will be
presented. All results are obtained by applying the
method concerned 10 times to the optimisation prob-
lem, reporting the average and best solution. The ob-
jective value and number of objective function calls
are reported, as well as the ‘error norm’, which is a
measure for the error in the solution obtained with
respect to the SQP solution for that problem. The
error norm is defined as

Error norm =
||xC − xSQP ||2
||xSQP ||2

,

where xC is the solution found by COBYLA and
xSQP is the solution as found by SQP. Actually, the
CNOPs come in pairs {xδ0,−xδ0} which both have the
same objective value. As COBYLA could find either
of these solutions, the error norm is calculated with

x
0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 10: CNOP of at Re = 25 with δ = 0.1
and T = 7days. The colors depict the streamfunc-
tion values at the gridpoints. x, y are the normalised
spatial coordinates.

respect to the closest of these solutions. The results
that are shown in graphs are also included as tables
in Appendix A.

The error norm is included because in this case
our interest lies not with the best objective value
(in which case the objective value would be suffi-
cient to measure the accuracy of the methods) but
the state (initial perturbation) that yields this objec-
tive value. This means that if the objective value is
nearly as good as the global maximum value, but the
value is found at a local maximum far from the global
maximum, the state will not resemble the CNOP at
all. This means the performance of the method is
low even though the objective value is nearly perfect.
Therefore, the norm is included to see how close the
solution is to the real CNOP.

It should be noted however, that the importance of
the CNOP lies in its physical features, which means
that as long as the global pattern of the CNOP re-
sembles the true solution, the solution is satisfactory,
even if the value of the error norm is relatively large.
In Figure 11 the solution of COBYLA can be seen for
restarted COBYLA from 30 to 100 dimensions. This
is as an illustration of why the norm is not sufficient

9

x
0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 11: Example solution for Re = 25, T = 7 days
and δ = 0.1. This is the best solution of restarted
COBYLA with 30 to 100 principal components. Its
error norm is 0.3253. The colors depict the stream-
function values at the gridpoints. x, y are the nor-
malised spatial coordinates.

to judge the results: the solution is clearly different
from the true CNOP, however the resemblance can
be easily recognised. Therefore also the ratio is cal-
culated for all methods at Re = 25. This is the ratio
of solutions that are, as determined by eye, similar
to the real (SQP) solution. The ratio at Re = 50 is
not determined, as this pattern is more complex and
therefore it is difficult to judge the similarity.

After discussing the results for different settings of
COBYLA the performance of PSO is discussed.

4.1 Different parameter settings in
COBYLA

For ρstart = 0.1 and 100 PCs, different values of
ρend have been tested. The results of the optimisa-
tion are presented in Figure 12. The objective value
(both average and best) increases with decreasing
ρend, while the number of objective function calls in-
creases with decreasing ρend, as might be expected.
The error norm decreases with increasing ρend as ex-
pected, however its confidence bound increases and

ρend 10−2 10−3 10−4 10−5

Ratio 0.0 0.2 0.5 1.0

Table 1: Ratio of correct solutions and number of
total solutions of COBYLA, using 100 PCs, Re = 25,
ρstart = 0.1 and varying ρend.

then decreases again, which is remarkable. The 10
values of which the average is taken are shown in
Figure 12c, and they are observed to be in two dis-
tinct groups for ρend = 10−4. The explanation for
this is that even though the objective values of both
groups are comparable, the position at which those
objective values are found, differ. The two groups
represent two different optima, of which one is the
global optimum and the other is a local optimum. In
Table 1 we see how many out of 10 runs of COBYLA
for varying ρend are correct. As expected, this ratio
increases as ρend decreases. Only for ρend = 10−5

COBYLA seems reliable.

To conclude, for ρend = 10−5 COBYLA yields the
best and most reliable results, but for ρend = 10−4

COBYLA also yields good results in half of the cases
and has significantly shorter run time. It should be
taken into consideration that this result might be de-
pendent on the amount of principal components used.

4.2 Dimensionality in COBYLA

The performance of COBYLA has been tested for
different amounts of principal components, for both
Re = 25 and Re = 50. First the results for
Re = 25 are discussed. Subsequently the results for
Re = 50 are presented. The results for Re = 25
are shown in Figure 13, for Re = 25 the dimen-
sions tested are 30, 50, 100, 150, 200 and 250. In
Table 2 the ratio of correct solutions and number of
total solutions is given. The minimum number of
PCs needed to find the solution at the global opti-
mum is 80. However, using 100 PCs leads to better
results, and 150 PCs or more is almost a guarantee
for finding the global optimum. Of course using more
principal components also leads to a much more ob-
jective function calls, as more principal components

10

;end

10-2 10-3 10-4 10-5
0.105

0.11

0.115

0.12

0.125
Objective value

average value
confidence interval
value of best solution

(a) Objective value

;end

10-2 10-3 10-4 10-5

#105

0

1

2

3

4

5
Number of calls

(b) Number of objective function calls made

;end

10-2 10-3 10-4 10-5
0

0.5

1

1.5
Error norm

(c) Error norm with respect to SQP solution

Figure 12: Best and average out of 10 with confi-
dence interval of 0.68 of COBYLA, using 100 PCs,
Re = 25, ρstart = 0.1 and varying ρend. The dots
in (c) denote the individual runs.

means more dimensions in the search space.
It is very remarkable that the solution for Re = 30

is significantly closer to the correct solution than the
solution at Re = 50. This implies that the optimi-
sation landscape is more similar to the real landscape
using 30 PCs than using 50 PCs. This is a coincidence
of course, as the solution in the reduced dimensional
landscape should approximate the true solution bet-
ter when the number of dimensions is increased. The
only conclusion to draw from this result is that more
than 50 PCs are needed to find the global optimum.

Another observation from Figure 13c is that for
100 principal components the confidence interval is
very large. The explanation for this is given in the
section discussing varying ρend. It should be noted
that, even though not very well visible in Figure 13c,
a slight increase in the confidence interval is visible
for 250 principal components. A detailed picture of
this case has been included in Figure 14. It is ob-
served that while the best solution is still decreas-
ing in error norm, some solutions have a larger error
norm again. When inspecting the CNOPs found, it is
indeed visible that the resemblance between the solu-
tions is decreasing. This suggests that the algorithm
is not converging as well in 250 dimensions as it is in
150 or 200 dimensions. An explanation for this could
be that COBYLA starts suffering from the ‘curse of
dimensionality’ at this point.

Now the results for Re = 50 are discussed. The
results for Re = 50 are shown in Figure 15, for
Re = 50 the dimensions tested are 50, 100 and
200. From Figure 15 a and b we again observe an
increase in objective value and number of objective
function calls as the number of principal components
included increases. This is according to expectation.
However, the error norm decreases only slightly. This
suggests that more principal components are needed
to resolve the CNOP at Re = 50, which is in accor-
dance with the observation that the principal com-
ponent contribution between 200 and 400 is stronger
at Re = 50 as shown in Figure 7. However, when
inspecting the solutions using 200 principal compo-
nents, the patterns are very much alike the CNOP
found by SQP. This suggests that even though the
error norm is quite large, and there are clear differ-
ences between the solutions, the solutions found by

11

PC 30 50 80 100 150 200 250
Ratio 0.0 0.0 0.2 0.5 1.0 1.0 1.0

Table 2: Ratio of correct solutions and number of
total solutions of COBYLA, Re = 25, ρstart = 0.1,
ρend = 10−4 and varying the amount of principal
components.

COBYLA might serve their purpose when we are only
interested in the global pattern of the CNOP.

We already concluded that up to 150 principal
components, some solutions are in a local optimum
that is not the global optimum. The increase in prin-
cipal components leads to more solutions in the right
optimum. This is a qualitative effect. However, we
would also like to investigate the qualitative effect on
accuracy when the amount of principal components
are increased. Therefore, for Re = 25 the conver-
gence of only the solutions that are in the right op-
timum has also been investigated. The results are
presented in Figure 16. It can be observed that ob-
jective function seems to be almost convergent at 250
dimensions, the number of objective function calls
seems like a linear relation to the number of principal
components. The error norm of the best solution is
decreasing with the number of principal components.
The average value is increasing at 250 principal com-
ponents, as is its confidence interval. Only including
the runs that converged to the global optimum, we
conclude that the error norm converges to a value
around 0.02 instead of zero. This can be explained
partly by a difference in implementation between the
methods, we will return to this in the discussion. But
again, since the error norm starts diverging slightly
at 250 dimensions again, we have to conclude that
more dimensions will not necessarily lead to a more
accurate solution. However, to draw any definitive
conclusions, this should be further investigated using
more principal components.

4.3 Restarted COBYLA

We have seen that, in general, a large dimensionality
leads to more accurate solutions, while small dimen-
sionality leads to fast convergence. This suggests that

#PCs
30 50 80 100 150 200 250

0.11

0.115

0.12

0.125
Objective value

average value
confidence interval
value of best solution

(a) Objective value

#PCs
30 50 80 100 150 200 250

#105

0

1

2

3

4

5

6

7
Number of calls

(b) Number of objective function calls made

#PCs
30 50 80 100 150 200 250

0

0.5

1

1.5
Error norm

(c) Error norm with respect to SQP solution

Figure 13: Best and average of 10 with confidence
interval of 0.68 of COBYLA, using ρstart = 0.1,
ρend = 10−4, Re = 25 and varying the number of
PCs. The dots in (c) denote the individual runs.

12

#PCs
150 200 250

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Error norm

Figure 14: Best (red) and average (blue) of 10 with
confidence interval (shaded blue area) of 0.68 of
COBYLA, using ρstart = 0.1, ρend = 10−4,
Re = 25 and varying the number of PCs, zoomed
in at the section of 150 to 250 PCs. The dots denote
the individual runs.

it might be efficient to first solve a low dimensional
version of the problem, and restarting COBYLA in a
higher dimension using the low dimensional solution
as a starting point. This has been done for initial
dimensionality 30, using the solution as initial point
in 100 dimensions, and for initial dimensionality 50,
using the solution as initial point in 100 and 200 di-
mensions. For all implementations, a small value of
ρstart of 0.01 is used, as it is to be expected that the
solution is closer to the real solution than a random
solution would be. The results can be seen in Figure
17. It is very remarkable, that using a solution ob-
tained in 30 dimensions as initial point for the restart
leads to good results, while using a solution obtained
in 50 dimensions does not. This is however in agree-
ment with the results in Figure 13, where we observed
that the solution with 30 PCs resembled the correct
solution more than the solution with 50 PCs. This
means that even though the objective value of this
solution is worse, it is still a better restart point for
the larger dimensional optimisation. We compare the
COBYLA starting with 30 PCs and restarting with
100 PCs to the original COBYLA with 100 PCs. It
can be observed that the number of objective func-
tion calls has increased, the objective value increased
and the error norm decreased, all within the confi-

#PCs
50 100 200

0.15

0.155

0.16

0.165

0.17

0.175
Objective value

average value
confidence interval
value of best solution

(a) Objective value

#PCs
50 100 200

#105

0

1

2

3

4

5
Number of calls

(b) Number of objective funcion calls made

#PCs
50 100 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Error norm

(c) Error norm with respect to SQP solution

Figure 15: Best and average of 10 with confidence
interval of 0.68 of COBYLA, using ρstart = 0.1,
ρend = 10−4, Re = 50 and varying the number of
PCs. The dots in (c) denote the individual runs.

13

#PCs
80 100 150 200 250

0.115

0.12

0.125
Objective value

average value
confidence interval
value of best solution

(a) Objective value

#PCs
80 100 150 200 250

#105

0

1

2

3

4

5

6

7
Number of calls

(b) Number of objective function calls made

#PCs
80 100 150 200 250

0

0.01

0.02

0.03

0.04

0.05

0.06
Error norm

(c) Error norm with respect to SQP solution

Figure 16: Best and average of only the runs that
count as successful in the ratio calculation, so that are
in the correct optimum, with confidence interval of
0.68 of COBYLA, using ρstart = 0.1, ρend = 10−4,
Re = 25 and varying the number of PCs.

PC-PC 30-100 50-100 50-200
Ratio 1.0 0.0 0.0

Table 3: Ratio of correct solutions and number of
total solutions of restarted COBYLA, at Re = 25,
ρstart = 10−2, ρend = 10−4 with varying dimen-
sions.

dence interval of the original 100 PC solution. How-
ever with a larger confidence interval, which means it
is more robust. This is also what we conclude from
the ratio, which is 1.0 instead of 0.5 for the original.
The increase in objective function calls is not what we
expected. However when we compare the number of
objective function calls in restarted COBYLA to the
number of objective function calls in Figure 16b, we
see that the number of objective function calls is less
for restarted COBYLA. The cause of this difference
is that in general COBYLA has significantly less ob-
jective function calls when the global optimum is not
obtained, which is the case in half of the runs with
100 PCs but not in any of the runs with restarted
COBYLA using the 30 dimensional solution as ini-
tial point.

4.4 Particle Swarm Optimisation

The PSO algorithm has been implemented using a
swarm size of 100, 200, 400, 1000 and 2000. The
number of iterations has been varied, up to 800. How-
ever, for these settings the algorithm was not able
to converge when applied to the case with 100 PCs.
Already the algorithm is at least 10 times as slow
as COBYLA. So even if a good solution could be
found using a larger swarm size or more iterations,
COBYLA would still outperform PSO in terms of
number of objective function calls. An explanation
for the lack of results might be that wrong param-
eter settings have been used. While COBYLA has
only two parameters that can be adapted (ρstart and
ρend), PSO has many more. While some studies have
been done on the optimal parameter settings, for ex-
ample in Li-Ping et al. [10], the optimal setting of
most of the parameters depends on the problem that
PSO is applied to. This means the parameters have

14

#PCs
30 50 100 200

0.11

0.115

0.12

0.125
Objective value

30 ! 100
50 ! 100
50 ! 200

(a) Objective value

#PCs
30 50 100 200

#105

0

0.5

1

1.5

2

2.5
Number of calls

(b) Number of objective function calls made

#PCs
30 50 100 200

0

0.5

1

1.5
Error norm

(c) Error norm with respect to SQP solution

Figure 17: Best and average of 10 with confidence
interval of 0.68 of COBYLA, using ρstart = 10−2,
ρend = 10−4, Re = 25 and using 100 PCs, with
initial state the solution with 30 or 50 PCs, and 200
PCs with initial state the solution with 50 PCs. The
black error bars are the solutions of COBYLA using
100 and 200 dimensions as seen in Figure 13.

to be tuned, which is itself an optimisation problem.
This is both an advantage and a disadvantage. The
advantage is that, when the parameters are tuned
perfectly, the method is well adapted to solve your
specific problem. However, when the parameters are
not tuned well, the method might not be able to solve
your problem at all, and finding the right parameter
settings can be a difficult task. We can conclude from
this that while there might exist parameter settings
for PSO with which the algorithm might converge,
or even outperform COBYLA, they are hard to find,
and in that sense COBYLA is the favourable method.

5 Summary and discussion

The adjoint-free optimisation methods COBYLA and
PSO have been applied to calculating CNOPs in
the QG model. The performance of these meth-
ods has been tested, in order to compare the results
to the performance of SQP, an adjoint-based opti-
misation method that is usually applied for calcu-
lating CNOPs. When testing the implementation
of COBYLA, we have seen that for 100 PCs and
Re = 25, COBYLA is reliable with ρend = 10−5 or
smaller. For ρend = 10−4 COBYLA is robust for 150
PCs or more at Re = 25. There is no convergence
yet with 200 PCs for Re = 50. This shows that for
Re = 25 and Re = 50 the objective landscape and/or
the dimension reduction is significantly different.

Restarted COBYLA is an improvement compared
to normal COBYLA when a good initial solution is
used for the restart, when the initial solution is not
good, the solution is very bad. This means that
restarted COBYLA is only suitable if the quality of
the solution that is used as restart initial point, can
be estimated. This premature conclusion could be
validated by testing restarted COBYLA using the so-
lutions of 100 and 150 principal components as initial
points for a run in a higher dimension.

When comparing COBYLA to SQP in terms of
performance, we see that for robust results COBYLA
needs approximately 30,000 objective function calls,
while SQP needs 200 to 600 calls to obtain the
CNOPs to a much higher accuracy. So SQP out-
performs COBYLA in terms of both accuracy and

15

speed. However COBYLA is able to find the CNOPs
without the use of the adjoint model. A remark on
the comparison of COBYLA and SQP is that the im-
plementations of both methods use a slightly differ-
ent implementation of the QG model, which means
the comparison is slightly flawed. The objective val-
ues are not comparable, and the error norm as de-
fined before is not expected to converge to zero but
a small value above zero, which was observed to be
close to 0.02. When convergence with more princi-
pal components is to be shown, this should be taken
into account. Preferably the implementation of the
objective function, including the model integration,
is exactly the same for both methods. It should be
noted that to draw more precise conclusions, the av-
erages should be taken on more than 10 runs. For
Re = 50 more than 200 PCs should be included to
investigate whether the error norm can be reduced.
Also it should be noted that the ratio that is included
in the results, is a subjective measure and should, ide-
ally, be replaced with a more objective measure of the
resemblance of the global patterns of the CNOP.

Comparing our results to Mu et al. [11], we con-
clude that the amount of dimensions required is much
larger for the QG model than for the ZC model: ap-
proximately 200 dimensions for a 2400 dimensional
search space for the QG model, and only 30 dimen-
sions for a 1080 dimensional search space for the ZC
model. This is a possible explanation of why PSO
works on the ZC model but not on the QG model.
The large amount of dimensions required results in
better objective values (in comparison to SQP) using
COBYLA than in Mu et al. [11]. However, where
their algorithm is only three times as slow as SQP,
PCA based COBYLA is approximately 100 times as
slow as SQP. The large difference in amount of PCs
required to find the CNOPs in both models is remark-
able.

At Re = 25 a divergence at 250 PCs can be ob-
served. This shows that to demonstrate convergence
when more dimensions are included, several higher di-
mensionalities have to be tested and included. How-
ever, the divergence might be suggesting that 250 di-
mensions could be close to the upper bound on the di-
mensionality COBYLA can solve. This means that if
no convergence can be demonstrated, instead a more

precise upper bound could be found. The question
whether or not this slight divergence is a coincidence
or indeed the upper bound of COBYLA is an im-
portant one, as it might limit the extent to which
COBYLA can be applied to other models.

For the particle swarm the conclusion has been
drawn that no convergence has been established, the
explanation for this probably being that the parame-
ter settings are wrong. A conclusion has been drawn
that this wide range of parameters that have to be
tuned is actually a flaw of the PSO algorithm, as it
is a difficult task to find the right parameters. Of
course COBYLA and PSO are just two examples
of adjoint-free optimisation methods. Many other
methods could be implemented on comparable mod-
els, to see whether they are suitable to resolve the
CNOPs. Many of these models however suffer from
the ‘curse of dimensionality’, which means it is hard
to find a method that is known a priori to converge
also on large models like general circulation models,
as also the reduced space is larger than the one in
this study. This shows however, that because many
optimisation methods that could be applied to find
CNOPs, suffer from the ‘curse of dimensionality’,
which means that the dimension reduction is essential
to solve these kind of problems. We have discussed
two methods of dimension reduction and their advan-
tages and disadvantages. Other methods of dimen-
sion reduction could also be considered, such as, in
this case, Rossby basin modes. It should be taken
into account however, that only (methods like) PCA
can be applied to finding CNOPs of any quantity
without adjusting the dimension reduction method.
The challenge is to find a generic algorithm for di-
mension reduction that is able to resolve CNOPs of
dynamical systems in low-dimensional spaces, even if
the model dimensionality is very large.

As a next step, the COBYLA method could also
be applied to models for which no adjoint model is
available, as this study shows that COBYLA is able
to solve the CNOP in a small system. We will dis-
cuss an example of a larger model, of which COBYLA
might be able to solve the CNOPs. The Community
Earth System Model [1] (CESM) is a fully coupled
global atmosphere model and is freely available. For
this model no adjoint model is available. We look at

16

the Coupled Model Intercomparison Project phase
5 configuration [2]. Using the 1.9x2.5 gx1v6 resolu-
tion, which yields a 2 degree grid in the land and
atmospheric models and a 1 degree grid in the ocean
and ice models, simulating 100 years would take ap-
proximately 24 hours (on 640 cores). Although very
largely dependent on computing power, this num-
ber can be used as a rough estimate in translating
the number of objective function calls to actual run-
time. A physical property of which we could calculate
the CNOP, is the meridional overturning circulation
(MOC) dependence on sea surface salinity. This de-
pendence can be estimated to be on the timescale of
the order of decades. Therefore we look at T =10
years in this example. The search space is the size of
the sea surface salinity component of the state vector.
This is equal to the gridsize in horizontal direction in
the sea model, which is 320 × 384 = 122880. This
means the dimension of the search space is 122880.
A rough estimate is that this could be reduced to
5000 to 6800 dimensions, using the same ratio as the
reduction from 2400 to 100 to 150 as in our results.
The applicability of this ratio is of course a very bold
assumption. Under the assumption that COBYLA is
still able to converge in approximately 6000 dimen-
sions, which has not been shown yet, the amount of
objective function calls, extrapolated from our results
using 30 up to 250 principal components, a rough es-
timate would be that 2·107 functions calls are needed.
One objective funcion call is 10 years of simulation,
so the total simulation time is 2 · 108 years, which
would on 640 cores lead to more than 5000 years of
simulation. From this very rough estimate it can be
concluded that even though calculating CNOPs of
larger models might be possible using this method,
further improvement of the algorithm would be nec-
essary to calculate the CNOP of a larger model like
the CESM as the amount of objective function calls is
too large to solve the CNOP in any realistic amount
of time.

Acknowledgements. I like to thank Henk en Tristan,
for the supervision during my thesis, making this such
an educational experience. Also I would like to thank
Michael and Erik for helping me out so many times
with my code. Special thanks to Roderick, Tjebbe,

Brenda, René, Robby and my parents for the endless
support during the last year.

References

[1] Community earth system model. URL http:

//www2.cesm.ucar.edu/.

[2] Coupled model intercomparison project phase
5. URL http://www.wcrp-climate.org/

wgcm-cmip/wgcm-cmip5.

[3] Genevieve Coath and Saman K Halgamuge. A
comparison of constraint-handling methods for
the application of particle swarm optimization to
constrained nonlinear optimization problems. In
Evolutionary Computation, 2003. CEC’03. The
2003 Congress on, volume 4, pages 2419–2425.
IEEE, 2003.

[4] Henk A Dijkstra. Dynamical Oceanography.
Springer-Verlag Berlin Heidelberg, 2008.

[5] Henk A. Dijkstra. Nonlinear climate dynamics.
Cambridge University Press, 2013.

[6] Andries P. Engelbrecht. Heterogeneous Par-
ticle Swarm Optimization, pages 191–202.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2010. ISBN 978-3-642-15461-4. doi: 10.1007/
978-3-642-15461-4 17. URL http://dx.doi.

org/10.1007/978-3-642-15461-4_17.

[7] A Hannachi. A primer for eof analysis of climate
data. Department of Meteorology, University of
Reading, pages 1–33, 2004.

[8] Eugenia Kalnay. Atmospheric modeling, data as-
similation and predictability. Cambridge univer-
sity press, 2003.

[9] Jeffrey C Lagarias, James A Reeds, Margaret H
Wright, and Paul E Wright. Convergence prop-
erties of the nelder–mead simplex method in low
dimensions. SIAM Journal on optimization, 9
(1):112–147, 1998.

17

http://www2.cesm.ucar.edu/
http://www2.cesm.ucar.edu/
http://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5
http://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5
http://dx.doi.org/10.1007/978-3-642-15461-4_17
http://dx.doi.org/10.1007/978-3-642-15461-4_17

[10] Zhang Li-Ping, Yu Huan-Jun, and Hu Shang-
Xu. Optimal choice of parameters for particle
swarm optimization. Journal of Zhejiang Uni-
versity Science A, 6(6):528–534, 2005.

[11] Bin Mu, Shicheng Wen, Shijin Yuan, and
Hongyu Li. Ppso: Pca based particle swarm op-
timization for solving conditional nonlinear op-
timal perturbation. Computers & Geosciences,
83:65–71, 2015.

[12] Mu Mu. Nonlinear singular vectors and non-
linear singular values. Science in China Series
D: Earth Sciences, 43(4):375–385, 2000. ISSN
1006-9313. doi: 10.1007/BF02959448. URL
http://dx.doi.org/10.1007/BF02959448.

[13] Mu Mu, WS Duan, and Bin Wang. Conditional
nonlinear optimal perturbation and its applica-
tions. Nonlinear Processes in Geophysics, 10(6):
493–501, 2003.

[14] Jorge Nocedal and Stephen Wright. Numerical
optimization. Springer Science & Business Me-
dia, 2006.

[15] AR Osborne and A Pastorello. Simultaneous
occurence of low-dimensional chaos and col-
ored random noise in nonlinear physical systems.
Physics Letters A, 181(2):159–171, 1993.

[16] Michael JD Powell. A direct search optimization
method that models the objective and constraint
functions by linear interpolation. In Advances in
optimization and numerical analysis, pages 51–
67. Springer, 1994.

[17] P.A. Simionescu. Computer Aided Graphing and
Simulation Tools for AutoCAD Users. Boca Ra-
ton, FL: CRC Press, 2014.

[18] A. D. Terwisscha van Scheltinga and H. A.
Dijkstra. Conditional nonlinear optimal per-
turbations of the double-gyre ocean circulation.
Nonlinear Processes in Geophysics, 15(5):727–
734, 2008. doi: 10.5194/npg-15-727-2008. URL
http://www.nonlin-processes-geophys.

net/15/727/2008/.

18

http://dx.doi.org/10.1007/BF02959448
http://www.nonlin-processes-geophys.net/15/727/2008/
http://www.nonlin-processes-geophys.net/15/727/2008/

A Tables of Results

ρend Best obj Mean objective Mean #Calls Mean error norm
10−2 0.1142 0.1117 ± 0.0024 3000 ± 700 0.82 ± 0.21
10−3 0.1194 0.1187 ± 0.0005 10000 ± 3000 0.8 ± 0.3
10−4 0.1218 0.121 ± 0.001 100000 ± 100000 0.5 ± 0.6
10−5 0.1219 0.1218619 ± 0.0000003 300000 ± 100000 0.0164 ± 0.0003

Table 4: Best objective value, average objective value, average number of objective function calls and average
error norm with respect to SQP solution for ρstart = 0.1, 100 PCs and varying ρend, for Re = 25.

#PC Best obj Mean objective Mean #Calls Mean error norm
30 0.1115 0.11143 ± 0.00002 19000 ± 7600 0.7 ± 0.1
50 0.1172 0.1170 ± 0.0003 30000 ± 23000 1.31 ± 0.09
80 0.1196 0.1191 ± 0.0004 61000 ± 34000 0.6 ± 0.4
100 0.1218 0.121 ± 0.001 140000 ± 110000 0.5 ± 0.6
150 0.1236 0.12357 ± 0.00003 320000 ± 96000 0.018 ± 0.005
200 0.1241 0.12406 ± 0.00005 430000 ± 140000 0.018 ± 0.006
250 0.1243 0.12417 ± 0.00009 580000 ± 100000 0.02 ± 0.01

Table 5: Best objective value, average objective value, average number of objective function calls and average
error norm with respect to SQP solution for ρstart = 0.1, ρend = 10−4, Re = 25 and varying the number
of PCs.

#PC Best obj Mean objective Mean #Calls Mean error norm
50 0.1524 0.15236 ± 0.00005 26000 ± 7300 0.38 ± 0.05
100 0.1668 0.1664 ± 0.0004 55000 ± 16000 0.42 ± 0.05
200 0.1731 0.1729 ± 0.0003 300000 ± 120000 0.29 ± 0.06

Table 6: Best objective value, average objective value, average number of objective function calls and average
error norm with respect to SQP solution for ρstart = 0.1, ρend = 10−4, Re = 50 and varying the number
of PCs.

PC-PC Best obj Mean objective Mean #Calls Mean error norm
30-100 0.1218 0.1216 ± 0.0004 200000 ± 60000 0.09 ± 0.16
50-100 0.1199 0.1196 ± 0.0004 10000 ± 2000 1.3 ± 0.1
50-200 0.1203 0.1199 ± 0.0004 50000 ± 20000 1.3 ± 0.1

Table 7: Best objective value, average objective value, average number of objective function calls and average
error norm with respect to SQP solution for ρstart = 0.01, ρend = 10−4, Re = 25 and varying the number
of PCs: using the 30 dimensional solution as initial point in 100 dimensions and using the 50 dimensional
solution as initial point in 100 and 200 dimensions.

19

B Implementation

Here we will discuss which steps have to be taken
to use COBYLA to calculate CNOPs in a dynam-
ical system after dimension reduction. We assume
that for a certain system a model integration func-
tion exists, and that we want to calculate a CNOP in
a specific norm, with constraint boundary δ and inte-
gration time T , with respect to a certain background
state y.

B.1 PCA

For principal component analysis, we need the fol-
lowing steps.

1. Obtain a training set by running the model for a
long period, at least 100 times T . The training
set should be a matrix with columns consisting
of states: each column is a time-sample of the
integration.

2. Center the training set: subtract from each row
the average of this row. This yields X, the cen-
tered training set.

3. Calculate XXT , and its eigenvalue decomposi-
tion. For example with NAG routine F01CKF
(Mark 21)2 and F02FCF (Mark 21).

4. Write the eigenvectors in a file, to be read by the
optimisation program. Preferably the eigenvec-
tors are written in direction of decreasing corre-
sponding eigenvalue.

B.2 Working in reduced dimensional-
ity

The search space used by COBYLA is of a reduced di-
mensionality. However, the model integration is done
in the original dimension of the model. Therefore we
need a translation from reduced space to the original
space.

2Information on the NAG library can be found at http:

//www.nag.co.uk/numeric/fl/manual/xhtml/mark21.xml

1. Read the eigenvectors from the file. Read as
many as the desired dimensionality in which the
CNOPs are to be solved, say, the first k.

2. Write a function that projects a state x in the
reduced dimensionality to a model state in the
original dimension. The model state should be a
sum xm =

∑k
i=1 x(i)ai where x is the reduced

state, ai is the ith eigenvector, and k is the re-
duced dimensionality.

B.3 COBYLA

To implement COBYLA and calculate the CNOPs,
we need the following steps.

1. Download the COBYLA software (for Fortran)
from http://mat.uc.pt/~zhang/software.

html#cobyla. Example optimisation problems
are included in the code.

2. Write an implementation of the norm in which
the CNOP is to be calculated, which is a function
of the state (in the original dimensionality) and
returns the norm.

3. Write a function CALCFC of variable x, to be
used by COBYLA, in which the objective and
constraint are calculated and returned.

The constraint value c(x) is calculated as
c(x) = ||xm|| − δ where the implementation
of the norm is used, δ is the chosen constraint
boundary, and xm is the model state obtained
from the reduced state.

The objective value J(x) is calculated by
integrating the state y + xm for time T , inte-
grating the state y for time T , subtracting the
integrated states and calculating the norm of the
result. Here xm is again the model state ob-
tained from the reduced state. Note that if y is
a steady state, of course integrating y separately
is not necessary.

4. Provide COBYLA with CALCFC, a value of
ρstart and ρend, an initial solution, the search
space dimension and a maximum number of calls
to CALCFC.

20

http://www.nag.co.uk/numeric/fl/manual/xhtml/mark21.xml
http://www.nag.co.uk/numeric/fl/manual/xhtml/mark21.xml
http://mat.uc.pt/~zhang/software.html#cobyla
http://mat.uc.pt/~zhang/software.html#cobyla

	Introduction
	Theory
	CNOP
	Quasi-Geostrophic Model

	Methods
	Particle Swarm Optimisation
	COBYLA
	Results 2D Optimisation Problem
	Dimension Reduction
	Fourier modes

	Results
	Different parameter settings in COBYLA
	Dimensionality in COBYLA
	Restarted COBYLA
	Particle Swarm Optimisation

	Summary and discussion
	Tables of Results
	Implementation
	PCA
	Working in reduced dimensionality
	COBYLA

