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Summary 

Current global land cover (GLC) maps have an overall accuracy around 70%, varying from 67 

to 81% (Mora et al. 2014; See et al. 2014). Map producers and users feel a need to improve the quality 

of GLC maps as errors add to the uncertainty of GLC applications (Herold et al. 2011; Mora et al. 

2014; Tsendbazar et al. 2015; Verburg et al. 2011). Improved GLC maps can be achieved by 

integrating different land cover (LC) datasets (Herold et al. 2008). Before LC maps can be integrated, 

LC data needs to be harmonized to the same thematic legend and spatial extent. LC products have 

limitations due to product inconsistency (Tuanmu and Jetz  2014). The use of differing methodologies 

in LC mapping, integration, classification scheme and algorithms and data sources raises GLC 

mapping inconsistency issues (Mora et al. 2014). Inconsistencies between GLC dataset form an 

obstacle for map integration. Integration aims to label LC information to the most accurate LC class, 

but is dependent on the LC information from the LC maps used for integration. 

There are different integration methodologies. Voting assigns a pixel to the LC class that 

occurs in the majority of the LC input datasets at the pixel’s location. Voting is a widely accepted 

approach in data integration (Ge et al. 2014; Goovaerts. 1999; Iwao et al. 2011; Jung et al. 2006; 

Kinoshita et al. 2014; Tuanmu and Jetz. 2014). This research uses normal voting, weighted voting and 

probability voting for the map integration of: FROM-GLC hierarchy (2013), Globcover 2009, LC-CCI 

(2010) and MODIS5 (2010) LC maps. Normal voting is a new method that is purely map driven and 

uses a two-step approach: (1) in case the LC input map agree on a LC class, pixels were assigned to a 

LC class from simple majority voting. (2) In case the LC input maps disagreed on a LC class and 

formed a tie, pixels were assigned to a LC class based on LC class preferences calculated from step 1. 

In Weighted voting, pixels are assigned to the LC class that accumulates the highest weight that is 

derived from user’s accuracy at that pixel’s location. In case of probability voting this accounts for the 

probability of each LC class being the correct class. Weights and probabilities were derived from the 

published confusion matrices FROM-GLC (Yu et al. 2014) and Globcover 2009, LC-CCI (2010) and 

MODIS5 (2010) (Tsendbazar et al. 2016). 

The integration methods were assessed on their overall and class specific accuracy in an 

external validation, by cross tabulating the assessed LC map against the reference dataset in a 

confusion matrix (Strahler et al. 2006; Foody 2005). The integration methods are evaluated on their 

improvement compared to each other and the LC input maps. As addition to the external validation, 

this research calculates the information entropy over the integration methods. Entropy is an internal 

measure of uncertainty and represents the amount of information necessary to require certainty 

(Shannon and Weaver. 1949). Based on the information entropy, probability voting was identified as 

the best integration method. A difference plot between the integration methods confirmed that normal 

voting and weighted voting achieved similar results. Normal voting, weighted voting and probability 

voting had an improved overall agreement with the reference dataset, respectively 70.85%, 71.72% 

and 71.40%, compared to the LC input maps. The improvement on class specific accuracies varied as 

LC-CCI (2010) often held the highest agreement metrics for LC classes. This can be explained; voting 

methods favor classes that have good probability or a high weight in the integration; therefore 

common classes are over-mapped and rare LC classes could have been under-mapped. The probability 

voting held the highest agreement metrics for LC classes among the voting methods.  
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1. Introduction 

Global land cover (GLC) products often exhibit spatial disagreement and overall accuracy 

needs to be improved. Improved global land cover (GLC) maps can be achieved by integrating 

different land cover (LC) datasets (Herold et al. 2008). Some integration methods consider the 

agreements between two or more LC products (Jung et al. 2006), while others use map accuracy 

information to integrate LC products (Tuanmu and Jetz 2014). The purpose of these integration 

methods is to use available LC information to label the most accurate LC class.  

This section will introduce the research context and background, problem description, and 

motivation of this research. 

1.1. Context and Background 

LC maps serve as critical baseline information for a wide variety of research purposes and 

environmental applications (Herold et al. 2008). These maps have been produced from remote sensing 

images and they characterize the world surface into different LC types. Many models use LC datasets 

as one of their data inputs, examples are: climate models, dynamic vegetation models, hydrological 

models and carbon stock models (Hibbard et al. 2010; Jung et al. 2006; Verburg et al. 2011). 

Modelling communities acknowledge the importance of an accurate representation of land use and 

land-cover change to understand and quantify the interactions and feedbacks with the climate and 

socio-economic systems (Hibbard et al. 2010). Errors in GLC datasets add to the modelling 

uncertainty (Nakaegawa et al. 2011).  The selection of a specific LC dataset and its quality has an 

influence on the outcome of the respective model (Hibbard et al. 2010; Mora et al. 2014; Nakaegawa 

et al. 2011).  

The accuracy of existing GLC maps is around 70%, varying from 67 to 81% (Mora et al. 

2014; See et al. 2014), despite the significant developments in technology and methodology of GLC 

mapping (Fritz et al. 2011; Herold et al. 2011; Tsendbazar et al. 2015). Mora et al. (2014) mentions 

that there is a clear need to improve the current quality of GLC maps, with the example that datasets 

should have a maximum of 5-15% error as a target to be further used in modelling applications 

(Herold et al. 2011).  There are also significant amounts of spatial disagreement across different LC 

maps, in particular in the cropland and forest domains (See et al. 2014).  User communities have 

specific requirements, but generally require a higher spatial and thematic accuracy, interoperability 

and inter-comparability from LC maps for their applications (Herold et al. 2011; Mora et al. 2014; 

Tsendbazar et al. 2015; Verburg et al. 2011).  There are multiple GLC maps and it is not readily 

apparent which is most useful for a particular application reflecting the user requirements or how to 

combine the different maps to provide an improved dataset (Herold et al. 2008).  Map producers aim 

to improve the uncertainty components of GLC maps (Tsendbazar et al. 2015) 

This research will focus on fusion of LC maps from the perspective of LC map producers, 

with the aim to improve the (overall) accuracy of LC maps. In order to make the research more 

feasible within the allocated time, this research focuses on Western European countries, namely: The 

United Kingdom, Ireland, The Netherlands, Belgium, France, Spain and Portugal as study area. This 

might enclose mapping matters in this research; however, findings are not limited to use within these 

countries. To date, there are several GLC maps, reference data sets, merges of existing products and 

LC hybrid maps. This is undertaken due to the significant spatial disagreement between LC products.  

Voting is a procedure in which a pixel is assigned to the LC class that occurs in the majority of 

the LC datasets at the pixel’s location. There are integration methods that use voting to assign a pixel 

to a LC class, or use voting combined with a other approach (Ge et al. 2014; Goovaerts. 1999; Iwao et 

al. 2011; Jung et al. 2006; Kinoshita et al. 2014; Tuanmu and Jetz. 2014). Jung et al. (2006) produced 
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a SYNMAP merged existing LC products into a desired classification legend and exploring synergies 

of GLC products for carbon cycle modeling. Ge et al. (2014) proposed a fusion method to combine 

biomass maps linearly with weighted averaging and area bias corrections. Kinoshita et al. (2014) 

focused on an integration method to create a GLC map and a probability map, using probability of 

occurrence scores to perform a logistic regression analyses. Iwao et al. (2011) based their integration 

method on a voting approach, were a pixel is assigned to the LC class that occurs in the majority of the 

LC maps used for integration at that pixel’s location. Iwao et al. (2011) uses map accuracy to decide 

on a LC class where maps disagree. Tuanmu and Jetz (2014) used a two-step integration approach to 

capture the heterogeneity of the finer LC maps and applied accuracy based weighting on class 

probabilities where the input maps disagreed. Previous work in the literature presents several geo-

statistical approaches to integrate different LC products (Carneiro and Pereira 2012; Ge et al. 2014; 

See et al. 2014). See et al. (2014) introduced two hybrid LC map with crowdsourcing data and 

geographically weighted regression. Geographically weighted regression (GWR) weights observations 

and locally determines relationships between variables (Brunsdon et al. 1998; Fotheringham et al. 

2003).  Crowdsourcing data could improve the accuracy of LC maps where different LC products 

disagree (Comber et al. 2013). Carneiro and Pereira (2012) aimed to develop methodologies for 

mapping the spatial distribution of errors using indicator kriging.  

The use of differing methodological approaches ( e.g., classification scheme, data source and 

algorithms) for GLC mapping raises consistency issues and makes comparison difficult (Mora et al. 

2014). Simultaneously, inconsistencies between LC products make integration of these products 

difficult. LC products have limitations due to product inconsistency (Tuanmu and Jetz  2014) and 

existing differences in LC legends are an obvious inconsistency that hinders the comparison of LC 

maps (Herold et al. 2008). This raises the issue of data harmonization before comparing or integrating 

LC products. Harmonization is done in order to be able to directly compare LC products. In addition 

to the differences in legends, there are spatial aspects that cause inconsistencies between LC datasets. 

For example, a different resolution between maps also makes integrating the available LC datasets 

difficult. This research is limited in the thematic and spatial harmonization. LC classes will be 

harmonized to a thematic legend with eight general LC classes. Spatial harmonization is based on the 

assumption that the sample unit area has homogenous LC type, so the datasets can be harmonized to 

have the same extent of sample units.  

Inconsistencies between LC maps are not evenly distributed among all LC classes (Carneiro 

and Pereira 2012) and accuracy may vary locally within the map (Strahler et al. 2006; Foody 2005). 

Problematic classes are difficult to discriminate from other LC classes (Carneiro and Pereira 2012; 

Herold et al. 2008). Fragmented landscape, heterogeneous and transition areas generally have lower 

map accuracy (Carneiro and Pereira 2012; Herold et al. 2008; Jung et al. 2006; Tsendbazar et al. 

2015). Class accuracies of problematic classes could be improved through integration of different LC 

data sets. This would also address the requirements of map producers because the approach improves 

problematic classes. LC map producers will benefit from an improved LC map with a higher overall 

accuracy and class accuracies, to better characterize GLC and problematic LC types. More accurate 

GLC map will also be beneficial to the users of GLC maps and provide a better basis for their 

applications. 

1.2. Problem description 

GLC map producers have stated that GLC maps only reached an overall accuracy around 70% 

despite the significant developments in technology and methodology in addition to the user 

requirements for improved accuracy (Fritz et al. 2011; Herold et al. 2011; Tsendbazar et al. 2015; 

Tsendbazar et al. 2016). There is a clear need to improve the current quality of LC maps from all 
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perspectives and improved LC maps can be achieved by integrating different LC datasets. However, 

there are different integration methods and it is not known which is the most accurate integration 

method. Additionally, as the requirements on LC maps vary for different users, related research is 

often directed at a specific user community or problem.  

Inconsistencies between GLC maps, caused by different methodologies, legends, source data, 

hinder comparison and integration between LC datasets (Mora et al. 2014). This will make integration 

even more difficult and raises the issue of data harmonization before comparing different integration 

methods (Herold et al. 2008). An integration method decides on a LC class for each pixel, based on 

LC labels of the input products. Integration aims to label LC information to the correct LC class, but is 

dependent on the LC information from input products. Inconsistencies among different GLC datasets 

are often attributed to landscape heterogeneity (Jung et al. 2006; Tsendbazar et al. 2015). 

Heterogeneous areas and transition areas of the main biomes are challenging to classify. These areas 

have fragmented landscape with different LC types and it is difficult to classify mixed LC information 

to a specific LC class (Carneiro and Pereira. 2012). Due to this difficulty, LC maps often disagree with 

one another in these regions. Carneiro and Pereira (2012) mention that inconsistencies are not evenly 

distributed among all LC classes and that some classes are easier to discriminate than other classes. 

These classes with low accuracies are known as problematic classes and difficult to separate 

spectrally. Herold et al. (2008) discusses that it is difficult to discriminate between classes in the 

cropland and forest domains, naming mixed trees, shrubs, cultivated and managed vegetation and 

barren LC types as examples of problematic classes.  Problematic classes are often prominent in 

heterogeneous and transition areas (Herold et al. 2008). Class accuracies could be improved by dealing 

with problematic classes through integration and thereby also improved overall accuracy could be 

achieved. 

This research aims for improved LC maps and therefore focuses on different integration 

methods that include: harmonization of LC classes, improved overall and class accuracy within the 

community of LC map producers. 

1.3. Research objective and questions 

This research focuses on LC map integration from the perspective of LC map producers and 

aims to improve (overall) accuracy of LC maps. Integration will be assessed with respect to the ability 

of improving overall and class specific accuracies. This research is limited to integration methods 

based on voting approaches, which are very commonly used for map integration.  

Research objective: 

The objective of this research is to generate improved LC products by integrating available LC 

products and reference datasets. 

Research questions: 

To achieve this research objective, the following research questions will be answered: 

I. Can the selected LC map integration methods be applied to the study area considering data 

constraints and characteristics (e.g. inconsistent legends)? 

II. How can LC datasets be integrated with the chosen integration methods and selected 

software? 

III. Which is the most promising method based on internal validation? 

IV. What is the agreement of the integrated LC maps with the reference dataset and how much has 

integration improved overall accuracy? 
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1.4. Outline 

Chapter two describes the study area, study materials and available LC datasets and maps that 

were used for integration. Chapter three, the theoretical background describes the literature review for 

the integration methods, harmonization and validation. The fourth chapter reports on the methodology 

used in this research for the harmonization, integration methods and chapter five report the research 

results. Chapters six and seven discuss the results and conclude the research, respectively.  
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2. Study area, land cover data and materials 

2.1.  Study area 

To make the research feasible within the allocated time, it focused on the following countries: 

United Kingdom, Ireland, The Netherlands, Belgium, France, Spain and Portugal as study area. The 

data such as LC maps and reference datasets were processed to match the study area. The analysis was 

done in the WGS84 geographic coordinate system and datum. Figure 1 presents the study area. 

 
Figure 1: Study area 

2.1.1.  Area information 

Western Europe has an ocean climate. The dominant LC are trees, shrubs, grass and croplands. 

Shrubs and sparse vegetation LC are more prominent in the southern part of Western Europe due to 

warmer temperatures. Norway’s mountains area consisting of valleys and fjords, the French Alps and 

the Pyrenees on the border of France and Spain are areas with steep slopes, heterogeneous areas and 

fragmented landscapes.   

Table 1 provides some meta data considering the target map of the study area. It should be 

noted that this information is acquired after harmonization is complete as the harmonized cell size 

influences these numbers. The decision for the chosen resolution is discussed in the methodology 

(section 4.1). 
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Table 1: Meta data target LC map 

Reference system Coordinate Reference system WGS 1984 

Datum WGS 1984 

Resolution Meters 300 (approximately) 

Decimal degrees 0.002778  

Extent x-minimum -11.2936 

x-maximum 11.68418 

y-minimum 34.96944 

y-maximum 61.24722 

Dimension Rows 9460 

Columns 8272 

Cells 78253120 

 

2.2. Land cover data 

This research uses LC datasets for two purposes: (1) producing integrated LC maps and (2) 

assessing the performance of the integration methods by validating the produced LC maps. Four LC 

maps were used as input for the three chosen integration methods implemented in section 4.2. The LC 

reference data is used for the external validation of the produced LC maps in section 4.3.2. 

2.2.1.  Maps 

FROM-GLC, Globcover 2009, LC-CCI (2010 and MODIS5 (2010) LC maps were used for 

integration. Table 2 and table 3 list all four LC maps and their metadata. Globcover 2009, LC-CCI 

(201) and MODIS5 (2010) were obtained from Wageningen University.  FROM-GLC was 

downloaded from internet (Finer Resolution Observation and Monitoring Global Land Cover. 2015). 

The GLC maps were pre-processed in two steps: (1) the GLC maps were re-projected to the same 

geographic coordinate system and datum and (2) all GLC maps were clipped to the extent of the study 

area.  

From the input maps, Globcover 2009, LC-CCI and MODIS5 had a WGS84 geographic 

coordinate system and datum. MODIS5 was re-projected to WGS84 by Tsendbazar et al. (2016) when 

acquired from Wageningen University. In QGIS all hierarchy tiles of the FROM-GLC hierarchy were 

merged to one raster dataset, re-projected to WGS84 and directly re-sampled to a 300 meter resolution. 

In the second step all maps were clipped to create a spatial subset of the raster within the extent of the 

study area with the clip (data management) tool in ArcGIS. For operations, like integration in R, it is 

required that all maps hold the same spatial extent and dimension (number of rows, columns and 

cells), therefore the environmental settings of snap raster were used.  

FROM-GLC hierarchy 250 m is one of the FFROM-GLC family maps, which were produced 

using LandsatTM/ETM and MODIS EVI time series (Yu et al. 2014). The producers of FROM-GLC 

aimed for a LC data set for different user applications and therefore created FROM-GLC-hierarchy. 

The FROM-GLC-hierarchy was produced by an up-scaling / aggregation approach where a class type 

at coarser resolution is assigned based on the class type at a finer resolution (Yu et al. 2014). There are 

eight coarser resolutions in the hierarchy dataset, including the 250 meter used in this research, where 

the 30 meter map is the base map. The FROM-GLC-hierarchy 30 meter is produced from FROM-

GLCagg, with a few improvements made on cell level at locations where there were misclassifications 

(Yu et al. 2014). These improvements were made by aggregating LC information from coarser 

resolution data as MODIS, Globcover 2009 and data to check among others global water and 

shorelines (Yu et al. 2014). Misclassifications that were improved were:  (1) no data and cloud pixels 

that were replaced, (2) confusion between water bodies and shadows that were processed, (3) Bareland 
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overestimation was reduced and (4) LC type confusion in shore areas was filtered (Yu et al. 2014).  

FROM-GLC-hierarchy is produced from FROM-GLCagg, which is based on FROM-GLC and 

FROM-GLCseg, for more information is referred to the research of Yu et al. (2014). 

Globcover 2009 GLC map is produced from the automated classification of MERIS FR time 

series (Bontemps. 2011). Globcover 2009 has a LCCS classification with a legend of 22 LC classes, 

(Bontemps. 2011). The Globcover 2009 GLC map has a 300m resolution and is projected in Plate-

Carrée (WGS84) (Bontemps. 2011). The reference database for the Globcover 2005 was used for 

validating Globcover 2009 LC map. LC-CCI (2010) and was produced from multi-year and multi-

sensor strategy (Climate Change Initiative Land Cover project. 2015). The MERIS Full (2003-2012) 

and Reduced Resolution (FR and RR) archive were used as input to generate a 2003-2012 global land 

cover map, from which the 2010, 2005 and 2000 maps were produced. LC-CCI has a LCCS 

classification scheme with 22 LC classes. MODIS5 (2010) was- produced from: monthly EVI, LST, 

and 7 bands from 8 day composites (Friedl et al. 2010). MODIS5 has different LC classification 

system including IGBP (Mora et al. 2014) and has a legend with 17 classes.  

Table 2: Meta data LC maps, production, classification and validation 

Production 

LC map Input data Time of data collection 

FROM-GLC-
hierarchy (2013) 

Landsat Thematic Mapper (TM), 
Enhanced Thematic Mapper Plus 
(ETM+). Improvements by 
aggregating other LC data sources. 

2010 

Globcover v2 (2009) 
MERIS: Bi-monthly from 10 day 
composites 

2009 

LC-CCI (2010) 
Unknown, made by Land Cover CCI 
project 

Three maps for; 1998-2002, 2003-
2007 and 2008-2012 epochs. 

MODIS5 (2010) 
MODIS: Monthly EVI, LST, and 7 
bands from 8 day composites 

2001-2008 

Classification 

LC map Classification method Classification scheme 

FROM-GLC-
hierarchy (2013) 

-  Two level classification system, 
with 10 classes 

Globcover v2 (2009) 
(Un)supervised spatio-temporal 
clustering 

LCCS 22 class 

LC-CCI (2010) `- - 

MODIS5 (2010) 
Supervised decision tree boosting 5 different LC classification system 

including IGBP, UMD 

Validation 

LC map Validation data 
Absolute positional accuracy  
RMSE 

FROM-GLC-
hierarchy (2013) 

38664 test samples collected from 
Landsat images, MODIS time series, 
high resolution images, field photos 
Google Earth 

 

Globcover v2 (2009) 
Independent validation dataset from 
CHR satellite data and other datasets 

77m 

LC-CCI (2010) -  

MODIS5 (2010) Using HR satellite 50-100m 
Source: Mora et al. 2014, Table 2.1; Climate Change Initiative Land Cover project. 2014; Yu et al. 2014 
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Table 3: Meta data LC maps, spatial reference and resolution 

Meta data 
LC maps 

FROM-GLC 
hierarchy (2013) 

Globcover v2 (2009) LC-CCI (2010) MODIS5 (2010) 

Spatial reference 

Coordinate 
Reference 
System 

Sinusoidal Datum: 
Sphere with radius 
6371007.181 m. 

WGS_1984 WGS_1984 Sinusoidal Datum: 
Sphere with radius 
6371007.181 m 

Datum  WGS 1984 WGS 1984  

Spatial resolution 

Meter in 
resolution at 
equator 

250 300 300 500 

Decimal 
degree 

0.002661 0.002778 0.002778 0.004167 

Source: Sinusoidal projection (2015); Tsendbazar et al (2016); Yu et al. 2014 

2.2.2.  Datasets 

GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005,MODIS-tr and VIIRS 3 are the reference 

datasets used for validating the produced LC maps. Figure 2 presents the distribution of the reference 

datasets over the study area. All reference datasets were obtained from Wageningen University 

(GOFC-GOLD reference data portal. 2015). The reference datasets were pre-processed with two steps: 

(1) the reference datasets re-projected to the right geographic coordinate system and datum and (2) all 

datasets were clipped to the extent of the study area.  

 
Figure 2: Reference datasets 
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Table 4 holds the distribution of sample sites over the individual reference datasets and table 5 
lists the metadata information of the reference datasets (GOFC-GOLD reference data portal. 2015; 
Tsendbazar et al. 2015) 

Table 4: Sample sites of reference datasets 

Reference dataset Number of Sample sites 

GLC2000 19 

GLCNMO-tr 50 

Geo-Wiki 304 

Globcover 2005 123 

StepModus-tr 138 

VIIRS 3 282 

Total 916 

 

The GLC2000 and Globcover 2005 reference dataset have a LCCS classification system. The 

GLC2000 reference dataset is the result of consolidation work, were data from the original GLC2000 

dataset was randomly selected and reinterpreted using landsat scenes (GOFC-GOLD reference data 

portal 2015). Only samples that were identified as problematic were reinterpreted, this results in a final 

dataset with 1253 samples sites (GOFC-GOLD reference data portal 2015). GLC2000 has a block unit 

type sample design and 19 samples are within the study area and used for this research. GLC2000 

reference dataset has a LCCS classification with 13 LC classes. The Globcover 2005 dataset is the 

result of consolidation work, were regional and national experts reinterpreted he original ESA-

GlobCover 2005 dataset using Google Earth imagery (GOFC-GOLD reference data portal 2015). 

Globcover 2005 has a block unit type sample design and 123 samples are within the extent of the 

study area. Globcover 2005 has a LCCS classification system with 22 LC classes. GLCNMO-tr has a 

polygon unit type sample design and 50 samples are within the study area.  

The StepMODIS-tr and Visible Infrared Imaging Radiometer Suite (VIIRS) reference dataset 

have an IGBP classification with 17 LC classes. 138 sample sites of stepMODIS-tr and 282 sample 

sites of VIIRS are within the extent of the study area (GOFC-GOLD reference data portal 2015). The 

STEP reference dataset is a model that derives LC parameters from remote sensing, collateral and field 

plot data that can be extracted with GIS to produce a GLC classification (GOFC-GOLD reference data 

portal 2015). StepMODIS-tr reference dataset has a polygon unit type sample design. VIIRS has an 

IGBP classification with 17 LC classes and clustered blocks of 5x5 km as its unit type sample design. 

VIIRS reference dataset is based on stratified random samples of 500 blocks (GOFC-GOLD reference 

data portal 2015), these clustered blocks are the unit type sample design. Geo-wiki reference dataset 

has a LCCS/IGBP classification with 10 LC classes and 304 sample sites within the study area. The 

Geo-wiki reference dataset is a Volunteered Geographical Information (VGI) reference dataset. Geo-

wiki collects data samples from volunteers (which can be experts) in a web interface and asks these 

volunteers to interpret the reference LC from predefined sample locations (Comber et al. 2013; See et 

al. 2014). Comber et al. (2013) determined the reliability of volunteered geographical information 

(VGI) and shows that VGI can be used in LC mapping if it is reliable.  
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Table 5: Meta data reference datasets 

Spatial reference 

Dataset 
Coordinate 

Reference System 
Datum Projection 

GLC2000 WGS 1984 WGS 1984  

GLCNMO-tr WGS 1984 WGS 1984 Plate_Carree 

Geo-Wiki WGS 1984 WGS 1984  

Globcover 
2005 

WGS 1984 WGS 1984  

MODIS-tr WGS 1984 WGS 1984  

VIIRS 3 WGS 1984 WGS 1984  

Production 

Dataset Acquisition date Classified by Source 

GLC2000 1999-2002 
National/regional 

expert 
Landsat TM, Aerial photographs, 

thematic maps, NDVI profile 

GLCNMO-tr 
2000-2003 for 

landsat and MODIS 
National/regional 

expert 
Google Earth image/photo, DCP 

photo, regional LC maps 

Geo-Wiki 2000-2012 Volunteer 
Google earth, Spot-NDVI, DCP, 

geo-tagged pictures 

Globcover 
2005 

Circa 2005 International expert 
SPOT VGT-NDVI profile, Google 

Earth 

MODIS-tr 2001-2007 
National/regional 

expert 
Landsat 7 or higher resolution data, 

Google Earth 

VIIRS 3    

Legend 

Dataset 
Classification 

scheme 
Number of classes Hierarchical Classifier provided 

GLC2000 LCCS 13 + 

GLCNMO-tr ST-LCCS 14 - 

Geo-Wiki LCCS/IGBP 10 - 

Globcover 
2005 

LCCS 22 + 

MODIS-tr IGBP 17 + 

VIIRS 3 IGBP 17  

Sample characteristics 

Dataset Site Unit type Unit size 

GLC2000 1265 Block 3x3km 

GLCNMO-tr 1607 Polygon >3x3km 

Geo-Wiki 5608 Pixel 
1 pixel for MODIS, Glob-Cover, 

GLC2000 

Globcover 
2005 

4258; 3167 certain Block 1.5x1.5km 

MODIS-tr 1860 Polygon 1-376 pixel (0.5 km) 

VIIRS 3 4500 Clustered blocks 1 km 
Source: GOFC-GOLD reference data portal. 2015; Tsendbazar et al (2015), Table A2. 
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2.2.3.  Confusion matrices of Global Land Cover maps 

Accuracy information of the input maps was used for integration; this information was gained 

from the research of Tsendbazar et al. (2016) for the Globcover 2009, LC-CCI (2010) and MODIS5 

(2010) input maps. For the input map, FROM-GLC-hierarchy, the confusion matrix of FROM-GLC 

agg 30 meter was used as accuracy information (Yu et al. 2014).  

2.3. Software 

The software used in this research includes ArcGIS version 10.2.2 (Esri ArcGIS software. 

2015). ArcGIS is a Geographical Information System (GIS) used for spatial analysis and visualization. 

ArcGIS was mainly used for; harmonization, displaying LC data, results and finally the integrated LC 

maps. In the harmonization (section 4.1) ArcGIS was used to reclassify the LC maps and datasets. In 

the external validation ArcGIS was used to prepare (creating 3x3pixel blocks) the reference dataset to 

extract the LC class from the integrated maps which was used for the external validation (4.3.2). GGIS 

is free GIS software. In QGIS all tiles of the FROM-GLC-hierarchy were merged to one raster dataset, 

re-projected to WGS84 and re-sampled to 300m resolution. This was done in QGIS instead of ArcGIS 

because ArcGIS did not recognize the projection; during re-projection FROM-GLC was also 

resampled to a 300m resolution.  

R is a programming language and environment for statistical computing (The R project for 

statistical computing. 2015). R was used to implement the integration methods, internal and external 

validation. Section 8.1 in the appendix holds all scripts that were used in R. In addition to R, Excel 

was used for harmonizing the legends of the LC maps and datasets to one legend and for assessing 

confusion matrices. The new harmonized legend was constructed in excel and implemented to the LC 

data in ArcGIS (section 4.1).   
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3. Theoretical background 

3.1.  Global land cover mapping 

The current accuracy of GLC maps is around 70 % (Mora et al. 2014; See et al. 2014). Map 

producers and users feel a need to improve the quality of GLC maps as errors add to the uncertainty of 

GLC applications (Herold et al. 2011; Mora et al. 2014; Tsendbazar et al. 2015; Verburg et al. 2011).  

 Improved GLC maps can be achieved by integrating different LC datasets (Herold et al. 

2008). The current GLC maps often do not agree with each other in certain areas and this results in 

spatial disagreements or inconsistencies between them. Inconsistencies between GLC maps come from 

many origins. Mora et al. (2014) mentions, that the use of differing methodological approaches ( e.g., 

classification scheme, data source and algorithms) to produce GLC maps raises consistency issues. 

Herold & Schmullius (2004) mention inconsistencies that result from different standards being used to 

derive LC data, differences in: data model (vector/raster), cartographic standards, spatial aspects as 

spatial reference system, resolution, sample unit-type, unit-size and thematic (semantic) aspects as 

classification algorithms and LC legends. Jung et al. (2006) and Tsendbazar et al. (2015) mention that 

inconsistencies among different GLC datasets are often attributed to landscape heterogeneity. Due to 

fragmented landscapes, heterogeneous areas typically have many mixed cells and are therefore 

challenging to be classified. Mixed cells of LC information are difficult to label to a specific LC class 

(Carneiro and Pereira. 2012). Carneiro and Pereira. (2012) mention that transition areas have high 

inconsistency between LC products due to different classification algorithms in legends. Another 

problem in map inconsistencies are problematic classes, these classes are difficult to separate 

spectrally and therefore hold a lower accuracy (Carneiro and Pereira. 2012). It is difficult to 

discriminate between classes in the cropland and forest domains, Herold et al. (2008) identifies trees, 

shrubs, cultivated and managed vegetation and barren LC types as problematic classes. Tsendbazar et 

al. (2016) characterizes shrubs, grass and cropland classes, as LC classes with high confusion errors. 

Harmonization (section 4.1) needs to be done before being able to integrate GLC maps (Herold et al. 

2008; Tsendbazar et al. 2016). Data harmonization aims to harmonize LC data to one standard (Herold 

et al. 2008). This makes it possible to compare and integrate the LC data in the same spatial dimension 

and thematic legend within this research (section 4.2). Harmonization has its limitations and will not 

ideally eliminate all spatial and thematic product inconsistencies. Harmonization is described in 

section 3.4 of this research.  

An integration method decides on a LC class for each pixel in the new map based on LC input 

maps. Integration aims to label LC information to the most accurate LC class, but is dependent on the 

LC information from input maps. There are integration methods that consider the agreements between 

LC products (Jung et al. 2006), while others use map accuracy information (Iwao et al. 2011). 

Kinoshita et al. (2014) and Tuanmu and Jetz (2014) use probabilities in their integration approach 

which are based on map accuracies/agreements with the reference data. Kinoshita et al. (2014) 

mention that there are numerous studies that compare maps, but attempts at applying these result of for 

the creation of new integrated maps have been very limited. Section 3.2 of this chapter discusses 

integration methods with a voting approach in detail. Integration methods with a statistical approach, 

that take into account the location of LC classes, show promising results in accuracy improvements 

(Kinoshita et al. 2014; See et al. 2014). Geographically weighted regression (GWR) can be used for 

map integration and it weights observations and locally determines relationships between variables 

(Fotheringham et al. 2003). See et al. (2014) introduced two hybrid LC maps with crowdsourcing data 

and geographically weighted regression. In the approach, LC datasets were trained using volunteered 

geographical information (VGI) and a probability map was produced from each land cover dataset 

(See et al. 2014). A GWR was used to determine the best land cover product at each location by 



13 
GIMA thesis research, R van Setten-Zaremba 

calculating the relationship between probability maps (See et al. 2014). A land cover hybrid map is 

produced from the probability maps, the LC class of a map with the highest probability of being the 

correct class was assigned to a pixel (See et al. 2014). The second hybrid map was better compared to 

GLC2000 and Globcover, but worse or similar in performance to MODIS map (See et al. 2014). 

Geostatistical approach can also be used for map indicator. For example, Indicator kriging includes 

indicators in the land cover datasets by transforming class occurrences to indicators: 1 if present, 0 if 

absent (Goovaerts. 1999). This approach could label indicators to each LC class present in the legend, 

maps would be made from each LC class indicator (Goovaerts. 1999). This approach could interpolate 

the indicators (co-variates or “soft” data) and reference data (“hard” data) with kriging and interpreted 

as probabilities. Section 3.3 discusses how the normal voting, weighted voting and probability voting 

methods are chosen for this research, considering the data constraints, characteristics and the study 

area.  

The accuracy of a LC map is assessed through a map validation process. Strahler et al. (2006) 

describes validation as a term used for techniques that determine the quality of a particular map. It is 

important to assess overall map accuracy and specific class accuracies, but it should be recognized that 

accuracies varies locally within the map (Strahler et al. 2006; Foody 2005). Fragmented landscape, 

heterogeneous, transition areas, etc, are usually mapped with low accuracy and problematic classes 

have low class accuracies (Carneiro and Pereira 2012; Herold et al. 2008; Jung et al. 2006; Tsendbazar 

et al. 2015). Herold et al. (2006) mentioned that harmonization and validation complement and profit 

from each other in the overall quality of land cover products and boost interoperability and 

comparability. The theoretical background on validation is described in section 3.6.  

3.2. LC map integration methods 

Integration decides on a LC class for each pixel in the new map based on LC labels of the 

input products. This section studies different methods from literature on how LC datasets can be 

integrated to an improved LC product and which of these methods would be applicable to this 

research. The chosen integration methods are normal voting, weighted voting and probability voting. 

3.2.1.  Voting 

Voting is a procedure in which a pixel is assigned to the LC class that occurs in the majority of 

the LC datasets at the pixel’s location. Assignment is problematic or ambivalent in case of ties. 

The method of Jung et al. (2006) is an example of using a voting approach for an integration 

map. Jung et al. (2006) merged existing LC products into a desired classification legend and exploited 

synergies of GLC products for carbon cycle modeling. The method of Jung et al. (2006) produced a 

map with a legend based on AVHRR, MODIS and vegetation satellite sensors using a fuzzy logic 

approach, legend harmonization and voting.  

First the method defines a desired classification legend and secondly it links the defined 

legend with the legends of the original maps by assigning affinity scores between them (Jung et al. 

2006). The LC class with the highest score is assigned to the map, which in principle can be seen as a 

voting procedure. Evaluation indicated a successful exploration of synergies between products and is 

therefore believed to be more accurate than existing products; however there is insufficient reference 

data to validate SYNMAP (Jung et al. 2006).   

Gopal et al. (1999) used a voting approach to assign confidence estimates to conflicting 

predictions in classifications of GLC. In this voting strategy, volunteers voted on LC classes which 

resulted in that the predicted class received the largest number of votes (Gopal et al. 1999). Gopal et 

al. (1999) mentioned that a voting strategy improves classification accuracy and provides a way to 

evaluate map uncertainty, as voting results are contradictory in pixels with mixed LC classes.  
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3.2.2.  Weighted voting 

In weighted voting, a pixel is assigned to the class that accumulates the highest weight at the 

pixel’s location.   

Ge et al. (2014) proposed a fusion method to increase the accuracy of regional biomass 

estimates by using higher-quality calibration data and weighted averaging. Ge et al. (2014) combined 

biomass maps linearly using weights derived from the variance-covariance matrix associated with the 

accuracies of the source map and area bias corrections. This method uses minimization of the variance 

of the prediction error, where each map has an associated variance (Ge et al. 2014).  

Iwao et al. (2011) presented an approach to create a new GLC map with map integration. 

Three existing GLC maps were combined (MOD12, GLC2000 and UMD) in six classes (forest, 

croplands, grasslands, wetlands, settlements and other land) of the Land Use, Land Use Change and 

Forestry classification scheme (LULUCF) (Iwao et al. 2011). The new map adopts the classification 

favoured by the majority of the input maps, where MOD12 with the highest accuracy was only 

replaced when GLC2000 and UMD agreed (Iwao et al. 2011). In principle this can be seen as 

weighted voting as a preference was given to all LC classes from MOD12, because MOD12 has a 

higher overall accuracy (OA). The new integration map, MOD12, GLC2000, UMD, each were 

validated with rates of agreement in a confusion matrix with reference points from the Degree 

Confluence Project (DCP). MOD12, GLC2000 and UMD have an overall agreement of respectively 

60.4%, 85.9% and 55.5% with the DCP data (Iwao et al. 2011). The Results show that the overall 

accuracy in the new map was improved to 61.3% overall agreement, but one or more of the input maps 

show a higher accuracy for the Grasslands (UMD), Croplands (GLC2000), Settlement classes 

(MOD12) and the Arid and Polar climate zone (Iwao et al. 2011).  

3.2.3.  Probability voting 

In probability voting, the voting process is applied on the probabilities of each class being the 

correct class. A pixel is assigned to the class that accumulates the highest probability at the pixel’s 

location.  

Kinoshita et al. (2014) created a GLC map and probability map through an integration method 

that uses probability voting. Kinoshita et al. (2014) used a harmonized legend with six classes to 

integrate six GLC maps: MODIS Land Cover Map Collection 4 (MOD12C4), MODIS Land Cover 

Map Collection 5 (MOD12C5), Global Land Cover 2000 (GLC2000), Globcover, the University of 

Maryland 1-km Global Land Cover products (UMD) and Global Land Cover by National Mapping 

Organizations (GLCNMO) (Kinoshita et al. 2014).  The integration method consists of two steps: (1) 

calculating the probability of occurrence and (2) a logistic regression on the probability of occurrence. 

Kinoshita et al. (2014) first calculated the probability of occurrence of the six LC types from the 

reference dataset in each of the six GLC input maps, which can be described as class probabilities. 

Equation 1 describes the probability of occurrence where � indicates the map, � indicates the 

category class in a map, � indicates the category class in the reference data and N are the pixels 

located in �,�,� of the matrices (Kinoshita et al. 2014).  

��,�,� = 
�,�,
∑ ��,�,���

   [1] 

Source: Kinoshita et al. (2014) 

In the second step Kinoshita et al. (2014) used the probability of occurrence scores to perform 

a logistic regression analyses to calculate the probability of LC class for each pixel in the map. This 

produces a probability map, from which an integrated map was produced with the LC class that holds 



15 
GIMA thesis research, R van Setten-Zaremba 

the highest class probability in that pixel of the map (Kinoshita et al. 2014). The external validation 

reported an overall accuracy of 74.6% (Kinoshita et al. 2014). Kinoshita et al. (2014) found that map 

accuracy increased with the number of input maps but that the number of used training sites did not 

significantly affect accuracy.  

Tuanmu and Jetz (2014) used an integration method which uses probability voting to generate 

a GLC product for biodiversity and ecosystem modeling. Tuanmu and Jetz (2014) used a two-step 

integration approach and the generalized scheme developed by Herold et al. (2008) for harmonization. 

First areal proportions from Globcover (2005) and MODIS2005 were integrated into an intermediate 

dataset with 500 meter resolution. In case of disagreement, a confusion matrix was used to calculate 

class probabilities for each class pair on which an accuracy based weighting was applied. Tuanmu and 

Jetz (2014) mentioned that accuracy based weighting was only applied because adding information 

from a coarser product would unnecessarily homogenize the heterogeneity captured by the finer 

product. In the second step, the generated intermediate dataset of 500 meter was integrated with the 

areal proportions of DISCover and GLC2000 of 1 kilometer. Information from the intermediate 500 

meter dataset was kept if DISCover or GLC2000 agreed with the highest presented LC class. Priority 

was given to the intermediate dataset because some of its disagreement may result from LC change in 

the DISCover and GLC2000older products (Tuanmu and Jetz. 2014). In case of disagreement, the LC 

class was again calculated from accuracy based weighting applied on class probabilities from the 

intermediate 500 meter dataset, DISCover and GLC2000. The weights for the intermediate dataset 

were twice as high because the dataset was calculated from two products (Tuanmu and Jetz. 2014). 

Tuanmu and Jetz (2014) calculate dissimilarities between the integrated map, Globcover 

(2005), MODIS2005 DISCover, GLC2000 and the randomly selected validation data. There was less 

dissimilarity in the integrated map compared to the input maps, which suggest the new map had 

improved (Tuanmu and Jetz. 2014). Classes were compared on their sensitivity, precision and F-score 

presented in graphs (Tuanmu and Jetz. 2014). Where sensitivity is the ratio of correctly identified 

pixels to the total number of pixels in the validation data and precision is the ratio of correctly 

identified pixels in an evaluated product (user accuracy) (Tuanmu and Jetz. 2014). 

3.3. Applicability of integration methods in research 

Normal voting, weighted voting and probability voting are the chosen integration methods in 

this research. This section discusses the applicability of integration methods within the data constraints 

of this research. 

3.3.1.  Study area and data constraints 

The study area extent covers the United Kingdom, Ireland, The Netherlands, Belgium, France, 

Spain and Portugal presented in figure 1, section 2.1. FROM-GLC, Globcover (2009), LC-CCI (2010) 

and MODIS5 (2010) LC maps used as input maps for the integration methods hold LC information 

within the study area extent. Other areas from the GLC maps were excluded from this research. The 

LC input maps hold no constraints for the applicability of the integration methods but enclose 

mapping results within the study area. GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005, MODIS-

tr and VIIRS 3 are the reference datasets used for validating the produced LC maps. The reference 

datasets hold samples within the extent of the study area. Section 5.1 holds the results from 

harmonizing the dataset to the harmonized legend and one reference dataset. Table 6 holds the 

distribution of samples over the harmonized LC classes. The reference datasets hold constraints for the 

applicability of integration methods because LC classes (5) wetlands and (8) barren were not 

represented by enough samples, respectively four and nine reference points.  
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Table 6: Distribution of reference dataset over LC classes 

LC Class Description Samples 

1 Trees 224 

2 Shrubs 65 

3 Herbaceous vegetation 130 

4 Cultivated and managed  
vegetation / agriculture (incl. mixtures) 

426 

5 Wetlands 4 

6 Urban/built up 45 

7 Water, permanent Snow and Ice 13 

8 Barren 9 

1 - 8 All classes 916 

Weighted voting and probability voting however do require accuracy information to assign 

weights or calculate class probability; this information is often gained from a confusion matrix 

produced from reference data. The accuracy assessments of Tsendbazar et al. (2016) and Yu et al. 

(2014) were used and not an accuracy assessment produced from the reference data (section 2.2.3.). 

The accuracy assessment of FROM-GLC (Yu et al. 2014) differs from the accuracy assessments of the 

other input maps (Tsendbazar et al. 2016). The confusion matrix of FROM-GLC was actually 

produced from the stage of FROM-GLCagg and not FROM-GLC hierarchy and does not possess 

information on LC class (50) wetlands. 

3.3.2.  Selected methods for integration 

Integration methods with a voting approach were the chosen integration methods in this 

research. The LC maps produced from normal voting, weighted voting and probability voting were 

evaluated by comparing the maps and an internal and external validation of the LC maps. This 

research evaluates which voting method achieves the highest results. Methods with a geo-statistical 

approach in their integration are promising and were considered but dropped because the harmonized 

LC classes (5) wetlands and (8) barren were not represented by enough samples. It was questionable if 

the reference data had enough reference points to produce a reliable result when used in an integration 

method that uses reference/training data at location. Additionally if such a method was chosen the 

reference dataset had to be divided in a training and validation dataset, which would have resulted in 

LC classes (5) wetlands and (8) barren having even less samples. Dividing the reference data into a 

training and validation dataset would have been required because a validation would reproduce 

measured training data when the same reference data is used for training and validation purposes, 

which would imply perfect predictions. Two of chosen methods require accuracy information. To keep 

all reference data samples for the validation, confusion matrices from the research of Tsendbazar et al. 

(2016) and Yu et al. (2014) were used instead of confusion matrices produced from the reference 

dataset. Weighted voting and probability voting were produced with weights and probabilities 

obtained from the research of Tsendbazar et al. (2016) and Yu et al. (2014). Normal voting, weighted 

voting and probability voting are implemented in the methodology (section 4.2 ) and their results are 

presented in section 5.2.  

3.4. Harmonization 

Harmonization of the available LC datasets and maps is necessary before comparing or 

integrating the datasets Harmonization between LC datasets can be understood as a process where 

similarities are emphasized and inconsistencies reduced (Herold et al. 2006).  Harmonization should 

focus on making the datasets comparable and in case of inconsistencies, develop an understanding 

why and where LC products are not perfectly comparable.    
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The harmonization process searches for ‘harmony’ between datasets, a balance which involves 

inconsistencies opposite standardization (Herold et al. 2006). Harmonization is a ‘bottom up’ process 

and will not eliminate all differences, but should eliminate major inconsistencies between datasets 

(Herold et al. (2008). Standardization on the other hand, is a ‘top down’ process that eliminates all 

inconsistencies between datasets (Herold & Schmullius. 2004). One example on the thematic 

harmonization by Herold et al. (2006), is that the woodland of one dataset should not be the forest of 

another dataset, but is should be recognized that different LC products could characterize forest in 

different levels of detail. 

Herold et al. (2006) and Herold & Schmullius (2004) describe joint initiatives for the 

harmonization and validation of LC datasets. Interoperability and comparability between LC products 

are an important aim of harmonization, as users benefit from these initiatives (Herold et al. 2011; 

Mora et al. 2014; Verburg et al. 2011). However, interoperability and comparability can be a challenge 

for data developers and map producers (Herold et al. 2006). Joint initiatives are only successful when 

strategic decisions are pushed through international bodies and agencies responsible for such tasks 

(Herold et al. 2006). In general mapping projects can profit from resources and harmonization 

experiences, especially in terms of identified problems and inconsistencies in existing legends (Herold 

et al. 2006). In later phases of map development, there is a higher chance of inconsistencies between 

products which cannot be solved by harmonization, like, for example, a different threshold defining a 

forest class in tree height (Herold et al. 2006). 

Harmonization can be divided in spatial harmonization and the thematic harmonization.  

3.4.1.  Thematic harmonization 

A thematic legend is developed from a classification system for a specific mapping purpose 

(Herold et al. 2006). LC classes are categorised with well-defined criteria to order spectral image data 

based on their characteristics, i.e. in terms of factors like percent cover and height (Herold et al. 2006). 

It is possible that LC legends that are derived from a different classification system, or even without an 

underlying classification system and therefore lack compatibility (Herold et al. 2006).  

In thematic harmonization it is important to find a common language to describe LC and to 

translate between different legends (Herold et al. 2006). Harmonization is the translation of legends to 

one general legend (Herold et al. 2006). The Land Cover Classification System (LCCS) provides a 

valuable universal LC language for building and comparing LC legends. Herold and Schmullius 

(2004) identify LCCS as an appropriate classification system to provide a common language and 

translation device. Another common legend for GLC mapping would be the International Geosphere-

Biosphere Programme (IGBP) classification scheme with 17 LC classes. Herold et al. (2006) describes 

that it is more important to standardize terminology than categories in legend harmonization. The 

harmonization process should first harmonize parameters used for the description of LC classes and 

thereafter focus on categories if this is necessary (Herold et al. 2006).  

The process of legend translation highlights the similarities and differences between legends 

and shows which classes can be harmonized and where legends show inconsistencies (Herold et al. 

2008). It should be noted that thematic harmonization does not resolve all inconsistencies between 

legends, for example, inconsistencies caused trough different thresholds will remain (Herold et al. 

2006). In legend harmonization it is important to know where inconsistencies are not resolved, for 

further processes like integration and product evaluation. 
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Herold et al. (2008) uses LCCS to harmonize IGBP, GLC2000 and UMD classes into a 

general legend with 13 LC classes. Most LC maps and reference datasets available for integration have 

an LCCS or IGBP based legend. 

3.4.2.  Spatial harmonization 

Spatial harmonization is concerned with harmonizing the different cell sizes of LC maps and 

the different sample units in reference datasets to one standard in order to compare and integrate them. 

This research will be limited in spatial harmonization and assume that LC type in a sample area is 

homogenous.  

Yu et al. (2014) discussed the effects of up-scaling and down-scaling map resolution and 

mention that dominant LC types are overestimated when resolutions are coarsened in up-scaling. The 

majority LC class at a finer resolution is assigned to the coarser product which causes minority LC 

classes to be overruled (Yu et al. 2014). 

3.5. Validation 

An accuracy assessment derives a quantitative description of quality of GLC map (Strahler et 

al. 2006). There are several methods for performing an accuracy assessment; each has its own value 

and applicability in validating a given map (Strahler et al. 2006).  

Strahler et al. (2006) listed the following priorities in an accuracy assessment: (1) an overall 

measure of map accuracy, (2) measures of class accuracy and (3) recognizing that accuracy may vary 

locally within the map. An overall measure of accuracy is needed to indicate quality of a thematic 

map. Measures of class accuracy are desired because users are interested in specific classes in a 

thematic map (Strahler et al. 2006). A basic approach in validation is the confusion matrix, were the 

given map is cross tabulated against a dataset which serves as reference in the analysis (Strahler et al. 

2006). Thematic accuracy can be calculated from a confusion matrix (Strahler et al. 2006). These 

accuracy measures are based on the whole map and however, accuracy may vary locally within the 

map (Strahler et al. 2006). Foody (2005) states that one problem with the conventional approach, of 

thematic assessment with a confusion matrix, that it indicates a single, global estimate of thematic 

classification accuracy. There can be large spatial variation in map accuracy (Foody 2005). One 

example would be an overall accuracy of approximately 67% of International Geosphere Biosphere 

Programme’s (IGBP) Data and Information System Cover (DISCover) GLC map with a spatial 

variation that differs by approximately 20% between continents (Foody 2005; Loveland et al. 1999). 

The information entropy is a measure of per-pixel classification uncertainty (De Bruin and 

Gorte. 2000; Shannon and Weaver. 1949). De Bruin and Gorte (2000) used posterior probabilities and 

the information entropy to quantify uncertainty, when probabilities were concerned the information 

entropy was used as an internal measure of uncertainty. Entropy expresses uncertainty according to the 

vectors of posterior probabilities and does not involve uncertainty concerning the probabilities (De 

Bruin and Gorte. 2000). Gopal et al (1999) mentions that a voting strategy improves classification 

accuracy and provides a way to evaluate map uncertainty, as voting results are contradictory in cells 

with mixed LC classes.  

 Foody (2005) and Strahler et al. (2006) described various methods to indicate spatial variation 

in classification accuracy. Among others: confidence estimation for thematic class accuracies (Foody 

2005; Loveland et al. 1999), calculating the accuracy for defined regions within the map (Foody 2005; 

Strahler et al. 2006), mapping misclassified areas (Foody 2005) and indication of classification 

uncertainty on a per pixel basis, which is discussed in the research of Foody (2005). Classification 

uncertainty can be a useful addition to an accuracy assessment but the relationship between 
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uncertainty and accuracy may not be simple (Foody 2005). This is due to the possibility that LC 

classes can be allocated correctly but uncertain while other LC classes can be relatively certain but 

allocated incorrectly (Foody 2005). In mapping spatial accuracy locally, an appropriate testing set is 

required for an accuracy assessment within the area (Foody 2005). 

3.5.1. Internal validation: Shannon information entropy 

The information entropy represents the amount of information necessary to require certainty 

(Shannon and Weaver. 1949). Shannon and Weaver (1949) describe entropy with equation 2, the 

entropy of a set of probabilities where �� is the probability being	�.  
� = ��∑ �� ∗ ���	����� ��   [2] 

Source: Shannon and Weaver (1949) 

3.5.2.  External validation: Confusion matrix 

Strahler et al. (2006) suggest the confusion or error matrix as a basic approach for the 

validation of LC maps (Figure 3). In a confusion matrix, the classes of maps and reference data are 

cross tabulated against each other, from which metrics of classification accuracy or agreement is 

derived (Foody. 2005). Overall accuracy is an indication of the quality of the entire LC map that 

represents the percentage of correctly predicted samples over the total amount of samples from the 

reference dataset (Strahler et al. 2006). A confusion matrix is an accepted approach for map validation, 

specifically for overall accuracy and per-class accuracy (Foody. 2005; Jung et al. 2006; See et al. 

2014; Strahler et al. 2006). The following researches use a confusion matrix to validate their LC maps: 

Herold et al. (2008), Iwao et al. (2011), Kinoshita et al. (2014), See et al. (2014). Tsendbazar et al. 

(2016). A confusion matrix is relatively easy to interpret and used by both map producer and map user 

communities (Strahler et al. 2006).   

 
Figure 3: Confusion matrix, Strahler et al. (2006) 

In a confusion matrix it is assumed that each pixel is allocated to a single class in the given 

map and reference dataset and that these datasets have the same spatial resolution (Strahler et al. 

2006). In other words, the accuracy assessment considers a pixel as homogenous and not of mixed 

origin. Interpretation of the confusion matrix also requires consideration of the sample design from the 

reference dataset (Strahler et al. 2006).  
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4. Methods 

The research methodology of this study consists of five phases: a literature review, legend 

harmonization, implementation of integration methods, the internal and external validation of the 

selected methods, and evaluation of the results and the improvements of the integrated LC maps 

(Figure 4).  

 
Figure 4: Overall research methodology 

4.1. Data harmonization 

Thematic legends of the LC data were harmonized to eight classes and the spatial 

harmonization differed for the (1) LC maps and (2) reference datasets: In the spatial harmonization of 

LC maps, each map is re-sampled to the chosen resolution. For the reference datasets the spatial 

harmonization is based on the assumption that the sample unit area has homogenous LC type, so the 

datasets can be harmonized to have the same extent of sample units.  

Herold et al. (2008) used LCCS to harmonize IGBP, GLC2000 and UMD classes into a 

general legend with 13 LC classes. Most LC maps and reference datasets available for integration have 

an LCCS or IGBP based legend. From the LC maps: Globcover 2009 and LC-CCI have an LCCS 

based legend and MODIS5 (2010) is based on an IGBP legend. From the LC reference datasets: 

GLC2000, Gobcover 2005 and the GLCNMO-tr legends are based on LCCS and MODIS-tr, Geo-wiki 

and VIIRS are based on IGBP.   

Results 

Evaluation of accuracy improvements 

Validation 

Internal: Information Entropy External: Confusion matrices 

Integration 

Normal Voting Weighted Voting Probability Voting 

Harmonization 

FROM-GLC Globcover LC-CCI MODIS5 
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This research uses the LCCS based approach of Herold et al. (2008) and the research of 

Tsendbazar (2015) as a basis for the creation of the harmonized legend. The general legend of 13 LC 

classes used by Herold et al. (2008) and Tsendbazar (2015) were harmonized to eight classes by 

further combining all tree classes to one class and combining the classes water, permanent snow and 

ice.  

Legends of the LC data were harmonized into one general legend with eight LC classes Table 

27, table 28 and table 29 in the appendix describes the thematic harmonization in detail. Table 7 is a 

simplified version of these tables, which holds the harmonized legend of eight classes with the original 

LC classes that correspond to the original maps and reference datasets. 

Table 7: Thematic harmonization 

Harmonized legend LC data 
LC 
Class Description 

FROM-
GLC 

GLC 
2000 

Geo-
wiki 

Globcover GLCNMO 
IGBP/ 

MODIS/ 
VIIRS 

LC-CCI 

1 Trees 20 
1, 2, 
3, 4, 

5 
1 

40, 50, 60, 
70, 90, 100, 
110, 120, 
160, 170 

1, 2, 3, 4, 
5 

1, 2, 3, 
4, 5, 8, 9 

50, 60, 
70, 80, 

90, 100, 
110, 

160, 170 

2 Shrubs 40 6 2 130 7 6, 7 120 

3 
Herbaceous 
vegetation 

30 7 3 30, 140 8 10 
40, 30, 

140 

4 

Cultivated and 
managed vegetation 
/ agriculture (incl. 
mixtures) 

10 8 4 11, 14, 20 11, 13 12, 14 
10, 20, 

30 

5 Wetlands 50, 70 9 6 180 - 11 180 

6 Urban/built up 80 10 7 190 18 13 190 

7 
Water, permanent 
Snow and Ice 

60, 
100 

11, 
13 

8, 10 210, 220 19, 20 15, 17 210, 220 

8 Barren 90 12 9 150 10, 16, 17 16 15, 20 

4.1.1.  Land cover maps 

Figure 5 describes in four steps the methodology used for harmonizing the FROM-GLC, 

Globcover, LC-CCI and MODIS LC maps. The harmonization was conducted in ArcGIS through a 

reclassification algorithm using the harmonized legend in excel (table 7).  

Pre-processing steps were done in section 2.2.1. The spatial harmonization of the LC maps is 

done in step two of the methodology. The resolutions of the LC maps were re-sampled to a pixel size 

of 300 meter, which is 0.002778 by 0.002778 decimal degrees. A resolution of 300 meter was chosen 

because this is the same as the resolution of Globcover 2009 and LC-CCI 2010. The MODIS5 and 

FROM-GLC maps were resampled to have 300m resolution using nearest neighbor resampling. 

FROM-GLC was re-sampled during pre-processing in section 2.2.1. Table 2 and table 3 hold the 

metadata of the LC maps, among them the maps original spatial format.  

The thematic harmonization was done in the third step of the methodology. FROM-GLC, 

Globcover 2009, LC-CCI and MODIS5 original legends from the LC maps were re-classified (spatial 

analyst) with the harmonized legend. 
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Figure 5: Harmonization method of LC maps 

Figure 6 presents the FROM-GLC hierarchy, Globcover 2009, LC-CCI (2010) and MODIS5 

(2010) LC maps that result from the harmonization, which are used as input maps for the integration 

methods to produce improved LC maps (section 4.2). Table 8 holds the user agreement (UA), 

producer agreement (PA) and overall agreement (OA) of all LC maps from the harmonized global 

confusion matrices of Tsendbazar et al. (2016) and Yu et al. (2014). The accuracy assessments of 

Globcover 2009, LC-CCI (2010) and MODIS5 were obtained from the research of Tsendbazar et al. 

(2016) and FROM-GLC was obtained from Yu et al. (2014). The confusion matrix from Yu et al. 

(2014) holds no information for LC class (5) wetlands and is produced from the stage of FROM-

GLCagg and not FROM-GLC hierarchy (Yu et al. 2014) (section 3.3.2). Misclassifications from the 

stage of FROM-GLCagg were processed in FROM-GLC hierarchy (section 2.2.1) (Yu et al. 2014). 

The matrix of FROM-GLC holds a different accuracy assessment than the Globcover 2009, LC-CCI 

(2010) and MODIS5 (2010) LC input maps. This research uses the accuracy assessments for map 

integration with the chosen methods (section 4.2), but it is questionable if these accuracy assessments 

can be compared to each other (section 6.1.1) as is explained in section 3.3.2. 

The FROM-GLC hierarchy LC map (figure 6a) shows a tiling effect which could, for 

example, be caused by differing acquisition times. LC-CCI (2010) (figure 6c) has the highest OA and 

UA for LC classes; (1) trees, (2) shrubs and (7) water, permanent snow and ice. MODIS5 (2010) 

(figure 6d) has the highest OA after LC-CCI (2010) and the highest UA for LC classes; (4) cultivated 

and managed vegetation/agriculture, (6) urban/built up and (8) barren. LC-CCI (2010) and MODIS5 

(2010) class specific accuracies are generally high compared to the other input maps. Globcover 2009 

(figure 6b) has a lower OA than LC-CCI (2010) and MODIS5 (2010) but a higher OA than FROM-

GLC. Class specific accuracies of Globcover are generally a little lower or higher than the other input 

maps and only LC class (5) wetlands had the highest UA. 

Table 8: Reported accuracies of input maps 

  FROM-GLC Globcover (2009) LC-CCI (2010) MODIS5 (2010) 

OA 66.10   67.81   74.70   73.92  

Class UA PA UA PA UA PA UA PA 

1 80.33 79.92 73.92 80.43 90.39 81.10 87.25 79.23 

2 48.32 38.06 45.49 36.34 61.67 55.39 46.01 66.91 

3 53.22 34.62 33.25 25.19 47.02 45.84 42.63 55.63 

4 57.78 66.86 76.83 75.83 79.23 82.20 84.60 84.83 

5 0.00 0.00 68.57 39.34 46.88 49.18 52.38 32.84 

6 41.57 25.37 74.07 40.00 66.04 70.00 85.71 60.00 

7 81.64 90.53 82.39 89.31 85.33 94.81 82.96 82.96 

8 62.64 90.67 68.05 85.83 72.83 83.64 98.28 62.09 
Source: Tsendbazar et al. (2016) and Yu et al. (2014) 

1. Pre-processing 

(section 2.2.1) 
2. Re-sampled 

3. Re-classified with 

harmonized legend 
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Figure 6: Harmonized LC maps 

4.1.2.  Reference datasets 

Figure 6 describes in five steps the methodology used for harmonizing: GLC2000, GLCNMO-

tr, Geo-wiki, Globcover 2005, MODIS-tr, and VIIRS to one reference dataset. The harmonization was 

performed in ArcGIS and used the harmonized legend table 7. Table 5 holds the metadata of the 

reference data, among them the data’s original spatial format. 
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Pre-processing steps were done in section 2.2.2. The spatial harmonization of the reference 

datasets is done in step two of the methodology. All the reference datasets were harmonized to have a 

point as a sample unit under the assumption of LC homogeneity, with the feature to point (data 

management) tool in ArcGIS. The thematic harmonization of the reference datasets was done in the 

third step of the methodology. Each reference datasets was joined to the harmonized legend, based on 

a datasets original legend, by performing a join between the attribute table and the harmonized legend 

(table 7). Section 8.2 table 28 in the appendices holds the original legend of the reference datasets. The 

fourth step of the methodology completes the harmonization of the reference datasets. All point 

features of each reference dataset were merged to one reference dataset with the merge (data 

management) tool in ArcGIS. The reference dataset was used for the external validation, section 4.3.2 

further explains the external validation methodology. 

 
Figure 7: Harmonization method of LC reference datasets 

Figure 8 presents the results from the harmonization of GLC2000, GLCNMO-tr, Geo-Wiki, 

Globcover 2005,MODIS-tr and VIIRS 3 to one reference dataset. The reference dataset has 916 

samples. Table 6 (section 3.3.1) presents the distribution of the samples over the harmonized LC 

classes and discusses that LC classes (5) wetlands and (8) barren were not represented by enough 

samples (section 3.3.3).    

 
Figure 8: Harmonized reference dataset  

1. Pre-

processing 

2. Feature to 

point 

3. Legend 

dataset, joined 

to harmonized 

legend 

4. Merge 
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4.2. Integration methods 

An integration method decides on a LC class for each pixel in the new map based on the LC 

information from the input products. Section 3.2 discusses the theoretical background on the chosen 

integration methods: normal voting, weighted voting and probability voting. This section covers the 

implementation of the integration methods with the harmonized FROM-GLC, Globcover 2009, LC-

CCI and MODIS5 LC maps. The integration methods were implemented in R. Two of the chosen 

integration methods require accuracy information from each input map.  The accuracy assessments of 

Globcover 2009, LC-CCI (2010) and MODIS5 were obtained from the research of Tsendbazar et al. 

(2016) and FROM-GLC was obtained from Yu et al. (2014). Section 3.3.2 explains the use of 

accuracy information from external research instead of an accuracy assessment with own reference 

data. 

4.2.1.  Normal Voting 

The methodology for "Normal voting" was based on a common voting procedure, known as 

majority voting. A pixel was assigned to the class that occurs in the majority of the LC maps at that 

pixel’s location. As mentioned in the theoretical background, a class is easily assigned where all LC 

datasets agree, but it is more difficult when LC datasets disagree and form a tie. There are five 

conditions possible in the voting procedure based on the preconditions: (1) there are four input maps 

and (2) the voting procedure is performed on the classes that are present. The voting procedure decides 

on a LC class in case all maps agree, three maps agree or two maps agree while the remaining two 

disagree. In case of a tie, the voting procedure remains undecided on a LC class. Table 9 shows the 

five possible conditions in the initial voting procedure.  

Table 9: Initial voting, from agreement to disagreement conditions 

Indicator Condition 

10 All agree 

20 Three maps agree, one disagrees 

30 Two maps agree, remaining disagree 

40  Tie: two maps agree, remaining also agree 

50 Tie: all maps disagree 

Part of this methodology was to decide on how to deal with ties through which a complete 

voting result can be achieved. This research uses a new approach in solving ties based on class 

preferences that are calculated from class occurrences of each input map. The methodology of the 

normal voting was built from three phases (figure 9): (1) the initial voting map, (2) indicators of 

conditions to deal with ties and the (3) final voting map. 



26 
GIMA thesis research, R van Setten-Zaremba 

 
Figure 9: Methodology normal voting 

Initial voting map 

The initial phase is the majority voting performed on the class presence of the four input maps 

and produced an initial voting map (section 5.1, figure 13a).  In the initial voting map, pixels were 

assigned to a LC class that occurs most often at a pixels location, where the four LC input maps agree 

on a LC class. In case of a tie, the voting procedure remains undecided on a LC class, represented by a 

deviating value in the initial voting map (initial voting script: MaxVote, section 8.1.1).  

Indicators of conditions to deal with ties 

This phase deals with the ties from the initial voting process by: (1) producing an 

agreement/disagreement map (2) calculating occurrences within the initial voting map and 

agreement/disagreement map for each of the LC input maps and (3) processing this information to 

class occurrences in excel (table 30 and table 31, 8.2.2), which were simplified to class preferences 

(table 10). The final voting map uses this information to decide on a LC class at a tie location. 

The agreement/disagreement map (section 5.1 figure 13b) indicated the five conditions (table 

9) from the initial voting map produced by (initial voting: VoteCount, section 8.1.1). The 

agreement/disagreement map represents conditions where: (10) all maps agree, (20) three maps agree 

and (30) two maps agree while the remaining two disagree. In these conditions the voting procedure 

from the initial voting map decides on a LC class. The voting procedure remains undecided on a LC 

class in case of a tie. Ties are represented by the conditions where: (40) two maps agree while the 

remaining two also agree on a LC class and (50) where all maps disagree. In phase two is calculated 

for each LC input map when the eight classes occur in the initial voting map and in each of the five 

conditions (script: indicators in condition script, section 8.1.2 ). In phase three this information is 

exported to excel (table 30 and table 31, section 8.2.2): Counted cells from classes that concur in the 

initial voting, its input map and each of the five conditions were converted to percentages set against 

the counted cells from classes of the initial voting results. Tie locations were excluded, as the eight 

classes do not occur in the tie locations of the initial voting map.  
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This information represents in percentages how much an input map with its classes concurs 

with the initial voting. Additionally the information indicates the amount of agreement with the other 

maps by being distributed over the three agreeing conditions. 

The idea is to "solve" tie locations based on the occurrences of LC classes (from each input 

map) in the initial voting results and assumes that using a class with a high occurrence could improve 

map accuracy.  Table 10 class preferences were calculated from these class occurrences (table 30 and 

table 31) by summing the class occurrence over the three agreeing conditions. Class preferences of 

each LC input map, represents in percentages the contribution of a LC class to the initial voting map. 

Classes with a high preference will hold a higher ranking in the voting than classes with a lower 

preference. 

Table 10: Class preferences 

Class preferences (percentages of class occurrences in initial voting) 

 Initial voting FROM-GLC Globcover LC_CCI MODIS 5 

All classes 1 - 8 100 74.28 85.81 86.73 84.79 

Class description No Initial voting FROM-GLC Globcover LC_CCI MODIS 5 

Trees 1 100 82.99 78.47 84.16 83.96 

Shrubs 2 100 80.90 46.35 51,51 68.04 

Herbaceous vegetation 3 100 45.74 72.85 82.39 67.89 

Cultivated and managed 
vegetation / agriculture 

4 100 30.08 88.27 84.39 87.95 

Wetlands 5 100 37.45 65.51 83.15 18.77 

Urban/built up 6 100 31.95 62.73 98.08 77.44 

Water, Snow and Ice 7 100 99.90 99.73 99.93 99.00 

Barren 8 100 60.00 92.48 82.26 6.46 

Locations with ties were solved by using the class preferences to decide on a LC class. Four 

input maps give four possible LC classes, in case of a tie; the class with the highest preference will be 

assigned to that location. This is a new approach for solving ties that uses the agreements between the 

initial voting procedure and its input maps.  

Final voting map 

The final voting map was produced by: (1) using the class preferences to assign a LC class to 

each tie location and (2) produce a voting result map by combining the initial voting from agreeing 

conditions with the ties that have been solved. The script used to produce a complete voting result is in 

section 8.1.3 of the appendix. 

In step one, in case of a tie, LC class one to eight of each input map were replaced with the 

corresponding class preference. Table 11 is an example of this approach, for each tie location there are 

four inputs of class preferences (table 10) that correspond to the actual class of the input map. The 

resulting class preferences of each map were summed from TP1 to TP8 and normalized by dividing 

each TP trough the sum of TP1 to TP8. The script calculated which TP had the highest preference and 

assigned that LC class to the ties location. The output is a raster with a voting outcome for each tie 

location.  
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Table 11: Example for solving ties in normal voting 

Normal voting, assigning a class to a tie location 

INPUT 

MAP 

Actual 

Class 

Class preferences   

1 2 3 4 5 6 7 8 

FROM-GLC 1 82.99 0 0 0 0 0 0 0 

Globcover 7 0 0 0 0 0 0 99.73 0 

LC-CCI 4 0 0 0 84.39 0 0 0 0 

MODIS 3 0 0 67.89 0 0 0 0 0 

 TP 

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP-SUM 

82.99 0 67.89 84.39 0 0 99.73 0 335.00 

Normalized  0.25 0 0.20 0.25 0 0 0.30 0 1 

Assigned class  7 

The voting results were produced by joining the initial voting with the solved ties by a " if else 

statement ". The normal voting map holds the values of the "solved ties" in case of a tie and the values 

of the initial voting in case of agreeing conditions where there were no ties. 

4.2.2.  Weighted Voting 

Weighted voting is based on a methodology that applies weights into the voting procedure. A 

pixel is assigned to the class that accumulates the highest weight at that pixel’s location. This 

research’s "weighted voting" derives weights from the user accuracy (UA) of each LC class which 

were obtained from the global confusion matrices of FROM-GLC (Yu et al. 2014) Globcover 2009, 

LC-CCI (2010) and MODIS5 (Tsendbazar et al. 2016). This research bases the weights on the user 

accuracies, as user accuracies represent the agreement of the LC map with the reference data. The 

weights used for weighted voting are based on the UA in table 12.  

The methodology of weighted voting is presented in figure 10 and bears similarity to the 

methodology used within tie locations from the normal voting method. The script used to produce the 

weighted voting map is in section 8.1.4 of the appendix. The methodology of weighted voting was 

applied on each location in the study area.  

 
Figure 10: Methodology weighted voting 
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The weights used for weighted voting are based on the UA in table12.  

Table 12: User accuracies weighted voting 

UAwv.csv 

Class FROM-GLC Globcover LC_CCI MODIS 5 

1 80.33 73.92 90.39 87.25 

2 48.32 45.49 61.67 46.01 

3 53.22 33.25 47.02 42.63 

4 57.78 76.83 79.23 84.60 

5 0.00 68.57 46.88 52.38 

6 41.57 74.07 66.04 85.71 

7 81.64 82.39 85.33 82.96 

8 62.64 68.05 72.83 98.28 

Table 13 is an example of the weighted voting approach. Classes one to eight of each input 

map were replaced with the corresponding user accuracies from table 12.in the initial phase of the 

methodology. Each location has four inputs of user accuracies from the actual class of the input map. 

These user accuracies were converted to weights when the accuracies of each map were summed in 

TW1 to TW8 and normalized by dividing each TW trough the sum of TW1 to TW8. The weighted 

voting map was produced when the script calculated which TW has the highest accumulated weight 

and assigns the corresponding class to that location. Additionally, a map was made from weights used 

in the weighted voting by returning the weights value instead of LC class.  

Table 13: Example weighted voting 

Weighted voting 

INPUT 

MAP 

Actual 

Class 

User accuracies, used as weights 

1 2 3 4 5 6 7 8 

FROM-GLC 4 0 0 0 57.78 0 0 0 0 

Globcover 4 0 0 0 76.83 0 0 0 0 

LC-CCI 5 0 0 0 0 46.88 0 0 0 

MODIS 3 0 0 42.63 0 0 0 0 0 

Weights 

WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP-SUM 

0 0 42.63 134.62 46.88 0 0 0 224.12 

Normalized weights 0 0 0.19 0.60 0.21 0 0 0 1 

Assigned class        4           
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4.2.3.  Probability Voting 

In probability voting, a voting procedure is applied on the probabilities of each class being the 

correct class. A pixel is assigned to the class that accumulates the highest probability at the pixel’s 

location. Section 3.2.2 from the theoretical background studies the researches of Kinoshita et al. 

(2014) and Tuanmu and Jetz (2014) on how probability voting has been used in previous studies. In 

this research, the four input maps were integrated simultaneously with probability voting because 

FROM-GLC and MODIS respectively have a finer and coarser resolution than the resolution of 300 

meter from Globcover 2009 and LC-CCI. The methodology of probability voting is presented in figure 

11. The script used to produce the probability voting map is in section 8.1.5 of the appendix. 

 
Figure 11: Methodology probability voting 

Class probabilities 

The probabilities used in the methodology were obtained from converting the harmonized 

global confusion matrices from the research of Tsendbazar et al. (2016) and Yu et al. (2014) to class 

probabilities with equation 1 (section 3.2.3) from the research of Kinoshita et al. (2014). Probabilities 

were calculated from the user perspective in this research, as this represents the agreement of the LC 

input maps with the reference data. Kinoshita et al. (2014) calculated class probabilities for six LC 

classes from the original legends of the input maps. This research calculated class probabilities for the 

harmonized legend with eight LC classes. The matrices were converted to probabilities by dividing the 

category class of the mapped class �, set against the category class of the reference class �, through 

the sum of the mapped class described in equation 1. Table 14 on the next page holds the class 

probabilities calculated with equation 1. Probabilities with value zero were given a value close to 

infinity for the multiplication in the methodology, described by equation 5 and table 15.  
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Table 14: Class probabilities of LC input maps 

FROM-GLC 
Reference classes  

SUM 
1 2 3 4 5 6 7 8 

M
a

p
p

ed
 C

la
ss

es
 

1 0.80 0.05 0.10 0.03 0 0.00 0.00 0.00 1 

2 0.19 0.48 0.20 0.05 0 0.00 0.00 0.07 1 

3 0.17 0.17 0.53 0.08 0 0.01 0.01 0.03 1 

4 0.10 0.06 0.22 0.58 0 0.02 0.00 0.02 1 

5 0 0 0 0 0 0 0 0 0 

6 0.05 0.05 0.08 0.13 0 0.42 0.03 0.25 1 

7 0.07 0.02 0.05 0.02 0 0.00 0.82 0.02 1 

8 0.02 0.11 0.20 0.03 0 0.00 0.01 0.63 1 

Globcover 
Reference classes  

SUM 
1 2 3 4 5 6 7 8 

M
a

p
p

ed
 C

la
ss

es
 1 0.74 0.05 0.08 0.10 0.02 0.00 0.01 0.01 1 

2 0.21 0.45 0.15 0.14 0 0.01 0 0.04 1 

3 0.10 0.21 0.33 0.21 0.01 0.01 0.00 0.12 1 

4 0.06 0.04 0.10 0.77 0.00 0.01 0.00 0.01 1 

5 0.11 0 0.20 0 0.69 0 0 0 1 

6 0 0 0 0.19 0 0.74 0.07 0 1 

7 0.06 0.01 0.03 0.01 0.01 0.01 0.82 0.05 1 

8 0.03 0.04 0.18 0.05 0.01 0.01 0.00 0.68 1 

LC-CCI 
Reference classes  

SUM 
1 2 3 4 5 6 7 8 

M
a

p
p

ed
 C

la
ss

es
 1 0.90 0.02 0.03 0.04 0.00 0 0.00 0.00 1 

2 0.12 0.62 0.13 0.07 0.00 0 0 0.06 1 

3 0.06 0.10 0.47 0.23 0.00 0.01 0.00 0.12 1 

4 0.07 0.05 0.07 0.79 0.01 0.01 0.00 0.01 1 

5 0.28 0.03 0.13 0.05 0.47 0 0.02 0.03 1 

6 0.04 0 0.02 0.28 0 0.66 0 0 1 

7 0.05 0 0.01 0.01 0.03 0 0.85 0.05 1 

8 0.03 0.04 0.17 0.01 0.01 0.00 0.00 0.73 1 

MODIS 
Reference classes  

SUM 
1 2 3 4 5 6 7 8 

M
a

p
p

ed
 C

la
ss

es
 1 0.87 0.03 0.02 0.06 0.01 0.00 0.00 0.00 1 

2 0.18 0.46 0.22 0.03 0.02 0.00 0.01 0.08 1 

3 0.09 0.13 0.43 0.14 0.01 0.00 0.01 0.19 1 

4 0.07 0.03 0.03 0.85 0.01 0.01 0 0.00 1 

5 0.26 0 0.07 0 0.52 0.02 0.10 0.02 1 

6 0.03 0.03 0 0.06 0 0.86 0.03 0 1 

7 0.04 0 0.01 0 0 0 0.83 0.13 1 

8 0 0.00 0.00 0.00 0 0 0.01 0.98 1 
Source: Yu et al. (2014) and Tsendbazar et al. (2016). 
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Multiple dependent events in conditional probability 

A location with the probability of being !"#$$� depends on the class probability of each LC 

input map: �1&'())�,  �2&'())�,   �3&'())� and  �4&'())�. These are multiple dependent events in joint 

probability. Joint probability is expressed as ��-, .  which means that both events occur and 

conditional probability is expressed as ��-|.  which means that event A occurs given event B occurs 

(UMICH, electronic textbook; probability. 2015). Equation 3 describes multiple events in conditional 

probability with Baye's rule’s (UMICH, electronic textbook; probability. 2015).  

 

��-|. = 0�1|2 ∗0�2 
0�1     [3] 

Source: Probabilities, Bayes Rule (2015) 

Equation 3 can be rewritten as equation 4, to represent ��!|�1 … �4 , the probability of 

being !"#$$� given the class probabilities of the four LC input maps. ��!  is the probability of being 

!"#$$� in the new integrated map and ���1. . �4  are the class probabilities of the LC input maps. 

��!|�1 … �4 = 0���..�7|8 ∗ 0�8 
0���..�7    [4] 

 

The methodology of probability voting from this research is based on two assumptions: 

1. The input maps are independent events 

2. The LC classes have equal priors 

Based on assumption two, ��!  in the numerator can be removed from equation4, because the 

probabilities of the LC input classes (���1  to ���4   have equal prior. Based on assumption one, 

the LC input maps can be seen as independent events and ���1. . �4|!  can be solved by multiplying 

the LC classes from the input maps. In this research, the new assigned class is calculated by 

multiplying the LC class probabilities from the input maps divided trough the sum of all class 

probabilities to normalize the probabilities (equation 5).  

��!|�1 … �4 = 0���..�7|8 
0���..�7     [5] 

Implementation 

Table 15 is an example of probability voting. Probability voting takes into account the 

probability of the mapped class and the probability of being another class, which makes that each 

input class holds eight class probabilities. On a specific location, there are four classes from the input 

maps that together hold 32 class probabilities for the integrated class. For each map, eight probabilities 

that correspond to the input class are imported from table 14. All probabilities being 9"#$$� from each 

map are multiplied to TP1 to TP8 and normalized by dividing each TP trough the sum of all TP’s 

(equation 5). The probability voting map is produced from assigning the LC class with the highest 

TP/class probability to that location. Additionally, a probability map, from which the LC map was 

produced, is made by returning the probabilities value instead of LC class.  
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Table 15: Example probability voting 

Probability voting 

INPUT 

MAP 

Actual 

Class 

Class probabilities 

1 2 3 4 5 6 7 8 SUM 

FROM-GLC 4 0.10 0.06 0.22 0.58 0.00 0.02 0.00 0.02 1 

Globcover 4 0.06 0.04 0.10 0.77 0.00 0.01 0.00 0.01 1 

LC-CCI 5 0.28 0.03 0.13 0.05 0.47 0.00 0.02 0.03 1 

MODIS 3 0.09 0.13 0.43 0.14 0.01 0.00 0.01 0.19 

(multiplied) TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP-SUM 

Probabilities 

1.55 

E-04 

9.01 

E-06 

1.18 

E-03 

2.88 

E-03 

2.39 

E-25 

8.85 

E-27 

5.00 

E-10 

1.61 

E-06 

4.23 

E-03 

Normalized P 0.04 0.00 0.28 0.68 0.00 0.00 0.00 0.00 1 

Assigned class        4           

4.3. Validation of methods 

This research used confusion matrices to validate the integrated LC maps and the information 

entropy as a measure of uncertainty in the classification of the integrated methods: Normal voting, 

weighted voting and probability voting. The validation of LC maps from this research can be divided 

in an internal and external validation. The confusion matrices validate LC maps on their agreement 

with the reference dataset. The information entropy is an internal measure of uncertainty and 

independent of the external validation.  

4.3.1.  Internal validation 

The information entropy is an internal measure of uncertainty and represents the amount of 

information necessary to require certainty (Shannon and Weaver. 1949). Next to the external 

validation, the information entropy was used as addition to evaluate the integration methods by 

measuring their uncertainty. A high entropy value stands for a high uncertainty in the LC classification 

and a low entropy value represents certainty. The methodology computed the information entropy of 

LC classes for each method accumulated over the LC map. The best integration method could be 

chosen as the one having least entropy aggregated over the study area. The information entropy over 

the LC maps was calculated by equation 6, similar to equation 2 in section 3.5.1:  

� = −� ∑ �� ∗ ��� ����� ��   [6] 

� = :�$$�;�"�<�=$ �> �! 9"#$$ �1 <� 8 , :@�;#;�"�<�=$ �� :@�;#;�"�<A B�<���  
#�C D=��ℎ<$ �� D=��ℎ<=C B�<���  

Source: Shannon and Weaver. 1949 
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Normal voting is based on the presence of a LC class from each input map and not class 

probabilities or weights. Therefore the information entropy (equation 6) is implemented on the 

presence of LC classes from the LC input maps, each map has a possibility of 0.25% to be correct, 

when maps agree possibilities are summed. The Shannon function from the normal voting script is in 

section 8.1.3 of the appendix and implements the information entropy on normal voting. 

Weighted voting and probability voting respectively hold "weights" and "probabilities" that 

represent possibilities. These possibilities were implemented as :�9�  in equation 6 and hold the TW1 

to TW8 (or TP1 to TP8) values from the methodology of weighted voting (figure 10) and probability 

voting (figure 11). The same Shannon function was used for weighted voting and probability voting. 

The weighted voting script (section 8.1.4) and probability voting script (section 8.1.5) in the appendix 

implement the information entropy on weighted voting and probability voting.  

Table 16 and presents an example for calculating the information entropy for one situation in 

weighted voting. :�9�  in equation 6 and TW1 to TW8 do not hold a value for each LC class in 

weighted voting. In case all maps agree, there is one value for  :�9�  and the TP’s. In case all maps 

disagree, there are four values for :�9�  and the TW’s. The function LogSpecial inside the Shannon 

function gives ����:9�  the value 0 in case :�9�  is 0, and the function gives ����:9�  the value of 

����:9�  in case :�9�  is not 0. 

Table 16: Example for calculating information entropy over weighted voting 

Weighted voting 

INPUT 

MAP 

Actual 

Class 

User accuracies, used as weights 

1 2 3 4 5 6 7 8 

FROM-GLC 4 0 0 0 57.78 0 0 0 0 

Globcover 4 0 0 0 76.83 0 0 0 0 

LC-CCI 5 0 0 0 0 46.88 0 0 0 

MODIS 3 0 0 42.63 0 0 0 0 0 

Weights 

WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP-SUM 

0 0 42.63 134.62 46.88 0 0 0 224.12 

Normalized weights 0 0 0.19 0.60 0.21 0 0 0 1 

Assigned class        4           

Calculation of information entropy 

 1 2 3 4 5 6 7 8  

:�9�  0.00 0.00 0.19 0.60 0.21 0.00 0.00 0.00  

����:9�  0.00 0.00 -2.39 -0.74 -2.26 0.00 0.00 0.00  

:�9� ∗ ����:9�  0.00 0.00 -0.46 -0.44 -0.47 0.00 0.00 0.00  

∗ −1 0.00 0.00 0.46 0.44 0.47 0.00 0.00 0.00  

∑ = 1.37 H 
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Table 17 presents an example for calculating the information entropy for one situation in 

probability voting. �9�  in equation 6 and TP1 to TP8 hold a value for each LC class in probability 

voting because probability voting accounts for the probability of a LC class being another class. 

Table 17: Example for calculating information entropy over probability voting 

Probability voting 

INPUT 

MAP 

Actual 

Class 

Class probabilities 

1 2 3 4 5 6 7 8 SUM  

FROM-GLC 4 0.10 0.06 0.22 0.58 0.00 0.02 0.00 0.02 1 

Globcover 4 0.06 0.04 0.10 0.77 0.00 0.01 0.00 0.01 1 

LC-CCI 5 0.28 0.03 0.13 0.05 0.47 0.00 0.02 0.03 1 

MODIS 3 0.09 0.13 0.43 0.14 0.01 0.00 0.01 0.19 1 

(multiplied) TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP-SUM 

Probabilities 

1.55 

E-04 

9.01 

E-06 

1.18 

E-03 

2.88 

E-03 

2.39 

E-25 

8.85 

E-27 

5.00 

E-10 

1.61 

E-06 

4,23 

E-03 

Normalized P 0.04 0.00 0.28 0.68 0.00 0.00 0.00 0.00 1 

Assigned class        4           

Calculation of information entropy 

 1 2 3 4 5 6 7 8  

:�9�  0.04 0.00 0.28 0.68 0.00 0.00 0.00 0.00  

����:9�  -4.77 -8.87 -1.84 -0.55 -73.91 -78.66 -23.01 -11.36  

:�9� ∗ ����:9�  -0.17 -0.02 -0.51 -0.38 0.00 0.00 0.00 0.00  

∗ −1 0.17 0.02 0.51 0.38 0.00 0.00 0.00 0.00  

∑ = 1.09 H 

 

4.3.2.  External validation 

Confusion matrices were used for the external validation of LC maps, which is explained in 

the theoretical background section 3.5.2. The LC maps were assessed on their agreement with the 

reference dataset and the integration methods were evaluated on their improvement compared to the 

other maps (section 5.3). Section 5.3 presents the accuracy assessment of seven LC maps: normal 

voting, weighted voting, probability voting, FROM-GLC, Globcover (2009), LC-CCI (2010) and 

MODIS5 (2010). In a confusion matrix, the assessed map was cross tabulated against the reference 

dataset described in section 3.5.2. The reference dataset was produced from harmonizing GLC2000, 

GLCNMO-tr, Geo-wiki, Globcover 2005, MODIS-tr, and VIIRS to one reference dataset (section 

4.1.2). The theoretical background section 3.5.2 mentions that a reference dataset is used as reference, 

but may contain misclassification (Strahler et al. 2006). It is questionable if the reference data is 

validate as the reference data comes from multiple sources. Therefore it would be more correct to refer 

to the derived metrics of the confusion matrix as agreement instead of accuracy. Figure 12 presents the 

methodology of the external validation: 
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Figure 12: Methodology external validation 

The reference dataset (section 4.1.2) was prepared for the external validation by using the 

buffer (analysis) and feature envelop to polygon (data management) tool to create an envelope around 

the point features of the reference datasets. The envelops were set to have a size of 3x3 pixel blocks, 

0.00833x0.00833 decimal degree, with a point feature from the reference dataset as center point. Each 

envelop around a point feature was used to extract the majority class from the assessed LC maps with 

the external validation script in section 8.1.6 the appendix. The extracted majority class and center 

class from the assessed map were added to the attribute table of the reference dataset as a result 

(section 8.1.6 appendix). The original LC class of the reference dataset and the extracted majority 

class from the assessed map were processed to the format of a confusion matrix in excel. This was 

repeated for the normal voting, weighted voting, probability voting, FROM-GLC, Globcover (2009), 

LC-CCI (2010) and MODIS5 (2010) LC maps. The confusion matrices of the integration methods are 

presented in table 21 section 5.3.1. For the LC input maps the confusion matrices are presented in 

table 22 and table 23 in section 5.3.2. 

  An example of a confusion matrix is presented in table 18 where � indicates the assesed map, 

� indicates the category class in a map, � indicates the category class in the reference data and N are 

the pixels located in �, �,� of the matrix. Overall agreement (OA), producer agreement (PA) and 

user agreement (UA) were derived from the confusion matrices and calculated by equation 7. 

F- = ∑ G�,�&&��
G ∗  100  

I- = 
,�
∑
�J

∗ 100     [7] 

�- = 
,�
∑
J

∗ 100    

Source: Strahler et al. (2006) 

  



37 
GIMA thesis research, R van Setten-Zaremba 

Table 18: Example of a confusion matrix 

Map: � 
Reference classes !� 

Correct K !� UA 
1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 ! �
 1 �LL G�M G�N G�7 G�O G�P G�Q G�R G�� G�S … 

2 GM� �TT GMN GM7 G�O GMP GMQ GMR GMM GMS … 

3 GN� GNM �UU GN7 GNO GNP GNQ GNR GNN GNS … 

4 G7� G7M G7N �VV G7O G7P G7Q G7R G77 G7S … 

5 GO� GOM GON GO7 �WW GOP GOQ GOR GOO GOS … 

6 GP� GPM GPN GP7 GPO �XX GPQ GPR GPP GPS … 

7 GQ� GQM GQN GQ7 GQO GQP �YY GQR GQQ GQS … 

8 GR� GRM GRN GR7 GRO GRP GRQ �ZZ GRR GRS … 

correct G�� GMM GNN G77 GOO GPP GQQ GRR G�,�  

KG� GS� GSM GSN GS7 GSO GSP GSQ GSR 
 

N OA 

PA … … … … … … … … OA … 

5. Results 

This section holds the results from the integration methods, the internal validation and the 

external validation. The harmonized LC maps we used as input for the normal voting, weighted voting 

and probability voting integration methods. A difference plot shows the similarities and dissimilarities 

between the integrated LC maps. The internal and external validations were used to evaluate the 

integration methods.  

5.1. Integration methods 

This section holds the LC results from the normal voting, weighted voting and probability 

voting integration methods. Normal voting makes use of internal information from a voting procedure 

Weighted voting and probability voting respectively base their weights and probabilities on the global 

confusion matrices of Tsendbazar et al. (2016) and Yu et al. (2014). Accuracy assessments of external 

research were used because it was questionable if the reference data from this research was sufficient 

for producing reliable results, since certain LC classes were not represented by enough samples 

5.1.1.  Normal voting 

  Figure 13 presents the initial voting map (a) and the agreement/disagreement map (b) which 

indicates the five conditions (table 9) from the initial voting procedure. In the initial voting map, pixels 

were assigned to a LC class where the four input maps agree on a LC class. In case of a tie, the voting 

procedure remained undecided on a LC class. There are 5338552 pixels of the 78252697 pixels in the 

LC map where the voting procedure remains undecided which is 6.82% of the map.  

 



38 
GIMA thesis research, R van Setten-Zaremba 

 
Figure 13: Initial voting map and its agreement/disagreement conditions from input maps 

Ties were solved by using class preferences to decide on a LC class at that location, class 

preferences are presented in table 10 section 4.2.3. These class preferences were calculated from class 

occurrences in table 30 and table 31 of the appendix. Map occurrences (table 19) were calculated to 

further analyze the results of the initial voting. Map occurrences were calculated from table 30 and 

table 31 of the appendix by summing the class occurrence over all LC classes and identifying how 

much each input map has contributed to the initial voting map.  
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In 63.51% all input map agree on a LC class in the initial voting. LC-CCI contributed the most 

to the initial voting map. LC-CCI has the highest map occurrence where three maps agree and where 

two maps agree. Globcover and MODIS map occurrences are close to LC-CCI. FROM-GLC 

contributed the least to the initial voting map, where FROM-GLC disagrees with 25.72 % of the initial 

voting map.  

Table 19: Map occurrence 

LC classes 
1 -8 

Conditions 

All agree 3 agree 2 agree Disagree, ties 

FROM-GLC 63.51 7.14 3.62 25.72 

Globcover  63.51 15.54 6.76 14.19 

LC-CCI  63.51 16,38 6.84 13.27 

MODIS5  63.51 15.62 5.66 15.21 

This section uses the observations from on class preferences (table 10, section 4.2.3) to 

describe the initial voting results. A high class preference demonstrates that the corresponding LC 

class is more often assigned to the normal voting map.LC-CCI holds for most of the LC classes the 

highest class preferences: (1) trees, (3) herbaceous vegetation, (5) wetlands, (6) urban/built up and (7) 

water, permanent snow and ice respectively 84.16%, 82.39%, 83.15%, 98.08% and 99.93%. Class 

preferences of Globcover and MODIS come close to the class preferences of LC-CCI. MODIS does 

not hold the highest class preference for any of the LC classes and has a very low class preference for 

(5) wetlands and (8) barren respectively 18.77% and 6.46%. Globcover holds the highest class 

preference for LC classes (4) cultivated and managed vegetation/agriculture and (8) barren 

respectively 88.27% and 92.48%. FROM-GLC holds the highest class preference for LC class (2) 

shrubs among the LC input maps. FROM-GLC generally holds the lowest class preferences over most 

of the LC classes, but holds a high preference for LC classes (1) trees, (2) shrubs and (7) water, snow 

and ice respectively 82.99%, 80.90% and 99.90%. FROM-GLC holds relative low class preferences 

because FROM-GLC has a low occurrence in the initial voting map.   
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The normal voting map is presented in figure 14 and was produced by joining the initial voting 

results with the "solved ties" in case of disagreeing conditions from the LC input maps.  

 
Figure 14: Integrated map obtained by normal voting  
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5.1.2.  Weighted voting 

Figure 15 presents the resulted weighted voting LC map (a) and the highest accumulated 

weight (b) over eight LC classes from which the integrated map was generated. The weights are based 

on the UA of each LC class of the input maps. Presented in table 8 section 4.1.1 and table12 section 

4.2.2, both tables holds the UA of each LC input map obtained from the research of Tsendbazar et al. 

(2016) and Yu et al. (2014). Class maximum weights were generally high in the weighted map (figure 

15b), but holded less contrast than the maximum probabilities of the probability voting method (figure 

17b). Class weights are low in area where the LC input maps disagree (figure 13b). 

 
Figure 15: Integrated map obtained by weighted voting and its class weights  
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Figure 16 presents the weights for each of the eight LC classes. LC classes (1) trees, (4) 

cultivated and managed vegetation/agriculture and (7) water, permanent snow and ice hold high 

weights to be assigned at locations within the integrated map. Common LC classes with high weights 

were favored in the weighted voting process. There is a high weight for a LC class when LC input 

maps agree on a LC class. Weighted voting has less contrast between its weights than the probability 

voting maps (figure 18). 

 
Figure 16: Class specific weights LC classes 

This section uses the observations from table 8 (section 4.1.1) that hold the OA, UA and PA of 

the LC input maps  to describe the weighted voting results. A high UA means a high weight input for 

the corresponding LC class of the input map, since the weights are based on the UA. 

LC-CCI (2010) has the highest OA of 74. 70% from the input maps.  LC-CCI and MODIS 

each hold the highest UA for three LC classes amongst the eight LC classes of each input map. LC-

CCI for LC classes:(1) trees (2) shrubs and (7) water, permanent snow and ice with respectively 

weights of 90.39%, 61.67% and 85.33%. MODIS for LC classes: (4) cultivated and managed 

vegetation/agriculture, (6) urban/built up and (8) barren with respectively weights of 84.60%, 85.71% 

and 98.28%. FROM-GLC has the highest UA for LC class (3) herbaceous vegetation and Globcover 

has the highest UA for LC class (5) wetlands among the input maps. The high presence of trees in 

FROM-GLC LC map with the relative high UA for LC class (1) trees, could cause an overestimation 

of trees in the weighted voting map. The UA for LC class (5) wetlands from FROM-GLC is unknown 

because the confusion matrix from Yu et al. (2014) holds no information for wetlands, which is class 

50 in the FROM-GLC classification system. There is an average difference 28.94% in the UA of a 

specific LC class, there are no significant differences with the exception of LC class (5) wetlands. 
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5.1.3.  Probability voting 

In each location of the probability voting map, a pixel is assigned to the LC class that holds 

the highest probability at the pixel’s location. Figure 17 presents the resulted probability voting LC 

map (a) and the highest class probabilities (b) from which the LC map is generated. Maximum class 

probabilities are generally high in the map and low in area where the LC input maps disagree (figure 

13b). The areas with low probability are typically located in areas with fragmented landscape, high 

slope or transition areas, for example: the mountain areas in Norway or the French Alps.  

 
Figure 17: Integrated map obtained by probability voting and its class probability 
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Figure 18 presents the probability for each of the eight LC classes. LC classes (1) trees, (3) 

herbaceous vegetation, (4) cultivated and managed vegetation/agriculture and (7) water, permanent 

snow and ice have a high probability to be assigned at locations within the integrated map. LC class 

(7) water, permanent snow and ice had a high class probability and a relative low probability to be 

seen for another class (table 14). Additionally, in most locations, all input maps agree on LC class (7) 

water, permanent snow and ice, which confirm a high probability.  Like weighted voting, common LC 

classes with good probability are favored in the voting process. Probability voting has more contrast 

between high and low class probability since class probabilities of the input maps are multiplied 

before normalization (table 15, section 4.2.3). Weighted voting methodology summed class weights 

before normalization (table 13, section 4.2.2) and therefore holds less contrast between high and low 

weights (figure 15 and figure 16). 

 
Figure 18: Class specific probability of LC classes 

This section further describes class probabilities and the probability of being another LC class; 

these are observed from table 14 (section 4.2.3) and figure 18. Table 14 holds the probabilities of each 

LC class from FROM-GLC, Globcover 2009, LC-CCI (2010) and MODIS5 (2010), based on the 

research of Tsendbazar et al. (2016) and Yu et al. (2014). 

Generally LC classes (2) shrubs, (3) herbaceous vegetation and (4) cultivated and managed 

vegetation/agriculture have a relative high probability to be LC classes (1) trees, 2, 3 and 4. This is the 

case for FROM-GLC, in Globcover this only accounts for LC classes (2) shrubs and (3) herbaceous 

vegetation. LC class (2) shrubs from LC-CCI holds the probability of being (1) trees and (3) 

herbaceous vegetation where (3) holds the probability to be seen as (4) cultivated and managed 

vegetation/agriculture. In MODIS, LC class (2) shrubs holds the probability to be LC class (1) trees 

and (3) herbaceous vegetation where (3) holds the probability to be seen as (2) shrubs, (4) cultivated 

and managed vegetation/agriculture and (8) barren. 
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 The input maps hold more differences in the class probabilities of LC classes: (5) wetlands, (6) 

urban/built up, (7) water, permanent snow and ice and (8) barren. LC classes (6) urban/built up of 

FROM-GLC holds the probability to be LC class (4) cultivated and managed vegetation/agriculture 

and (8) barren where (8) holds the probability to be seen for LC class (3) herbaceous vegetation. In 

Globcover, LC classes (5) wetlands and (8) barren hold the probability to be LC class (3) herbaceous 

vegetation and LC class (6) urban/built up holds the probability to be LC class (4) cultivated and 

managed vegetation/agriculture. In LC-CCI LC classes (5) wetlands, (6) urban/built up and (8) barren 

respectively hold the probability to be mistaken for LC class (1) trees, (4) cultivated and managed 

vegetation/agriculture and (3) herbaceous vegetation. LC classes (5) wetlands and (7) water, 

permanent snow and ice from MODIS respectively hold the probability to be mistaken for LC class (1) 

trees and (8) barren. 

5.1.4.  Difference plots 

Different plots were used to view the similarities and dissimilarities between the voting 

methods. Different plots do not assess the integration methods but give an overview where the 

methods disagree on LC classes. Figure 19 shows a difference plot between the integrated map and 

table 20 holds the number of pixels from the difference plot. Differences between the integration 

methods occur, where, respectively weights from weighted voting (figure 15) and class probabilities 

from probability voting (figure 17) and where low and LC input maps disagreed in the initial voting 

(figure 13b). Meaning that, integration methods disagreed where methods are less certain in assigning 

a pixel to a specific LC class. Differences between the integration methods typically occur in 

heterogeneous areas, fragmented landscape, and transition areas. For example, the mountain areas in 

Norway or the French Alps have fragmented landscape due to high slope. Bretagne in north-east 

France and the Netherlands hold differences between the integration methods, but this cannot be 

explained by heterogeneity, fragmentation of the landscape. Table 20 holds information on these 

results, where specific methods disagree in the disagreement areas plotted in figure 19. 

 
Figure 19: Difference plot, similarities and dissimilarities between LC maps 
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5610888 pixels of the 78252697 pixels disagree in the difference plot, this is a 7.17% 

difference between the LC maps. When excluding the LC class (7) water, permanent snow and ice 

there is still a 15.76% difference between the land classes of the LC maps. From the disagreement 

areas, 96.74% of the pixels differ between normal voting and probability voting. Weighted voting has 

less difference with the other maps in the disagreement area, a 45.54% pixel difference with normal 

voting and a 62.65% pixel difference with probability voting. From the 5610888 pixels that disagree 

between the integration methods, there is only a 4.93% pixel difference where all three maps disagree 

and 47.61% of those pixels are located in tie locations from the initial voting.  

Table 20: Information on difference plot 

Agreement / disagreement integration methods 

Agreement between maps 92.83 % 

Disagreement between maps 7.17 % 

Description of disagreement inside the difference plot 

Disagreement between normal voting and weighted voting   45.54 % 

Disagreement between normal voting and probability voting   96.74 % 

Disagreement between weighted voting and probability voting   62.65 % 

Where all integrated maps disagree   4.93 % 

Where maps disagree in tie locations from initial voting   47.61 % 

5.2. Internal validation 

This section presents the results of the internal validation. Figure 20 holds the information 

entropy calculated over the integration methods LC maps: normal voting (a), weighted voting (b) and 

probability voting (c). A high entropy value stands for a high uncertainty in the LC classification and a 

low entropy value represents certainty. The information entropy of normal voting and weighted voting 

is similar, as both maps have the same patterns over the study area. Weighted voting seems had 

slightly lower values in areas with high uncertainty than normal voting, for example; the high 

uncertainty in the mountain areas of Norway. The information entropy calculated over probability 

voting was dissimilar from the other integration methods. Probability voting had the lowest 

uncertainty in comparison to the other methods and provides the best classification based on the 

information entropy. Most areas have classification certainty, a low uncertainty; these areas have a 

high contract with areas of high uncertainty. 

Areas with high uncertainty seem to be roughly highest in areas where the normal voting, 

weighted voting and probability voting LC maps disagree (figure 19). Similarly, areas with high 

uncertainty (figure 20) concur partly with the tie locations (figure 13) from the initial process of 

normal voting. This is logical for normal voting as the information entropy is implemented on class 

presence of the LC input maps (section 4.3.1), the five conditions from the normal voting 

methodology in table 9 section 4.2.1. Section 5.2.4 reports with table 20 that 47.61% of the locations 

where the methods disagree (figure 20), concur with tie locations (figure 13) from the initial voting. 
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Figure 20: Information entropy over LC maps of integration methods 

5.3. External validation 

Confusion matrices were used for the external validation of the integrated LC maps: normal 

voting, weighted voting and probability voting. This section presents the results from the confusion 

matrices of the input maps and integrated LC maps. The integration methods were evaluated on their 

improvement, compared to the assessment of the other methods and input maps. Figure 27, figure 28 

and figure 30 present the derived metrics in a graph for the discussion of the results in section 6.1.4. 
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5.3.1.  Integration methods 

Table 21 presents the confusion matrices of the integration methods. Table 24, table 25 and 

table 26 hold an overview of the metrics derived from the confusion matrices: overall agreement, 

producer agreement and user agreement of the input map with reference dataset. 

Table 21: Confusion matrices of normal voting, weighted voting and probability voting 

Normal 

Voting 

Reference classes* 

Correct 
 

Total 

 

UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 169 22 19 27 0 2 0 3 169 242 69.83 

2 10 16 16 1 0 0 0 0 16 43 37.21 

3 6 8 64 42 1 1 0 1 64 123 52.03 

4 31 17 26 347 1 5 0 2 347 429 80.89 

5 0 0 0 0 1 0 0 0 1 1 100.00 

6 5 0 0 4 0 36 0 0 36 45 80.00 

7 0 0 0 1 1 1 13 0 13 16 81.25 

8 3 2 5 4 0 0 0 3 3 17 17.65 

Correct 169 16 64 347 1 36 13 3 649 

Total 224 65 130 426 4 45 13 9 916 OA 

PA 75.45 24.62 49.23 81.46 25.00 80.00 100.0 33.33 OA 70.85 

 Weighted 

Voting  

Reference classes*   

Correct 
  
Total 

  
UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 185 26 24 31 1 4 0 3 185 274 67.52 

2 8 16 17 1 0 0 0 0 16 42 38.10 

3 3 8 39 24 1 0 0 2 39 77 50.65 

4 23 14 46 363 1 3 0 1 363 451 80.49 

5 0 0 0 0 1 0 0 0 1 1 100.00 

6 4 0 0 3 0 37 0 0 37 44 84.09 

7 0 0 0 1 0 1 13 0 13 15 86.67 

8 1 1 4 3 0 0 0 3 3 12 25.00 

 Correct 185 16 39 363 1 37 13 3 657 

 Total 224 65 130 426 4 45 13 9 916 OA 

 PA 82.59 24.62 30.00 85.21 25.00 82.22 100,0 33.33 OA 71.72 

 Probability 

Voting  

Reference classes*   

Correct 
  
Total 

  
UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 187 37 28 35 2 2 3 3 187 297 62.96 

2 2 8 3 0 0 0 0 0 8 13 61.54 

3 5 6 55 22 1 0 0 4 55 93 59.14 

4 28 13 44 368 1 15 1 1 368 471 78.13 

5 0 0 0 0 0 0 0 0 0 0 - 

6 2 0 0 0 0 26 0 0 26 28 92.86 

7 0 0 0 1 0 2 9 0 9 12 75.00 

8 0 1 0 0 0 0 0 1 1 2 50.00 

Correct  187 8 55 368 0 26 9 1 654 

 Total 224 65 130 426 4 45 13 9 916 OA 

 PA 83.48 12.31 42.31 86.38 0.00 57.78 69.23 11.11 OA 71.40 
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5.3.2.  Land cover input maps 

Table 22 and table 23 present the confusion matrices of the LC input maps. The agreement 

assessments of the LC input maps with reference datasets were used as basis to evaluate the 

improvement of the integration methods compared to their input maps. Table 24, table 25 and table 26 

hold an overview of the metrics derived from the confusion matrices: overall agreement, producer 

agreement and user agreement of the input map with reference dataset. 

Table 22: Confusion matrices of FROM-GLC and Globcover (2009) 

FROM- 

GLC 

Reference classes* 

Correct 
 

Total 

 

UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 166 12 32 57 0 9 0 2 166 278 59.71 

2 21 21 21 13 0 1 0 1 21 78 26.92 

3 20 14 39 69 2 14 1 3 39 162 24.07 

4 6 4 20 141 0 4 0 0 141 175 80.57 

5 1 1 0 0 0 0 0 2 0 4 0.00 

6 1 0 1 7 0 15 0 0 15 24 62.50 

7 0 0 0 1 2 1 12 1 12 17 70.59 

8 9 13 17 138 0 1 0 0 0 178 0.00 

Correct 166 21 39 141 0 15 12 0 394     

Total 224 65 130 426 4 45 13 9   916 OA 

PA 74.11 32.31 30.00 33.10 0.00 33.33 92.31 0.00   OA 43.01 

 Globcover 

(2009) 

Reference classes*   

Correct 
  
Total 

  
UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 138 15 21 47 0 4 1 2 138 228 60.53 

2 11 20 8 2 0 0 0 1 20 42 47.62 

3 19 3 53 64 0 1 0 1 53 141 37.59 

4 49 25 44 302 2 15 1 2 302 440 68.64 

5 1 0 0 0 1 0 0 0 1 2 50.00 

6 3 0 0 4 0 25 0 0 25 32 78.13 

7 0 0 0 1 0 0 11 0 11 12 91.67 

8 3 2 4 6 1 0 0 3 3 19 15.79 

 Correct 138 20 53 302 1 25 11 3 553   

 Total 224 65 130 426 4 45 13 9  916 OA 

 PA 61.61 30.77 40.77 70.89 25.00 55.56 84.62 33.33  OA 60.37 
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Table 23: Confusion matrices of LC-CCI (2010) and MODIS5 (2010) 

LC-CCI 

(2010) 

Reference classes* 

Correct 
 

Total 

 

UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 167 17 16 18 0 0 0 2 167 220 75.91 

2 3 17 2 0 0 0 0 1 17 23 73.91 

3 9 4 66 68 1 1 0 1 66 150 44.00 

4 32 13 17 293 0 2 0 0 293 357 82.07 

5 0 3 3 3 3 0 0 0 3 12 25.00 

6 9 1 1 14 0 42 0 0 42 67 62.69 

7 1 0 0 1 0 0 13 0 13 15 86.67 

8 3 10 25 29 0 0 0 5 5 72 6.94 

Correct 167 17 66 293 3 42 13 5 606     

Total 224 65 130 426 4 45 13 9   916 OA 

PA 74.55 26.15 50.77 68.78 75.00 93.33 100.00 55.56   OA 66.16 

 MODIS5 

(2010) 

Reference classes*   

Correct 
  
Total 

  
UA 1 2 3 4 5 6 7 8 

M
ap

p
ed

 c
la

ss
es

 

1 157 31 20 31 0 4 4 3 157 250 62.80 

2 11 16 25 8 1 0 0 0 16 61 26.23 

3 6 12 46 27 1 1 0 6 46 99 46.46 

4 45 5 39 355 2 4 1 0 355 451 78.71 

5 0 0 0 0 0 0 0 0 0 0 - 

6 5 1 0 5 0 35 1 0 35 47 74.47 

7 0 0 0 0 0 1 7 0 7 8 87.50 

8 0 0 0 0 0 0 0 0 0 0 - 

 Correct 157 16 46 355 0 35 7 0 616     

 Total 224 65 130 426 4 45 13 9   916 OA 

 PA 70.09 24.62 35.38 83.33 0.00 77.78 53.85 0.00   OA 67.25 

5.3.3.  Overview of agreement metrics 

This section gives an overview of the agreement metrics from normal voting, weighted voting 

and probability voting integration methods and the FROM-GLC hierarchy, Globcover 2009, LC-CCI 

(2010) and MODIS5 (2010) LC maps. OA, UA and PA are presented in tables: 24, 25 and 26. 

Integrated LC maps: 

The overall agreement of weighted voting was the highest among the integration methods with 

an agreement of 71.72% (table 26). The results present no significant difference between the overall 

agreement of the three integration methods, with a difference of 0.87% agreement between the highest 

(weighted voting) and lowest (normal voting) overall agreement. 

Table 24: Overall agreement of integrated methods and input maps 

LC map OA 

Normal voting 70.85 

Weighted voting 71.72 

Probability voting 71.40 

FROM-GLC-hierarchy 43.01 

Globcover (2009) 60.37 

LC-CCI (2010) 66.16 

MODIS5(2010) 67.25 
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Observations of class agreements between the methods (table 25 and table 26):  

1. Normal voting and weighted voting seem to achieve similar results in the PA and UA of LC 

class (5) wetlands and in the PA of LC class (2) shrubs and (7) water, permanent snow and ice 

and (8) barren. This with just slight differences between their confusion matrices for these 

classes.  

2. There is no information on metrics for LC class (5) wetlands in probability voting, because 

none of the samples from the reference dataset agree with the LC map. This could be caused 

by the low number of four samples in LC class (5) wetlands from the reference dataset (table 6 

section 3.3.1).  

3. Probability voting holds low agreement metrics for LC class (7) water, permanent snow and 

ice compared to the other methods, a 69.23% producer agreement and 75.00% user agreement. 

4. Probability voting achieved the most LC class improvement among the integration methods 

and could possibly achieve higher results when classes like LC class (5) wetlands and LC 

class (5) wetlands have more samples.   

Table 25 present the user agreement of the LC maps produced by the integration methods and 

their input LC maps. 

Table 25: User agreement of integrated methods and input maps 

LC 
map 

Normal 

voting 

Weighted 

voting 

Probability 

voting 

FROM- 

GLC 

Globcover 

(2009) 

LC-CCI 

(2010) 

MODIS5 

(2010) 

 UA UA UA UA UA UA UA 

C
la

ss
 a

g
re

em
en

t 

1 69.83 67.52 62.96 59.71 60.53 75.91 62.80 

2 37.21 38.10 61.54 26.92 47.62 73.91 26.23 

3 52.03 50.65 59.14 24.07 37.59 44.00 46.46 

4 80.89 80.49 78.13 80.57 68.64 82.07 78.71 

5 100.00 100.00 - 0.00 50.00 25.00 - 

6 80.00 84.09 92.86 62.50 78.13 62.69 74.47 

7 81.25 86.67 75.00 70.59 91.67 86.67 87.50 

 8 17.65 25.00 50.00 0.00 15.79 6.94 - 

Table 26 present the producer agreements of the LC maps produced by the integration 

methods and their input LC maps. 

Table 26: Producer agreement of integrated methods and input maps 

LC 

map 

Normal 

voting 

Weighted 

voting 

Probability 

voting 

FROM- 

GLC 

Globcover 

(2009) 

LC-CCI 

(2010) 

MODIS5 

(2010) 

 PA PA PA PA PA PA PA 

C
la

ss
 a

g
re

em
en

t 

1 75.45 82.59 83.48 74.11 61.61 74.55 70.09 

2 24.62 24.62 12.31 32.31 30.77 26.15 24.62 

3 49.23 30.00 42.31 0.00 40.77 50.77 35.38 

4 81.46 85.21 86.38 33.10 70.89 68.78 83.33 

5 25.00 25.00 0.00 0.00 25.00 75.00 0.00 

6 80.00 82.22 57.78 33.33 55.56 93.33 77.78 

7 100.00 100.00 69.23 92.31 84.62 100.00 53.85 

 8 33.33 33.33 11.11 0.00 33.33 55.56 0.00 
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LC input maps: 

All integrated maps have an improved overall agreement compared to the input maps (table 

24). MODIS5 has the highest overall agreement between the input maps with 67.25%, slightly higher 

than LC-CCI with an overall agreement of 66.16%. The reported accuracies of the input maps table 8 

(Tsendbazar et al. 2016; Yu et al. 2014) in section 4.1.1 present LC-CCI with an overall accuracy of 

74.70% and MODIS5 with an overall accuracy of 73.92% when their accuracy assessment is 

harmonized to the eight LC classes. Tsendbazar et al. (2016) research presents the confusion matrices 

of Globcover, LC-CCI and MODIS5 with 13 generalized LC classes were Globcover, LC-CCI and 

MODIS5 have an overall accuracy reported of respectively 61.3%, 70.8% and 71.4%.  

LC-CCI holds the highest producer accuracy over the integration methods for LC classes: (3) 

herbaceous vegetation, (5) wetlands, (6) urban/built up, (7) water, permanent snow and ice and (8) 

barren. LC-CCI, normal voting and weighted voting LC maps hold a 100% producer for LC class (7) 

water, permanent snow and ice. LC-CCI further holds a higher user agreement over the integration 

methods for LC classes (1) trees, (2) shrubs and (4) cultivated and managed vegetation/agriculture. 

FROM-GLC holds the highest producer agreement for LC class (2) shrubs and Globcover holds the 

highest user agreement for LC class (7) water, permanent snow and ice. In other cases, one or all of 

the integration methods hold higher agreement in the metrics. 

Observations of class agreement between the methods and input map (table 25 and table 26):  

1. Probability voting has improved class agreements, but LC-CCI more often hold the highest 

agreement metrics for a LC class compared to the methods and input maps. 

2. The highest producer agreement for LC class (2) shrubs from the integration methods is 

similar to the lowest producer agreement for LC class (2) shrubs from the input maps 

(MODIS5).  

3. Probability voting, FROM-GLC and MODIS5 hold no information for the metrics of LC class 

(5) wetlands, this could be caused by the low number of four samples for LC class (5) barren 

from the reference dataset (table 6 section 3.3.1).  

4. FROM-GLC and MODIS5 hold no information for the metrics of LC class (8) barren, like LC 

class (5) wetlands, LC class (8) barren has low number of nine samples (table 6 section 3.3.1). 
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6. Discussion, conclusion and recommendations 

This chapter gives an overview of the research by; discussing the results and methodology of 

this research, drawing conclusions, restrictions of this research and recommendations. 

6.1. Discussion 

This section discusses the methodology and results of the research: harmonization, integration 

method, the most accurate method based on the information entropy and the amount of improvement 

in the integrated LC maps. 

6.1.1.  LC data 

FROM-GLC seems to have a lower accuracy than the other input maps for the integration. Yu 

et al. (2014) reports an overall accuracy of  66.10 % for FROM-GLCagg, were Tsendbazar et al. 

(2016) reports on a Globcover (2009), LC-CCI (2010) and MODIS5 (2010) overall accuracy of 

respectively: 67.81%, 74.70% and 73.92%  (table 8 section 4.1.1). But it should be noted that these 

accuracy assessments come from different sources and therefore cannot be compared directly (section 

4.1.1).  The accuracy assessment used for FROM-GLC-hierarchy does belong to the 30m base map of 

FROM-GLCagg and might not accurately represent FROM-GLC-hierarchy, but it is unknown how 

much the pre-processing from FROM-GLCagg to FROM-GLC hierarchy influences the maps 

accuracy (section 2.2.1). The confusion matric of FROM-GLCagg holds no information for LC class 

(5) wetlands, in the original legend class 50 which also stand for wetlands (section 2.2.1). Additionally 

FROM-GLC-hierarchy has a tilling effect over the LC map (figure 7a section 4.1.1). This all suggests 

that FROM-GLC-hierarchy holds a low accuracy in Western Europe. LC classes (5) wetlands and (8) 

barren are represented by a low number of sample sites, respectively four and nine samples (section 

3.3.2). A higher number of sample sites could give a better result for LC classes (5) wetlands and (8) 

barren in the external validation. Table 6 (section 3.3.1) presents the distribution of the samples over 

the harmonized LC classes.  

6.1.2.  Harmonization 

Herold et al. (2006) mention that one universal legend would provide too much 

standardization and reduce the relevance and applicability for many applications. Harmonization to 

eight general LC classes reduces the applicability to discriminate between problematic classes. For 

example the harmonization of all tree classes to one LC class makes it impossible to characterize 

forest in detail. The spatial harmonization of the reference dataset is based on the assumption that the 

sample unit area has homogenous LC type, so the datasets were harmonized to have the same extent of 

sample units. In reality this is not always true; some areas have heterogeneous LC types.  

6.1.3.  Integration methods 

Normal voting was produces from a common voting procedure, were a pixel was assigned to 

the class that occurs in the majority of the LC maps at that pixel’s location. In the methodology 

(section 4.2.1) is explained that ties occur with this procedure were the four LC input maps disagree 

on a LC class. Ties are assigned to a LC class by giving a high class preference to LC classes that 

occur more often in the initial voting: these class preferences were presented in table 10. The normal 

voting LC map was produced by merging the initial voting results with the "solved ties" in case the LC 

input maps disagree. This is a new approach used in this research, solving ties based on class 

preferences (table 10) that are calculated from class occurrences of each input map in the initial voting 

(table 30 and table 31). The advantage of this method is that it’s purely map driven and rejects input 

maps with a low contribution in the initial process in case maps disagree and form a tie. The 

disadvantage of this method would be that it does not use accuracy information which could reject 

inaccurate classes in the beginning of the voting process.  



54 
GIMA thesis research, R van Setten-Zaremba 

In weighted voting, a pixel is assigned to the class that accumulates the highest weight at that 

pixel’s location. Weighted voting derives weights from the user accuracy of each LC class which were 

obtained from the published confusion matrices (Yu et al. 2014) (Tsendbazar et al. 2016). Weights 

based on class accuracies could improve the integrated map by giving preference to accurate classes 

and reject inaccurate classes of the input maps. In weighted voting studies the research of Ge et al. 

(2014) and Iwao et al. (2011), weights were applied in a different manner. Ge et al. (2014) assigns 

weights to LC classes according to the accuracy of the mapped class and Iwao et al. (2011) gives 

preference to each LC class from the map with the highest overall accuracy (OA). Ge et al. (2014) 

looks at accuracies from the perspective of the source map and Iwao et al. (2011) uses overall 

accuracies but assesses the maps from the user perspective. The advantage of weighted voting is that 

the method uses accuracy information for map integration, which could reject inaccurate classes. A 

disadvantage would be that such an integration method favors LC classes with a high class weight and 

therefore tends to over-map these LC classes, for example: LC class (1) trees and (7) water, permanent 

snow and ice.  

In probability voting, a voting procedure is applied on the probabilities of each class being the 

correct class. A pixel is assigned to the LC class that accumulates the highest probability at the pixel’s 

location. Kinoshita et al. (2014) and Tuanmu and Jetz (2014) used probability voting in previous 

studies. Kinoshita et al. (2014) achieves improved map accuracy by performing a logistic regression 

analysis with class probabilities, but the regression analysis is not used in this research as the scope 

focuses on integration methods with a voting approach. Probabilities of harmonized LC classes were 

calculated with the same equation Kinoshita et al. (2014) used to calculate class probabilities. 

Probabilities were calculated from the user perspective in this research, because this represents the 

agreement of the LC input maps with the reference data. Tuanmu and Jetz (2014) apply probability 

voting in case products disagree and use a workflow that keeps the heterogeneity captured from the 

product with a finer resolution. In this research, the four input maps are integrated simultaneously with 

probability voting because FROM-GLC and MODIS respectively have a finer and coarser resolution 

than the resolution of 300 meter from Globcover 2009 and LC-CCI. Probability voting has the same 

advantages and disadvantages as weighted voting. Probability voting rejects LC classes with a low 

class probability but favors LC classes that have a good probability in the integration. Smaller LC 

classes like LC class (2) shrubs tend to be under-mapped.  

Figure 19 presents a difference plot where the normal voting, weighed voting and probability 

voting maps are similar and dissimilar. Integration methods disagreed where methods were less certain 

in assigning a pixel to a specific LC class. Generally on locations where maximum weights from 

weighted voting (figure 15) and maximum class probabilities from probability voting (figure 17) were 

low and and LC input maps disagreed in the initial voting (figure 13b). Differences between the 

integration methods typically occur in heterogeneous areas, fragmented landscape, and transition 

areas. 5610888 pixels disagree in the difference plot; this is a 7.17% difference between the LC maps 

(table 20). 54.49% of the difference plot is where the methods agree on LC class (7) water, permanent 

snow and ice. Even when excluding the LC class (7) water, permanent snow and ice there is a 15.76% 

difference between the land classes of the LC maps. Normal voting, weighed voting and probability 

voting are quite similar. From table 20 can be seen when methods disagree in the disagreeing areas of 

the difference plot: (1) normal voting and weighed voting disagree in 45.54%, (2) normal voting and 

probability voting disagree in 96.74%, (3) weighted voting and probability voting disagree in 62.65%, 

(4) all maps disagree in 4.93% and (5) 47.61% where the methods disagree are tie locations from the 

initial voting of normal voting. Normal voting and probability voting seem to disagree most, were 

normal voting and weighted voting seem more similar compared to the other methods.  
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Weighted voting and probability voting base their weights and probabilities on the accuracy 

assessment of Ye et al. (2014) and Tsendbazar et al. (2016). The overall accuracies of FROM-

GLCagg, Globcover (2009), LC-CCI (2010) and MODIS5 (2010) of respectively: 66.10% , 67.81%, 

74.70% and 73.92% presented in table 8 section 4.1.1 (Ye et al. 2014; Tsendbazar et al. 2016). The 

discussion on the LC data mentions that it is questionable if the accuracy assessments can be 

compared to each other, since they come from different sources. This accounts for the results of 

weighted voting and probability voting, as respectively their weights and probabilities are based on 

these accuracy assessments (Ye et al. 2014; Tsendbazar et al. 2016). Additionally the accuracy 

assessment of FROM-GLCagg is used for FROM-GLC-hierarchy which does not hold information on 

LC class (5) wetlands and FROM-GLC holds a tilling effect over its LC map (figure 8a). The 

discussion on the improvement of the integrated maps reports the overall agreement from the external 

validation of FROM-GLCagg, Globcover (2009), LC-CCI (2010) and MODIS5 (2010) of 

respectively:  43.01%, 60.37%, 66.16% and 67.25%. 

6.1.4.  Internal validation 

The internal validation uses entropy as an internal measure of uncertainty, which represents 

the amount of information necessary to require certainty (Shannon and Weaver. 1949). Accuracy 

measures by a confusion matrix are based on the whole map, but it is known accuracy may vary  

locally within the map (Foody 2005; Strahler et al. 2006). This research used the information entropy 

as an addition to the external validation, to calculate the information entropy as an internal measure of 

uncertainty.  

Probability voting had the lowest uncertainty and the highest contrast between certainty and 

uncertainty in comparison to the other methods and therefore provides the best classification based on 

the information entropy. Like the difference plot between the integration methods, the information 

entropy calculated over normal voting and weighted voting suggest that the methods are similar 

(figure 20a and b). Both methods seem to have similar patterns in the information entropy aggregated 

over the study area, were normal voting seems to have slightly higher values of uncertainty. In each 

integration methods, uncertainty seems to be highest in areas were: (1) tie locations (figure 13) from 

the initial voting and were (2) the integration maps disagree in the difference plot (figure 19). In 

normal voting it is logical that areas with high uncertainty are located in tie locations as the 

information entropy is implemented on the five conditions from table 9 (section 4.2.1, 4.3.1 and 5.2.1). 

The difference plot (figure 20) reports in section 5.1.4 that 47.61% of the locations where the methods 

disagree concur with tie locations from the initial voting (table 20). 

The information entropy ranks probability voting as the best integration method and normal 

voting and weighted voting as similar integration methods. The external validation suggests weighted 

voting achieved the best overall results, but probability voting achieved better results for LC classes 

and only has a slightly lower overall agreement. The difference plot does confirm that normal voting 

and weighted voting achieved similar results. 

6.1.5.  Improvements of integrated LC maps 

This section evaluates the improvements of the integrated LC maps: Normal voting, weighted 

voting and probability voting based on the overall agreement, user agreement and producer agreement 

metrics derived from their external validation. The integration methods assessments are compared to 

each other and the LC input maps. The external validation uses a basic approach by cross tabulating 

the assessed LC map against the reference dataset. Section 5.3 holds the confusion matrices and their 

agreement metrics of integrated LC maps and input maps.  
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Section 3.5.2 in the theoretical background mentions: a reference dataset is used as reference 

in an external validation, but may contain misclassification (Strahler et al. 2006). Section 4.3.2 

describes that it would be more correct to refer to the derived metrics of the confusion matrix as 

agreement instead of accuracy, because it is questionable if the reference data is valid as the reference 

data comes from multiple sources.  

The reference dataset used for the validation uses 3x3 pixel envelop to extract he majority 

class from the assessed map, which is processed to confusion matrices in excel table.., table.. and 

table.. Strahler et al. (2006) mentioned that interpretation of the confusion matrix requires 

consideration of the sample design from the reference dataset (Strahler et al. 2006). Since the sample 

design is assumed to be homogenous LC type, this research does not consider the sample design of: 

GLC2000, GLCNMO-tr, Geo-Wiki, Globcover 2005,MODIS-tr and VIIRS 3 datasets. This research 

does not calculate spatial variation from the confusion matrices as is suggested by Strahler et al. 2006), 

but uses the information entropy as a measure of internal classification uncertainty. 

Integration has improved overall accuracy in the normal voting, weighted voting and 

probability voting LC maps compared to the input maps (figure 21). Weighted voting has the highest 

overall agreement among the integration methods with an agreement of 71.72%, but differs slightly 

from normal voting and weighted voting (figure 21). Table 24 (section 5.3.3) and figure 21 show that 

FROM-GLC-hierarchy has an extreme low agreement of 43.01% with the reference dataset compared 

to Globcover (2009), LC-CCI (2010) and MODIS5 (2010) with respectively 60.37%, 66.16% and 

67.25%.  

 
Figure 21: Overall agreement LC maps 

Table 6 (section 3.3.1) presents the distribution of the samples over the harmonized LC classes 

and describes that LC classes (5) wetlands and (8) barren were not represented by enough samples 

(section 3.3.3).  This causes that FROM-GLC-hierarchy and MODIS5 hold no information for the 

metrics of LC classes (5) wetlands and (8) barren, were probability voting has no information on the 

user agreement for LC class (5) wetlands. According to the external validation, probability voting 

results in the best class improvement among the integration method. Probability voting more often 

holds improved agreement in LC classes compared to the other integration methods and input maps 

(table 25 and table 26). Probability voting does hold low agreement metrics for LC class (7) water, 

permanent snow and ice compared to the other methods and input maps, a 69.23% producer agreement 

and 75.00% user agreement. LC-CCI often holds higher agreement metrics for the eight LC classes 
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compared to the integration methods. According to the internal validation, probability voting is also 

the most promising method as it has the least entropy aggregated over the study area.  

Tsendbazar et al. (2016) characterizes shrubs, grass and cropland classes, respectively LC 

class (2) shrubs, (3) herbaceous vegetation, and (4) cultivated and managed vegetation/agriculture of 

this research, as LC classes with high confusion errors. This is generally also the case for this research, 

especially for LC class (2) shrubs; class agreements are lower for each integration method than the LC 

input maps. 

LC classes: (3) herbaceous vegetation, (5) wetlands, (6) urban/built up and (8) barren from the 

integration methods show a significant improvement in user agreement. 

 
Figure 22: User agreement of LC maps 

LC classes (1) trees and (4) cultivated and managed vegetation/agriculture from the integration 

methods show a significant improvement in producer agreement. 

 
Figure 23: Producer agreement of LC maps 
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6.2. Conclusions 

This section gives answers to the research question which were used to reach the objective and 

conclude the research.   

6.2.1.  Research questions 

This section answers the research questions: 

I. Can the selected LC map integration methods be applied to the study area considering data 

constraints and characteristics? 

Normal voting, weighted voting and probability voting integration methods have been applied 

to the study area, considering the data constraints and characteristics. The reference dataset constraints 

and characteristics influenced the research discussed in section 3.3. Table 6 presents the distribution of 

the samples sites over the harmonized LC classes, LC classes (5) wetlands and (8) barren were not 

represented by enough samples (section 3.3.3). 

II. How can LC datasets be integrated with the chosen integration methods and selected 

software? 

All integration methods are implemented in R and the scripts used for implementation are in 

the appendix 8.1. Normal voting uses a common voting procedures and assigns ties to LC classes 

based on class preferences (table 10) calculated from the occurrences of LC classes from each input 

map in the initial voting (table 30 and tale 31). In weighed voting and probability voting a pixel is 

assigned to the class that accumulates respectively the highest weight/highest probability at that 

pixel’s location. The weights and probabilities are based on the confusion matrices of FROM-GLC 

(Yu et al. 2014) Globcover 2009, LC-CCI (2010) and MODIS5 (Tsendbazar et al. 2016). 

III. Which is the most promising method based on internal validation? 

The most promising integration method based on internal validation is probability voting, 

because probability voting has the least entropy aggregated over the study area. Probability voting has 

the lowest uncertainty (figure 20c) compared to normal voting (figure 20a) and weighted voting 

(figure 20b). Generally, probability voting has low uncertainty in the information entropy map, there is 

high contract with the areas of high uncertainty.  

IV. What is the agreement of the integrated LC maps with the reference dataset and how much 

has integration improved overall accuracy? 

Normal voting, weighted voting and probability voting respectively have an overall agreement 

with the reference dataset of 70.85%, 71.72% and 71.40%. Integration has improved overall accuracy 

compared to the overall agreement of FROM-GLC-hierarchy, Globcover (2009), LC-CCI (2010) and 

MODIS5 (2010) with respectively: 43.01% , 60.37%, 66.16% and 67.25%. There is no clear 

improvement in the agreement metrics of LC-classes. Some LC classes of the input maps often had a 

higher agreement metric for LC-classes compared to one or more integration methods, particularly for 

LC class (2) shrub. 

6.2.2.  Research conclusion 

Compared to their input LC maps: FROM-GLC-hierarchy, Globcover (2009), LC-CCI (2010) 

and MODIS5 (2010), normal voting, weighted voting and probability voting have an improved overall 

agreement. It is difficult to decide which integration method is most accurate among normal voting, 

weighted voting and probability voting. There is a 7.17% pixel difference between the LC maps (table 

24) and there are no significant differences between the overall agreement metrics of the integration 

methods (figure 21).  There is less improvements in class agreements of the integration methods, 

compared to the LC input maps (figure 22 and figure 23). Voting methods favour classes that have 
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good probability or a high weight in the integration; therefore common LC classes are over-mapped 

and rare LC classes could have been under-mapped. Probability voting has the least entropy 

aggregated over the study area, the most improvements in class agreements, but the external validation 

shows a poor result for LC classes: (5) wetlands, (7) water, permanent snow and ice due to limited 

sample sites. Normal voting and weighted voting seem to achieve similar results because (1) these 

methods achieve similar patterns in the information entropy and (2) that these methods have the least 

disagreement over the study area.  

6.3. Recommendation 

Each voting integration method is suited for GLC map integration to improve overall 

accuracy. It is recommended that these methods are compared to other integration methods with a 

statistical approach as GWR and kriging, which takes into account the location of LC classes, to select 

which method is most accurate. Weighted voting and probability voting could possibly achieve better 

results when the weighs/probabilities are based on the same accuracy assessment. The methodology 

used for normal voting seems to provide reliable results, without the use of weights and class 

probabilities in the voting procedure, since the achieved results are similar to weighted voting and the 

overall agreement is close to weighted voting and probability voting.  

Recommendations for further research: 

• Comparing voting integration methods to other statistical integration methods  

• Integration of LC maps with their accuracy assessment should have a trusted high level of 

accuracy 

• Reference dataset should be represented by enough samples for each LC class and 

consideration of the sample design. 

• Harmonization to more than eight LC classes to be able to discriminate between other 

problematic classes, for example, characterizing different forest classes 
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8. Appendices 

This section holds the appendixes of this research. 

8.1. Scripts for implementing voting methods 

This section holds the scripts used for implementing the integration methods, internal 

validation and external validation in R. 

8.1.1.  Initial voting 

F <- raster("C:\\...\\FROMGLCNG8.tif") 

G <- raster("C:\\...\\GlobcoverG8.tif") 

L <- raster("C:\\...\\LCCCIG8.tif") 

M <- raster("C:\\...\\MODISG8.tif") 

 

STNV <- stack(F, G, L, M) 

plot(STNV) 

 

MaxVote <- function(x, ...){ 

  # here I assume 8 classes 

  if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA 

  vec1 <- lapply(1:8, FUN = function(y) sum(x==y)) 

  if(length(which(vec1==1))==4) return(-2) # tie with all different 

  if(length(which(vec1==2))==2) return(-1) # tie with two different 

  which.max(vec1)  

} 

 

V <- calc(STNV, MaxVote) 

plot(V) 

writeRaster(V, filename = "NormalVoting_SA.tif", format = "GTiff", overwrite = TRUE) 

 

VoteCount <- function(x, ...){  

  # here I assume 8 classes 

  if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA 

  vec1 <- lapply(1:8, FUN = function(y) sum(x==y)) 

  if(length(which(vec1==1))==4) return(50) # tie with all different 

  if(length(which(vec1==2))==2) return(40) # tie with two different 

  if(length(which(vec1==2))==1) return(30) # Two are equal, remaining two are contrary 

  if(length(which(vec1==3))==1) return(20) # Three are equal 

  if(length(which(vec1==4))==1) return(10) # All are equal   

} 

 

I <- calc(STNV, VoteCount) 

plot(I) 

writeRaster(I, filename = "NormalVotingI_SA.tif", format = "GTiff", overwrite = TRUE) 

8.1.2.  Indicators in conditions 

F <- raster("C:\\...\\FROMGLCNG8.tif") 

G <- raster("C:\\...\\GlobcoverG8.tif") 

L <- raster("C:\\...\\LCCCIG8.tif") 

M <- raster("C:\\...\\MODISG8.tif") 
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V <- raster("C:\\...\\NormalVoting_SA.tif") 

I <- raster("C:\\...\\NormalVotingI_SA.tif") 

 

B <- stack(F, G, L, M, V, I) 

 

# F, calculating votes from F in indicators (10,20,30,40,50): 

for(i in 1:8){ 

  assign(paste('FI', i, sep=''), calc(B, fun=function(x) ifelse((x[1]==i&&x[1]==x[5]&&x[6]==10), 

10+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[1]==i&&x[1]==x[5]&&x[6]==20), 20+i, 0)) + 

           calc(B, fun=function(x) ifelse((x[1]==i&&x[1]==x[5]&&x[6]==30), 30+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[1]==i&&x[1]==x[5]&&x[6]==40), 40+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[1]==i&&x[1]==x[5]&&x[6]==50), 50+i, 0))) 

} 

FIS <-sum(FI1,FI2,FI3,FI4,FI5,FI6,FI7,FI8) 

writeRaster(FIS, filename = "Fi_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# G, calculating votes from G in indicators (10,20,30,40,50): 

for(i in 1:8){ 

  assign(paste('GI', i, sep=''), calc(B, fun=function(x) ifelse((x[2]==i&&x[2]==x[5]&&x[6]==10), 

10+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[2]==i&&x[2]==x[5]&&x[6]==20), 20+i, 0)) + 

           calc(B, fun=function(x) ifelse((x[2]==i&&x[2]==x[5]&&x[6]==30), 30+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[2]==i&&x[2]==x[5]&&x[6]==40), 40+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[2]==i&&x[2]==x[5]&&x[6]==50), 50+i, 0))) 

} 

GIS <-sum(GI1,GI2,GI3,GI4,GI5,GI6,GI7,GI8) 

writeRaster(GIS, filename = "Gi_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# L, calculating votes from L in indicators (10,20,30,40,50): 

for(i in 1:8){ 

  assign(paste('LI', i, sep=''), calc(B, fun=function(x) ifelse((x[3]==i&&x[3]==x[5]&&x[6]==10), 

10+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[3]==i&&x[3]==x[5]&&x[6]==20), 20+i, 0)) + 

           calc(B, fun=function(x) ifelse((x[3]==i&&x[3]==x[5]&&x[6]==30), 30+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[3]==i&&x[3]==x[5]&&x[6]==40), 40+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[3]==i&&x[3]==x[5]&&x[6]==50), 50+i, 0))) 

} 

LIS <-sum(LI1,LI2,LI3,LI4,LI5,LI6,LI7,LI8) 

writeRaster(LIS, filename = "Li_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# M, calculating votes from M in indicators (10,20,30,40,50): 

for(i in 1:8){ 

  assign(paste('MI', i, sep=''), calc(B, fun=function(x) ifelse((x[4]==i&&x[4]==x[5]&&x[6]==10), 

10+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[4]==i&&x[4]==x[5]&&x[6]==20), 20+i, 0)) + 

           calc(B, fun=function(x) ifelse((x[4]==i&&x[4]==x[5]&&x[6]==30), 30+i, 0)) +  
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           calc(B, fun=function(x) ifelse((x[4]==i&&x[4]==x[5]&&x[6]==40), 40+i, 0)) +  

           calc(B, fun=function(x) ifelse((x[4]==i&&x[4]==x[5]&&x[6]==50), 50+i, 0))) 

} 

MIS <-sum(MI1,MI2,MI3,MI4,MI5,MI6,MI7,MI8) 

writeRaster(MIS, filename = "Mi_SA.tif", format = "GTiff", overwrite = TRUE) 

8.1.3.  Normal voting 

F <- raster("C:\\...\\FROMGLCNG8.tif") 

G <- raster("C:\\...\\GlobcoverG8.tif") 

L <- raster("C:\\...\\LCCCIG8.tif") 

M <- raster("C:\\...\\MODISG8.tif") 

 

#### Normal Voting 

STNV <- stack(F, G, L, M) 

MaxVote <- function(x, ...){ 

  # here I assume 8 classes 

  if(any(is.na(x))) return(NA) # return NA if all(!) maps have NA 

  vec1 <- lapply(1:8, FUN = function(y) sum(x==y)) 

  if(length(which(vec1==1))==4) return(-2) # tie with all different 

  if(length(which(vec1==2))==2) return(-1) # tie with two differen 

  which.max(vec1) 

} 

V <- calc(STNV, MaxVote) 

writeRaster(V, filename = "NV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

VoteCount <- function(x, ...){ 

  # here I assume 8 classes 

  if(any(is.na(x))) return(NA) # return NA if Find= maps have NA 

  vec1 <- lapply(1:8, FUN = function(y) sum(x==y)) 

  if(length(which(vec1==1))==4) return(50) # tie with all different 

  if(length(which(vec1==2))==2) return(40) # tie with two different 

  if(length(which(vec1==2))==1) return(30) # Two are equal, remaining two are contrary 

  if(length(which(vec1==3))==1) return(20) # Three are equal 

  if(length(which(vec1==4))==1) return(10) # All are equal 

} 

I <- calc(STNV, VoteCount) 

writeRaster(I, filename = "NVI_SA.tif", format = "GTiff", overwrite = TRUE) 

 

####  Stack with initial results: inputmaps, Voting & Indicators #### 

STIV<-stack(F,G,L,M,V,I) 

CSV <- read.csv("Class Preferences.csv") ( table 10 section 4.2.1) 

for(i in 1:8){ 

  assign(paste('TP', i, sep=''), calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[1]==i||x[5]==-

1&&x[1]==i), CSV[i,2], 0)) +  

           calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[2]==i||x[5]==-1&&x[2]==i), CSV[i,3], 0)) +  

           calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[3]==i||x[5]==-1&&x[3]==i), CSV[i,4], 0)) +  

           calc(STIV, fun=function(x) ifelse((x[5]==-2&&x[4]==i||x[5]==-1&&x[4]==i), CSV[i,5], 0))) 

} 
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####Stack 8 resulting maps#### 

TPNV<-stack(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8) 

####Total percentages summed for normalizing TP's#### 

TPT <- sum(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8) 

TP1N <- TP1/TPT 

TP2N <- TP2/TPT 

TP3N <- TP3/TPT 

TP4N <- TP4/TPT 

TP5N <- TP5/TPT 

TP6N <- TP6/TPT 

TP7N <- TP7/TPT 

TP8N <- TP8/TPT 

####Stack 8 normalised resulting maps #### 

NTPNV<-stack(TP1N,TP2N,TP3N,TP4N,TP5N,TP6N,TP7N,TP8N) 

 

MaxPerc <- function(x, ...){ 

  if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA 

  if(all(x==0)) return (0)  # if all layers are 0 return 0, this is to ensure only the cells with -2 and -1 

cases will get a result 

  which.max(x) 

} 

 

TIES <- calc(NTPNV, MaxPerc) 

plot(TIES) 

writeRaster(TIES, filename = "TIESNV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

####Stacks all maps#### 

STNV2<-stack(F,G,L,M,V,I,TIES) 

MapNV<-calc(STNV2, fun=function(x) ifelse((x[5]==-2||x[5]==-1), x[7], x[5])) 

####Normal Voting map:#### 

writeRaster(MapNV, filename = "MapNV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# Shannon Entropy in bits (base 2 log) for voting 

logSpecial <- function(x) ifelse(x==0, 0, log(x, 2))  # dealing with log(0) 

Shannon <- function(x, ...){ 

  if (is.na(x[1])) return(NA) 

  # convert to probs for each class (8 classes) 

  probs <- lapply(1:8, FUN = function(y) 0.25*sum(x==y))  # assuming 4 maps 

  vec2 <- lapply(probs, FUN=function(x) logSpecial(x) * -x) 

  sum(unlist(vec2)) 

} 

InformationEntropyNV <- calc(STNV, Shannon) 

plot(InformationEntropyNV) 

writeRaster(InformationEntropyNV, filename = "InformationEntropyNV_SA.tif", format = "GTiff", 

overwrite = TRUE) 
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8.1.4.  Weighted voting 

F <- raster("C:\\...\\FROMGLCNG8.tif") 

G <- raster("C:\\...\\GlobcoverG8.tif") 

L <- raster("C:\\...\\LCCCIG8.tif") 

M <- raster("C:\\...\\MODISG8.tif") 

 

ST <- stack(F, G, L, M) 

CSV <- read.csv("UAwv.csv")  (Table 12 section 4.2.2) 

 

####  Weights #### 

for(i in 1:8){ 

  assign(paste('TW', i, sep=''),  

           calc(ST, fun=function(x) ifelse((x[1]==i), CSV[i,1], 0)) +  

           calc(ST, fun=function(x) ifelse((x[2]==i), CSV[i,2], 0)) +  

           calc(ST, fun=function(x) ifelse((x[3]==i), CSV[i,3], 0)) +  

           calc(ST, fun=function(x) ifelse((x[4]==i), CSV[i,4], 0))) 

} 

####Stack 8 resulting maps#### 

TWS<-stack(TW1,TW2,TW3,TW4,TW5,TW6,TW7,TW8) 

####Total weights summed for normalizing TW's#### 

TWT <- sum(TW1,TW2,TW3,TW4,TW5,TW6,TW7,TW8) 

TW1N <- TW1/TWT 

TW2N <- TW2/TWT 

TW3N <- TW3/TWT 

TW4N <- TW4/TWT 

TW5N <- TW5/TWT 

TW6N <- TW6/TWT 

TW7N <- TW7/TWT 

TW8N <- TW8/TWT 

####Stack 8 normalised resulting maps#### 

TWSN<-stack(TW1N,TW2N,TW3N,TW4N,TW5N,TW6N,TW7N,TW8N) 

 

MaxPerc <- function(x, ...){ 

  if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA 

  if(all(x==0)) return (0)  # if all layers are 0 return 0,  

  which.max(x) 

} 

 

####  Weighted Voting map:#### 

WV <- calc(TWSN, MaxPerc) 

writeRaster(WV, filename = "MapWV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

####returns instead of class value, the weights used in weighted voting#### 

MaxWeights <- function(x, ...){ 

  if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA 

  max(x) # check which layer has the highest value, then returns value (which=probability) 

} 
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WN <- calc(TWSN, MAxWeights) 

writeRaster(WN, filename = "WeightsWV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# Shannon Entropy in bits (base 2 log) for voting 

logSpecial <- function(x) ifelse(x==0, 0, log(x, 2))  # dealing with log(0) 

Shannon <- function(x, ...){ 

  vec2 <- lapply(x, FUN=function(x) sum((logSpecial(x) * -x)) ) 

  sum(unlist(vec2)) 

} 

InformationEntropyWV <- calc(TWSN, Shannon) 

writeRaster(InformationEntropyWV, filename = "InformationEntropyWV_SA.tif", format = "GTiff", 

overwrite = TRUE) 

8.1.5.  Probability voting 

F <- raster("C:\\...\\FROMGLCNG8.tif") 

G <- raster("C:\\...\\GlobcoverG8.tif") 

L <- raster("C:\\...\\LCCCIG8.tif") 

M <- raster("C:\\...\\MODISG8.tif") 

 

ST <- stack(F, G, L, M) 

CSVF <- read.csv("Fp.csv")  (Table 14 section 4.2.3) 

CSVG <- read.csv("Gp.csv")  (Table 14 section 4.2.3) 

CSVL <- read.csv("Lp.csv")  (Table 14 section 4.2.3) 

CSVM <- read.csv("Mp.csv")  (Table 14 section 4.2.3) 

 

##Probability voting##  

for(i in 1:8){ 

  assign(paste('TP', i, sep=''),  

           calc(ST, fun=function(x) CSVF[x[1],i]) *  

           calc(ST, fun=function(x) CSVG[x[2],i]) *  

           calc(ST, fun=function(x) CSVL[x[3],i]) *  

           calc(ST, fun=function(x) CSVM[x[4],i])) 

} 

 

####Stack 8 resulting maps#### 

TPS<-stack(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8) 

TPT <- sum(TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8) 

TP1N <- TP1/TPT 

TP2N <- TP2/TPT 

TP3N <- TP3/TPT 

TP4N <- TP4/TPT 

TP5N <- TP5/TPT 

TP6N <- TP6/TPT 

TP7N <- TP7/TPT 

TP8N <- TP8/TPT 

####Stack 8 normalised resulting maps#### 

TPSN<-stack(TP1N,TP2N,TP3N,TP4N,TP5N,TP6N,TP7N,TP8N) 
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MaxProb <- function(x, ...){ 

  if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA 

  which.max(x) # check which layer has the highest value, then return layer nr (which=landclass) 

  } 

PV <- calc(TPSN, MaxProb) 

writeRaster(PV, filename = "MapPV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

####returns instead of class, the probabilities used in probability voting#### 

#Probabilities <- function(x, ...){ 

  #if(any(is.na(x))) return(NA) # return NA if any(!) maps have NA 

    #max(x) # check which layer has the highest value, then returns value (which=probability) 

} 

#PN <- calc(TPSN, Probabilities) 

#writeRaster(PN, filename = "ProbabilitiesPV_SA.tif", format = "GTiff", overwrite = TRUE) 

 

# Shannon Entropy in bits (base 2 log) for voting 

logSpecial <- function(x) ifelse(x==0, 0, log(x, 2))  # dealing with log(0) 

Shannon <- function(x, ...){ 

  vec2 <- lapply(x, FUN=function(x) sum((logSpecial(x) * -x)) ) 

  sum(unlist(vec2)) 

} 

InformationEntropyPV <- calc(TPSN, Shannon) 

writeRaster(InformationEntropyPV, filename = "InformationEntropyPV_SA.tif", format = "GTiff", 

overwrite = TRUE) 

8.1.6.  External validation 

polygons <- readShapePoly("Reference dataset.shp") 

#querying 

fullimage <- raster("ASSESSED LCMAP.tif") 

fullimage@data 

#project polygon 

polygons@proj4string <- fullimage@crs 

 

#start preparing query 

extr_data <- extract(fullimage, polygons) 

extr_data_center<-extract(fullimage, coordinates(polygons))#in case you want the landcover of the 

point locations 

 

#majority, count, fraction, anyclass 

majority <- unlist(lapply(extr_data, modal)) 

 

## add to the reference  polygons 

polygons$gl_maj<-majority 

polygons$gl_cent<-extr_data_center 

 

##write everything back to the shapefile. 

writeOGR(polygons, ".", "FROMGLCNG8_E_extract", driver="ESRI Shapefile")  
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8.2. Original legends, harmonization and LC occurrences in initial voting 

This section presents the tables that hold the thematic harmonization of LC data and the LC occurrences in initial voting. 

8.2.1.  Thematic harmonization 

Table 27: Thematic harmonization of LC classes 1, and 2 

Harmonized LC data FROM-GLC GLC2000 Geo-wiki Globcover GLCNMO 

IGBP/ 
MODIS/ 
VIIRS LC-CCI 

Harmonized legend 

no LC class no LC class no LC class no LC class no LC class no D LC class no LC class no LC class LCCS 

1 Trees (all 
sort of trees) 

A12-
A3 
and  
A24-
A3.A
20.B2 

20 20 Forest 
(20/21 
Broadleave, 
20/22 
Needleleave, 
20/23 Mixed, 
20/24 
Orchard) 

1, 
2, 
3, 
4, 5 

Evergreen 
Needleleaf, 
Evergreen 
broadleaf, 
Deciduous 
Needleleaf 
Trees, 
Deciduous 
Broadleaf 
Trees, 
Mixed/Other 
Trees 

1 1 Tree 
cover 

40, 
50, 
60, 
70, 
90, 
100
, 
110
, 
120
, 
160
, 
170 

40 Closed to open (>15%) 
broadleaved evergreen or semi-
deciduous forest (>5m); 50 
Closed (>40%) broadleaved 
deciduous forest (>5m); 60 Open 
(15-40%) broadleaved; 
deciduous forest/woodland 
(>5m); 70 Closed (>40%) 
needleleaved evergreen forest 
(>5m); 90 Open (15-40%) 
needleleaved deciduous or 
evergreen forest (>5m); 100 
Closed to open (>15%) mixed 
broadleaved and needleleaved 
forest (>5m); 110 Mosaic forest 
or shrubland (50-70%) / 
grassland (20-50%); 120 Mosaic 
grassland (50-70%) / forest or 
shrubland (20-50%); 160 Closed 
to open (>15%) broadleaved 
forest regularly flooded (semi-
permanently or temporarily) - 
Fresh or brackish water; 170 
Closed (>40%) broadleaved 
forest or shrubland permanently 
flooded - Saline or brackish 
water 

1, 
2, 
3, 
4, 5 

1 Broadleaf 
Evergreen 
Forest; 2 
Broadleaf 
Deciduous 
Forest; 3 
Needleleaf 
Evergreen 
Forest; 4 
Needleleaf 
Deciduous 
Forest; 5 
Mixed 
Forest 

1, 
2, 
3, 
4, 
5, 
8, 9 

1 Evergreen 
Needleleaf 
 forest; 2 
Evergreen 
Broadleaf 
Forest; 3 
Deciduous 
Needleleaf 
forest; 4 
Deciduous 
Broadleaf 
Forest; 5 
Mixed 
Forest; 8 
Woody 
Savanna; 9 
Savanna 

50, 
60, 
70, 
80, 
90, 
100, 
110, 
160, 
170 

50 Tree cover, 
broadleaved, evergreen, 
closed to open (>15%); 60 
Tree cover, broadleaved, 
deciduous, closed to open 
(>15%); 70 Tree cover, 
needleleaved, evergreen, 
closed to open (>15%); 80 
Tree cover, needleleaved, 
deciduous, closed to open 
(>15%); 90 Tree cover, 
mixed leaf type 
(broadleaved and 
needleleaved); Mosaic tree 
and shrub (>50%) / 
herbaceous cover (<50%); 
110 Mosaic herbaceous 
cover (>50%) / tree and 
shrub (<50%); 160; Tree 
cover, flooded, fresh or 
brakish water; 170 Tree 
cover, flooded, saline 
water 

2 Shrubs A12-
A4.A
20.B3 

40 40 Shrub 6 Shrubs 2 2 Shrub 
cover 

130 130 Closed to open (>15%) 
(broadleaved or needleleaved, 
evergreen or deciduous) 
shrubland (<5m) 

7 7 Shrub 6, 7 6 Closed 
Shrubland; 7 
Open 
Shrubland  

120 120 Shrubland 
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Table 28: Thematic harmonization of LC classes 3,4 and 5 

Harmonized LC data FROM-GLC GLC2000 Geo-wiki Globcover GLCNMO 
IGBP/MODIS/ 

VIIRS LC-CCI 

Harmonized legend 

no LC class no LC class no LC class no LC class no LC class no D LC class no LC class no LC class LCCS 

3 Herbaceous 
vegetation 

A12-
A2.A
20.B
4 

30 30 Grass  
( 30/31 
Managed & 
30/32 Nature) 

7 Herbaceous 
vegetation 

3 3 Herbaceous 
vegetation / 
Grassland 

30, 
14
0 

30 Mosaic vegetation 
(grassland/shrubland/f
orest) (50-70%) / 
cropland (20-50%); 
140 Closed to open 
(>15%) herbaceous 
vegetation (grassland, 
savannas or 
lichens/mosses) 

8 8 
Herbaceous 

10 10 Grasslands 40, 
130, 
140 

40 Tree cover, 
broadleaved, 
evergreen, closed to 
open (>15%); 130 
Grassland; 140 
Lichens and mosses 

4 Cultivated 
and 
managed 
vegetation / 
agriculture 
(incl. 
mixtures) 

A11 
and 
A23 

10 10 Cropland 
(10/11 Rice, 
10/12 
Greenhouse, 
10/13 Other) 

8 Cultivated 
and 
managed 
vegetation / 
agriculture 
(incl. 
mixtures) 

4 4 Cultivated 
and managed 
/ Cropland 

11, 
14, 
20 

11 Post-flooding or 
irrigated croplands (or 
aquatic); 14 Rainfed 
croplands; 20 Mosaic 
cropland (50-70%) / 
vegetation 
(grassland/shrubland/f
orest) (20-50%) 

11, 
13 

11 
Cropland; 
13 
Cropland / 
Other 
Vegetation 
Mosaic 

12, 
14 

12 Cropland; 
14 Cropland 
/Natural 
vegetation 

10, 
20, 
30 

10 Cropland, 
rainfed; 20 
Cropland, irrigated 
or post‐flooding; 30 
Mosaic cropland 
(>50%) / natural 
vegetation (tree, 
shrub, herbaceous 
cover) (<50%) 

5 Other 
shrub/herba
ceous 
vegetation 

A24-
A2 
and 
A24-
A4 

50, 
70 

50 Wetlands 
(30/51 Grass 
& 90/52 Silt) 
; 70 Tundra ( 
40/71 Shrub 
& 30/72 
Grass) 

9 Other 
shrub/herba
ceous 
vegetation 

6 6 Regularly 
flooded / 
wetland 

18
0 

180 Closed to open 
(>15%) grassland or 
woody vegetation on 
regularly flooded or 
waterlogged soil - 
Fresh, brackish or 
saline water 

    11 11 Permanent 
Wetlands 

180 180 Shrub or 
herbaceous cover, 
flooded, 
fresh/saline/brakish 
water 
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Table 29: Thematic harmonization of LC classes 6, 7 and 8 

Harmonized LC data FROM-GLC GLC2000 Geo-wiki Globcover GLCNMO 
IGBP/MODIS/ 

VIIRS LC-CCI 

Harmonized legend 

no LC class no LC class no LC class no LC class no LC class no D LC class no LC class no LC class LCCS 

6 Urban/built 
up 

B15 80 80 Impervious ( 
80/81 High albedo, 
80/82 Low albedo) 

10 Urban/built 
up 

7 7 Urban 
/ built 
up 

190 190 Artificial 
surfaces and 
associated areas 
(Urban areas 
>50%) 

18 18 Urban 13 13 Urban and 
Built Up 

190 190 Urban areas 

7 Water, 
permanent 
Snow and 
Ice 

B27-
A1, 
B27-
A2, 
B27-
A3, 
B28-
A1, 
B28-
A2, 
B28-
A3 

60, 
10
0 

60 Water (60/61 
Lake, 60/62 Pond, 
60/63 River, 60/64 
Sea) ; 100 
Snow/Ice (100/101 
Snow & 100/102 
Ice) 

11, 
13 

Open water; 
Snow and 
Ice 

8, 
10 

8 Snow 
and ice; 
10 Open 
water 

210, 
220 

210 Water bodies; 
220 Permanent 
snow and ice 

19, 
20 

19 Snow / Ice; 
20 Water 
bodies 

15, 
17 

15 Snow and 
Ice; 17 Water 
bodies 

210, 
220 

210 Water bodies; 
220 Permanent 
snow and ice 

8 Barren B16 
and 
A12-
A1A
14, 
A12-
A2A
14 

90 90 Bareland (90/91 
Saline-Alkali, 
90/92 Sand, 90/93 
Gravel, 10/94 Bare 
Cropland, 90/95 
Dry river/lake bed, 
90/96 Other) 

12 Barren 9 9 Barren 150 150 Sparse (<15%) 
vegetation; 200 
Bare areas 

10, 
16, 
17 

10 Sparse 
vegetation; 16 
Bare area, 
consolidated 
(gravel,rock); 
17 Bare area, 
unconsolidated 
(sand) 

16 16 Barren or 
Sparseley 
Vegetated 

15, 
20 

150 Sparse 
vegetation (tree, 
shrub, herbaceous 
cover) (<15%); 
200 Bare areas 
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8.2.2.  LC classes occurrences of LC input maps in initial voting 

Table 30: Class occurrences of FROM-GLC and Globcover (2009) in initial voting its conditions 

 

Pixels  

Initial 

Voting 

FROM-GLC in Votes  Globcover (2009) in Votes  

Agrees 3 agree 2 agree Disagree Agrees 3 agree 2 agree Disagree  

10 20 30 0 10 20 30 0 

All 1/tm 8   78252697 49700895 5590350 2830974 20130478 49700895 12158805 5291816 11101181 

Separate classes:  

Trees  1 9163819 4421809 2288646 894363 - 4421809 1947641 821846 - 

Shrubs 2 956572 54273 313220 406378 - 54273 202386 186705 - 

Herbaceous vegetation 3 3907952 369064 689987 728303 - 369064 1690876 787148 - 

Cultivated and managed vegetation / agriculture  4 13852954 2440157 1363298 363108 - 2440157 7179440 2608809 - 

Other shrub/herbaceous vegetation 5 49649 54 1580 16962 - 54 1321 31151 - 

Urban/built up 6 983353 149761 110215 54222 - 149761 326616 140472 - 

Water, Snow and Ice 7 42744471 42237333 397812 68457 - 42237333 350822 42851 - 

Barren 8 1255375 28444 425592 299181 - 28444 459703 672834 - 

Tie, two maps disagree (2x) -1 4158335 - - -   - - - - 

Tie: all maps disagree -2 1180217 - - -   - - - - 

  

Percentages 

  

  

Total  

Voting 

FROM-GLC in Votes  Globcover (2009) in Votes  

10 20 30 0 10 20 30 0 

All 1/tm 8   100 63,51 7,14 3,62 25,72 63,51 15,54 6,76 14,19 

Separate classes:  

Trees  1 100 48,25 24,97 9,76 - 48,25 21,25 8,97 - 

Shrubs 2 100 5,67 32,74 42,48 - 5,67 21,16 19,52 - 

Herbaceous vegetation 3 100 9,44 17,66 18,64 - 9,44 43,27 20,14 - 

Cultivated and managed vegetation / agriculture  4 100 17,61 9,84 2,62 - 17,61 51,83 18,83 - 

Other shrub/herbaceous vegetation 5 100 0,11 3,18 34,16 - 0,11 2,66 62,74 - 

Urban/built up 6 100 15,23 11,21 5,51 - 15,23 33,21 14,29 - 

Water, Snow and Ice 7 100 98,81 0,93 0,16 - 98,81 0,82 0,10 - 

Barren 8 100 2,27 33,90 23,83 - 2,27 36,62 53,60 - 
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Table 31: Class occurences of LC-CCI (2010) and MODIS5 (2010) in initial voting and its conditions 

  

  

Pixels 

Initial 

Voting 

LC-CCI (2010) in Votes  MODIS5 (2010) in Votes  

Agrees 3 agree 2 agree Disagree Agrees 3 agree 2 agree Disagree  

10 20 30 0 10 20 30 0 

All 1/tm 8   78252697 49700895 12818931 5349880 10382991 49700895 12220296 4428242 11903264 

Separate classes:  

Trees  1 9163819 4421809 2492586 797873 - 4421809 2363422 908408 - 

Shrubs 2 956572 54273 252152 186271 - 54273 249623 346990 - 

Herbaceous vegetation 3 3907952 369064 1861235 989499 - 369064 1617286 666570 - 

Cultivated and managed vegetation / agriculture  4 13852954 2440157 6975178 2275234 - 2440157 7531066 2212455 - 

Other shrub/herbaceous vegetation 5 49649 54 2256 38973 - 54 1791 7472 - 

Urban/built up 6 983353 149761 389150 425589 - 149761 346515 265237 - 

Water, Snow and Ice 7 42744471 42237333 396919 81687 - 42237333 64398 14647 - 

Barren 8 1255375 28444 449455 554754 - 28444 46195 6463 - 

Tie, two maps disagree (2x) -1 4158335 - - -   - - - - 

Tie: all maps disagree -2 1180217 - - -   - - - - 

 

Percentages  

Initial 

Voting 

LC-CCI (2010) in Votes  MODIS5 (2010)in Votes  

10 20 30 0 10 20 30 0 

All 1/tm 8   100 63,51 16,38 6,84 13,27 63,51 15,62 5,66 15,21 

Separate classes:  

Trees  1 100 48,25 27,20 8,71 - 48,25 25,79 9,91   

Shrubs 2 100 5,67 26,36 19,47 - 5,67 26,10 36,27   

Herbaceous vegetation 3 100 9,44 47,63 25,32 - 9,44 41,38 17,06   

Cultivated and managed vegetation / agriculture  4 100 17,61 50,35 16,42 - 17,61 54,36 15,97   

Other shrub/herbaceous vegetation 5 100 0,11 4,54 78,50 - 0,11 3,61 15,05   

Urban/built up 6 100 15,23 39,57 43,28 - 15,23 35,24 26,97   

Water, Snow and Ice 7 100 98,81 0,93 0,19 - 98,81 0,15 0,03   

Barren 8 100 2,27 35,80 44,19 - 2,27 3,68 0,51   

  



 

 


