
A Model-Independent Backtracking Particle Filter Method in the

PCRaster Python Framework

Rein Baarsma, 3235890

May 7, 2016

Abstract

Particle �lters are an e�ective way to tackle data assimilation problems in the �eld of geosciences,

especially when the model is either highly nonlinear or the measurement error can not be expressed as a

Gaussian curve. The standard particle �lter has been implemented into the PCRaster Python Framework

which enables researchers to easily employ the method to data assimilation problems. However, the

current particle �lter method has no way to mitigate �lter degeneracy. Spiller et al. (Physica D 237

(2008), 1498-1506) devised a way to repair a degenerated particle �lter by reverting the �lter to the

last time it worked correctly and recalculate the posterior distribution with an increased sample size.

In this thesis, a backtracking particle �lter method has been constructed within the PCRaster Python

Framework. The backtracking particle �lter has been designed to be able to function with minimal

intervention on the side of the model. The new method has been tested using two nonlinear stochastic

models, showing an increase in e�ciency. The method has some limitations when the stochastic forcing

in the model is too high, but overall backtracking increases �lter results. The backtracking algorithm is

especially helpful when one of the update steps in the �lter has unusually low observational error.

Utrecht University

Faculty of Geosciences

Heidelberglaan 2

3584CS Utrecht, the Netherlands

+31622352742

r.j.baarsma@students.uu.nl

Contents

1 Introduction 3

2 Background 5

2.1 The Standard Particle Filter . 5

2.1.1 Bayes' Theorem . 5

2.1.2 Particle Filters . 7

2.2 The Backtracking Particle Filter . 10

2.3 PCRaster Python Framework . 11

3 Methods 13

3.1 The PCRaster Python Framework . 13

3.2 The Particle Filter method . 13

3.3 The Backtracking Particle �lter . 14

3.4 The Dynamic Models . 15

3.4.1 Simple population growth model . 15

3.4.2 Complex geophysical snowfall model . 15

4 Results 17

4.1 Backtracking Framework technical implementation . 17

4.2 Simple point model results . 18

4.3 Complex snowfall model results . 20

5 Discussion 24

6 Conclusion 26

A The Backtracking Particle Filter Code 28

1 Introduction

Numerical models in the �eld of geography have become increasingly complex as the computational power

of computer systems has increased, as well as our understanding and information of the processes on the

Earth's surface. This increase in complexity has brought with it challenges on the computational side as the

models approximate the real situation much more accurately. The increase in computational strength has

also given the opportunity to deal with uncertainty in our models, because running a model a large number

of times with di�erent parameters no longer necessarily requires much time. This creates the opportunity to

use statistical analyses on the results of several model runs to study the integrity of our computer models.

Many geophysical systems show nonlinear behavior, particularly at small spatio-temporal scales as the

turbulent behaviour of �uids can no longer be averaged out (van Leeuwen [2009]). Additionally, initial states

of model runs are often quite di�cult to estimate. Using nonlinear stochastic models these behaviors and

uncertainties can be modeled in a Monte Carlo simulation as random variables, and the results of several

model runs can yield an insight into the range and possibilities of the outcome. Although the power of current

(super)computers is impressive, modeling nonlinear behavior in geophysical systems with their characteristic

large state space can still be constrained by resources. This constraint is especially important when calculating

time-sensitive information, for example atmospheric processes in order to predict the weather. After all, the

prediction should show up before the weather does. In addition, highly nonlinear models like this are very

prone to error accumulation because of the stochastic nature of (some of) the parameters. Because of this

it has become necessary to use statistical methods to ensure the error in the results is as small as possible

using as few model runs as possible.

A particle �lter is a method that can be used to perform such statistical analyses, by feeding the model with

observational data and using this data to update the model. Based on the principle of Bayesian updating, this

method uses observational data to calculate how well individual model samples (or 'particles') are performing

in a Monte Carlo simulation. Because the particle �lter is a Monte Carlo-based technique it requires a large

amount of computational power to perform all the model runs. In order to e�ectively use particle �lters,

they have to be implemented e�ciently and statistical techniques have to be used to minimize the amount

of particles that the �lter requires in order to return adequate results (van Leeuwen [2003]).

Particle �lters are computationally heavy algorithms, being that they are Monte Carlo simulations with

an added statistical component. The Monte Carlo simulation propagates particles through time towards an

update step, where the comparison is made between the model states of each particle and the observational

data to assign a certain weight (Simon [2006]). It's imperative to use as few particles as possible while still

maintaining a su�cient range of model results for comparison with measured data. A common problem to

look out for is �lter divergence, where too much particles accumulate error and stray from the measured data

so when the comparison takes place only a small number of particles have any signi�cant weight, while most

particles are so far from the observation that they carry no weight at all, which means they hardly count

towards the �nal result of the model. Computationally these particles are a waste, since the odds of them

contributing to the �nal result are slim, but they are still ran for the entire duration of the simulation.

To combat �lter divergence it is possible to resample the particles at the moment of comparison. Particles

with a weight of (practically) 0 are deleted, and particles with a high weight are duplicated a number of times

in accordance with their weight. When the weights of all particles are reset after this, the particles show

approximately the same probabilistic trend as the weighted trend before resampling, where for instance a

particle with a weight of 2η is now represented by two particles with a weight of 1η (η representing the

average particle weight). The new particles can now be used for the simulation until the next comparison

3

step. Even though the same amount of particles is used as in the standard particle �lter, all particles that

are used after each comparison step have a meaningful correlation with the measurement data and error is

only accumulated until the next measurement comparison. This way more particles will be meaningful to the

end result, and no computational e�ort is wasted on particles that calculate the wrong results (van Leeuwen

[2009]).

Sometimes resampling is not enough, especially in large-scale applications. Filter divergence can still

happen after resampling if the likelihood peak is very narrow, for instance when a large number of observations

is present in the system (van Leeuwen [2003]). In this situation even though you resample after comparison

with measurements, the error accumulation in the time between measurement steps is too large compared to

the measurement error to prevent �lter divergence, and the result has very few particles with large enough

weight for resampling. Many di�erent methods have been suggested to both prevent and combat this e�ect,

including several resampling techniques. Another suggested solution to the problem is to go back to the time

the �lter last worked properly and run the simulation a second time for the same time period, this time with

more particles. The particles will be reduced to the original number after the measurement comparison has

been redone. This backtracking particle �lter is best used for models where the reward for using as little

particles as possible is very large, such as large state-space models that require a long time to run.

There are many other methods to combat �lter divergence, particularly resampling schemes such as

the Guided Sequential Importans Resampling scheme (van Leeuwen [2009]). Compared to these methods,

backtracking is regarded as a brute force method. However, as the goal of this research is to implement

a new method into an existing modelling framework, it is important for the method to be largely model

independent. Most resampling methods require insight into the model state, which would force the modeler

to write code speci�cally tailored to the model that the particle �lter method is applied to. The aim is

to create a backtracking particle �lter method that is largely automated, requiring little to no extra input

compared to a standard particle �lter.

This thesis will aim to create a backtracking particle �lter method for use in spatiotemporal modelling.

The research goal of this thesis will be two-fold. The �rst research goal will be to create a backtracking

particle �lter and to analyse the performance of this �lter when applying it to a nonlinear model. In order

to analyse the performance for such a particle �lter it will have to be compared to a di�erent particle �lter

technique. It has to be studied how to �nd the optimal amount of particles necessary to �nd an accurate

solution using both the standard particle �lter and the backtracking particle scheme.

The second goal is to implement this particle �lter into an existing modelling framework. In doing so it will

be available for future research in such a way that no extensive programming experience is necessary to run

a backtracking particle �lter simulation on a model. The �nal product should strike a balance between ease

of use and �exibility, for instance having the capability of easily switching resampling schemes or conditions

for triggering the backtracking process. Since the goal of the backtracking scheme is to run a particle �lter

with as little computational resources as possible, the programming will have to be done in such a way that

the calculations are made as fast as possible.

4

2 Background

2.1 The Standard Particle Filter

Particle �lters are a Monte Carlo simulation method based on Bayesian statistics, so it is important to �rst

explain Bayes' Theorem and its implications before explaining particle �lters, as well as the Monte Carlo

simulation technique. Then the statistical theory behind particle �lters will be discussed, as well as the

limitations of the technique and discuss some of the techniques used to deal with these limitations. Special

attention will be given to the backtracking particle �lter method, as the �lter created in this thesis is based

on the backtracking particle �lter. The ideas in this section are more broadly applicable than just in the

geophysical sciences, so examples will be given from both in- and outside the �eld.

2.1.1 Bayes' Theorem

The joint probability of two events occurring Pr(A,B) can be expressed as

Pr(A,B) = Pr(A)Pr(B|A)(= Pr(B)Pr(A|B)) (1)

where Pr(A) is the probability of event A occurring both with and without event B and Pr(B|A) is the

probability of event B occurring given that event A happens. For instance, if you have seven coins in your

wallet, the probability of a random draw getting you a German Euro coin is equal to the number of German

coins (4/7) times the number of Euros among those German coins (1/4). From (1) the following can be

inferred:

Pr(A|B) =
Pr(A)Pr(B|A)

Pr(B)
(2)

which states that the conditional probability of an unobserved event A occurring given an observed event

B is equal to the probability of event B occurring given that event A has occured or is occurring times the

relative probability of A compared to B. This is Bayes' Theorem, and in essence it describes the process of

updating a degree of belief in a hypothesis based on new evidence (Howson [1990], Gelb et al. [1974]). Imagine

your new stove giving you a shock. You now want to know if your stove is faulty (Pr(Faulty|Shock)). You

read that 99.5 percent of faulty stoves give consumers electrical shocks and that 1 in 1000 ovens is faulty, so

Pr(Shock|Faulty) is 0.995 and Pr(Faulty) is 0.001. If the odds of a person getting shocked by their stove

for whatever reason is 1 in 100, the probability that your stove is faulty given that it gave you a shock is

0.1. So even though the initial belief was that the probability of a faulty stove was 1 in 1000, when it shocks

someone the probability becomes a 100 times higher. Still, because so little stoves are faulty, there is still

90% possibility our stove is �ne.

In the above example of Bayesian inference the formal interpretation of the values used is as follows:

our initial belief in the hypothesis of a faulty stove Pr(Faulty) is called the prior, and the �nal result

Pr(Faulty|Shock) is called the posterior. The quotient Pr(Shock|Faulty)/Pr(Shock) represents the support

the shock event provides for the hypothesis that the stove is faulty. This quotient works as follows: as long

as Pr(B|A)/Pr(B) is greater than one (or Pr(B|A) > Pr(B)), event B con�rms or supports event A. If

Pr(B|A) < Pr(B) event B undermines event A, and if Pr(B|A) = Pr(B) event B is neutral with respect to

A. In general this means that any event B provides support for event A as long as event B is rare and has a

high dependence on event A. In the above example, event B (the shock) could not muster enough support

for event A (a faulty stove) because getting a shock from a stove was too common an occurrence compared

5

to a faulty stove to provide support for the hypothesis.

Bayes theorem does not just work with simple probabilities but it can be used for probability density

functions as well. The prior probability density is then updated with a likelihood derived from observation to

form a posterior probability density function. So in these cases, we are no longer talking about an observed

event providing information on a di�erent unobserved event, but rather an observed quantity providing

information on a larger unobserved system (Hobbs and Hooten [2015]).

A probability density function (or pdf) [z] of a continuous variable z has the following characteristics

(Gelb et al. [1974])

[z] ≥ 0 (3)

Pr(a ≤ z ≤ b) =

bˆ

a

[z]dz (4)

∞̂

−∞

[z]dz = 1 (5)

all of which are quite logical considering [z] represents a probability. An important thing to note is that while

the area under the curve (5) is 1, the range of [z] is [0,∞ > (Hobbs and Hooten [2015], Gelb et al. [1974]).

Going back to our stove, one could use Bayesian inference to research whether the stove's temperature

gauge is working correctly. When you set the stove's temperature gauge to 200ºC, the expectation will be

that the temperature is going to settle at around 200ºC but it won't be exactly that. You can test this

by using an oven thermometer, but this oven thermometer has errors of its own, and you can't read the

exact temperature from the dial. It is important to note that no updating statistic can work if there is a

systemic error in the observational data. In this experiment, the prior probability density function could be

taken as a Gaussian curve with a mean oven temperature T o at 200ºC, and the likelihood from a series of

measurements from the gauge temperature T g is used to calculate a posterior probability density function of

the oven temperature. From (2) we obtain

[T |T g] =
[T o][T g|T o]

[T g]
(6)

We have no clue as to the error in measurement of the temperature gauge, but as long as we take a broad

prior probability density function [T o] that includes [T g] we can use the law of total probability to obtain

[T g] =

ˆ
[T g|T o][T o]dT o (7)

and express [T g] as a probability density within the model probability density [T o] (Hobbs and Hooten [2015]).

In other words, this can work as long as the model is able to predict the results from the measurements,

which is the �rst and most obvious assumption of updating using Bayesian statistics. The denominator in (6)

becomes a normalization factor for [T o|T g]. The law of total probability works if the probability density of

T gis contained in the probability density of T o. The normalization factor has an interesting implication for

[T g|T o], because it does not have to be a proper pdf, in that it does not have to integrate to 1 (van Leeuwen

[2009]). The denominator in (6) ensures that [T o|T g] is a proper pdf regardless of the form of [T g|T o].
Another challenge when using the Bayesian model is selection of a prior. When little is known about the

6

state space prior to the measurements it is imperative to select a prior that provides as little information to

the posterior distribution as possible. It is impossible to have a completely noninformative prior, so prior

selection is very important. A prior usually has to be a proper probability density function in order for the

Bayesian method to be valid. An improper prior (one that does not integrate to 1 over its domain) can

technically work, but unless mathematically proven this is very unlikely. With enough data the prior takes a

backseat though, so when little is known about a parameter it makes sense to collect as much data as possible

to create a sound posterior (Hobbs and Hooten [2015]).

On the other hand, an informative and well-justi�ed prior can have a signi�cantly useful e�ect on the

posterior. It's also very rare to have a model of a parameter with completely unknown values. At the very

least the range of values the parameter can take is known. There are very little geophysical phenomena that

have not been studied at all, and one of the big advantages of the Bayesian approach over other statistical

methods is its ability to incorporate results of previous studies into results. This makes it possible to draw

meaningful conclusions even without super�uous amounts of data. The posteriors of older Bayesian studies

can be used as priors in current research just as well as other types of data, which is a cornerstone of the

Bayesian method of scienti�c reasoning(Hobbs and Hooten [2015]).

Using Bayesian statistics to view geophysical systems can be very useful, and a powerful tool in researching

it. Bayesian statistics view unobserved values as random, and observed values can then be used to inform on

the probability density function of that unobserved parameter (van Leeuwen [2009]). One could argue that

unobserved values are not random but very much determined, and perhaps determined by several di�erent

values. Consider for instance the amount of water present in a watershed. This amount of water is at

any point in time determined by several factors such as reservoir size, rainfall, evaporation, transpiration,

upwelling and the amount of out�ow through channels. So the amount can be determined. The amount

of water in a watershed is di�cult if not impossible to measure directly however not to mention constantly

changing, so it is easier and more generally applicable to see it as a randomly distributed variable.

2.1.2 Particle Filters

Particle Filtering is a method used to update Monte Carlo simulations of a nonlinear (or linear) model

with observational data using Bayesian statistics to achieve insight into a hidden state of the model (Hobbs

and Hooten [2015]). This hidden state is a quality or quantity the model calculates, but is unobserved or

unobservable in its realistic counterpart (the experiment or natural phenomenon the model mimics). A Monte

Carlo simulation consists of many individual model runs, hereafter referred to as particles, that are sampled

from the Bayesian prior probability density function. These particles are then used to make a prediction about

the posterior distribution by running the particles through the model. This predicted posterior distribution is

then compared to observational data to create a true posterior distribution. Particles are weighted according

to their posterior probability. The observational data corresponds with a (partial) result of the model, so

seeing which particles return results close to the observational data yields insight into the parameters that

we can not compare to observations, i.e. the hidden states of the model (van Leeuwen [2009]).

Consider a stochastic model where the complete model state is denoted by ψ, where variables νx are

expressed by probability density functions. The aim is to �nd the joint probability density of all variables

conditional to the observations [ψ|d] = [v1|d, v2|d, ..., vn|d]. The model is occasionally updated using obser-

vations d when they become available using Bayes' Theorem to obtain [ψ|d]. A prior probability density

function [ψ0] is de�ned, where superscript 0 denotes that this is the prior pdf before the �rst time step, made

up of any prior knowledge on the parameter values. From this prior pdf N particles are sampled. These

7

particles have to be ran through the model up to the timestep where the observational data is made (tu).

The Bayesian model comparison at tu can now be calculated by comparing each particle to the observations.

Equation (6) becomes

[ψ(tu)|du] =
[du|ψ(tu)][ψ(tu)]

[du]
(8)

where the prior term[ψ(tu)] is actually the predicted posterior pdf of the model state, created by running

the particles through the model up to timestep tu. In formal statistical terms this process is expressed as

sampling from [ψ(tu)|ψi(t0)] for each particle i. The law of total probability can be used here to create

(Hobbs and Hooten [2015])

[ψ(tu)|du] =
[du|ψ(tu)][ψ(tu)]´

[du|ψ(tu)][ψ(tu)]dψ(tu)
(9)

It is important to note here that this implies that the model at time tu can predict [du]. This may seem trivial

but if erroneous assumptions are made about the range of parameter values or there is another fundamental

�aw in the model, it is entirely possible to create a geophysical model that is unable to recreate realistic

values. This limit to the particle �lter method is the reason that testing the particle �lter used in this thesis

is not done with real world values, but rather with values generated from the model itself.

The probability density function of the model is approximated by the use of the particles in the form

[ψ] =
1

N

N∑
i=1

δ(ψ − ψi) (10)

where N is the total number of particles and δ(ψ−ψi) is the Dirac delta function of the di�erence between the
model state and the model state of particle i (Simon [2006], Nanako et al. [2007]). Practically this function

describes a space where the probability of a model state existing is 0 except if the model state is equal to the

model state of particle, where the probability is 1/N . Using equation (10)'s de�nition of [ψ] in equation (9)

yields

[ψ|d] =

N∑
i=1

wiδ(ψ − ψi) (11)

with wi being the weight of particle i, calculated as

wi =
[d|ψi]∑N
j=1[d|ψj]

(12)

so [ψ|d] is no di�erent from [ψ] in that it is an accumulation of Dirac delta functions, except the peaks at

every ψi are of di�erent size according to their proximity to the measurement data. To calculate the top half

of this equation, the observational data can be compared to the model states using

wi = exp

(
(x̄− ψi)2

−2σ2

)
(13)

where x̄ is the measurement average, ψi is the model state of particle i and σ
2 is the measurement variance.

The bottom half of equation 12 simply normalizes these values.

In the next iteration of the observational update at timestep tv, the weights will be carried over to the

8

calculation of the prior. So

[ψ(tv)] =

N∑
i=1

[d(tu)|ψi(tu)]∑N
j=1[d(tu)|ψj(tu)]

δ(ψ(tv)− ψi(tv)) (14)

With the posterior pdf calculated in the particles, it is possible to calculate mean, median and mode model

states, as well as functions of the model state. In the standard particle �lter method this is all that is done

with the particles. Note that in this method no particles are deleted and the model state of the particles is in

no way a�ected by the calculation of posterior probability. The issue with this method is that after a couple

of update steps, most weight will be assigned to a very limited number of particles, and most particles will

carry little to no weight (Künsch [2013]). This problem is called �lter divergence. Any sequential importance

method has this problem. Given enough time, a particle �lter of any model will degenerate (Doucet et al.

[2000]). To ensure the statistical validity of the Monte Carlo simulation a large number of particles is required

in the standard particle �lter. This requires computational power and consequently time, most of which goes

to calculations on particles that do not carry any weight at all in the posterior distribution.

Employing di�erent resampling methods can prevent �lter divergence. The main idea of most of these

resampling methods is to take the weighted posterior and recreate this posterior using particles with equal

weight. Doing this exactly is impossible unless there are an in�nite number of particles, so this method adds

some sampling noise to the prior. Because adding sampling noise means changing the shape of the prior,

it is important not to resample too often (Spiller et al. [2008]). Van Leeuwen[2009] gives an overview of

several resampling methods used in the �eld. Probabilistic resampling is a method where the new particles

are sampled from the posterior pdf. Because the posterior is discretisized (see 11), the samples are exact

copies of existing particles (Doucet [2001]). Residual sampling can be done by multiplying the weight of each

particle by N , of wich the integer part yields the amount of copies that need to be made of that particle.

The remaining particles are sampled from a probability density obtained from subtracting the integer part

of each Nwi from it so that all values are between 0 and 1, and using these new values as weights for the

probability density. In that probability density, particles with a high chance of getting sampled had either a

Nwivalue close to 1 or a value just under an integer (van Leeuwen [2003]).

In stochastic universal sampling all particles gain a section of the line [0, 1] with a length proportional

to their weight. The idea now is to overlay this line with a line of equal length where the line pieces have

length 1/N rather than a weighted length. When a line piece of the second line end in a region of the �rst,

the particle is chosen for resampling. A large line piece in the �rst line will be chosen multiple times, while

the small pieces concordant with a lowly weighted particles will most probably not get chosen. In order to

prevent a systemic problem with the order with which the particles in the �rst line are arranged, the second

line is o�set by a random amount between 0 and 1/N (Kitagawa [1996]).

After the resampling, the weights of all particles are reset to 1/N so the probability density of the particles

mimics the posterior calculated in the weighting step.

This method is e�ective as long as the model has a strong enough nonlinear component to diverge the

particles in between the updating steps. If the copied particles do not accumulate enough error to be

considered unique at the next observation step, a phenomenon called particle collapse occurs (van Leeuwen

[2009], Xiong et al. [2006]). In particle collapse situations, all the particles are roughly the same, so the

probability density function becomes too narrow to yield credible information. The result is very similar

to �lter divergence, even though the e�ect itself is opposite; instead of all the weight being carried by one

particle, all particles have the same amount of weight because they contain the same information.

9

In order to prevent particle collapse a method called regularization can be applied that will decrease the

number of identical particles after resampling. The idea is to give the particles a 'jitter' after resampling,

changing the parameter values that are used as variables in the particle �lter in such a way that the particle

is not identical to its root (Pham [2001]). Alternatively, a Merging Particle Filter can be used that creates

new particles by mixing the states of succesful particles (Nanako et al. [2007]).

2.2 The Backtracking Particle Filter

The backtracking particle �lter method is di�erent from other methods in that it does not prevent �lter

divergence, but rather reacts to it. When �lter divergence is detected, the backtracking particle �lter goes

back to the last time the �lter worked correctly and tries again. Spiller et al. [2008] constructed several

such �lter for a two-dimensional point-vortex model. The model includes a 'tracer', of which the location

is arti�cially measured and used as the observational data. These �lters performed quite well compared to

standard particle �lter methods, which eventually lose track of the tracer in the point-vortex model.

At evaluation timestep te a backtracking �lter evaluates the population of particles on its distance to the

observations. If the particle population di�ers too much from the observations, the backtracking algorithm

is triggered. Spiller et al. [2008] do this by comparing the population mean and covariance matrix of the

particle cloud with the average from the observations and calculate a discrepancy factor. If the backtracking

algorithm is triggered, the �lter goes back α timesteps to the last evalutation timestep te−αand doubles the

amount of particles to recalculate the posterior at timestep te. It is important to note that a goal of e�ectively

using a backtracking particle �lter is to initiate the backtracking algorithm as few times as possible, so it

is entirely possible that rerunning the �lter from timestep te−α without doubling would yield a workable

posterior. The backtracking algorithm is there to help the particle �lter through timespans where the model

adds an exceptionally strong noise to the particles between evaluation timesteps, or when the likelihood band

from the observational data is very small.

It is also possible to evaluate the health of the particle cloud from the particle weights directly. When

�lter degeneracy occurs, there are not enough particles with signi�cant weight to yield meaningful results.

As such, a successful particle population should always have a number of particles with high weight. A sorted

list of normalized weights of particles should not have most of its total value in the highest few particles, but

rather a larger number of unique particles should have higher weight.

Spiller et al. [2008] tested three methods of doubling . In the �rst method, cloud expansion, the N particles

used to create the failed posterior are reused, and N additional particles are created by copying each particle

and adding independent mean zero Gaussian random variables (with small variance) to each of the observed

states in the original N particles. This yields 2N particles that are then run through the model again.

The second method is called directed doubling. The M = N/10 particles with the highest weight are

taken from the prior distribution at the time the particle �lter last worked correctly. Now a line between the

model states of each of these M particles and the observations is calculated, and N samples are taken on the

lines between the observations and the model states. For each of the N new samples, a mirrored particle is

created on the same line at the same distance from the model state, but away from the observations. This

method is not used in the backtracking �lter of this thesis, as it requires the algorithm to alter model states

speci�cally, which makes this not generically applicable to models, and raises new research challenges such

as how to perturb variables that are not directly measured.

The third method is to not perturb the posterior when doubling the amount of particles by resampling

succesful particles, but rather perturb the observations prior to resampling. The observation Yb at the

10

backtracked time tb is perturbed by a zero mean Gaussian 2N times, creating 2N realizations of Y ′b . These

new observations are used to create 2N particles from the prior pdf. These particles are then propagated

toward the time where the particle �lter failed.

Spiller et al. [2008] tested their �lter method (with each doubling method) against an Ensemble Kalman

Filter and a standard particle �lter, each realized with 500 particles. As expected, the Ensemble Kalman

Filter performs less well than the particle �lter methods, as the nonlinearity of their point-vortex model is

too high for the EnKF to be e�ective. All particle �lter methods that are used are e�ective, but when the

time between observational updates gets high or the nonlinearity is very strong, the standard particle �lter

fails. In the study by Spiller et al. [2008], no signi�cant di�erence between the di�erent doubling methods

has been observed.

2.3 PCRaster Python Framework

PCRaster is a grid-based modelling framework with a strict data type checking mechanism that lends itself

very well for geospatial modelling. Spatial data is stored in a binary map format, that contains a header

with the dimensions of the map and the type of data that is stored alongside the data of each cell. In the

PCRaster format, cells can receive and transmit data from neighbouring cells. Analysis and manipulation of

maps can be done using PCRaster operations, which can be either point operations where the value of the

result is only dependent on the value in the input map(s), or neighbourhood operations where the values from

any number of neighbouring cells in the input are also used in the calculation of the resulting cell. Alongside

individual operations, operations can be scripted to perform a large number of calculations at once (de Jong

and Karssenberg [2015]).

PCRaster map �les can contain boolean, nominal, ordinal, scalar, directional or local drain directional

data, and the PCRaster package contains a large scala of operators that can be used to manipulate, compare,

analyse and generate these maps. Maps can be imported from and exported to other GIS formats. Along with

the basic operators, PCRaster contains some functions dedicated to the �eld of hydrology and geomorphology

such as �ood wave propagation equations and visibility analysis.

PCRaster also contains a dynamic modelling module to calculate and store changes over time in attributes

of maps that uses the same GIS database as other operations (Verstegen et al. [2012]). A PCRaster dynamic

model is a set of scripted operations to maps, some of which are repeated every timestep using the results of

the previous iteration. Speci�c to the dynamic modelling module in PCRaster is the time series data format,

which can be stored as either a series of maps that shows the change of a certain map attribute over the

modelled time period, or a table that shows the time change at a speci�c location.

To create more freedom of use PCRaster has been released as a Python module, enabling the map format

of PCRaster to be read and written by Python operation. In addition to this a framework has been developed

that enables the use of static and dynamic modelling in Python scripts, as well as Monte Carlo simulations,

Particle Filtering and Ensemble Kalman Filtering (Karssenberg et al. [2010]). Python's Object Oriented

Programming methods make it quite easy to implement new methods in the PCRaster Framework. The

Monte Carlo simulation runs are governed by a class that incorporates the static or dynamic modelling class,

and the Particle Filter class incorporates the Monte Carlo class. This enables the user to quite easily turn

a dynamic model into a Monte Carlo simulation, simply by adding the required methods and initializing a

Monte Carlo Model object.

The Python programming language makes it quite simple to implement these modelling schemes into

research, because the language is easy to learn and read due to its intuitive syntax and intelligent use of

11

functional whitespace. The Python language is therefore a very useful programming language for research

outside of the �eld of computer science. Python aims to be easy to learn and use as well as powerful so

programs can be built by the people who need to use them, rather than by independent professionals.

12

3 Methods

The particle �lter method and stochastic models used to test the models were all created in the PCRaster

Python framework. This framework already contains the methods to create and run a stochastic dynamic

model, a Monte Carlo simulation, and a standard particle �lter. The framework uses the operators from the

PCRaster Python module, which allows advanced GIS operations to be performed. To create the backtracking

particle �lter, a new class was created within the framework. This method uses the functionality of the

standard particle �lter but adds and alters the function within the method in order to enable the �lter to

backtrack.

3.1 The PCRaster Python Framework

Python's Object Oriented Programming enables a wide range of modelling features. In Python, classes can

be constructed. These classes can have methods and parameters associated with them, and child classes can

be created that inherit these methods and parameters. To run a PCRaster model, a class is created with a

parent from the PCRaster Python Framework. An object is created that initializes the class, and the 'run'

method is called on this object.

A PCRaster Python model is created by using a class constructor, and adding the methods to this

class that are speci�c to the model. For instance when creating a dynamic model, the DynamicModel class

constructor is used from the PCRaster Python Framework. The new class inherits all the methods from the

DynamicModel class, which includes a 'run' method. The new class now needs two methods, 'initial' and

'dynamic', that will be used by the 'run' method when it is called. The 'initial' method will be called once

during the model run, and then the 'dynamic' method will be called for every timestep. When the model class

is constructed, an instance of the class is called that determines the number of timesteps that are calculated,

and then the 'run' method is called on that class.

From there, creating a Monte Carlo model is quite simple. The MonteCarloModel parent is added to the

model class, the methods speci�c to the Monte Carlo method are added to the class. To run the Monte Carlo

model, a dynamic model is initialized, and then a Monte Carlo model object is initialized using that dynamic

model object. A particle �lter is initialized in the same way using an instance of a Monte Carlo model.

3.2 The Particle Filter method

The theoretical particle �lter method is explained in the Background section of this thesis. The particle �lter

as implemented in the PCRaster Python Framework is discussed here. In the framework, a particle �lter run

is a Monte Carlo run with several �lter steps. The timesteps at which the �lter is updated are de�ned when

the particle �lter object is initialized. At the update step, the particle states are compared to the state of

measurement data. In the PCRaster Python particle �lter, this comparison method has to be written by the

modeller, as the type of data and the way the data is used is unique to each model.

When the particle �lter runs, a Monte Carlo run is started for the timesteps until the �rst �lter period.

The prior distribution is described by the samples distribution a t = 0. The projected posterior distribution

is calculated by propagating the samples through the dynamic model towards the �rst timestep. At this

point, the Monte Carlo run is suspended. During suspension, weights are assigned to each particle based

on the measurement data given. The posterior distribution is shown by the sample weights. This is the

Bayesian update step. After this resampling takes place and the weights are reset. The posterior distribution

of the particles is now. Two resampling methods are implemented in the framework: sequential importance

13

�ltering and residual sampling �ltering (de Jong and Karssenberg [2015]). After resampling the �lter step is

complete, and the Monte Carlo simulation is resumed until the next �lter time.

During sequential importance �ltering, weights are normalized so the sum of all weights is 1, and a list of

the cumulative weights is made which goes from 0 to 1. Then a random number between 0 and 1 is drawn

from a uniform distribution. This number is compared to the list of cumulative weights, identifying the index

of the �rst particle whos value is higher than the random number. This particle is then resampled. This

process is repeated until the desired amount of particles is resampled. If a particle has a very low weight, it

has a low chance to be resampled, whereas a particle with a high weight is likely to be picked a number of

times.

In residual sampling the weights are again normalized but are then multiplied by the number of particles.

Normalized weights have weight between 0 and 1, and a cumulative weight of 1. So the new weights have

a value between 0 and N with a cumulative weight of N. Each particle with a value above 1 is resampled

x times, where x is the integer part of its value. When this is done, a number of samples still needs to be

taken. These samples are taken from the residual distribution. The integer part of each value is subtracted,

so each value is between 0 and 1. This list is then used to sample the rest of the particles using the sequential

importance sampling method above.

3.3 The Backtracking Particle �lter

The backtracking algorithm was created based on the existing particle �lter in the PCRaster Python Frame-

work. The backtracking particle �lter takes an extra argument when initialized that determines the amount

of particles that are used when backtracking occurs.

Compared to the basic particle �lter, the backtracking algorithm adds four extra steps to the particle �lter

process. The �rst occurs after the weights have been calculated during the update step, when the algorithm

tests whether backtracking needs to occur. The evaluation takes the list of weights and sorts and normalizes

this list. Then a list of cumulative weights is calculated. If 90% of the cumulative weight of the particles

is contained in the highest 5% of total particles, the �lter is considered to have failed, and backtracking is

triggered.

The other three extra steps in the algorithm are part of the backtracking itself. First, the number of

samples needs to be increased for the backtracking from N samples to M samples. We �rst create n ·N new

samples by copying the original samples (where n is the integer part of M/N). The rest of the particles are

sampled randomly from all particles created. If the model fails at the �rst �lter timestep, the entire sample

cloud is reinitialized from the beginning. This is close to what Spiller et al. [2008] refer to as cloud expansion,

without introducing any Gaussian noise to the particles. If the backtracking particle �lter is applied to a

model with strong dynamic stochastic forcing, adding noise to the particles is redundant. The method allows

this to be done if the model has no stochastic forcing.

After this, the Monte Carlo simulation is run back up to the �lter time step and the new posterior is

calculated. This new posterior consists of M particles and has to be translated back to the original number

of particles to continue the particle �lter run. This is done by taking the N particles with the highest weight

and using these as the new posterior. This posterior is used to resample N particles that are used in further

calculation.

14

Simple population model Complex snowfall model
Parameter Value Parameter Value

Initial Population 0.1 DEM input map
Maximum Population 1.0 Degree Day Factor 0.01
Growth factor 1.0 + U(0, 2) Temperature input timeseries
Stochastic Forcing η 1.0 + φ ∗ 0.05 Stochastic Forcing η 1.0 + φ ∗ 0.2
Observation Std Dev Obs · 0.01 Temp. Lapse Rate 0.04 + φ ∗ 0.00025

Precipitation input timeseries
spatially perturbed by P = Pts(1 + φ ∗ 0.5)

Observation Std Dev Obs > 0 : Obs ∗ 0.15
Obs = 0 : 0.01

Table 1: Model parameter values for the two models used in testing the Backtracking Particle Filter. For
parameter values with a stochastic forcing component, U(a, b) denotes a continuous uniform distribution
between values a and b, and φ denotes a standard normal distribution with µ = 0 and σ = 1.

3.4 The Dynamic Models

Two dynamic stochastic models were used in testing and creating the backtracking algorithm. At �rst a

simple nonlinear point model was used. Using a point model makes it easy to control the model environment

and force the backtracking conditions to trigger. After this, the model was tested using a more complex

geophysical model that simulates snowfall and snowmelt. This model resembles the kind of models that the

algorithm might be used for in the future.

3.4.1 Simple population growth model

The �rst is a nonlinear point model based on the population growth equation

Pt+1 = [g · Pt(Pmax − Pt)] η (15)

where Pt is the population at time t, Pmaxis the maximum population, g is a growth factor, and η is a

stochastic forcing (see Table 1). To test the backtracking algorithm, the model was run once as a dynamic

model, creating results for the Monte Carlo simulation to compare itself with. The goal of the Particle Filter

is to correctly ascertain the growth factor g by comparing the populations at the �lter timesteps. The weight

of each particle at the �lter update step is calculated using equation 13.

The measurement average is here taken as simply the model results from a sample dynamic model run,

and the variance is imposed as a function of the measurement average (see Table 1)

The dynamic model run that creates the measurements is almost entirely deterministic. There is a small

perturbation in the dynamic population equation to insert measurement error. The samples are initialized

with a growth picked from a normal distribution around the value from the control run. When the model

run was done that serves as the observational input for the model, the stochastic forcings used were slightly

less pronounced than in Table 1, to ensure the measurements fall well within the scope of the particle �lter.

3.4.2 Complex geophysical snowfall model

The snowfall model used is a demonstration model available from the PCRaster website. The model uses a

small elevation model, a temperature measurement for each timestep and a precipitation measurement for

each timestep to calculate the amount of snowfall and the amount of snowmelt, correcting the temperature

15

using the elevation model and a temperature lapse rate.

The model takes input timeseries of temperature and precipitation, and calculates a local temperature

map based on the elevation above the measuring point and the temperature lapse rate. Each sample in the

particle �lter run has a di�erent temperature lapse rate taken from a uniform distribution (see Table 1). The

precipitation is locally perturbed to create a noisy rainfall pattern. Snowcover is then calculated as

St = [St−1 + Sf −M] η (16)

, where St is the snowpack at time t, Sf is the amount of snowfall, M is snowmelt and η is a stochastic

forcing (see Table 1). Snowfall Sf is equal to the precipitation as long as the the temperature is below 0, and

snowmelt M is calculated as

M =

{
T > 0 ; T · df
T ≤ 0 ; 0

}
(17)

where T is the temperature and df is the degree day factor.

The weight of the particles is calculated using the calculated snowcover and equation 13, except the model

di�erentiates between several spatial zones, calculating a di�erent average for each of these. Equation 13

becomes

wi = exp

(
K∑
z=1

(x̄z − ψi,z)2

−2σ2
z

)
(18)

for K zones.

The temperature lapse rate is calculated during the sample initialization from a normal distribution.

The precipitation imposed on the model during the run is perturbed using a normal distribution, creating

stochasticity during the model run. Additionally, model uncertainty is introduced on the total amount of

snow present after the full calculation by imposing a stochastic component.

While testing with this model initially particle collapse would occur consistently. No matter the amount

of particles used, by the 3rd �lter update the model would have one, sometimes two unique values for the

temperature lapse rate. In order to combat this, a 'jitter' was introduced. When the model is resumed after

resampling, a small stochastic force is added to the temperature lapse rate, ensuring eacht particle is unique.

16

4 Results

The backtracking particle framework was tested using the two models explained in the Methods section. For

each of model, particle �lter runs were made with 25, 50, 70, 100, 150, 200, 300, 500 and 1000 particles.

The amount of auxiliary particles used in the backtracking �lter were kept at double the amount of regular

particles.

Which each model, the results of some runs is used to show the �lter performance through time. For the

rest of the runs, only the particle states of the �nal �lter timestep are used. In the case of the backtracking

particle �lter, this can be a backtracked run, so the �nal �lter timestep can have twice the number of particles

in their population.

4.1 Backtracking Framework technical implementation

The backtracking particle �lter algorithm could be implemented into the existing PCRasterPython Frame-

work with relative ease. The base frameworks for running dynamic models and Monte Carlo simulations,

on which the particle �lter framework is dependent, were left unaltered as the basic methods to enable

backtracking were already present.

Compared to the existing particle �lter framework, the backtracking particle �lter framework signi�cantly

changes only two methods, and adds two of its own. When an instance of the backtracking particle �lter

framework is initialized, folders need to be added in order to house the particles that are run during back-

tracking. For instance, a standard particle �lter using 100 samples creates 100 folders, 1 to house each sample.

A backtracking particle �lter creates the same amount, as well as an amount of folders that are used to copy

the particles into when backtracking. The 'run' method, which determines what actions are taken while the

particle �lter is ran had to be altered to allow for a test to see whether backtracking needs to occur, and if

it does, to run the backtracking.

The backtracktest and backtracking methods are the two methods added to the particle �lter framework.

The backtracktest algorithm takes a list of weights, normalizes and sorts them, and calculates a list of

cumulative weight. The resulting list starts with the highest weighted particle and ends with the lowest. The

algorithm then looks at the value of the nthnumber in the list, where n = N/20, and if it's value is above 0.9,

meaning more than 90% of the total weight of the particles is carried in the n highest particles, the algorithm

triggers backtracking.

In the backtracking method, �rst the sample numbers the �lter uses are changed from [1, N] to [N,N+M]

to make sure the calculations are put in the correct folders, and the correct number of samples is used by

the monte carlo simulation. The original samples are then copied into the new folders used by the backtrack

algorithm, copying the entire original population as often as it can, and any remaining particles are randomly

sampled from the original population.

The backtracking algorithm then runs the Monte Carlo Simulation again, just as the simulation was run

in the regular 'run' method, and calculates the weights based on the method from the model. The N highest

weighted particles are identi�ed and copied back to the folders between [1, N]. Before �nishing, the algorithm

undo's all the changes that were made in order to run the Monte Carlo simulation in the backtracking folders

and puts the weights of the copied particles in the list used by the resampling method. The 'run' method

then resumes as normal with the resampling.

On the user end, there is very little di�erence between a particle �lter and a backtracking particle �lter,

as the only additional parameter a user needs to add to the code is the amount of particles to be used while

17

Figure 1: Population results of the Backtracking (left) and Standard (right) �lter on the simple point model
using 100 particles. The number of particles used while backtracking is 200. Backtracking triggers once
during this run, after the 3rd �lter update step. The results of the backtracking run are denoted with a 'b'
on the horizontal axis. The box plot shows the 95th, 75th, 50th, 25th and 5th percentile values. The crosses
mark the complete data range.

backtracking. The code is further outlined in Appendix A, where the code and its functionality is explained.

The complete code of the backtracking method is available as a digital appendix to this thesis.

4.2 Simple point model results

Figures 1 through 4 show the results of the particle �lter runs with the simple model. A �lter run with 100

particles was chosen to show the progression of the particle cloud through the �lter steps. The backtracking

algorithm used 200 particles. Figure 1 shows the particle distribution of calculated model results directly.

While both the backtracking and standard particle �lter �nd similar results, it can be seen quite clearly that

the backtracking particle �lter has a much narrower range of values. This can be partly explained by luck,

as the backtracking particle �lter is already performing di�erently than the standard particle �lter at �lter

timestep 30. The most distinctive di�erence between the two runs can be seen at �lter step 90, however,

showing a much narrower particle distribution than the standard �lter.

Figure 2 shows the particle weight distribution as calculated by the user-de�ned 'particleweights' method

in the �lter method. The di�erence between the model runs can be seen most clearly here. Note that a large

number of particles have near 0 weight in both model runs, which results in the strange shape of the box

plots. While in �gure 1 it is not immediately clear why backtracking occurred at �lter timestep 7, here it can

be seen directly. It can also be seen that both models perform quite well at �lter timestep 30. Again, the

most clear di�erence is at �lter time step 70. The standard particle �lter has clearly failed somehow. The

backtracking particle �lter has very high weighted particles at �lter timestep 70.

The results from another 100 particle run is shown in Figure 3. This plot clearly shows that a backtracking

particle �lter run with 100 particles gets results much closer to the results obtained from a standard �lter

run with a 1000 particles than the standard particle �lter, as the backtracking results are much closer to the

1 : 1 line in the graph.

Clearly, the backtracking particle �lter performed markedly better in the 100 particle run with the simple

18

Figure 2: Particle weight distribution after each �lter time step for the runs from Figure 1. The number
of particles used while backtracking is 200. Backtracking triggers once during this run, after the 3rd �lter
period. The results of the backtracking run are denoted with a 'b' on the horizontal axis. The box plot shows
the 95th, 75th, 50th, 25th and 5th percentile values. The crosses mark the complete data range.

Figure 3: Comparison of the population (left) and growth factor (right) values in the particle �lter of a run
with 1000 particles (x-axis values) to standard and backtracking particle �lter runs with 100 particles (y-axis
values) at the �nal time step. The number of particles used while backtracking is 200. Backtracking triggers
once during this run, after the 1st �lter period. These results were obtained from a di�erent run than the
results from �gures 1 and 2. The plot shows the 95th, 90th, 75th, 50th, 25th, 10th and 5th percentile values.

19

Figure 4: Summary of results gained using di�erent amounts of particles on the simple point model. The line
shows the mean particle weight of the 10% highest weighted particles, the error bar the standard deviation
of this set. Plotted against the number of particles used (left) and the runtime in seconds (right). In the
backtracking runs, the amount of particles used for backtracking are always twice the amount of regular
particles. For particle �lter runs with less than 100 particles, the runs were repeated a number of times to
attain at least 100 datapoints.

model. The relative success of the backtracking algorithm on the simple model can also be seen in the particle

weight distribution at the last �lter timestep for particle �lter runs with a di�erent amount of particles

(�gure 4). Directly comparing the amount of particles used shows that with almost every particle �lter run

the backtracking particle �lter performs better than the standard particle �lter. This is not surprising since

when backtracking occurs, the backtracking �lter gets to use more particles compared to the standard particle

�lter. When plotting the particle weight distribution against computational time, the backtracking particle

�lter performs markedly better than the standard particle �lter run. This is most obvious in the di�erence

in the size of the error bars. Note that during the 1000 particle run with the backtracking particle �lter,

backtracking did not occur, and thus the result is very similar to the result of the standard particle �lter.

The fact that the backtracking particle �lter still outperformed the standard particle �lter with 1000 particle

realizations does indicate that even with a high number of particles, luck is still a factor in determining the

results of these particle �lter runs.

4.3 Complex snowfall model results

Figures 5 through 8 show the results attained from the particle �lter runs with the complex model. The

results for the complex model are not as favorable for the backtracking particle �lter as they are for the point

model. The particles have a much wider distribution in the modeled data (�gure 5) using the backtracking

particle �lter than from the standard particle �lter. The particle weights (�gure 6) are clearly much smaller

from the backtracking particle �lter than from the standard particle �lter. This can again be explained

by luck being a factor in running the particle �lter, the standard particle �lter run simply initializing with

particles close to the measured values. The backtracking particle �lter performance does not seem to improve

after backtracking either.

20

Figure 5: Temperature lapse rate results of the Backtracking (left) and Standard (right) �lter on the complex
snowfall model using 150 particles. The number of particles used while backtracking is 300. Backtracking is
triggered twice during this run, after the 2nd and 3rd �lter period. The results of the backtracking run are
denoted with a 'b' on the horizontal axis. The box plot shows the 95th, 75th, 50th, 25th and 5th percentile
values. The crosses mark the complete data range.

Figure 6: Particle weight distribution of the runs from Figure 5. The number of particles used while back-
tracking is 300. Backtracking is triggered twice during this run, after the 2nd and 3rd �lter period. The
results of the backtracking run are denoted with a 'b' on the horizontal axis. The box plot shows the 95th,
75th, 50th, 25th and 5th percentile values. The crosses mark the complete data range.

21

Figure 7: Comparison of the snowcover (left) and temperature lapse rate (right) values in the particle �lter of
a run with 1000 particles (x-axis values) to standard and backtracking particle �lter runs with 100 particles
(y-axis values) at the �nal time step. The number of particles used while backtracking is 200. Backtracking
triggers once during this run, after the 1st �lter period. These results were obtained from a di�erent run than
the results from �gures 5 and 6. The plot shows the 95th, 90th, 75th, 50th, 25th, 10th and 5th percentile
values.

Figure 8: Summary of results gained using di�erent amounts of particles using the complex snowfall model.
The line shows the mean particle weight of the 10% highest weighted particles, the error bar the standard
deviation of this set. Plotted against the number of particles used (left) and the runtime in seconds (right). In
the backtracking runs, the amount of particles used for backtracking are always twice the amount of regular
particles. For particle �lter runs with less than 100 particles, the runs were repeated a number of times to
attain at least 100 datapoints.

22

However, another run with 100 particles shows a clear di�erence in results from the quantile-quantile

plots (�gure 7). While it might not be obvious from a direct comparison of the model results with eachother,

comparing the model results of the backtracking and standard particle �lter run with 100 particles to a

standard particle �lter run with 1000 particles clearly shows that the backtracking particle �lter is much

better at attaining similar results to the 1000 particle run.

There is no clear di�erence in performance of the backtracking particle �lter compared to the standard

particle �lter when comparing the results from the �lter runs realized with di�erent amounts of particles

(�gure 8). Also comparing the runtime shows no signi�cant di�erence in performance. It is important to

note that for the complex model, the number of particles seems to have no e�ect on the performance of the

�lter, regardless of which algorithm was chosen.

23

5 Discussion

Compared to the standard particle framework, the backtracking particle framework performs quite well. The

backtracking algorithm is able to detect �lter divergence quite well from the list of normalized particle weights,

which makes it largely independent of the particle weight calculation used by the model. It is possible that

other models have more strict or loose criteria for �lter divergence. As it stands right now, the backtrack

test is coded inside the framework, giving users no freedom to change the conditions. This feature could be

useful for future use.

The method of cloud expansion is quite brute force, simply copying the whole particle cloud as much

as they can and sampling random particles for the residual samples, but according to Spiller et al. [2008]

the method of doubling used has very little e�ect on the performance of the backtracking algorithm. Cloud

reduction, the method of going back to the original number of particles, is quite brute force as well. The

backtracking algorithm simply takes the highest weighted particles and continues the particle �lter with

these. Statistically this is not the best method because this can actually cause particle collapse. However, a

backtracking algorithm is only useful when dealing with a highly nonlinear system or a system with a large

stochastic component, so it can be assumed that in between �lter timesteps enough stochastic forcing will be

put on the system to prevent �lter collapse.

When testing the framework with the snowfall model, the backtracking algorithm did not perform as well

compared to the standard particle framework. This could be because of the high stochastic forcing in the

dynamic section of the model, compounded by the jitter introduced on the temperature lapse rate to prevent

particle collapse. During runs without the jitter, whichever �lter algorithm was used would collapse on a

single temperature lapse rate value, and no other way could be found to abate this particle collapse.

It could be that running the complex model with more particles could yield more meaningful results.

However, at 1000 particles the computational restraints of the system that was used to create these results

was were already apparent. A backtracking run with 2000 particles was attempted, but this caused issues

with the system memory.

The snowfall model uses three update steps, which might be too small a number to have meaningful

results from the backtracking algorithm, because it is not always clear to see if the backtracking algorithm

e�ectively deals with the detected �lter divergence until later.

In general it is quite tricky to create the model conditions where the backtracking particle �lter can be

e�ectively compared to the standard particle �lter. The stochasticity and uncertainty has to be high enough

so the backtracking algorithm triggers, but if the backtracking algorithm triggers at every update step the

�lter is far too close to �lter divergence to yield meaningful results. If the uncertainty is too low however,

backtracking will not trigger at all and the results will be equal to the results from a standard particle �lter

run.

This raises a clear limitation to the backtracking algorithm. A backtracking algorithm is useful if you

want to constrain the number of particles used in the �lter, and at the same time want to prevent �lter

divergence. However, if your model is too stochastic and backtracking triggers after every �lter step, it is

better to simply use a standard particle �lter with a higher number of particles.

There are a number of factors that have not been tested during the testing with this model. The number

of particles used to backtrack has been kept at twice the regular amount during the entire testing phase.

The backtracking algorithm can handle any number of particles above the regular amount, however, and it

could yield useful results to test the e�ect of the amount of backtracking particles used on the results to see

if there is a clear optimum in the results.

24

Another thing that has not yet been tested is a situation where the model error decreases over the model

run, and the measurement error varies as well. This is a case that a backtracking particle �lter has a high

chance to have meaningful results. If the model error is exceptionally low at one update step, the backtracking

particle �lter can deal with this very e�ectively.

The two models used to test the backtracking algorithm are both quite simple and both have a small

state space. It would be meaningful to test the backtracking algorithm on a model with a truly large state

space to see whether the algorithm can cut down on computation time there as well.

There is still room for improvement in the backtracking algorithm as well. The current backtracking

algorithm expands the particle cloud by simply copying every particle regardless of weight. Spiller et al.

[2008] also tested a method called directed doubling, where the posterior calculated during the failed �lter

time step is used to select which particles will be used in the doubling. During their experiments the e�ect

of the directed doubling was minimal, but perhaps when using the �lter on other models it can yield very

meaningful results.

The algorithm could also be altered to allow user-de�ned backtrack triggers catered speci�cally to the

model used. The goal in this thesis was to create a generally applicable algorithm so this option was not

explored, but it could make the algorithm more malleable to other types of models.

The current algorithm also doesn't explore cloud expansion on expanded clouds or recursive backtracking,

as using it on a model that simply cannot recreate the measurements would create an in�nite data-creation

loop as more and more particles will be initialized. It can be useful to explore this option however, as this

could pave the way for a �uid particle �lter where the amount of particles needed to get results is no longer

an input. This model would instead iterate toward the optimal number of particles automatically.

25

6 Conclusion

The backtracking particle framework works as intended, being able to detect �lter divergence and reacting

to it. Filter divergence is detected in a way that is largely independent of the way the particle weights are

calculated by the user, using the list of normalized particle weights. The framework is able to be deployed on

any model that can make use of the particle �lter algorithm, and the user does not have to add any methods

to the model class in order to run the backtracking particle �lter. In this regard, the particle �lter is quite

user-friendly.

During testing on the simple point model, the backtracking particle �lter consistently outperforms the

standard particle �lter, even when comparing runtime. The results of the snowfall model are not as conclusive,

showing no di�erence in result between the standard particle �lter and the backtracking algorithm. However,

the results of the snowfall model also seem to be independent of particle cloud size, which indicates that

the particle cloud sizes used were probably too small. Also, the 'jitter' introduced in the snowfall model

to combat particle collapse could be a large factor in causing the poor performance of the backtracking

algorithm. Computational and time restraints limit exploration into the exact cause.

At this point it is di�cult to say if the backtracking particle �lter will be useful for future research.

The conditions necessary for a backtracking algorithm are quite strict. The model needs to have a high

nonlinear or stochastic dynamic component, resulting in the possibility of the �lter divergence unexpectedly

occurring in between �lter time steps. However, when these conditions are met there is little doubt that the

backtracking particle �lter algorithm will increase the accuracy of the results without exponentially increasing

the computation time.

In the future the algorithm could be altered to be more useful in research by allowing users to input their

own backtracking conditions and tests, implementing di�erent ways of cloud expansion, improving on the

cloud reduction algorithm, and exploring a way for the algorithm to automatically �gure out the optimal

sample size.

26

References

K. de Jong and D. Karssenberg. Pcraster documentation, 2015. URL http://pcraster.geo.uu.nl/

pcraster/4.1.0/doc/manual/index.html.

A. Doucet. Sequential Monte Carlo Methods in Practice. Springer, 2001.

Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling methods for

bayesian �ltering. Statistics and Computing, 10:197�208, 2000.

A. Gelb, J.F. jr. Kasper, R.A. jr. Nash, C.F. Price, and A.A. jr. Sutherland. Applied Optimal Estimation.

The M.I.T. Press, 1974.

N. Thompson Hobbs and Mevin B. Hooten. Bayesian Models: A Statistical Primer for Ecologists. Princeton

: Princeton University Press, 2015.

Colin Howson. Scienti�c Reasoning: The Bayesian approach. La Salle, Illinois : Open Court, 1990.

Derek Karssenberg, Oliver Schmitz, Peter Salamon, Kor de Jong, and Marc F.P. Bierkens. A software

framework for construction of process-based stochastic spatio-temporal models and data assimilation. En-

vironmental Modelling & Software, 25:489�502, 2010.

G. Kitagawa. Monte carlo �lter and smoother for non-gaussian nonlinear state space models. Journal of

Computational and Graphical Statistics, 5(1):1�25, March 1996.

Hans R. Künsch. Particle �lters. Bernouilli, 19(4):1391�1403, 2013.

S. Nanako, G. Ueno, and T. Higuchi. Merging particle �lter for sequential data assimilation. Nonlinear

Processes in Geophysics, 14(4):395�408, July 2007.

D. T. Pham. Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly

Weather Review, 129:1194�1207, May 2001.

D. Simon. Optimal State Estimation. John Wiley & Sons, 2006.

Elaine T. Spiller, Amarjit Budhiraja, Kayo Ide, and Chris K.R.T. Jones. Modi�ed particle �lter methods for

assimilating lagrangian data into a point-vortex model. Physica D, 237:1498�1506, 2008.

P. J. van Leeuwen. A variance-minimizing �lter for large-scale applications. Monthly Weather Review, 131:

2071�2084, 2003.

P. J. van Leeuwen. Particle �ltering in geophysical systems. Monthly Weather Review, 137:4089�4114, 2009.

Judith A. Verstegen, Derek Karssenberg, Floor van der Hilst, and André Faaij. Spatio-temporal uncer-

tainty in spatial decision support systems: A case study of changin land availability in bioenergy crops in

mozambique. Computers, Environment and Urban Systems, 36:30�42, 2012.

X. Xiong, I. M. Navon, and B. Uzunoglu. A note on the particle �lter with posterior gaussian resampling.

Tellus, 58A:456�460, 2006.

27

A The Backtracking Particle Filter Code

The complete �lter code is available in the digital appendix to this thesis. In this section only parts of the

code will be explained, as most of the backtracking particle �lter method is identical to the standard particle

�lter. Where the backtracking method diverges from the standard particle �lter, this section will explain

what the algorithm does. Information on the standard particle �lter algorithm is available online at http://

pcraster.geo.uu.nl/pcraster/4.1.0/doc/python/pcraster/framework/PCRasterPythonFramework.html#

particle-filter-method.

The backtracking algorithm diverges from the standard particle �lter at one key point in the 'run' function:

[. . .]

f o r sample in range (1 , s e l f . _userModel () . nrSamples () + 1) :

s e l f . _userModel () . _setCurrentSample (sample)

s e l f . _userModel () . _d_inUpdateWeight = True

f i t n e s sVa l u e = s e l f . _userModel () . updateWeight ()

s e l f . _userModel () . _d_inUpdateWeight = False

a s s e r t type (f i t n e s sVa l u e) == f l o a t or type (f i t n e s sVa l u e) == in t

s e l f . _userModel () . _d_particleWeights [sample − 1] = f i t n e s sVa l u e

do back t ra ck t e s t

s e l f . doBacktrack = s e l f . _backtrackTest ()

i f back t ra ck t e s t == true i n i t i a l i z e runbacktrack

i f s e l f . doBacktrack == True :

s e l f . _backtrack ()

determine samples to c l one

samplesToClone = s e l f . _samplesToClone (s e l f . _part ic leWeights ())

a s s e r t sum(samplesToClone) == s e l f . _userModel () . nrSamples ()

[. . .]

When the weights have been calculated, the '_backtracktest' function is called on the list of weights. If

this function returns True, the 'backtrack' function is called. This sequence encompasses the entire act of

backtracking. The backtracktest function detects �lter degeneracy:

de f _backtrackTest (s e l f) :

28

i f ha sa t t r (s e l f . _userModel () , ' backtrackTest ') :

r e turn s e l f . _userModel () . backtrackTest ()

e l s e :

weights = s e l f . _part ic leWeights ()

sortedWeights = sor t ed (weights , r e v e r s e=True)

normalizedWeights = s e l f . _normaliseWeights (sortedWeights)

topFivePercent = in t (math . f l o o r (l en (normalizedWeights) / 2 0 . 0))

i f sum(normalizedWeights [: topFivePercent]) > 0 . 9 :

r e turn True

e l s e :

r e turn Fal se

If a researcher has added their own backtracking method to their model, this method runs that and

returns the result. Otherwise, it takes the list of weights that has just been calculated and sorts this from

high to low. This list is then normalized to have a total weight of 1. The �rst 5 numbers in this list are added

together. If this number is higher than 0.9, more than 90 percent of the total weight of particles is carried

by the largest 5% of them, and the function returns True. Otherwise, it returns False. When the function

returns True, the backtrack function triggers:

de f _backtrack (s e l f) :

Do everyth ing the run does , but in d i r e c t o r i e s [N+1:M]

nrOr ig ina lSamples = s e l f . _userModel () . _lastSampleNumber ()

f i rstAuxSample = s e l f . _userModel () . _lastSampleNumber () + 1

lastAuxSample = s e l f . _userModel () . _lastSampleNumber () + s e l f . nrAuxSamples

s e l f . _userFramework () . _setSampleNumbers (f irstAuxSample , lastAuxSample)

First, settings of the the particle �lter framework have to be set for the backtracking algorithm. The

'_setSampleNumber' function changes the range of sample numbers the framework uses for running the

monte carlo simulation.

Copy samples in to new sampled i r s

nr = 0

f o r sample in range (s e l f . _userModel () . _firstSampleNumber () ,

s e l f . _userModel () . _lastSampleNumber () + 1) :

i f nr < nrOrig ina lSamples :

nr += 1

29

dirNr = nr

e l i f sample − s e l f . _userModel () . _lastSampleNumber () > nrOrig ina lSamples :

nr = 1

dirNr = nr

e l s e :

dirNr = math . f l o o r (random . uniform (1 , nrOr ig ina lSamples + 1))

source = "%d" % (dirNr)

d e s t i n a t i on = "%d" % (sample)

i f os . path . i s d i r (d e s t i n a t i on) :

s h u t i l . rmtree (d e s t i n a t i on)

s h u t i l . copytree (source , d e s t i n a t i on)

The particles are then copied into the folders that will be used by the backtracking algorithm. It �rst

copies the entire original population of particles. Then it checks if there are enough of the new samples left

to do it again. When it can't, it will take random samples until the total amount is reached.

run p a r t i c l e F i l t e r

l a s tPe r i od = len (s e l f . _userModel () . _d_fi l terTimesteps)

cur rentPer iod = s e l f . _userModel () . _d_f i l t e rPer iod

s e l f . _runMonteCarlo (currentPer iod , l a s tPe r i od)

i f not cur rentPer iod == la s tPe r i od :

update the we i gh t s

c a l l i n g the " o b j e c t i v e f u c t i on " f o r each sample

auxSampleWeights = []

for sample in range (s e l f . _userModel () . _firstSampleNumber () ,

s e l f . _userModel () . _lastSampleNumber () + 1) :

s e l f . _userModel () . _setCurrentSample (sample)

s e l f . _userModel () . _d_inUpdateWeight = True

f i t n e s sVa l u e = s e l f . _userModel () . updateWeight ()

s e l f . _userModel () . _d_inUpdateWeight = False

a s s e r t type (f i t n e s sVa l u e) == f loat or type (f i t n e s sVa l u e) == int

auxSampleWeights . append (f i t n e s sVa l u e)

The algorithm then runs the monte carlo simulation on the particles for the period it is in the same way

30

it did before backtracking in the 'run' method, but now for the new sample cloud. After this, it calculates

the weight of each particle the same way it does in the 'run' method.

normalisedWeights = s e l f . _normaliseWeights (auxSampleWeights)

cumulativeWeights = s e l f . _cumulativeWeights (normalisedWeights)

samplesToClone = [0] * nrOr ig ina lSamples

f o r i in range (0 , nrOr ig ina lSamples) :

lower = 0 .0

uniformReal = random . uniform (0 . 0 , 1 . 0)

f o r j in range (0 , l en (cumulativeWeights)) :

upper = cumulativeWeights [j]

i f uniformReal > lower and uniformReal <= upper :

samplesToClone [j] += 1

lower = upper

indexToClone = []

f o r i in range (l en (samplesToClone)) :

sample = samplesToClone [i]

i f sample > 0 :

indexToClone += sample * [i]

f o r i in range (0 , nrOr ig ina lSamples) :

sampleToClone = indexToClone [i] + nrOr ig ina lSamples + 1

varname = " stateVar "

c loneSource = os . path . j o i n ("%d" % sampleToClone , varname)

c l oneDes t i na t i on = os . path . j o i n ("%d" % i , varname)

i f os . path . i s d i r (c l oneDes t i na t i on) :

s h u t i l . rmtree (c l oneDes t i na t i on)

s h u t i l . copytree (c loneSource , c l oneDes t i na t i on)

s e l f . _userModel () . _d_particleWeights [i] = auxSampleWeights [indexToClone [i]]

undo damage

31

s e l f . _userFramework () . _setSampleNumbers (1 , nrOr ig ina lSamples)

Now it takes an amount of particles from the cloud equal to the number of original particles. These

particles are sampled from a weighted distribution based on the particle weights calculated, just as in the

sequential importance resampling method.

32

