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Abstract 

There is no cancer treatment that is 100% effective; during treatment of the tumor, drug resistance 

can arise, which is a big obstacle for treating patient with cancer successfully. The identification of 

drivers of resistance may help to improve future treatment decision making. Here, we aim to 

unbiasedly detect resistance mechanisms using tumor whole genome sequencing data from human 

cancer patients previously treated with standard of care anti-cancer drugs. For this, we analyzed 

somatic copy number alteration (SCNAs) from 2250 unique samples from Hartwig Medical 

Foundation (HMF), classified into 41 custom treatment groups. The control dataset contains of 

samples from HMF and the Pan-Cancer Analysis of Whole Genomes (PCAWG) study. We searched for 

genes that underwent positive selection after they were treated. By looking into the positive selected 

genes for different treatment groups, we reveal insight into the potentially drivers of resistance 

against cancer treatments. Known drivers of resistance were found, like androgen receptor (AR) for 

anti-androgen, EGFR for anti-EGFR and TYMS for pyrimidine antagonist. EDA2R was found amplified 

in taxanes and anti-androgen, this is a large candidate to be a driver of resistance against these 

treatments. MSL3, CASC9, CSPP1, PNMT and HLA-A were also found amplified in specific treatments, 

further research is needed to find out if they are drivers of resistance. Overall, our findings show 

some known resistance mechanisms as well as novel gene resistance candidates which require 

further validation. Nevertheless, this compendium is the first step to better understand resistance 

mechanisms that are activated by copy number alterations. 

Layman’s Summary 

When you have cancer, you get treated with a drug, but this treatment is not always fully effective. 

There is a chance that you get resistant against this drug, with other words the drug won’t work 

anymore. This resistance can occur when you get mutations in your DNA, here we focus on the copy 

number alterations (CNAs). CNAs are mutations that result in the gain (amplification) of loss 

(deletion) in copies of sections of DNA. When we know which genes play a role in these resistance 

mechanisms, the future treatment decision making, which drug the patient gets, may be improved. 

We used HMF and PCAWG datasets, which contains samples from treated and untreated patients. 

With this approach, we were able to detect already known CNAs that are linked with resistance, but 

we also find some potential resistance candidates that require further validation analysis.  

 

 



Introduction 

Although the survival rate has increased slightly due to the early detection, cancer is still the second 

leading cause of death (Ritchie & Roser, 2018). One of the reasons for that is that there is no cancer 

treatment that is 100% efficient since most cancer develop resistance mechanisms against the 

treatment and thus remains one of the biggest obstacles for treating patient with cancer successfully 

(Sun & Hu, 2018). The development of cancer drug resistance is based on treatment specific positive 

selection on resistant cells with a genetic mutant. It can also be the case that a treatment has 

positive selection on non-genetically resistant cells. When these cells multiply the chance of 

generating genetically mutant increases, which can lead to resistant cells [Fig. 1] (Melguizo et al., 

2011).  

 

Figure 1: Development of cancer drug resistance. (A) Homogeneous population of cancer cells with 
genetic mutant (resistant cells) which are selected by cytotoxic treatment. (B) Heterogeneous 
population of cancer cells. Phenotypically resistant cell subpopulation is selected by cytotoxic 
treatment. The expansion of these variants increases the chance of generating genetically mutant 
(resistant cells). 
Adapted from Melguizo et al., 2011 
 
Within cancer development there are a lot of different genetic alterations (Futreal et al., 2004). 

These alterations ranges from nucleotide-level changes, such as single nucleotide variants (SNVs) and 

short insertions or deletions (indels), to large chromosomal events, like structural variations (SVs) 

(Greenman et al., 2007) (Mitelman et al., 2007) (Kim et al., 2013). Somatic single nucleotide variants 

(SNVs), also known as point mutations, are the simplest class of mutation and occur when a single 

nucleotide (A, T, C or G) is altered in the DNA sequence (Spencer et al., 2015). Somatic copy number 

alterations (SCNAs) are a large subtype of SVs and are changes to the chromosome structure, which 

results in gains or losses in the copy number of a segment of DNA (Beroukhim et al., 2010). The 

recurrence of several SCNAs is associated with particular cancer types, which makes it very 

interesting and important to study (Baudis, 2007) (Alkodsi et al., 2015). Parallel on this study, another 



study focusing on the point mutations was done. However, in this study we will focus on somatic 

copy number alterations (SCNAs).  

The epidermal growth factor receptor (EGFR) is a protein encoding gene and member of the HER 

family, which consists of four members; EGFR, HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). EGFR is 

a transmembrane receptor tyrosine kinase (RTK) (Morgillo et al., 2016) (Zhao et al., 2016). A known 

cancer treatment is based on the inhibition of EGFR (Anti-EGFR), these drugs bind to the extracellular 

domain of EGFR. The binding of these drugs do not only prevent the activation of the RTK, but also 

the activation of various downstream signal transduction cascades, which are linked to proliferation, 

cell survival  and metastasis (Li et al., 2009) (Wieduwilt & Moasser, 2008). Numerous studies have 

reported that overexpression of EGFR is linked to the resistance against anti-EGFR cancer treatment 

(Chong & Jänne, 2013) (Sequist et al., 2011) (Sigismund et al., 2018) (Moroni et al., 2005). Another 

known driver of resistance is androgen receptor (AR) for the cancer treatment anti-Androgen (Lallous 

et al., 2016) (Boudadi & Antonarakis, 2016). Androgen receptor is a ligand-dependent transcription 

factor which gets mostly activated by androgens and can regulate downstream signaling pathways 

that are dependent of androgen (Sakkiah et al., 2016). The anti-androgen therapies against prostate 

cancer initially form a positive response which leads to massive prostate cell death. However, later 

on the cancer cells appear as androgen-independent, i.e. resistant (Yang et al., 2005).  

Cancer driver genes are genes that have mutations which play a significant role in cancer 

development and progression (Pham et al., 2021). There are genes that are mutated in most of the 

cancer types, while others are cancer type specific. (Tamborero et al., 2013) (Iranzo et al., 2018) 

(Bailey et al., 2018). For instance the gene CCND1, the amplification of this gene is associated with 

breast cancer, non-small cell lung cancer and head and neck squamous cell carcinomas initiation and 

progression (Zhang & Zhang, 2017) (Elsheikh et al., 2008) (Ortiz et al., 2017) (Shan et al., 2017). This 

gene encodes the protein cyclin D1, which forms a complex and regulate the activation of CDK4 or 

CDK6. This activity is required for the G1/S transition in the cell cycle. The amplification of CCND1 

correlates with tumor differentiation, poor survival and increased metastasis (van Diest et al., 1997) 

(Shan et al., 2017). In order to find the drivers of resistance, the cancer driver genes need to be 

filtered out. Because there are also cancer type specific driver genes, the analysis in this study will be 

done on cancer type level (per cancer).  

Thus far, an unbiased characterization of SCNA induced resistance mechanisms from human whole 

genome cancer data has never been conducted. By analyzing SCNA that underwent positive selection 

after treatment, we aim to identify genes that play a role in cancer treatment resistance. For this, we 

used HMF and PCAWG datasets that contains WGS data of treated and untreated cancer patients. 

With this approach, we were able to detect known alterations, but also some potential interesting 

resistance candidates that require further follow up validation analysis.  

 

 

 

 



Results 

To identify positive selected genes of resistance by copy number alterations we developed this 

approach shown in Figure 2. 

 

 
Figure 2: Flowchart showing the methods used.   

 

Overview of (un)treated sample cohort 

To identify drivers of drug specific resistance alterations, the different drugs were classified based on 

their mechanism of action, based on literature and by their FDA labels. [Fig. 3] The drug-grouping 

used in this study has two layers, while the FDA labelling only has one. The extra layer consists of 

drugs that have a sufficient number of samples (>300) to do the analysis on drug level. Besides that 

this drug is also in a multiple drug treatment group based on their mechanism of action.  

A dataset (test set) of samples from pretreated cancer patients was created using samples from the 

Hartwig Medical Foundation (HMF) and the drug classification [Fig. 4A] (Priestley et al., 2019). There 

are drug-groups that have only samples from one or two cancer types and drug-groups with a variety 

of cancer types. The test set contains 2240 unique samples and 41 unique custom treatment groups. 

The actual number of used samples is a lot higher because some samples are used more than once. 

For instance with the drugs that have both their own drug-group and a multiple-drug-group. [Table 1] 

Another dataset with samples from untreated cancer patients was created and used as the control 

set. This dataset contains samples from HMF and the Pan-Cancer Analysis of Whole Genomes 

(PCAWG) study [Fig. 4B] (Giunta, 2021) (Campbell et al., 2020). This control dataset contains 

approximately 2600 samples. 

 

Number of unique samples 2240 

Number of drugs 106 

Number of custom groups 41 

Number of FDA groups 36 

Number of targeted based groups 6 

Number of mechanism based groups 35 

Table 1. Overview of the data used for the test set 
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Figure 4: Representation of the test and control set. A. The number of samples per treatment group 
for the test set is shown. Treatment groups needed at least 10 samples to participate in this study. 
Some treatment groups consist of only one or two different cancer types, but there are also 
treatment groups that are very diverse. B. The number of samples per cancer type for the control 
data set. For this control set samples from Hartwig Medical Foundation (HMF) and the Pan-Cancer 
Analysis of Whole Genomes (PCAWG) study were used.  
 
 

A. 

B. 



GISTIC 

GISTIC identifies positive selected amplified and deleted regions per cohort for every treatment 

group, this region will show up as a peak. Figure 5 shows the number of amplification and deletion 

peaks per treatment group on per cancer level. In general there are more deletion peaks compared 

to the amplification peaks per treatment group and some groups don’t even have significant 

amplified regions. Every sample per amplified region gets annotated in a group; amplified or neutral, 

this was done using a threshold. If the difference in copies from the genome-wide median is above 

0.9, the sample is amplified in that region, if it’s below that it’s marked as neutral. A lot of the same 

peaks were found across the results, this was the result of the use of the samples in multiple 

treatment groups. Besides that we also saw the same peaks for different treatment groups, but with 

the same cancer type, indicating cancer drivers of specific cancer types. As expected in breast cancer 

we do observe that basically every treatment group show a amplification peak in chromosome 11 

which probably relates to CCND1, which is a known driver gene in breast cancer. We would expect 

that every peak only represents one gene, but in reality this wasn’t true, there were on average 

23.28 genes per amplification peak, with a range from 1 to 1554 genes. For instance, in the 

treatment group anti-HER2 for breast cancer, CCND1 is one of the 7 genes in this peak. The reason 

that we observe this peak is mostly because of CCND1.  

 

 
 
Figure 5: The number of amplification and deletion peak per treatment group. The amplification 

peaks are shown in pink and the deletion peaks in blue. In general there are more deletion peaks 

then amplification peaks per treatment group and also some treatment groups don’t have 

amplification peaks. The average amount of amplification peaks is 13 and for the deletion peaks 26. 

 

 



Fishers’ exact test 

GISTIC gives the amplified and deleted regions per sample for every treatment group, but now 
drivers of tumorigenesis need to be separated from the (possible) drivers of resistance. To identify 
the genes that are related to resistance mechanisms and are not cancer driver genes, we search for 
genes that show more amplification events in the treated group then in the control group. 
As the GISTIC group annotations for each gene of the control set are not given, because you would 

expect that most of the regions don’t show the same positive selected amplified and deleted regions 

compared to the treated group, the copy number values needed to be computed from raw copy 

number profiles similar as GISTIC approach. To assess whether our calculation is in line with GISTIC 

approach, we plotted the correlation between the copy numbers from GISTIC against the ones 

calculated with the use of purple files [Fig. 6]. The blue dots represent the samples that are right 

classified (amplified or not) compared to the GISTIC output and the pink dots the ones that are 

wrongly classified. On average 85% of the samples are classified in the same group annotation, with 

as lowest percentage of 78 and highest with 90. [Fig. 6], showing we can reproduce most of the 

GISTIC annotations. 

 
Figure 6: The copy number values from GISTIC against the ones calculated using Purple data 

displayed per treatment group. The blue dots represents samples that are classified in the right 

group (amplified or not) and the pink dots represents samples that are wrongly classified. The 

percentage of correctly classified samples is shown per treatment group. The average of this 

percentage is 85% and this ranges from 78% till 90%.  

The Fishers’ exact test was performed using the (calculated) group annotations per sample for the 

test and control set. The amount of genes was reduced to 11.62 significant genes per amplification 

peak, with a range from 1 to 348 genes.  

 

 



Gene annotation per peak 

Since we still obtained a high number of genes for every peak, we assessed two methods used to 

narrow the amount of genes to one gene per peak; based on the p-value and based on the peak 

level. There were genes that popped up no matter which method was used, but also genes that only 

showed up for the p-value or peak level method alone. Due to this a combination of these two 

methods were used, to minimize the chance of removing genes that might be drivers of resistance. 

The average amount of significant genes is reduced till 2.36, with a range from 1 to 13. Figure 7 

shows the most significant genes for all of the drug-groups.  

Figure 7: The results from the Fishers’ exact test, the log2 of the estimate against the –log10 of the p-

value. The more in the top right, the more significant the gene is.  

 

Top hits 

After narrowing down the genes identified by GISTIC, the top hits are reported. [Table 2]  

The elevated expression of thymidylate synthase (TYMS) has been linked before with the resistance 

to 5-Fluoruracil (5-FU) (Varghese et al., 2019) (Christensen et al., 2019). 5-FU is a drug that has been 

classified in the treatment group Pyrimidine-antagonist. That we found TYMS as significant amplified 

with the treatment pyrimidine-antagonist is thus a positive control. There are more genes that are 

known as driver genes for cancer;  Androgen receptor (AR) is a known driver for the treatment group 

Anti-androgen (Lallous et al., 2016) (Suzuki et al., 2003). That we found these known drivers shows 

that our approach works.  

 

 



Gene Treatment group Cancer type Estimate P.value Analysis  

AR 
 

Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma 
 

Different 
 

Different 
 

Both 
 

PRNCR1 Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma Different Different Both 
 

PRNCR1 Docetaxel 
Taxanes 
Microtubule-Inhibitor 

Prostate-carcinoma 14.5359 3.90E-32 Both 
 

MIR5681A Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma 11.56572 9.12E-31 P-Value 

C8orf34 GnRH-antagonist Prostate-carcinoma 12.13019 4.36E-30 P-Value 

CASC9 Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma 10.28247 1.07E-28 Top 

CSPP1 GnRH-antagonist Prostate-carcinoma 10.27215 1.24E-26 Top 

EDA2R Docetaxel 
Taxanes 
Microtubule-Inhibitor 

Prostate-carcinoma 57.47194 1.31E-24 Both 
 

EDA2R Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma Different Different Both 
 

ADAM15 Anti-androgen Prostate-carcinoma 9.917184 5.45E-16 Both 

ADAM15 Docetaxel 
Taxanes 
Microtubule-Inhibitor 

Prostate-carcinoma 10.39571 4.77E-15 Both 
 

EGFR Anti-EGFR Non-small-cell-lung-cancer 15.80596 4.59E-14 Top 

PNMT Anti-HER2 Breast-cancer 7.489237 5.00E-14 P-Value 

MSL3 Anti-androgen 
GnRH-antagonist 

Prostate-carcinoma 94.96668 Different Both 
 

TYMS Pyrimidine-antagonist Colorectum-carcinoma 5.736882 4.41E-07 P-Value 

HLA-A VEGF-Inhibitor Colorectum-carcinoma 4.579559 2.10E-07 Both 
 

Table 2. Table representing the top hits. Per gene the treatment group, cancer type, estimate, p-

value and analysis is given.  

 

PRNCR1 is a long noncoding RNA (lncRNA) and was identified as a possible component in disease 

progression (Prensner et al., 2014). However, it’s still not clear which roll it plays in prostate cancer. 

What is known is that PRNCR1 the proliferation of colorectal cancer promotes and a potential 

oncogene of this cancer is (Yang et al., 2016). Another lncRNA is CASC9, this gene is highly expressed 

in various cancers (Ma et al., 2017) (Liang et al., 2018) (Yang et al., 2019). Nevertheless there is not 

yet any explanation for the amplification in prostate cancer, and also not for the treatment groups 

anti-androgen or GnRH-ant(agonist).  

The protein that is encoding by the gene EDA2R is a protein from het Tumor Necrosis Factor 

Receptor (TNFR) superfamily (Ihara et al., 2021). Other studies already indicate that there is a 

correlation between the amplification of EDA2R and the development of resistance for the 

treatments irinotecan and oxaliplatin (Sun et al., 2017). 



It is found that the gene ADAM15 is highly upregulated in Prostate cancer (Najy et al., 2008) (Kuefer 

et al., 2006). It seems that it is cancer type specific and not treatment group specific. The gene MSL3 

is significant upregulated with Anti-androgen in breast cancer. [Table 2] Surprisingly low expression 

of this gene is associated with ovarian cancer. This gene inhibits the malignant phenotype of ovarian 

cancer cells (Zheng et al., 2021) (Yamanoi et al., 2019). 

Most of the top hits are from the cancer type Prostate-carcinoma. The treatment groups ‘Anti-

androgen and GnRH-ant(agonist)’ and ‘Docetaxel, Taxanes and Microtubule-inhibitor’ are connected 

to each other, because they both share a lot of the same samples. [Fig. 3] Because of this it wasn’t a 

surprise that the significant genes that showed up for these treatment groups are overlapping.  

Discussion and conclusion 

Here, we used the tool GISTIC that can identify regions of the genome that are significantly amplified 

or deleted across a set of samples. By using this tool on different treatment groups, we reveal insight 

into the potentially drivers of resistance against cancer treatments.  

We found genes that are known driver genes for specific cancer treatments, like androgen receptor 

(AR) for anti-androgen, EGFR for anti-EGFR and TYMS for pyrimidine antagonist. These finding 

validate that the method we used was successful for finding drivers for specific cancer treatments. 

There are also genes that are not known specific as driver genes for cancer, these genes are possible 

candidates to be drivers of resistance. One of those genes is EDA2R, there is already a correlation 

between the amplification of this gene and the development of resistance against the treatments 

irinotecan and oxaliplatin (Sun et al., 2017). We found this gene amplified in Taxanes and anti-

androgen, there is a big chance that this gene also has resistance against these treatments.  

The low expression of MSL3 is associated with ovarian cancer, while we found it amplified with anti-

androgen in breast cancer (Zheng et al., 2021) (Yamanoi et al., 2019). Further research is needed to 

determine what the role of this gene is within breast cancer and especially for the anti-androgen 

treatment. There are more genes found that are highly significant in specific treatment groups 

compared to the control; CASC9, CSPP1, PNMT and HLA-A. These genes are possible candidates for 

resistance and more research is needed to find out if this is the reason why they are amplified for 

these specific treatment groups.  

The biggest difference when we look at our classification of the drugs into treatment groups and the 

FDA labeling is that our classification has two layers and the FDA only one. [Fig. 4] This will only give 

us a chance to also look at drug level with drugs that have a big test set and don’t have any 

disadvantages. The rest was quite the same, so we can conclude that our classification of drugs into 

treatment groups was successful.  

A potential artifact may be hidden in the clinical dataset as there is a chance that there are still 

samples in the control group that have been pretreated before, but are marked as untreated due to 

time. This result in that there might be drivers of resistance that are unwanted filtered out by the 

control set. To minimize the chance of this effect to happen, we wanted to add samples from the The 

Cancer Genome Atlas (TCGA) program. This dataset contains data from primary tumors from 

different cancer types before treatment (Neary et al., 2021). To reproduce the GISTIC scores and use 

them in the control group, the raw copy number data per sample per region was needed. The data 



that we used was collected from FireBrowse, a service form the Broad Institute, that contains the 

TCGA data (Deng et al., 2016) (Deng et al., 2017). This data only contains the segment mean per 

sample per region. These values are already normalized using a log2 ratio. Multiple attempts were 

done to get to the raw copy number values, so we could use the same pipeline for the TCGA data as 

we did before. Every time the values seemed way off and within the time span of this study we 

weren’t able to use the TCGA data as a control set. For further research within this scope it would be 

useful to find a way to use the TCGA data in the same way as we handled the HMF and PCAWG data.  

We reduced the average amount of genes per peak from 11.62 to 2.36. This was done by selecting 

the gene with the lowest p-value (most significant) and the gene that was closest to the peak level. 

We would expect that these genes would be the same for both the methods, but this wasn’t the case 

for all the peaks. Other extra post filtering steps can be the integration of the raw copy number levels 

as high ploidy genes (double minutes amplify genes with ploidy levels up to more than 50) are 

currently scored equally with genes with one extra ploidy level. Also, the integration of (matching) 

rnaseq data may be helpful to select for genes that are transcribed. 

Nevertheless, it is still doubtable if you would like to select only one gene per peak. There might be a 

little chance that in that same peak region, two or more genes are co-amplified or co-deleted. For 

this analysis we chose to select only one gene per peak, because we needed to narrow down the 

number of genes to do a proper analysis on and the ones we selected are the most significant ones. 

For further research it would be interesting to not only look at the most significant genes but also 

genes that are not in the top hits but still significant. With that analysis the average amount of genes 

would be higher than the one used for our analysis, this may result in the need of using another 

method to do a proper analysis. 

Methods section 
A flowchart of the used methods is shown in Figure 2. 
 
Create datasets 
We performed the analyses using two datasets; the test set and the control set. For the test set, 
samples from Hartwig Medical Foundation (HMF) were used and one sample per patient was 
selected using the biopsy date. In total 2240 unique samples were used.  
Samples that weren’t pretreated (pretreatment=’No’) from HMF and the Pan-Cancer Analysis of 
Whole Genomes (PCAWG) study were used for the control set. The control set also contains only one 
sample per patient based on the biopsy data and consist of approximately 2600 samples.  
 
Classify treatment groups 
We created treatments groups manually based on the mechanism of action of the drugs. This 
grouping was validated using known literature and their FDA labeling. Our treatment grouping has an 
extra layer. There are drugs that fall in the same treatment group when we look at their mechanism 
of action, but these drugs also have a sufficient number of samples (>300) to do the analysis also on 
drug level. Because of this, the actual amount of used (not unique) samples is much higher. Besides 
the extra layer, there are also samples that underwent multiple treatments and are therefore in 
multiple treatment groups.  
 
GISTIC 
The next step was to run the tool GISTIC with the copy number data from these samples, this can be 
done on pan-cancer and per-cancer level. Genomic Identification of Significant Targets in Cancer 
(GISTIC) is a great tool for analyzing chromosomal aberrations in cancer that underwent positive 



selection. With this tool it is possible to identify copy number alterations, which might have a roll in 
resistance. This method will first identify the location and magnitudes of chromosomal aberrations in 
multiple tumor samples. [Fig. 8] Secondly the genome is scored based on the frequency and 
amplitude of the aberration. At the same time the frequency with which a given score would be 
obtained by chance is determined and is set as a threshold for the significance.  This threshold is used 
to determine the significant aberration regions and these aberration regions are unlikely to occur by 
chance alone (Beroukhim et al., 2007). We ran GISTIC on the test set. GISTIC gives the amplified and 
deleted regions per sample for every treatment group and for every sample the difference in copies 
from the genome-wide median in that region. Every sample per region was annotated in a group, 
amplified, deleted or neutral. This annotation was done using a threshold, difference above 0.9 is 
amplified, below -1.3 is deleted and in between is neutral. The next step was to separate drivers of 
tumorigenesis from the (possible) drivers of resistance.  
 
 

 

Figure 8: Overview of the GISTIC method. After identifying the locations and, in the case of copy-
number alterations, magnitudes (as log2 signal intensity ratios) of chromosomal aberrations in 
multiple tumors (Left), GISTIC scores each genomic marker with a G score that is proportional to the 
total magnitude of aberrations at each location (Upper Center). In addition, by permuting the 
locations in each tumor, GISTIC determines the frequency with which a given score would be 
attained if the events were due to chance and therefore randomly distributed (Lower Center). A 
significance threshold (green line) is determined such that significant scores are unlikely to occur by 
chance alone. Alterations are deemed significant if they occur in regions that surpass this threshold 
(Right). 
Adapted from Beroukhim et al., 2007 
 
Fishers’ exact test 
We needed to distinguish the cancer driver genes from (possible) drivers of resistance. The cancer 
driver genes should also pop up in the control dataset, so we compared the test set with the control 
set using the Fishers’ exact test. Four values are needed to perform the Fishers’ exact test per 
treatment group; 1. The number of samples that were amplified in that peak for the test set. 2. The 
number of samples that were not amplified in that peak for the test set. 3. The number of samples 
that were amplified in that peak for the control set and 4. The number of samples that were not 
amplified in that peak for the control set. As the GISTIC group annotations for each gene of the 
control set are not given, we needed to compute these from raw copy number profiles similar as the 
GISTIC approach. The copy numbers given by GISTIC are the difference in copies from the genome-
wide median. So to determine this value we took the raw copy number of the region of the gene and 
subtracted the mean ploidy level of that sample (CNpurple = (CN of that region in purple) - mean 
ploidy level). Now that we had all four values needed for the Fishers’ exact test, we performed the 
test for every gene.  
 
 



Gene annotation per peak 
After performing the fishers’ exact test, there were still too many genes to make conclusions. The 
solution to that was selecting only one gene per peak in GISTIC. Two methods were used to narrow 
down the amount of genes per peak. The first approach was based on the p-value, the gene with the 
lowest (most-significant) p-value was selected. The second approach was based on selecting the gene 
that was closest to the peak level (top). The peak level is the region with the most amplified samples. 
We used a combination of both methods, so we are sure we don’t exclude (possible) resistance 
mechanisms. The top hit genes were reported based on their p-value and estimate and analyzed 
using literature.  
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