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Summary

Current global land cover (GLC) maps have an overall accuracy around 70%, varying from 67
to 81% (Mora et al. 2014; See et al. 2014). Map producers and users feel a need to improve the quality
of GLC maps as errors add to the uncertainty of GLC applications (Herold et al. 2011; Mora et al.
2014; Tsendbazar et al. 2015; Verburg et al. 2011). Improved GLC maps can be achieved by
integrating different land cover (LC) datasets (Herold et al. 2008). Before LC maps can be integrated,
LC data needs to be harmonized to the same thematic legend and spatial extent. LC products have
limitations due to product inconsistency (Tuanmu and Jetz 2014). The use of differing methodologies
in LC mapping, integration, classification scheme and algorithms and data sources raises GLC
mapping inconsistency issues (Mora et al. 2014). Inconsistencies between GLC dataset form an
obstacle for map integration. Integration aims to label LC information to the most accurate LC class,
but is dependent on the LC information from the LC maps used for integration.

There are different integration methodologies. Voting assigns a pixel to the LC class that
occurs in the majority of the LC input datasets at the pixel’s location. Voting is a widely accepted
approach in data integration (Ge et al. 2014; Goovaerts. 1999; Iwao et al. 2011; Jung et al. 2006;
Kinoshita et al. 2014; Tuanmu and Jetz. 2014). This research uses normal voting, weighted voting and
probability voting for the map integration of: FROM-GLC hierarchy (2013), Globcover 2009, LC-CCI
(2010) and MODISS (2010) LC maps. Normal voting is a new method that is purely map driven and
uses a two-step approach: (1) in case the LC input map agree on a LC class, pixels were assigned to a
LC class from simple majority voting. (2) In case the LC input maps disagreed on a LC class and
formed a tie, pixels were assigned to a LC class based on LC class preferences calculated from step 1.
In Weighted voting, pixels are assigned to the LC class that accumulates the highest weight that is
derived from user’s accuracy at that pixel’s location. In case of probability voting this accounts for the
probability of each LC class being the correct class. Weights and probabilities were derived from the
published confusion matrices FROM-GLC (Yu et al. 2014) and Globcover 2009, LC-CCI (2010) and
MODIS5 (2010) (Tsendbazar et al. 2016).

The integration methods were assessed on their overall and class specific accuracy in an
external validation, by cross tabulating the assessed LC map against the reference dataset in a
confusion matrix (Strahler et al. 2006; Foody 2005). The integration methods are evaluated on their
improvement compared to each other and the LC input maps. As addition to the external validation,
this research calculates the information entropy over the integration methods. Entropy is an internal
measure of uncertainty and represents the amount of information necessary to require certainty
(Shannon and Weaver. 1949). Based on the information entropy, probability voting was identified as
the best integration method. A difference plot between the integration methods confirmed that normal
voting and weighted voting achieved similar results. Normal voting, weighted voting and probability
voting had an improved overall agreement with the reference dataset, respectively 70.85%, 71.72%
and 71.40%, compared to the LC input maps. The improvement on class specific accuracies varied as
LC-CCI (2010) often held the highest agreement metrics for LC classes. This can be explained; voting
methods favor classes that have good probability or a high weight in the integration; therefore
common classes are over-mapped and rare LC classes could have been under-mapped. The probability
voting held the highest agreement metrics for LC classes among the voting methods.
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1. Introduction

Global land cover (GLC) products often exhibit spatial disagreement and overall accuracy
needs to be improved. Improved global land cover (GLC) maps can be achieved by integrating
different land cover (LC) datasets (Herold et al. 2008). Some integration methods consider the
agreements between two or more LC products (Jung et al. 2006), while others use map accuracy
information to integrate LC products (Tuanmu and Jetz 2014). The purpose of these integration
methods is to use available LC information to label the most accurate LC class.

This section will introduce the research context and background, problem description, and
motivation of this research.

1.1. Context and Background

LC maps serve as critical baseline information for a wide variety of research purposes and
environmental applications (Herold et al. 2008). These maps have been produced from remote sensing
images and they characterize the world surface into different LC types. Many models use LC datasets
as one of their data inputs, examples are: climate models, dynamic vegetation models, hydrological
models and carbon stock models (Hibbard et al. 2010; Jung et al. 2006; Verburg et al. 2011).
Modelling communities acknowledge the importance of an accurate representation of land use and
land-cover change to understand and quantify the interactions and feedbacks with the climate and
socio-economic systems (Hibbard et al. 2010). Errors in GLC datasets add to the modelling
uncertainty (Nakaegawa et al. 2011). The selection of a specific LC dataset and its quality has an
influence on the outcome of the respective model (Hibbard et al. 2010; Mora et al. 2014; Nakaegawa
et al. 2011).

The accuracy of existing GLC maps is around 70%, varying from 67 to 81% (Mora et al.
2014; See et al. 2014), despite the significant developments in technology and methodology of GLC
mapping (Fritz et al. 2011; Herold et al. 2011; Tsendbazar et al. 2015). Mora et al. (2014) mentions
that there is a clear need to improve the current quality of GLC maps, with the example that datasets
should have a maximum of 5-15% error as a target to be further used in modelling applications
(Herold et al. 2011). There are also significant amounts of spatial disagreement across different LC
maps, in particular in the cropland and forest domains (See et al. 2014). User communities have
specific requirements, but generally require a higher spatial and thematic accuracy, interoperability
and inter-comparability from LC maps for their applications (Herold et al. 2011; Mora et al. 2014;
Tsendbazar et al. 2015; Verburg et al. 2011). There are multiple GLC maps and it is not readily
apparent which is most useful for a particular application reflecting the user requirements or how to
combine the different maps to provide an improved dataset (Herold et al. 2008). Map producers aim
to improve the uncertainty components of GLC maps (Tsendbazar et al. 2015)

This research will focus on fusion of LC maps from the perspective of LC map producers,
with the aim to improve the (overall) accuracy of LC maps. In order to make the research more
feasible within the allocated time, this research focuses on Western European countries, namely: The
United Kingdom, Ireland, The Netherlands, Belgium, France, Spain and Portugal as study area. This
might enclose mapping matters in this research; however, findings are not limited to use within these
countries. To date, there are several GLC maps, reference data sets, merges of existing products and
LC hybrid maps. This is undertaken due to the significant spatial disagreement between LC products.

Voting is a procedure in which a pixel is assigned to the LC class that occurs in the majority of
the LC datasets at the pixel’s location. There are integration methods that use voting to assign a pixel
to a LC class, or use voting combined with a other approach (Ge et al. 2014; Goovaerts. 1999; Iwao et
al. 2011; Jung et al. 2006; Kinoshita et al. 2014; Tuanmu and Jetz. 2014). Jung et al. (2006) produced
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a SYNMAP merged existing LC products into a desired classification legend and exploring synergies
of GLC products for carbon cycle modeling. Ge et al. (2014) proposed a fusion method to combine
biomass maps linearly with weighted averaging and area bias corrections. Kinoshita et al. (2014)
focused on an integration method to create a GLC map and a probability map, using probability of
occurrence scores to perform a logistic regression analyses. Iwao et al. (2011) based their integration
method on a voting approach, were a pixel is assigned to the LC class that occurs in the majority of the
LC maps used for integration at that pixel’s location. Iwao et al. (2011) uses map accuracy to decide
on a LC class where maps disagree. Tuanmu and Jetz (2014) used a two-step integration approach to
capture the heterogeneity of the finer LC maps and applied accuracy based weighting on class
probabilities where the input maps disagreed. Previous work in the literature presents several geo-
statistical approaches to integrate different LC products (Carneiro and Pereira 2012; Ge et al. 2014;
See et al. 2014). See et al. (2014) introduced two hybrid LC map with crowdsourcing data and
geographically weighted regression. Geographically weighted regression (GWR) weights observations
and locally determines relationships between variables (Brunsdon et al. 1998; Fotheringham et al.
2003). Crowdsourcing data could improve the accuracy of LC maps where different LC products
disagree (Comber et al. 2013). Carneiro and Pereira (2012) aimed to develop methodologies for
mapping the spatial distribution of errors using indicator kriging.

The use of differing methodological approaches ( e.g., classification scheme, data source and
algorithms) for GLC mapping raises consistency issues and makes comparison difficult (Mora et al.
2014). Simultaneously, inconsistencies between LC products make integration of these products
difficult. LC products have limitations due to product inconsistency (Tuanmu and Jetz 2014) and
existing differences in LC legends are an obvious inconsistency that hinders the comparison of LC
maps (Herold et al. 2008). This raises the issue of data harmonization before comparing or integrating
LC products. Harmonization is done in order to be able to directly compare LC products. In addition
to the differences in legends, there are spatial aspects that cause inconsistencies between LC datasets.
For example, a different resolution between maps also makes integrating the available LC datasets
difficult. This research is limited in the thematic and spatial harmonization. LC classes will be
harmonized to a thematic legend with eight general LC classes. Spatial harmonization is based on the
assumption that the sample unit area has homogenous LC type, so the datasets can be harmonized to
have the same extent of sample units.

Inconsistencies between LC maps are not evenly distributed among all LC classes (Carneiro
and Pereira 2012) and accuracy may vary locally within the map (Strahler et al. 2006; Foody 2005).
Problematic classes are difficult to discriminate from other LC classes (Carneiro and Pereira 2012;
Herold et al. 2008). Fragmented landscape, heterogeneous and transition areas generally have lower
map accuracy (Carneiro and Pereira 2012; Herold et al. 2008; Jung et al. 2006; Tsendbazar et al.
2015). Class accuracies of problematic classes could be improved through integration of different LC
data sets. This would also address the requirements of map producers because the approach improves
problematic classes. LC map producers will benefit from an improved LC map with a higher overall
accuracy and class accuracies, to better characterize GLC and problematic LC types. More accurate
GLC map will also be beneficial to the users of GLC maps and provide a better basis for their
applications.

1.2. Problem description

GLC map producers have stated that GLC maps only reached an overall accuracy around 70%
despite the significant developments in technology and methodology in addition to the user
requirements for improved accuracy (Fritz et al. 2011; Herold et al. 2011; Tsendbazar et al. 2015;
Tsendbazar et al. 2016). There is a clear need to improve the current quality of LC maps from all
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perspectives and improved LC maps can be achieved by integrating different LC datasets. However,
there are different integration methods and it is not known which is the most accurate integration
method. Additionally, as the requirements on LC maps vary for different users, related research is
often directed at a specific user community or problem.

Inconsistencies between GLC maps, caused by different methodologies, legends, source data,
hinder comparison and integration between LC datasets (Mora et al. 2014). This will make integration
even more difficult and raises the issue of data harmonization before comparing different integration
methods (Herold et al. 2008). An integration method decides on a LC class for each pixel, based on
LC labels of the input products. Integration aims to label LC information to the correct LC class, but is
dependent on the LC information from input products. Inconsistencies among different GLC datasets
are often attributed to landscape heterogeneity (Jung et al. 2006; Tsendbazar et al. 2015).
Heterogeneous areas and transition areas of the main biomes are challenging to classify. These areas
have fragmented landscape with different LC types and it is difficult to classify mixed LC information
to a specific LC class (Carneiro and Pereira. 2012). Due to this difficulty, LC maps often disagree with
one another in these regions. Carneiro and Pereira (2012) mention that inconsistencies are not evenly
distributed among all LC classes and that some classes are easier to discriminate than other classes.
These classes with low accuracies are known as problematic classes and difficult to separate
spectrally. Herold et al. (2008) discusses that it is difficult to discriminate between classes in the
cropland and forest domains, naming mixed trees, shrubs, cultivated and managed vegetation and
barren LC types as examples of problematic classes. Problematic classes are often prominent in
heterogeneous and transition areas (Herold et al. 2008). Class accuracies could be improved by dealing
with problematic classes through integration and thereby also improved overall accuracy could be
achieved.

This research aims for improved LC maps and therefore focuses on different integration
methods that include: harmonization of LC classes, improved overall and class accuracy within the
community of LC map producers.

1.3. Research objective and questions

This research focuses on LC map integration from the perspective of LC map producers and
aims to improve (overall) accuracy of LC maps. Integration will be assessed with respect to the ability
of improving overall and class specific accuracies. This research is limited to integration methods
based on voting approaches, which are very commonly used for map integration.

Research objective:
The objective of this research is to generate improved LC products by integrating available LC
products and reference datasets.

Research questions:
To achieve this research objective, the following research questions will be answered:

I.  Can the selected LC map integration methods be applied to the study area considering data
constraints and characteristics (e.g. inconsistent legends)?
II.  How can LC datasets be integrated with the chosen integration methods and selected

software?
III. ~ Which is the most promising method based on internal validation?
IV.  What is the agreement of the integrated LC maps with the reference dataset and how much has

integration improved overall accuracy?
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1.4. Outline

Chapter two describes the study area, study materials and available LC datasets and maps that
were used for integration. Chapter three, the theoretical background describes the literature review for
the integration methods, harmonization and validation. The fourth chapter reports on the methodology
used in this research for the harmonization, integration methods and chapter five report the research
results. Chapters six and seven discuss the results and conclude the research, respectively.
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2. Study area, land cover data and materials

2.1. Study area

To make the research feasible within the allocated time, it focused on the following countries:
United Kingdom, Ireland, The Netherlands, Belgium, France, Spain and Portugal as study area. The
data such as LC maps and reference datasets were processed to match the study area. The analysis was
done in the WGS84 geographic coordinate system and datum. Figure 1 presents the study area.
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Figure 1: Study area

2.1.1. Area information

Western Europe has an ocean climate. The dominant LC are trees, shrubs, grass and croplands.
Shrubs and sparse vegetation L.C are more prominent in the southern part of Western Europe due to
warmer temperatures. Norway’s mountains area consisting of valleys and fjords, the French Alps and
the Pyrenees on the border of France and Spain are areas with steep slopes, heterogeneous areas and
fragmented landscapes.

Table 1 provides some meta data considering the target map of the study area. It should be
noted that this information is acquired after harmonization is complete as the harmonized cell size
influences these numbers. The decision for the chosen resolution is discussed in the methodology
(section 4.1).
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Table 1: Meta data target LC map

Reference system | Coordinate Reference system WGS 1984
Datum WGS 1984
Resolution Meters 300 (approximately)
Decimal degrees 0.002778
Extent X-minimum -11.2936
X-maximum 11.68418
y-minimum 34.96944
y-maximum 61.24722
Dimension Rows 9460
Columns 8272
Cells 78253120

2.2. Land cover data

This research uses LC datasets for two purposes: (1) producing integrated LC maps and (2)
assessing the performance of the integration methods by validating the produced LC maps. Four LC
maps were used as input for the three chosen integration methods implemented in section 4.2. The LC
reference data is used for the external validation of the produced LC maps in section 4.3.2.

2.2.1. Maps

FROM-GLC, Globcover 2009, LC-CCI (2010 and MODISS5 (2010) LC maps were used for
integration. Table 2 and table 3 list all four LC maps and their metadata. Globcover 2009, LC-CCI
(201) and MODISS (2010) were obtained from Wageningen University. FROM-GLC was
downloaded from internet (Finer Resolution Observation and Monitoring Global Land Cover. 2015).
The GLC maps were pre-processed in two steps: (1) the GLC maps were re-projected to the same
geographic coordinate system and datum and (2) all GLC maps were clipped to the extent of the study
area.

From the input maps, Globcover 2009, LC-CCI and MODISS5 had a WGS84 geographic
coordinate system and datum. MODIS5 was re-projected to WGS84 by Tsendbazar et al. (2016) when
acquired from Wageningen University. In QGIS all hierarchy tiles of the FROM-GLC hierarchy were
merged to one raster dataset, re-projected to WGS84 and directly re-sampled to a 300 meter resolution.
In the second step all maps were clipped to create a spatial subset of the raster within the extent of the
study area with the clip (data management) tool in ArcGIS. For operations, like integration in R, it is
required that all maps hold the same spatial extent and dimension (number of rows, columns and
cells), therefore the environmental settings of snap raster were used.

FROM-GLC hierarchy 250 m is one of the FFROM-GLC family maps, which were produced
using LandsatTM/ETM and MODIS EVI time series (Yu et al. 2014). The producers of FROM-GLC
aimed for a LC data set for different user applications and therefore created FROM-GLC-hierarchy.
The FROM-GLC-hierarchy was produced by an up-scaling / aggregation approach where a class type
at coarser resolution is assigned based on the class type at a finer resolution (Yu et al. 2014). There are
eight coarser resolutions in the hierarchy dataset, including the 250 meter used in this research, where
the 30 meter map is the base map. The FROM-GLC-hierarchy 30 meter is produced from FROM-
GLCagg, with a few improvements made on cell level at locations where there were misclassifications
(Yu et al. 2014). These improvements were made by aggregating LC information from coarser
resolution data as MODIS, Globcover 2009 and data to check among others global water and
shorelines (Yu et al. 2014). Misclassifications that were improved were: (1) no data and cloud pixels
that were replaced, (2) confusion between water bodies and shadows that were processed, (3) Bareland
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overestimation was reduced and (4) LC type confusion in shore areas was filtered (Yu et al. 2014).
FROM-GLC-hierarchy is produced from FROM-GLCagg, which is based on FROM-GLC and
FROM-GLCseg, for more information is referred to the research of Yu et al. (2014).

Globcover 2009 GLC map is produced from the automated classification of MERIS FR time
series (Bontemps. 2011). Globcover 2009 has a LCCS classification with a legend of 22 LC classes,
(Bontemps. 2011). The Globcover 2009 GLC map has a 300m resolution and is projected in Plate-
Carrée (WGS84) (Bontemps. 2011). The reference database for the Globcover 2005 was used for
validating Globcover 2009 LC map. LC-CCI (2010) and was produced from multi-year and multi-
sensor strategy (Climate Change Initiative Land Cover project. 2015). The MERIS Full (2003-2012)
and Reduced Resolution (FR and RR) archive were used as input to generate a 2003-2012 global land
cover map, from which the 2010, 2005 and 2000 maps were produced. LC-CCI has a LCCS
classification scheme with 22 LC classes. MODISS5 (2010) was- produced from: monthly EVI, LST,
and 7 bands from 8 day composites (Friedl et al. 2010). MODISS has different LC classification
system including IGBP (Mora et al. 2014) and has a legend with 17 classes.

Table 2: Meta data LC maps, production, classification and validation

Production
LC map Input data Time of data collection
Landsat Thematic Mapper (TM), 2010
FROM-GLC- Enhanced Thematic Mapper Plus
hierarchy (2013) (ETM+). Improvements by
aggregating other LC data sources.
Globcover v2 (2009) MERIS: Bi-monthly from 10 day 2009

composites

LC-CCI (2010)

Unknown, made by Land Cover CCI
project

Three maps for; 1998-2002, 2003-
2007 and 2008-2012 epochs.

MODIS5 (2010)

MODIS: Monthly EVI, LST, and 7
bands from 8 day composites

2001-2008

Classification

LC map Classification method Classification scheme
FROM-GLC- - Two level classification system,
hierarchy (2013) with 10 classes

Globcover v2 (2009) (Un)supervised spatio-temporal LCCS 22 class

LC-CCI (2010)

clustering

MODIS5 (2010)

Supervised decision tree boosting

5 different LC classification system
including IGBP, UMD

Validation

Absolute positional accuracy

LC map Validation data RMSE
38664 test samples collected from
FROM-GLC- Landsat images, MODIS time series,
hierarchy (2013) high resolution images, field photos
Google Earth
Independent validation dataset from 77m
Globeover v2 (2009) CHR satellite data and other datasets
LC-CCI (2010) -
MODIS5 (2010) Using HR satellite 50-100m

Source: Mora et al. 2014, Table 2.1; Climate Change Initiative Land Cover project. 2014; Yu et al. 2014
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Table 3: Meta data LC maps, spatial reference and resolution

Coordinate Sinusoidal Datum: | WGS_1984 WGS_1984 Sinusoidal Datum:
Reference Sphere with radius Sphere with radius
System 6371007.181 m. 6371007.181 m
Datum WGS 1984 WGS 1984

Meter in

resolution at 250 300 300 500
equator

Decimal 0.002661 0.002778 0.002778 0.004167
degree

Source: Sinusoidal projection (2015); Tsendbazar et al (2016); Yu et al. 2014

2.2.2. Datasets

GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005,MODIS-tr and VIIRS 3 are the reference

datasets used for validating the produced LC maps. Figure 2 presents the distribution of the reference
datasets over the study area. All reference datasets were obtained from Wageningen University
(GOFC-GOLD reference data portal. 2015). The reference datasets were pre-processed with two steps:
(1) the reference datasets re-projected to the right geographic coordinate system and datum and (2) all
datasets were clipped to the extent of the study area.
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Figure 2: Reference datasets
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Table 4 holds the distribution of sample sites over the individual reference datasets and table 5
lists the metadata information of the reference datasets (GOFC-GOLD reference data portal. 2015;
Tsendbazar et al. 2015)

Table 4: Sample sites of reference datasets

Reference dataset | Number of Sample sites
GLC2000 19
GLCNMO-tr 50
Geo-Wiki 304
Globcover 2005 123
StepModus-tr 138
VIIRS 3 282
Total 916

The GLC2000 and Globcover 2005 reference dataset have a LCCS classification system. The
GLC2000 reference dataset is the result of consolidation work, were data from the original GLC2000
dataset was randomly selected and reinterpreted using landsat scenes (GOFC-GOLD reference data
portal 2015). Only samples that were identified as problematic were reinterpreted, this results in a final
dataset with 1253 samples sites (GOFC-GOLD reference data portal 2015). GLC2000 has a block unit
type sample design and 19 samples are within the study area and used for this research. GLC2000
reference dataset has a LCCS classification with 13 LC classes. The Globcover 2005 dataset is the
result of consolidation work, were regional and national experts reinterpreted he original ESA-
GlobCover 2005 dataset using Google Earth imagery (GOFC-GOLD reference data portal 2015).
Globcover 2005 has a block unit type sample design and 123 samples are within the extent of the
study area. Globcover 2005 has a LCCS classification system with 22 LC classes. GLCNMO-tr has a
polygon unit type sample design and 50 samples are within the study area.

The StepMODIS-tr and Visible Infrared Imaging Radiometer Suite (VIIRS) reference dataset
have an IGBP classification with 17 LC classes. 138 sample sites of stepMODIS-tr and 282 sample
sites of VIIRS are within the extent of the study area (GOFC-GOLD reference data portal 2015). The
STEP reference dataset is a model that derives LC parameters from remote sensing, collateral and field
plot data that can be extracted with GIS to produce a GLC classification (GOFC-GOLD reference data
portal 2015). StepMODIS-tr reference dataset has a polygon unit type sample design. VIIRS has an
IGBP classification with 17 LC classes and clustered blocks of 5x5 km as its unit type sample design.
VIIRS reference dataset is based on stratified random samples of 500 blocks (GOFC-GOLD reference
data portal 2015), these clustered blocks are the unit type sample design. Geo-wiki reference dataset
has a LCCS/IGBP classification with 10 LC classes and 304 sample sites within the study area. The
Geo-wiki reference dataset is a Volunteered Geographical Information (VGI) reference dataset. Geo-
wiki collects data samples from volunteers (which can be experts) in a web interface and asks these
volunteers to interpret the reference LC from predefined sample locations (Comber et al. 2013; See et
al. 2014). Comber et al. (2013) determined the reliability of volunteered geographical information
(VGI) and shows that VGI can be used in LC mapping if it is reliable.
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Table 5: Meta data reference datasets

Spatial reference

Coordinate .
Dataset Reference System Datum Projection
GLC2000 WGS 1984 WGS 1984
GLCNMO-tr WGS 1984 WGS 1984 Plate_Carree
Geo-Wiki WGS 1984 WGS 1984
Globcover
2005 WGS 1984 WGS 1984
MODIS-tr WGS 1984 WGS 1984
VIIRS 3 WGS 1984 WGS 1984
Production
Dataset Acquisition date Classified by Source
National/regional Landsat TM, Aerial photographs,
GLC2000 1999-2002 expert thematic maps, NDVI profile
2000-2003 for National/regional Google Earth image/photo, DCP
GLCNMO-tr landsat and MODIS expert photo, regional LC maps
Geo-Wiki 2000-2012 Volunteer Google earth, Spot-NDVI, DCP.
geo-tagged pictures
Globcover . . SPOT VGT-NDVI profile, Google
2005 Circa 2005 International expert Barth
MODIS-tr 2001-2007 National/regional Landsat 7 or higher resolution data,
expert Google Earth
VIIRS 3
Legend
Dataset Classification Number of classes Hierarchical Classifier provided
scheme
GLC2000 LCCS 13 +
GLCNMO-tr ST-LCCS 14 -
Geo-Wiki LCCS/IGBP 10 -
Globcover
2005 LCCS 22 +
MODIS-tr IGBP 17 +
VIIRS 3 IGBP 17
Sample characteristics
Dataset Site Unit type Unit size
GLC2000 1265 Block 3x3km
GLCNMO-tr 1607 Polygon >3x3km
o . 1 pixel for MODIS, Glob-Cover,
Geo-Wiki 5608 Pixel GLC2000
%gg’cover 4258; 3167 certain Block 1.5x1.5km
MODIS-tr 1860 Polygon 1-376 pixel (0.5 km)
VIIRS 3 4500 Clustered blocks 1 km

Source: GOFC-GOLD reference data portal. 2015; Tsendbazar et al (2015), Table A2.
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2.2.3. Confusion matrices of Global Land Cover maps

Accuracy information of the input maps was used for integration; this information was gained
from the research of Tsendbazar et al. (2016) for the Globcover 2009, LC-CCI (2010) and MODISS5
(2010) input maps. For the input map, FROM-GLC-hierarchy, the confusion matrix of FROM-GLC
agg 30 meter was used as accuracy information (Yu et al. 2014).

2.3. Software

The software used in this research includes ArcGIS version 10.2.2 (Esri ArcGIS software.
2015). ArcGIS is a Geographical Information System (GIS) used for spatial analysis and visualization.
ArcGIS was mainly used for; harmonization, displaying LC data, results and finally the integrated LC
maps. In the harmonization (section 4.1) ArcGIS was used to reclassify the LC maps and datasets. In
the external validation ArcGIS was used to prepare (creating 3x3pixel blocks) the reference dataset to
extract the LC class from the integrated maps which was used for the external validation (4.3.2). GGIS
is free GIS software. In QGIS all tiles of the FROM-GLC-hierarchy were merged to one raster dataset,
re-projected to WGS84 and re-sampled to 300m resolution. This was done in QGIS instead of ArcGIS
because ArcGIS did not recognize the projection; during re-projection FROM-GLC was also
resampled to a 300m resolution.

R is a programming language and environment for statistical computing (The R project for
statistical computing. 2015). R was used to implement the integration methods, internal and external
validation. Section 8.1 in the appendix holds all scripts that were used in R. In addition to R, Excel
was used for harmonizing the legends of the LC maps and datasets to one legend and for assessing
confusion matrices. The new harmonized legend was constructed in excel and implemented to the LC
data in ArcGIS (section 4.1).
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3. Theoretical background

3.1. Global land cover mapping

The current accuracy of GLC maps is around 70 % (Mora et al. 2014; See et al. 2014). Map
producers and users feel a need to improve the quality of GLC maps as errors add to the uncertainty of
GLC applications (Herold et al. 2011; Mora et al. 2014; Tsendbazar et al. 2015; Verburg et al. 2011).

Improved GLC maps can be achieved by integrating different LC datasets (Herold et al.
2008). The current GLC maps often do not agree with each other in certain areas and this results in
spatial disagreements or inconsistencies between them. Inconsistencies between GLC maps come from
many origins. Mora et al. (2014) mentions, that the use of differing methodological approaches ( e.g.,
classification scheme, data source and algorithms) to produce GLC maps raises consistency issues.
Herold & Schmullius (2004) mention inconsistencies that result from different standards being used to
derive LC data, differences in: data model (vector/raster), cartographic standards, spatial aspects as
spatial reference system, resolution, sample unit-type, unit-size and thematic (semantic) aspects as
classification algorithms and LC legends. Jung et al. (2006) and Tsendbazar et al. (2015) mention that
inconsistencies among different GLC datasets are often attributed to landscape heterogeneity. Due to
fragmented landscapes, heterogeneous areas typically have many mixed cells and are therefore
challenging to be classified. Mixed cells of LC information are difficult to label to a specific LC class
(Carneiro and Pereira. 2012). Carneiro and Pereira. (2012) mention that transition areas have high
inconsistency between LC products due to different classification algorithms in legends. Another
problem in map inconsistencies are problematic classes, these classes are difficult to separate
spectrally and therefore hold a lower accuracy (Carneiro and Pereira. 2012). It is difficult to
discriminate between classes in the cropland and forest domains, Herold et al. (2008) identifies trees,
shrubs, cultivated and managed vegetation and barren LC types as problematic classes. Tsendbazar et
al. (2016) characterizes shrubs, grass and cropland classes, as LC classes with high confusion errors.
Harmonization (section 4.1) needs to be done before being able to integrate GLC maps (Herold et al.
2008; Tsendbazar et al. 2016). Data harmonization aims to harmonize LC data to one standard (Herold
et al. 2008). This makes it possible to compare and integrate the LC data in the same spatial dimension
and thematic legend within this research (section 4.2). Harmonization has its limitations and will not
ideally eliminate all spatial and thematic product inconsistencies. Harmonization is described in
section 3.4 of this research.

An integration method decides on a LC class for each pixel in the new map based on LC input
maps. Integration aims to label LC information to the most accurate LC class, but is dependent on the
LC information from input maps. There are integration methods that consider the agreements between
LC products (Jung et al. 2006), while others use map accuracy information (Iwao et al. 2011).
Kinoshita et al. (2014) and Tuanmu and Jetz (2014) use probabilities in their integration approach
which are based on map accuracies/agreements with the reference data. Kinoshita et al. (2014)
mention that there are numerous studies that compare maps, but attempts at applying these result of for
the creation of new integrated maps have been very limited. Section 3.2 of this chapter discusses
integration methods with a voting approach in detail. Integration methods with a statistical approach,
that take into account the location of LC classes, show promising results in accuracy improvements
(Kinoshita et al. 2014; See et al. 2014). Geographically weighted regression (GWR) can be used for
map integration and it weights observations and locally determines relationships between variables
(Fotheringham et al. 2003). See et al. (2014) introduced two hybrid LC maps with crowdsourcing data
and geographically weighted regression. In the approach, LC datasets were trained using volunteered
geographical information (VGI) and a probability map was produced from each land cover dataset
(See et al. 2014). A GWR was used to determine the best land cover product at each location by
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calculating the relationship between probability maps (See et al. 2014). A land cover hybrid map is
produced from the probability maps, the LC class of a map with the highest probability of being the
correct class was assigned to a pixel (See et al. 2014). The second hybrid map was better compared to
GLC2000 and Globcover, but worse or similar in performance to MODIS map (See et al. 2014).
Geostatistical approach can also be used for map indicator. For example, Indicator kriging includes
indicators in the land cover datasets by transforming class occurrences to indicators: 1 if present, O if
absent (Goovaerts. 1999). This approach could label indicators to each LC class present in the legend,
maps would be made from each LC class indicator (Goovaerts. 1999). This approach could interpolate
the indicators (co-variates or “soft” data) and reference data (“hard” data) with kriging and interpreted
as probabilities. Section 3.3 discusses how the normal voting, weighted voting and probability voting
methods are chosen for this research, considering the data constraints, characteristics and the study
area.

The accuracy of a LC map is assessed through a map validation process. Strahler et al. (2006)
describes validation as a term used for techniques that determine the quality of a particular map. It is
important to assess overall map accuracy and specific class accuracies, but it should be recognized that
accuracies varies locally within the map (Strahler et al. 2006; Foody 2005). Fragmented landscape,
heterogeneous, transition areas, etc, are usually mapped with low accuracy and problematic classes
have low class accuracies (Carneiro and Pereira 2012; Herold et al. 2008; Jung et al. 2006; Tsendbazar
et al. 2015). Herold et al. (2006) mentioned that harmonization and validation complement and profit
from each other in the overall quality of land cover products and boost interoperability and
comparability. The theoretical background on validation is described in section 3.6.

3.2. LC map integration methods

Integration decides on a LC class for each pixel in the new map based on LC labels of the
input products. This section studies different methods from literature on how LC datasets can be
integrated to an improved LC product and which of these methods would be applicable to this
research. The chosen integration methods are normal voting, weighted voting and probability voting.

3.2.1. Voting
Voting is a procedure in which a pixel is assigned to the LC class that occurs in the majority of
the LC datasets at the pixel’s location. Assignment is problematic or ambivalent in case of ties.

The method of Jung et al. (2006) is an example of using a voting approach for an integration
map. Jung et al. (2006) merged existing LC products into a desired classification legend and exploited
synergies of GLC products for carbon cycle modeling. The method of Jung et al. (2006) produced a
map with a legend based on AVHRR, MODIS and vegetation satellite sensors using a fuzzy logic
approach, legend harmonization and voting.

First the method defines a desired classification legend and secondly it links the defined
legend with the legends of the original maps by assigning affinity scores between them (Jung et al.
2006). The LC class with the highest score is assigned to the map, which in principle can be seen as a
voting procedure. Evaluation indicated a successful exploration of synergies between products and is
therefore believed to be more accurate than existing products; however there is insufficient reference
data to validate SYNMAP (Jung et al. 2006).

Gopal et al. (1999) used a voting approach to assign confidence estimates to conflicting
predictions in classifications of GLC. In this voting strategy, volunteers voted on LC classes which
resulted in that the predicted class received the largest number of votes (Gopal et al. 1999). Gopal et
al. (1999) mentioned that a voting strategy improves classification accuracy and provides a way to
evaluate map uncertainty, as voting results are contradictory in pixels with mixed LC classes.
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3.2.2. Weighted voting
In weighted voting, a pixel is assigned to the class that accumulates the highest weight at the
pixel’s location.

Ge et al. (2014) proposed a fusion method to increase the accuracy of regional biomass
estimates by using higher-quality calibration data and weighted averaging. Ge et al. (2014) combined
biomass maps linearly using weights derived from the variance-covariance matrix associated with the
accuracies of the source map and area bias corrections. This method uses minimization of the variance
of the prediction error, where each map has an associated variance (Ge et al. 2014).

Iwao et al. (2011) presented an approach to create a new GLC map with map integration.
Three existing GLC maps were combined (MOD12, GLC2000 and UMD) in six classes (forest,
croplands, grasslands, wetlands, settlements and other land) of the Land Use, Land Use Change and
Forestry classification scheme (LULUCF) (Iwao et al. 2011). The new map adopts the classification
favoured by the majority of the input maps, where MOD12 with the highest accuracy was only
replaced when GLC2000 and UMD agreed (Iwao et al. 2011). In principle this can be seen as
weighted voting as a preference was given to all LC classes from MOD12, because MOD12 has a
higher overall accuracy (OA). The new integration map, MOD12, GLC2000, UMD, each were
validated with rates of agreement in a confusion matrix with reference points from the Degree
Confluence Project (DCP). MOD12, GLC2000 and UMD have an overall agreement of respectively
60.4%, 85.9% and 55.5% with the DCP data (Iwao et al. 2011). The Results show that the overall
accuracy in the new map was improved to 61.3% overall agreement, but one or more of the input maps
show a higher accuracy for the Grasslands (UMD), Croplands (GLC2000), Settlement classes
(MOD12) and the Arid and Polar climate zone (Iwao et al. 2011).

3.2.3. Probability voting

In probability voting, the voting process is applied on the probabilities of each class being the
correct class. A pixel is assigned to the class that accumulates the highest probability at the pixel’s
location.

Kinoshita et al. (2014) created a GLC map and probability map through an integration method
that uses probability voting. Kinoshita et al. (2014) used a harmonized legend with six classes to
integrate six GLC maps: MODIS Land Cover Map Collection 4 (MOD12C4), MODIS Land Cover
Map Collection 5 (MOD12C5), Global Land Cover 2000 (GLC2000), Globcover, the University of
Maryland 1-km Global Land Cover products (UMD) and Global Land Cover by National Mapping
Organizations (GLCNMO) (Kinoshita et al. 2014). The integration method consists of two steps: (1)
calculating the probability of occurrence and (2) a logistic regression on the probability of occurrence.
Kinoshita et al. (2014) first calculated the probability of occurrence of the six LC types from the
reference dataset in each of the six GLC input maps, which can be described as class probabilities.
Equation 1 describes the probability of occurrence where M indicates the map, n indicates the
category class in a map, m indicates the category class in the reference data and N are the pixels
located in M, n, m of the matrices (Kinoshita et al. 2014).

NM,n,m [1]

P =
Mnm Z?n:;L Npnm

Source: Kinoshita et al. (2014)

In the second step Kinoshita et al. (2014) used the probability of occurrence scores to perform
a logistic regression analyses to calculate the probability of LC class for each pixel in the map. This
produces a probability map, from which an integrated map was produced with the LC class that holds
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the highest class probability in that pixel of the map (Kinoshita et al. 2014). The external validation
reported an overall accuracy of 74.6% (Kinoshita et al. 2014). Kinoshita et al. (2014) found that map
accuracy increased with the number of input maps but that the number of used training sites did not
significantly affect accuracy.

Tuanmu and Jetz (2014) used an integration method which uses probability voting to generate
a GLC product for biodiversity and ecosystem modeling. Tuanmu and Jetz (2014) used a two-step
integration approach and the generalized scheme developed by Herold et al. (2008) for harmonization.
First areal proportions from Globcover (2005) and MODIS2005 were integrated into an intermediate
dataset with 500 meter resolution. In case of disagreement, a confusion matrix was used to calculate
class probabilities for each class pair on which an accuracy based weighting was applied. Tuanmu and
Jetz (2014) mentioned that accuracy based weighting was only applied because adding information
from a coarser product would unnecessarily homogenize the heterogeneity captured by the finer
product. In the second step, the generated intermediate dataset of 500 meter was integrated with the
areal proportions of DISCover and GLC2000 of 1 kilometer. Information from the intermediate 500
meter dataset was kept if DISCover or GLC2000 agreed with the highest presented LC class. Priority
was given to the intermediate dataset because some of its disagreement may result from LC change in
the DISCover and GLC2000older products (Tuanmu and Jetz. 2014). In case of disagreement, the LC
class was again calculated from accuracy based weighting applied on class probabilities from the
intermediate 500 meter dataset, DISCover and GLC2000. The weights for the intermediate dataset
were twice as high because the dataset was calculated from two products (Tuanmu and Jetz. 2014).

Tuanmu and Jetz (2014) calculate dissimilarities between the integrated map, Globcover
(2005), MODIS2005 DISCover, GLC2000 and the randomly selected validation data. There was less
dissimilarity in the integrated map compared to the input maps, which suggest the new map had
improved (Tuanmu and Jetz. 2014). Classes were compared on their sensitivity, precision and F-score
presented in graphs (Tuanmu and Jetz. 2014). Where sensitivity is the ratio of correctly identified
pixels to the total number of pixels in the validation data and precision is the ratio of correctly
identified pixels in an evaluated product (user accuracy) (Tuanmu and Jetz. 2014).

3.3. Applicability of integration methods in research

Normal voting, weighted voting and probability voting are the chosen integration methods in
this research. This section discusses the applicability of integration methods within the data constraints
of this research.

3.3.1. Study area and data constraints

The study area extent covers the United Kingdom, Ireland, The Netherlands, Belgium, France,
Spain and Portugal presented in figure 1, section 2.1. FROM-GLC, Globcover (2009), LC-CCI (2010)
and MODISS (2010) LC maps used as input maps for the integration methods hold LC information
within the study area extent. Other areas from the GLC maps were excluded from this research. The
LC input maps hold no constraints for the applicability of the integration methods but enclose
mapping results within the study area. GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005, MODIS-
tr and VIIRS 3 are the reference datasets used for validating the produced LC maps. The reference
datasets hold samples within the extent of the study area. Section 5.1 holds the results from
harmonizing the dataset to the harmonized legend and one reference dataset. Table 6 holds the
distribution of samples over the harmonized LC classes. The reference datasets hold constraints for the
applicability of integration methods because LC classes (5) wetlands and (8) barren were not
represented by enough samples, respectively four and nine reference points.
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Table 6: Distribution of reference dataset over LC classes

LC Class | Description Samples
1 Trees 224
2 Shrubs 65
3 Herbaceous vegetation 130
4 Cultivated and managed

. . . . 426
vegetation / agriculture (incl. mixtures)
5 Wetlands 4
6 Urban/built up 45
7 Water, permanent Snow and Ice 13
8 Barren 9
1-8 All classes 916

Weighted voting and probability voting however do require accuracy information to assign
weights or calculate class probability; this information is often gained from a confusion matrix
produced from reference data. The accuracy assessments of Tsendbazar et al. (2016) and Yu et al.
(2014) were used and not an accuracy assessment produced from the reference data (section 2.2.3.).
The accuracy assessment of FROM-GLC (Yu et al. 2014) differs from the accuracy assessments of the
other input maps (Tsendbazar et al. 2016). The confusion matrix of FROM-GLC was actually
produced from the stage of FROM-GLCagg and not FROM-GLC hierarchy and does not possess
information on LC class (50) wetlands.

3.3.2. Selected methods for integration

Integration methods with a voting approach were the chosen integration methods in this
research. The LC maps produced from normal voting, weighted voting and probability voting were
evaluated by comparing the maps and an internal and external validation of the LC maps. This
research evaluates which voting method achieves the highest results. Methods with a geo-statistical
approach in their integration are promising and were considered but dropped because the harmonized
LC classes (5) wetlands and (8) barren were not represented by enough samples. It was questionable if
the reference data had enough reference points to produce a reliable result when used in an integration
method that uses reference/training data at location. Additionally if such a method was chosen the
reference dataset had to be divided in a training and validation dataset, which would have resulted in
LC classes (5) wetlands and (8) barren having even less samples. Dividing the reference data into a
training and validation dataset would have been required because a validation would reproduce
measured training data when the same reference data is used for training and validation purposes,
which would imply perfect predictions. Two of chosen methods require accuracy information. To keep
all reference data samples for the validation, confusion matrices from the research of Tsendbazar et al.
(2016) and Yu et al. (2014) were used instead of confusion matrices produced from the reference
dataset. Weighted voting and probability voting were produced with weights and probabilities
obtained from the research of Tsendbazar et al. (2016) and Yu et al. (2014). Normal voting, weighted
voting and probability voting are implemented in the methodology (section 4.2 ) and their results are
presented in section 5.2.

3.4. Harmonization

Harmonization of the available LC datasets and maps is necessary before comparing or
integrating the datasets Harmonization between LC datasets can be understood as a process where
similarities are emphasized and inconsistencies reduced (Herold et al. 2006). Harmonization should
focus on making the datasets comparable and in case of inconsistencies, develop an understanding
why and where LC products are not perfectly comparable.
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The harmonization process searches for ‘harmony’ between datasets, a balance which involves
inconsistencies opposite standardization (Herold et al. 2006). Harmonization is a ‘bottom up’ process
and will not eliminate all differences, but should eliminate major inconsistencies between datasets
(Herold et al. (2008). Standardization on the other hand, is a ‘top down’ process that eliminates all
inconsistencies between datasets (Herold & Schmullius. 2004). One example on the thematic
harmonization by Herold et al. (2006), is that the woodland of one dataset should not be the forest of
another dataset, but is should be recognized that different LC products could characterize forest in
different levels of detail.

Herold et al. (2006) and Herold & Schmullius (2004) describe joint initiatives for the
harmonization and validation of LC datasets. Interoperability and comparability between LC products
are an important aim of harmonization, as users benefit from these initiatives (Herold et al. 2011;
Mora et al. 2014; Verburg et al. 2011). However, interoperability and comparability can be a challenge
for data developers and map producers (Herold et al. 2006). Joint initiatives are only successful when
strategic decisions are pushed through international bodies and agencies responsible for such tasks
(Herold et al. 2006). In general mapping projects can profit from resources and harmonization
experiences, especially in terms of identified problems and inconsistencies in existing legends (Herold
et al. 2006). In later phases of map development, there is a higher chance of inconsistencies between
products which cannot be solved by harmonization, like, for example, a different threshold defining a
forest class in tree height (Herold et al. 2006).

Harmonization can be divided in spatial harmonization and the thematic harmonization.

3.4.1. Thematic harmonization

A thematic legend is developed from a classification system for a specific mapping purpose
(Herold et al. 2006). LC classes are categorised with well-defined criteria to order spectral image data
based on their characteristics, i.e. in terms of factors like percent cover and height (Herold et al. 2006).
It is possible that LC legends that are derived from a different classification system, or even without an
underlying classification system and therefore lack compatibility (Herold et al. 2006).

In thematic harmonization it is important to find a common language to describe LC and to
translate between different legends (Herold et al. 2006). Harmonization is the translation of legends to
one general legend (Herold et al. 2006). The Land Cover Classification System (LCCS) provides a
valuable universal LC language for building and comparing LC legends. Herold and Schmullius
(2004) identify LCCS as an appropriate classification system to provide a common language and
translation device. Another common legend for GLC mapping would be the International Geosphere-
Biosphere Programme (IGBP) classification scheme with 17 LC classes. Herold et al. (2006) describes
that it is more important to standardize terminology than categories in legend harmonization. The
harmonization process should first harmonize parameters used for the description of LC classes and
thereafter focus on categories if this is necessary (Herold et al. 2006).

The process of legend translation highlights the similarities and differences between legends
and shows which classes can be harmonized and where legends show inconsistencies (Herold et al.
2008). It should be noted that thematic harmonization does not resolve all inconsistencies between
legends, for example, inconsistencies caused trough different thresholds will remain (Herold et al.
2006). In legend harmonization it is important to know where inconsistencies are not resolved, for
further processes like integration and product evaluation.
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Herold et al. (2008) uses LCCS to harmonize IGBP, GLC2000 and UMD classes into a
general legend with 13 LC classes. Most LC maps and reference datasets available for integration have
an LCCS or IGBP based legend.

3.4.2. Spatial harmonization

Spatial harmonization is concerned with harmonizing the different cell sizes of LC maps and
the different sample units in reference datasets to one standard in order to compare and integrate them.
This research will be limited in spatial harmonization and assume that LC type in a sample area is
homogenous.

Yu et al. (2014) discussed the effects of up-scaling and down-scaling map resolution and
mention that dominant LC types are overestimated when resolutions are coarsened in up-scaling. The
majority LC class at a finer resolution is assigned to the coarser product which causes minority LC
classes to be overruled (Yu et al. 2014).

3.5. Validation

An accuracy assessment derives a quantitative description of quality of GLC map (Strahler et
al. 2006). There are several methods for performing an accuracy assessment; each has its own value
and applicability in validating a given map (Strahler et al. 2006).

Strahler et al. (2006) listed the following priorities in an accuracy assessment: (1) an overall
measure of map accuracy, (2) measures of class accuracy and (3) recognizing that accuracy may vary
locally within the map. An overall measure of accuracy is needed to indicate quality of a thematic
map. Measures of class accuracy are desired because users are interested in specific classes in a
thematic map (Strahler et al. 2006). A basic approach in validation is the confusion matrix, were the
given map is cross tabulated against a dataset which serves as reference in the analysis (Strahler et al.
2006). Thematic accuracy can be calculated from a confusion matrix (Strahler et al. 2006). These
accuracy measures are based on the whole map and however, accuracy may vary locally within the
map (Strahler et al. 2006). Foody (2005) states that one problem with the conventional approach, of
thematic assessment with a confusion matrix, that it indicates a single, global estimate of thematic
classification accuracy. There can be large spatial variation in map accuracy (Foody 2005). One
example would be an overall accuracy of approximately 67% of International Geosphere Biosphere
Programme’s (IGBP) Data and Information System Cover (DISCover) GLC map with a spatial
variation that differs by approximately 20% between continents (Foody 2005; Loveland et al. 1999).

The information entropy is a measure of per-pixel classification uncertainty (De Bruin and
Gorte. 2000; Shannon and Weaver. 1949). De Bruin and Gorte (2000) used posterior probabilities and
the information entropy to quantify uncertainty, when probabilities were concerned the information
entropy was used as an internal measure of uncertainty. Entropy expresses uncertainty according to the
vectors of posterior probabilities and does not involve uncertainty concerning the probabilities (De
Bruin and Gorte. 2000). Gopal et al (1999) mentions that a voting strategy improves classification
accuracy and provides a way to evaluate map uncertainty, as voting results are contradictory in cells
with mixed LC classes.

Foody (2005) and Strahler et al. (2006) described various methods to indicate spatial variation
in classification accuracy. Among others: confidence estimation for thematic class accuracies (Foody
2005; Loveland et al. 1999), calculating the accuracy for defined regions within the map (Foody 2005;
Strahler et al. 2006), mapping misclassified areas (Foody 2005) and indication of classification
uncertainty on a per pixel basis, which is discussed in the research of Foody (2005). Classification
uncertainty can be a useful addition to an accuracy assessment but the relationship between
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uncertainty and accuracy may not be simple (Foody 2005). This is due to the possibility that LC
classes can be allocated correctly but uncertain while other LC classes can be relatively certain but
allocated incorrectly (Foody 2005). In mapping spatial accuracy locally, an appropriate testing set is
required for an accuracy assessment within the area (Foody 2005).

3.5.1.Internal validation: Shannon information entropy

The information entropy represents the amount of information necessary to require certainty
(Shannon and Weaver. 1949). Shannon and Weaver (1949) describe entropy with equation 2, the
entropy of a set of probabilities where P; is the probability being i.

H=-KY_P; *Log (P) (2]
Source: Shannon and Weaver (1949)

3.5.2. External validation: Confusion matrix

Strahler et al. (2006) suggest the confusion or error matrix as a basic approach for the
validation of LC maps (Figure 3). In a confusion matrix, the classes of maps and reference data are
cross tabulated against each other, from which metrics of classification accuracy or agreement is
derived (Foody. 2005). Overall accuracy is an indication of the quality of the entire LC map that
represents the percentage of correctly predicted samples over the total amount of samples from the
reference dataset (Strahler et al. 2006). A confusion matrix is an accepted approach for map validation,
specifically for overall accuracy and per-class accuracy (Foody. 2005; Jung et al. 2006; See et al.
2014; Strahler et al. 2006). The following researches use a confusion matrix to validate their LC maps:
Herold et al. (2008), Iwao et al. (2011), Kinoshita et al. (2014), See et al. (2014). Tsendbazar et al.
(2016). A confusion matrix is relatively easy to interpret and used by both map producer and map user
communities (Strahler et al. 2006).

Actual class (reference)
A B C D OA p— ZC::] 'vmm. * 100
‘\V

2 A Nas |Nag |Nac |Nap [Na+ UA == 100
o Z Np+
°
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© PA= = %100
£ I Nim
. & N N N N N
ke ca)cB|cce €01 7C* | M=theassessed map,
§ D Nps |Nps |Npe [Npp |Np. N i pixels counted.m M, n, m of the matrix.
S n = category classin map M
5 m = the category class in the reference data
Cot) Nia|Nig |Nic INip | N [ -, mberof classes

Figure 3: Confusion matrix, Strahler et al. (2006)

In a confusion matrix it is assumed that each pixel is allocated to a single class in the given
map and reference dataset and that these datasets have the same spatial resolution (Strahler et al.
2006). In other words, the accuracy assessment considers a pixel as homogenous and not of mixed
origin. Interpretation of the confusion matrix also requires consideration of the sample design from the
reference dataset (Strahler et al. 2006).
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4. Methods

The research methodology of this study consists of five phases: a literature review, legend
harmonization, implementation of integration methods, the internal and external validation of the
selected methods, and evaluation of the results and the improvements of the integrated LC maps
(Figure 4).

Literature review

Integration methods & ‘

e R T Harmonization Validation

Harmonization

FROM-GLC Globcover Lc-ccl MODIS5 Reference
datssets
Integration
Normal Voting Weighted Voting Probability Voting
Validation
Internal: Information Entropy External: Confusion matrices

¢

Evaluation of accuracy improvements

Figure 4: Overall research methodology

4.1. Data harmonization

Thematic legends of the LC data were harmonized to eight classes and the spatial
harmonization differed for the (1) LC maps and (2) reference datasets: In the spatial harmonization of
LC maps, each map is re-sampled to the chosen resolution. For the reference datasets the spatial
harmonization is based on the assumption that the sample unit area has homogenous LC type, so the
datasets can be harmonized to have the same extent of sample units.

Herold et al. (2008) used LCCS to harmonize IGBP, GLC2000 and UMD classes into a
general legend with 13 LC classes. Most LC maps and reference datasets available for integration have
an LCCS or IGBP based legend. From the LC maps: Globcover 2009 and LC-CCI have an LCCS
based legend and MODISS5 (2010) is based on an IGBP legend. From the L.C reference datasets:
GLC2000, Gobcover 2005 and the GLCNMO-tr legends are based on LCCS and MODIS-tr, Geo-wiki
and VIIRS are based on IGBP.
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Table 7: Thematic harmonization

This research uses the LCCS based approach of Herold et al. (2008) and the research of
Tsendbazar (2015) as a basis for the creation of the harmonized legend. The general legend of 13 LC
classes used by Herold et al. (2008) and Tsendbazar (2015) were harmonized to eight classes by
further combining all tree classes to one class and combining the classes water, permanent snow and

Legends of the LC data were harmonized into one general legend with eight LC classes Table
27, table 28 and table 29 in the appendix describes the thematic harmonization in detail. Table 7 is a
simplified version of these tables, which holds the harmonized legend of eight classes with the original
LC classes that correspond to the original maps and reference datasets.

Harmonized legend LC data
LC IGBP/
Class Do Flégg[' ZGJE)% Geo- | Giobcover | GLCNMO | MODIS/ | LC-CCI
wiki VIIRS
12 40, 50, 60, 28 28
» 70,90, 100, | 1,2,3,4, | 1,2,3, T
1 Trees 20 3,4, 1 110, 120, s 4.5.8.9 90, 100,
> 160, 170 110,
’ 160, 170
2 | Shrubs 40 6 2 130 7 6,7 120
Herbaceous 40, 30,
3 vegetation 30 7 3 30, 140 8 10 140
Cultivated and
4 | managed vegetation | 8 4 | 114,20 | 1,13 | 12,14 | 1920
/ agriculture (incl. > ’ ’ 30
mixtures)
5 | Wetlands 50, 70 9 6 180 - 11 180
6 | Urban/built up 80 10 7 190 18 13 190
Water, permanent 60, 11,
7 | Snow and Iee 100 13 8,10 | 210,220 19, 20 15,17 | 210,220
8 | Barren 90 12 9 150 10, 16, 17 16 15, 20

analyst) with the harmonized legend.
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4.1.1. Land cover maps
Figure 5 describes in four steps the methodology used for harmonizing the FROM-GLC,

Globcover, LC-CCI and MODIS LC maps. The harmonization was conducted in ArcGIS through a
reclassification algorithm using the harmonized legend in excel (table 7).

Pre-processing steps were done in section 2.2.1. The spatial harmonization of the LC maps is
done in step two of the methodology. The resolutions of the LC maps were re-sampled to a pixel size
of 300 meter, which is 0.002778 by 0.002778 decimal degrees. A resolution of 300 meter was chosen
because this is the same as the resolution of Globcover 2009 and LC-CCI 2010. The MODISS and
FROM-GLC maps were resampled to have 300m resolution using nearest neighbor resampling.
FROM-GLC was re-sampled during pre-processing in section 2.2.1. Table 2 and table 3 hold the
metadata of the LC maps, among them the maps original spatial format.

The thematic harmonization was done in the third step of the methodology. FROM-GLC,
Globcover 2009, LC-CCI and MODISS original legends from the LC maps were re-classified (spatial
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1. Pre-processing 3. Re-classified with
(section 2.2.1) harmonized legend

V

Figure 5: Harmonization method of LC maps

Figure 6 presents the FROM-GLC hierarchy, Globcover 2009, LC-CCI (2010) and MODISS
(2010) LC maps that result from the harmonization, which are used as input maps for the integration
methods to produce improved LC maps (section 4.2). Table 8 holds the user agreement (UA),
producer agreement (PA) and overall agreement (OA) of all LC maps from the harmonized global
confusion matrices of Tsendbazar et al. (2016) and Yu et al. (2014). The accuracy assessments of
Globcover 2009, LC-CCI (2010) and MODISS5 were obtained from the research of Tsendbazar et al.
(2016) and FROM-GLC was obtained from Yu et al. (2014). The confusion matrix from Yu et al.
(2014) holds no information for LC class (5) wetlands and is produced from the stage of FROM-
GLCagg and not FROM-GLC hierarchy (Yu et al. 2014) (section 3.3.2). Misclassifications from the
stage of FROM-GLCagg were processed in FROM-GLC hierarchy (section 2.2.1) (Yu et al. 2014).
The matrix of FROM-GLC holds a different accuracy assessment than the Globcover 2009, LC-CCI
(2010) and MODISS (2010) LC input maps. This research uses the accuracy assessments for map
integration with the chosen methods (section 4.2), but it is questionable if these accuracy assessments
can be compared to each other (section 6.1.1) as is explained in section 3.3.2.

The FROM-GLC hierarchy LC map (figure 6a) shows a tiling effect which could, for
example, be caused by differing acquisition times. LC-CCI (2010) (figure 6¢) has the highest OA and
UA for LC classes; (1) trees, (2) shrubs and (7) water, permanent snow and ice. MODISS5 (2010)
(figure 6d) has the highest OA after LC-CCI (2010) and the highest UA for LC classes; (4) cultivated
and managed vegetation/agriculture, (6) urban/built up and (8) barren. LC-CCI (2010) and MODISS5
(2010) class specific accuracies are generally high compared to the other input maps. Globcover 2009
(figure 6b) has a lower OA than LC-CCI (2010) and MODISS5 (2010) but a higher OA than FROM-
GLC. Class specific accuracies of Globcover are generally a little lower or higher than the other input
maps and only LC class (5) wetlands had the highest UA.

Table 8: Reported accuracies of input maps

FROM-GLC Globcover (2009) LC-CCI (2010) MODISS (2010)
OA 66.10 67.81 74.70 73.92
Class UA PA UA PA UA PA UA PA

80.33 79.92 73.92 80.43 90.39 81.10 87.25 79.23

48.32 38.06 45.49 36.34 61.67 55.39 46.01 66.91

53.22 34.62 33.25 25.19 47.02 45.84 42.63 55.63

57.78 66.86 76.83 75.83 79.23 82.20 84.60 84.83

0.00 0.00 68.57 39.34 46.88 49.18 52.38 32.84

41.57 25.37 74.07 40.00 66.04 70.00 85.71 60.00

N N[N | AW N =

81.64 90.53 82.39 89.31 85.33 94.81 82.96 82.96

8 62.64 90.67 68.05 85.83 72.83 83.64 98.28 62.09

Source: Tsendbazar et al. (2016) and Yu et al. (2014)
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Figure 6: Harmonized LC maps

4.1.2. Reference datasets

Figure 6 describes in five steps the methodology used for harmonizing: GLC2000, GLCNMO-
tr, Geo-wiki, Globcover 2005, MODIS-tr, and VIIRS to one reference dataset. The harmonization was
performed in ArcGIS and used the harmonized legend table 7. Table 5 holds the metadata of the
reference data, among them the data’s original spatial format.
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Pre-processing steps were done in section 2.2.2. The spatial harmonization of the reference
datasets is done in step two of the methodology. All the reference datasets were harmonized to have a
point as a sample unit under the assumption of LC homogeneity, with the feature to point (data
management) tool in ArcGIS. The thematic harmonization of the reference datasets was done in the
third step of the methodology. Each reference datasets was joined to the harmonized legend, based on
a datasets original legend, by performing a join between the attribute table and the harmonized legend
(table 7). Section 8.2 table 28 in the appendices holds the original legend of the reference datasets. The
fourth step of the methodology completes the harmonization of the reference datasets. All point
features of each reference dataset were merged to one reference dataset with the merge (data
management) tool in ArcGIS. The reference dataset was used for the external validation, section 4.3.2
further explains the external validation methodology.

. Legena

1. Pre- 3 dataset, joined
processing to harmonized

— legend EM

Figure 7: Harmonization method of LC reference datasets

Figure 8 presents the results from the harmonization of GLC2000, GLCNMO-tr, Geo-Wiki,
Globcover 2005,MODIS-tr and VIIRS 3 to one reference dataset. The reference dataset has 916
samples. Table 6 (section 3.3.1) presents the distribution of the samples over the harmonized LC
classes and discusses that LC classes (5) wetlands and (8) barren were not represented by enough
samples (section 3.3.3).

Harmonized legend

e Trees
©  Shrubs

o  Herbaceous vegetation

Cultivated and managed
vegetation / agriculture (incl. mixtures)

e Wetlands

©  Urban/built up

©  Water, permanent snow and Ice
© Barren

CI Borders

ArcGIS basemap: NatGeo_World_Map

Figure 8: Harmonized reference dataset
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4.2. Integration methods

An integration method decides on a LC class for each pixel in the new map based on the LC
information from the input products. Section 3.2 discusses the theoretical background on the chosen
integration methods: normal voting, weighted voting and probability voting. This section covers the
implementation of the integration methods with the harmonized FROM-GLC, Globcover 2009, LC-
CCI and MODISS5 LC maps. The integration methods were implemented in R. Two of the chosen
integration methods require accuracy information from each input map. The accuracy assessments of
Globcover 2009, LC-CCI (2010) and MODIS5 were obtained from the research of Tsendbazar et al.
(2016) and FROM-GLC was obtained from Yu et al. (2014). Section 3.3.2 explains the use of
accuracy information from external research instead of an accuracy assessment with own reference
data.

4.2.1. Normal Voting

The methodology for "Normal voting" was based on a common voting procedure, known as
majority voting. A pixel was assigned to the class that occurs in the majority of the LC maps at that
pixel’s location. As mentioned in the theoretical background, a class is easily assigned where all LC
datasets agree, but it is more difficult when LC datasets disagree and form a tie. There are five
conditions possible in the voting procedure based on the preconditions: (1) there are four input maps
and (2) the voting procedure is performed on the classes that are present. The voting procedure decides
on a LC class in case all maps agree, three maps agree or two maps agree while the remaining two
disagree. In case of a tie, the voting procedure remains undecided on a LC class. Table 9 shows the
five possible conditions in the initial voting procedure.

Table 9: Initial voting, from agreement to disagreement conditions

Indicator Condition

10 All agree

20 Three maps agree, one disagrees

30 Two maps agree, remaining disagree

40 Tie: two maps agree, remaining also agree
50 Tie: all maps disagree

Part of this methodology was to decide on how to deal with ties through which a complete
voting result can be achieved. This research uses a new approach in solving ties based on class
preferences that are calculated from class occurrences of each input map. The methodology of the
normal voting was built from three phases (figure 9): (1) the initial voting map, (2) indicators of
conditions to deal with ties and the (3) final voting map.
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Initial voting map Indicators of conditions Final voting map

Figure 9: Methodology normal voting

Initial voting map

The initial phase is the majority voting performed on the class presence of the four input maps
and produced an initial voting map (section 5.1, figure 13a). In the initial voting map, pixels were
assigned to a LC class that occurs most often at a pixels location, where the four LC input maps agree
on a LC class. In case of a tie, the voting procedure remains undecided on a LC class, represented by a
deviating value in the initial voting map (initial voting script: MaxVote, section 8.1.1).

Indicators of conditions to deal with ties

This phase deals with the ties from the initial voting process by: (1) producing an
agreement/disagreement map (2) calculating occurrences within the initial voting map and
agreement/disagreement map for each of the LC input maps and (3) processing this information to
class occurrences in excel (table 30 and table 31, 8.2.2), which were simplified to class preferences
(table 10). The final voting map uses this information to decide on a LC class at a tie location.

The agreement/disagreement map (section 5.1 figure 13b) indicated the five conditions (table
9) from the initial voting map produced by (initial voting: VoteCount, section 8.1.1). The
agreement/disagreement map represents conditions where: (10) all maps agree, (20) three maps agree
and (30) two maps agree while the remaining two disagree. In these conditions the voting procedure
from the initial voting map decides on a LC class. The voting procedure remains undecided on a LC
class in case of a tie. Ties are represented by the conditions where: (40) two maps agree while the
remaining two also agree on a LC class and (50) where all maps disagree. In phase two is calculated
for each LC input map when the eight classes occur in the initial voting map and in each of the five
conditions (script: indicators in condition script, section 8.1.2 ). In phase three this information is
exported to excel (table 30 and table 31, section 8.2.2): Counted cells from classes that concur in the
initial voting, its input map and each of the five conditions were converted to percentages set against
the counted cells from classes of the initial voting results. Tie locations were excluded, as the eight
classes do not occur in the tie locations of the initial voting map.
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This information represents in percentages how much an input map with its classes concurs
with the initial voting. Additionally the information indicates the amount of agreement with the other
maps by being distributed over the three agreeing conditions.

The idea is to "solve" tie locations based on the occurrences of LC classes (from each input
map) in the initial voting results and assumes that using a class with a high occurrence could improve
map accuracy. Table 10 class preferences were calculated from these class occurrences (table 30 and
table 31) by summing the class occurrence over the three agreeing conditions. Class preferences of
each LC input map, represents in percentages the contribution of a LC class to the initial voting map.
Classes with a high preference will hold a higher ranking in the voting than classes with a lower
preference.

Table 10: Class preferences

Class preferences (percentages of class occurrences in initial voting)

Initial voting | FROM-GLC | Globcover | LC_CCI | MODIS 5
All classes 1 - 8 100 74.28 85.81 86.73 84.79
Class description No | Initial voting | FROM-GLC | Globcover | LC_CCI | MODIS 5
Trees 1 100 82.99 78.47 84.16 83.96
Shrubs 2 100 80.90 46.35 51,51 68.04
Herbaceous vegetation 3 100 45.74 72.85 82.39 67.89
S;lglgtz i‘fgﬁ 7‘;‘;&3‘;&%‘? 4 100 30.08 88.27 8439 | 8795
Wetlands 5 100 37.45 65.51 83.15 18.77
Urban/built up 6 100 31.95 62.73 98.08 77.44
Water, Snow and Ice 7 100 99.90 99.73 99.93 99.00
Barren 8 100 60.00 92.48 82.26 6.46

Locations with ties were solved by using the class preferences to decide on a LC class. Four
input maps give four possible LC classes, in case of a tie; the class with the highest preference will be
assigned to that location. This is a new approach for solving ties that uses the agreements between the
initial voting procedure and its input maps.

Final voting map

The final voting map was produced by: (1) using the class preferences to assign a LC class to
each tie location and (2) produce a voting result map by combining the initial voting from agreeing
conditions with the ties that have been solved. The script used to produce a complete voting result is in
section 8.1.3 of the appendix.

In step one, in case of a tie, LC class one to eight of each input map were replaced with the
corresponding class preference. Table 11 is an example of this approach, for each tie location there are
four inputs of class preferences (table 10) that correspond to the actual class of the input map. The
resulting class preferences of each map were summed from TP1 to TP8 and normalized by dividing
each TP trough the sum of TP1 to TP8. The script calculated which TP had the highest preference and
assigned that LC class to the ties location. The output is a raster with a voting outcome for each tie
location.
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Table 11: Example for solving ties in normal voting

Normal voting, assigning a class to a tie location
INPUT Actual | Class preferences
MAP Class 1 2 3 4 5 6 7 8
FROM-GLC 1 82.99 0 0 0 0 0 0 0
Globcover 7 0 0 0 0 0 0 99.73 0
LC-CCI 4 0 0 0 84.39 0 0 0 0
MODIS 3 0 0 67.89 0 0 0 0 0

TP1 TP2 | TP3 | TP4 | TPS | TP6 | TP7 | TP8 | TP-SUM
TP 82.99 0 67.89 | 84.39 0 0 99.73 0 335.00
Normalized 0.25 0 0.20 | 0.25 0 0 0.30 0 1
Assigned class 7

The voting results were produced by joining the initial voting with the solved ties by a " if else
statement ". The normal voting map holds the values of the "solved ties" in case of a tie and the values
of the initial voting in case of agreeing conditions where there were no ties.

4.2.2. Weighted Voting

Weighted voting is based on a methodology that applies weights into the voting procedure. A
pixel is assigned to the class that accumulates the highest weight at that pixel’s location. This
research’s "weighted voting" derives weights from the user accuracy (UA) of each LC class which
were obtained from the global confusion matrices of FROM-GLC (Yu et al. 2014) Globcover 2009,
LC-CCI (2010) and MODISS (Tsendbazar et al. 2016). This research bases the weights on the user
accuracies, as user accuracies represent the agreement of the LC map with the reference data. The
weights used for weighted voting are based on the UA in table 12.

The methodology of weighted voting is presented in figure 10 and bears similarity to the
methodology used within tie locations from the normal voting method. The script used to produce the
weighted voting map is in section 8.1.4 of the appendix. The methodology of weighted voting was
applied on each location in the study area.

Initial phase Weights Weighted voting

Weighted voting (map),
LC class with highest
—> accumalated weight
INPUT MAPS assigned to location.
(MaxPerc)

Assigns weights to LC

gasse TSI Weights (map), value
User accuracies of highest accumalated
(table 12) —>  weight were assigned
to location.
(MaxWeights)

Figure 10: Methodology weighted voting
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The weights used for weighted voting are based on the UA in table12.

Table 12: User accuracies weighted voting

UAwv.csv

Class | FROM-GLC | Globcover LC_CCI MODIS 5
1 80.33 73.92 90.39 87.25
2 48.32 45.49 61.67 46.01
3 53.22 33.25 47.02 42.63
4 57.78 76.83 79.23 84.60
5 0.00 68.57 46.88 52.38
6 41.57 74.07 66.04 85.71
7 81.64 82.39 85.33 82.96
8 62.64 68.05 72.83 98.28

Table 13 is an example of the weighted voting approach. Classes one to eight of each input
map were replaced with the corresponding user accuracies from table 12.in the initial phase of the

methodology. Each location has four inputs of user accuracies from the actual class of the input map.
These user accuracies were converted to weights when the accuracies of each map were summed in
TW1 to TW8 and normalized by dividing each TW trough the sum of TW1 to TW8. The weighted
voting map was produced when the script calculated which TW has the highest accumulated weight
and assigns the corresponding class to that location. Additionally, a map was made from weights used

in the weighted voting by returning the weights value instead of LC class.

Table 13: Example weighted voting

Weighted voting
INPUT Actual | User accuracies, used as weights
MAP Class 1 2 3 4 5 6 7 8
FROM-GLC 4 0 0 0 57.78 0 0 0 0
Globcover 4 0 0 0 76.83 0 0 0 0
LC-CCI 5 0 0 0 0 4688 | O 0 0
MODIS 3 0 0 42.63 0 0 0 0 0

WP1 | WP2 | WP3 | WP4 | WP5 | WP6 | WP7 | WP8 | WP-SUM
Weights 0 0 42.63 | 134.62 | 46.88 0 0 0 224.12
Normalized weights 0 0 0.19 | 0.60 | 0.21 0 0 0 1
Assigned class 4
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4.2.3. Probability Voting

In probability voting, a voting procedure is applied on the probabilities of each class being the
correct class. A pixel is assigned to the class that accumulates the highest probability at the pixel’s
location. Section 3.2.2 from the theoretical background studies the researches of Kinoshita et al.
(2014) and Tuanmu and Jetz (2014) on how probability voting has been used in previous studies. In
this research, the four input maps were integrated simultaneously with probability voting because
FROM-GLC and MODIS respectively have a finer and coarser resolution than the resolution of 300
meter from Globcover 2009 and LC-CCI. The methodology of probability voting is presented in figure
11. The script used to produce the probability voting map is in section 8.1.5 of the appendix.

Initial phase Probabilities Probability voting

Figure 11: Methodology probability voting

Class probabilities

The probabilities used in the methodology were obtained from converting the harmonized
global confusion matrices from the research of Tsendbazar et al. (2016) and Yu et al. (2014) to class
probabilities with equation 1 (section 3.2.3) from the research of Kinoshita et al. (2014). Probabilities
were calculated from the user perspective in this research, as this represents the agreement of the LC
input maps with the reference data. Kinoshita et al. (2014) calculated class probabilities for six LC
classes from the original legends of the input maps. This research calculated class probabilities for the
harmonized legend with eight LC classes. The matrices were converted to probabilities by dividing the
category class of the mapped class n, set against the category class of the reference class m, through
the sum of the mapped class described in equation 1. Table 14 on the next page holds the class
probabilities calculated with equation 1. Probabilities with value zero were given a value close to
infinity for the multiplication in the methodology, described by equation 5 and table 15.
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Table 14: Class probabilities of LC input maps

002 | 000 | 001 | 001 |

0.04

| 003 | 003 |70 7| 006

Source: Yu et al. (2014) and Tsendbazar et al. (2016).
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Multiple dependent events in conditional probability

A location with the probability of being Class,, depends on the class probability of each LC
input map: M1.1455., M2¢14ss,, M3ciass, and M4y, - These are multiple dependent events in joint
probability. Joint probability is expressed as P (4, B) which means that both events occur and
conditional probability is expressed as P(A|B) which means that event A occurs given event B occurs
(UMICH, electronic textbook; probability. 2015). Equation 3 describes multiple events in conditional
probability with Baye's rule’s (UMICH, electronic textbook; probability. 2015).

P(B|A)*P(A)

P(AIB) = "o 3]

Source: Probabilities, Bayes Rule (2015)

Equation 3 can be rewritten as equation 4, to represent P(C|M1 ... M4), the probability of
being Class,, given the class probabilities of the four LC input maps. P(C) is the probability of being
Class, in the new integrated map and P(M1.. M4) are the class probabilities of the LC input maps.

P(M1.M4|C)* P(C)

p(C|M1 M4) = P(M1.M4)

(4]

The methodology of probability voting from this research is based on two assumptions:
1. The input maps are independent events
2. The LC classes have equal priors

Based on assumption two, P(C) in the numerator can be removed from equation4, because the
probabilities of the LC input classes (P(M1) to P(M4)) have equal prior. Based on assumption one,
the LC input maps can be seen as independent events and P(M1..M4|C) can be solved by multiplying
the LC classes from the input maps. In this research, the new assigned class is calculated by
multiplying the LC class probabilities from the input maps divided trough the sum of all class
probabilities to normalize the probabilities (equation 5).

P(M1.M4|C)

P(CIM1...M4) = =m0

(5]

Implementation

Table 15 is an example of probability voting. Probability voting takes into account the
probability of the mapped class and the probability of being another class, which makes that each
input class holds eight class probabilities. On a specific location, there are four classes from the input
maps that together hold 32 class probabilities for the integrated class. For each map, eight probabilities
that correspond to the input class are imported from table 14. All probabilities being class,, from each
map are multiplied to TP1 to TP8 and normalized by dividing each TP trough the sum of all TP’s
(equation 5). The probability voting map is produced from assigning the LC class with the highest
TP/class probability to that location. Additionally, a probability map, from which the LC map was
produced, is made by returning the probabilities value instead of LC class.
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Table 15: Example probability voting

Probability voting
INPUT Actual |Class probabilities
MAP Class 1 2 3 4 5 6 7 8 SUM
FROM-GLC 4 0.10 | 006 | 0.22 | 0.58 | 0.00 | 0.02 | 0.00 | 0.02 1
Globcover 4 0.06 | 0.04 | 0.10 | 0.77 | 0.00 | 0.01 | 0.00 | 0.01 1
LC-CCI 5 0.28 0.03 | 0.13 | 0.05 | 047 | 0.00 | 0.02 | 0.03 1
MODIS 3 0.09 0.13 | 043 | 0.14 | 0.01 | 0.00 | 0.01 | 0.19
(multiplied) TP1 TP2 | TP3 | TP4 | TPS | TP6 | TP7 | TP8 | TP-SUM
1.55 901 | 1.18 | 2.88 | 2.39 | 885 | 5.00 | 1.61 4.23
Probabilities E-04 | E-06 | E-03 | E-O3 | E-25 | E-27 | E-10 | E-06 E-03
Normalized P 0.04 | 0.00 | 0.28 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 1
Assigned class 4

4.3. Validation of methods

This research used confusion matrices to validate the integrated LC maps and the information
entropy as a measure of uncertainty in the classification of the integrated methods: Normal voting,
weighted voting and probability voting. The validation of LC maps from this research can be divided
in an internal and external validation. The confusion matrices validate LC maps on their agreement
with the reference dataset. The information entropy is an internal measure of uncertainty and
independent of the external validation.

4.3.1. Internal validation

The information entropy is an internal measure of uncertainty and represents the amount of
information necessary to require certainty (Shannon and Weaver. 1949). Next to the external
validation, the information entropy was used as addition to evaluate the integration methods by
measuring their uncertainty. A high entropy value stands for a high uncertainty in the LC classification
and a low entropy value represents certainty. The methodology computed the information entropy of
LC classes for each method accumulated over the LC map. The best integration method could be
chosen as the one having least entropy aggregated over the study area. The information entropy over
the LC maps was calculated by equation 6, similar to equation 2 in section 3.5.1:

H=—-K¥i_ P *Log (P) [6]

i = possibilities of LC class (1 to 8),probabilities in probability voting
and weights in weighted voting

Source: Shannon and Weaver. 1949
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Normal voting is based on the presence of a LC class from each input map and not class
probabilities or weights. Therefore the information entropy (equation 6) is implemented on the
presence of LC classes from the LC input maps, each map has a possibility of 0.25% to be correct,
when maps agree possibilities are summed. The Shannon function from the normal voting script is in
section 8.1.3 of the appendix and implements the information entropy on normal voting.

Weighted voting and probability voting respectively hold "weights" and "probabilities" that
represent possibilities. These possibilities were implemented as p(c,) in equation 6 and hold the TW1
to TW8 (or TP1 to TP8) values from the methodology of weighted voting (figure 10) and probability
voting (figure 11). The same Shannon function was used for weighted voting and probability voting.
The weighted voting script (section 8.1.4) and probability voting script (section 8.1.5) in the appendix
implement the information entropy on weighted voting and probability voting.

Table 16 and presents an example for calculating the information entropy for one situation in
weighted voting. p(c,) in equation 6 and TW1 to TW8 do not hold a value for each LC class in
weighted voting. In case all maps agree, there is one value for p(c,) and the TP’s. In case all maps
disagree, there are four values for p(c,) and the TW’s. The function LogSpecial inside the Shannon
function gives Log(pc,) the value 0 in case p(c,) is 0, and the function gives Log(pc,) the value of
Log(pcy) in case p(cy) is not 0.

Table 16: Example for calculating information entropy over weighted voting

Weighted voting
INPUT Actual | User accuracies, used as weights
MAP Class 1 2 3 4 5 6 7 8
FROM-GLC 4 0 0 0 57.78 0 0 0 0
Globcover 4 0 0 0 76.83 0 0 0 0
LC-CCI 5 0 0 0 0 46.88 0 0 0
MODIS 3 0 0 42.63 0 0 0 0 0
WP1 | WP2 | WP3 | WP4 | WP5 | WP6 | WP7 | WP8 | WP-SUM
Weights 0 0 42.63 | 134.62 | 46.88 0 0 0 224.12
Normalized weights 0 0 0.19 | 0.60 | 0.21 0 0 0 1
Assigned class 4
Calculation of information entropy
1 2 3 4 5 6 7 8
p(cn) 0.00 | 0.00 | 0.19 | 0.60 | 0.21 | 0.00 | 0.00 | 0.00
Log(pcy) 0.00 | 0.00 |-2.39 | -0.74 | -2.26 | 0.00 | 0.00 | 0.00
p(cy) * Log(pcy) 0.00 | 0.00 |-0.46 | -0.44 | -0.47 | 0.00 | 0.00 | 0.00
*—1 0.00 | 0.00 | 0.46 | 0.44 | 0.47 | 0.00 | 0.00 | 0.00
. = 1.37 |H

34
GIMA thesis research, R van Setten-Zaremba



Table 17 presents an example for calculating the information entropy for one situation in
probability voting. (¢, ) in equation 6 and TP1 to TP8 hold a value for each LC class in probability
voting because probability voting accounts for the probability of a LC class being another class.

Table 17: Example for calculating information entropy over probability voting

Probability voting
INPUT Actual | Class probabilities
MAP Class 1 2 3 4 5 6 7 8 SUM
FROM-GLC 4 0.10 | 0.06 | 0.22 | 0.58 | 0.00 | 0.02 | 0.00 | 0.02 1
Globcover 4 0.06 | 0.04 | 0.10 | 0.77 | 0.00 | 0.01 | 0.00 | 0.01 1
LC-CCI 5 0.28 0.03 | 0.13 | 0.05 | 047 | 0.00 | 0.02 | 0.03 1
MODIS 3 0.09 0.13 | 043 | 0.14 | 0.01 | 0.00 | 0.01 | 0.19 1
(multiplied) TP1 TP2 | TP3 | TP4 | TPS | TP6 | TP7 | TP8 | TP-SUM
1.55 901 | 1.18 | 2.88 | 2.39 | 885 | 5.00 | 1.61 4,23
Probabilities E-04 | E-06 | E-03 | EO3 | E-25 | E-27 | E-10 | E-06 E-03
Normalized P 0.04 | 0.00 | 0.28 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 1
Assigned class 4
Calculation of information entropy
1 2 3 4 5 6 7 8
p(cy) 0.04 | 0.00 | 0.28 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00
Log(pcy) -4.77 | -8.87 | -1.84 | -0.55 |-73.91|-78.66|-23.01 | -11.36
p(cy) * Log(pcy) -0.17 | -0.02 | -0.51 | -0.38 | 0.00 | 0.00 | 0.00 | 0.00
*—1 0.17 0.02 | 0.51 | 038 | 0.00 | 0.00 | 0.00 | 0.00
D = 1.09 |H

4.3.2. External validation

Confusion matrices were used for the external validation of LC maps, which is explained in
the theoretical background section 3.5.2. The LC maps were assessed on their agreement with the
reference dataset and the integration methods were evaluated on their improvement compared to the
other maps (section 5.3). Section 5.3 presents the accuracy assessment of seven LC maps: normal
voting, weighted voting, probability voting, FROM-GLC, Globcover (2009), LC-CCI (2010) and
MODISS (2010). In a confusion matrix, the assessed map was cross tabulated against the reference
dataset described in section 3.5.2. The reference dataset was produced from harmonizing GLC2000,
GLCNMO-tr, Geo-wiki, Globcover 2005, MODIS-tr, and VIIRS to one reference dataset (section
4.1.2). The theoretical background section 3.5.2 mentions that a reference dataset is used as reference,
but may contain misclassification (Strahler et al. 2000). It is questionable if the reference data is
validate as the reference data comes from multiple sources. Therefore it would be more correct to refer
to the derived metrics of the confusion matrix as agreement instead of accuracy. Figure 12 presents the
methodology of the external validation:
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Preperation of

Extraction Confusion matrix
reference dataset

Figure 12: Methodology external validation

The reference dataset (section 4.1.2) was prepared for the external validation by using the
buffer (analysis) and feature envelop to polygon (data management) tool to create an envelope around
the point features of the reference datasets. The envelops were set to have a size of 3x3 pixel blocks,
0.00833x0.00833 decimal degree, with a point feature from the reference dataset as center point. Each
envelop around a point feature was used to extract the majority class from the assessed LC maps with
the external validation script in section 8.1.6 the appendix. The extracted majority class and center
class from the assessed map were added to the attribute table of the reference dataset as a result
(section 8.1.6 appendix). The original LC class of the reference dataset and the extracted majority
class from the assessed map were processed to the format of a confusion matrix in excel. This was
repeated for the normal voting, weighted voting, probability voting, FROM-GLC, Globcover (2009),
LC-CCI (2010) and MODISS5 (2010) LC maps. The confusion matrices of the integration methods are
presented in table 21 section 5.3.1. For the LC input maps the confusion matrices are presented in
table 22 and table 23 in section 5.3.2.

An example of a confusion matrix is presented in table 18 where M indicates the assesed map,
n indicates the category class in a map, m indicates the category class in the reference data and N are
the pixels located in M, n, m of the matrix. Overall agreement (OA), producer agreement (PA) and
user agreement (UA) were derived from the confusion matrices and calculated by equation 7.

[

1N
04 = ==+ 100

Nm,n
UA = m * 100 [7]

PA =2mn 4100
Y Nim

Source: Strahler et al. (2006)
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Table 18: Example of a confusion matrix

Map: M 1 . l;eferezce cla;ses C,g - - Correct z c, | ua
o L | Nyg | Nip | Nig | Nyg | Nys | Nyg | Ny7 | Nig Nyy Ny
L{z 2 | Npy | Nyp | Nog | Noy | Nys | Nog | Npy | Nog Ny, Ny,
% 3 | N3y | Nap | N33z | Nay | N3g | N3g | N3y | Nag N33 N3,
% 4 | Nyy | Nyp | Ny3 | Nyg | Nus | Nag | N7 | Nug Nys Ny
9 S | N5y | Nsp | N3 | Ny | Ngs | Nsg | Ny | Ngg | Nss Ns,
& 6 | Noy | Nep | Ng3 | Nea | Nos | Neg | Ney | Neg Nee N+
‘2“ 7 | N7y | Nyp | Nyz | Nyy | Ngs | Nyg | N77 | Nog N7 N7,
8 | Ngy | Ngp | Ng3 | Ngy | Ngs | Ngg | Ng7 | Ngg Ngg Ng,
correct | Nyg | Nyy | N33 | Ny | Nss | Neo | N7z | Ngg | Nipn
D W | Noy | Nop | Naa | Now | Nos | Mg | Nay | Nag N | oA
PA OA
5. Results

This section holds the results from the integration methods, the internal validation and the
external validation. The harmonized LC maps we used as input for the normal voting, weighted voting
and probability voting integration methods. A difference plot shows the similarities and dissimilarities
between the integrated LC maps. The internal and external validations were used to evaluate the
integration methods.

5.1. Integration methods

This section holds the LC results from the normal voting, weighted voting and probability
voting integration methods. Normal voting makes use of internal information from a voting procedure
Weighted voting and probability voting respectively base their weights and probabilities on the global
confusion matrices of Tsendbazar et al. (2016) and Yu et al. (2014). Accuracy assessments of external
research were used because it was questionable if the reference data from this research was sufficient
for producing reliable results, since certain LC classes were not represented by enough samples

5.1.1. Normal voting

Figure 13 presents the initial voting map (a) and the agreement/disagreement map (b) which
indicates the five conditions (table 9) from the initial voting procedure. In the initial voting map, pixels
were assigned to a LC class where the four input maps agree on a LC class. In case of a tie, the voting
procedure remained undecided on a LC class. There are 5338552 pixels of the 78252697 pixels in the
LC map where the voting procedure remains undecided which is 6.82% of the map.

37
GIMA thesis research, R van Setten-Zaremba



1¢Legend
3
LC classes

|- Herbaceous vegetation

E Cultivated and managed
; I:I vegetation / agriculture

- Wetlands
- Urban/built up

Water, permanent
snow and ice

10°0'0"E

¢ Conditions

- All LC maps agree

Three LC maps

- agree, one map

disagrees

Two LC maps
agree, remaining
two maps disagree

z Tie: two LC maps
;- agree (2x)

Tie: all LC maps
- disagree
E Borders

Figure 13: Initial voting map and its agreement/disagreement conditions from input maps
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Ties were solved by using class preferences to decide on a LC class at that location, class
preferences are presented in table 10 section 4.2.3. These class preferences were calculated from class
occurrences in table 30 and table 31 of the appendix. Map occurrences (table 19) were calculated to
further analyze the results of the initial voting. Map occurrences were calculated from table 30 and
table 31 of the appendix by summing the class occurrence over all LC classes and identifying how
much each input map has contributed to the initial voting map.
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In 63.51% all input map agree on a LC class in the initial voting. LC-CCI contributed the most
to the initial voting map. LC-CCI has the highest map occurrence where three maps agree and where
two maps agree. Globcover and MODIS map occurrences are close to LC-CCI. FROM-GLC
contributed the least to the initial voting map, where FROM-GLC disagrees with 25.72 % of the initial

voting map.

Table 19: Map occurrence

LC classes Conditions
1-8 All agree 3 agree 2 agree Disagree, ties
FROM-GLC 63.51 7.14 3.62 25.72
Globcover 63.51 15.54 6.76 14.19
LC-CCI 63.51 16,38 6.84 13.27
MODIS5 63.51 15.62 5.66 15.21

This section uses the observations from on class preferences (table 10, section 4.2.3) to
describe the initial voting results. A high class preference demonstrates that the corresponding LC
class is more often assigned to the normal voting map.LC-CCI holds for most of the LC classes the
highest class preferences: (1) trees, (3) herbaceous vegetation, (5) wetlands, (6) urban/built up and (7)
water, permanent snow and ice respectively 84.16%, 82.39%, 83.15%, 98.08% and 99.93%. Class
preferences of Globcover and MODIS come close to the class preferences of LC-CCI. MODIS does
not hold the highest class preference for any of the LC classes and has a very low class preference for
(5) wetlands and (8) barren respectively 18.77% and 6.46%. Globcover holds the highest class
preference for LC classes (4) cultivated and managed vegetation/agriculture and (8) barren
respectively 88.27% and 92.48%. FROM-GLC holds the highest class preference for LC class (2)
shrubs among the LC input maps. FROM-GLC generally holds the lowest class preferences over most
of the LC classes, but holds a high preference for LC classes (1) trees, (2) shrubs and (7) water, snow
and ice respectively 82.99%, 80.90% and 99.90%. FROM-GLC holds relative low class preferences
because FROM-GLC has a low occurrence in the initial voting map.
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The normal voting map is presented in figure 14 and was produced by joining the initial voting
results with the "solved ties" in case of disagreeing conditions from the LC input maps.
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Figure 14: Integrated map obtained by normal voting
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5.1.2. Weighted voting

Figure 15 presents the resulted weighted voting LC map (a) and the highest accumulated

weight (b) over eight LC classes from which the integrated map was generated. The weights are based

on the UA of each LC class of the input maps. Presented in table 8 section 4.1.1 and table12 section

4.2.2, both tables holds the UA of each LC input map obtained from the research of Tsendbazar et al.
(2016) and Yu et al. (2014). Class maximum weights were generally high in the weighted map (figure
15b), but holded less contrast than the maximum probabilities of the probability voting method (figure

17b). Class weights are low in area where the LC input maps disagree (figure 13b).
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Figure 15: Integrated map obtained by weighted voting and its class weights
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Figure 16 presents the weights for each of the eight LC classes. LC classes (1) trees, (4)
cultivated and managed vegetation/agriculture and (7) water, permanent snow and ice hold high
weights to be assigned at locations within the integrated map. Common LC classes with high weights
were favored in the weighted voting process. There is a high weight for a LC class when LC input
maps agree on a LC class. Weighted voting has less contrast between its weights than the probability
voting maps (figure 18).
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Figure 16: Class specific weights LC classes

This section uses the observations from table 8 (section 4.1.1) that hold the OA, UA and PA of
the LC input maps to describe the weighted voting results. A high UA means a high weight input for
the corresponding LC class of the input map, since the weights are based on the UA.

LC-CCI (2010) has the highest OA of 74. 70% from the input maps. LC-CCI and MODIS
each hold the highest UA for three LC classes amongst the eight LC classes of each input map. LC-
CClI for LC classes:(1) trees (2) shrubs and (7) water, permanent snow and ice with respectively
weights of 90.39%, 61.67% and 85.33%. MODIS for LC classes: (4) cultivated and managed
vegetation/agriculture, (6) urban/built up and (8) barren with respectively weights of 84.60%, 85.71%
and 98.28%. FROM-GLC has the highest UA for LC class (3) herbaceous vegetation and Globcover
has the highest UA for LC class (5) wetlands among the input maps. The high presence of trees in
FROM-GLC LC map with the relative high UA for LC class (1) trees, could cause an overestimation
of trees in the weighted voting map. The UA for LC class (5) wetlands from FROM-GLC is unknown
because the confusion matrix from Yu et al. (2014) holds no information for wetlands, which is class
50 in the FROM-GLC classification system. There is an average difference 28.94% in the UA of a
specific LC class, there are no significant differences with the exception of LC class (5) wetlands.
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5.1.3. Probability voting

In each location of the probability voting map, a pixel is assigned to the LC class that holds
the highest probability at the pixel’s location. Figure 17 presents the resulted probability voting LC
map (a) and the highest class probabilities (b) from which the LC map is generated. Maximum class
probabilities are generally high in the map and low in area where the LC input maps disagree (figure
13b). The areas with low probability are typically located in areas with fragmented landscape, high
slope or transition areas, for example: the mountain areas in Norway or the French Alps.

10°0'0"W 5°0'0"W 0°0'0" 5°0'0"E 10°0'0"E

Legend
LC classes

- Trees
- Shrubs

Herbaceous vegetation

Cultivated and managed
I:l vegetation / agriculture

- Wetlands
- Urban/built up

- Water, permanent
snow and ice

45°0'0"N

40°0'0"N

10°0'0"W 5°0'0"W 5°0'0"E

- Low : 0,287217

E Borders

Z
=3
=3
5

o
<

10°0'0"W 5°0'0"W 0°0'0' 5°0'0"E 10°0'0"

Figure 17: Integrated map obtained by probability voting and its class probability
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Figure 18 presents the probability for each of the eight LC classes. LC classes (1) trees, (3)
herbaceous vegetation, (4) cultivated and managed vegetation/agriculture and (7) water, permanent
snow and ice have a high probability to be assigned at locations within the integrated map. LC class
(7) water, permanent snow and ice had a high class probability and a relative low probability to be
seen for another class (table 14). Additionally, in most locations, all input maps agree on LC class (7)
water, permanent snow and ice, which confirm a high probability. Like weighted voting, common LC
classes with good probability are favored in the voting process. Probability voting has more contrast
between high and low class probability since class probabilities of the input maps are multiplied
before normalization (table 15, section 4.2.3). Weighted voting methodology summed class weights
before normalization (table 13, section 4.2.2) and therefore holds less contrast between high and low
weights (figure 15 and figure 16).
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Figure 18: Class specific probability of LC classes

This section further describes class probabilities and the probability of being another LC class;
these are observed from table 14 (section 4.2.3) and figure 18. Table 14 holds the probabilities of each
LC class from FROM-GLC, Globcover 2009, LC-CCI (2010) and MODISS (2010), based on the
research of Tsendbazar et al. (2016) and Yu et al. (2014).

Generally LC classes (2) shrubs, (3) herbaceous vegetation and (4) cultivated and managed
vegetation/agriculture have a relative high probability to be LC classes (1) trees, 2, 3 and 4. This is the
case for FROM-GLC, in Globcover this only accounts for LC classes (2) shrubs and (3) herbaceous
vegetation. LC class (2) shrubs from LC-CCI holds the probability of being (1) trees and (3)
herbaceous vegetation where (3) holds the probability to be seen as (4) cultivated and managed
vegetation/agriculture. In MODIS, LC class (2) shrubs holds the probability to be LC class (1) trees
and (3) herbaceous vegetation where (3) holds the probability to be seen as (2) shrubs, (4) cultivated
and managed vegetation/agriculture and (8) barren.
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The input maps hold more differences in the class probabilities of LC classes: (5) wetlands, (6)
urban/built up, (7) water, permanent snow and ice and (8) barren. LC classes (6) urban/built up of
FROM-GLC holds the probability to be LC class (4) cultivated and managed vegetation/agriculture
and (8) barren where (8) holds the probability to be seen for LC class (3) herbaceous vegetation. In
Globcover, LC classes (5) wetlands and (8) barren hold the probability to be LC class (3) herbaceous
vegetation and LC class (6) urban/built up holds the probability to be LC class (4) cultivated and
managed vegetation/agriculture. In LC-CCI LC classes (5) wetlands, (6) urban/built up and (8) barren
respectively hold the probability to be mistaken for LC class (1) trees, (4) cultivated and managed
vegetation/agriculture and (3) herbaceous vegetation. LC classes (5) wetlands and (7) water,
permanent snow and ice from MODIS respectively hold the probability to be mistaken for LC class (1)
trees and (8) barren.

5.1.4. Difference plots

Different plots were used to view the similarities and dissimilarities between the voting
methods. Different plots do not assess the integration methods but give an overview where the
methods disagree on LC classes. Figure 19 shows a difference plot between the integrated map and
table 20 holds the number of pixels from the difference plot. Differences between the integration
methods occur, where, respectively weights from weighted voting (figure 15) and class probabilities
from probability voting (figure 17) and where low and LC input maps disagreed in the initial voting
(figure 13b). Meaning that, integration methods disagreed where methods are less certain in assigning
a pixel to a specific LC class. Differences between the integration methods typically occur in
heterogeneous areas, fragmented landscape, and transition areas. For example, the mountain areas in
Norway or the French Alps have fragmented landscape due to high slope. Bretagne in north-east
France and the Netherlands hold differences between the integration methods, but this cannot be
explained by heterogeneity, fragmentation of the landscape. Table 20 holds information on these
results, where specific methods disagree in the disagreement areas plotted in figure 19.
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Figure 19: Difference plot, similarities and dissimilarities between LC maps
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5610888 pixels of the 78252697 pixels disagree in the difference plot, this is a 7.17%
difference between the LC maps. When excluding the LC class (7) water, permanent snow and ice
there is still a 15.76% difference between the land classes of the LC maps. From the disagreement
areas, 96.74% of the pixels differ between normal voting and probability voting. Weighted voting has
less difference with the other maps in the disagreement area, a 45.54% pixel difference with normal
voting and a 62.65% pixel difference with probability voting. From the 5610888 pixels that disagree
between the integration methods, there is only a 4.93% pixel difference where all three maps disagree
and 47.61% of those pixels are located in tie locations from the initial voting.

Table 20: Information on difference plot
Agreement / disagreement integration methods

Agreement between maps 92.83 %
Disagreement between maps 7.17 %
Description of disagreement inside the difference plot

Disagreement between normal voting and weighted voting 45.54 %
Disagreement between normal voting and probability voting 96.74 %
Disagreement between weighted voting and probability voting 62.65 %
Where all integrated maps disagree 4.93 %
Where maps disagree in tie locations from initial voting 47.61 %

5.2. Internal validation

This section presents the results of the internal validation. Figure 20 holds the information
entropy calculated over the integration methods LC maps: normal voting (a), weighted voting (b) and
probability voting (c). A high entropy value stands for a high uncertainty in the LC classification and a
low entropy value represents certainty. The information entropy of normal voting and weighted voting
is similar, as both maps have the same patterns over the study area. Weighted voting seems had
slightly lower values in areas with high uncertainty than normal voting, for example; the high
uncertainty in the mountain areas of Norway. The information entropy calculated over probability
voting was dissimilar from the other integration methods. Probability voting had the lowest
uncertainty in comparison to the other methods and provides the best classification based on the
information entropy. Most areas have classification certainty, a low uncertainty; these areas have a
high contract with areas of high uncertainty.

Areas with high uncertainty seem to be roughly highest in areas where the normal voting,
weighted voting and probability voting LC maps disagree (figure 19). Similarly, areas with high
uncertainty (figure 20) concur partly with the tie locations (figure 13) from the initial process of
normal voting. This is logical for normal voting as the information entropy is implemented on class
presence of the LC input maps (section 4.3.1), the five conditions from the normal voting
methodology in table 9 section 4.2.1. Section 5.2.4 reports with table 20 that 47.61% of the locations
where the methods disagree (figure 20), concur with tie locations (figure 13) from the initial voting.
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Figure 20: Information entropy over LC maps of integration methods

5.3. External validation

Confusion matrices were used for the external validation of the integrated LC maps: normal
voting, weighted voting and probability voting. This section presents the results from the confusion
matrices of the input maps and integrated LC maps. The integration methods were evaluated on their
improvement, compared to the assessment of the other methods and input maps. Figure 27, figure 28
and figure 30 present the derived metrics in a graph for the discussion of the results in section 6.1.4.
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5.3.1. Integration methods

Table 21 presents the confusion matrices of the integration methods. Table 24, table 25 and
table 26 hold an overview of the metrics derived from the confusion matrices: overall agreement,
producer agreement and user agreement of the input map with reference dataset.

Table 21: Confusion matrices of normal voting, weighted voting and probability voting

Normal Reference classes*
Voting 1 2 3 4 5 6 7 8 Correct | Total | UA
1 | 169 22 19 27 0 2 0 3 169 242 | 69.83
" 2 | 10 16 16 1 0 0 0 0 16 43 | 37.21
2 3] 6 8§ | 64 | 4 1 1 0 1 64 | 123 | 52.03
3 4 | 31 17 26 347 1 5 0 2 347 429 | 80.89
8 |5 0 0 0 0 1 0 0 0 1 1 |100.00
‘§ 6 5 0 0 4 0 36 0 0 36 45 | 80.00
7 0 0 0 1 1 1 13 0 13 16 | 81.25
8 3 2 5 4 0 0 0 3 3 17 | 17.65
Correct 169 16 64 347 1 36 13 3 649
Total 224 | 65 130 | 426 4 45 13 9 916 | OA
PA 75.45| 24.62 | 49.23 | 81.46 | 25.00 | 80.00 | 100.0 | 33.33 OA | 70.85
Weighted Reference classes™
Voting 1 2 3 4 5 6 7 8 Correct | Total |UA
1 | 185 | 26 24 31 1 4 0 3 185 274 | 67.52
" 2 8 16 17 1 0 0 0 0 16 42 | 38.10
2 3 3 8 39 24 1 0 0 2 39 77 | 50.65
§ 4| 23 14 a6 [363 ] 1 | 3 [ 0 | 1 | 363 | 451 | 8049
8 |5 0 0 0 0 1 0 0 0 1 1 ]100.00
§ 6 4 0 0 3 0 37 0 0 37 44 | 84.09
7 0 0 0 1 0 1 13 0 13 15 | 86.67
8 1 1 4 3 0 0 0 3 3 12 | 25.00
Correct | 185 16 39 363 1 37 13 3 657
Total 224 | 65 130 | 426 4 45 13 9 916 | OA
PA 82.59 | 24.62 | 30.00 | 85.21 | 25.00 | 82.22 | 100,0 | 33.33 OA | 71.72
Probability Reference classes*
Voting 1 2 3 4 5 6 7 8 Correct | Total | UA
1 | 187 37 28 35 2 2 3 3 187 297 | 62.96
" 2 2 8 3 0 0 0 0 0 8 13 | 61.54
2 135 6 | 55 | 22 1 0 0 4 55 93 | 59.14
3 4 | 28 13 44 368 1 15 1 1 368 471 | 78.13
8 |5 0 0 0 0 0 0 0 0 0 0 -
‘§ 6 2 0 0 0 0 26 0 0 26 28 | 92.86
7 0 0 0 1 0 2 9 0 9 12 | 75.00
8 0 1 0 0 0 0 0 1 1 2 50.00
Correct 187 8 55 368 0 26 9 1 654
Total 224 | 65 130 | 426 4 45 13 9 916 | OA
PA 83.48 | 12.31 | 42.31 | 86.38 | 0.00 | 57.78 | 69.23 | 11.11 OA | 7140
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5.3.2. Land cover input maps

Table 22 and table 23 present the confusion matrices of the LC input maps. The agreement
assessments of the LC input maps with reference datasets were used as basis to evaluate the
improvement of the integration methods compared to their input maps. Table 24, table 25 and table 26
hold an overview of the metrics derived from the confusion matrices: overall agreement, producer

agreement and user agreement of the input map with reference dataset.

Table 22: Confusion matrices of FROM-GLC and Globcover (2009)

GIMA thesis research, R van Setten-Zaremba

FROM- Reference classes*
GLC 1 2 3 4 5 6 7 8 Correct | Total | UA
1 | 166 12 32 57 0 9 0 2 166 278 | 59.71
" 2 | 21 21 21 13 0 1 0 1 21 78 | 26.92
% 3 | 20 14 39 69 2 14 1 3 39 162 | 24.07
S 4 6 4 20 141 0 4 0 0 141 175 | 80.57
2 [s| 1 [ 1] o] o o o o2 0 4 | 0.00
§ 6 1 0 1 7 0 15 0 0 15 24 | 62.50
7 0 0 0 1 2 1 12 1 12 17 | 70.59
8 9 13 17 138 0 1 0 0 0 178 | 0.00
Correct 166 21 39 141 0 15 12 0 394
Total 224 65 130 | 426 4 45 13 9 916 OA
PA 74.11| 32.31 | 30.00 | 33.10 | 0.00 | 33.33 | 92.31 | 0.00 OA | 43.01
Globcover Reference classes*
(2009) 1 2 3 4 5 6 7 8 Correct | Total | UA
1 | 138 15 21 47 0 4 1 2 138 228 | 60.53
” 2 11 20 8 2 0 0 0 1 20 42 | 47.62
% 3 19 3 53 64 0 1 0 1 53 141 | 37.59
E 4 | 49 25 44 302 2 15 1 2 302 440 | 68.64
8 5 1 0 0 0 1 0 0 0 1 2 50.00
§ 6 3 0 0 4 0 25 0 0 25 32 | 78.13
7 0 0 0 1 0 0 11 0 11 12 | 91.67
8 3 2 4 6 1 0 0 3 3 19 15.79
Correct | 138 20 53 302 1 25 11 3 553
Total 224 65 130 | 426 4 45 13 9 916 OA
PA 61.61| 30.77 | 40.77 | 70.89 | 25.00 | 55.56 | 84.62 | 33.33 OA | 60.37
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Table 23: Confusion matrices of LC-CCI (2010) and MODIS5 (2010)

LC-CCI Reference classes*
(2010) 1 2 3 4 5 6 7 8 Correct | Total | UA
1| 167 17 16 18 0 0 0 2 167 220 | 7591
" 2 3 17 2 0 0 0 0 1 17 23 | 73.91
% 3 9 4 66 68 1 1 0 1 66 150 | 44.00
g 4 | 32 13 17 293 0 2 0 0 293 357 | 82.07
8, 5 0 3 3 3 3 0 0 0 3 12 | 25.00
<§ 6 9 1 1 14 0 42 0 0 42 67 | 62.69
7 1 0 0 1 0 13 0 13 15 | 86.67
8 3 10 25 29 0 0 0 5 5 72 6.94
Correct 167 17 66 293 3 42 13 5 606
Total 224 65 130 | 426 4 45 13 9 916 OA
PA 74.55| 26.15 | 50.77 | 68.78 | 75.00 | 93.33 | 100.00 | 55.56 OA | 66.16
MODIS5S Reference classes*
(2010) 1 2 3 4 5 6 7 8 Correct | Total |UA
1 | 157 31 20 31 0 4 4 3 157 250 | 62.80
" 2 11 16 25 8 1 0 0 0 16 61 | 26.23
% 3 6 12 46 27 1 1 0 6 46 99 | 46.46
§ 4 | 45 5 39 355 2 4 1 0 355 451 | 78.71
8 5 0 0 0 0 0 0 0 0 0 0 -
§ 6| 5 | 1 o | s o | 35 | 1 0 35 | 47 | 7447
7 0 0 0 0 0 1 7 0 7 8 87.50
8 0 0 0 0 0 0 0 0 0 0 -
Correct | 157 16 46 355 0 35 7 0 616
Total 224 65 130 | 426 4 45 13 9 916 OA
PA 70.09 | 24.62 | 35.38 | 83.33 | 0.00 | 77.78 | 53.85 | 0.00 OA | 67.25

5.3.3. Overview of agreement metrics

This section gives an overview of the agreement metrics from normal voting, weighted voting
and probability voting integration methods and the FROM-GLC hierarchy, Globcover 2009, LC-CCI
(2010) and MODISS (2010) LC maps. OA, UA and PA are presented in tables: 24, 25 and 26.

Integrated LC maps:

The overall agreement of weighted voting was the highest among the integration methods with
an agreement of 71.72% (table 26). The results present no significant difference between the overall
agreement of the three integration methods, with a difference of 0.87% agreement between the highest
(weighted voting) and lowest (normal voting) overall agreement.

Table 24: Overall agreement of integrated methods and input maps

LC map OA

Normal voting 70.85
Weighted voting 71.72
Probability voting 71.40
FROM-GLC-hierarchy | 43.01
Globcover (2009) 60.37
LC-CCI (2010) 66.16
MODIS5(2010) 67.25
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Observations of class agreements between the methods (table 25 and table 26):

Normal voting and weighted voting seem to achieve similar results in the PA and UA of LC
class (5) wetlands and in the PA of LC class (2) shrubs and (7) water, permanent snow and ice
and (8) barren. This with just slight differences between their confusion matrices for these
classes.

There is no information on metrics for LC class (5) wetlands in probability voting, because
none of the samples from the reference dataset agree with the LC map. This could be caused
by the low number of four samples in LC class (5) wetlands from the reference dataset (table 6
section 3.3.1).

Probability voting holds low agreement metrics for LC class (7) water, permanent snow and
ice compared to the other methods, a 69.23% producer agreement and 75.00% user agreement.
Probability voting achieved the most LC class improvement among the integration methods
and could possibly achieve higher results when classes like LC class (5) wetlands and LC
class (5) wetlands have more samples.

Table 25 present the user agreement of the LC maps produced by the integration methods and

their input LC maps.

Table 25: User agreement of integrated methods and input maps
LC Normal | Weighted | Probability | FROM- | Globcover | LC-CCI | MODISS
map voting voting voting GLC (2009) (2010) (2010)
UA UA UA UA UA UA UA
1 69.83 67.52 62.96 59.71 60.53 75.91 62.80
g 2 37.21 38.10 61.54 26.92 47.62 73.91 26.23
% 3 52.03 50.65 59.14 24.07 37.59 44.00 46.46
j‘oio 4 80.89 80.49 78.13 80.57 68.64 82.07 78.71
§ 5 | 100.00 100.00 - 0.00 50.00 25.00 -
0|6 80.00 84.09 92.86 62.50 78.13 62.69 74.47
7 81.25 86.67 75.00 70.59 91.67 86.67 87.50
8 17.65 25.00 50.00 0.00 15.79 6.94 -

Table 26 present the producer agreements of the LC maps produced by the integration

methods and their input LC maps.

Table 26: Producer agreement of integrated methods and input maps
LC Normal | Weighted | Probability | FROM- | Globcover | LC-CCI | MODISS

map voting voting voting GLC (2009) (2010) (2010)

PA PA PA PA PA PA PA
1 75.45 82.59 83.48 74.11 61.61 74.55 70.09
g 2 24.62 24.62 12.31 32.31 30.77 26.15 24.62
% 3 49.23 30.00 42.31 0.00 40.77 50.77 35.38
j‘oio 4 81.46 85.21 86.38 33.10 70.89 68.78 83.33

§ 5 25.00 25.00 0.00 0.00 25.00 75.00 0.00
O |6 80.00 82.22 57.78 33.33 55.56 93.33 77.78
7 | 100.00 100.00 69.23 92.31 84.62 100.00 53.85

8 33.33 33.33 11.11 0.00 33.33 55.56 0.00
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LC input maps:

All integrated maps have an improved overall agreement compared to the input maps (table
24). MODISS has the highest overall agreement between the input maps with 67.25%, slightly higher
than LC-CCI with an overall agreement of 66.16%. The reported accuracies of the input maps table 8
(Tsendbazar et al. 2016; Yu et al. 2014) in section 4.1.1 present LC-CCI with an overall accuracy of
74.70% and MODISS with an overall accuracy of 73.92% when their accuracy assessment is
harmonized to the eight LC classes. Tsendbazar et al. (2016) research presents the confusion matrices
of Globcover, LC-CCI and MODISS with 13 generalized LC classes were Globcover, LC-CCI and
MODISS have an overall accuracy reported of respectively 61.3%, 70.8% and 71.4%.

LC-CCI holds the highest producer accuracy over the integration methods for LC classes: (3)
herbaceous vegetation, (5) wetlands, (6) urban/built up, (7) water, permanent snow and ice and (8)
barren. LC-CCI, normal voting and weighted voting LC maps hold a 100% producer for LC class (7)
water, permanent snow and ice. LC-CCI further holds a higher user agreement over the integration
methods for LC classes (1) trees, (2) shrubs and (4) cultivated and managed vegetation/agriculture.
FROM-GLC holds the highest producer agreement for LC class (2) shrubs and Globcover holds the
highest user agreement for LC class (7) water, permanent snow and ice. In other cases, one or all of
the integration methods hold higher agreement in the metrics.

Observations of class agreement between the methods and input map (table 25 and table 26):

1. Probability voting has improved class agreements, but LC-CCI more often hold the highest
agreement metrics for a LC class compared to the methods and input maps.

2. The highest producer agreement for LC class (2) shrubs from the integration methods is
similar to the lowest producer agreement for LC class (2) shrubs from the input maps
(MODISS).

3. Probability voting, FROM-GLC and MODISS hold no information for the metrics of LC class
(5) wetlands, this could be caused by the low number of four samples for LC class (5) barren
from the reference dataset (table 6 section 3.3.1).

4. FROM-GLC and MODISS5 hold no information for the metrics of LC class (8) barren, like LC
class (5) wetlands, LC class (8) barren has low number of nine samples (table 6 section 3.3.1).
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6. Discussion, conclusion and recommendations
This chapter gives an overview of the research by; discussing the results and methodology of
this research, drawing conclusions, restrictions of this research and recommendations.

6.1. Discussion

This section discusses the methodology and results of the research: harmonization, integration
method, the most accurate method based on the information entropy and the amount of improvement
in the integrated LC maps.

6.1.1. LC data

FROM-GLC seems to have a lower accuracy than the other input maps for the integration. Yu
et al. (2014) reports an overall accuracy of 66.10 % for FROM-GLCagg, were Tsendbazar et al.
(2016) reports on a Globcover (2009), LC-CCI (2010) and MODISS5 (2010) overall accuracy of
respectively: 67.81%, 74.70% and 73.92% (table 8 section 4.1.1). But it should be noted that these
accuracy assessments come from different sources and therefore cannot be compared directly (section
4.1.1). The accuracy assessment used for FROM-GLC-hierarchy does belong to the 30m base map of
FROM-GLCagg and might not accurately represent FROM-GLC-hierarchy, but it is unknown how
much the pre-processing from FROM-GLCagg to FROM-GLC hierarchy influences the maps
accuracy (section 2.2.1). The confusion matric of FROM-GLCagg holds no information for LC class
(5) wetlands, in the original legend class 50 which also stand for wetlands (section 2.2.1). Additionally
FROM-GLC-hierarchy has a tilling effect over the LC map (figure 7a section 4.1.1). This all suggests
that FROM-GLC-hierarchy holds a low accuracy in Western Europe. LC classes (5) wetlands and (8)
barren are represented by a low number of sample sites, respectively four and nine samples (section
3.3.2). A higher number of sample sites could give a better result for LC classes (5) wetlands and (8)
barren in the external validation. Table 6 (section 3.3.1) presents the distribution of the samples over
the harmonized LC classes.

6.1.2. Harmonization

Herold et al. (2006) mention that one universal legend would provide too much
standardization and reduce the relevance and applicability for many applications. Harmonization to
eight general LC classes reduces the applicability to discriminate between problematic classes. For
example the harmonization of all tree classes to one LC class makes it impossible to characterize
forest in detail. The spatial harmonization of the reference dataset is based on the assumption that the
sample unit area has homogenous LC type, so the datasets were harmonized to have the same extent of
sample units. In reality this is not always true; some areas have heterogeneous LC types.

6.1.3. Integration methods

Normal voting was produces from a common voting procedure, were a pixel was assigned to
the class that occurs in the majority of the LC maps at that pixel’s location. In the methodology
(section 4.2.1) is explained that ties occur with this procedure were the four LC input maps disagree
on a LC class. Ties are assigned to a LC class by giving a high class preference to LC classes that
occur more often in the initial voting: these class preferences were presented in table 10. The normal
voting LC map was produced by merging the initial voting results with the "solved ties" in case the LC
input maps disagree. This is a new approach used in this research, solving ties based on class
preferences (table 10) that are calculated from class occurrences of each input map in the initial voting
(table 30 and table 31). The advantage of this method is that it’s purely map driven and rejects input
maps with a low contribution in the initial process in case maps disagree and form a tie. The
disadvantage of this method would be that it does not use accuracy information which could reject
inaccurate classes in the beginning of the voting process.
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In weighted voting, a pixel is assigned to the class that accumulates the highest weight at that
pixel’s location. Weighted voting derives weights from the user accuracy of each LC class which were
obtained from the published confusion matrices (Yu et al. 2014) (Tsendbazar et al. 2016). Weights
based on class accuracies could improve the integrated map by giving preference to accurate classes
and reject inaccurate classes of the input maps. In weighted voting studies the research of Ge et al.
(2014) and Iwao et al. (2011), weights were applied in a different manner. Ge et al. (2014) assigns
weights to LC classes according to the accuracy of the mapped class and Iwao et al. (2011) gives
preference to each LC class from the map with the highest overall accuracy (OA). Ge et al. (2014)
looks at accuracies from the perspective of the source map and Iwao et al. (2011) uses overall
accuracies but assesses the maps from the user perspective. The advantage of weighted voting is that
the method uses accuracy information for map integration, which could reject inaccurate classes. A
disadvantage would be that such an integration method favors LC classes with a high class weight and
therefore tends to over-map these LC classes, for example: LC class (1) trees and (7) water, permanent
snow and ice.

In probability voting, a voting procedure is applied on the probabilities of each class being the
correct class. A pixel is assigned to the LC class that accumulates the highest probability at the pixel’s
location. Kinoshita et al. (2014) and Tuanmu and Jetz (2014) used probability voting in previous
studies. Kinoshita et al. (2014) achieves improved map accuracy by performing a logistic regression
analysis with class probabilities, but the regression analysis is not used in this research as the scope
focuses on integration methods with a voting approach. Probabilities of harmonized LC classes were
calculated with the same equation Kinoshita et al. (2014) used to calculate class probabilities.
Probabilities were calculated from the user perspective in this research, because this represents the
agreement of the LC input maps with the reference data. Tuanmu and Jetz (2014) apply probability
voting in case products disagree and use a workflow that keeps the heterogeneity captured from the
product with a finer resolution. In this research, the four input maps are integrated simultaneously with
probability voting because FROM-GLC and MODIS respectively have a finer and coarser resolution
than the resolution of 300 meter from Globcover 2009 and LC-CCI. Probability voting has the same
advantages and disadvantages as weighted voting. Probability voting rejects LC classes with a low
class probability but favors LC classes that have a good probability in the integration. Smaller LC
classes like LC class (2) shrubs tend to be under-mapped.

Figure 19 presents a difference plot where the normal voting, weighed voting and probability
voting maps are similar and dissimilar. Integration methods disagreed where methods were less certain
in assigning a pixel to a specific LC class. Generally on locations where maximum weights from
weighted voting (figure 15) and maximum class probabilities from probability voting (figure 17) were
low and and LC input maps disagreed in the initial voting (figure 13b). Differences between the
integration methods typically occur in heterogeneous areas, fragmented landscape, and transition
areas. 5610888 pixels disagree in the difference plot; this is a 7.17% difference between the LC maps
(table 20). 54.49% of the difference plot is where the methods agree on LC class (7) water, permanent
snow and ice. Even when excluding the LC class (7) water, permanent snow and ice there is a 15.76%
difference between the land classes of the LC maps. Normal voting, weighed voting and probability
voting are quite similar. From table 20 can be seen when methods disagree in the disagreeing areas of
the difference plot: (1) normal voting and weighed voting disagree in 45.54%, (2) normal voting and
probability voting disagree in 96.74%, (3) weighted voting and probability voting disagree in 62.65%,
(4) all maps disagree in 4.93% and (5) 47.61% where the methods disagree are tie locations from the
initial voting of normal voting. Normal voting and probability voting seem to disagree most, were
normal voting and weighted voting seem more similar compared to the other methods.

54
GIMA thesis research, R van Setten-Zaremba



Weighted voting and probability voting base their weights and probabilities on the accuracy
assessment of Ye et al. (2014) and Tsendbazar et al. (2016). The overall accuracies of FROM-
GLCagg, Globcover (2009), LC-CCI (2010) and MODISS (2010) of respectively: 66.10% , 67.81%,
74.70% and 73.92% presented in table 8 section 4.1.1 (Ye et al. 2014; Tsendbazar et al. 2016). The
discussion on the LC data mentions that it is questionable if the accuracy assessments can be
compared to each other, since they come from different sources. This accounts for the results of
weighted voting and probability voting, as respectively their weights and probabilities are based on
these accuracy assessments (Ye et al. 2014; Tsendbazar et al. 2016). Additionally the accuracy
assessment of FROM-GLCagg is used for FROM-GLC-hierarchy which does not hold information on
LC class (5) wetlands and FROM-GLC holds a tilling effect over its LC map (figure 8a). The
discussion on the improvement of the integrated maps reports the overall agreement from the external
validation of FROM-GLCagg, Globcover (2009), LC-CCI (2010) and MODIS5 (2010) of
respectively: 43.01%, 60.37%, 66.16% and 67.25%.

6.1.4. Internal validation

The internal validation uses entropy as an internal measure of uncertainty, which represents
the amount of information necessary to require certainty (Shannon and Weaver. 1949). Accuracy
measures by a confusion matrix are based on the whole map, but it is known accuracy may vary
locally within the map (Foody 2005; Strahler et al. 2006). This research used the information entropy
as an addition to the external validation, to calculate the information entropy as an internal measure of
uncertainty.

Probability voting had the lowest uncertainty and the highest contrast between certainty and
uncertainty in comparison to the other methods and therefore provides the best classification based on
the information entropy. Like the difference plot between the integration methods, the information
entropy calculated over normal voting and weighted voting suggest that the methods are similar
(figure 20a and b). Both methods seem to have similar patterns in the information entropy aggregated
over the study area, were normal voting seems to have slightly higher values of uncertainty. In each
integration methods, uncertainty seems to be highest in areas were: (1) tie locations (figure 13) from
the initial voting and were (2) the integration maps disagree in the difference plot (figure 19). In
normal voting it is logical that areas with high uncertainty are located in tie locations as the
information entropy is implemented on the five conditions from table 9 (section 4.2.1, 4.3.1 and 5.2.1).
The difference plot (figure 20) reports in section 5.1.4 that 47.61% of the locations where the methods
disagree concur with tie locations from the initial voting (table 20).

The information entropy ranks probability voting as the best integration method and normal
voting and weighted voting as similar integration methods. The external validation suggests weighted
voting achieved the best overall results, but probability voting achieved better results for LC classes
and only has a slightly lower overall agreement. The difference plot does confirm that normal voting
and weighted voting achieved similar results.

6.1.5. Improvements of integrated L.C maps

This section evaluates the improvements of the integrated LC maps: Normal voting, weighted
voting and probability voting based on the overall agreement, user agreement and producer agreement
metrics derived from their external validation. The integration methods assessments are compared to
each other and the LC input maps. The external validation uses a basic approach by cross tabulating
the assessed LC map against the reference dataset. Section 5.3 holds the confusion matrices and their
agreement metrics of integrated LC maps and input maps.
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Section 3.5.2 in the theoretical background mentions: a reference dataset is used as reference
in an external validation, but may contain misclassification (Strahler et al. 2006). Section 4.3.2
describes that it would be more correct to refer to the derived metrics of the confusion matrix as
agreement instead of accuracy, because it is questionable if the reference data is valid as the reference
data comes from multiple sources.

The reference dataset used for the validation uses 3x3 pixel envelop to extract he majority
class from the assessed map, which is processed to confusion matrices in excel table.., table.. and
table.. Strahler et al. (2006) mentioned that interpretation of the confusion matrix requires
consideration of the sample design from the reference dataset (Strahler et al. 2006). Since the sample
design is assumed to be homogenous LC type, this research does not consider the sample design of:
GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005,MODIS-tr and VIIRS 3 datasets. This research
does not calculate spatial variation from the confusion matrices as is suggested by Strahler et al. 2006),
but uses the information entropy as a measure of internal classification uncertainty.

Integration has improved overall accuracy in the normal voting, weighted voting and
probability voting LC maps compared to the input maps (figure 21). Weighted voting has the highest
overall agreement among the integration methods with an agreement of 71.72%, but differs slightly
from normal voting and weighted voting (figure 21). Table 24 (section 5.3.3) and figure 21 show that
FROM-GLC-hierarchy has an extreme low agreement of 43.01% with the reference dataset compared
to Globcover (2009), LC-CCI (2010) and MODISS5 (2010) with respectively 60.37%, 66.16% and
67.25%.
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Figure 21: Overall agreement LC maps

Table 6 (section 3.3.1) presents the distribution of the samples over the harmonized LC classes
and describes that LC classes (5) wetlands and (8) barren were not represented by enough samples
(section 3.3.3). This causes that FROM-GLC-hierarchy and MODIS5 hold no information for the
metrics of LC classes (5) wetlands and (8) barren, were probability voting has no information on the
user agreement for LC class (5) wetlands. According to the external validation, probability voting
results in the best class improvement among the integration method. Probability voting more often
holds improved agreement in LC classes compared to the other integration methods and input maps
(table 25 and table 26). Probability voting does hold low agreement metrics for LC class (7) water,
permanent snow and ice compared to the other methods and input maps, a 69.23% producer agreement
and 75.00% user agreement. LC-CCI often holds higher agreement metrics for the eight LC classes
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compared to the integration methods. According to the internal validation, probability voting is also
the most promising method as it has the least entropy aggregated over the study area.

Tsendbazar et al. (2016) characterizes shrubs, grass and cropland classes, respectively LC
class (2) shrubs, (3) herbaceous vegetation, and (4) cultivated and managed vegetation/agriculture of
this research, as L.C classes with high confusion errors. This is generally also the case for this research,
especially for LC class (2) shrubs; class agreements are lower for each integration method than the LC
input maps.

LC classes: (3) herbaceous vegetation, (5) wetlands, (6) urban/built up and (8) barren from the
integration methods show a significant improvement in user agreement.
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Figure 22: User agreement of LC maps

LC classes (1) trees and (4) cultivated and managed vegetation/agriculture from the integration
methods show a significant improvement in producer agreement.
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Figure 23: Producer agreement of LC maps
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6.2. Conclusions
This section gives answers to the research question which were used to reach the objective and
conclude the research.

6.2.1. Research questions
This section answers the research questions:

I Can the selected LC map integration methods be applied to the study area considering data
constraints and characteristics?

Normal voting, weighted voting and probability voting integration methods have been applied
to the study area, considering the data constraints and characteristics. The reference dataset constraints
and characteristics influenced the research discussed in section 3.3. Table 6 presents the distribution of
the samples sites over the harmonized LC classes, LC classes (5) wetlands and (8) barren were not
represented by enough samples (section 3.3.3).

II.  How can LC datasets be integrated with the chosen integration methods and selected
software?

All integration methods are implemented in R and the scripts used for implementation are in
the appendix 8.1. Normal voting uses a common voting procedures and assigns ties to LC classes
based on class preferences (table 10) calculated from the occurrences of LC classes from each input
map in the initial voting (table 30 and tale 31). In weighed voting and probability voting a pixel is
assigned to the class that accumulates respectively the highest weight/highest probability at that
pixel’s location. The weights and probabilities are based on the confusion matrices of FROM-GLC
(Yu et al. 2014) Globcover 2009, LC-CCI (2010) and MODISS (Tsendbazar et al. 2016).

1I1. Which is the most promising method based on internal validation?

The most promising integration method based on internal validation is probability voting,
because probability voting has the least entropy aggregated over the study area. Probability voting has
the lowest uncertainty (figure 20c) compared to normal voting (figure 20a) and weighted voting
(figure 20b). Generally, probability voting has low uncertainty in the information entropy map, there is
high contract with the areas of high uncertainty.

1V. What is the agreement of the integrated LC maps with the reference dataset and how much
has integration improved overall accuracy?

Normal voting, weighted voting and probability voting respectively have an overall agreement
with the reference dataset of 70.85%, 71.72% and 71.40%. Integration has improved overall accuracy
compared to the overall agreement of FROM-GLC-hierarchy, Globcover (2009), LC-CCI (2010) and
MODISS (2010) with respectively: 43.01% , 60.37%, 66.16% and 67.25%. There is no clear
improvement in the agreement metrics of LC-classes. Some LC classes of the input maps often had a
higher agreement metric for LC-classes compared to one or more integration methods, particularly for
LC class (2) shrub.

6.2.2. Research conclusion

Compared to their input LC maps: FROM-GLC-hierarchy, Globcover (2009), LC-CCI (2010)
and MODISS (2010), normal voting, weighted voting and probability voting have an improved overall
agreement. It is difficult to decide which integration method is most accurate among normal voting,
weighted voting and probability voting. There is a 7.17% pixel difference between the LC maps (table
24) and there are no significant differences between the overall agreement metrics of the integration
methods (figure 21). There is less improvements in class agreements of the integration methods,
compared to the LC input maps (figure 22 and figure 23). Voting methods favour classes that have
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good probability or a high weight in the integration; therefore common LC classes are over-mapped
and rare LC classes could have been under-mapped. Probability voting has the least entropy
aggregated over the study area, the most improvements in class agreements, but the external validation
shows a poor result for LC classes: (5) wetlands, (7) water, permanent snow and ice due to limited
sample sites. Normal voting and weighted voting seem to achieve similar results because (1) these
methods achieve similar patterns in the information entropy and (2) that these methods have the least
disagreement over the study area.

6.3. Recommendation

Each voting integration method is suited for GLC map integration to improve overall
accuracy. It is recommended that these methods are compared to other integration methods with a
statistical approach as GWR and kriging, which takes into account the location of LC classes, to select
which method is most accurate. Weighted voting and probability voting could possibly achieve better
results when the weighs/probabilities are based on the same accuracy assessment. The methodology
used for normal voting seems to provide reliable results, without the use of weights and class
probabilities in the voting procedure, since the achieved results are similar to weighted voting and the
overall agreement is close to weighted voting and probability voting.

Recommendations for further research:

e Comparing voting integration methods to other statistical integration methods

e Integration of LC maps with their accuracy assessment should have a trusted high level of
accuracy

e Reference dataset should be represented by enough samples for each LC class and
consideration of the sample design.

e Harmonization to more than eight LC classes to be able to discriminate between other
problematic classes, for example, characterizing different forest classes
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8. Appendices

This section holds the appendixes of this research.

8.1. Scripts for implementing voting methods
This section holds the scripts used for implementing the integration methods, internal
validation and external validation in R.

8.1.1. Initial voting
F <- raster("C:\\..\\FROMGLCNGS.tif")
G <-raster("C:\\...\\GlobcoverG8.tif")
L <- raster("C:\\...\LCCCIGS.tif")
M <-raster("C:\\..\\MODISGS.tif")

STNV <- stack(F, G, L, M)
plot(STNV)

MaxVote <- function(Xx, ...){
# here I assume 8 classes
if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA
vecl <- lapply(1:8, FUN = function(y) sum(x==y))
if(length(which(vecl==1))==4) return(-2) # tie with all different
if(length(which(vec1==2))==2) return(-1) # tie with two different
which.max(vecl)

V <- calc(STNV, MaxVote)
plot(V)
writeRaster(V, filename = "NormalVoting_SA.tif", format = "GTiff", overwrite = TRUE)

VoteCount <- function(Xx, ...){
# here I assume 8 classes
if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA
vecl <- lapply(1:8, FUN = function(y) sum(x==y))
if(length(which(vecl==1))==4) return(50) # tie with all different
if(length(which(vec1==2))==2) return(40) # tie with two different
if(length(which(vec1==2))==1) return(30) # Two are equal, remaining two are contrary
if(length(which(vec1==3))==1) return(20) # Three are equal
if(length(which(vec1==4))==1) return(10) # All are equal

I <- calc(STNV, VoteCount)

plot(I)
writeRaster(I, filename = "NormalVotingl_SA.tif", format = "GTiff", overwrite = TRUE)

8.1.2. Indicators in conditions
F <- raster("C:\\...\\FROMGLCNGS.tif")
G <-raster("C:\\...\\GlobcoverG8.tif")
L <- raster("C:\\...\LCCCIGS.tif")
M <-raster("C:\\..\\MODISGS.tif")

63
GIMA thesis research, R van Setten-Zaremba



V <- raster("C:\\...\\Normal Voting_SA.tif")
I <- raster("C:\\...\\Normal Votingl_SA.tif")

B <- stack(F, G, L, M, V, 1)

# F, calculating votes from F in indicators (10,20,30,40,50):
for(iin 1:8){
assign(paste('FI, i, sep="), calc(B, fun=function(x) ifelse((x[1]==1&&x[1]==x[5]&&x[6]==10),

10+1, 0)) +
calc(B, fun=function(x) ifelse((x[1]==1&&x[1]==x[5]&&x[6]==20), 20+i, 0)) +
calc(B, fun=function(x) ifelse((x[1]==1&&x[1]==x[5]& &x[6]==30), 30+1, 0)) +
calc(B, fun=function(x) ifelse((x[1]==1&&x[1]==x[5]&&x[6]==40), 40+i, 0)) +
calc(B, fun=function(x) ifelse((x[1]==1&&x[1]==x[5]& &x[6]==50), 50+i, 0)))

}

FIS <-sum(FI1,FI2,FI3,FI14,F15,F16,FI7 FI8)

writeRaster(FIS, filename = "Fi_SA.tif", format = "GTiff", overwrite = TRUE)

# G, calculating votes from G in indicators (10,20,30,40,50):
for(i in 1:8){
assign(paste('GI', 1, sep="), calc(B, fun=function(x) ifelse((x[2]==1&&x[2]==x[5]&&x[6]==10),

10+, 0)) +
calc(B, fun=function(x) ifelse((x[2]==1&&X[2]==x[5]&&x[6]==20), 20+i, 0)) +
calc(B, fun=function(x) ifelse((X[2]==1&&X[2]==x[5]& &x[6]==30), 30+i, 0)) +
calc(B, fun=function(x) ifelse((x[2]==1&&X[2]==x[5] & &x[6]==40), 40+1, 0)) +
calc(B, fun=function(x) ifelse((x[2]==1&&X[2]==x[5]&&x[6]==50), 50+i, 0)))

}

GIS <-sum(GI1,GI2,GI3,GI4,GI5,G16,GI7,GI8)

writeRaster(GIS, filename = "Gi_SA.tif", format = "GTiff", overwrite = TRUE)

# L, calculating votes from L in indicators (10,20,30,40,50):
for(i in 1:8){
assign(paste('LT, i, sep="), calc(B, fun=function(x) ifelse((x[3]==1&&x[3]==x[5]&&x[6]==10),

10+1, 0)) +
calc(B, fun=function(x) ifelse((x[3]==1&&X[3]==x[5]& &x[6]==20), 20+1, 0)) +
calc(B, fun=function(x) ifelse((x[3]==1&&X[3]==x[5]&&x[6]==30), 30+i, 0)) +
calc(B, fun=function(x) ifelse((x[3]==1&&X[3]==x[5]& &x[6]==40), 40+1, 0)) +
calc(B, fun=function(x) ifelse((x[3]==1&&X[3]==x[5]& &x[6]==50), 50+i, 0)))

}

LIS <-sum(LI1,LI2,L13,LI4,LI5,L16,L.17,LIS)

writeRaster(LIS, filename = "Li_SA.tif", format = "GTiff", overwrite = TRUE)

# M, calculating votes from M in indicators (10,20,30,40,50):
for(iin 1:8){
assign(paste('MI, i, sep="), calc(B, fun=function(x) ifelse((x[4]==1&&x[4]==x[5]&&x[6]==10),
10+1, 0)) +
calc(B, fun=function(x) ifelse((x[4]==1&&Xx[4]==x[5]&&x[6]==20), 20+i, 0)) +
calc(B, fun=function(x) ifelse((x[4]==1&&Xx[4]==x[5]& &x[6]==30), 30+1, 0)) +
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calc(B, fun=function(x) ifelse((x[4]==1&&Xx[4]==x[5] & &x[6]==40), 40+1, 0)) +
calc(B, fun=function(x) ifelse((x[4]==1& &x[4]==x[5]& &x[6]==50), 50+i, 0)))
}
MIS <-sum(MI1,MI12,MI13,MI4 MI5 MI6,MI17 MI8)
writeRaster(MIS, filename = "Mi_SA.tif", format = "GTiff", overwrite = TRUE)

8.1.3. Normal voting
F <- raster("C:\\...\\FROMGLCNGS.tif")
G <- raster("C:\\...\\GlobcoverG8.tif")
L <- raster("C:\\...\\LCCCIGS8.tif")
M <- raster("C:\\...\\MODISGS.tif")

#### Normal Voting

STNV <- stack(F, G, L, M)

MaxVote <- function(Xx, ...){
# here I assume 8 classes
if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA
vecl <- lapply(1:8, FUN = function(y) sum(x==y))
if(length(which(vecl==1))==4) return(-2) # tie with all different
if(length(which(vec1==2))==2) return(-1) # tie with two differen
which.max(vecl)

}

V <-calc(STNV, MaxVote)

writeRaster(V, filename = "NV_SA. tif", format = "GTiff", overwrite = TRUE)

VoteCount <- function(Xx, ...){
# here I assume 8 classes
if(any(is.na(x))) return(NA) # return NA if Find= maps have NA
vecl <- lapply(1:8, FUN = function(y) sum(x==y))
if(length(which(vecl==1))==4) return(50) # tie with all different
if(length(which(vec1==2))==2) return(40) # tie with two different
if(length(which(vec1==2))==1) return(30) # Two are equal, remaining two are contrary
if(length(which(vec1==3))==1) return(20) # Three are equal
if(length(which(vec1==4))==1) return(10) # All are equal

}

I <- calc(STNV, VoteCount)

writeRaster(I, filename = "NVI_SA.tif", format = "GTiff", overwrite = TRUE)

#### Stack with initial results: inputmaps, Voting & Indicators ####

STIV<-stack(F,G,L.M,V.,])

CSV <-read.csv("Class Preferences.csv'") ( table 10 section 4.2.1)

for(iin 1:8){

assign(paste('TP", i, sep="), calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[1]==illx[S]==-

1&&x[1]==i1), CSV]i,2], 0)) +
calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[2]==illx[5]==-1&&x[2]==1), CSV[i,3], 0)) +
calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[3]==i1llx[5]==-1&&Xx[3]==1), CSV[i,4], 0)) +
calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[4]==1llx[5]==-1&&Xx[4]==1), CSV[1,5], 0)))
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####Stack 8 resulting maps####
TPNV<-stack(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TPS)
#### Total percentages summed for normalizing TP's####
TPT <- sum(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TPS)
TPIN <- TP1/TPT

TP2N <- TP2/TPT

TP3N <- TP3/TPT

TPAN <- TP4/TPT

TP5SN <- TP5/TPT

TP6N <- TP6/TPT

TP7N <- TP7/TPT

TP8N <- TP8/TPT

##HHStack 8 normalised resulting maps ####
NTPNV<-stack(TPIN,TP2N,TP3N,TPAN,TPSN,TP6N,TP7N,TP8N)

MaxPerc <- function(X, ...){

if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA

if(all(x==0)) return (0) # if all layers are O return O, this is to ensure only the cells with -2 and -1
cases will get a result

which.max(x)

}

TIES <- calc(NTPNV, MaxPerc)
plot(TIES)
writeRaster(TIES, filename = "TIESNV_SA. tif", format = "GTiff", overwrite = TRUE)

###H#Stacks all maps####

STNV2<-stack(F,G,L,M,V,LLTIES)

MapNV<-calc(STNV?2, fun=function(x) ifelse((x[5]==-2lIx[5]==-1), x[7], x[5]))
##H#H#Normal Voting map:####

writeRaster(MapNV, filename = "MapNV_SA.tif", format = "GTiff", overwrite = TRUE)

# Shannon Entropy in bits (base 2 log) for voting
logSpecial <- function(x) ifelse(x==0, 0, log(x, 2)) # dealing with log(0)
Shannon <- function(x, ...){
if (is.na(x[1])) return(NA)
# convert to probs for each class (8 classes)
probs <- lapply(1:8, FUN = function(y) 0.25*sum(x==y)) # assuming 4 maps
vec2 <- lapply(probs, FUN=function(x) logSpecial(x) * -x)
sum(unlist(vec2))
}
InformationEntropyNV <- calc(STNV, Shannon)
plot(InformationEntropyNV)
writeRaster(InformationEntropyNV, filename = "InformationEntropyNV_SA.tif", format = "GTiff",
overwrite = TRUE)
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8.1.4. Weighted voting
F <- raster("C:\\...\\FROMGLCNGS.tif")
G <- raster("C:\\...\\GlobcoverG8.tif")
L <- raster("C:\\...\\LCCCIGS8.tif")
M <- raster("C:\\...\\MODISGS.tif")

ST <- stack(F, G, L, M)
CSV <-read.csv("UAwv.csv") (Table 12 section 4.2.2)

#i#HH# Weights ##H#
for(iin 1:8){
assign(paste('TW', i, sep="),
calc(ST, fun=function(x) ifelse((x[1]==1), CSV[i,1
calc(ST, fun=function(x) ifelse((x[2]==1), CSV[i,2
calc(ST, fun=function(x) ifelse((x[3]==1), CSV[i,3
calc(ST, fun=function(x) ifelse((x[4]==1), CSV[i,4

1,0) +
1,0) +
1,0) +
1,0))

}
##HH#Stack 8 resulting maps####

TWS<-stack(TW1,TW2,TW3,TW4,TW5,TW6,TW7,TWS)
####Total weights summed for normalizing TW 's####
TWT <- sum(TWI1,TW2,TW3, TW4TW5TW6,TW7,TW8)
TWIN <- TWI/TWT

TW2N <- TW2/TWT

TW3N <- TW3/TWT

TW4N <- TW4/TWT

TWSN <- TWS/TWT

TWON <- TW6/TWT

TWTN <- TWT7/TWT

TWSEN <- TWS8/TWT

####Stack 8 normalised resulting maps####
TWSN<-stack(TWIN,TW2N,TW3N,TW4N,TW5N,TW6N,TW7N,TW8N)

MaxPerc <- function(X, ...){
if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA
if(all(x==0)) return (0) # if all layers are O return O,
which.max(x)

}

#### Weighted Voting map:####
WYV <- calc(TWSN, MaxPerc)
writeRaster(WV, filename = "MapWV_SA.tif", format = "GTiff", overwrite = TRUE)

###H#returns instead of class value, the weights used in weighted voting####
MaxWeights <- function(x, ...){
if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA
max(x) # check which layer has the highest value, then returns value (which=probability)

}

GIMA thesis research, R van Setten-Zaremba



WN <- calc(TWSN, MAxWeights)
writeRaster(WN, filename = "WeightsWV_SA.tif", format = "GTiff", overwrite = TRUE)

# Shannon Entropy in bits (base 2 log) for voting
logSpecial <- function(x) ifelse(x==0, 0, log(x, 2)) # dealing with log(0)
Shannon <- function(x, ...){
vec2 <- lapply(x, FUN=function(x) sum((logSpecial(x) * -x)) )
sum(unlist(vec2))
}
InformationEntropyWV <- calc(TWSN, Shannon)
writeRaster(InformationEntropyWYV, filename = "InformationEntropyWV_SA.tif", format = "GTiff",
overwrite = TRUE)

8.1.5. Probability voting
F <- raster("C:\\...\\FROMGLCNGS.tif")
G <- raster("C:\\...\\GlobcoverG8.tif")
L <- raster("C:\\...\LCCCIGS.tif")
M <-raster("C:\\...\\MODISGS.tif")

ST <- stack(F, G, L, M)

CSVF <- read.csv("Fp.csv") (Table 14 section 4.2.3)
CSVG <-read.csv("Gp.csv") (Table 14 section 4.2.3)
CSVL <-read.csv("Lp.csv") (Table 14 section 4.2.3)
CSVM <- read.csv("Mp.csv") (Table 14 section 4.2.3)

##Probability voting##
for(iin 1:8){
assign(paste('TP", i, sep="),
calc(ST, fun=function(x) CSVF[x[1],i]) *
calc(ST, fun=function(x) CSVG[x[2],i]) *
calc(ST, fun=function(x) CSVL[x][3],i]) *
calc(ST, fun=function(x) CSVM[x[4],i]))

##H#H#Stack 8 resulting maps####
TPS<-stack(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8)
TPT <- sum(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8)
TPIN <- TP1/TPT

TP2N <- TP2/TPT

TP3N <- TP3/TPT

TPAN <- TP4/TPT

TP5N <- TP5/TPT

TP6N <- TP6/TPT

TP7N <- TP7/TPT

TP8N <- TP8/TPT

####Stack 8 normalised resulting maps####
TPSN<-stack(TP1N,TP2N,TP3N,TP4N,TP5N,TP6N,TP7N,TP8N)
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MaxProb <- function(x, ...){
if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA
which.max(x) # check which layer has the highest value, then return layer nr (which=landclass)
}

PV <- calc(TPSN, MaxProb)

writeRaster(PV, filename = "MapPV_SA. tif", format = "GTiff", overwrite = TRUE)

####returns instead of class, the probabilities used in probability voting####
#Probabilities <- function(x, ...){
#if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA
#max(x) # check which layer has the highest value, then returns value (which=probability)
}
#PN <- calc(TPSN, Probabilities)
#writeRaster(PN, filename = "ProbabilitiesPV_SA. tif", format = "GTiff", overwrite = TRUE)

# Shannon Entropy in bits (base 2 log) for voting
logSpecial <- function(x) ifelse(x==0, 0, log(x, 2)) # dealing with log(0)
Shannon <- function(x, ...){
vec2 <- lapply(x, FUN=function(x) sum((logSpecial(x) * -x)) )
sum(unlist(vec2))
}
InformationEntropyPV <- calc(TPSN, Shannon)
writeRaster(InformationEntropyPV, filename = "InformationEntropyPV_SA.tif", format = "GTiff",
overwrite = TRUE)

8.1.6. External validation
polygons <- readShapePoly(''Reference dataset.shp'')
#querying
fullimage <- raster(''ASSESSED LCMAP.tif'")
fullimage @data
#project polygon
polygons @proj4string <- fullimage @crs

#start preparing query

extr_data <- extract(fullimage, polygons)

extr_data_center<-extract(fullimage, coordinates(polygons))#in case you want the landcover of the
point locations

#majority, count, fraction, anyclass
majority <- unlist(lapply(extr_data, modal))

## add to the reference polygons
polygons$gl_maj<-majority

polygons$gl_cent<-extr_data_center

##write everything back to the shapefile.
writeOGR(polygons, ".", "FROMGLCNGS_E_extract", driver="ESRI Shapefile")
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8.2. Original legends, harmonization and LC occurrences in initial voting

This section presents the tables that hold the thematic harmonization of LC data and the LC occurrences in initial voting.

8.2.1. Thematic harmonization

Table 27: Thematic harmonization of LC classes 1, and 2

IGBP/
MODIS/
Harmonized LC data FROM-GLC GLC2000 Geo-wiki Globcover GLCNMO VIIRS LC-CCI
Harmonized legend
no LC class LCCS | no LC class LC class no | LCclass | no LC class LC class D LC class no LC class
1 Trees (all Al12- |20 |20 Forest Evergreen 1 1 Tree 40, |40 Closed to open (>15%) 1, |1Broadleaf |1, |1 Evergreen |50, 50 Tree cover,
sort of trees) | A3 (20/21 Needleleaf, cover 50, | broadleaved evergreen or semi- | 2, Evergreen |2, Needleleaf 60, broadleaved, evergreen,
and Broadleave, Evergreen 60, | deciduous forest (>5m); 50 3, Forest; 2 3, forest; 2 70, closed to open (>15%); 60
A24- 20/22 broadleaf, 70, | Closed (>40%) broadleaved 4,5 | Broadleaf |4, Evergreen 80, Tree cover, broadleaved,
A3.A Needleleave, Deciduous 90, | deciduous forest (>5m); 60 Open Deciduous |5, Broadleaf 90, deciduous, closed to open
20.B2 20/23 Mixed, Needleleaf 100 | (15-40%) broadleaved; Forest; 3 8,9 | Forest; 3 100, | (>15%); 70 Tree cover,
20/24 Trees, R deciduous forest/woodland Needleleaf Deciduous 110, | needleleaved, evergreen,
Orchard) Deciduous 110 | (>5m); 70 Closed (>40%) Evergreen Needleleaf 160, | closed to open (>15%); 80
Broadleaf s needleleaved evergreen forest Forest; 4 forest; 4 170 Tree cover, needleleaved,
Trees, 120 | (>5m); 90 Open (15-40%) Needleleaf Deciduous deciduous, closed to open
Mixed/Other s needleleaved deciduous or Deciduous Broadleaf (>15%); 90 Tree cover,
Trees 160 | evergreen forest (>5m); 100 Forest; 5 Forest; 5 mixed leaf type
R Closed to open (>15%) mixed Mixed Mixed (broadleaved and
170 | broadleaved and needleleaved Forest Forest; 8 needleleaved); Mosaic tree
forest (>5m); 110 Mosaic forest Woody and shrub (>50%) /
or shrubland (50-70%) / Savanna; 9 herbaceous cover (<50%);
grassland (20-50%); 120 Mosaic Savanna 110 Mosaic herbaceous
grassland (50-70%) / forest or cover (>50%) / tree and
shrubland (20-50%); 160 Closed shrub (<50%); 160; Tree
to open (>15%) broadleaved cover, flooded, fresh or
forest regularly flooded (semi- brakish water; 170 Tree
permanently or temporarily) - cover, flooded, saline
Fresh or brackish water; 170 water
Closed (>40%) broadleaved
forest or shrubland permanently
flooded - Saline or brackish
water
2 Shrubs Al12- |40 |40 Shrub Shrubs 2 2 Shrub | 130 | 130 Closed to open (>15%) 7 Shrub 6 Closed 120 120 Shrubland
A4 A cover (broadleaved or needleleaved, Shrubland; 7
20.B3 evergreen or deciduous) Open
shrubland (<5m) Shrubland
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Table 28: Thematic harmonization of LC classes 3,4 and 5

IGBP/MODIS/
Harmonized LC data FROM-GLC GLC2000 Geo-wiki Globcover GLCNMO VIIRS LC-CCI
Harmonized legend

no | LCclass |LCCS | no LC class no | LCclass | no LC class no LC class no | LCclass | no | DLC class no LC class

3 Herbaceous | A12- |30 |30 Grass 7 Herbaceous |3 3 Herbaceous |30, | 30 Mosaic vegetation |8 8 10 | 10 Grasslands | 40, |40 Tree cover,
vegetation |A2.A (30/31 vegetation vegetation / 14 | (grassland/shrubland/f Herbaceous 130, | broadleaved,

20.B Managed & Grassland 0 |orest) (50-70%) / 140 | evergreen, closed to
4 30/32 Nature) cropland (20-50%); open (>15%); 130
140 Closed to open Grassland; 140
(>15%) herbaceous Lichens and mosses
vegetation (grassland,
savannas or
lichens/mosses)

4 Cultivated | A11 |10 |10 Cropland |8 Cultivated |4 4 Cultivated | 11, | 11 Post-flooding or 11, | 11 12, | 12 Cropland; | 10, 10 Cropland,
and and (10/11 Rice, and and managed | 14, |irrigated croplands (or |13 | Cropland; 14 | 14 Cropland |20, |rainfed; 20
managed A23 10/12 managed / Cropland 20 | aquatic); 14 Rainfed 13 /Natural 30 Cropland, irrigated
vegetation / Greenhouse, vegetation / croplands; 20 Mosaic Cropland / vegetation or post-flooding; 30
agriculture 10/13 Other) agriculture cropland (50-70%) / Other Mosaic cropland
(incl. (incl. vegetation Vegetation (>50%) / natural
mixtures) mixtures) (grassland/shrubland/f Mosaic vegetation (tree,

orest) (20-50%) shrub, herbaceous
cover) (<50%)

5 Other A24- |50, |50 Wetlands |9 | Other 6 | 6 Regularly 18 | 180 Closed to open 11 | 11 Permanent | 180 | 180 Shrub or
shrub/herba | A2 70 |(30/51 Grass shrub/herba flooded / 0 | (>15%) grassland or Wetlands herbaceous cover,
ceous and & 90/52 Silt) ceous wetland woody vegetation on flooded,
vegetation | A24- ; 70 Tundra ( vegetation regularly flooded or fresh/saline/brakish

A4 40/71 Shrub waterlogged soil - water
& 30/72 Fresh, brackish or
Grass) saline water
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Table 29: Thematic harmonization of LC classes 6, 7 and 8

Harmonized legend

no | LCclass |LCCS | no LC class no | LCclass no | LCclass | no LC class no LC class no | D LC class no LC class

6 | Urban/built [B15 |80 |80 Impervious ( 10 | Urban/built |7 |7 Urban | 190 | 190 Artificial 18 |18 Urban 13 |13 Urban and | 190 | 190 Urban areas
up 80/81 High albedo, up / built surfaces and Built Up

80/82 Low albedo) up associated areas
(Urban areas
>50%)

7 Water, B27- |60, | 60 Water (60/61 11, | Open water; | 8, |8 Snow |210, | 210 Water bodies; |19, | 19 Snow /Ice; |15, | 15 Snow and |210, | 210 Water bodies;
permanent | Al, 10 | Lake, 60/62 Pond, |13 | Snow and 10 |andice; |220 |220 Permanent 20 |20 Water 17 |Ice; 17 Water | 220 | 220 Permanent
Snow and |B27- |0 60/63 River, 60/64 Ice 10 Open snow and ice bodies bodies snow and ice
Ice A2, Sea) ; 100 water

B27- Snow/Ice (100/101
A3, Snow & 100/102
B28- Ice)
Al,
B28-
A2,
B28-
A3
8 | Barren B16 |90 |90 Bareland (90/91 | 12 | Barren 9 |9 Barren | 150 | 150 Sparse (<15%) | 10, | 10 Sparse 16 |16 Barrenor |15, |150 Sparse
and Saline-Alkali, vegetation; 200 16, | vegetation; 16 Sparseley 20 vegetation (tree,
Al2- 90/92 Sand, 90/93 Bare areas 17 | Bare area, Vegetated shrub, herbaceous
AlA Gravel, 10/94 Bare consolidated cover) (<15%);
14, Cropland, 90/95 (gravel,rock); 200 Bare areas
Al2- Dry river/lake bed, 17 Bare area,
A2A 90/96 Other) unconsolidated
14 (sand)
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8.2.2. LC classes occurrences of LC input maps in initial voting

Trees

Table 30: Class occurrences of FROM-GLC and Globcover (2009) in initial voting its conditions

All 1/tm 8

Shrubs

Herbaceous vegetation

Cultivated and managed vegetation / agriculture

Other shrub/herbaceous vegetation

Urban/built up

Water, Snow and Ice

Barren

Tie, two maps disagree (2x)

Tie: all maps disagree

Trees

All 1/tm 8

Shrubs

Herbaceous vegetation

944

9,76

17,66

Cultivated and managed vegetation / agriculture

17,61

Other shrub/herbaceous vegetation

Urban/built up

Water, Snow and Ice

Barren
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9,84

23,83

N
1523 |21 | osst - | 1523
N

4421809 | 2288646 | 894363 4421809 | 1947641 | 821846
54273 313220 | 406378 - 54273 202386 | 186705
369064 689987 | 728303 - 369064 1690876 | 787148
2440157 | 1363298 | 363108 - 2440157 | 7179440 | 2608809
54 1580 16962 - 54 1321 31151
149761 110215 | 54222 - 149761 326616 | 140472
42237333 | 397812 | 68457 - 42237333 | 350822 42851
28444 425592 | 299181 - 28444 459703 | 672834

8,97

19,52
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Table 31: Class occurences of LC-CCI (2010) and MODIS5 (2010) in initial voting and its conditions

4421809 | 2492586 | 797873 4421809 | 2363422 | 908408
54273 252152 | 186271 - 54273 249623 | 346990 -

All 1/tm 8

Trees
Shrubs

Herbaceous vegetation 369064 1861235 | 989499 - 369064 1617286 | 666570 -
Cultivated and managed vegetation / agriculture 2440157 | 6975178 | 2275234 - 2440157 | 7531066 | 2212455 -
Other shrub/herbaceous vegetation 54 2256 38973 - 54 1791 7472 -
Urban/built up 149761 389150 | 425589 - 149761 346515 | 265237 -
Water, Snow and Ice 42237333 | 396919 | 81687 - 42237333 64398 14647 -
Barren 28444 449455 | 554754 - 28444 46195 6463 -

Tie, two maps disagree (2x)

|

Tie: all maps disagree

All 1/tm 8

Trees
Shrubs
Herbaceous vegetation

Cultivated and managed vegetation / agriculture

Other shrub/herbaceous vegetation
Urban/built up
Water, Snow and Ice

|
| 1642
|
|
|
|

Barren
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