
Utrecht University

Mathematics

Bachelor thesis

Markowtiz’ Critical Line
Algorithm

Author:
Michael van den
Hoogenband
3758230

Supervisor:
Dr. Karma Dajani

January 18, 2017

Abstract

The goal of this thesis is to give a detailed theoretical background into
the workings of the Critical Line Algorithm created by Harry Markowitz.
First, we will give an introduction into probability theory, and then some
background information on portfolio theory and optimization theory. Fur-
thermore there will be a description, and solution of the problem for se-
lecting an optimal portfolio. Finally the used algorithm is explained, both
the working and the code.

Contents

1 Introduction 1

2 Optimizing your portfolio 2
2.1 Theoretical background . 2
2.2 Optimization theory . 5
2.3 Portfolio theory . 8
2.4 The problem . 13
2.5 Approaching the solution . 15

3 Critical Line Algorithm (CLA) 18
3.1 Explaining of the algorithm . 18
3.2 Implementation in Python . 21
3.3 A small numerical example . 24

4 Discussion 26

5 Conclusion 27

A CLA in Python code[1] 28

I

1 Introduction

In the current society, the industry is focused on profit. How can I make as
much profit as possible in the shortest amount of time with the least amount of
work. We want to have efficient ways to make a lot money. A way of earning
money is by investing in assets. We want to put together a collection of assets
which we think will give use the best profit, without having to big of a risk.
Nowadays, there are many theories on how to assemble such a collection, i.e. a
portfolio. There are even companies who specialize in selecting these portfolios,
but all of this is made possible by the groundbreaking work of Harry Markowitz.

In 1952, Markowitz published his article Portfolio Selection in the Journal of
Finance [2]. In this article Markowitz explained how one can derive the optimal
combination of a high expected return against a low variance of return on a
portfolio. Although people were well aware that one must always look at the re-
turn as well as the risk of an investment, Markowitz article gave a well detailed
theory on portfolio optimization. This formed the foundation of research in
financial mathematics. Markowitz even recieved the Nobel prize in Economics
for his work, together with William Sharpe and Merton Miller in 1990.

In the first section of this thesis, we will discuss a lot of theory. First on
probability theory, then optimization theory and finally the work of Markowitz
considering portfolio theory will be covered. The remaining part of section 2 is
devoted to forming a mathematical understanding of the problem of portfolio
optimization and its solution. In section 3 we will first look at the working of
the algorithm created by Markowitz before we describe the exact working of the
algorithms code in Python, as it is provided in [1]. We will finish with a small
numerical example showing the working of the algorithm. The Python-code we
discuss in section 3 can be found in appendix A. In this appendix there are some
extra functionalities which this thesis does not cover, like finding the maximum
Sharpe ratio. If one is interested in these functionalities, the article of Bailey
gives some explanations as well as some references.

When reading this thesis, one should eventually understand the working of
the CLA. One should also be able to understand the given code and, with enough
experience in a different programming language, should be able to rewrite this
code to that language.

1

2 Optimizing your portfolio

Before we can give a good description of the problem, we first want to have some
theoretical background with respect to financial mathematics and probability
theory1.

2.1 Theoretical background

To get a clear view on the use of the algorithm, we first want to give some
background on financial mathematics and some crucial definitions. For the
optimization problem we face here, which is a constrained problem, we want to
compute the Efficient Frontier.

Definition 2.1. We call an investment risk-free if it has a guaranteed future
return.

The risk of an investment is measured by the standard deviation on its
return, which is defined in definition 2.11. An example of a risk-free investment
is a government bond. A government bond is a bond the government put op
for sale. This bond returns a certain interest each agreed period, such as a
month, and return the face value at maturity. The inflation and currency risks
are negligible, so you have a certainty that you receive the money you loaned
to the government and the interest.

Definition 2.2. The excess return is the return rate on an investment relative
to the return rate on a risk-free investment.

Suppose the return rate of the investment you want to make is 18%. You
then look at the return rate of a risk-free investment which you can make with
the same amount of money, which is for example 15%. Your excess return is
then 18%− 15% = 3%.

Definition 2.3. The Efficient Frontier is the set of portfolios that yield the
highest achievable mean excess return, in excess of the risk-free rate, for any
given level of risk.

We can now give the formulation of the optimization problem. We want to
minimize the portfolio’s variance subject to a targeted excess return. To define
the variance, we first need to give a definition of the mean value of a random
variable, as well as the definition of a random variable.

Definition 2.4. Suppose we have an experiment E with several outcomes. The
set of all possible outcomes is called a sample space and is denoted by Ω.

For an example, let us look at the experiment of throwing a die. The possible
outcomes of our experiment are the values 1 to 6, so Ω = {1, 2, 3, 4, 5, 6}.

1Although the theory supplied in this thesis should be sufficient, one can find more infor-
mation on probability and statistics in [6] and [7]

2

Definition 2.5. Suppose F is a family of subsets of a sample space Ω. We call
F a σ-algebra if it satisfies the following three properties:

1. ∅,Ω ∈ F

2. Suppose A ⊂ Ω. A ∈F ⇒ Ac ∈F

3. Suppose A1, A2, . . . , An, . . . is a countable family of subsets in F . Then
∪i≥1Ai ∈ F .

We call the elements of F events.

Definition 2.6. We call a function F : Ω → R measurable with respect to a
σ-algebra F if the inverse image of every interval [a, b], a ≤ b ∈ R, is in F .
More precisely if

a ≤ F ≤ b ≡ {ω ∈ Ω : a ≤ F (ω) ≤ b} ∈ F .

F is then called F-measurable.

Definition 2.7. A function P : F → [0, 1] is called a probability measure on a
sample space Ω with σ-algebra F if

1. P(Ω) = 1

2. A1, A2, . . . , An, . . . is a countable family of disjoint events in F , then

P (∪iAi) =
∑
i

P(Ai).

Definition 2.8. A probability space is a triple (Ω,F ,P), where P is a probability
measure on the sample space Ω with σ-algebra F .

Definition 2.9. Suppose we have a probability space (Ω,F ,P). A random vari-
able on this probability space is a function X : Ω→ R which is F-measurable.

Definition 2.10. The mean, or expected, value µ of a discrete random variable
X is the average of all possible values of X, weighted by their probabilities and
is denoted by E[X]. More precisely, suppose P(X = xi) = pi, xi ∈ X, then E[X]
is denoted by

E[X] =
∑
i

pixi.

When X has a continuous distribution, its expected value is defined by

E[X] =

∫ ∞
−∞

xf(x)dx,

where the probability measure P is defined by f(x).

3

Definition 2.11. The variance of X, Var(X), is the mean squared deviation of
X from its expected value E[X]. It is given by

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2.

The standard deviation of a random variable X is denoted by σ and defined as

σ(X) =
√
V ar(X).

In constructing the problem we will also come across the covariance and
more specifically the covariance matrix.

Definition 2.12. Suppose we have two random variables X and Y . The dis-
tribution of (X,Y) is called a joint distribution and is determined by

P(x, y) = P(X = x, Y = y),

which must satisfy

P(x, y) ≥ 0 and
∑

all (x,y)

P(x, y) = 1.

A quick and simple example of the joint distribution of X = {x1, x2} and
Y = {y1, y2} can be found in the next table.

x1 x2
y1 0.2 0.15
y2 0.4 0.25

Definition 2.13. The covariance of two jointly distributed random variables X
and Y is the average value of the product of the deviation of X from its mean
and the deviation of Y from its mean. So

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] = E[XY]− E[X]E[Y].

Notice that Cov(X,X) = V ar(X). Now suppose we have two random variables
X and Y . The covariance matrix of X and Y is given by(

Cov(X,X) Cov(X,Y)
Cov(Y,X) Cov(Y, Y)

)
.

We can clearly see that Cov(X,Y) = Cov(Y,X), which means that our covari-
ance matrix is symmetric. With the covariance defined, we can take a look at
the variance of the sum of random variables.

Theorem 2.1. Let X and Y be random variables. The variance of the sum of
these random variables is given by

V ar(X + Y) = V ar(X) + V ar(Y) + 2Cov(X,Y).

Now let X1, . . . , Xn all be random variables. The variance of
∑n
i=1Xi is given

by

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi) + 2
∑
i 6=j

Cov(Xi, Xj).

4

Proof. We will use the definition of the variance to proof our theorem. We know
that V ar(X) = E[X2] − E[X]2. Now we substitute X for X + Y . We use the
linearity property of the expected value to get

V ar(X + Y) = E[(X + Y)2]− E[(X + Y)]2 = E[X2 + 2XY + Y 2]− (E[X] + E[Y])2

= E[X2] + 2E[XY] + E[Y 2]− E[X]2 − 2E[X]E[Y]− E[Y]2

= E[X2]− E[X]2 + E[Y 2]− E[Y]2 + 2(E[XY]− E[X]E[Y])

= V ar(X) + V ar(Y) + 2Cov(X,Y).

For the linear combination of more than two random variables, we can just
repeat the steps.

Definition 2.14. We call a (n × n)-matrix M positive definite if for every
non-zero column vector v of n elements, the scalar vTMv is positive.

Definition 2.15. A stochastic process is a collection of random variables on a
probability space (Ω,F ,P) that is indexed by a set T and can be written as

{X(t) : t ∈ T}.

Definition 2.16. A time homogeneous invariant is a stochastic process whose
distribution does not depend on the reference time t.2 More precisely, suppose we
have an stochastic process X(t), t ∈ R. We call this process time homogeneous
if

P(X(ti)|X(ti − a)) = P(X(tj)|X(tj − a)), ∀ti,j , ∀a > 0.

2.2 Optimization theory

Also essential for our theoretical background, is some information on general
optimization theory. Simply put, optimization is about finding the best possible
outcome of a problem in a big pool of solutions. Mathematically speaking, we
want to find a solution vector x∗ ∈ Rn, such that, for a objective function
f : Rn → R, holds

f(x∗) = min{f(x) : x ∈ Rn}.
A simple example is finding the minimum value of a function. Suppose f(x) =
x2 + 3. We know we can find the extreme point of this function by differen-
tiating the function and setting it equal to 0. When we do this, we see that
f ′(x) = 2x = 0⇒ x = 0. This solution method is known for this kind of simple
problems, but mostly we will be faced with much more complex problems.

One of the major fields of optimization theory is convex optimization. Let
us first look at the definition of a convex set and a convex function.

Definition 2.17. Suppose we have a set X ∈ Rn, two points xi, xj ∈ X,
i, j ∈ {1, . . . , n}, and a straight line y connecting xi and xj. We call X a
convex set if for every point t on y holds that t ∈ X.

2More information about this subject can be found in [4].

5

Definition 2.18. Suppose we have a convex set X. A function f : X → R is
called convex if ∀θ, 0 ≤ θ ≤ 1 and ∀xi, xj ∈ X, i, j ∈ {1, . . . , n} holds that

f(θxi + (1− θ)xj) ≤ θf(xi) + (1− θ)f(xj).

We call a function strictly convex if ∀θ, 0 < θ < 1 and ∀xi 6= xj ∈ X, i, j ∈
{1, . . . , n} we have

f(θxi + (1− θ)xj) < θf(xi) + (1− θ)f(xj).

In a convex optimization problem, we have a convex objective function
f(x) : Rn → R which we want to minimize, given a certain set of equality
and inequality constraints, which our optimal solution x∗ must satisfy. This
gives us the following system to solve:

minimize f(x)

subject to gi(x) ≤ 0

hi(x) = 0.

Here gi(x) are all convex functions and hi(x) are linear functions.

There are different methods for solving convex optimization problems. When
we have a problem that only has equality constraints, we can use the Lagrange
function. With the help of Lagrange multipliers we create a new objective
function, which we call the Lagrangian. The main idea is that, when we have a
solution for the objective function without considering the constraints, we can
find a Lagrange multiplier such that we find a solution for the Lagrangian, and
with that we can solve the problem with the equality conditions. As an example,
suppose we have a two-dimensional problem.

minimize f(x, y)

subject to g(x, y) = c.

Our goal is to find a solution for minimizing f(x, y). We can do this by solving
the following system of equations:

∂f(x, y)

∂x
= 0

∂f(x, y)

∂y
= 0.

We now find a set of points (x0, y0) which are extreme points on f . However,
we want to know if these extreme points also lay on our constraint function g.

Therefor, the equation ∇f = λ∇g must hold, where ∇f = (∂f(x,y)∂x , ∂f(x,y)∂y) and
is called the gradient of f . Here λ is called a Lagrange multiplier and we can
compute the Lagrangian:

L[x, y, λ] = f(x, y)− λ(g(x, y)− c).

6

When we find the solution for ∇L = 0, which gives us the extreme points of the
Lagrangian, we find a solution for ∇f = λ∇g. Notice that ∇L = 0 gives us:

∂L

∂x
=
∂f

∂x
− λ∂g

∂x
= 0

∂L

∂y
=
∂f

∂y
− λ∂g

∂y
= 0

∂L

∂λ
= −(g(x, y)− c) = 0,

which is exactly the system that needs to be solved for ∇f = λ∇g, together
with our original constraint. When solved, we can fill in the x and y components
of the extrema of the Lagrangian in our objective function. This gives us all the
local minima and maxima, as well as the global minimum and maximum, the
latter of which are the solution of our optimization problem.

The problem we have at hand here is a quadratic programming problem
which is subject to some linear constraints, which we will sketch later on. Let
us first look at the general form of a quadratic programming problem.

A function f : Rn → R is called quadratic if it has the form

f(x) = α+

n∑
j=1

cjxj +
1

2

n∑
i=1

n∑
j=1

qijxixj ,

whereas the factor 1/2 is for simplifying the function when we look at the first
derivative of f . When we rewrite this to a form with matrices, we get

f(x) = α+ cTx+
1

2
xTQx,

with

c =

c1
c2
...
cn

 , Q =

q11 q12 . . . q1n

q21
. . .

...
...
qn1 . . . qnn

Suppose we have a n-dimensional problem with a given total of m constraints,
either equalities of inequalities. As follows from above, what we need for the
problem are a (n×1) vector v, a symmetric (n×n)-matrix M , a (m×n) matrix
A and a (m × 1) vector b. All elements of these matrices and vectors must
be real-valued. The reason that M should be symmetric is for convenience in
solving the problem. We assume M is symmetric because

xTMx = (xTMx)T = xTMTx =
1

2

(
xTMx+ xTMTx

)
= xT

(
M +MT

2

)
x,

7

so we can replace our matrix M by the symmetric matrix (M + MT)/2. Now
our goal is to find a vector x∈ Rn which satisfies the following conditions:

minimize
1

2
xTMx− vTx

subject to Ax ≤ b

These problems are in general more complicated than the convex problems
we discussed earlier. Depending on what kind of constraints you have, quadratic
or linear, the problem gets easier to solve. When our matrix M is positive
definite, the quadratic problem becomes a convex problem, which we can solve
with a lot more ease.

2.3 Portfolio theory

When Markowitz published his paper on selecting an optimal portfolio he made
some assumptions. The first one is that an investor always wants to maximize
the expected return of his portfolio. The second one is that an investor wants as
little risk as possible when investing. Hence, he wants to minimize the variance
of his return, because the greater the variance, the greater the standard devia-
tion, which leads to a bigger risk. This would mean that an investor does not
prefer a diversified portfolio over a non-diversified portfolio. This contradicts
the logic of choosing a diversified portfolio because it is less risky to spread your
investments. Furthermore, the process is done in a single time-period, which
means we buy all our assets at time t = 0 and sell them all again at time t = 1.
The last one is that short selling assets is not permitted. When short selling
assets, you sell assets that are not in your possession but are lent to you, but
which you need to buy back after a certain amount of time. The reason why you
might want to do this, is if you suspect the price of a certain asset will drop in
the future. Therefore you can sell for a certain price and buy the assets back at
a later time when the price is dropped. This brings a lot of risk with it, because
you need to buy back the assets, even if their price has risen in the meantime,
which means you have lost money.

Under these assumptions Markowitz created a model for selecting the optimal
portfolio, which is called the Markowitz model and which we will describe here.
Suppose we have a portfolio with n assets. Let ri be a random variable which
is the actual return of asset i ∈ N = {1, 2, . . . , n}, µi be the expected return
of asset i and let Xi be the relative amount invested in asset i. Because we do
not allow short selling it holds that Xi ≥ 0 and since Xi is the relative amount
invested, we have the constraint that

∑n
i=1Xi = 1. Now, the return R of your

complete portfolio can be denoted by

R =

n∑
i=1

riXi.

Since each of the ri are random variables, we notice that R is also a random
variable, for it is a linear combination of random variables. We now further

8

denote the covariance between two returns ri and rj as σij . We can now give
descriptions for the expected value and the variance of R, which are

E[R] =

n∑
i=1

Xiµi

V ar(R) =

n∑
j=1

n∑
i=1

σijXiXj

Since in our assumptions we have said that an investor wants maximize the
expected return E while minimizing the variance V , we introduce the so called
E−V rule. This rule says that an investor, when faced with a constant variance
V , wants to maximize his expected return E or, when faced with a constant
expected return E, wants to minimize the variance V . Markowitz’ represented
this graphically in figure 1.

Figure 1: Graphical representation of E-V rule [2]

Our algorithm computes these optimal E − V combinations. However, just
as Markowitz, we will also give a geometrical illustration of how to find a solu-
tion to the portfolio selection problem for a small amount of assets.

Let us consider the case in which we have three assets. Having three assets, the

9

Markowitz model reduces to the following form:

E =

3∑
i=1

Xiµi

V =

3∑
j=1

3∑
i=1

σijXiXj

3∑
i=1

Xi = 1

Xi ≥ 0, i = 1, 2, 3

We can write X3 = 1 − X1 − X2 and therefore we can write our system of
equations in a two dimensional way, which makes it easier to give a graphical
representation. Our problem reduces to

E = E(X1, X2)

V = V (X1, X2)

X1, X2 ≥ 0

1−X1 −X2 ≥ 0

The precise formulas are not important for our cause right now, but they can
be written out. Our attainable set of portfolios are the ones that satisfy the last
constraint and X3 = 1 −X1 −X2. The feasible set of portfolios is represented
in figure 2 as the triangle a, b, c. It is clear why every point outside of this
triangle does not satisfy the conditions. We now define the isomean curve and
the isovariance curve.

Definition 2.19. An isomean curve is the set of portfolios which have a given
expected return and variable variance.
An isovariance curve is the set of portfolios which have a given variance of
return and a variable expected return.

By looking at the formulas for our expected value and variance, we see that
the isomean curves take on the form of a system of straight parallel lines. This
can be concluded by expressing X2 in terms of X1

X2 =
E − µ3

µ2 − µ3
− µ1 − µ3

µ2 − µ3
X1.

We see that the slope of the line is equal for every E and therefore only the in-
tercept of the line will change when we vary E. Thus we conclude that these are
indeed a set of parallel straight lines. Moreover we can see that our isovariance
curves form a system of concentric ellipses. We will also show this, although
it will be a bit more complicated than our previous claim. We define X as
the so-called center of the curves, which is the point with minimal V. We will
denote the expected value and variance of X by EX and VX respectively. Now

10

for every point Y 6= X it holds that VY > VX . X does not need to lay within
the set of feasible solutions. We can even say that when X is indeed inside our
set of feasible solutions, it is the optimal solution. Because there is no portfolio
with a variance smaller than VX for a fixed E or a higher expected return than
EX for a fixed V . So we call our point X efficient. When we fix E for all our
isomean curves, we can find a set of solutions X̂(E) for which we find a minimal
V , which will be where the isomean curve lies tangent to the isovariance curve.
Together with the constraints on X1, X2 and X3, we can find the efficient line l,
which is shown in figure 2. Figure 3 shows an example for which X lays outside
of the feasible area. The line l is a combination of little line segments, between
each of the X̂(E). One end is the point were we have minimum variance, while
the other end is the point of maximum expected return.

Figure 2: Geometrical representation of the isomean and isovarance curves[2]

Now that we have seen how the set of efficient portfolios behave in the case
of three assets, we can look at how the E−V combinations behave when we set
out E against V . We can see that E is of the form E = ao+a1X1+a2X2, which
gives us a plane, and that V is of the form V = b0 + b1X1 + b2X2 + b12X1X2 +
b11X

2
1 + b22X

2
2 , which is a paraboloid. When we plot this plane and paraboloid

over the set of efficient portfolios (figure 5), we see that our E provides a set
of connected line segments and our V provides a set of connected parabola
segments. Now plotting our E against our E over the efficient portfolios, we
obtain again a set of connected parabola segments (figure 4). This result for
our three asset universe is easily expanded to a universe with n assets.

11

Figure 3: Isomean and Isovariance curve with X outside of the feasible area[2]

Figure 4: E plotted against V [2]

Although the E − V rule does not always imply that a diverse portfolio is
desirable over a non diverse portfolio, it gives a much bigger set of possibilities.
Of course it can still happen that there is one portfolio which has the highest
expected return and the minimal variance over all the other portfolios. In that
case one might want to consider going against his reason and invest in the
non-diversified portfolio.

12

Figure 5: E and V plotted over efficient portfolios[2]

2.4 The problem

Now that we have some definitions covered, it is time to look at the problem
at hand. We consider an investment universe of n assets. Given are the pos-
itive definite (n × n) covariance matrix Σ and the returns of the assets which
have mean µ, which is represented in a (n × 1) vector. Our observations must
be time-homogeneous, because then we do not have to re-estimate our µ and
Σ in every step. That is why we compute our µ and Σ on time-homogeneous
invariants.

Because we want to optimize our portfolio, we want to find the linear combi-
nation of assets weights which give the highest excess return, or better said, we
want to minimize the variance of our return. These weights are represented in
the (n×1) vector ω= (ω1, ω2, . . . , ωn). Each weight ωi has a lower bound li and
an upper bound ui, which are represented by the (n× 1) vector l and u, so we
have that li ≤ ωi ≤ ui. Furthermore we have the constraint that

∑n
i=1 ωi = 1.

Because we want to minimize the variance subject to a targeted excess return,
we also have an extra constraint with respect to that targeted return µp. Let

13

us sum up our problem

minimize
1

2
ωTΣω

subject to li ≤ ωi ≤ ui
n∑
i=1

ωi · µi = µp

n∑
i=1

ωi = 1

To see that our objective function really is about minimizing the variance of
return, we will write out our matrices. First we denote the covariance of assets
i and j by mij .

f(ω1, ω2, . . . , ωn) =
1

2

ω1

ω2

...
ωn

T

m11 m12 . . . m1n

m21
. . .

...
...

mn1 . . . mnn

ω1

ω2

...
ωn

=
1

2

ω1

ω2

...
ωn

T

ω1m11 + ω2m12 + . . .+ ωnm1,n

ω1m21 + ω2m22 + . . .+ ωnm2n

...
ω1mn1 + ω2mn2 + . . .+ ωnmnn

=

1

2
(ω2

1m11 + ω1ω2m12 + . . .+ ω1ωnm1n + ω2ω1m21 + ω2
2m22 + . . .+ ωnω2m2n

+ ωnω1mn1 + ωnω2mn2 + . . .+ ω2
nmnn.)

Since our covariance matrix is symmetric, we see that mij = mji. There we can
rewrite the last equation to

f(ω) =
1

2

(
ω2
1m11 + ω2

2m22 + . . .+ ω2
nmnn + 2ω1ω2m12 + . . .+ 2ωnωn−1mn−1n

)
=

1

2

 n∑
i=1

ω2
imii + 2

n∑
i,j=1,i6=j

ωiωjmij

=

1

2

 n∑
i=1

ω2
i V ar(Xi) + 2

n∑
i,j=1,i6=j

ωiωjCov(Xi, Xj)

 ,

which is the weighted variance of the sum of our assets. Like we said earlier, be-
cause our constraints are linear and our covariance matrix Σ is positive definite,
we can solve this problem as a convex problem and thus use the Lagrangian.
This will be done in the next subsection.

We also define a set of free assets.

14

Definition 2.20. An asset is called free when its weight is free, which means
that the weight of the asset lies strictly between its bounds, so li < ωi < ui.
A bounded asset is an asset whose weight lies exactly on one of its bounds, so
li = ωi or ωi = ui.

The set of free assets is denoted by F and the set of bounded assets is denoted
by B. We can now rewrite our vectors and matrix in terms of F and B, where
F has size k and B has size n− k. This gives us

µ =

[
µF
µB

]
, ω =

[
ωF
ωB

]
,Σ =

[
ΣF ΣFB

ΣBF ΣB

]
It holds that ΣBF = ΣTFB

2.5 Approaching the solution

We do not know yet how to solve exactly the constrained problem described
above. We call this the constrained problem, because of the lower and upper
bounds of each weight. However, we do know how to solve the unconstrained
problem. In this case we still have the constraint that the weights should add
up to one. Since our goal is to minimize the portfolios variance with respect
to a targeted excess return µp, we can use Lagrange Function. We add the
Lagrange multipliers λ and γ, to create a new optimization problem, without
these constraints. This is given by

L[ω, γ, λ] =
1

2
ωTΣω − γ(ωT 1n − 1)− λ(ωTµ− µp).

In the function 1n is the (n × 1) vector of ones. When we differentiate with
respect to all the parameters of the Lagrange function, setting them equal to
zero, we retrieve a system of (n + 2) linear equations which we can solve. We
call the solution ω∗.

When we find an optimal portfolio whose assets satisfy the boundary condi-
tions, we call such a portfolio a constrained minimum variance portfolio.

Definition 2.21. We call a constrained minimum variance portfolio a turn-
ing point when all other surrounding constrained minimum variance portfolios
contain different free assets.

This is useful in solving our constrained problem. When we look at the
solution space, specifically away from the turning points, we see that in these
regions the upper and lower bounds are negligible with respect to the free assets.
This means that between two turning points, the solution of the constrained
problem can be given by solving the unconstrained problem on the free assets.
This way, we have divided our problem into multiple unconstrained problems.

15

In other words, we need to solve

L[w, γ, λ] =
1

2

[
ωF
ωB

]T [
ΣF ΣFB

ΣBF ΣB

] [
ωF
ωB

]
− γ

([
ωF
ωB

]T
·
[

1k
1n−k

]
− 1

)

− λ

([
ωF
ωB

]T
·
[
µf
µB

]
− µp

)

Here ωB is fixed, while ωF is unknown and is part of the constraints of our
minimization problem. The algorithm works by starting with the turning point
with the highest expected return and then calculating the next lower turning
point. From [2] and [3] we have learned that the we can derive the efficient
frontier by constructing a convex combination of two neighboring turning points,
following the results given in section 2.3. That is why we want to find the optimal
portfolio in each turning point. To do this, we want to find an expression for
γ, which we can use, together with a value of λ, to find the value of ωF in the
next turning point. We start by differentiating our Lagrangian with respect to
ωF . For a clearer view of our function, we will first rewrite our Lagrangian as a
function without matrices. This gives us

L[ω, γ, λ] =
1

2

(
ωTFΣFωF + ωTFΣFBωB + ωTBΣBFωF + ωTBΣBωB

)
− γ(ωTF 1k + ωTB1n−k − 1)− λ(ωTFµF + ωTBµB − µp)

When we differentiate this, we get

∂L

∂ωF
=

1

2
(ΣFωF + ωTFΣF + ΣFBωB + ωTBΣBF)− γ1k − λµF

=
1

2
(ΣFωF + (ωTFΣF)T + ΣFBωB + (ωTBΣBF)T)− γ1k − λµF

= ΣFωF + ΣFBωB − γ1k − λµF .

Setting this function equal to 0, we find that

γ1k = ΣFωF + ΣFBωB − λµF .

Because we now make a distinction between free and bounded assets, we rewrite
our constraint on the weight vector ω · 1 = 1 as 1Tk ωF = 1 − 1Tn−kωB . Now we
can find an expression for γ, by combining our found function and the rewritten
constraint.

γ1k = ΣFωF + ΣFBωB − λµF
Σ−1F γ1k = ωF + Σ−1F ΣFBωB − Σ−1F λµF

γ1Tk Σ−1F 1k = 1Tk ωF + 1Tk Σ−1F ΣFBωB − λ1Tk Σ−1F µF

γ =
1− 1Tn−kωB + 1Tk Σ−1F ΣFBωB

1Tk Σ−1F 1k
− λ

1Tk Σ−1F µF

1Tk Σ−1F 1k

16

As we can see, γ now depends only on the value of λ, because all the other values
are fixed at this point. With the expression we have found for γ, we can also
find an expression for λ. By substituting the expression for γ in the function

ωF = −Σ−1F ΣFBωB + Σ−1F λµF + Σ−1F γ1k.

This gives us ωF as a linear function which only depends on λ. We can find the
value of λ(i), which is the value for the specific asset i, with the function

λ(i) =
1

Ci
[(1− 1Tn−kωB + 1Tk Σ−1F ΣFBωB)(Σ−1F 1k)i

− (1Tk Σ−1F 1k)(bi + (Σ−1F ΣFBωB)i)]

in which
Ci = −(1Tk Σ−1F 1k)(Σ−1F µF)i + (1Tk Σ−1F µF)(Σ−1F 1k)i

and the value of bi depends on the situation we are facing, which will become
clearer in the next section.

17

3 Critical Line Algorithm (CLA)

3.1 Explaining of the algorithm

Now it is time to take a real look at the algorithm. We first have to find a starting
solution, from which we can start the iteration to find our optimal portfolio.
The starting solution will be the turning point with the highest expected return
value. To find this turning point, we first want to order our assets based on
their expected return value. So the asset i with the highest expected return
µi will become asset number 1 with expected return µ1 ≥ µ2 ≥ . . . ≥ µn. We
further define the value of λ that belongs to the turning point with the highest
expected return value as λ1. We claim that λ1 > λ2 > . . . > λT , where T is the
number of turning points. This claim is justified by proposition (12.2) from [5]
and its proof, which we will now describe here as well. We say that λ and µTω
(the expected return of a turning point) are related linearly.

Proposition 3.1. [5] Between two turning point, λ and µTω are linearly related
with a positive slope

∂µTω(λ)

∂λ
> 0

Proof. First we determine three constants C11, C1µ and Cµµ. These are defined
as

C11 = 1Tk Σ−1F 1k, C1µ = 1Tk Σ−1F µF , Cµµ = µTF 1kΣ−1F µF .

From our statements in section 2, we can now rewrite µTω as

µTω = µTFωF + µTBωB = −µTΣ−1F ΣFBωB + λµTFΣ−1F µF + γµTFΣ−1F 1k + µTBωB

= −µTΣ−1F ΣFBωB + λCµµ + γCT1µ + µTBωB .

Differentiating this formula with respect to λ, will give us

∂µω

∂λ
= Cµµ −

(C2
1µ)T

C11
.

Since Σ−1F is symmetric and it does not matter if we multiply with the vector
1k or µF , we will ignore the transposing of C1µ. Putting that aside, since ΣF
does not change between two turning points, we conclude that µω(λ) is indeed
linear in λ with the above slope. Now all that is left is to prove that this slope
is indeed positive.
Since Σ is positive-definite, it follows that Σ−1F is too positive-definite. We define
a vector x = 1k − αµF , α ∈ R. Then we can write xTΣ−1F x as

(1k −−αµF)TΣ−1F (1k − αµF) = C11 − 2αC1µ + α2Cµµ > 0.

We see that, because of the positive-definiteness of Σ−1F , there is no solution in
α for xTΣ−1F x = 0, which means the discriminant is negative and therefore

C11Cµµ − C2
1µ > 0.

18

With this sorted list of assets, we now continue to change the weights
ωi. First we set all the weights equal to their lower bounds, such that ∀i ∈
{1, 2 . . . , n}, ωi = li, which means all assets are in B. The next step is to raise
the weights one by one to their upper bounds, starting with ω1 = u1. We con-
tinue to raise the next weight to its upper bound until

∑n
i=1 ωi > 1. There is an

asset for which the sum of the weights goes beyond its borders, let us say asset
j. We want to adapt the weight of asset j such that the sum of the weights
equals 1 again, which means that lj < ωj < uj . Asset j will be our first free
asset and will be moved to the set of free assets. So the weight of this one free
asset is

ωj = 1− ωB · 1n−1.

So now we have found a weight vector ω in which all the elements except one
lie on one of their bounds and we can use the Lagrangian to solve the problem.
To find such a starting solution, or any solution at all, there are constraints on
the bounds that we must consider. We can see clearly that for this to work,
the inequality

∑n
i=1 li ≤ 1 ≤

∑n
i=1 ui most hold. When either

∑n
i=1 li = 1 or∑n

i=1 ui = 1 holds, there will only be one portfolio which makes up the whole effi-
cient frontier. This is the portfolio with ωi = li or ωi = ui ∀i ∈ N = {1, 2, . . . , n}
respectively. Moreover, when

∑n
i=1 li > 1 or

∑n
i=1 ui < 1, there is no solution

to our optimization problem.

With our starting solution found, we can go on and find the next turning point.
We do this by lowering the λ belonging to our found turning point. When we
do this, there are two possible outcomes. Either one of the free assets will shift
and will be set on one of its bounds or one of the bounded assets will go away
from its bound and become free. In order to compute the ω and λ of the next
turning point we need to consider both these cases.

Let us start with the possibility that one of the free assets goes to one of its
bounds. Remember that we have defined λ(i) as

λ(i) =
1

Ci
[(1− 1Tn−kωB + 1Tk Σ−1F ΣFBωB)(Σ−1F 1k)i

− (1Tk Σ−1F 1k)(bi + (Σ−1F ΣFBωB)i)]

in which
Ci = −(1Tk Σ−1F 1k)(Σ−1F µF)i + (1Tk Σ−1F µF)(Σ−1F 1k)i.

We define λcurrent as the λ belonging to our most recently found turning point.
Let F be set of free assets such that it is just below this turning point, in other
words such that λcurrent = λt > λ > λt+1. We want to find the asset i ∈F
which goes to its bound, so we can compute our value λ(i) as described in the
previous section. Notice that our F has k elements and that F = {i1, i2, . . . , ik}
and that our i still has a value between 1 an n, as we sorted them while finding
the starting solution. λ(i) is the point where the asset that moves to its bound

19

actually reaches it. Here the value of bi depends on the value of Ci. So

bi =

{
ui if Ci > 0,

li if Ci < 0.

One of our conditions is that F must always contain at least one element, so
that means that this case can only happen when k > 1. Ci is equal to 0 if
µi = µj ∀i, j ∈F. Now the λ < λcurrent at which a free asset goes to its bound
and therefore will leave our subset F is

λinside = max
i∈F
{λ(i)}.

If either k = 1 or Ci = 0 ∀i, there does not exists a λinside at which a asset
will leave F. Our found λinside gives us the next lower turning point, but only
when there is not a bounded asset that moves away from its bounds and thus
becomes free and there is not a portfolio for which its respective λ satisfies the
inequality λcurrent < λ < λinside.

We now consider the other case, namely the case in which a bounded asset goes
away form its bounds and becomes a free asset. We then find a portfolio in
which we redefine our former B and F. Let i ∈ B be the asset that goes away
from its bound. We redefine our subsets to

Fi = F ∪ {i}
Bi = B \ {i}.

We once again want to determine our value λ(i). Here the value of bi is simply
the value of ωi = (ωFi

)i, which is either ui or li, depending on which bound asset
i lay. The λ at which our asset will become free will be denoted by λoutside. It
is defined by

λoutside = max
i∈B
{λ(i)|λ(i) < λcurrent}.

Notice that if there is not a λ(i) < λcurrent, there does not exists a λoutside.

With the cases we described above, we can now use our algorithm to find the next
turning point. Which of the cases will occur, depends on the values of λinside
and λoutside. Suppose we have found a value for both λinside and λoutside. Then
our next turning point will have a value λnew, where λnew is defined by

λnew = max{λinside, λoutside}.

So if λinside > λoutside, a free asset will move towards its bounds. Of course,
when one of our value λinside and λoutside does not have a value, the case of the
one that has a value occurs. When λnew is determined, we adjust our F and
B by removing the asset i from its current subset and add it to the other one.
When no solution is found for either λinside or λoutside or if λnew < 0, we will

20

terminate the algorithm. Since we follow the algorithm given in [1], we must
calculate the Minimum Variance portfolio. This is the global minimum variance
solution and serves as the most left bound of the efficient frontier. This portfo-
lio has λ = 0 and the vector of means of the free assets µF only consists of zeroes.

With every new turning point, we have different subsets F and B. This means
that in every iteration, the algorithm must calculate the covariance matrix and
its inverse, which are quite expensive calculations. To reduce these costs, section
12.3.3 of [5] gives two lemmas, one for the case in which an asset is added to F
and one for the case where an asset is removed from F.

3.2 Implementation in Python

init

In this part we will describe the code of the algorithm which can be found in
appendix A. At first, there are a few things that should be initialized. We
initialize the class with four parameters, the (n× 1) vectors mean, lB and uB,
containing the means, the lower bounds and the upper bounds of the assets
respectively. We also define the (n × n) matrix covar, which is the covariance
matrix. Each of these parameters is defined again in the class, assigning the
given value to them. Furthermore we define four empty arrays, which will
contain the solution vector ω, the λ, γ and assets in F belonging to a turning
point.

initAlgo

The next function that is called is the solve function, which computes the turning
points, the free set F and the corresponding weights for each turning point.
However since this function calls upon many other functions, we will discuss
this function later. We will first discuss the function initAlgo, which initializes
the algorithm. First there is created an array a of tuples (0, 0), in which the
first 0 will function as the index of the asset and the second denotes its expected
return. The expected values of the assets are denoted in an other array b. Then
the tuples in a become (i, µi) for all assets i. Our array b now becomes the sorted
version of a, where the array is sorted by the value of µ. So for example, we will
get b = [(3, 7), (1, 3), (2, 2.5), (0, 1)]. Then the first free weight is determined.
First we denote i as the number of assets +1 and give a solution vector w which
is equal to the vector of lower bounds lB. As long as the sum of w is smaller
than 1, we will decrease i with 1 and set the weight of asset i to its upper bound.
When the loop as ended, the weight of asset i is determined and the function
will return the solution vector w and the index of the asset that becomes free.

getB, diffLists, getMatrices& reduceMatrices

The next function being called in solve is the function getMatrices. This func-
tion takes the array f , the array of free assets, and reduces all our parameters.

21

To reduce a matrix or vector, it calls upon the function reduceMatrix. This
function has three parameters, a matrix (or vector), matrix, to be reduced,
and two lists, one who provides a list of rows, listX, and one who provides
a list of columns, listY . If either of this lists is empty, the function termi-
nates. Otherwise, a new matrix will be created, matrix , which contains only
the column of matrix of element listY [0]. Then for every remaining element in
listY , the columns of matrix corresponding to those elements will be added to
matrix . Then another new matrix is created, matrix . This matrix consists
of row listX[0] of matrix . Then, just as before, for the remaining elements
of listX, the rows of matrix will be added to matrix . Then matrix is
our reduced matrix and will be returned. Now getMatrices determines covarF
with matrix = covar and listX = listY and meanF with matrix = mean,
listX = f and listY = [0].
To determine covarFB(ΣFB), getMatrices calls upon a list b, which is deter-
mined by getB. getB depends only on the parameter f and calls upon the
function diffLists, which has list1 and list2 as parameters. diffLists returns
a list of the elements that are in list1 but not in list2. getB uses a list of all
the assets as list1 and uses the list of free assets as list2. Now covarFB can
be determined using matrix = covar, listX = f and listY = b. Finally wB is
determined using the last element the current solution w, which is declared in
solve, as matrix and using listX = b and listY = [0], the list of one element.
All of these matrices and vectors are returned.

computeLambda & computeBi

computeLambda is used in the determination of λinside and λoutside. The func-
tion calls upon a lot of parameters, most of which are given by getMatrices.
So we need matrices covarF inv (Σ−1F) and covarFB (ΣFB), vectors meanF
(µf) and wB, an index i for computing the lambda belonging to an asset and a
variable bi. covarF inv is computed in the solve method, by using the built-in
function of python numpy.linalg.inv(covarF). First the value C is computed.
This is done by computing the vector 1k, where k is the length of meanF . Then
the constants c1 and c3 and the vector c2 and c4 are computed using the built-in
function numpy.dot which provides a matrix multiplication. It gives us

c1 = 1Tk Σ−1F 1k, c2 = Σ−1F µF , c3 = 1Tk Σ−1F µF , c4 = Σ−1F 1k.

The c is computed by c = −c1 ∗ c2[i]+ c3 ∗ c4[i]. If c is equal to 0, the function is
terminated. With this c and the given parameter bi, the function computeBi is
called upon, if the parameter bi is a list, which in our case is the list consisting
of the lower and upper bound of an assets weight. When computeBi is called, it
returns uB[i] if c > 0 and lB[i] if c < 0. Then λ is calculated. If wB is empty, it
means that all assets are free and λ = (c4[i]−c1∗bi)/c and λ and bi are returned.
If there are elements in wB, then 1n−k = 1B , the vector of ones the same size
as wB, is determined. Then l1, l2 and l3 are determined. l1 = 1TBwB, l2 is first
determined as l2 = Σ−1F ΣFB , then l3 = l2wB and l2 is redefined as l2 = 1kl3.
Then λ and bi are returned, where λ = ((1− l1 + l2) ∗ c4[i]− c1 ∗ (bi+ l3[i]))/c.

22

computeW

This function computes vector of the weights of the assets ω. As parameters
is uses again covarF inv, covarFB, meanF and wB, for which we will use
the same notation as we used for computeLambda. First the corresponding γ
is computed. To do this, once again 1k is determined. Then g1 and g2 are
computed as

g1 = 1Tk Σ−1F µF , g2 = 1Tk Σ−1F 1k.

Eventually ω = −w1 + g ∗ w2 + λ ∗ w3 and g = γ are returned, but w1, w2,
w3 and g need to be determined. Here λ is the last element of the vector l
of lambdas, where the λ found in computeLambda is added to, depending on
the case, which are described in section 3.1 and which we will see in the solve
function. Again, if wB has no elements, γ = −λ ∗ g1/g2 + 1/g2 and w1 = 0.
Otherwise, 1B is determined, just as in computeLambda and g3, g4 and w1 are
determined as

g3 = 1TBwB, g4 = Σ−1F ΣFB , w1 = g4wB, g4 = 1Tkw1,

where g4 is redetermined when w1 is determined. Then γ = −λ ∗ g1/g2 + (1−
g3 + g4)/g2. Finally w2 = Σ−1F 1k and w3 = Σ−1F µF are determined. Then the
weight vector ω = −w1 + g ∗ w2 + λ ∗ w3 and g are returned.

solve

Now that we have defined all the functions necessary to find a solution, we can
look at the solve function. First f, w are computed through initAlgo. Then the
returned value of w from initAlgo is stored in the solution vector w defined in
init . The value None is added to the vectors l, g of λ and γ from init

and the free weight returned from initAlgo is stored in the list f from init .
Then λinside = l in and λoutside = l out are computed, along with the minimum
variance portfolio. First we look at computing l in. l in is declared as None.
Since a constraint on F is that it should never be empty, the function demands
that len(f) > 1. When this is true, covarF , covarFB, meanF and wB are
determined with getMatrices for parameter f and covarF inv is calculated
like in computeLambda. A counter j is set equal to 0. Then, for every element
i in f , l and bi are determined using computeLambda. For the parameter i of
computeLambda we use j and for the variable bi of computeLambda, the list
with the lower and upper bound of i is used. If the returned value of l is bigger
than l in, l in, i in and bi i are set to l, i and bi respectively. Otherwise, they
remain at their current value. In any case, j is raised by one, and we find the
biggest l as l in.
For l out we do something similar. First l out is set to None. Then the demand
is made that the size of f should be smaller than the length of the mean vector
given as parameter in init . If this is the case, b is determined by getB, given
the parameter f . Then for every element i in b covarF , covarFB, meanF and
wB are determined with getMatrices for parameter f + [i] and covarF inv is
calculated. Then again l and bi are calculated with computeLambda, where the

23

parameter i is the size of meanF -1 and the variable bi is the current weight
(lB[i] or uB[i]) of i in b. Then if the last element of the vector l is None or
the returned variable l from computeLambda is smaller than the last element
of the vector l, the variable l is smaller than l out, then l out and i out are set
to l and i. Then we have found the biggest l out.
If l in and l out are either equal to None or smaller than 0, the minimum
variance portfolio is calculated by adding 0 to the list of lambdas, computing
covarF , covarFB, meanF and wB, calculating covarF inv and setting all the
elements of meanF to 0. Otherwise, either l in or l out is added to our vector
l. If l in is bigger than l out, l in is added to our vector l, asset i in is removed
from the list f and w[i in] is set to bi. If l out is bigger, l out is added to
our vector l and asset i out is added to our list f . With these new f , covarF ,
covarFB, meanF and wB are determined and covarF inv is calculated, which
we will use in computing our solution vector w, which is the last step.
First WF and g are determined with the help of computeW with the parameters
given above. Then, for every element i in the range of the length of f (0, . . . , k),
the weight of element f [i] is set to the weight of element i in wF , so w[f [i]] =
wF [i]. The solution is again stored in our total solution vector w for init ,
the found γ is added to the vector g and the new f replaces the old one. This
whole process, from the determination of l in and l out to finding the solution
vector w, is repeated until the last item of the vector l is 0, which means that
the minimum variance portfolio is calculated and we have our entire solution
set.

3.3 A small numerical example

To illustrate the algorithm, we will look at the numerical example given in [1].
In this case we have an investment universe of ten assets. The bounds on our
weights are all equal, the lower bounds are set to 0 and the upper bounds are
set to 1. We also set an implicit condition that

∑10
i=1 ωi = 1. The values of the

mean vector and the covariance matrix, as well as the values of the lower and
upper bounds can be found in table 1. Our program will read in this information

Table 1: Lower bounds, Upper bounds, Mean and Covariance
LB 0 0 0 0 0 0 0 0 0 0
UB 1 1 1 1 1 1 1 1 1 1
µ 1.175 1.19 0.396 1.12 0.346 0.679 0.089 0.73 0.481 1.08

Cov 0.4075516
0.0317584 0.9063047
0.0518392 0.0313639 0.194909
0.056639 0.0268726 0.0440849 0.1952847
0.0330226 0.0191717 0.0300677 0.0277735 0.3405911
0.0082778 0.0093438 0.0132274 0.0052667 0.0077706 0.1598387
0.0216594 0.0249504 0.0352597 0.0137581 0.0206784 0.0210558 0.6805671
0.0133242 0.0076104 0.0115493 0.0078088 0.0073641 0.0051869 0.0137788 0.9552692
0.0343476 0.0287487 0.0427563 0.0291418 0.0254266 0.0172374 0.0462703 0.0106553 0.3168158
0.022499 0.0133687 0.020573 0.0164038 0.0128408 0.0072378 0.0192609 0.0076096 0.0185432 0.1107929

24

from a .csv file and will then solve the problem. It will return some output,
which are a list of turning point (TP), and for each turning point the return
(R), the risk, the corresponding values of λ and γ and the weights of the assets
in the free set. Note that when an asset X(i) does not belong to F, it weight will
have value 0, for it will be added to F later. The results can be found in table
2. As we can see from table 2 the starting solution is found when asset 2 is free.

Table 2: Return, Risk, λ and ωi ∈F of the turning points
TP R Risk λ X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10)
1 1.190 0.952 58.303 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.180 0.546 4.174 0.649 0.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 1.160 0.417 1.946 0.434 0.231 0.000 0.335 0.000 0.000 0.000 0.000 0.000 0.000
4 1.111 0.267 0.165 0.127 0.072 0.000 0.281 0.000 0.000 0.000 0.000 0.000 0.520
5 1.108 0.265 0.147 0.123 0.070 0.000 0.279 0.000 0.000 0.000 0.006 0.000 0.521
6 1.022 0.230 0.056 0.087 0.050 0.000 0.224 0.000 0.174 0.000 0.030 0.000 0.435
7 1.022 0.230 0.056 0.087 0.050 0.000 0.224 0.000 0.174 0.000 0.030 0.000 0.435
8 0.973 0.220 0.037 0.074 0.044 0.000 0.199 0.026 0.198 0.000 0.033 0.028 0.398
9 0.950 0.216 0.031 0.068 0.041 0.015 0.188 0.034 0.202 0.000 0.034 0.034 0.383
10 0.803 0.205 0.000 0.037 0.027 0.095 0.126 0.077 0.219 0.030 0.036 0.061 0.292

Then the algorithm consecutively adds assets 1,4,10,8,6,9,5,3 and 7 to the free
assets, by lowering the λ, until we have the minimum variance portfolio, which
is turning point 10. We see that turning point 4 is a relatively good turning
point, since it has a much higher return than our minimum variance portfolio,
while only having a little more risk. On the other hand, its return is not that
much lower with respects to turning point 3, but the risk is considerably lower.

25

4 Discussion

We have seen Markowitz’ Critical Line Algorithm at work for the most com-
mon problem in portfolio optimization. However, we can see that this version
of the algorithm does not work when we have more inequality constraints, for
we can not easily change the problem so we get rid of these constraints. A
way of solving such a problem is with the help of the simplex method. Philip
Wolfe published a paper describing this simplex method for quadratic program-
ming in [8]. Since this method can be used for more cases, it can be seen as
a better way to solve the portfolio optimization problem. However, since the
inequality constraints on the linear combinations of the weights does not appear
much in real life, the method of Markowitz’ is chosen above the method of Wolfe.

While working on this thesis, I got the idea to rewrite the code for the Critical
Line Algorithm, as provided in Python in [1], in C++. My main motivation for
this was to give myself the challenge of learning a new programming language,
as well as providing an open-source implementation for people who are not
familiar with Python but are familiar with C++. However during the process
of rewriting the code, I concluded that my knowledge of C++ was not big
enough to provide a working program for the algorithm. I am not familiar
enough with the structures in C++ to give the same methods and outcomes as
Python. The fact that I needed to understand the algorithm in Python, learn
new theory about both portfolio theory and optimization theory and learn a
new programming language, turned out to be a too big of a challenge for the
given time. Therefore I hope that, with the explanation I have given about
the algorithm in Python, someone who has more experience in programming in
C++ can use this thesis to actually write a working program. Although I am
disappointed about the fact that I could not provide a working program, I am
satisfied with what I have learned and what I have provided.

26

5 Conclusion

In this thesis we have seen the working of the Critical Line Algorithm of Harry
Markowitz. By giving a foundation on some theory needed to understand the
mathematical problem of portfolio optimization, as well as the beginnings of
portfolio theory, this thesis should provide enough information for one to under-
stand how to solve the problem of finding the portfolio with the highest return,
or the minimal variance of return, subject to an expected excess return. We
have also given an detailed description of the working of the CLA, both the code
and the algorithm. With the help of this thesis, one now should be able to write
the algorithm as provided in Python in other languages, such as C++ or Fortan.

The model provided by Markowitz is not the most optimal model available
for solving portfolio optimization problems. We have seen that the inequality
constraints on the weights are dismissed by working with free and bounded
assets. However, when there are more inequality conditions, our model can not
find solutions which satisfy this inequalities. In these cases, some other solution
method should be used, such as the simplex algorithm created by Wolfe. That
being said, Markowitz’ model is commonly the more used method. The problems
faced are often of the form as described in this thesis. Furthermore, the CLA
gives the complete solution space, the whole efficient portfolio, which means
that one can make a well-considered choice in selecting his portfolio. On top of
that, the model is relatively easy and has a higher performance than for example
the standard Matlab optimization tool. Since the difficulty of programming in
Python is also lower than other languages such as C++, we can conclude that
the algorithm described in this thesis is preferable over most more complex
methods and gives financial practitioners a good foundation in their search for
optimal portfolios.

27

A CLA in Python code[1]

This is the code of the class for the Critical Line Algorithm, as described in this
thesis.

#!/usr/bin/env python

On 20130210, v0.2

Critical Line Algorithm

by MLdP <lopezdeprado@lbl.gov>

import numpy as np

#---

#---

class CLA:

def __init__(self,mean,covar,lB,uB):

Initialize the class

self.mean=mean

self.covar=covar

self.lB=lB

self.uB=uB

self.w=[] # solution

self.l=[] # lambdas

self.g=[] # gammas

self.f=[] # free weights

#---

def solve(self):

Compute the turning points,free sets and weights

f,w=self.initAlgo()

self.w.append(np.copy(w)) # store solution

self.l.append(None)

self.g.append(None)

self.f.append(f[:])

while True:

#1) case a): Bound one free weight

l_in=None

if len(f)>1:

covarF,covarFB,meanF,wB=self.getMatrices(f)

covarF_inv=np.linalg.inv(covarF)

j=0

for i in f:

l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,j,\

[self.lB[i],self.uB[i]])

if l>l_in:l_in,i_in,bi_in=l,i,bi

j+=1

#2) case b): Free one bounded weight

l_out=None

if len(f)<self.mean.shape[0]:

28

b=self.getB(f)

for i in b:

covarF,covarFB,meanF,wB=self.getMatrices(f+[i])

covarF_inv=np.linalg.inv(covarF)

l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,meanF.shape[0]-1, \

self.w[-1][i])

if (self.l[-1]==None or l<self.l[-1]) and l>l_out:l_out,i_out=l,i

if (l_in==None or l_in<0) and (l_out==None or l_out<0):

#3) compute minimum variance solution

self.l.append(0)

covarF,covarFB,meanF,wB=self.getMatrices(f)

covarF_inv=np.linalg.inv(covarF)

meanF=np.zeros(meanF.shape)

else:

#4) decide lambda

if l_in>l_out:

self.l.append(l_in)

f.remove(i_in)

w[i_in]=bi_in # set value at the correct boundary

else:

self.l.append(l_out)

f.append(i_out)

covarF,covarFB,meanF,wB=self.getMatrices(f)

covarF_inv=np.linalg.inv(covarF)

#5) compute solution vector

wF,g=self.computeW(covarF_inv,covarFB,meanF,wB)

for i in range(len(f)):w[f[i]]=wF[i]

self.w.append(np.copy(w)) # store solution

self.g.append(g)

self.f.append(f[:])

if self.l[-1]==0:break

#6) Purge turning points

self.purgeNumErr(10e-10)

self.purgeExcess()

#---

def initAlgo(self):

Initialize the algo

#1) Form structured array

a=np.zeros((self.mean.shape[0]),dtype=[(’id’,int),(’mu’,float)])

b=[self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list

a[:]=zip(range(self.mean.shape[0]),b) # fill structured array

#2) Sort structured array

b=np.sort(a,order=’mu’)

#3) First free weight

i,w=b.shape[0],np.copy(self.lB)

while sum(w)<1:

29

i-=1

w[b[i][0]]=self.uB[b[i][0]]

w[b[i][0]]+=1-sum(w)

return [b[i][0]],w

#---

def computeBi(self,c,bi):

if c>0:

bi=bi[1][0]

if c<0:

bi=bi[0][0]

return bi

#---

def computeW(self,covarF_inv,covarFB,meanF,wB):

#1) compute gamma

onesF=np.ones(meanF.shape)

g1=np.dot(np.dot(onesF.T,covarF_inv),meanF)

g2=np.dot(np.dot(onesF.T,covarF_inv),onesF)

if wB==None:

g,w1=float(-self.l[-1]*g1/g2+1/g2),0

else:

onesB=np.ones(wB.shape)

g3=np.dot(onesB.T,wB)

g4=np.dot(covarF_inv,covarFB)

w1=np.dot(g4,wB)

g4=np.dot(onesF.T,w1)

g=float(-self.l[-1]*g1/g2+(1-g3+g4)/g2)

#2) compute weights

w2=np.dot(covarF_inv,onesF)

w3=np.dot(covarF_inv,meanF)

return -w1+g*w2+self.l[-1]*w3,g

#---

def computeLambda(self,covarF_inv,covarFB,meanF,wB,i,bi):

#1) C

onesF=np.ones(meanF.shape)

c1=np.dot(np.dot(onesF.T,covarF_inv),onesF)

c2=np.dot(covarF_inv,meanF)

c3=np.dot(np.dot(onesF.T,covarF_inv),meanF)

c4=np.dot(covarF_inv,onesF)

c=-c1*c2[i]+c3*c4[i]

if c==0:return None,None

#2) bi

if type(bi)==list:bi=self.computeBi(c,bi)

#3) Lambda

if wB==None:

All free assets

return float((c4[i]-c1*bi)/c),bi

30

else:

onesB=np.ones(wB.shape)

l1=np.dot(onesB.T,wB)

l2=np.dot(covarF_inv,covarFB)

l3=np.dot(l2,wB)

l2=np.dot(onesF.T,l3)

return float(((1-l1+l2)*c4[i]-c1*(bi+l3[i]))/c),bi

#---

def getMatrices(self,f):

Slice covarF,covarFB,covarB,meanF,meanB,wF,wB

covarF=self.reduceMatrix(self.covar,f,f)

meanF=self.reduceMatrix(self.mean,f,[0])

b=self.getB(f)

covarFB=self.reduceMatrix(self.covar,f,b)

wB=self.reduceMatrix(self.w[-1],b,[0])

return covarF,covarFB,meanF,wB

#---

def getB(self,f):

return self.diffLists(range(self.mean.shape[0]),f)

#---

def diffLists(self,list1,list2):

return list(set(list1)-set(list2))

#---

def reduceMatrix(self,matrix,listX,listY):

Reduce a matrix to the provided list of rows and columns

if len(listX)==0 or len(listY)==0:return

matrix_=matrix[:,listY[0]:listY[0]+1]

for i in listY[1:]:

a=matrix[:,i:i+1]

matrix_=np.append(matrix_,a,1)

matrix__=matrix_[listX[0]:listX[0]+1,:]

for i in listX[1:]:

a=matrix_[i:i+1,:]

matrix__=np.append(matrix__,a,0)

return matrix__

#---

def getMinVar(self):

Get the minimum variance solution

var=[]

for w in self.w:

a=np.dot(np.dot(w.T,self.covar),w)

var.append(a)

return min(var)**.5,self.w[var.index(min(var))]

These functions were provided by [1], but are not covered in this thesis. One

31

can consult [1] if he wants to know more about these functions.

#---

def purgeNumErr(self,tol):

Purge violations of inequality constraints (associated with ill-conditioned covar matrix)

i=0

while True:

flag=False

if i==len(self.w):break

if abs(sum(self.w[i])-1)>tol:

flag=True

else:

for j in range(self.w[i].shape[0]):

if self.w[i][j]-self.lB[j]<-tol or self.w[i][j]-self.uB[j]>tol:

flag=True;break

if flag==True:

del self.w[i]

del self.l[i]

del self.g[i]

del self.f[i]

else:

i+=1

return

#---

def purgeExcess(self):

Remove violations of the convex hull

i,repeat=0,False

while True:

if repeat==False:i+=1

if i==len(self.w)-1:break

w=self.w[i]

mu=np.dot(w.T,self.mean)[0,0]

j,repeat=i+1,False

while True:

if j==len(self.w):break

w=self.w[j]

mu_=np.dot(w.T,self.mean)[0,0]

if mu<mu_:

del self.w[i]

del self.l[i]

del self.g[i]

del self.f[i]

repeat=True

break

else:

j+=1

32

return

#---

def getMaxSR(self):

Get the max Sharpe ratio portfolio

#1) Compute the local max SR portfolio between any two neighbor turning points

w_sr,sr=[],[]

for i in range(len(self.w)-1):

w0=np.copy(self.w[i])

w1=np.copy(self.w[i+1])

kargs={’minimum’:False,’args’:(w0,w1)}

a,b=self.goldenSection(self.evalSR,0,1,**kargs)

w_sr.append(a*w0+(1-a)*w1)

sr.append(b)

return max(sr),w_sr[sr.index(max(sr))]

#---

def evalSR(self,a,w0,w1):

Evaluate SR of the portfolio within the convex combination

w=a*w0+(1-a)*w1

b=np.dot(w.T,self.mean)[0,0]

c=np.dot(np.dot(w.T,self.covar),w)[0,0]**.5

return b/c

#---

def goldenSection(self,obj,a,b,**kargs):

Golden section method. Maximum if kargs[’minimum’]==False is passed

from math import log,ceil

tol,sign,args=1.0e-9,1,None

if ’minimum’ in kargs and kargs[’minimum’]==False:sign=-1

if ’args’ in kargs:args=kargs[’args’]

numIter=int(ceil(-2.078087*log(tol/abs(b-a))))

r=0.618033989

c=1.0-r

Initialize

x1=r*a+c*b;x2=c*a+r*b

f1=sign*obj(x1,*args);f2=sign*obj(x2,*args)

Loop

for i in range(numIter):

if f1>f2:

a=x1

x1=x2;f1=f2

x2=c*a+r*b;f2=sign*obj(x2,*args)

else:

b=x2

x2=x1;f2=f1

x1=r*a+c*b;f1=sign*obj(x1,*args)

if f1<f2:return x1,sign*f1

else:return x2,sign*f2

33

#---

def efFrontier(self,points):

Get the efficient frontier

mu,sigma,weights=[],[],[]

a=np.linspace(0,1,points/len(self.w))[:-1] # remove the 1, to avoid duplications

b=range(len(self.w)-1)

for i in b:

w0,w1=self.w[i],self.w[i+1]

if i==b[-1]:a=np.linspace(0,1,points/len(self.w)) # include the 1 in the last iteration

for j in a:

w=w1*j+(1-j)*w0

weights.append(np.copy(w))

mu.append(np.dot(w.T,self.mean)[0,0])

sigma.append(np.dot(np.dot(w.T,self.covar),w)[0,0]**.5)

return mu,sigma,weights

#---

#---

This part of code provides some output for the CLA class, such as the results
in our numerical example. However, the details are not discussed in this thesis.

#---

def plot2D(x,y,xLabel=’’,yLabel=’’,title=’’,pathChart=None):

import matplotlib.pyplot as mpl

fig=mpl.figure()

ax=fig.add_subplot(1,1,1) #one row, one column, first plot

ax.plot(x,y,color=’blue’)

ax.set_xlabel(xLabel)

ax.set_ylabel(yLabel,rotation=90)

mpl.xticks(rotation=’vertical’)

mpl.title(title)

if pathChart==None:

mpl.show()

else:

mpl.savefig(pathChart)

mpl.clf() # reset pylab

return

#---

def main():

import numpy as np

import CLA

#1) Path

path=’/CLA/CLA_DATA.csv’

#2) Load data, set seed

headers=open(path,’r’).readline()[:-1].split(’,’)

data=np.genfromtxt(path,delimiter=’,’,skip_header=1) # load as numpy array

mean=np.array(data[:1]).T

34

lB=np.array(data[1:2]).T

uB=np.array(data[2:3]).T

covar=np.array(data[3:])

#3) Invoke object

cla=CLA.CLA(mean,covar,lB,uB)

cla.solve()

print (cla.w) # print all turning points

#4) Plot frontier

mu,sigma,weights=cla.efFrontier(100)

plot2D(sigma,mu,’Risk’,’Expected Excess Return’,’CLA-derived Efficient Frontier’)

#5) Get Maximum Sharpe ratio portfolio

sr,w_sr=cla.getMaxSR()

print (np.dot(np.dot(w_sr.T,cla.covar),w_sr)[0,0]**.5,sr)

print (w_sr)

#6) Get Minimum Variance portfolio

mv,w_mv=cla.getMinVar()

print (mv)

print (w_mv)

return

#---

Boilerplate

if __name__==’__main__’:main()

35

References

[1] Bailey, D. H., and López de Prado, M. An open-source implementa-
tion of the critical-line algorithm for portfolio optimization. Algorithms 6, 1
(2013), 169–196.

[2] Markowitz, H. Portfolio selection. The journal of finance 7, 1 (1952),
77–91.

[3] Markowitz, H. The optimization of a quadratic function subject to linear
constraints. Naval research logistics Quarterly 3, 1-2 (1956), 111–133.

[4] Meucci, A. Risk and Asset Allocation. Springer Finance Textbooks.
Springer, 2009.

[5] Niedermayer, A., and Niedermayer, D. Applying markowitz’s criti-
cal line algorithm. In Handbook of portfolio construction. Springer, 2010,
pp. 383–400.

[6] Pitman, J. Probability. Springer Texts in Statistics. Springer New York,
1999.

[7] Rice, J. Mathematical Statistics and Data Analysis. Cengage Learning,
2006.

[8] Wolfe, P. The simplex method for quadratic programming. Econometrica:
Journal of the Econometric Society (1959), 382–398.

36

