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Abstract

There is no cancer treatment that is 100% effective; during treatment of the tumor, drug resistance
can arise, which is a big obstacle for treating patient with cancer successfully. The identification of
drivers of resistance may help to improve future treatment decision making. Here, we aim to
unbiasedly detect resistance mechanisms using tumor whole genome sequencing data from human
cancer patients previously treated with standard of care anti-cancer drugs. For this, we analyzed
somatic copy number alteration (SCNAs) from 2250 unique samples from Hartwig Medical
Foundation (HMF), classified into 41 custom treatment groups. The control dataset contains of
samples from HMF and the Pan-Cancer Analysis of Whole Genomes (PCAWG) study. We searched for
genes that underwent positive selection after they were treated. By looking into the positive selected
genes for different treatment groups, we reveal insight into the potentially drivers of resistance
against cancer treatments. Known drivers of resistance were found, like androgen receptor (AR) for
anti-androgen, EGFR for anti-EGFR and TYMS for pyrimidine antagonist. EDA2R was found amplified
in taxanes and anti-androgen, this is a large candidate to be a driver of resistance against these
treatments. MSL3, CASC9, CSPP1, PNMT and HLA-A were also found amplified in specific treatments,
further research is needed to find out if they are drivers of resistance. Overall, our findings show
some known resistance mechanisms as well as novel gene resistance candidates which require
further validation. Nevertheless, this compendium is the first step to better understand resistance
mechanisms that are activated by copy number alterations.

Layman’s Summary

When you have cancer, you get treated with a drug, but this treatment is not always fully effective.
There is a chance that you get resistant against this drug, with other words the drug won’t work
anymore. This resistance can occur when you get mutations in your DNA, here we focus on the copy
number alterations (CNAs). CNAs are mutations that result in the gain (amplification) of loss
(deletion) in copies of sections of DNA. When we know which genes play a role in these resistance
mechanisms, the future treatment decision making, which drug the patient gets, may be improved.
We used HMF and PCAWG datasets, which contains samples from treated and untreated patients.
With this approach, we were able to detect already known CNAs that are linked with resistance, but
we also find some potential resistance candidates that require further validation analysis.



Introduction

Although the survival rate has increased slightly due to the early detection, cancer is still the second
leading cause of death (Ritchie & Roser, 2018). One of the reasons for that is that there is no cancer
treatment that is 100% efficient since most cancer develop resistance mechanisms against the
treatment and thus remains one of the biggest obstacles for treating patient with cancer successfully
(Sun & Hu, 2018). The development of cancer drug resistance is based on treatment specific positive
selection on resistant cells with a genetic mutant. It can also be the case that a treatment has
positive selection on non-genetically resistant cells. When these cells multiply the chance of
generating genetically mutant increases, which can lead to resistant cells [Fig. 1] (Melguizo et al.,
2011).
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Figure 1: Development of cancer drug resistance. (A) Homogeneous population of cancer cells with
genetic mutant (resistant cells) which are selected by cytotoxic treatment. (B) Heterogeneous
population of cancer cells. Phenotypically resistant cell subpopulation is selected by cytotoxic
treatment. The expansion of these variants increases the chance of generating genetically mutant
(resistant cells).

Adapted from Melguizo et al., 2011

Within cancer development there are a lot of different genetic alterations (Futreal et al., 2004).
These alterations ranges from nucleotide-level changes, such as single nucleotide variants (SNVs) and
short insertions or deletions (indels), to large chromosomal events, like structural variations (SVs)
(Greenman et al., 2007) (Mitelman et al., 2007) (Kim et al., 2013). Somatic single nucleotide variants
(SNVs), also known as point mutations, are the simplest class of mutation and occur when a single
nucleotide (A, T, C or G) is altered in the DNA sequence (Spencer et al., 2015). Somatic copy number
alterations (SCNAs) are a large subtype of SVs and are changes to the chromosome structure, which
results in gains or losses in the copy number of a segment of DNA (Beroukhim et al., 2010). The
recurrence of several SCNAs is associated with particular cancer types, which makes it very
interesting and important to study (Baudis, 2007) (Alkodsi et al., 2015). Parallel on this study, another




study focusing on the point mutations was done. However, in this study we will focus on somatic
copy number alterations (SCNAs).

The epidermal growth factor receptor (EGFR) is a protein encoding gene and member of the HER
family, which consists of four members; EGFR, HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). EGFR is
a transmembrane receptor tyrosine kinase (RTK) (Morgillo et al., 2016) (Zhao et al., 2016). A known
cancer treatment is based on the inhibition of EGFR (Anti-EGFR), these drugs bind to the extracellular
domain of EGFR. The binding of these drugs do not only prevent the activation of the RTK, but also
the activation of various downstream signal transduction cascades, which are linked to proliferation,
cell survival and metastasis (Li et al., 2009) (Wieduwilt & Moasser, 2008). Numerous studies have
reported that overexpression of EGFR is linked to the resistance against anti-EGFR cancer treatment
(Chong & Janne, 2013) (Sequist et al., 2011) (Sigismund et al., 2018) (Moroni et al., 2005). Another
known driver of resistance is androgen receptor (AR) for the cancer treatment anti-Androgen (Lallous
et al., 2016) (Boudadi & Antonarakis, 2016). Androgen receptor is a ligand-dependent transcription
factor which gets mostly activated by androgens and can regulate downstream signaling pathways
that are dependent of androgen (Sakkiah et al., 2016). The anti-androgen therapies against prostate
cancer initially form a positive response which leads to massive prostate cell death. However, later
on the cancer cells appear as androgen-independent, i.e. resistant (Yang et al., 2005).

Cancer driver genes are genes that have mutations which play a significant role in cancer
development and progression (Pham et al., 2021). There are genes that are mutated in most of the
cancer types, while others are cancer type specific. (Tamborero et al., 2013) (Iranzo et al., 2018)
(Bailey et al., 2018). For instance the gene CCND1, the amplification of this gene is associated with
breast cancer, non-small cell lung cancer and head and neck squamous cell carcinomas initiation and
progression (Zhang & Zhang, 2017) (Elsheikh et al., 2008) (Ortiz et al., 2017) (Shan et al., 2017). This
gene encodes the protein cyclin D1, which forms a complex and regulate the activation of CDK4 or
CDK®6. This activity is required for the G1/S transition in the cell cycle. The amplification of CCND1
correlates with tumor differentiation, poor survival and increased metastasis (van Diest et al., 1997)
(Shan et al., 2017). In order to find the drivers of resistance, the cancer driver genes need to be
filtered out. Because there are also cancer type specific driver genes, the analysis in this study will be
done on cancer type level (per cancer).

Thus far, an unbiased characterization of SCNA induced resistance mechanisms from human whole
genome cancer data has never been conducted. By analyzing SCNA that underwent positive selection
after treatment, we aim to identify genes that play a role in cancer treatment resistance. For this, we
used HMF and PCAWG datasets that contains WGS data of treated and untreated cancer patients.
With this approach, we were able to detect known alterations, but also some potential interesting
resistance candidates that require further follow up validation analysis.



Results

To identify positive selected genes of resistance by copy number alterations we developed this
approach shown in Figure 2.
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Figure 2: Flowchart showing the methods used.

Overview of (un)treated sample cohort

To identify drivers of drug specific resistance alterations, the different drugs were classified based on
their mechanism of action, based on literature and by their FDA labels. [Fig. 3] The drug-grouping
used in this study has two layers, while the FDA labelling only has one. The extra layer consists of
drugs that have a sufficient number of samples (>300) to do the analysis on drug level. Besides that
this drug is also in a multiple drug treatment group based on their mechanism of action.

A dataset (test set) of samples from pretreated cancer patients was created using samples from the
Hartwig Medical Foundation (HMF) and the drug classification [Fig. 4A] (Priestley et al., 2019). There
are drug-groups that have only samples from one or two cancer types and drug-groups with a variety
of cancer types. The test set contains 2240 unique samples and 41 unique custom treatment groups.
The actual number of used samples is a lot higher because some samples are used more than once.
For instance with the drugs that have both their own drug-group and a multiple-drug-group. [Table 1]
Another dataset with samples from untreated cancer patients was created and used as the control
set. This dataset contains samples from HMF and the Pan-Cancer Analysis of Whole Genomes
(PCAWG) study [Fig. 4B] (Giunta, 2021) (Campbell et al., 2020). This control dataset contains
approximately 2600 samples.

Number of unique samples 2240
Number of drugs 106
Number of custom groups 41
Number of FDA groups 36
Number of targeted based groups 6
Number of mechanism based groups 35
Table 1. Overview of the data used for the test set
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Treatment group

Tumor type

A.

Vinca-Alkaloid -
VEGFR-PDGFR-MK-Inhibitor -
VEGF-Inhibitor -
Topoisomerase-2-Inhibitor -
Topoisomerase-1-Inhibitor -
Taxanes -

Tamoxifen -
S-Aromatase-Inhibitor -
RET-VEGFR-MK-Inhibitor -
Radionuclide =
Pyrimidine-antagonist -
Progestogen -

Platinum -

Paciitaxel -

Oxaliplatin =
Ns-Aromatase-Inhibitor -
mTOR-Inhibitor =
Microtubule-Inhibitar -
MEK-inhibitor -
Immune-Checkpeint-Inhibitar -
GnRH-antagonist -
Folic-Acid-Antagonist -
Folate-Antagonist -
Folate-Analogue -
ER-Agonist -

Docetaxel -
Dendritc-Cell-Therapy -
Cisplatin -

CDK4-B-inhibiter -
Carboplatin -
Bre-Abl-MK-Inhibitar -
BRAF-Inhibitor -
Aromatase-Inhibitor -
Anti-PD-1-

Anti-HERZ -

Anti-EGFR -

Anti-CTLA4 -
Anti-Androgen -
Anthracycline-Topoisomerase-Inhibitor -
Alkylating-PM -
Alkylating -

Uterus carcinoma -
Urinary tract non-bladder -
Upper respiratory cancer-

Stomach cancer-
Small cell lung cancer -
Skin melanoma -
Sarcoma various -
Prostate carcinoma -
Pancreas carcinoma -

Qvarian cancer -

Non small cell lung cancer -

Leiomyosarcoma -

Kidney clear cell carcinoma =

Glioblastoma multiforme -
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Figure 4: Representation of the test and control set. A. The number of samples per treatment group
for the test set is shown. Treatment groups needed at least 10 samples to participate in this study.
Some treatment groups consist of only one or two different cancer types, but there are also
treatment groups that are very diverse. B. The number of samples per cancer type for the control
data set. For this control set samples from Hartwig Medical Foundation (HMF) and the Pan-Cancer
Analysis of Whole Genomes (PCAWG) study were used.




GISTIC

GISTIC identifies positive selected amplified and deleted regions per cohort for every treatment
group, this region will show up as a peak. Figure 5 shows the number of amplification and deletion
peaks per treatment group on per cancer level. In general there are more deletion peaks compared
to the amplification peaks per treatment group and some groups don’t even have significant
amplified regions. Every sample per amplified region gets annotated in a group; amplified or neutral,
this was done using a threshold. If the difference in copies from the genome-wide median is above
0.9, the sample is amplified in that region, if it's below that it's marked as neutral. A lot of the same
peaks were found across the results, this was the result of the use of the samples in multiple
treatment groups. Besides that we also saw the same peaks for different treatment groups, but with
the same cancer type, indicating cancer drivers of specific cancer types. As expected in breast cancer
we do observe that basically every treatment group show a amplification peak in chromosome 11
which probably relates to CCND1, which is a known driver gene in breast cancer. We would expect
that every peak only represents one gene, but in reality this wasn’t true, there were on average
23.28 genes per amplification peak, with a range from 1 to 1554 genes. For instance, in the
treatment group anti-HER2 for breast cancer, CCND1 is one of the 7 genes in this peak. The reason
that we observe this peak is mostly because of CCND1.
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Figure 5: The number of amplification and deletion peak per treatment group. The amplification
peaks are shown in pink and the deletion peaks in blue. In general there are more deletion peaks
then amplification peaks per treatment group and also some treatment groups don’t have
amplification peaks. The average amount of amplification peaks is 13 and for the deletion peaks 26.




Fishers’ exact test

GISTIC gives the amplified and deleted regions per sample for every treatment group, but now
drivers of tumorigenesis need to be separated from the (possible) drivers of resistance. To identify
the genes that are related to resistance mechanisms and are not cancer driver genes, we search for
genes that show more amplification events in the treated group then in the control group.

As the GISTIC group annotations for each gene of the control set are not given, because you would

expect that most of the regions don’t show the same positive selected amplified and deleted regions
compared to the treated group, the copy number values needed to be computed from raw copy
number profiles similar as GISTIC approach. To assess whether our calculation is in line with GISTIC
approach, we plotted the correlation between the copy numbers from GISTIC against the ones
calculated with the use of purple files [Fig. 6]. The blue dots represent the samples that are right
classified (amplified or not) compared to the GISTIC output and the pink dots the ones that are
wrongly classified. On average 85% of the samples are classified in the same group annotation, with
as lowest percentage of 78 and highest with 90. [Fig. 6], showing we can reproduce most of the
GISTIC annotations.
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Figure 6: The copy number values from GISTIC against the ones calculated using Purple data

displayed per treatment group. The blue dots represents samples that are classified in the right
group (amplified or not) and the pink dots represents samples that are wrongly classified. The
percentage of correctly classified samples is shown per treatment group. The average of this
percentage is 85% and this ranges from 78% till 90%.

The Fishers’ exact test was performed using the (calculated) group annotations per sample for the
test and control set. The amount of genes was reduced to 11.62 significant genes per amplification
peak, with a range from 1 to 348 genes.




Gene annotation per peak

Since we still obtained a high number of genes for every peak, we assessed two methods used to
narrow the amount of genes to one gene per peak; based on the p-value and based on the peak
level. There were genes that popped up no matter which method was used, but also genes that only
showed up for the p-value or peak level method alone. Due to this a combination of these two
methods were used, to minimize the chance of removing genes that might be drivers of resistance.
The average amount of significant genes is reduced till 2.36, with a range from 1 to 13. Figure 7
shows the most significant genes for all of the drug-groups.
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Figure 7: The results from the Fishers’ exact test, the log2 of the estimate against the —log10 of the p-
value. The more in the top right, the more significant the gene is.

Top hits
After narrowing down the genes identified by GISTIC, the top hits are reported. [Table 2]

The elevated expression of thymidylate synthase (TYMS) has been linked before with the resistance
to 5-Fluoruracil (5-FU) (Varghese et al., 2019) (Christensen et al., 2019). 5-FU is a drug that has been
classified in the treatment group Pyrimidine-antagonist. That we found TYMS as significant amplified
with the treatment pyrimidine-antagonist is thus a positive control. There are more genes that are
known as driver genes for cancer; Androgen receptor (AR) is a known driver for the treatment group
Anti-androgen (Lallous et al., 2016) (Suzuki et al., 2003). That we found these known drivers shows
that our approach works.




Gene Treatment group Cancer type Estimate  P.value Analysis

AR Anti-androgen Prostate-carcinoma Different  Different  Both
GnRH-antagonist

PRNCR1 Anti-androgen Prostate-carcinoma Different  Different  Both
GnRH-antagonist

PRNCR1 Docetaxel Prostate-carcinoma 14.5359  3.90E-32 Both
Taxanes
Microtubule-Inhibitor

MIR5681A Anti-androgen Prostate-carcinoma 11.56572 9.12E-31 P-Value
GnRH-antagonist

C8orf34 GnRH-antagonist Prostate-carcinoma 12.13019  4.36E-30 P-Value

CASC9 Anti-androgen Prostate-carcinoma 10.28247 1.07E-28 Top
GnRH-antagonist

CSPP1 GnRH-antagonist Prostate-carcinoma 10.27215 1.24E-26 Top

EDA2R Docetaxel Prostate-carcinoma 57.47194  1.31E-24 Both
Taxanes
Microtubule-Inhibitor

EDA2R Anti-androgen Prostate-carcinoma Different  Different  Both
GnRH-antagonist

ADAM15  Anti-androgen Prostate-carcinoma 9.917184  5.45E-16 Both

ADAM15  Docetaxel Prostate-carcinoma 10.39571  4.77E-15 Both
Taxanes
Microtubule-Inhibitor

EGFR Anti-EGFR Non-small-cell-lung-cancer 15.80596  4.59E-14 Top

PNMT Anti-HER2 Breast-cancer 7.489237 5.00E-14 P-Value

MSL3 Anti-androgen Prostate-carcinoma 94.96668 Different  Both
GnRH-antagonist

TYMS Pyrimidine-antagonist Colorectum-carcinoma 5.736882  4.41E-07 P-Value

HLA-A VEGF-Inhibitor Colorectum-carcinoma 4579559  2.10E-07 Both

Table 2. Table representing the top hits. Per gene the treatment group, cancer type, estimate, p-

value and analysis is given.

PRNCR1 is a long noncoding RNA (IncRNA) and was identified as a possible component in disease

progression (Prensner et al., 2014). However, it’s still not clear which roll it plays in prostate cancer.
What is known is that PRNCR1 the proliferation of colorectal cancer promotes and a potential
oncogene of this cancer is (Yang et al., 2016). Another IncRNA is CASC9, this gene is highly expressed
in various cancers (Ma et al., 2017) (Liang et al., 2018) (Yang et al., 2019). Nevertheless there is not
yet any explanation for the amplification in prostate cancer, and also not for the treatment groups
anti-androgen or GnRH-ant(agonist).

The protein that is encoding by the gene EDA2R is a protein from het Tumor Necrosis Factor
Receptor (TNFR) superfamily (Ihara et al., 2021). Other studies already indicate that there is a
correlation between the amplification of EDA2R and the development of resistance for the
treatments irinotecan and oxaliplatin (Sun et al., 2017).



It is found that the gene ADAM15 is highly upregulated in Prostate cancer (Najy et al., 2008) (Kuefer
et al., 2006). It seems that it is cancer type specific and not treatment group specific. The gene MSL3
is significant upregulated with Anti-androgen in breast cancer. [Table 2] Surprisingly low expression
of this gene is associated with ovarian cancer. This gene inhibits the malignant phenotype of ovarian
cancer cells (Zheng et al., 2021) (Yamanoi et al., 2019).

Most of the top hits are from the cancer type Prostate-carcinoma. The treatment groups ‘Anti-
androgen and GnRH-ant(agonist)’ and ‘Docetaxel, Taxanes and Microtubule-inhibitor’ are connected
to each other, because they both share a lot of the same samples. [Fig. 3] Because of this it wasn’t a
surprise that the significant genes that showed up for these treatment groups are overlapping.

Discussion and conclusion

Here, we used the tool GISTIC that can identify regions of the genome that are significantly amplified
or deleted across a set of samples. By using this tool on different treatment groups, we reveal insight
into the potentially drivers of resistance against cancer treatments.

We found genes that are known driver genes for specific cancer treatments, like androgen receptor
(AR) for anti-androgen, EGFR for anti-EGFR and TYMS for pyrimidine antagonist. These finding
validate that the method we used was successful for finding drivers for specific cancer treatments.
There are also genes that are not known specific as driver genes for cancer, these genes are possible
candidates to be drivers of resistance. One of those genes is EDA2R, there is already a correlation
between the amplification of this gene and the development of resistance against the treatments
irinotecan and oxaliplatin (Sun et al.,, 2017). We found this gene amplified in Taxanes and anti-
androgen, there is a big chance that this gene also has resistance against these treatments.

The low expression of MSL3 is associated with ovarian cancer, while we found it amplified with anti-
androgen in breast cancer (Zheng et al., 2021) (Yamanoi et al., 2019). Further research is needed to
determine what the role of this gene is within breast cancer and especially for the anti-androgen
treatment. There are more genes found that are highly significant in specific treatment groups
compared to the control; CASC9, CSPP1, PNMT and HLA-A. These genes are possible candidates for
resistance and more research is needed to find out if this is the reason why they are amplified for
these specific treatment groups.

The biggest difference when we look at our classification of the drugs into treatment groups and the
FDA labeling is that our classification has two layers and the FDA only one. [Fig. 4] This will only give
us a chance to also look at drug level with drugs that have a big test set and don’t have any
disadvantages. The rest was quite the same, so we can conclude that our classification of drugs into
treatment groups was successful.

A potential artifact may be hidden in the clinical dataset as there is a chance that there are still
samples in the control group that have been pretreated before, but are marked as untreated due to
time. This result in that there might be drivers of resistance that are unwanted filtered out by the
control set. To minimize the chance of this effect to happen, we wanted to add samples from the The
Cancer Genome Atlas (TCGA) program. This dataset contains data from primary tumors from
different cancer types before treatment (Neary et al., 2021). To reproduce the GISTIC scores and use
them in the control group, the raw copy number data per sample per region was needed. The data



that we used was collected from FireBrowse, a service form the Broad Institute, that contains the
TCGA data (Deng et al., 2016) (Deng et al., 2017). This data only contains the segment mean per
sample per region. These values are already normalized using a log2 ratio. Multiple attempts were
done to get to the raw copy number values, so we could use the same pipeline for the TCGA data as
we did before. Every time the values seemed way off and within the time span of this study we
weren’t able to use the TCGA data as a control set. For further research within this scope it would be
useful to find a way to use the TCGA data in the same way as we handled the HMF and PCAWG data.

We reduced the average amount of genes per peak from 11.62 to 2.36. This was done by selecting
the gene with the lowest p-value (most significant) and the gene that was closest to the peak level.
We would expect that these genes would be the same for both the methods, but this wasn’t the case
for all the peaks. Other extra post filtering steps can be the integration of the raw copy number levels
as high ploidy genes (double minutes amplify genes with ploidy levels up to more than 50) are
currently scored equally with genes with one extra ploidy level. Also, the integration of (matching)
rnaseq data may be helpful to select for genes that are transcribed.

Nevertheless, it is still doubtable if you would like to select only one gene per peak. There might be a
little chance that in that same peak region, two or more genes are co-amplified or co-deleted. For
this analysis we chose to select only one gene per peak, because we needed to narrow down the
number of genes to do a proper analysis on and the ones we selected are the most significant ones.
For further research it would be interesting to not only look at the most significant genes but also
genes that are not in the top hits but still significant. With that analysis the average amount of genes
would be higher than the one used for our analysis, this may result in the need of using another
method to do a proper analysis.

Methods section
A flowchart of the used methods is shown in Figure 2.

Create datasets

We performed the analyses using two datasets; the test set and the control set. For the test set,
samples from Hartwig Medical Foundation (HMF) were used and one sample per patient was
selected using the biopsy date. In total 2240 unique samples were used.

Samples that weren’t pretreated (pretreatment="No’) from HMF and the Pan-Cancer Analysis of
Whole Genomes (PCAWG) study were used for the control set. The control set also contains only one
sample per patient based on the biopsy data and consist of approximately 2600 samples.

Classify treatment groups

We created treatments groups manually based on the mechanism of action of the drugs. This
grouping was validated using known literature and their FDA labeling. Our treatment grouping has an
extra layer. There are drugs that fall in the same treatment group when we look at their mechanism
of action, but these drugs also have a sufficient number of samples (>300) to do the analysis also on
drug level. Because of this, the actual amount of used (not unique) samples is much higher. Besides
the extra layer, there are also samples that underwent multiple treatments and are therefore in
multiple treatment groups.

GISTIC

The next step was to run the tool GISTIC with the copy number data from these samples, this can be
done on pan-cancer and per-cancer level. Genomic ldentification of Significant Targets in Cancer
(GISTIC) is a great tool for analyzing chromosomal aberrations in cancer that underwent positive



selection. With this tool it is possible to identify copy number alterations, which might have a roll in
resistance. This method will first identify the location and magnitudes of chromosomal aberrations in
multiple tumor samples. [Fig. 8] Secondly the genome is scored based on the frequency and
amplitude of the aberration. At the same time the frequency with which a given score would be
obtained by chance is determined and is set as a threshold for the significance. This threshold is used
to determine the significant aberration regions and these aberration regions are unlikely to occur by
chance alone (Beroukhim et al., 2007). We ran GISTIC on the test set. GISTIC gives the amplified and
deleted regions per sample for every treatment group and for every sample the difference in copies
from the genome-wide median in that region. Every sample per region was annotated in a group,
amplified, deleted or neutral. This annotation was done using a threshold, difference above 0.9 is
amplified, below -1.3 is deleted and in between is neutral. The next step was to separate drivers of
tumorigenesis from the (possible) drivers of resistance.
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Figure 8: Overview of the GISTIC method. After identifying the locations and, in the case of copy-
number alterations, magnitudes (as log, signal intensity ratios) of chromosomal aberrations in
multiple tumors (Left), GISTIC scores each genomic marker with a G score that is proportional to the
total magnitude of aberrations at each location (Upper Center). In addition, by permuting the
locations in each tumor, GISTIC determines the frequency with which a given score would be
attained if the events were due to chance and therefore randomly distributed (Lower Center). A
significance threshold (green line) is determined such that significant scores are unlikely to occur by
chance alone. Alterations are deemed significant if they occur in regions that surpass this threshold
(Right).

Adapted from Beroukhim et al., 2007

Fishers’ exact test

We needed to distinguish the cancer driver genes from (possible) drivers of resistance. The cancer
driver genes should also pop up in the control dataset, so we compared the test set with the control
set using the Fishers’ exact test. Four values are needed to perform the Fishers’ exact test per
treatment group; 1. The number of samples that were amplified in that peak for the test set. 2. The
number of samples that were not amplified in that peak for the test set. 3. The number of samples
that were amplified in that peak for the control set and 4. The number of samples that were not
amplified in that peak for the control set. As the GISTIC group annotations for each gene of the
control set are not given, we needed to compute these from raw copy number profiles similar as the
GISTIC approach. The copy numbers given by GISTIC are the difference in copies from the genome-
wide median. So to determine this value we took the raw copy number of the region of the gene and
subtracted the mean ploidy level of that sample (CNpurple = (CN of that region in purple) - mean
ploidy level). Now that we had all four values needed for the Fishers’ exact test, we performed the
test for every gene.




Gene annotation per peak

After performing the fishers’ exact test, there were still too many genes to make conclusions. The
solution to that was selecting only one gene per peak in GISTIC. Two methods were used to narrow
down the amount of genes per peak. The first approach was based on the p-value, the gene with the
lowest (most-significant) p-value was selected. The second approach was based on selecting the gene
that was closest to the peak level (top). The peak level is the region with the most amplified samples.
We used a combination of both methods, so we are sure we don’t exclude (possible) resistance
mechanisms. The top hit genes were reported based on their p-value and estimate and analyzed
using literature.
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