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Abstract

In this thesis we study the plasmonic properties and alloying process of metallic nanoparticles (NPs) by means of
experiments and calculations. Specifically, we mainly focus on Au nanorods (NRs) and bimetallic Au-Ag core-shell
or alloyed NRs. Firstly, Mie-Gans theory, modified to fit our needs, was employed to analytically calculate extinction
cross sections for these systems. We found that alloyed NRs had a relatively bad plasmonic performance compared
to pure Au NRs. Subsequently, we studied the radiative decay of the localized surface plasmon resonance (LSPR) of
metal NPs using finite-difference time-domain (FDTD) calculations and discovered a dependence on resonance energy
and dielectric constant of the medium for various metals, including a reduced radiative decay rate at resonance energies
for which interband transitions occur. Furthermore, we analyzed experimental ensemble extinction spectra by using our
knowledge of Mie-Gans modelling and damping mechanisms, and determined important parameters from the extinction
spectrum like the aspect ratio distribution and sample concentration. By comparing the extracted results with proven
characterization methods, the accuracy and limits of this approach were investigated.

In the second part of the thesis we employed the from calculations obtained knowledge to analyze measurements
on silica-coated Au-Ag core-shell and alloyed NRs. Core-shell NRs were first synthesized and then characterized via
transmission electron microscopy (TEM) and visible-near infra-red (vis-NIR) Fourier Transform Infra-red (FTIR) spec-
troscopy. With the synthesized silica-coated Au-Ag core-shell NRs we studied the alloying process of Au-Ag NRs with
thermal heating experiments, that we followed in-situ with vis-NIR FTIR spectroscopy. From these measurements we
determined activation energies (EA) for diffusion in the NRs that were two to three times lower than the activation ener-
gies for Au and Ag atoms in bulk Au-Ag alloys. To determine whether the alloying process depends on the shape of the
NPs, we compared nanospheres and NRs of the same volume and Au-Ag composition in in-situ heating experiments in an
electron microscope. No difference in alloying temperature was observed, indicating that the NR shape did not facilitate
the alloying process.
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1 INTRODUCTION

1 Introduction

Metals are very common in our everyday lives and are known for conducting electricity well. Metals are good conductors
because the electrons are not tightly bound to their respective atom cores. The electrons are free to move around the metal
and can be manipulated by e.g. applying a voltage. An electromagnetic wave such as a light wave can also manipulate
these free charges. In order to make use of this manipulation, it is possible to make metal NPs that have dimensions
much smaller than the wavelength of light, which is on the order of 500-1000 nm. In fact, the size of these NPs is around
the penetration depth of an electromagnetic field in a metal, which is around 20 nm for noble metals at a wavelength of
500 nm. It is the size that results in different properties of these NPs compared to bulk metals. One of these properties
is related to the response of the free electrons in such a NP to an incoming light wave. Since metal NPs are significantly
smaller than optical wavelengths, all electrons in the metal are affected by the electric field component of a light wave.
The charges are separated due to the electric field, which results in a restoring force which attempts to restore the charge
distribution. When the eigenfrequency of this restoring force matches the frequency of the incoming light, the electron
oscillation is in resonance. At this resonance wavelength a localized surface plasmon resonance (LSPR) occurs. It is this
resonance behaviour that causes interesting optical properties. When an incoming light wave interacts with the metal NP,
strong scattering and absorption of light happens at the resonance wavelength. The scattering and absorption is especially
strong in noble metals, like gold and silver.

Interestingly, the LSPR was already made use of as far back as the Roman era. Albeit unknowingly, they used the plasmon
effect of Au NPs to make a bright red colour in glass-stained windows and cups. The interest of scientists in plasmons
resonances dates back to the beginning of the twentieth century, when in 1908 Gustav Mie solved Maxwell’s equations
analytically for the interaction of an electromagnetic plane wave with a spherical NP.1 In 1912 Richard Gans expanded on
Mie’s theory by solving Maxwell’s equations for small anisotropic spheroidal NPs.2 Experimental characterization of the
plasmon resonance of small Au and Ag spherical NPs was not achieved until 1970 by Kreibig and Zacharias.3 The interest
in plasmonic NPs was revitalized when synthesis methods improved. This allowed more complex metal nanostructures to
be made, such as NRs,4–6 nanoprisms,7–9 bipyramids5 and nanoshells.10

The increased availability of various shapes has sparked scientific interest in metal NPs due to their tunable optical and
photothermal properties, stemming from LSPRs. These resonances can be tuned by changing the size, shape, dielectric
environment and composition of the NP.11–13 Specifically, the NR shape is of great interest. NRs have a transverse LSPR
along the short axes of the NR and a longitudinal LSPR along the long axis of the NR. The longitudinal LSPR can be
tuned with the aspect ratio and spans the visible until the near-infrared (NIR) region of the spectrum for noble metal NRs.
Metal nanorods are superior to metal nanospheres as their plasmonic properties are stronger, leading to sharper and more
intense plasmon resonance peaks. They consequently also exhibit stronger local field enhancements near the surface of
the NP, especially at the tips.

From all metals, Ag has the least lossy plasmonic properties in the ultraviolet and visible regime due to low intrinsic
damping,14–18 but Au NPs are most often used, because Au is more chemically stable than Ag. For that reason, especially
Au NRs are employed in a wide variety of applications. For example, 5-dimensional optical data storage with Au NRs
makes use of the wavelength tunability and the polarization dependence of the LSPR of the NRs.19 Furthermore, small
deviations in parameters that shift the resonance wavelength, such as the dielectric environment around metal NRs, are
accurately detectable, which makes them particularly suitable for sensing applications where small amounts of analytes
bind to the surface of a NR.20 Interestingly, the large electric field enhancements that are a result of the plasmon resonance
are especially useful for surface-enhanced Raman scattering (SERS)21 and photovoltaics.22

An understanding of the decay channels of the LSPR is important for applications, as the decay of the LSPR determines
how sharp and intense the plasmon resonance peak is. We can distinguish bulk damping and size-dependent damping
mechanisms of the LSPR in plasmonic NPs. Electron-surface scattering is an important damping mechanism for sizes
below 20 nm, whereas radiation damping is the cause of size-dependent dephasing at sizes above 20 nm. How these
size-dependent damping mechanisms are influenced by parameters such as shape and resonance energy is not yet clear.
Specifically, the radiation damping of the LSPR, which occurs, amongst others, due to photon emission of the radiative
dipole, is not yet fully understood.

Bimetallic Au-Ag alloyed NPs combine the good plasmonic properties of Ag with the stability of Au. The composi-
tion can be used to have additional tunability of the LSPR frequency. Furthermore, Au-Ag alloyed NPs are interesting for
catalysis, as it was shown that Au-Ag alloyed NPs with both atom species available as active sites were more catalytically
active for e.g. CO conversion than either Au or Ag monometallic NPs.23 They could also be useful in photocatalysis were
the LSPR is used to enhance the catalytic activity.24 Ideally, the stability of Au and the good plasmonic performance of
Ag is combined in a NR shape, as recently synthesized by Albrecht and Van der Hoeven et al.25 The influence of size,
shape and Au/Ag ratio on the alloying process has not yet been investigated.
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1 INTRODUCTION

In this thesis, we use a combination of calculations and experiments to look at several aspects of metal NPs. In chapter
2, we delve into the theory of plasmonics and employ analytical modelling of plasmon resonances with Mie-Gans theory
to get a good perception of the factors that influence the plasmonic properties of metal NPs. The influences of the sur-
rounding medium, as well as the size and shape of single metal NPs on the plasmon resonance are investigated from a
modelling point of view. Furthermore, we study the influence of the composition of bimetallic NPs on the plasmon reso-
nance. More specifically, the plasmonic properties of Au-Ag core-shell and alloyed NPs are reviewed. Chapter 3 provides
a systematic study of the radiative decay of the plasmon resonance of Au, Ag, Cu and Al NPs with FDTD calculations.
In chapter 4 we look to improve the characterization of plasmonic NP samples by combining extinction spectroscopy and
Mie-Gans theory to extract useful information from ensemble extinction measurements. We discuss the obtained aspect
ratio distributions and concentrations by comparing them to known characterization methods. We also determine the de-
phasing of the LSPR due to electron-surface scattering from inhomogeneously broadened ensemble spectra. In chapter 5
we study the influence of size, shape and Au/Ag ratio on the alloying process of Au-Ag NRs. We synthesized Au-Ag NRs
coated with mesoporous silica and use them for heating experiments. First we thermally heated the NRs and followed the
alloying process in-situ with extinction spectroscopy measurements. Second, in-situ heating measurements in the electron
microscope were conducted for Au-Ag nanorods and nanospheres. The third experiment revolved around the heating of
Au-Ag NRs by excitation with a femtosecond laser. Finally, chapter 6 provides a summary of this thesis and an outlook
is given as well.
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2 THEORY & MODELLING OF PLASMONS

2 Theory & modelling of plasmons

2.1 Plasmons
A plasma is a large number of freely moving charged particles i.e. electrons in a metal. A plasmon is a quantum of plasma
oscillation. They mainly exist in metals as collective oscillations of conduction electrons. There are different types of
plasmons: bulk, surface and localized surface plasmons. Bulk plasmons are collective oscillations of electrons in the bulk
of the metal. A simple model to describe the behaviour of bulk plasmons is the free electron model,26 which models the
plasmon as an electron cloud that freely propagates over a background of positively charged atom cores. We can define
the equation of motion for each electron in the oscillation due to a time-dependent electric field, oscillating at frequency
ω , EEE(t) =E0E0E0eiωt as

mẍ̈ẍx(t) =−mγẋ̇ẋx(t)− eEEE(t) (2.1)

where m and e are the electron mass and charge respectively, xxx(t) is the displacement of an electron from their equilibrium
position and γ is the intrinsic damping of the metal, due to electrons scattering off of phonons, defects, impurities or
other electrons, which happens with a characteristic rate γ = 2/T , where T is the relaxation time. The solution to the free
electron model is given by

xxx(t) =
e

m(ω2 + iγω)
EEE(t) (2.2)

Due to the displacement of the electrons relative to the atom cores there is a polarization PPP = −nexxx, with n the electron
density. As a consequence of the polarization the electrons must be displaced once more. The dielectric displacement DDD
is defined as

DDD = ε0EEE +PPP = ε0εEEE (2.3)

where ε is the dielectric function, which is an important property of a metal as it determines the response of electrons to
an electric field. We can write the dielectric function ε in terms of the dielectric constant of vacuum ε0, the electric field
EEE and the polarization PPP

ε(ω) = 1+
PPP

ε0EEE
= 1−

ω2
p

ω2 + iγω
(2.4)

where the plasmon frequency ωp is a material property and is defined as

ωp =

√
ne2

ε0m
(2.5)

For most metals, the plasma frequency ωp lies in the ultra-violet regime (5−15eV ), which is the frequency at which the
collective longitudinal excitation mode would be formed. We revisit the plasma frequency of metals in more details when
we explore the influence of a material’s dielectric function on plasmons.

Surface plasmon polaritons are electromagnetic excitations that propagate along the interface between a metal and a
dielectric medium. An electromagnetic wave propagates in the dielectric medium, whereas an oscillating electron plasma,
the surface plasmon, resides in the metal. The field in the dielectric medium typically has a penetration depth of λ/2,
while for the metal the penetration depth is determined by the skin depth, which is of the order of 20 nm for plasmonic
materials in the visible light regime.

For metallic NPs with sizes of the order of the skin depth of the metal, all the electrons in the NP are shifted by an
electric field (Figure 2.1). As a result the charge distribution in the NP is inhomogeneous. A restoring force, due to
positive lattice ions attracting the built-up negative charge, attempts to restore charge homogeneity. When the frequency

Figure 2.1: The shifting of conduction electrons in a NP by the electric field of the light.27
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2.2 The dielectric function and plasmon resonance decay 2 THEORY & MODELLING OF PLASMONS

of the excitation light is in resonance with the eigenfrequency of the restoring force, a strong oscillation occurs, which is
known as the localized surface plasmon resonance (LSPR). This behaviour is well modelled by a driven, damped harmonic
oscillator,

mẍ̈ẍx(t) =−Kxxx(t)−mγẋ̇ẋx(t)− eEEE(t) (2.6)

where K = mω2
0 and ω0 is the eigenfrequency of the restoring force. As it is a driven, damped oscillator, the solution we

seek is the non-decaying particular solution, which is independent of the initial conditions. Complex variables will be
used to obtain the particular solution. We therefore use z as a variable, where xxx(t) = Re[zzz(t)]. The equation of motion is
now

mz̈̈z̈z(t) =−Kzzz(t)−mγż̇żz(t)− eE0E0E0eiωt (2.7)

With zzz(t) = z0z0z0eiωt as a solution, we solve for z0z0z0:

z0z0z0 =
eE0E0E0/m

(ω2
0 −ω2)+ iγω

=
eE0E0E0

m
(ω2

0 −ω2)− iγω

(ω2
0 −ω2)2 + γ2ω2 (2.8)

Rewriting z0z0z0 in polar coordinates gives

z0z0z0 =
eE0E0E0

m

√
(ω2

0 −ω2)2 + γ2ω2

(ω2
0 −ω2)2 + γ2ω2 eiφ =

eE0E0E0

m
1√

(ω2
0 −ω2)2 + γ2ω2

eiφ (2.9)

with φ the phase of the oscillation, where

tan(φ) =
γω

ω2
0 −ω2 (2.10)

The real displacement xxx(t) is now given by xxx(t) = Re[zzz(t)] = Re[z0z0z0eiωt ] as

xxx(t) =
eE0E0E0

m
1√

(ω2
0 −ω2)2 + γ2ω2

cos(ωt +φ) (2.11)

Equation 2.11 confirms that the amplitude is highest when the frequency of the incoming light wave equals the eigenfre-
quency of the restoring force: ω = ω0. The resonance frequency is therefore mainly determined by the strength of the
restoring force, which depends on the separation between the surface charges (size and shape) and the polarizability of
the material the NP is made of as well as its surrounding medium.

To investigate the lineshape we expect in the frequency domain for LSPRs, we consider a decaying oscillation with
eigenfrequency ω0 described by A(t) = A0 cos(ω0t)e−γt . The Fourier transform gives

A(ω) = F (A(t)) = A0

√
2
π

γ

(ω−ω0)2 + γ2 (2.12)

which is a so-called Lorentzian lineshape. Equation 2.12 is characterized by the resonance frequency ω0 and the full-
width-at-half-maximum (FWHM). It can be shown that half of the maximum value of a Lorentzian lineshape is reached
at |ω−ω0|= γ/2, so the FWHM is described by the parameter γ , which is called the damping facto.28

2.2 The dielectric function and plasmon resonance decay
2.2.1 The dielectric function

It is good to explore what happens when light interacts with such a plasmonic NP. The plasmon has a dipolar character,
because electrons are shifted to one side of the NP, giving that side a negative charge and the opposite side a positive
charge. At the LSPR frequency, the incoming light is absorbed and scattered strongly due to this dipolar character. In
order to fully describe plasmon resonances, a description of how a NP of a certain metal interacts with light is required.
From the free electron model, we learnt that the influence of both an incoming field and the induced polarization could be
described by the dielectric function in Eq. 2.4. Therefore, we will closely examine the dielectric function to describe the
interaction of a metal NP with incoming light.

The dielectric function can be split in a real and imaginary part. The real part is related to the energy stored in the
metal and describes how easily the metal is polarized and needs to be negative for a plasmon to exist in the material. The
imaginary part is related to the loss of energy in the metal and describes the damping of the plasmon. For well-performing
plasmonic materials, we therefore require the ratio of real and imaginary part of the dielectric function to be as high as
possible. For this ratio to be high, the material needs to be easily polarizable and the loss of energy, i.e. damping, in the

5



2.2 The dielectric function and plasmon resonance decay 2 THEORY & MODELLING OF PLASMONS

material must be minimized. The polarization, determined by the real part of the dielectric function, is just an energy-
dependent material property, whereas damping can depend on multiple factors for plasmonic NPs, as we explore later.

We can write the dielectric function in two parts, namely the dielectric function due to interband transitions and due
to intraband transitions.

ε(ω) = εintra(ω)+ εinter(ω) (2.13)

The interband contribution to the dielectric function is caused by transitions of electrons between the d-band of a metal
and the conduction band with the energy absorbed from the incoming light wave. This contribution is normally modelled
by using Lorentzian oscillators14, 29, 30 and is negligible when the incoming photons do not have sufficient energy for
interband excitations (e.g. below 1.8 eV for Au and 3.5 eV for Ag). Intraband damping is caused by the nearly-free
electrons in a metal scattering off of other electrons, phonons, impurities and defects and is described by the Drude free
electron model. The dielectric function of a bulk metal is thus given by

ε(ω) = ε∞−
ω2

p

ω2 + iγω
+ εinter(ω) (2.14)

Here, ε∞ is the contribution to the dielectric function from high-energy transitions. The material-dependent electron
plasma frequency is given by ωp, which is, as derived previously, related to the electron density n, the charge of an
electron e and the effective mass of the electron m via

ω
2
p =

ne2

ε0m
. (2.15)

The plasma frequency ωp is the typical electrostatic oscillation frequency of electrons in a certain material in response
to a charge separation and is partly responsible for the restoring force. It is therefore obvious that the material’s plasma
frequency plays a crucial role in the LSPR of a metal NP.

2.2.2 Damping mechanisms

The damping factor γ does not only depend on the metal for NPs, but also on the size and shape of the NP. We can define
a size-dependent dielectric function, in which this damping factor has multiple contributions.

γ = γb + γs + γr (2.16)

Here, γb is the bulk damping, γs the electron-surface scattering and γr the radiation damping. The bulk damping γb de-
scribes the intrinsic damping that is also present in bulk material, like interband damping and intraband damping. The
intraband contribution to the bulk damping is related to the mean free path l of electrons in the metal by vF/l, where vF is
the material-dependent Fermi velocity.

For bulk gold, the electron mean free path at room temperature is around 20 nm. An electron-surface scattering con-
tribution γs comes into play when the effective mean free path of the electrons changes due to the limited size of the NP,
i.e. when it is smaller than the mean free path in the bulk metal.31 The effective mean free path is then decreased due to
electrons scattering off of the small NP’s surface. It is therefore reasonable to describe the surface-scattering contribution
in a similar way as other electron scattering contributions, which gives

γs =
AvF

le f f
(2.17)

This contribution depends on the the Fermi velocity vF , the effective mean free path of the electrons le f f and A, which
is a constant that depends on details of the electron-surface interaction. We use a description for the effective mean free
path of electrons which is derived from a billiard model, in which le f f is calculated for arbitrary shape as le f f = 4V/S,
where V is the volume and S the surface area of the particle.32, 33 The electron-surface interaction constant A has been
determined experimentally by several authors.34–40 For Au NRs of aspect ratios between 2 and 4, Novo et al.34 found
A = 0.27, which agrees with Hu et al.35 who got A = 0.30±0.03 for Au NRs of aspect ratio 3. Both values were obtained
via dark-field scattering experiments. When the dimensions of the NP are below 10 nm the energy levels of the electrons
start to be discretized by quantum effects, and this description for γs can no longer be used.41 Another surface damping
phenomenon observed in experiments is chemical interface damping (CID), which depends on the chemical species at-
tached to the interface and the charge transfer between the NP and the medium,42, 43 which is not described by Equation
2.17. To the best of our knowledge no accurate description for CID exists.

The radiation damping γr describes the damping due to electrons losing their energy via photon emission. Radiation
damping is proportional to the volume of the NP and can be described as28

γr = 2h̄κV (2.18)
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2.2 The dielectric function and plasmon resonance decay 2 THEORY & MODELLING OF PLASMONS

where h̄ = h/2π is the reduced Planck constant. Quantifying the κ parameter is a problem. A few measurements on Au
and Ag NPs were performed to quantitatively obtain κ but different values were reported. For instance, Sönnichsen et
al.28 found κ = 4× 10−7 fs−1nm−3 for spherical Au NPs. Hu et al.35 obtained κ = 6.2× 10−7 fs−1nm−3 for Au NRs
of average aspect ratio 3, while Novo et al.34 extracted κ = 7× 10−7 fs−1nm−3 for Au NRs of aspect ratios 2 to 4. For
Ag nanoprisms κ = 12×10−7 fs−1nm−3 was obtained.44 In chapter 3 we will use numerical calculations to show that κ

depends on the resonance energy of the LSPR.

2.2.3 Dielectric functions for Au-Ag alloys

We have seen that the metal and size of the NP has an influence on the dielectric function and thus on the plasmon reso-
nance. Since chapter 5 deals with alloying of Au-Ag core-shell NRs, we also investigate the influence of the composition
on the dielectric function for alloys.

The dielectric functions for noble metals are well known.16–18, 45–48 Less measurements exist for the dielectric func-
tions of alloy compositions.14, 15, 49 It has been established that a weighted average of the dielectric functions of Au and
Ag cannot reproduce the experimental ellipsometry data for alloy dielectric functions.15 Ellipsometry data measured by
Peña-Rodrı́guez et al.15 lead to a Drude model for Au-Ag alloys, where the dielectric function depends on the Au molar
fraction. Although this model only works in the energy region below interband transitions (by them reported as 3.1 eV
for Ag, 2.1 eV for Au and varying linearly between those two as a function of composition for alloys), it does give us
an analytical dielectric function to predict plasmon resonances in this region which is significant for certain applications.
Another analytical dielectric function for Au-Ag alloys was developed by Rioux and co-workers.14 This dielectric func-

Figure 2.2: a) Real and b) imaginary part of the dielectric function ε(ω) of Rioux et al.14 for Au-Ag alloys. The composition of the
alloy is characterized with the gold molar fraction (GMF). A GMF of 1 is pure gold (red) and a GMF of 0 is pure silver (purple).

tion spans the whole energy range due to the inclusion of interband transitions. It is based on the band structure of the
metals and modelled by Lorentzian oscillators.14 Their model uses a total of 10 parameters to describe the dielectric
function of the metal over an energy range from 1 to 5 eV. Due to the similar band structures of Au and Ag, Rioux et
al.14 assume the model to be identical for Au, Ag and alloy compositions. Only the parameter values in the model change
for different compositions. The smooth composition dependence of the parameters are modelled with a second-order
polynomial composition function, which is fully determined by the parameter values for pure Au, pure Ag and the 50/50
composition. This yields a complete dielectric function that depends on energy and composition with 30 variable param-
eters. We use the dielectric function of Rioux et al.14 for modelling the optical response of metal NPs throughout this
thesis. The dielectric function can be modelled for different compositions, which is shown in Figure 2.2. In these plots,
the Au molar fraction (GMF) is used to show the composition of the alloy. Pure Au has a Au molar fraction of one (red in
Figure 2.2), while pure Ag has a Au molar fraction of zero (purple).

It can be seen that the real part of the dielectric function of the pure metals and alloys do not differ overly much. Only in
the regime from 1.5 to 3.5 eV the alloys with more Ag have a significantly greater negative value for ε1, indicating that
the metal is more easily polarizable in this energy regime for those compositions. We see that between 3.8 and 4.5 eV,
the real part of the dielectric function of Ag is positive, meaning plasmons cannot exist in Ag in that energy range. The
different alloy compositions with less than 80% Ag do not have a positive real part in the energy regime shown here.
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As mentioned before, the imaginary part of the dielectric function describes the energy lost in the material and there-
fore determines the damping of the plasmon resonance. If we look at pure Au, we see that interband damping indeed
starts to play a role for energies higher than approximately 1.8 eV. For Ag this threshold is around 3.9 eV. For alloy com-
positions the onset for interband damping is less well defined, but it exists in between the threshold energies of pure
Au and Ag. For an alloy with a high molar fraction of Au (Ag) the threshold is closer to pure Au (Ag). We compare
the alloy plasmonic properties to those of Au. This is because Au is the most used metal for plasmonic NPs due to its
stability, whereas Ag is less chemically stable in most media. For energies above 1.8 eV, beyond the onset of interband
transitions for Au, the compositions that contain more Ag experience less damping. This is because the onset for inter-
band transitions only happens at higher energies for these compositions. The more Ag in the alloy, the higher the energy
needed to excite electrons from the d-band to the conduction band, which is a competing energy loss mechanism for the
plasmon. Thus, alloy compositions with more Ag have better plasmonic properties than Au in the energy regime beyond
the interband transition onset for Au at 1.8 eV. The imaginary part of the dielectric function of Au-Ag alloys also shows
that more energy is lost in alloyed NPs than Au NPs below 1.8 eV. This indicates that the plasmonic properties of alloys
in the energy regime below 1.8 eV are worse than pure Au or pure Ag. This may be due to more defects and impurities
in the alloy compositions compared to the pure metals, even though the lattice constants of Au and Ag are comparable.
The small difference in lattice constants of Au and Ag may also result in significant differences between atoms due to
loss of periodicity. The loss of periodicity in an alloy NP can be explained by the differences in electronegativity between
Au and Ag (2.54 and 1.93 respectively, in the Pauling scale).15, 50 Electronic density is transferred from Ag to Au, which
likely stresses and/or distorts the lattice, causing the additional damping.15 The most understandable way to look at these
influences on the damping of a plasmon is by looking at the behaviour of the restoring force. If there are extra defects and
impurities or extra stresses in an atom lattice, the positive atom core background is not homogeneous over the volume of
the NP. This means that every location has a different contribution to the total restoring force. The restoring force then
acts more forcefully on certain electrons and has less influence on electrons in a different part of the NP. This leads to an
inhomogeneous distribution of local plasmon frequencies. As a consequence, the dephasing of the total localized surface
plasmon resonance is much faster. We have two energy regimes. One regime below 1.8 eV where alloy compositions
generally have worse plasmonic properties than Au. In the other energy regime above 1.8 eV, the alloy compositions
perform better with high Ag fractions, due to the shift in the onset of interband transitions.

It needs to be mentioned that different ellipsometry data for alloy compositions give different dielectric functions. The
data of Peña-Rodrı́guez et al. is fairly similar to those of Rioux and coworkers.14, 15 However, the data found by Gong
et al. show suppressed energy losses of the 50/50 Au/Ag alloy composition compared to Au over the whole investigated
wavelength range (200−1000 nm).49 Thus, more research on alloy dielectric functions and alloyed NPs is needed to fully
understand the optical response of these materials.

2.3 Mie-Gans theory

In order to study the localized surface plasmon resonance (LSPR) of a NP, we need to calculate the extinction cross section
of that NP. The optical response of a metal NP is determined by Maxwell’s equations. For a spherical NP, the Maxwell
equations were solved exactly in 1908 by Mie.1 Gans extended the theory for spheroidal NPs that are much smaller than
the wavelength of the incoming light.2 Mie-Gans theory only takes the dipole term of the plasmon resonance into account,
which is applicable for NRs that have diameters smaller than 30 nm. Because the NPs are much smaller than the wave-
length of the light, the electric field can be approximated as being static. This is called the quasi-static approximation.
The main input for modelling the plasmon resonance of a NP of a certain metal is the dielectric function as it describes
the response of electrons in a metal under influence of an electric field. We use the model based on the data of Rioux et
al. to model the plasmon resonances of Au, Ag and alloy NPs.14 Other important parameters such as size, aspect ratio
and surrounding medium, which are described later, also affect the plasmon resonance. In the following, the equations
needed to accurately describe the extinction spectra of spheroidal NPs with Mie-Gans theory is given and briefly discussed.

Firstly, the polarizability of an elongated particle parallel to one of its principal axes needs to be calculated in the quasi-
static approximation.

αx =
V (ε(ω)− εm)

εm +Lx(ε(ω)− εm)
=

V
Lx +

εm
ε(ω)−εm

(2.19)

Here αx is the polarizability of the particle along a certain principal axis, V the volume, ε(ω) the dielectric function of the
metal, εm the dielectric constant of the surrounding medium and Lx the shape factor for the polarizability along the x, y or
z axis. In Mie-Gans theory for spheroids this shape factor of the long axis is related to the aspect ratio via the following
relation:

Lx =
1− e2

e2

(
1
2e

Ln
(

1+ e
1− e

)
−1
)

(2.20)
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Here e is related to the aspect ratio (AR) as

e =

√
1− 1

AR2 (2.21)

The shape factor of the shorter axes is then given by

Ly = Lz =
1−Lx

2
(2.22)

Lx is always lower than Ly and Lz. Therefore, the polarizability along the long axis of the spheroid is larger than the polar-
izability along the short axis. However, these shape factors do not correctly describe experimental NRs, since their shape
rather resembles the shape of a spherocylinder, which is a cylinder capped with hemispheres. Prescott and Mulvaney
determined corrected shape factors which can be used for better results by correlating DDA simulations and Mie-Gans
theory for these shapes.51 Due to the differences in polarizability for the long axis and the short axes, NRs have two
different LSPR modes: a longitudinal mode along the long axis of the NR and a transverse mode along the short axes of
the NR. Because of the higher polarizability of the longitudinal mode, the longitudinal LSPR is more intense and more
interesting. In this work we therefore focus on the longitudinal LSPR. By combining Mie-Gans theory with the shape
factors found by Prescott & Mulvaney we can describe the extinction cross sections of experimentally synthesized NRs
due to the longitudinal LSPR.51 Unless otherwise mentioned, we model spherocylinders for the remainder of this chapter.

The polarizability in the electrostatics approximation only gives accurate results for NPs with a radius lower than 15 nm.
For larger NPs higher order terms can be added to the polarizability to include retardation effects. Several attempts at
achieving this have been made in literature. Kuwata et al. expanded the first TM mode of the Mie formulation, which is
applicable to NPs of any shape.52 The polarizability along the long axis for NPs up to 25 nm radius is then given by

α
Kuwata
x =

V

Lx +
εm

ε(ω)−εm
+Aεmx2 +Bε2

mx4− i 4π2ε
3/2
m

3
V
λ 3

(2.23)

where x = πa/λ is the size parameter for a spheroidal NP of length a, and A and B are fit parameters. These fit parameters
determine the energy-shift due to retardation effects. The imaginary contribution to the denominator describes the radiative
damping caused by dynamics beyond the quasi-static approximation. However, the most common way to describe the
optical response of larger NPs beyond the quasi-static approximation is the Modified Long Wavelength Approximation
(MLWA), which also includes radiation damping. This approximation describes the polarizability of larger NPs as53, 54

α
MLWA
x =

αx

1− k2

4πa αx− i 1
6π

k3αx
(2.24)

where a is half the length of the NR. The second term in the denominator is due to dynamic depolarization, which red-shifts
the plasmon resonance as the NP gets bigger. The imaginary term in the denominator describes the radiative damping.
Notice that these two approximations for the polarizability, αKuwata

x and αMLWA
x , are descriptions for spheroids and cannot

be used in combination with the shape factors from Prescott et al. to describe spherocylinders.51

The wavevector for light in a surrounding medium is given by

k = 2π

√
εm

λ
(2.25)

where k is the wavevector of the light in the medium and λ the wavelength of the light in vacuum. To analyze the far-field
optical performance of NPs, the scattering and absorption cross sections need to be calculated. The scattering, absorption
and extinction spectra depend only on the wavevector and polarizability (Eq. 2.25 and 2.19, respectively). The cross
sections are given by the following equations

Csca =
k4

6π
|α|2 (2.26)

Cabs = kIm(α) (2.27)

Cext =Csca +Cabs (2.28)

where Csca, Cabs and Cext represent the scattering, absorption and extinction cross sections, respectively. Thus, the scatter-
ing cross section of the NPs depends on the absolute value of the polarizability squared, while the absorption cross section
only depends on the imaginary part of the polarizability. The bigger the particle, the more it scatters, while the relative
contribution of absorption to the total extinction diminishes.
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Figure 2.3: a) Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au NRs of aspect ratio (AR) 3 in water for different
radii (r). b) Normalized calculated extinction cross sections of a), showing the broader spectrum for the very small NP due to surface
scattering. c) The non-linear dependency of the extinction cross section peak intensity on volume (V ) due to size-dependent damping.

In order to model core-shell NRs, this procedure needs to be extended. The composition, radius and length of the shell
are additional parameters that need to be considered. The polarizability of a coated spheroid is given by30

αx, =
((εs− εm)(εs +(εc− εs)(Lc− f Ls))+ f εs(εc− εs))V

(εs +(εc− εs)(Lc− f Ls))(εm +(εs− εm)Ls + f Lsεs(εc− εs)
(2.29)

where εm is the dielectric constant of the medium, εc the dielectric function of the material in the core, εs the dielectric
function of the material in the shell, Lc the shape factor of the core along the long axis, Ls the shape factor of the shell of
the long axis and f =Vc/Vs the ratio between core and shell volumes.

2.4 Modelling plasmon resonances with Mie-Gans theory
Now that we have described all the equations related to Mie-Gans theory for NRs it is possible to calculate the localized
surface plasmon resonances. The interesting properties of the LSPRs that we can characterize are the resonance peak
position and the width of the resonance peak. These properties can be tuned by a number of parameters, which will be
discussed here.

2.4.1 Size

We have already shown that the damping factor of the dielectric function depends on size. For NPs with widths greater
than 10 nm, the radiation damping term has to be taken into account as will become evident in chapter 3. When the
size of the metal NP is comparable to or lower than the electron mean free path of the material electron scattering off
of surfaces cannot be ignored. This electron-surface scattering broadens the resonance peak and reduces its intensity.
We will include both radiative decay and electron-surface scattering for all further calculations in this chapter, with
κ = 6.2×10−7 fs−1nm−3 and A = 0.3. These values were determined in dark-field scattering experiments by Hu et al. for
NRs of aspect ratio 3.35 Figure 2.3 shows spectra calculated with shape-corrected Mie-Gans theory for Au spherocylinders
with aspect ratio 3 but various sizes. Both the resonance wavelength and the peak intensity depend heavily on size.
Dephasing due to surface scattering results in a broader resonance for the smaller size NPs. The resonance spectrum
for the NP with a 4 nm radius is more broad than the spectrum for the 6 nm radius NP, for example. Also, radiation
damping broadens the plasmon resonances for larger NPs. For example, the plasmon resonance for the 12 nm radius NP
is broadened compared to the spectrum of the 10 nm NP. This means there is an optimal radius for the NPs, for which
the combination of bulk damping, surface-scattering and radiative decay is minimized. This will be looked at in chapter
3. Due to the use of small NPs in our experiments, we do not focus on calculating extinction spectra for larger NPs. To
study these sort of NPs, the Modified Long Wavelength Approximation or numeric solving of Maxwell’s equations are
good options.

2.4.2 Dielectric constant of the medium

Next we investigate the influence of the dielectric constant of the medium εm, which is the square of the refractive index n.
The dependence of the surrounding medium on the surface plasmon resonance can be understood by studying the plasmon
resonance condition. The plasmon resonance condition says that the denominator of the polarizability in Equation 2.19
approaches zero at the plasmon resonance. For spherical NPs this condition is

Re[ε(ω)]+2εm = 0 (2.30)

where Re[ε(ω)] is the real part of the dielectric function and εm the dielectric constant of the surrounding medium. It
has been shown that the plasmon peak red-shifts roughly linearly with the refractive index of the surrounding medium for
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Figure 2.4: a) Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au NRs of aspect ratio (AR) 3 and a radius (r) of
10 nm in media of various dielectric constants (εm). b) Peak position shift with increasing dielectric constant of the medium εm.

spherical NPs53, 55

λ = λp,b

√
2n2

m +1≈
√

3λp,b(1+
1
3
(nm−1)) (2.31)

where λ is the wavelength of the localized surface plasmon resonance, λp,b the wavelength of the bulk plasmon and nm
the refractive index of the surrounding medium. It has also been shown that the plasmon resonance of a non-spherical
NP also shows a linear dependence on the refractive index of the surrounding medium.53 The resonance condition for
rod-like NPs can also be extracted from the equation for the polarizability (Eq. 2.19) and is given by

εm +Lx(ε(ω)− εm) = 0 (2.32)

The wavevector of the light in the medium k and the polarizability α of a metal NP, which are both used to calculate
the plasmon resonance, depend on the dielectric constant of the surrounding medium in our Mie-Gans calculations. We
present the calculated dependence of the LSPR of Au NRs with aspect ratio 3 and a radius of 10 nm on the medium
in Figure 2.4. A significant red-shift is observed if the dielectric constant of the medium is increased. The resonance
wavelength increases linearly with the dielectric constant of the medium εm. The intensity of the longitudinal plasmon
resonance also increases for higher dielectric constant of the medium.

Often, metal NPs are surrounded by ligands or coating like silica for stability. In our experiments in chapter 5, a meso-
porous silica coating is used. This coating has an impact on the dielectric constant of the medium and therefore on the
plasmon resonance of the metal NP. For calculations, the coating should be taken into account when using the dielectric
constant of the medium εm. Since the dielectric constant is related to the square of the refractive index, the dielectric
constant of the medium for a coated metal NP in a medium can be calculated with effective medium theory and is given
by

εm = n2
coat(1− porosity)+n2

m× porosity (2.33)

where ncoat is the refractive index of the coating, nm the refractive index of the medium and the porosity lies between 0
and 1.

2.4.3 Shape

For non-spherical NPs the plasmon resonance depends on the polarization of the incident light. This is because the
electrons are displaced perpendicular to the polarization of the light, because the electric field component of the light is
perpendicular to the polarization direction. In the following NRs are focused on due to their significance in this work. As
mentioned before, NRs have two different plasmon resonances, due to the shape of the NP. If the electrons are displaced
along the long axis, the plasmon resonance is called the longitudinal plasmon resonance. Perpendicular to this longer axis
a transverse plasmon resonance can be observed. Along the long axis, the NR has the highest polarizability, so the longi-
tudinal LSPR is more intense than its transverse counterpart and the LSPR of a sphere of the same volume. We therefore
focus on the longitudinal LSPR. The most interesting parameter for rod-like NPs is the aspect ratio AR = L/D. In Figure
2.5 the extinction spectra for Au NRs with different aspect ratios are plotted. The NRs are in water and all have a constant
volume V = 1.68× 104 nm3. When the aspect ratio increases, so does the peak intensity (Figure 2.6). This is because
the NR has a higher polarizability at higher aspect ratio which increases the extinction cross section. By looking at the
equation for the polarizability (Eq. 2.19) it can be seen that the lower the shape factor Lx, the higher the polarizability. The
shape factor decreases for higher aspect ratios, meaning a higher aspect ratio increases both the real and imaginary part of
the polarizability. Since the absolute value and the imaginary part of the polarizability increase, so will the scattering and
absorption cross sections (Eq. 2.26 and 2.27) and with that the extinction cross section (Eq. 2.28). The intensity of the
peak increases dramatically with aspect ratio in the low aspect ratio regime, due to an increased polarizability. However,
at higher aspect ratios the intensity differences are not high. This is due to extra damping at higher wavelengths, because
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Figure 2.5: Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au NRs of different aspect ratios (AR) in water for
constant volumes V = 1.68×104 nm3.

Figure 2.6: The influence of aspect ratio (AR) on a) peak intensity and b) peak position, calculated with Mie-Gans theory for the same
NRs as used in Figure 2.5.

there the imaginary part of the dielectric function for Au increases. Electrons experience more scattering in the low energy
regime, which counters the effect of the higher polarizability. The LSPR also red-shifts when the aspect ratio is increased
(Figure 2.6). This shift to larger wavelength occurs due to the larger charge separation and therefore a reduction in the
eigenfrequency of the restoring force. The peak position in the wavelength regime increases linearly with aspect ratio, as
shown in Figure 2.5b).

The aspect ratio is not the only shape related influence on the plasmon resonance. Bansal and Verma have shown that NPs
with sharp edges have better plasmonic properties.56 Incident light will cause a larger density of electrons at the sharp
corners and edges which induces strong electric field enhancements and increases the extinction cross section.
It has been shown that the plasmonic properties depend strongly on the shape of the end caps of NRs.57 This is visualized
in Figure 2.7 using the shape factors of Prescott & Mulvaney.51 The eccentricity is a measure for the curvature of the end
cap. Here we used a weighted average of cylindrical and spherocylindrical shape factors from Prescott and Mulvaney,
where the eccentricity is the normalized weight of the spherocylindrical shape factor. An eccentricity of 0 thus represents
a cylindrical NR, while an eccentricity of 1 is a spherocylindrical NR. A flatter end cap means a red-shifted resonance
wavelength and a slightly higher peak intensity, due to the slightly higher polarizability.
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Figure 2.7: Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au NRs of aspect ratio (AR) 3 and radii (r) of 10 nm
in water with different end cap curvatures.
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Figure 2.8: Extinction cross sections (Cext ) calculated with Mie-Gans theory for spherocylindrical Au-Ag core-shell NRs with both
core and shell having an aspect ratio 3. The radius of the total NP is 10 nm and the radius of the core (rcore) varies. The NRs are
dispersed in water (εm = 1.77). The Au core is varied from 4 to 10 nm (Au NR). The pure Ag NR is also shown.

2.4.4 Core-shell particles

The LSPR can also be tuned by the composition of the NP. Firstly, we look at the influence of a Ag shell on the optical
response of Au-Ag core-shell NRs. Figure 2.8 shows the extinction cross sections of core-shell NRs of equal total volume.
We see that with decreasing core size, i.e. increasing Ag shell thickness, the resonance wavelength blue-shifts. Since the
plasmon resonance of Ag NPs is blue-shifted compared to Au NPs of the same shape, this is expected. NPs with more
Ag also have a higher extinction intensity. This is also expected, because Ag has a lower imaginary part of the dielectric
function than Au and thus exhibits less bulk damping. However, it should be noted that Mie-Gans calculations do not take
into account that electrons may scatter off the interface between Au and Ag. Liu et al. conducted dark-field scattering
measurements and found that the plasmon resonance of core-shell NRs was broadened compared to simulated spectra,
which they attributed to interface scattering.33

2.4.5 Alloyed particles

In section 2.2.3 we looked at the dielectric functions of bulk Au-Ag alloys (Figure 2.2). From the imaginary part of the
dielectric functions we deduced that there are two different regimes. At energies below 1.8 eV all compositions of Au-Ag
alloys have a higher imaginary part of the dielectric function than pure Au and thus more damping, whereas at higher
energies the alloy NPs perform better. Thus for alloy NRs with a plasmon resonance at an energy below 1.8 eV, we expect
the plasmon resonance of any alloy NP to be less intense than the plasmon resonance of a Au NP with the same shape
and size, even though an alloyed NP consists of more Ag, which is the better plasmonic material. By modelling spheres
and NRs with different alloy compositions and different aspect ratios, we can probe a large energy regime and compare
the optical performance.
Extinction cross sections for spherical NPs of different Au-Ag alloy compositions calculated by using the dielectric func-
tion of Rioux et al. are shown in Figure 2.9. The plasmon resonance blue-shifts if the alloyed NP contains a higher Ag
fraction. This is expected as the plasmon resonance of a Ag NP is blue-shifted compared to an identical Au NP. The
intensity of the plasmon resonance of alloyed spheres with more Ag than Au is greater than the plasmon resonance of a
Au sphere. This is mainly due to the shift of the onset of interband transitions, which suppresses interband damping for

Figure 2.9: a) Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au-Ag alloy spheres of different composition. The
spheres have a constant volume V = 1.68×104 nm3 and are in water (εm = 1.77). b) Same calculations as in a), but with a differently
scaled vertical axis so the plasmon resonances of the alloy compositions are clearly distinguishable. The composition of the alloy is
characterized with the gold molar fraction (GMF). A GMF of 1 is pure gold (red) and a GMF of 0 is pure silver (purple).
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Figure 2.10: Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au-Ag alloy NRs of different composition. The four
figures show plasmon resonances for NRs for aspect ratios (ARs) a) 1.5, b) 2, c) 3 and d) 4. All the NRs have a constant volume
V = 1.68×104 nm3 and are dispersed in water (εm = 1.77). The composition of the alloy is characterized with the gold molar fraction
(GMF). A GMF of 1 is pure gold (red) and a GMF of 0 is pure silver (purple).

NPs with a higher Ag fraction.

Figure 2.11: a) Relative peak position shift of alloyed NRs of various composition compared to the peak position of a Au NR of the
same aspect ratio (AR). b) Intensity of alloyed NRs of various compositions normalized on the intensity of a Au NR with the same AR.

The situation is different for alloyed NRs since the plasmon resonances shift towards energies below 1.8 eV. The plasmon
resonances for alloyed NRs of 4 different ARs are shown in Figure 2.10. The plasmon resonance for NRs with a lower
Au molar fraction generally shifts to the blue part of the spectrum (Figure 2.11a). However, for aspect ratio 3 and 4 the
relative shift of the plasmon resonance as a function of alloy compositions compared to the pure Au composition of equal
aspect ratio is less than for aspect ratio 1.5 and 2. For an aspect ratio of 4, the pure Ag composition is even red-shifted
compared to alloy compositions with a GMF lower than 0.3, as seen in Figure 2.11a). This is counter-intuitive and may be
caused due to errors in the ellipsometry data, as it is not observed when using the dielectric function of Peña-Rodrı́guez
et al.15 for alloyed NRs of aspect ratio 4 (Figure 2.12).

Furthermore, the alloyed NRs generally have a worse plasmonic performance than Au NRs, except for alloys with high
Ag fractions. From comparing the extinction intensities of NPs with an alloy composition with pure Au NPs it can be seen
that the plasmonic performance of the alloyed compositions gets relatively worse for higher aspect ratios (Figure 2.11b),
as expected from the dielectric functions (Figure 2.2).
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Figure 2.12: Extinction cross sections (Cext ) calculated with Mie-Gans theory for Au-Ag alloy NRs of aspect ratio (AR) 4 of different
composition with the model of Peña-Rodrı́guez et al.15 All parameters are the same as for the alloyed NRs in Figure 2.10d). The
composition of the alloy is characterized with the gold molar fraction (GMF). A GMF of 1 is pure gold (red) and a GMF of 0 is pure
silver (purple).
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3 RADIATION DAMPING FOR RODS AND SPHERES OF VARIOUS METALS

3 Radiation damping for rods and spheres of various metals

3.1 Introduction

For most applications an intense and sharp plasmon resonance is crucial, which generally coincides with strong field en-
hancements. The strength of the resonance and the homogeneous broadening of the line width for single NPs is strongly
influenced by the dephasing of the collective electron oscillations, which contributes to a phenomenon termed plasmon
damping. Because of this, several recent studies focused on the line width of plasmonic resonances for differently shaped
NPs.28, 34–36, 38, 40, 44, 54, 58–62

Both non-radiative and radiative decay mechanisms contribute to plasmon damping. The former involves, amongst other
mechanisms, interband and intraband excitations which are determined by the inherent nature of the metal and are re-
flected in its bulk dielectric function. The intraband contributions are mainly related to electron scattering by phonons,
defects or other electrons. At energies for which interband transitions occur, the electrons can also scatter into empty
levels of the conduction band which is called interband or Landau damping. For small NPs with sizes below the electron
mean free path (e.g. about 20 nm in Au) electron surface scattering needs to be taken into account as well which leads to
additional non-radiative damping Γs. An effective mean free path le f f can be defined and the electron-surface scattering
contribution to the overall damping is generally included as Γs = Av f /le f f where v f is the Fermi velocity and A indicates
the strength of the electron-surface scattering. A general expression for arbitrarily shaped NPs was recently derived yield-
ing le f f = 4V/S where V and S are the volume and surface area of the NP, respectively.32

Radiation damping occurs due to photon emission of the radiative dipole and is proportional to the volume V of the
NP. For example, with Au NRs it was shown that it matters for sizes above 20 nm.34 Γr is commonly described as
Γr = 2h̄κV where κ indicates the strength of radiation damping.28, 34, 35, 60 It is proposed that radiation damping depends
on resonance energy and shape,44, 52, 62–65 dependencies that are not yet well understood.

Au and Ag are normally model systems for plasmon resonances due to low intrinsic damping and because they do not
exhibit interband transitions in the energy regions where plasmon resonances occur. Recently, interest has grown in non-
precious metals like Cu and Al, mainly due to their high abundance and because they can exhibit plasmon resonances in
different energy regions, e.g. in the UV for Al. In these metals interband transitions can overlap with the plasmon res-
onance and it was shown theoretically and experimentally that a double-peaked resonance can appear when the plasmon
resonance comes close to an interband transition,66, 67 e.g. about 1.5 eV in Al and 2.1 eV in Cu. The relative contributions
of damping mechanisms can also be quite different compared to Au and Ag.54 For example, for Al it was suggested
that the radiative line width dominates the overall damping with only a small relative contribution from non-radiative
processes, whereas for Ag non-radiative processes are far more important compared to radiative ones.59

This shows that it is important to learn more about radiative damping and a more quantitative description of it could
help to understand damping over a large energy range. Whereas bulk and surface damping are quantitatively more stud-
ied,34–36, 38 this is not the case for radiation damping, especially not for a large variety of metals. A few measurements on
Au and Ag NPs were performed to quantitatively obtain κ but different values were reported. For instance, Sönnichsen et
al.28 found κ = 4×10−7 fs−1nm−3 for spherical Au NPs and Novo et al.34 extracted κ = 7×10−7 fs−1nm−3 for Au NRs
of aspect ratios 2 to 4. For Ag nanoprisms κ = 12×10−7 fs−1nm−3 was obtained.44 However, experimental studies are
often limited by other influences such as surface scattering and chemical damping and have so far only been conducted for
narrow energy ranges.28, 34, 35, 44 Numerical calculations can help to probe a large parameter space. Numerical methods
like finite-difference time-domain (FDTD) calculations are suitable since they intrinsically include radiation damping but
not damping due to surface effects.61 We therefore performed FDTD calculations on nanospheres and nanorods for a
broad range of parameters and different metals (Au, Ag, Cu and Al) and extracted κ(ω). Changing the resonance energy
by varying the shape of the NP and not as it was recently done by changing its volume,44, 54 allows us to decouple the
strong volume dependence of radiation damping from its other dependencies. We found that κ scales with the inverse
of the imaginary part of the metal dielectric function and linearly with the surrounding dielectric constant and that an
underlying material constant κmetal can be ascribed to each metal as the corresponding proportionality constant. Our
approach can reproduce the different κ measured so far and gives a more intuitive description of radiation damping. It
can furthermore help to explain luminescence in Au NPs, a process which is mainly governed by the radiative decay of
localized surface plasmons.68–71 We furthermore show that by looking at the sum of the obtained radiation damping Γr,
bulk damping Γb and surface scattering effects we can predict optimal radii for Au NRs of different aspect ratios, i.e. for
which size the overall damping is the least. Our approach can be extended to many metals and shapes and helps to choose
the right metal and NP size for which the least (or most) damping is obtained for each desired application.
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3.2 Methods
3.2.1 Finite-difference time-domain (FDTD) calculations

In order to systematically study the radiation damping behaviour we performed various FDTD calculations of NPs with
spherical or spherocylindrical shapes, motivated by our synthesis results as described in section 5.3.1, and extracted the
corresponding line widths. By varying the sizes and aspect ratios (AR) of the NRs, LSPRs and thus κ over a large energy
range could be probed. The calculations were carried out with the software package Lumerical FDTD Solutions 8.11. We
primarily used the by McPeak and co-workers measured dielectric functions for Au, Ag, Cu and Al17 which are plotted in
Figure 3.1. A total field - scattered field source was employed to simulate a propagating plane wave interacting with the
nanostructures. Spheres and rods ranging from aspect ratio 2 to 6 were used to investigate the radiation damping. The NRs
were modelled as spherocylinder, which are cylinders with hemispherical endcaps. Only the longitudinal surface plasmon
resonance was calculated by setting the polarization parallel to the long axis of the NRs. The dielectric function of the used
material was imported as tabulated data14, 17, 18 and fitted with a multi-coefficient model to obtain a continuous dielectric
function. The NPs were always placed at the origin of the simulation box. The simulation box was 0.5×0.5×1 µm, with
the extended side parallel to the long axis of the NRs. Perfectly matched layers (PMLs) surrounded the simulation box
stretching 0.5 µm to all sides. A three-dimensional non-uniform mesh was used for the volume around the nanostructure.
The mesh grid size depended on the size of the nanostructure. For the smallest nanostructures (r = 5 nm) a mesh of 0.2 nm
was used. For the largest (r = 20 nm) a mesh of 0.6 nm was used. Simulations with silver generally required a smaller
mesh than simulations with other metals due to its small real refractive index. This smaller mesh was determined by de-
creasing the mesh and running the simulation until the resulting spectrum was the same as for the mesh before. The total
field - scattered field source was placed on the boundary of the mesh volume. The simulations were normally run for 100
femtoseconds of simulation time. The simulation was automatically stopped when the field strength decayed to a fraction
(10−5) of the peak field intensity. If the simulation result was unreliable a longer simulation time of 300 femtoseconds
was used. Frequency-domain field monitors were employed to record the power going through them. By using six 2D
plane monitors a box was created, where the power was recorded going through all six planes of that monitor box. One
of these monitor boxes was placed in between the plane wave source and the nanoparticle. This was used to calculate the
absorption cross section. A second monitor box was placed outside the plane wave source, encapsulating both the source
and the particle. This box was used to calculate the scattering cross section.

To determine the extinction cross section of the particles, both the absorption and scattering cross sections were cal-
culated. To calculate these the amount of power transmitted through the monitor box enclosing the light source was
recorded, whereby the transmitted power at a certain frequency is given by 1

2
∫

Re[~P( f )monitor] · d~S, where ~P( f ) is the
Poynting vector and d~S an infinitesimal surface area. The scattering and absorption cross sections are equal to the power
transmitted through the monitor divided by the irradiance of the source.

C( f ) =
1
2
∫

Re[~P( f )monitor] ·d~S
1
2
∫

Re[~P( f )source] ·d~S
×Asource (3.1)

where Asource is the total area of the source and C the scattering or absorption cross section, depending on the placement
of the monitors. The absorption cross section was calculated similarly by recording the total power dissipated in a small
volume surrounding the NP and dividing it by the incident light irradiance. The extinction spectrum follows from the
sum of the absorption and scattering spectra. The spectra were generated via a parametric sweep containing around 200
frequency points.

Figure 3.2 shows calculated extinction spectra obtained for the four metals assuming a spherocylindrical shape with
AR = 3 for four different volumes, i.e. radii of r = 5,10,15,20 nm. The dielectric environment was assumed to be water
with a dielectric constant of εm = 1.77, which was taken to be independent of energy. For all four metals the spectra red-
shift with increasing volume due to retardation effects and increase in intensity since the extinction cross section increases
with NP volume.72

3.2.2 Lorentzian fitting

We fitted the calculated extinction spectra with a Lorentzian function39, 58, 60, 73

Cext = Ξ
Γ/2π

(ω−ωR)2 +(Γ/2)2 (3.2)

where ωR is the resonance energy and Ξ the integrated oscillator strength, yields the line width Γ. Example fits for the
Au spectra are shown as dashed lines in Figure 3.3. The line width can be extracted from these fits. However, some
spectra do not have a proper Lorentzian shape, due to absorption features, mainly from interband transitions. Examples
of such spectra are shown in Figure 3.4a) for Au NPs and in Figure 3.4b) for Al NRs. This means those spectra cannot
be reliably fitted with a Lorentzian. For the spherical Au NPs, the interband features prevent reliable Lorentzian fitting
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Figure 3.1: Real (ε1) and imaginary (ε2) part of the dielectric functions for a) Au, b) Ag, c) Cu and d) Al measured by McPeak et al.17
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Figure 3.4: Examples of spectra that could not be reliably fitted. a) Normalized FDTD calculated extinction cross sections (Cext ) for
spherical Au NPs (r = 15 nm) in different media. The higher the resonance energy the more the spectra deviates from a Lorentzian
shape. b) Normalized FDTD spectra for Al NRs (AR = 5) in water around the interband transition.

for εm = 1 and εm = 1.77. Similarly, for Cu spheres Lorentzian fitting for εm = 1 and εm = 1.77 was unreliable. For Al
NRs with energies close to the interband transition (at 1.5 eV) the plasmon resonances did not exhibit a proper Lorentzian
shape. The interband transition influences both the line width and the peak position of the spectra, making the fits and its
extracted parameters unreliable. Since the Al spectra were very broad, the interband transition influenced many spectra
for NRs of various aspect ratio. For that reason the analysis for Al includes less data points. The interband transition for
Ag lies outside the probed energy regime and does not influence the spectra.

3.3 Results & Discussion
3.3.1 Extracting bulk damping and radiation damping parameters

We repeated the procedure described in the methods section for different aspect ratios ranging from 1 to 6 and 3 to 4
different volumes per aspect ratio. A large energy range where plasmon resonances occur could be covered. Further-
more, the red-shift for the included volumes per aspect ratio was found to be relatively small (< 0.3 eV for Au, Ag and
Cu) to make sure that the same wavelength range in the dielectric function is probed. For that reason not all 4 volumes
corresponding to r = 5, 10, 15, 20 nm were always included in the analysis. Still, at least 3 volumes were included
to get a reliable fit. For Al, where the red-shift is larger than for the other metals (Figure 3.2d), this therefore leads to
a bigger shift in the energy range (< 0.75 eV). The obtained Γ values for εm = 1.77 are shown as data points in Figure 3.5.

In order to extract κ(ω) the line widths of the spectra of particles with equal aspect ratio but different volumes were
then fitted using Γ = Γb + 2h̄κV whereby Γb and κ were used as fitting parameters. The fits are shown as solid lines in
Figure 3.5. The bulk damping Γb will influence the found κ . Therefore it is necessary to confirm that the extracted values
of Γb are what we expect them to be. In Figure 3.6, we see that for Au and Cu Γb is constant up to the onset of interband
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Figure 3.6: Values found for the fit parameter for the bulk damping Γb as function of resonance energy. a) Energy dependence of the
extracted bulk damping for Au. b) Extracted bulk damping as function of energy for all four metals that were analysed.

transitions as below that range only energy-independent intraband contributions play a role.54 At the onset of interband
transitions Γb increases linearly which is in agreement with earlier work.54 For Ag, Γb is constant over most of the energy
range probed, which is below the onset of the interband transition in Ag, and only slightly increases at higher energies. In
order to check if the bulk damping shows reasonable values for low energies, the used dielectric functions at low energies
were fitted to a Drude model ε(ω) = ε∞−ω2

p/
(
ω2 + iγω

)
, where ε∞, ωp and γ are fit parameters. The constant values

for Au, Ag and Cu at lower energies fit well to the obtained bulk damping constants γ from the Drude model which yields
γAu = 0.03 eV, γAg = 0.02 eV and γCu = 0.03 eV. It is also in good agreement with Blaber et al. who found γAu = 0.023 eV
and γAg = 0.018 eV.48 These values are also close to γAu = 0.027 eV, γAg = 0.018 eV and γCu = 0.009 eV found by Ordal
and coworkers.47 For Al, energy-independent Γb values around 0.55 eV were obtained from the Γ fits which is higher
than γAl = 0.17 eV fitted by a Drude model. The reason for this deviation probably lies in the residual influence of the
interband transition at around 1.5 eV (see Figure 3.1d). In literature, bulk damping parameters for Al vary significantly.
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Blaber et al.48 found γAl = 0.598, while Ordal et al.47 found γAl = 0.082 and Zeman et al.46 found γAl = 0.129. Thus,
all Γb values agree reasonably well with literature values,45–48 however, there are significant variations in bulk damping
values reported for Al dielectric functions measured by various authors. The values for κ that were found are therefore
reasonable.
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Figure 3.7: The procedure followed to determine κ dependencies. a) The radiation damping constant κ obtained for Au NPs as a
function of energy for different dielectric media. The solid curves are least-square fits to the data points of κ = B/εAu

2 . b) Fitting
parameter B = κ × εAu

2 for the four different dielectric media. c) B = κ × εAu
2 as a function of εm. The solid line is a linear fit to

B = κ× εAu
2 = κmetal × εm yielding κmetal = (2.71±0.08)10−7 f s−1nm−3 as a fitting parameter.

3.3.2 Radiation damping of plasmon resonances in Au nanoparticles

The κ values found from fits for Γ = Γb +2h̄κV for Au for all aspect ratios are plotted in Figure 3.7a) as a function of the
resonance energy. The resonance energy for a certain aspect ratio is taken as the average of the LSPR resonance energies
corresponding to the particles of the same aspect ratio but different volumes. Since the strength of radiation damping
depends on the surrounding medium35 this procedure was repeated for several dielectric constants εm and the results are
also shown in Figure 3.7a).

There are two main errors that influence the analysis of the data, which result in the vertical and horizontal errors for
the points in Figure 3.7a). Firstly, there is the error in the fit parameter κ determined from the fits for Γ = Γb + 2h̄κV .
Secondly, an error in ε2 that comes from an error in ωres (horizontal error in Figure 3.7a), because NPs with the same
aspect ratio but different volumes red-shift relative to each other. The errors in κ and ε2 are propagated in B = κ× ε2 via
σB =

√
(σκ ε2(ω̄))2 +(σε2(ω)κ̄)2.

Theoretical descriptions showed that radiation damping increases with frequency.52, 62, 63 However, for all media κ starts
to decrease at resonance energies above 1.8 eV. This decrease can be attributed to the onset of interband damping which
makes scattering of electrons into empty conduction bands more likely. Interband damping is thus a competing damping
mechanism at higher resonance energies lessening radiation damping.

Competing damping mechanisms were also observed by Frank Hubenthal for elongated Au NPs at resonance energies
between 1.45 and 2.15 eV.36 Hubenthal found a weakening of electron-surface scattering for photon energies beyond the
onset of interband transitions and proposed that damping occurs as a correlated effect and not as step by step dephasing.36

It can be seen from Figure 3.7a) that κ has a similar dependence on resonance energy for each chosen dielectric con-
stant εm. Specifically, by comparing the dependence of κ(ω) to the imaginary part ε2(ω) of the dielectric function of Au
(Figure 3.1a) it seems that κ(ω) scales inversely with ε2(ω). To verify that we performed least square fits of the form
κ(ω) = B/ε2(ω) with B as a fitting constant. The fits are presented as solid lines in Figure 3.7a) and reproduce the κ

dependence very well. To further visualize this dependence we plot the corresponding κ × ε2 points together with the
obtained values for B which are shown as straight lines in Figure 3.7b). It needs to be mentioned that the κ errors as well
as the ε2 errors from the energy uncertainties in Figure 3.7a) contribute to the resulting errors of κ× ε2. These errors are
therefore large at lower resonance energies due to the steepening of ε2 (Figure 3.1a). The uncertainties for B, shown as
semi-transparent line thicknesses, stem from the quality of the fit in Figure 3.7a).

In order to understand the dependence of B with respect to εm we plot the obtained values for B versus εm in Figure
3.7c). It can be seen that B depends linearly on εm as shown by the solid lines which are linear fits to the B points.
We denote the proportionality constant with κmetal , a material constant that only depends on the type of metal, and thus
κ(ω,εm) can be written as

κ(ω,εm) = κmetal
εm

ε2(ω)
. (3.3)
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For the dielectric function used for Au measured by McPeak,17 we find

κAu,McPeak = (2.71±0.08)10−7 f s−1nm−3 (3.4)

The κ values calculated using Eq. 3.3 are plotted as solid lines in Figure 3.14a) and are compared to the obtained κ values
from the FDTD calculations. As can be seen in Figure 3.14a) we found a good agreement for all εm in the analysed energy
region. Radiation damping for NPs of a certain metal in the dipolar limit is thus governed by the medium, the imaginary
part of the bulk dielectric function and the volume, resulting in

Γr(ω) = 2h̄κmetal
εmV

ε2(ω)
(3.5)

The inverse dependence of Γr on the imaginary part of the dielectric function ε2 is reasonable because ε2 determines the
bulk damping of the metal and both processes are competing damping mechanisms, consistent with Hubenthal’s work,
which demonstrated that plasmon dephasing occurs in a correlated effect.36 In the case of low bulk damping, i.e. low ε2,
radiation damping becomes more likely to happen. When bulk damping is strong, i.e. high ε2, radiation damping is less
efficient and bulk damping dominates. This is due to the fact that non-radiative processes in metals like electron-electron
or electron-phonon scattering are fast.72

The theoretical description of Gersten and Nitzan74 also predicts a decrease in κ at the onset of interband transitions.
A comparison between their calculated upper limit of radiation damping for arbitrary shape and our description is shown
in Figure 3.8. Gersten & Nitzan calculated an upper limit for the radiation damping for an isolated spheroid as74

Γr ≤
4π2V
3λ 3

((ε1−1)2 + ε2)

ε2
Γnr (3.6)

where Γnr is the nonradiative contribution to the line width. We calculated κ via their approach, using the bulk damping
values extracted from our simulation data, and plotted it along with our results in Figure 3.8. Their description gives an
upper limit for the radiation damping in vacuum, but does not describe the influence of the medium. When compared to
our results for εm = 1, it can be seen that their approach gives an upper limit that does not describe the radiation damping
data we found quantitatively. However, they do find that the radiation damping depends on 1/ε2 via a theoretical route,
giving credibility to our found description.

Since radiation damping of localized surface plasmons has been proposed to be the main mechanism for luminescence of
metal NPs,68–71 the dependence of κ(ω) and measured quantum yields (QY) should show some qualititative correlation.
Yorulmaz et al. measured the QY of spherical Au NPs as well as NRs with resonance energies ranging from 1.6 eV
to 2.35 eV. For NPs with aspect ratios lower than 3.5 and volumes of V ≈ 104 nm3, they found an increase in QY with
decreasing resonance energy which was also attributed to a decreased non-radiative damping due to interband excitations.
Although less measurements were performed in the region below 1.8 eV it seems from their data that the QY starts to
decrease at lower energies. Fang et al. measured the QY of Au NRs with aspect ratios between 2.4 and 4 with resonance
energies ranging from about 1.5 eV to 1.9 eV and found a decrease in QY with increasing aspect ratio and thus decreasing
longitudinal LSPR resonance energy. They excited at the resonance energy of the transverse LSPR and explained their
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Figure 3.9: The procedure followed to determine κ dependencies for Au with the dielectric function of a-c) Olmon et al.76 and d-f)
Rioux et al.77 a, d)The radiation damping constant κ obtained for Au NPs as a function of energy for different dielectric media. The
solid curves are least-square fits to the data points of κ = B/εAu

2 . b, e) Fitting parameter B = κ × εAu
2 for the four different dielectric

media. c, f) B = κ× εAu
2 as a function of εm. The solid line is a linear fit to B = κ× εAu

2 = κmetal × εm.

findings by a weakening of the coupling strength between the absorption (transverse LSPR) and emission states (longitu-
dinal LSPR) but it could also be explained by our results regarding the energy dependent strength of the radiative decay.
Thus, both of the above mentioned measurements correlate well with our found κ dependence which suggests that our
results could be used to predict luminescence efficiencies of metal NPs.

We furthermore compare our calculated results for κ by Eq. 3.3 to the ones measured in dark field scattering experi-
ments28, 34, 35 and obtained from simulations.75 In experiments a smaller parameter space is generally accessible meaning
that different groups probed different parts of the spectrum depending on their particles sizes and shapes. In dark field
scattering experiments immersion oil is used as a surrounding medium (εm=2.25). We can reproduce the experimentally
obtained κ values when using εm = 2.25 and the Au dielectric function of McPeak et al.17 The comparison is shown in
Figure 3.10. Considering possible differences in both the used dielectric functions and experimental uncertainties, like
chemical interface damping, the agreement is very good.

In order to ensure that κAu,McPeak is representative for the radiation damping behavior of Au and to validate our results we
repeated the procedure for two different measurements of the Au dielectric function by Olmon et al.18 and Rioux et al.14

(Figures 3.9a-c) and 3.9d-f). The radiation damping calculated with these two dielectric functions obeyed Eq. 3.5 and
yielded similar values for κAu: κAu,Olmon = (2.59±0.06) ·10−7 fs−1nm−3 and κAu,Rioux = (2.77±0.08) ·10−7 fs−1nm−3.
The slightly different values are not surprising as differences in preparing plasmonic films can lead to different quali-
ties and thus varying dielectric functions.17 For this reason we primarily used the dielectric functions from McPeak and
co-workers17 as much care was taken in preparing the plasmonic films. An average of the three obtained values for Au
weighted by the inverse of their errors gives a representative value for the radiation damping parameter of Au which is
κAu = (2.67±0.06) ·10−7 fs−1nm−3.
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around κ found by Hu et al.35 indicates the error of their measurements.
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Figure 3.11: Comparison of bulk damping Γb (black points) and radiation damping Γr calculated by Eq. 3.5 for the three different
volumes V = 103 nm3 (red solid line), V = 104 nm3 (blue solid line) and V = 105 nm3 (orange solid line) for a) Au, b) Ag, c) Cu and
d) Al. The surrounding dielectric constant was εm = 1.77.
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Figure 3.12: The procedure followed to determine κ dependencies. a-c) The radiation damping constant κ as a function of energy for
various dielectric media. The solid curves are least-square fits to the data points of κ = B/ε2. d-f) Fitting parameter B = κ × εAu

2 for
the four different dielectric media.
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Figure 3.13: κ× ε2 vs εm, showing linear behavior for all metals.

3.3.3 Radiation damping in Au, Ag, Cu & Al nanoparticles

To find out whether Eq. 3.5 holds for different metals, i.e. whether κmetal is a real material constant, we performed the
same analysis as before for the other three metals Ag, Cu and Al (see Figures 3.12 and 3.13) and found good agreement
with Eq. 3.3 over the energy range that could be analysed (Figure 3.14b-d). This strengthens our result that the depen-
dence of κ on 1/ε2 is fundamentally true for different metals. It needs to be noted that the energy error bars for Al are
larger than for the other metals because of the larger red-shifts with increasing volume (Figure 3.2d) and thus the error for
κAl is probably underestimated as it is obtained from the linear fit of B = κ× ε2 as a function of εm (Figure 3.13) which
shows a nice linear dependence despite the relatively large energy uncertainties for κ(ω) (Figure 3.12c). It needs to be
mentioned that the overlap of the FDTD data and Eq. 3.3 for εm = 1 for Ag (Figure 3.14b) is worse because the point at
the highest energy dominated the 1/ε2 fit due to its small error (see also Figure 3.12a).

The resulting values for the material radiation damping constant κmetal are summarized in Table 3.1. It can be seen
that Au, Ag and Cu exhibit similar κmetal . Thus, radiation damping in such metal NPs at the same resonance energy varies
mainly due to the differences in the imaginary part of their dielectric functions. In order to compare radiation damping to
bulk damping we calculated Γr by Eq. 3.5 for the three different volumes V1 = 103 nm3, V2 = 104 nm3 and V3 = 105 nm3

and compared it to Γb as obtained from the linear fits in Figure 3.5. The results are shown in Figure 3.11. For all four
metals Γr only considerably contributes to the overall damping in the case of the largest volume. Interestingly, this is also
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Figure 3.14: κ as a function of energy for different εm for a) Au, b) Ag, c) Cu and d) Al. The solid lines are calculated κ values from
Eq. 3.3 which fit the by FDTD obtained data points very well.

26



3.4 Conclusions 3 RADIATION DAMPING FOR RODS AND SPHERES OF VARIOUS METALS

Au Ag Cu Al
κmetal (×10−7 fs−1nm−3) 2.71±0.08 2.10±0.04 2.40±0.11 63±1

Table 3.1: The material-dependent radiation damping parameter κmetal for Au, Ag, Cu and Al, obtained from the dielectric functions
measured by McPeak et al.17

Optimal radius (nm) AR = 2 AR = 3 AR = 4 AR = 5 AR = 6
εm = 1 18.16 14.33 11.50 10.57 9.69

εm = 1.77 14.04 10.40 9.94 9.13 9.77
εm = 2.25 11.53 9.31 9.04 9.26 8.86
εm = 3.24 9.39 9.03 9.25 8.75 9.57

Table 3.2: Optimal radii in nm for Au NRs of different aspect ratios and for different εm calculated with the Au dielectric function
found by Mcpeak et al.17

true for Al due to the higher bulk damping and because the higher κAl constant gets partially compensated by the larger
ε2. However, for larger energies radiation damping might also contribute for smaller volumes due to its rapid increase
with energy. Nevertheless, our results are in contrast to ref.59 where it was shown that radiation damping dominates for
Al NRs with aspect ratios between 2.5 and 4.5 of volumes around 2 ·104 nm3 in an energy range of circa 2-4 eV. However
their general trend, i.e. increasing radiation damping with increasing energy (despite the slight decrease in volume from
2.6 · 104 nm3 to 1.4 · 104 nm3), agrees with our results. The discrepancy in Γr strength might stem from the different
approaches in determining Γr. They determined the line widths obtained by the discrete dipole approximation (DDA)
method, analytically calculated Γb and Γs and subtracted them from the simulated FWHM to obtain Γr. Their obtained
Γb values are small (¡ 0.1 eV) which then leads to higher radiation damping. This deviation to our result (Γb ≈ 0.55 eV)
probably comes from the large variations between Al dielectric functions measured by different authors.17 Figure 3.11b)
visualizes the strong radiation damping at lower energies for Ag, as measured experimentally by Munechika et al.44 Fig-
ure 3.11 furthermore reveals that Cu is a good alternative to the precious metals Au and Ag, especially in the infrared to
visible part of the spectrum.

3.3.4 Optimal widths

With the obtained description of radiation damping and the available experimental results on the electron-surface scatter-
ing it is possible to determine the optimal widths of NRs of different aspect ratios in different media. They were deter-
mined by calculating the sum of the bulk damping, the electron-surface scattering and radiation damping for various radii,
ranging from 5 to 20 nm in steps of 0.01 nm. The radius for which the sum Γb +Γs +Γr = Γb(ωres)+A v f

le f f
+2h̄ κmetalεm

ε2(ωres)
V

is lowest is the optimal radius. For a NP of a certain radius the resonance energy, which factors into the bulk damping and
radiation damping contribution, was determined via interpolation between resonance energies known for radii used in the
FDTD calculations. Since the surface scattering parameter A was mostly determined for Au NPs, we demonstrate this for
Au NRs. The electron surface-scattering damping is hereby included as Γs = Av f /le f f with A = 0.3 as found for Au rods
and spheres by various authors.34, 35, 38 The effective mean free path of the electrons le f f is calculated using 4V/S where
V is the volume and S the surface area of the NP.32, 33 Table 3.2 shows the results for aspect ratios ranging from 2 to 6 and
εm from 1 to 3.24. As can be seen from Table 3.2 the optimal radii are between 8.73 nm and 18.16 nm. For smaller sizes
electron-surface scattering dominates the dephasing of the electrons whereas for larger radii radiation damping becomes
effective. For these moderate volumes Γb dominates the damping, especially at energies above 1.8 eV, as can be seen
from Figure 3.11a). For that reason it is beneficial for smaller AR and εm, which have a resonance energy above or close
to 1.8 eV, to have an increased volume which red-shifts the resonance energy and thus decreases Γb. At lower resonance
energies, i.e. higher aspect ratios and εm, the optimal radii do not change much. The obtained radii around 9 nm for
higher AR and εm are then simply a trade-off between Γs and Γr and agree well with experiments that showed that optimal
diameters are around 20 nm.34

3.4 Conclusions

In conclusion, we systematically studied radiation damping Γr = 2h̄κV in metal nanorods and nanospheres by FDTD
simulations. Changing the aspect ratio of the NRs allowed us to probe a large range of resonance energies. We found
that radiation damping scales with the inverse of the imaginary part ε2 of the metal dielectric function and is proportional
to the surrounding dielectric constant εm and can be calculated by Γr = 2h̄κmetalεmV/ε2. The proportionality constant
κmetal was determined for Au, Ag, Cu and Al and the analytical expression found could reproduce the radiation damping
behaviours obtained from FDTD simulations for all four metals and recent measurements on spherical Au NPs28 and Au
NRs34, 35 where κ was determined for limited resonance energy regimes. We furthermore showed that for volumes up to
104 nm3 the overall damping for all four metals is mainly determined by bulk damping as long as surface contributions do
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not play a role yet. Our results offer an analytical and intuitive description of radiation damping which can be extended
to many different metals and can help to predict optimal sizes for metal NPs for various applications. In the future
a similar experimental study could be conducted for the surface-scattering parameter A as it was also proposed to be
energy-dependent.36 Our description of Γr helps experimental studies to differentiate between Γr and Γs.

28



4 NANOROD SAMPLES CHARACTERIZED WITH EXTINCTION SPECTRA

4 Nanorod samples characterized with extinction spectra

4.1 Introduction

Despite the increased control over Au NR synthesis,6 samples usually have a rather broad distribution of aspect ratios.
This has a big impact on the optical properties of the sample, because NRs with different AR exhibit different plasmon
resonance wavelengths and intensities. The common way of determining the aspect ratio distribution is by determining
sizes of 100 or more NRs from TEM images. The limited amount of NRs measured often yields statistically incorrect and
irreproducible results. While TEM is an invaluable tool for material science and nanotechnology, the imaging of metal
NRs for size measurements is costly and slow and so is the analysis afterwards, because the size measurements have to
be done by hand. At least for NRs, available software cannot determine the size accurately enough.

However, characterizing samples by optical extinction spectroscopy (OES) is fast, cheap and does not destroy or waste
any of the sample. Since polydispersity plays a significant role in ensembles of metal NRs, characterizing metal NRs re-
quires a method that takes inhomogeneous broadening of the extinction spectrum into account. What we need to solve is
essentially an inverse scattering problem to determine (geometrical) parameters of the NPs from extinction spectroscopy
measurements.78 Previous studies have done this using Mie-Gans theory79 or semi-expensive methods like the T-Matrix
method.78, 80–82 In contrast to those studies, we will be modelling single particle spectra using shape-corrected51 and
intensity-corrected Mie-Gans theory in order to investigate ensemble spectra. The shape factors found by Prescott &
Mulvaney allow us to model spherocylinders, which is the shape that closely resembles experimentally synthesized metal
NRs. We apply an intensity correction polynomial that ensures the Mie-Gans spectra have the same intensity as FDTD
spectra.

This analysis of experimental ensemble extinction spectra yields useful information. Firstly, we obtain information on
the aspect ratio distribution of the NRs in the sample, which is statistically more accurate than TEM as the amount of
NRs contributing to the extinction spectroscopy signal is much larger than the typical amount of NRs measured in TEM
images. Furthermore, we show that concentrations of the sample can be determined, as an alternative to destructive ICP
measurements. Lastly, we employ the extinction spectroscopy method to study the value of the electron-surface scattering
parameter A, which is used to calculate the extra damping due to the NP being smaller than the electron mean free path in
Equation 2.17, for small NRs and compare our results with single particle measurements.

4.2 Method

Firstly, it is essential to calculate the extinction cross section Cext of a single metal NR correctly. To this end, Mie-Gans
theory, as described in chapter 2, was used in combination with shape factors found by Prescott & Mulvaney.51 By
comparing the Mie-Gans spectra to FDTD spectra of equivalent particles with equivalent damping terms (just radiation
damping) we observed good agreement, except for the intensity of the plasmon resonance. An intensity correction factor
was therefore included for the intensity in the Mie-Gans calculations. To determine this intensity correction, we com-
pared Mie-Gans spectra with FDTD spectra of identical Au NPs and with identical damping terms. We found an intensity
correction polynomial C, which is given by C = 1/(2.95− 0.38× (ωres + 0.02)2), where ωres is the resonance energy,
which correctly describes the intensity correction for a large energy range. Furthermore, surface-scattering and radiation
damping are included.

The absorbance A of an ensemble of NRs was measured with FTIR spectroscopy. The relation between the absorbance
and Cext of a single NP must be exploited. In the case of a monodisperse ensemble of NRs the absorbance A can be related
to the total extinction Aext by equating two definitions of the transmittance

I
Iinc

= 10−A = e−Aext l (4.1)

where the transmittance is the ratio of the transmitted (I) and incident (Iinc)light intensity and l the path length of the
light through the sample. The extinction cross section Cext of a single NR is related to the the total extinction Aext as
Aext = NCext , where N is the amount of NRs per unit volume. So for a monodisperse sample the absorbance can be
calculated by

A =
lN

ln10
Cext (4.2)

Here, because on average all orientations of the NRs are encountered by the incident light, Cext =
1
3Cext,long +

2
3Cext,trans,

where Cext,long and Cext,trans are the extinction cross sections of the longitudinal and transverse LSPR, respectively. How-
ever, experimental samples are not monodisperse. As shown by several authors,78–82 polydispersity can be included by
adding a probability distribution function (PDF) that depends on the geometrical factors influencing the extinction spec-
trum of a particle, namely the aspect ratio (AR), the width (D) and end cap (e) geometry. With the inclusion of the PDF
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p(AR,D,e) the absorbance can be calculated as:

A(λ ,AR,D,e) =
lNv

ln10

∫ ARmax

ARmin

∫ Dmax

Dmin

∫ emax

emin

p(AR,D,e)Cext(λ ,AR,D,e)dARdDde (4.3)

In this description the aspect ratio, the diameter, the endcap shape and the PDF are unknown. With all these unknowns, the
inverse problem is hard to solve. When the variables AR, D and e are discretized, the size of the matrix becomes too big to
give a reliable and stable result. A solution for the problem is given in the following, which follows the method of Xu et
al.78 For NPs within the quasi-static limit, the optical response of the NRs is mainly dominated by the aspect ratio. Most
particles of interest for applications are within this regime, where volume effects play a less significant role.19, 83–85 A
recent synthesis procedure has shown it is possible to synthesize NPs with monodisperse width and end cap shape.6 This
means the integrals over D and e in Equation 4.3 can be replaced by the mean values of these parameters. To determine a
reasonable mean value for the width D, knowledge of the synthesis or TEM images are needed. For the end cap geometry,
knowledge of the synthesis procedure is usually enough. The end cap eccentricity e for NRs is usually between 0.7 and
1. By using the mean values for these two parameters the problem can be approximated to:

A(λ ,AR,D,e) =
lNv

ln10

∫ ARmax

ARmin

p(AR,D,e)Cext(λ ,AR,D,e)dAR (4.4)

Equation 4.4 can now be discretized with respect to only λ and AR. The optimization process will be a lot faster and more
stable. The matrix equation that needs to be solved is

AAA =CPCPCP (4.5)

where A is a M× 1 vector which consists of the measured absorbance values at different wavelengths λm. The M×N
matrix C contains all the extinction cross sections for different wavelengths λm for all discretized aspect ratios ARn. The
N × 1 vector P is the PDF that needs to be solved for all aspect ratios ARn. This matrix equation is solved using the
method of Xu et al.78 To find an accurate solution they used a numerical technique called Tikhonov regularization. The
regularized least-squared solution PRLS of Equation 4.5 is given as:

PRLS = min
[
(||AAA−CPCPCP||2)2 + γ

2(||III(PPP−P∗P∗P∗)||2)2] (4.6)

where || · ||2 is the Euclidean norm, γ the regularization factor that is part of the solution and P* an a priori assumed
solution that is taken as 0. I is the identity matrix. We can write Equation 4.6 as

PPPRLS = min
[

1
2

PPPTQPQPQP+qqqTPPP
]

(4.7)

where QQQ = 2(CCCTCCC + γ2IIITIII) is a symmetrical matrix of size N ×N, and qqq = −2CCCTAAA is a N × 1 vector.78 We use the
Nelder-Mead method to find the solution of Equation 4.7. The quality of the solution is determined by the mean square
error (mse):

mse =
1
M ∑

m

[
A(λm)−Acal(λm)

A(λm)

]2

(4.8)

where AAAcal =CPCPCPRLS is the optimal solution of the absorbance.

There is one main advantage of using Mie-Gans calculations in this scheme compared to T-Matrix calculations, which is
that the calculations for the extinction spectra of a single particle per aspect ratio is much faster, compared to the T-matrix
method that Xu et al. used.78 The advantage of the increased speed is that parameters like the diameter D, the end cap
eccentricity e, the electron-surface scattering parameter A and the radiation damping parameter κ . This allows for fast
and detailed investigation of these parameters. The results are discussed in the following section.

4.3 Results & Discussion
4.3.1 Aspect ratio distribution: comparison to TEM

A way to validate the proposed method is to compare the calculated aspect ratio distribution with aspect ratio measure-
ments from TEM images. Since the end cap of the NRs has a significant influence on the single NR spectra and therefore
on the calculated aspect ratio, the end cap eccentricity is first measured from TEM pictures. Since the end cap geometry
is similar for various NRs, only 20 measurements were done per sample to obtain the input parameter e. The width of
the NRs in a sample was also relatively constant and was determined from TEM images with only 20 measurements per
sample. The calculated aspect ratio distribution, using the mean diameter and end cap as input parameters, was compared
with the aspect ratio distribution obtained via TEM characterization. This was done for six samples, which are character-
ized in Table 4.1. The aspect ratio distributions of those samples determined with the extinction spectroscopy method and
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Sample length (nm) width (nm) AR
JVH-045 70.8±7.8 13.8±1.7 5.2±0.5

MB-AuNR-01 44.9±6.3 12.4±1.8 3.7±0.6
MB-AuNR-02 91.5±7.8 23.0±2.2 4.0±0.5
MB-AuNR-04 88.2±7.4 24.4±2.3 3.6±0.4

MB-AuNR-09A 77.7±8.4 17.1±1.8 4.6±0.6
MB-AuNR-10A 74.7±9.4 14.9±1.4 5.0±0.7

Table 4.1: Characterization of samples that were used to determine the aspect ratio distribution in this section.

Figure 4.1: a-d) Comparison between the aspect ratio distributions calculated by the optical extinction spectroscopy (OES) method and
measured with the TEM method of the following samples: a) MB-AuNR-01, b) MB-AuNR-02, c) MB-AuNR-04, d) MB-AuNR-9A e)
MB-AuNR-10A and f) JVH-045. The values in parentheses (AR, σAR) indicate the mean aspect ratio and the standard deviation of the
OES (red) and TEM method (black).
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Sample length (nm) width (nm) AR
a 52.5±6.3 11.8±1.8 4.5±0.6
b 42.0±9.5 12.3±2.4 3.5±0.8
c 41.1±6.7 14.3±2.4 2.9±0.5

Table 4.2: Characterization of samples, from Orendorff et al.,86 that are used to test the concentration calculations in this section.

TEM are shown in Figure 4.1. With the measured mean values taken for the diameter and end cap geometry of the NRs,
the extinction spectroscopy and TEM method agree well. It is important to note that only measured values were used as
input and no parameters were chosen. This makes the agreement between both methods in both mean aspect ratio and
in the standard deviation of the PDF remarkable and validates the use of the extinction spectroscopy method. It is faster,
statistically more accurate and allows us to easily investigate unknown parameters, although the end cap eccentricity and
width of approximately 20 particles needs to be determined from TEM, unless it is well known from the synthesis protocol
what diameters and end caps can be expected. In the next section, we show that the extinction spectroscopy method can
also be used to determine the concentration of the sample. It furthermore allows for easy and fast investigation of damping
parameters, as shown in section 4.3.3.

4.3.2 Molar concentration of Au in metal nanorod samples: comparison to ICP

Another value that can be calculated using the extinction spectroscopy method is the concentration of the sample, knowl-
edge of which would normally require time-consuming inductively coupled plasma mass spectrometry (ICP-MS) mea-
surements, that destroy (part of) the sample. ICP measurements also require very large amounts of sample and it is not
always easy to synthesize NPs in such big quantities. In order to test if the extinction spectroscopy method gives the cor-
rect concentration, samples of which both experimental ensemble extinction spectra and ICP measurements are available,
are tested.

Firstly, the calculation used for determining the concentration from the extinction spectrum is given. The mean square
error of the fit is minimized to obtain the best possible fit, with a parameter c f that is determined from this minimization:78

min [mse] = min

[
c f

M ∑
m

[
A(λm)−Acal(λm)

A(λm)

]2
]

(4.9)

This parameter c f is related to the concentration of a certain metal as:78

c =
c fV ρ

M
(4.10)

where c is the concentration in mol/L, V the average volume of the metal NP, ρ the density of the metal in g/L and M the
molar mass of the metal in g/mol. The NP concentration cNP in particles/L can be calculated as:

cNP = NAcnV (4.11)

where c is the concentration, NA the Avogadro constant, n the number density of metal atoms in a volume and V the average
volume of the metal NP. The extinction coefficient that is often used in literature to compare the quality of samples of
plasmonic NPs can be calculated as:86, 87

εext =
A

lcnV
(4.12)

In order to calculate the concentration with the extinction spectroscopy method, we use mean values for the diameter and
endcap geometry determined by TEM as input values for the code. Since damping parameters have a big influence on the
intensity of the localized surface plasmon resonance of a single particle and therefore on the calculated concentration of
the sample, it is important to use good values for both radiation damping and electron-surface scattering. For the radiation
damping, the relation Γrad = 2h̄ κmetalεm

ε2
V , previously determined in chapter 3, is used. For the electron-surface scattering

parameter A, a value of 0.29 was taken, which is close to most values reported in literature.28, 34–36 The code calculates
the aspect ratio distribution and from that the concentration as described above.

Samples from Orendorff et al.,86 characterized in Table 4.2, were used to calculate the concentration. In their work,
they reported both the ensemble extinction spectra and the ICP measured Au concentrations of their samples. By digitiz-
ing the ensemble extinction spectra with GetData Graph Digitizer and using them as input for the extinction spectroscopy
code, a concentration was calculated. Both the ICP measured Au concentrations and the Au concentrations calculated
with the extinction spectroscopy code for various samples used by Orendorff et al.86 are reported in Table 4.3. The code
was run for aspect ratios between 1.6 and 7.6 with ∆AR= 0.2. The wavelength range was probed between 550 nm (600 nm
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Concentration (mM) a b c
ICP 0.073±0.005 0.071±0.006 0.075±0.004
Extinction spectroscopy 0.074 0.077 0.059

Table 4.3: Concentration measured by ICP and calculated via the extinction spectroscopy code of samples from Orendorff et al.86 in
mM.

for sample a) which has higher aspect ratios) and 1200 nm in steps of 10 nm. This ensured NRs of all aspect ratios were
included in the calculation for the concentration. For two of the three samples the agreement is satisfactory. However,
the concentration calculated with the extinction spectroscopy method for sample c) is significantly lower than the ICP
measured concentration. This may indicate that the code calculates the concentration less well for lower aspect ratios. A
possible explanation for the significantly deviating concentration is that the amount of nanospheres is more significant in
this sample. The OES method does not determine the concentration of Au that is represented in spheres.

4.3.3 Electron-surface scattering parameter

In order to investigate the electron-surface scattering parameter A we use samples with small diameters (D < 18 nm), to
maximize the influence of the electron scattering off a surface and to minimize the effect of radiation damping. For the
small influence of radiation damping, we use the relation from chapter 3: Γrad = 2h̄ κmetalεm

ε2
V . The samples used for this

section are characterized in Table 4.4. As diameter and end cap geometry we use values measured from TEM images. By
evaluating the extinction spectroscopy code for different A values, we obtain different values for the mean square error
(mse) of the fit as defined in Eq. 4.8. The lower the mse, the better the fit so it gives an indication of when the right A
value is used. The code was run for aspect ratios between 2.2 and 7.6 with ∆AR = 0.2. The wavelength range explored
was between 600 and 1200 nm in steps of 10 nm. The five samples characterized in Table 4.4 were tested for different
values of A. The mean square errors of the fit as a function of A for two of those samples are reported in Figure 4.2. Table
4.5 gives the surface-scattering parameter A of each sample for which the mse is lowest.

Sample length (nm) width (nm) AR
JVH-045 70.8±7.8 13.8±1.7 5.2±0.5

MB-AuNR-01 44.9±6.3 12.4±1.8 3.7±0.6
MB-AuNR-09A 77.7±8.4 17.1±1.8 4.6±0.6
JVH-LA-004-1-s 28.9±4.5 7.2±1.0 4.0
JVH-LA-005-2 27.7±4.7 8.6±1.4 3.2

Table 4.4: Characterization of samples that are used to determine the electron-surface scattering parameter in this section.

The A factors with the lowest mse are in between 0.2 and 0.4 for all samples. The errors for A are obtained by
estimating, via interpolation, for which value of A, the mse is 1.5 times the lowest mse value. We believe a reliable
value for the surface-scattering parameter A in the investigated energy range is given by the weighted mean value of these
values:

A = 0.30±0.02 (4.13)

This value for A is in good agreement with single particle studies.34–36 Hu et al. determined A = 0.30±0.03 for NRs of
aspect ratio 3,35 where Novo et al. obtained A = 0.27 for Au NRs of aspect ratio 2 to 4.34 Frank Hubenthal found that

Figure 4.2: Mean square error (mse) of the ensemble spectrum fit as a function of the surface-scattering parameter A for a) JVH-LA-
004-1-s and b) JVH-045. The dashed line indicates the value corresponding to 1.5 times the lowest mse, which is used to estimate the
error in the determination of A.

33



4.4 Conclusions 4 NANOROD SAMPLES CHARACTERIZED WITH EXTINCTION SPECTRA

Sample AR ωres (eV) A
JVH-045 5.2 1.32 0.3

MB-AuNR-09A 4.6 1.37 0.2
JVH-LA-004-1-s 4.0 1.49 0.4

MB-AuNR-01 3.7 1.51 0.3
JVH-005-2 3.2 1.61 0.4

Table 4.5: Electron-surface scattering parameter A with the lowest fit mse for various samples.
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Figure 4.3: Found values for the electron-surface scattering parameter A plotted against the resonance energy of that particular sample.
The errors are estimated by interpolation between data points and checking for which A the mean square error is 1.5 times as high as
the lowest mse.

the surface-scattering parameter A depends on resonance energy of the LSPR, where A was found to be between 0.1 and
0.4 for resonance energies from 1.6 to 2.3 eV.36 It was proposed that interband transitions play a role in the behaviour
of surface-scattering, similar to what we obtained for radiation damping in chapter 3. The values that we obtained for
A (Figure 4.3) do not show a clear dependence on energy, which is likely due to the limited accuracy of this method in
determining A and because interband transitions play no role in this energy range. It is remarkable that we extracted A
this accurately at all from just an ensemble measurement, where inhomogeneous broadening effects are present. Xu et
al.78 also used their OES code to investigate different values of A factors. They concluded that the mse increased beyond
their threshold for A > 0.6. They did not investigate A further, presumably due to their T-Matrix approach to calculating
single particle spectra, which is time-consuming. The good agreement between our results and single particle dark-field
scattering results for the electron-surface scattering parameter A shows the good functionality of our method to obtain
damping parameters.

4.4 Conclusions
It has been shown that the extinction spectroscopy code described in this chapter is a powerful tool for quick analysis of
ensembles of plasmonic NRs. The calculated aspect ratio distributions agree well with TEM analysis, when reasonable
mean values for the diameter and end cap eccentricity are provided. Furthermore, concentrations can be extracted quickly,
which is an improvement over experimental methods like ICP, which are time-consuming and/or destructive. Addition-
ally, it enables us to investigate individual damping parameters from ensemble measurements that are inhomogeneously
broadened. The obtained electron-surface scattering parameter A = 0.30± 0.02 agrees well with values reported from
single particle measurements.34–36
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5 Alloying of Au-Ag nanoparticles

5.1 Introduction

Ag has the best plasmonic properties of all metals due to low damping of the plasmon resonance over a large energy re-
gion. However, Ag has a relatively poor chemical stability compared to Au and is therefore not often used for applications.
Growing a Ag shell around Au NPs improves the plasmonic properties, but the usefulness of these NPs in applications is
still hindered by the instability of the Ag shell. By alloying the Au atoms from the core and the Ag atoms from the shell,
the chemical stability can be significantly improved, as has been shown for nanospheres88 and nanorods.25

Alloyed metal NPs are interesting for several reasons. Firstly, the composition allows for extra tunability of the plas-
mon resonance. Secondly, alloying can lead to increased thermal stability of the NPs,23 which could be particularly
important for NRs in photothermal applications. Alloyed Au-Ag NPs are also interesting for catalysis. A Au-Ag alloyed
NP, with both Au and Ag atoms as active sites for catalysis, was shown to be more catalytically active than a monometallic
Au or Ag NP for CO conversion.23 The catalysis of such metal NPs can be enhanced even further by irradiating it with
light, as local field enhancements near the particle’s surface due to the excited LSPR can aid the catalysis.24

The effect of important parameters on the alloying process of anisotropic bimetallic NPs has not yet been studied. In
this chapter, the influence of quantities like size, aspect ratio and composition on the alloying process of Au-Ag core-shell
NRs coated in mesoporous silica is investigated. For anisotropic NPs, two processes take place when sample of Au-Ag
core-shell NRs are heated at sufficiently high temperatures: particle deformation and alloying. Particle deformation is
due to kinetic and thermodynamic driving forces that rearrange surface atoms to minimize the surface free energy. This
process ceases to happen when thermodynamic equilibrium has been reached. At high temperatures, the NRs therefore
lose their anisotropy and deform towards spherical NPs. Alloying of Au-Ag core-shell NPs is a kinetic process and is
therefore significantly sped up at elevated temperatures. The NPs used in this chapter are coated with a mesoporous
silica shell, as described in section 5.3.1. The NRs coated with mesoporous silica do not deform as much as uncoated
NRs when thermally heated. Petrova et al. showed that bare Au NRs were completely deformed to a spherical shape
at 250 ◦C.89 This makes it impossible to alloy uncoated Au-Ag core-shell NRs, while retaining the elongated shape. Al-
brecht and Van der Hoeven et al. alloyed Au-Ag NRs coated in a mesoporous silica shell while preserving the NR shape.25

We briefly discuss previous experiments on the alloying of Au-Ag core-shell NPs. Shibata et al. alloyed Au-Ag spher-
ical NPs with a 2.5 nm Au core and 3 and 5 atomic layers of Ag at room temperature.90 They monitored the ensemble
extinction spectrum via UV-Vis spectroscopy in order to determine the time needed for alloying. The NPs with 3 atomic
layers of Ag took 3 days to alloy, while those with 5 atomic layers of Ag took 4 days to alloy, indicating that the total
particle volume has an effect on the alloying process at these small volumes. Even more interesting behaviour is found
when comparing studies of alloying for differently shaped particles of similar volumes. Gao et al. recently found that a
temperature of 930 ◦C was needed to fully alloy nanospheres with sizes around 15 nm.88 However, Albrecht and Van der
Hoeven found that nanorods with volumes 6.6 times higher than the nanospheres of Gao et al. could be fully alloyed at
450 ◦C.25 This significantly reduced alloying temperature was ascribed to the out-of equilibrium shape of the NRs.

This chapter first describes the synthesis of Au-Ag core-shell NRs. Furthermore, this chapter contains three different
heating experiments. Firstly, in order to study the influence of size, aspect ratio and Au/Ag ratio on alloying, we con-
ducted in-situ measurements of the alloying process by extinction spectroscopy measurements. Here we make use of
our previously gained knowledge on the plasmon resonance of these types of NPs. Secondly, the alloying process upon
heating of spherical Au-Ag core-shell NPs and NRs with aspect ratio 2.9 with the same volume and Au/Ag ratio was
followed in-situ in an electron microscope and analyzed via transmission electron microscopy (TEM), high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive x-ray spectroscopy (EDX).
Lastly, we studied if it is possible to alloy Au-Ag core-shell NRs by using femtosecond laser pulses.

5.2 Theory

Alloying of Au-Ag core-shell NPs is mediated through the diffusion of Ag atoms into the Au core and Au atoms into the
shell until a full alloy is formed. The mechanism that facilitates the diffusion in Au-Ag NPs is vacancy diffusion, because
Au and Ag have close lattice constants, differing by only 0.71 pm, meaning they form a solid solution. In order for an
atom to migrate via vacancy diffusion it jumps from its current lattice site to an empty lattice site. The probability of an
atom to move is therefore the product of the probability of having a vacancy in an adjacent lattice site and the probability
of the atom having sufficient energy to jump to that empty lattice site. Sufficient energy is required because bonds with the
atom’s neighbours need to be broken, after which energy is needed to move the atom to the position of the vacancy. The
energies for breaking the bonds and moving the atom are together called the activation energy EA. The activation energy
is more often reached at elevated temperatures, as the thermal energy of the atom is higher. The temperature-dependent
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diffusion coefficient D is then described by the Arrhenius equation:

D = D0e−EA/kBT (5.1)

where D0 is the frequency factor, EA the activation energy, kB the boltzmann factor and T the temperature. As seen in
Equation 5.1, several factors play a role in the diffusion rate. Firstly, the temperature influences the diffusion rate expo-
nentionally. Furthermore, the lower the activation energy, the higher the diffusion coefficient, which means the diffusion
rate increases. The activation energy EA and frequency factor D0 are affected by which atom species diffuses into which
host species. In our case, Au and Ag atoms are diffusing into either a Au, Ag or a Au-Ag alloy environment. Lastly, the
structure around the diffusing atom has a large impact. It matters greatly whether the atom has to diffuse through a perfect
crystal, through a grain boundary or over a surface. Equation 5.1 shows us why we need elevated temperatures in order
to alloy Au-Ag NPs, for which the activation energies for diffusion are similar to bulk activation energies. An atom’s
average thermal energy at room temperature (kBT = 0.026 eV) is much lower than the activation energy for bulk Au, Ag
and their alloys, namely 1.76−2.10 eV.91 Therefore, the chance of the required activation energy being at the disposal of
one atom is low and diffusion of atoms and therefore the alloying process is slow.

As we have seen, the rate of diffusion depends on many factors like size, shape, vacancy concentration and composi-
tion. We briefly discuss the available literature on the effects of these factors on the diffusion of Au and Ag. Dick et
al.92 looked at the size-dependent self-diffusion of Au atoms in silica-encapsulated spherical Au NPs. They determined
the melting point of NPs with sizes between 1.5 and 20 nm using differential thermal analysis (DTA) coupled to thermal
gravimetric analysis (TGA) techniques. They discussed the implications of their findings on the self-diffusion within
these NPs. They argued that the dependence of the diffusion rate on temperature can be described as

D(r) = Dme−EA(T−1−Tm(r)−1) (5.2)

where D(r) is the size-dependent diffusion coefficient, Dm the diffusion coefficient of the bulk material at the melting
temperature and Tm(r) the size-dependent melting temperature. They found that the melting temperature started to de-
crease significantly below sizes of 20 nm. Below those sizes the diffusion coefficient started to increase exponentially.
They concluded that small bimetallic core-shell NPs could alloy at room temperature over a few days. Shibata et al.90

observed this experimentally, although the size-dependent diffusion coefficient found by Dick et al.92 was not sufficient
to explain their observations. Therefore, they proposed the occurancy of vacancies at the interface of the initial core-shell
configuration. Using Molecular Dynamics (MD) simulations they showed that if a few percent of the interface sites were
vacancies, their experimental alloying times could be explained.

The composition of the NP can also have an effect on the diffusion. The diffusion of Ag and Au atoms in Au-Ag al-
loys of several compositions and their respective pure metals was measured in bulk by Mallard et al.91 by using tracer
atoms. Both Au and Ag tracers were used. Their data accurately obeyed the Arrhenius equation, which allowed them to
extract the temperature-independent frequency factors and activation energies. They found that both Au and Ag tracers
diffused more quickly in bulk material which contained relatively more Au than Ag. The activation energy was found
to decrease with Au molar fraction. The activation energy for a Au tracer diffusing in pure Ag was approximately 20%
higher than a Ag tracer diffusing in bulk Au. These observations imply that Ag atoms from the shell diffuse more quickly
into the Au core than the other way around.

The influence of the shape of the NP on the alloying process has not yet been investigated experimentally in litera-
ture, because, to the best of our knowledge, solely alloyed nanospheres have been synthesized by thermal treatment until
Albrecht and Van der Hoeven synthesized Au-Ag alloyed NRs.25 Thermal and photothermal reshaping of Au NRs has
been observed to depend on shape.89, 93 Thus it seems likely that atom diffusion facilitating alloying also depends on
shape.

5.3 Methods
5.3.1 Core-shell nanorods: synthesis & characterization

Au NRs in a mesoporous silica shell (AuNRs@meso-SiO2) were used to make Au-Ag core-shell NRs (AuNRs-Ag@meso-
SiO2). The mesoporous silica shell stabilizes the NRs, both colloidally and thermally against deformation at elevated
temperatures. Due to the porosity of the silica shell, the metal NR surface is still accessible for catalysis and sensing
applications. Firstly, the Au NRs were synthesized via a seeded growth method using binary surfactant mixtures, as re-
ported by the group of Murray.6 These NRs were then coated with a mesoporous silica shell as described by Gorelikov
and coworkers.94 The used AuNRs@meso-SiO2 NRs were provided by Jessi van der Hoeven. In the method section of
this chapter, the last two steps in synthesizing AuNRs-Ag@meso-SiO2,95 as well as the characterization of the NPs via
electron microscopy and extinction spectroscopy will be explained. We will then discuss the results of the characterization
for NPs that will be used for alloying experiments, as well as compare the ensemble extinction spectra of those core-shell
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Figure 5.1: Visual representation of the synthesis of the silica-coated Au-Ag NRs. First, a bare NR is synthesized and subsequently
coated with mesoporous silica. Some of the gold is etched away to make space for the Ag deposition. The last step is the alloying of
the Au-Ag core-shell NP.

NPs with single particle spectra calculated with Mie-Gans theory.

Two more steps are to be done in order to make AuNRs-Ag@meso-SiO2: etching and Ag deposition. It was shown
by Deng et al.95 that AuNRs@meso-SiO2 can be etched and that a different metal can be deposited on the Au NR. The
method of Deng et al. will be used (with some modifications) for the described synthesis. Figurre 5.1 shows the complete
synthesis of silica-coated Au-Ag NRs.

The provided AuNRs@meso-SiO2 were oxidatively etched to create space in the mesoporous silica shell for Ag de-
position. The AuNRs@meso-SiO2 were dispersed in methanol and diluted until the Absorbance of the sample in a 1 cm
cuvette equalled 3, giving an indication of the concentration. For every sample, around 10 mL dispersion was used. In
this description, we use a 10 mL Au NRs dispersion, but the procedure can be scaled up to volumes larger than 200 mL.
A 40 mL vial (with stirring bar) with a 10 mL solution of Au NRs with mesoporous silica shell in methanol was placed
in a 60 ◦C oil bath on a stirring plate. After waiting a few minutes until the dispersion had the required temperature, the
etching procedure could be started. This was done by adding 0.2 mL concentrated HCl (37% in water, Sigma-Aldrich) and
0.2 mL H2O2 (30% in water, Sigma-Aldrich) in methanol (200-500x diluted, depending on etching speed) to the solution.
The vial was closed by a cap to prevent HCl evaporation. The solution was stirred in a 60 ◦C oil bath. The temperature
was kept constant during the etching procedure. Extinction spectra were used to check how much gold had been etched
away. This was done by taking samples from the etching solution and diluting it with an equal volume of cold methanol to
quench the etching process. When the desired amount of etching had been done, the etching solution was diluted 2 times
with room-temperature or cooler methanol. The dispersion was then washed once with methanol and twice with ethanol,
where the centrifuge was operated at 9000 rcf for 10 minutes each time. The resultant etched AuNRs@meso-SiO2 were
stored in ethanol at room temperature.

For the Ag deposition the etched AuNRs@meso-SiO2 need to be dispersed in water and diluted until the Absorbance
measured in a 1 cm cuvette is approximately 2. All the water used was ultrapure water (Millipore Milli-Q grade) with
a resistivity of 18.2 MΩ. Solutions of AgNO3 (≥ 99%, Sigma-Aldrich) and L-ascorbic acid (BioXtra, ≥ 99%, Sigma-
Aldrich) in water were prepared. Depending on the desired amount of Ag for the deposition, the molar concentration of
the AgNO3 solution was 1-4 mM. The molarity of the ascorbic acid solution was 4 times higher than that of the AgNO3
solution. The description that follows is based on the use of 1 mL etched AuNRS@meso-SiO2 dispersion, but as long as
the volume of the initial dispersion does not deviate greatly from 1 mL the other named volumes can be scaled accordingly.
Before the Ag deposition process was started, a 4 mL vial (with stirring bar) with 1 mL of the etched AuNRs@meso-SiO2
dispersed in water was placed in an ice bath. This slows down the Ag deposition to get more monodisperse NPs. After
a few minutes the Ag deposition was started. While stirring, first 0.1 mL of the AgNO3 solution and then 0.1 mL of the
ascorbic acid solution was added. Even in an ice bath, the reaction happened quickly. After 10 minutes the Ag deposition
was completed. The solution was washed once in water and twice in ethanol, with centrifuge speeds of 9000 rcf and
10 minutes of centrifuging for every washing step. The AuNRs-Ag@meso-SiO2 in ethanol dispersion was stored in a
refrigerator to prevent dissolving of the Ag shell (≥ 6 months).

We will now discuss the two methods used to characterize these particles. Firstly, extinction spectra were measured
using a FTIR spectrometer (Bruker Vertex 70) in order to determine the optical properties of an ensemble of NRs. For
these measurements in a 1 cm cuvette, we used a near-infrared source, a quartz beamsplitter and a room-temperature
Si-diode detector, which allowed us to measure in the visible regime as well. It needs to be mentioned that the Si-diode
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detector gives unreliable results for wavelengths below 500 nm. Secondly, bright-field transmission electron microscopy
(BF-TEM) images were acquired with a Fei Tecnai-12 operating at 120 kV and the resultant images were used for geo-
metrical determinations. The TEM grids were prepared by evaporating a 5 µL droplet of NRs in ethanol. The dropcasted
solution had an absorbance of approximately 8, which is indicative for the concentration.

5.3.2 In-situ heating measurements with extinction spectroscopy

The extinction spectroscopy measurements were done on a microscope stage (Bruker Hyperion) of a FTIR (Bruker Vertex
70). A temperature controlled IR stage from Linkam Scientific Instruments was used, more specifically the horizontal
FTIR600, in the following referred to as the Linkam cell. It was connected to a nitrogen source, allowing a nitrogen flow
through the chamber of the Linkam cell. The temperature of the Linkam cell could be varied from room temperature
to 600 ◦C in steps of 0.1 ◦C. The Linkam cell was mounted on the upright microscope and kept in place via clamps. It
was important to have the Linkam cell aligned with the microscope to obtain a decent amount of signal. For x and y this
was done by slowly pushing the Linkam cell across the microscope and optimizing the signal. The stage upon which it
was mounted could then be adjusted for height to get the best signal possible. We used a near-infrared source, a quartz
beamsplitter and a Si-diode/GaP-diode detector, which enabled us to measure in the visible and near-infrared regime.
Measurements were conducted via the left exit channel and with an aperture width of 3 mm. Data were acquired from 550
to 1200 nm. In order to have the best signal-to-noise ratio, 120 scans were done per measurements with a scanner velocity
of 2.5 kHz.

In the following the method for a measurement for a single sample is explained. The Au-Ag core-shell NPs in ethanol
were stored in a fridge in order to maintain their stability, as discussed previously. The sample was dropcasted on a glass
slide using a pipette. After dropcasting 5 µl, the droplet was given time to evaporate. This was repeated approximately 5
times, until there was enough sample on the glass slide to give enough signal in the FTIR. A vacuum tweezer was used
to place the dried sample inside the Linkam cell, in order to keep the glass clean. Firstly, a background measurement
was conducted. Therefore, the bare glass was placed in the cell. A metallic ring is placed upon the glass slide to keep
it in place. The Linkam cell is then closed using a lid with an optically transparent BaF2 window. A nitrogen flow is
sent through the cell, as the alloying is also performed under nitrogen. We waited 10 minutes before the background
measurement was taken, which should be sufficient time to fill the small volume of the Linkam cell with nitrogen. After
the measurement, the lid is the unscrewed and the metallic ring is taken off the glass slide. The part of the glass slide
which contained the most sample is now put in the Linkam cell. After this, the metallic ring is placed back upon the
glass slide and the lid in screwed back on. The nitrogen flow is given time to fill the chamber of the cell with nitrogen
once again. This time period is normally taken to be twenty minutes, since it is really important that the sample is only
heated while under nitrogen atmosphere, as it was seen that Ag atoms diffuses out of the NP when heated under air.25 The
sample was heated via the internal pure silver heating block inside the Linkam cell, upon which the glass slide lies. The
ramp and final temperature can be controlled via the Linkam TP94 device. A temperature ramp of 10 ◦C per minute was
used. This ensured that the temperature increase was sufficient to make sure that most alloying is yet to happen when the
maximum temperature is reached. When the maximum temperature is reached a repeated measurement is started. Spectra
are measured a certain time apart. The first hour a measurement was taken every 5 to 10 minutes. Beyond the first hour,
measurements were being taken every half hour to an hour, depending on the temperature of the measurement. We used
different maximum temperatures per measurements, between 225 and 300 ◦C. For these temperatures the alloying process
takes between six hours and several days. After the measurement the Linkam cell was cooled down at 10 ◦C per minute.
When room temperature was reached, the glass with the sample was taken out and TEM grids were prepared. This was
done by putting a small droplet (5 µl) of ethanol on the sample and carefully stroking the TEM grid over the droplet, in
order for some NRs to stick to the polymer film of the grid.

All the spectra that were collected were subsequently fitted to Gaussians, to filter out the noise, as seen in Figure 5.2.
Since the noise is not equal across the whole frequency range, frequency points at higher frequencies than the frequency
of the peak are excluded in order to improve the reliability of the Gaussian fit. The Gaussian fitting procedure allowed for
retrieval of the peak position. The change in peak position (compared to the first spectrum taken at maximum temperature)
is then plotted versus the time the sample has been heated at the maximum temperature. With Mie-Gans calculations it is
possible to predict the peak position change during the alloying process. The alloying process is then assumed via a very
simple model. For a 50/50 Au/Ag core-shell NR (AR = 3), the Au core is half the volume of the total particle. In this
model, the core size is kept the same throughout the alloying process, but the Au molar fraction of the core is decreased,
while that of the shell is increased. In other words, Ag atoms are diffusing into the core and Au atoms are diffusing into the
shell, without the shapes or volumes of the core and shell changing. Calculating the peak positions of this particle during
alloying with this model shows a blue-shift in the peak position, as in Figure 5.3. The analysis of the experimental spectra
was complicated by the deformation of the NRs to a more spherical shape. This aspect ratio loss for the NPs coated with
mesoporous silica is much less than uncoated NRs, but some deformation still takes place. As we have seen in chapter
2, a lower aspect ratio NR will result in a LSPR peak position that is blue-shifted with respect to the higher aspect ratio
NR. The importance of distinguishing these two causes for a blue-shift, namely alloying and deformation, is clear if we
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Figure 5.2: a) Several extinction spectra during thermal heating of an ensemble of NRs (sample TW010a2, AR = 3.7± 0.7, V =
(2.2±0.8) ·104 nm3, Au43Ag57) at T = 245◦C. b) The Gaussian fits to the spectra in a).

want to study one of the two, in this case the alloying process. This distinction can be made because the processes happen
at different time scales. The alloying process for the temperatures between 225 and 300 ◦C takes between six hours and
several days, while deformation for Au NRs in mesoporous silica happens in about an hour.96 It is therefore possible to
fit the measured peak positions to a bi-exponentially decaying function from which time constants can be extracted. The
used function to fit the peak position shift ∆λ is

∆λ = A+Be−t/τde f orm +Ce−t/τalloy (5.3)

where A, B and C are fit constants and τde f orm and τalloy represent the time needed for the shape deformation and the
alloying process respectively. The time constants τde f orm and τalloy indicate the time for which 63.2% of the peak shift
associated with the process happened. By choosing suitable heating temperatures we can decouple shape deformation
and alloying, as demonstrated in Figure 5.4. We can then use the time constant τalloy as an indication of how long the
alloying process takes at a certain temperature. By employing this method for different temperatures for the same sample,
the dependence of the alloying time on temperature can be extracted. We can define a diffusion coefficient D of the atoms
in the particle migrating in three dimensions as90

D =
r2

6t
(5.4)

where r is the particle radius and t is the timescale for which an atom diffuses over the radius of the particle, which is
proportional to τalloy. We use t = τalloy to calculate the diffusion coefficient. Because τalloy only represents the time for
which 63.2% of the alloying has occured, the actual time for alloying t could be higher, meaning our calculated diffusion
coefficients D could be overestimated. The diffusion coefficients D for different temperatures can be fitted using the
Arrhenius equation

D = D0e−EA/kBT (5.5)

from which both the activation energy EA and the frequency factor D0 can be extracted including errors. An eventual
overestimation of all diffusion coefficients D does not influence the activation energy. This procedure allows us to estimate
how long it takes for certain shapes and sizes of core-shell NRs to alloy at low temperatures.
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Figure 5.3: Predicted blue-shift of the plasmon resonance peak position when a 50/50 Au-Ag core-shell NR is alloying, calculated with
Mie-Gans theory.
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Figure 5.4: Peak shift of an ensemble of NRs (sample TW010a2, AR = 3.7±0.7, V = (2.2±0.8) ·104 nm3, Au43Ag57) during thermal
heating at a) Tmax = 245◦C and b) Tmax = 268◦C.

5.3.3 In-situ heating measurements in an electron microscope

In order to study the shape-dependence of the alloying process, we synthesized Au-Ag spheres and rods of the same
composition and volume via the same procedure as described previously. The etching and Ag coating procedures for the
Au-Ag spheres was the same as for the rods. The silica coated Au NRs were supplied by Jessi van der Hoeven, synthesized
via the seeded growth method of Ye et al.6 The Au nanospheres were synthesized by Naomi du Pree, via the the seeded
growth method of Jana et al.97 Both rods and spheres were silica coated via the method of Gorelikov and coworkers.94

The sizes of both Au core and Ag shell of the NRs were characterized by TEM images, while HAADF-STEM images
were used for spheres. By employing in-situ heating experiments in the electron microscope, we aimed to resolve if
the alloying temperature for NPs of the same size and composition depends on the shape of the NP. The in-situ heating
experiments were performed on a FEI Talos F200x operated at 200 kV, using a heating holder from DENSsolutions.
The dispersion containing spheres was dropcasted on the Nano-Chip XT (Tmax = 1300 ◦C) and the dispersion with NRs
was dropcasted on the Nano-Chip ST (Tmax = 800 ◦C). A heating chip was mounted on the heating holder, which could
be inserted in the electron microscope. Once a suitable spot for EDX was located via BF-TEM and HAADF-STEM, the
heating holder was connected to the heating control box. After an EDX measurement at room temperature, the temperature
was increased by incremental steps of 50 ◦C. The temperature increase happened nearly instantaneously (< 1 s). We kept
the temperature constant for approximately 5 minutes after each temperature increase and looked with HAADF-STEM
to check whether the core-shell structure was still intact. When we saw the core-shell contrast changing we performed
an EDX measurement. Each EDX map was accumulated for 5 minutes. Thus each EDX measurement increased the
duration for which the sample was heated at that temperature by 5 minutes. We performed EDX measurements at room
temperature, 350 ◦C and 400 ◦C for both spheres and rods. After we observed complete alloying for the NPs in our chosen
spot, we performed another EDX measurement on a different spot, to exclude any influence of the electron beam on
the alloying process. The sample was then cooled down with temperature steps of 50 ◦C, with times below one minute
between temperature changes. Another EDX measurement was taken when the sample was back at room temperature.
The EDX maps were quantified via the Cliff-Lorimer method.

5.3.4 Laser heating

To look at single particle heating with a laser, we use a Leica SP8 confocal setup (63x/1.4NA oil-immersion confocal Leica
objective). The setup is equipped with both a Coherent Chameleon II Ti:Sapphire laser (80 MHz repetition rate, 140 fs
pulse length) and a fiber-based white light laser. We use a TECNAI-12 transmission electron microscope to characterize
the NPs before and after laser irradiation. Finder grids were used. A droplet of the NP dispersion was dropcasted on a TEM
finder grid and dried. Suitable areas of around 10×10 µm were located in the electron microscope. An overview image
was taken in order to be able to locate that area again. Single NPs in that area were then imaged more closely in order to
determine its core-shell structure before laser irradiation. After TEM imaging, the grid was placed on a microscopy slide.
A droplet of glycerol was put on top of the grid to minimize the scattering of the silica shell (refractive index of 1.45).
The refractive index of glycerol is also close to that of the microscopy glass and immersion oil (refractive index of 1.51).
A 0.1 mm thick cover glass was placed on top of the grid. This sample system was then placed in the confocal setup. We
used the white light laser at 480 nm in reflection mode (collected between 470 and 490 nm) to find back the spot we chose
in the electron microscope and to focus onto the right z-plane. This was done by maximizing the signal collected from
the height of the polymer film of the TEM grid. We used the Ti:Sapphire laser at 860 nm, close to the plasmon resonance
of the used sample, and scanned through z for 4 µm higher and lower than the focal plane. This was done to ensure that
all NRs were excited by the laser. The x-y area used was around 10×10 µm. The total time the of laser illumination was
around one minute, ensuring enough laser pulses hit the sample. After laser irradiation the TEM grid was removed from
the glass slide. The grid was dried in a vacuum chamber overnight in order to remove the glycerol. The irradiated spot
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was imaged again in the TEM. This allowed us to compare the same particle before and after laser irradiation.

5.4 Results & Discussion
5.4.1 Core-shell nanorods: synthesis & characterization

Three samples of silica-coated Au-Ag core-shell NRs that were used for alloying are characterized here. They demon-
strate that different core and shell sizes can be synthesized by using the protocol in the methods section. We will look at
the TEM images and extinction spectra of these samples.

First, a selection of BF-TEM images taken is shown in Figure 5.5. They are used to determine the width, length, as-
pect ratio and volume of both the Au core and the Ag shell. The Au core and Ag shell can be distinguished due to a
difference in mass-thickness contrast. This is because Au has an atomic mass of 197 amu, compared to 108 amu for Ag.
The intensity in a BF-TEM image due to mass-thickness contrast is given by I = I0eσt , where t is the thickness and σ

the material-dependent scattering cross-section, which depends on the mass of the material. The contrast between the Au
core and Ag shell would have been more clear in HAADF-STEM mode, as Z-contrast depends on the atomic number Z
(79 for Au and 47 for Ag) and the intensity scales with Z2. However, independent imaging on more advanced electron mi-
croscopes was beyond the scope of this master thesis. It is important that the geometrical characterization from BF-TEM
images is done by only measuring NPs that have a clear core-shell structure. Knowledge of other forms of contrast forma-
tion, mainly diffraction contrast due to crystal structure orientation, and imperfect imaging, for example due to objective
aperture placement, helps to determine which imaged particles have clear core-shell structures and which particles look
different due to imaging artifacts. The width and length of both the core and the total particle were measured for 50-100
particles for each sample. The mean and standard deviation of geometrical quantities for samples TW009a2, TW010a2
and TW010a4 are given in Table 5.1, 5.2 and 5.3, respectively. The standard deviation is not due to errors in the measuring
of width and length, but rather because of polydispersity in the sample. The Au/Ag ratios of these samples were 75/25,
43/57 and 33/67 respectively.

TW009a2 d (nm) σd (nm) l (nm) σl (nm) V (103 nm3) σV (103 nm3) AR σAR
core 16.3 2.1 50.9 11.9 9.9 4.0 3.1 0.7
total 17.8 2.2 54.0 12.3 12.7 5.6 3.1 0.5

Table 5.1: Mean geometrical parameters and their standard deviation determined for sample TW009a2 by measuring length and width
for individual NPs in TEM images. The amount of NPs measured was 145.

TW010a2 d (nm) σd (nm) l (nm) σl (nm) V (103 nm3) σV (103 nm3) AR σAR
core 13.7 1.7 68.7 14.8 9.7 3.7 5.1 1.1
total 20.1 2.3 74.9 15.0 22.3 8.1 3.7 0.7

Table 5.2: Mean geometrical parameters and their standard deviation determined for sample TW010a2 by measuring length and width
for individual NPs in TEM images. The amount of NPs measured was 48.

TW010a4 d (nm) σd (nm) l (nm) σl (nm) V (103 nm3) σV (103 nm3) AR σAR
core 13.5 1.8 72.7 16.5 10.8 4.3 5.4 1.4
total 22.7 3.3 79.9 16.1 30.5 13.5 3.6 0.7

Table 5.3: Mean geometrical parameters and their standard deviation determined for sample TW010a4 by measuring length and width
for individual NPs in TEM images. The amount of NPs measured was 45.

It is not just the geometrical parameters that are interesting for these samples. The ensemble extinction spectrum was
used to characterize the optical properties of the sample. It also allows us to test the Mie-Gans modelling of core-shell
NPs. We do this by calculating the extinction cross section of a single core-shell particle, in a silica shell with 63%
porosity,98 for each sample with the mean parameters given in Table 5.1, 5.2 and 5.3. The measured ensemble spectra
and the by Mie-Gans theory calculated single particle spectra are given in Figure 5.6. The porosity of the silica shell was
included in the dielectric environment by calculating the dielectric constant of the medium via Equation 2.33 given in
chapter 2. The samples of the measured ensemble spectra are 2 times diluted compared to the core AuNRs@mesoSiO2
before Ag deposition which had an Absorbance of 2. Therefore, the initial core dispersion had an Absorbance of 1. For
sample TW009a2, the Absorbance is 1.3 and has thus increased by a factor 1.3. This is explained by the volume increase
due to Ag deposition, which is also a factor 1.3, since, besides size-dependent damping effects like radiation damping,
the plasmon resonance intensity scales linearly with volume. The aspect ratio and the polydispersity of the cores and the
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Figure 5.5: BF-TEM images of sample TW009a2 (top row), TW010a2 (middle row) and TW010a4 (bottom row). TEM images were
taken on the FEI Tecnai-12. The somewhat large circular objects in the figures are most likely spheres, as the synthesis produces a few
spheres as well.
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total particle hardly differ. This means the only parameters affecting the change in Absorbance are the volume and the
composition of the NRs. Because the difference in Absorbance between the Au core NRs solution and Au-Ag core-shell
NRs solution can be explained by the increase in volume of the particles, it is likely that the properties of the Au-Ag
core-shell NRs are not significantly better than a Au NR of the same volume. This is not trivial as Ag has better plasmonic
properties than Au in the wavelength regime of the plasmon resonance. The better properties of Ag are likely cancelled
out by the collective electron oscillation undergoing dephasing by scattering of the interface between the Au core and Ag
shell. This mechanism was also proposed to explain the larger homogeneous broadening of single Au-Ag core-shell NR
spectra compared to Au NR spectra in dark-field scattering experiments by Liu et al.33 For the samples TW010a2 and
TW010a4, the Absorbance increased with a factor 1.5 and 2 compared to the core spectra, respectively. For both these
samples, the increase in extinction is less than the average increase in volume. This is mostly caused by a decrease in
aspect ratio, which lowers the plasmon resonance intensity, as shown in chapter 2.

The by Mie-Gans theory calculated single NR spectra and the measured ensemble spectra show good agreement in terms
of peak position (Figure 5.6). Calculations and measurements are in good agreement on peak positions. The most ob-
vious difference between the calculated and measured spectra are the relative peak intensities. For sample TW009a2,
the measured ensemble spectrum has a much higher relative peak intensity compared to the other two samples than the
calculated single particle spectrum of TW009a2. For example, the peak intensity of the measured extinction spectrum for
sample TW009a2 is 0.86 times the intensity of sample TW010a2, whereas for the calculated single particle spectra the
peak intensity for TW009a2 is only 0.37 times that of TW010a2. This is due to the fact that the aspect ratio polydispersity
for TW009a2 is lower than for the other two samples. The sum of all the single particle spectra making the ensemble
spectrum is thus more concentrated in a small wavelength regime for sample TW009a2 than for the other two. This leads
to a higher relative peak intensity in the ensemble spectrum. This shows the importance of the aspect ratio polydispersity
in ensemble spectra, as discussed in chapter 4.

Figure 5.6: Extinction spectra for three different silica-coated core-shell NR samples in water. a) The measured spectra and b) calculated
spectra for one NR with the mean properties show good qualitative agreement in relative peak position. The measured ensemble spectra
were measured using and FTIR and the calculated single particle spectra were calculated using Mie-Gans theory.

5.4.2 In-situ heating measurements with extinction spectroscopy

The alloying process was followed in-situ with extinction spectroscopy by using the knowledge of the theoretical peak
shift of the plasmon resonance of NPs with the same composition that change from a core-shell structure to a fully alloyed
structure. The plasmon resonances of these NPs can easily and quickly be calculated by Mie-Gans calculations. The
peak shifts towards the blue part of the spectrum when the core-shell NP changes towards an alloyed NP (Figure 5.3).
Therefore, in-situ extinction spectroscopy measurements are performed to follow the alloying process.

A first important check is to determine whether core-shell NRs alloy at the temperatures employed here. We compare
TEM images of NRs of average aspect ratio 3.78 and a 43/57 Au/Ag ratio before and after elevated temperature in the
Linkam cell. The sample was heated in the Linkam cell for 16 hours at T = 300 ◦C and from Figure 5.7 it is clear that
the core-shell structure was a lot more vague even for the NPs that were not completely alloyed. This first result shows it
is possible to alloy at these temperatures as long as the sample is at elevated temperature for a long time period. This is
remarkable, since Gao et al. found that they required a temperature of 930 ◦C to fully alloy Au-Ag nanospheres that have
3 to 4 times smaller volumes.88 The reduced alloying could be ascribed a shape effect, which we study in more detail
later. Figure 5.7 also confirms that the aspect ratio decreases only slightly. For this particular sample the average aspect
ratio decreased from 3.78 to 3.48. Before heating the aspect ratios of 120 particles were measured, whereas this was done
for 60 particles after heating, since less particles were deposited on the TEM grid due to difficulties in redispersing them.
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Figure 5.7: Transmission electron microscopy images taken on the TECNAI-12, showing a less clear core-shell structure for NRs of a
50/50 Au/Ag ratio (sample TW010a2) after heating at T = 300◦C for 16 hours.
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As we established that it is possible to alloy the NRs at relatively low temperatures we used the analysis described in
section 5.3.2 to link peak position shifts in the FTIR measurements to typical alloying times. We extracted diffusion coef-
ficients for three different samples and use the Arrhenius equation to obtain activation energies for atoms in the alloying
process.

We investigated three different samples, namely TW009a2, TW010a2 and TW010a4, which are characterized in Ta-
ble 5.4. The three samples have different average aspect ratios, various Au/Ag ratios and slightly different volumes. The
extracted activation energies are also given for each sample. The diffusion coefficients and Arrhenius fit for TW009a2,
TW010a2 and TW010a4 are shown in Figure 5.8, 5.9 and 5.10, respectively. It needs to be mentioned that the spectra
for the sample with the lowest AR NRs, TW009a2, are generally more noisy due to the detector limit, which makes the
Gaussian fits to these spectra less reliable. This results in high errors for the diffusion coefficients in Figure 5.8. Both the
activation energy EA and the frequency factor D0 can be acquired from the least-square Arrhenius fit to the data in Figures
5.8, 5.9 and 5.10. The error for the frequency factor, however, is large, namely of the order of the frequency factor itself,
so nothing meaningful can be concluded from it, in contrast to the activation energy.

sample AR D (nm) V (104 nm3) AuxAgy EA (eV)
TW009a2 2.7 23.7 2.5 Au75Ag25 0.9±0.1
TW010a2 3.4 19.9 1.9 Au43Ag57 0.6±0.1
TW010a4 3.2 23.0 2.7 Au33Ag67 0.7±0.1

Table 5.4: Investigated samples and their corresponding average aspect ratio after heating AR, average width after heating D, average
volume after heating V , Au/Ag ratio AuxAgy and activation energy EA.

Figure 5.8: Diffusion coefficients D of sample TW009a2 for four different temperatures related via the Arrhenius equation shown in a)
a regular plot and b) an Arrhenius plot. The least-square fit of the Arrhenius equation for these points is shown as the black line. The
slope of the line in the Arrhenius plot corresponds to the activation energy EA.
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Figure 5.9: Diffusion coefficients D of sample TW010a2 for five different temperatures related via the Arrhenius equation shown in a)
a regular plot and b) an Arrhenius plot. The least-square fit of the Arrhenius equation for these points is shown as the black line. The
slope of the line in the Arrhenius plot corresponds to the activation energy EA.

Figure 5.10: Diffusion coefficients D of sample TW010a4 for five different temperatures related via the Arrhenius equation shown in
a) a regular plot and b) an Arrhenius plot. The least-square fit of the Arrhenius equation for these points is shown as the black line. The
slope of the line in the Arrhenius plot corresponds to the activation energy EA.

In the following we will discuss the influence of parameters such as Au/Ag ratio, size and shape on the activation
energy by analyzing the results for the three samples characterized in Table 5.4. Unfortunately, the vacancy concentration
on the interface between the Au core and Ag shell could not be investigated. The core-shell NPs are all synthesized in
the same way, so the vacancy concentration should be relatively similar. However, small deviations in composition, size
and shape may induce vacancy concentration differences, particularly due to different interface curvatures. To study the
influence of vacancies on the alloying process is beyond the scope of this thesis. Molecular dynamics simulations could
be employed to study the influence of vacancies on the activation energy.

Firstly, we investigate the influence of volume on the activation energy. As shown in Table 5.4, the three samples have very
similar volumes, roughly equivalent to the volume of a sphere with a diameter of 35 nm. The volumes are much larger than
the typical volumes for which the melting point of nanostructures becomes size dependent.92, 99–102 For Au-Ag alloys, the
nanophase diagram was shown to be only mildly size-dependent for spherical NPs with diameters of 35 nm.100 Dick et
al. showed that the diffusion coefficients were size-dependent for Au spheres with diameters below 20 nm.92 The widths
of the NRs of the samples used, as shown in Table 5.4, are above 20 nm. We therefore conclude that the small differences
in volume for the NPs in our samples are insufficient to explain the differences in activation energy.

To determine the influence of aspect ratio and Au/Ag ratio on the activation energy, we plot the activation energy versus
both the aspect ratio and Au/Ag ratio in Figure 5.11. The sample with the lowest aspect ratio and highest fraction of
Au atoms has the highest activation energy. We can estimate an upper limit for the influence of the Au/Ag ratio on the
activation energy by calculating the bulk activation energies for the Au/Ag ratios of our NPs and compare them. We do
this for the extreme case in which we assume that Ag atoms only diffuse into a Au atom environment and vice versa. This
gives an upper limit for the influence of the composition on the activation energy, as values for the activation energies
for diffusion of Au and Ag atoms in bulk alloy compositions are more similar than Au diffusing in Ag and vice versa.91
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Figure 5.11: Activation energy EA for three different samples as determined from Figures 5.8, 5.9 and 5.10. The activation energies EA
are plotted as function of a) aspect ratio and b) gold molar fraction.

We estimate the bulk activation energies as EA ≈ xAuEA,Au−Ag + xAgEA,Ag−Au, where EA,Au−Ag is the activation energy for
a Au atom diffusing into an environment with Ag atoms and EA,Ag−Au the activation energy for a Ag atom diffusing into
Au. For the composition Au33Ag67, the in this way calculated bulk activation is 6% higher than the bulk activation energy
calculated for the composition Au75Ag25. Because the errors for the activation energies in Figure 5.11 are large, the in-
fluence of the composition cannot be excluded, but the theoretical upper limit of the influence of the composition on the
activation energy is minor.

This leaves the shape of the particle, presented as an aspect ratio difference in Figure 5.11, as the cause for the higher
activation energy of the sample with low aspect ratio NRs. There are various other ways the shape can have an influence
on the activation energy. For example, the aspect ratio of the initial core could influence the diffusion process. Differ-
ences in shape also lead to different interface areas and interface to volume ratios which could speed up the alloying
process. However, with so few points it is hard to deduce any effect of the shape on activation energy. We hypothesize
that larger interface areas and a higher Au ratio do have a minor influence the activation energy, but the exact nature of
these dependencies cannot be extracted from the data. In any case, no large influence of shape on the activation energy
was observed.

5.4.3 In-situ heating measurements in the electron microscope

The samples of spheres and rods used in this experiment are characterized in Table 5.5 and 5.6, respectively. Figure 5.12
and 5.13 show EDX maps for the nanospheres and nanorods, respectively, at several stages during the heating process in
the electron microscope. It was observed that the onset of the alloying process was at T=350 ◦C for both the nanospheres
and the nanorods. For both spheres and rods, the core still consisted mainly of Au, but the core-shell structure became
less pronounced. As we saw in section 5.4.2, the heating time is important in the alloying process. This found onset for
alloying is therefore no strict threshold, but rather the first temperature for which we observed a change in the core-shell
structure within the five minutes that we measured. When the temperature was increased to 400 ◦C, the nanospheres and
the nanorods were both alloyed, as the EDX maps showed that the Au and Ag was homogeneously distributed throughout
the NPs. No difference in alloying temperature was thus observed for nanospheres and nanorods of similar volume and
Au/Ag ratio. To determine whether the NPs remained alloyed when the temperature was returned to room temperature,
a final EDX measurement was done. Figures 5.12 and 5.13 show that the metals were still homogeneously distributed
within the NPs at room temperature, indicating the stability of the alloy.

In order to exclude any influence of the electron beam on the alloying process, we visualized a previously unexposed
area for comparison for both spheres and rods in Figure 5.14. The particles in this area were also alloyed, which means
the electron beam did not promote the alloying of the particles. It needs to be noted that for the NRs, we only checked an
unexposed spot at 500 ◦C, which was 100 ◦C above the alloying temperature observed in the initial spot.

NDP-003-A2 (spheres) D (nm) V (103 nm3) S/V (nm−1)
core 18.3±2.1 3.3±1.1 0.33±0.04
total 25.2±2.6 8.6±2.3 0.24±0.02

Table 5.5: Characterization of the spheres used in this experiment. The table gives the diameter D, volume V and surface-to-volume
ratio S/V for both the Au cores and the total core-shell NPs.
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Figure 5.12: EDX maps during in-situ heating of silica coated Au-Ag nanospheres. The intensity EDX maps show the metal distribution
of Ag (green) and Au (red) at different temperatures. The final EDX map shows the metal distribution after the temperature was
decreased to room temperature.

Figure 5.13: EDX maps during in-situ heating of silica coated Au-Ag NRs. The intensity EDX maps show the metal distribution of Ag
(green) and Au (red) at different temperatures. The final EDX map shows the metal distribution after the temperature was decreased to
room temperature.

Figure 5.14: EDX maps for spheres and rods at spots that were not exposed to the electron beam prior to this measurement. The
intensity EDX maps show the metal distribution of Ag (green) and Au (red).
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JVH-022-A2 (rods) D (nm) V (103 nm3) AR S/V (nm−1)
core 10.8±1.7 3.4±1.4 3.6±0.8 0.42±0.06
total 16.5±0.6 7.4±3.6 2.9±0.9 0.31±0.05

Table 5.6: Characterization of the NRs used in this experiment. The table gives the diameter D, volume V , aspect ratio AR and
surface-to-volume ratio S/V for both the Au cores and the total core-shell NPs.

AuxAgy T=20 ◦C T=400 ◦C
spheres Au25Ag75 Au27Ag73

rods Au36Ag64 Au36Ag64

Table 5.7: The obtained atomic Au/Ag ratios AuxAgy for the EDX maps at room temperature and 400 ◦C for both spheres and rods.

The intensity maps before heating and at 400 ◦C for both spheres and rods were quantified by using the Cliff-Lorimer
method. Only Au and Ag were used for the quantification while the other elements were used for deconvolution only.
The quantified EDX maps are shown as atomic percentage EDX maps in Figures 5.15a) and 5.16a). The obtained atomic
Au/Ag ratios averaged over all particles within the EDX map are presented in Table 5.7. The obtained Au/Ag ratios for
spheres and rods remain constant at elevated temperature as expected.

The quantified EDX maps were used to extract line scans to quantify the positions of Au and Ag atoms within a par-
ticular particle. The line scans at room temperature and 400 ◦C for a sphere are shown in Figure 5.15b). It can be seen
that at room temperature Ag is more prominent in the outer regions of the particle. At 400 ◦C the Ag and Au can both be
found in all regions of the particle, which indicates an alloy structure. The line scans for a NR at room temperature and
400 ◦C are shown in Figure 5.16b-c). Both over the length and width of the studied particle the structure is easy to see.
Before heating, there is a clear core-shell structure, while at 400 ◦C the particle is alloyed.

The difference in alloying temperature observed for spheres by Gao et al.88 and rods by Albrecht and Van der Ho-
even25 was the motivation for this study. We therefore compare our results to theirs. The onset for alloying and final
alloying temperature for spheres was found to be significantly lower than the temperature reported by Gao and cowork-
ers.88 Their spheres had volumes that were 1.5 times lower than the volumes of our spheres. A smaller particle size
is expected to lower the alloying temperature, so size effects can be excluded. A possible explanation is the different
method of defining the NP to be alloyed. Gao et al. used a wet-chemical procedure wherein the spheres were exposed
to an etching solution of hydrogen peroxide and ammonia for a long time. The aqueous etchant-solution was composed
of H2O2 (0.5 M), NH3·H2O (0.4 M), and PVP (surfactant, 0.5 wt%, Mw = 10000). At 930 ◦C the decrease in intensity in
the extinction spectrum was 18% within the first 24 hours, with no additional decrease in the next 20 hours, which they
took as an indication of a fully alloyed nanosphere. This is in contrast to our spectroscopic technique, which provides
information on the atomic distribution but lacks any information on chemical stability.

However, the alloy temperature we found for NRs does agree well with results from Albrecht and Van der Hoeven25 who
performed both our spectroscopic technique and exposure to an aqueous etching solution (1.7 vol% H2O2 and 0.9 vol%
NH3 solution) for two hours as analysis techniques on alloyed NRs. The NRs used in their in-situ heating experiment
with similar time scales per temperature were found to have a higher alloying temperature of 450 ◦C, which is likely due
to the larger volume of their NRs (V = 3.7 · 104 nm3, AR = 3.0), compared to our NRs (V = 0.7 · 104 nm3, AR = 2.9).
Our NRs have diameters of approximately 16.5 nm, whereas the NRs of Albrecht and Van der Hoeven have widths of
27 nm.25 Volume effects begin to influence the diffusion coefficient below sizes of 20 nm diameter for Au spheres.92 The
size-dependent diffusion coefficients and the larger distances that atoms in larger particles need to cover to alloy fully,
makes it reasonable that they find a slightly higher alloying temperature for their NRs.

5.4.4 Laser heating

We showed that it is possible to alloy Au-Ag core-shell NPs by thermal heating in the previous two sections. Hodak et
al.103 alloyed Au-Ag core-shell nanospheres by using lasers with 5 ns and 30 ps pulses. In this section we heat Au-Ag
core-shell NRs stabilized with a mesoporous silica layer using femtosecond laser pulses. The laser excites the LSPR of the
NR. The excited electrons lose part of this energy via electron-phonon scattering. The typical electron-phonon coupling
time for Au and Ag NPs of our size is around 1 ps.104 The loss of energy via electron-phonon scattering heats up the
particle,105 which should enable the diffusion of Au and Ag atoms in order to form an alloy. This heat then diffuses into
the medium, which is expected to happen on a 100-200 ps timescale,103 or longer depending on the medium105.

We used sample TW010a2 characterized in Table 5.2 to do the experiment. A laser fluence of 8.1 mJ/cm2 was used.
Figure 5.17 shows NPs before and after laser irradiation. We observed a loss of volume after we applied laser power to
the sample. The volumes before and after laser irradiation are estimated from the length and widths of the particles in
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Figure 5.15: a) Quantified EDX maps for spherical NPs. b) Line scans over the diameter of a spherical NP at room temperature (left)
and 400 ◦C (right).
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Figure 5.16: a) Quantified EDX maps for NRs at room temperature and 400 ◦C. b) Line scans over the length and width of a NR at
room temperature. c) Line scans over the length and width of a NR at 400 ◦C.
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Figure 5.17: The same particles before (left) and and after laser irradiation (right). A laser fluence of 8.1 mJ/cm2 was used. It looks
like silver has escaped the particles, meaning alloying did not take place.

Figure 5.17 in Table 5.8. This is just an estimation, because the TEM images are a 2D projection of the sample. While it
is true that the NRs deform due to the influence of the laser, this should not result in a volume loss. Albrecht et al. did not
observe a volume loss after applying laser pulses with a fluence of 8.1 mJ/cm2 on Au NRs in mesoporous silica shells.105

Their Au NRs had an average volume of (9.9± 0.4) · 104 nm3, which is larger than the volume of our core-shell NRs,
which means our NRs should be more stable due to faster heat dissipation for smaller NPs. This leads us to believe that the
volume loss is caused by Ag departing the particle as was observed for thermal heating of Au-Ag core-shell NRs in air.25

The mechanism of the way in which the Ag leaves the particles is still unclear. Hodak et al. did not observe a volume loss
for their laser-induced alloying of Au-Ag nanospheres.103 Their particles were synthesized via radiation chemistry, while
our particle are synthesized via wet chemistry methods.6, 94, 95 As a result of our synthesis Cetyl trimethylammonium
bromide (CTAB) is present in the pores of the silica shell. CTAB has a melting point between 237 and 243 ◦C. When this
melting point is reached and oxygen is present an exothermic reaction can occur. The extra local heat when CTAB burns,
due to the oxygen present, may be the cause for Ag escaping from our particles as the particles used by Hodak et al. did
not contain CTAB. However, the temperatures due to laser excitation are already quite high, so the extra local heat due
to burning CTAB may not be significant. It is likely that the reason for Ag escaping the particle in this experiment is the
same reason as for Ag escaping the particle when heated in an oven under air.25 What that reason is, is still unclear.

Table 5.8 shows that most likely not the complete fraction of Ag initially present in the particle is lost under laser ir-
radiation. This evidence is, however, not conclusive as the volumes are estimated from a TEM image, which is a 2D
projection of the sample. When some Ag initially leaves the particle, the volume loss gives the remaining particle free
space in the silica shell. This allows the particle to be deformed more easily. The plasmon resonance of the particle shifts
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Vcore (104 nm3) Vtotal (104 nm3) Virradiated (104 nm3)
particle 1 0.6 1.4 1.1
particle 2 0.4 0.9 0.7
particle 3 0.6 2.4 1.1

Table 5.8: Volume of the core and the total volume of the particles before laser irradiation and the volume of the total particle after
laser illumination. The volumes were obtained by measuring the width and length of the particle and then calculating the volume for a
spherocylindrical or a bullet shape for the particles before and after laser irradiation, respectively.

outside the wavelength range of the laser, due to the resulting aspect ratio loss. Consequently, the laser pulses do not
excite the LSPR any longer and energy is no longer efficiently absorbed. This could be the reason why the estimated
volume of the irradiated particle is somewhat larger than the volume of just the Au core before laser irradiation.

5.5 Conclusions
In conclusion, we have shown that we can synthesize Au-Ag core-shell NRs of various Au/Ag ratios by etching AuNRs@mesoSiO2
and subsequent Ag deposition by using the method of Deng et al.95 with a few modifications, such as doing the Ag de-
position in an ice bath and using H2O2 instead of air as an oxidant in the etching procedure. We characterized samples
that we use for heating experiments using BF-TEM imaging and extinction spectroscopy. It was observed that Mie-Gans
calculations for single core-shell NRs could qualitatively describe the plasmon resonance wavelengths and relative inten-
sities of measured ensemble measurements. However, it became clear that aspect ratio polydispersity needs to be included
to quantitatively describe ensemble spectra, as shown for Au NRs in chapter 4.

The core-shell NPs were used in heating experiments. We first showed that it is possible to alloy Au-Ag core-shell
NRs by thermal heating under nitrogen atmosphere at temperatures lower than 300◦ C for heating times on the order of
days. We investigated three samples with different aspect ratios and Au/Ag ratios. The determined activation energies
were 2 to 3 times lower than bulk activation energies for these Au-Ag compositions. No large shape dependence on the
alloying process could be deduced from the data.

We also performed in-situ heating experiments in the electron microscope on nanospheres and nanorods of similar vol-
umes and Au/Ag ratios. Via EDX mapping, we found that the alloying temperature of both spheres and rods were 400 ◦C,
indicating no shape dependence on the alloying process. We found somewhat lower alloying temperatures for NRs than
Albrecht and Van der Hoeven, who found an alloying temperature of 450 ◦C, with similar time duration per heating tem-
perature, for NRs of the same aspect ratio but 5 times larger volumes.25 This is likely a size effect. Melting temperatures
decrease for NPs smaller than 20 nm,92 so diffusion could be expected to be faster at low sizes. The alloying temperature
of 400 ◦C we found for spheres is in strong disagreement with the alloying temperature of 930 ◦C found for spheres of 1.5
times smaller volume by Gao et al.88

Lastly, we were not able to alloy the Au-Ag NRs with femtosecond laser pulses. Instead, we observed a volume loss
after laser irradiation. This is likely due to the presence of oxygen, which was observed to cause a volume loss due to Ag
escaping the particle in thermal heating experiments of Au-Ag core-shell particles.25
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6 Summary & Outlook
We performed calculations and experiments to investigate the important parameters in plasmon resonances of (bi)metallic
NRs. Firstly, we studied the theory of plasmons via Mie-Gans calculations for Au NRs that were employed to study the
influence of parameters such as size, aspect ratio and surrounding medium on the LSPR. We extended the calculations to
bimetallic Au-Ag systems and looked at the influence of the composition on the plasmonic properties. We found that the
resonance wavelengths for both core-shell and alloyed NRs could be tuned by changing the composition of the particles.
It was also observed that the strength of the extinction cross section for the alloyed NRs compared to the pure Au NRs
got worse for higher aspect ratio, which is due to a higher imaginary part of the dielectric function in the energy regime
below 1.8 eV. For the lower aspect ratios, with resonance energies above 1.8 eV, this effect was partly compensated by the
shifted onset of interband transitions.

We then moved on to numerical calculations to study the radiative decay mode of the LSPR for Au NPs. With finite-
difference time-domain calculations we found that the radiative decay increased linearly with the dielectric constant of
the medium around the particle. Besides, the radiation damping at high energies was suppressed. The suppression of the
radiation damping was observed for energies above 1.8 eV, at which interband transitions occur. We described the data
by a dependence on the imaginary part of the dielectric function of the metal, which describes interband damping. This
lead us to the phenomenological description for radiation damping Γr = 2h̄ κmetalεm

ε2(ωres)
V , which described the calculated data

reasonably well for the investigated metals Au, Ag, Cu and Al. It also matched experimental data for Au NPs obtain with
dark-field scattering experiments.28, 34, 35 We used this description to calculate widths of particles for which their plasmon
resonance experiences the least amount of damping. We also proposed that the influence of the interband transition on
the radiative decay could explain the decrease in the quantum yield quantum yield for photoluminescence of Au NRs
below 1.8 eV.70, 71 We believe that the new observation of radiative decay being influenced by interband transitions helps
to design optimal systems for decay-mediated applications such as photostable labels for biological sample imaging.68, 106

We also analyzed ensembles of NRs by using Mie-Gans modelling and experimental ensemble extinction spectra. We
managed to extract aspect ratio distributions and concentrations of the sample in a fast and non-destructive way. Further-
more, we investigated the electron-surface scattering contribution to plasmon damping and found A = 0.30±0.02, which
is in good agreement with single particle experiments.34–36, 38

Furthermore, we explored the alloying process in Au-Ag NRs experimentally. For that, we synthesized Au-Ag core-shell
NRs with a mesoporous silica shell and used them in heating experiments. Specifically, we performed in-situ heating
measurements to study the alloying process using extinction spectroscopy. From these measurements we derived activa-
tion energies for diffusion in the NPs that were two to three times lower than activation energies for bulk alloy metals. No
shape dependence on the activation energy could be deduced from the few data points. Furthermore, we employed in-situ
heating experiments in the electron microscope to compare the alloying rates of nanorods and nanospheres of the same
volume and composition. We did not observe a notable difference in alloying temperature for nanospheres and nanorods.
We conclude that the alloying process does not depend heavily on shape. The alloyed NRs could only be obtained when
heating Au-Ag NRs in inert atmosphere. Attempts to alloy Au-Ag NRs in non-inert conditions by femtosecond laser
excitation failed. The synthesized alloyed NRs could be particularly useful in photocatalysis due to their composition and
reasonably good plasmonic properties.

Research is never finished and this thesis is no exception. There are a few experiments that would be interesting as a
continuation on this work. Firstly, it would be nice to observe the suppression of the radiative decay due to interband tran-
sitions in an experimental setting. A dark-field scattering experiment with Au NRs of various aspect ratios and volumes
would be a good way of investigating it. By determining the photoluminescence quantum yield of the same particles, we
could potentially show the relation between radiative decay and photoluminescence in Au NPs. A lot of research is still
to be done on the alloyed NRs. Firstly, it would be interesting to do dark-field scattering experiments on the alloyed NRs
to measure the homogeneous linewidth of these particles and compare them with Mie-Gans and FDTD calculations. In
order to further study the alloying of the Au-Ag NPs, molecular dynamics simulation would be helpful to research the
influence of interface defects and interface shape on the diffusion of the Au and Ag atoms. Experimentally, the exper-
iments in chapter 5 could be expanded. For example, the Linkam cell could be used to study the activation energy for
diffusion in a Au-Ag nanosphere. This cannot be done in our current FTIR setup but would need to be done with e.g. a
UV-vis spectrometer. Lastly, laser-induced heating of Au-Ag particles can be attempted at lower laser fluences or in an
inert atmosphere.
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