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UNIVERSITEIT UTRECHT

Abstract
Logical laws on caterpillars

by Roel LAMBERS

Glebskii et al. (1969) and Fagin (1975) first proved a Zero-One Law with
respect to First Order-logic on the Erdos-Renyi random graph G(n, p) with
p = 1

2 . Since then, multiple classes of graphs have been proven to obey a
Zero-One Law or not, on different kinds of logical languages. The class of
labeled caterpillars does not obey a Zero-One law in First Order Logic; how-
ever, there’s a convergence law, as is proven in this thesis. Subsequently, it’s
also proven for the class of unlabeled caterpillars.

While proving these convergence laws, we use the fact that only the
’outer parts’ of a caterpillar can be different, while the ’inside’ tends to be
the same for large enough caterpillars. In the final chapter we therefore
introduce the group of caterpillars, having their outer vertices attached to
each other to create bracelets. The class of bracelets is proven to obey a
Zero-One Law.

HTTP://WWW.UU.NL
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Chapter 1

Introduction

We start with an introduction to notation used in this thesis. As usual, a
graph G = (V,E) exists of vertices V and edges between vertices v, w ∈ V
if (v, w) ∈ E, also denoted as v ∼ w. We assume all graphs to be loop-free
and without multi-edges during this thesis, that is, there can only be one
edge between two points v, w ∈ V and (v, v) 6∈ E ∀v ∈ V . For a vertex
v ∈ V , the degree deg(v) = d(v) is defined as d(v) = |{w ∈ V : (v, w) ∈ E}|.
Further, Kn will denoted the complete graph with n vertices and Ki1,...,ir

the r-partite graph between the r sets V1, . . . , Vr of vertices, with |Vj | = ij .
Two graphs G = (V,E), H = (V ′, E′) are said to be isomorphic if there

exists a bijection ψ : V → V ′ s.t.:

(v, w) ∈ E ⇐⇒ (ψ(v), ψ(w)) ∈ E′ ∀v, w ∈ V

We denote isomorphism of G,H by G ∼= H . Clearly, when G ∼= H and
H ∼= F , G ∼= F and G ∼= G, so isomorphism is an equivalence relation.

Notice that every vertex in V of G = (V,E) is distinguishable, we say
there’s some labeling to distinguish them. We can also define unlabeled
graphs.

Definition 1 We define the unlabeled graph [UG] of a labeled graph G as the
equivalence class over isomorphisms.

In Figure 1.1, there are two different graphs shown on vertex set [3];
both graphs are clearly isomorphic, they only differ in labeling, so they
both belong to the same equivalence class and only represent one unlabeled
graph.

We usually denote a family of labeled graphs with A and it’s corre-
sponding unlabeled family of graphs with UA. The set An ⊂ A consists
of all different graphs in A of order n, with vertex set [n], and UAn ⊂ UA
are all unlabeled graphs of order n.

Definition 2 A minor H of G is a subgraph obtained by deleting and/or con-
tracting, which is deleting the edge and merging the vertices, edges of G, deleting
isolated vertices and deleting any multi-edges or loops created this way. A family

FIGURE 1.1: Different labels, different graphs
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of graphs A is called a minor-closed class if for a graph A ∈ A and all it’s minors
H of A, we have H ∈ A.

This means for instance that the graph with 3 vertices and edges between
all of them, K3, which can be drawn as a triangle, is a minor of a square-
shaped graph, or any graph containing a cyclic path; just remove all edges
and vertices not in the cyclic path, and contract every edge in the cyclic path
until you have 3 edges and vertices left and obtainK3. A minor-closed class
of graphs not containingK3 may therefore not contain any cyclic path at all,
in any graph.

Theorem 1 (Robertson-Seymour) [6] Every minor-closed classA is determined
by a finite number of excluded (forbidden) minors A1, . . . , Ar.

Example 1

Let A be the set of planar graphs, graphs that can be drawn in R2 without
edges crossing. Every minor of a planar graph is obviously a planar graph.
Furthermore,A is given by all the graphs not containingK3,3 andK5 as mi-
nors. The class containing all trees, isn’t minor-closed, as we can delete an
edge in a tree G, to obtain two disjoint trees. The class of forests of trees, in
which every graph is the disjoint union of trees, is however minor-closed,
and the excluded minor is K3 (the triangle), as a trees can’t have a cyclic
path. �

Let A be a class of graphs. We define An ∈n An as the random uniformly
chosen graph of order n with vertex set [n], that is:

∀A ∈ An P(An = A) =
1

|An|

Example 2

Let T ,UT be the set of all labeled and unlabeled trees respectively. There
are 2 different unlabeled trees of order 4, TA being a path of length 4 and TB
being a central vertex, adjacent to the other 3. Let T4, UT4 be the random
labeled and unlabeld tree respectively of order 4. Then:

P(UT4 ∼= TA) = P(UT4 ∼= TB) =
1

2
(1.1)

However, TA can be labeled in 12 different ways, while TB can only be
labeled in 4 different ways. Therefore, if we would look to isomorphism of
T4 without labels:

P(T4 ∼= TA) =
3

4
P(T4 ∼= TB) =

1

4

As only TB contains a vertex of degree 3, we already see a different stochas-
tic distribution between T4 and UT4:

P(∃x∈T4 deg(x) = 3) =
1

4
P(∃x∈UT4 deg(x) = 3) =

1

2

�
In this thesis, a lot of factorials occur in calculations. To work with these
factorials in an easy way, we’ll often use the Stirling approximation:
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Theorem 2 (Stirling’s approximation) For n ∈ N it holds that:

n! ∼
(n
e

)n√
2πn (1.2)

And there’s the equivalent variant with logarithms:

log n! ∼ n log n− n+
1

2
log 2πn

Proof We’ll prove this using the Laplace method, which is given in the fol-
lowing lemma:

Lemma 1 [5] Let f(z) be a twice differentiable function, with a unique maximum
z0 on [a, b], with a, b either finite or infinite, and f ′′(z0) < 0. Then:

lim
n→∞

∫ b
a e

nf(z)dz

enf(z0)
√

2π
−nf ′′(z0)

= 1

Which can also be formulated as:∫ b

a
enf(z)dz ∼ enf(z0)

√
2π

−nf ′′(z0)

For any n ∈ N, we have:

n! = Γ(n+ 1) :=

∫ ∞
0

e−xxndx

Where Γ(n + 1) is the Gamma function. Changing variables x = nz in the
integral, gives:

n! =

∫ ∞
0

e−nz(nz)nn dz = nn+1

∫ ∞
0

en(log z−z)dz

The function f(z) = log z − z has a single maximum on (0,∞), which is at
z = 1. So, we may apply the Laplace Method with this f(z) and z0 = 1,
f(1) = −1 as maximum and f ′′(z) = − 1

z2
as second derivative. Thus, we

get:

n! = nn+1

∫ ∞
0

en(log z−z)dz ∼ nn+1e−n
√

2π

n
=
(n
e

)n√
2πn (1.3)

�

Corollary 1 For n ∈ N, we have log n! = n log n− n+O(log n).

Proof A direct result from Theorem 2. �
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Chapter 2

Caterpillars

2.1 Basic properties

A caterpillar [3, 4] C = (V,E) is a graph consisting of a path and vertices
of degree one attached to the path. The vertices on the path are called the
spine and the vertices of degree one are called legs. To avoid ambiguity, the
spine of a caterpillar is defined to consist of all elements of degree greater
than 1, thus the (at most) two outer vertices of the path have at least 1 leg
attached to them. We order the caterpillar by size N , which is the total
number of vertices in the caterpillar. Labeled caterpillars are caterpillars
in which every vertex is labeled. In Figure 2.1 the caterpillars of size N =
3, 4, 5, 6 are shown, together with the number of different labels (LBL) they
can obtain. The spine vertices in each caterpillar are solid black.

FIGURE 2.1: Some caterpillars of small order

The class of unlabeled caterpillars will be denoted by UC and the class
of labeled caterpillars by C. The set of all caterpillars of order n is denoted
by UCn in the unlabeled class and Cn in the labeled class and UCn ∈n UCn,



6 Chapter 2. Caterpillars

Cn ∈n Cn represent the random uniformly chosen caterpillar of order n,
unlabeled and labeled respectively.

Regarding Robertson-Seymour Theorem, the class of caterpillars C is nót
minor-closed, as deleting an edge in the spine vertex could result in two
disjoint caterpillars. However, the class of forest of caterpillars ís minor-
closed, with excluded minors being the triangle K3 and a particular tree
containing a vertex attached to three vertices of degree 2, as seen in figure
2.2.

FIGURE 2.2: Excluded minors of C

The random caterpillar UCn differs from Cn. Let ` : C → N be the function
such that `(C) is the spine length of C. Then, `(Cn) is the random variable
distributed as the spine length of Cn ∈n Cn is distributed. In Table 2.1
we see that E`(Cn) differs from E`(UCn). So, the two classes and their
associated random caterpillars clearly have different properties. From here,
we’ll mostly discuss the class of labeled caterpillars.

n |UCn| |Cn| E`(UCn) E`(Cn)

3 1 3 1 1
4 2 16 3

2
7
4

5 3 125 2 61
25

6 6 1296 5
2

671
216

TABLE 2.1: Labeled vs. unlabeled caterpillars

2.1.1 Spine length

As we have the class C of labeled caterpillars and the corresponding Cn
caterpillars, we want to know the distribution of the spine length ` of Cn,
as n goes to infinity. To ease calculations, we orient the caterpillars, having
a left and a right side. This orientation can be easily reversed, since all
caterpillars with a spine length bigger than 1, are isomorphic to exactly two
oriented caterpillars. Let Sn,` denote the total number of oriented, labeled
caterpillars of order n with spine length ` ≤ n − 2. When ` = 1, we have
Sn,` = n; all different caterpillars with spine length 1 are distinguished by
the label assigned to the spine vertex.

For Sn,`, with ` 6= 1, we have the exact expression:

Sn,` =

(
n

`

)
`!
(
`n−` − 2(`− 1)n−` + (`− 2)n−`

)
=

(
n

`

)
`!`(n−`)

(
1− 2

(
1− 1

`

)n−`
+

(
1− 2

`

)n−`)
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First, ` labels out of n are picked for the spine, this gives the binomial
(
n
`

)
,

then there are `! different ways to label the spine with these ` labels. Fur-
ther, the remaining n − ` vertices can be distributed freely over the ` spine
vertices as legs, this accounts for the `n−` term. However, the two outer
vertices should contain at least one vertex, which is accounted for between
the brackets.

Having an exact number Sn,` for all n, `, we can see for fixed n, for which
spine length ` there are the most caterpillars, that is, Sn,` is largest. We can
use this to determine the distribution of the spine length of the random
caterpillar Cn. Clearly, since Cn is chosen randomly, it holds that:

P(`(Cn) = `) =
Sn,`
|Cn|

(2.1)

As noted, a caterpillar of order n can have a spinelength of 1, . . . , n − 2.
Define µn = { 1n , . . . ,

n−2
n }, then P(∃m∈µn s.t. `(Cn) = mn) = 1.

When n→∞, it turns out that:

Theorem 3 For c = 1
1+ρ , with ρ the unique solution of xex = 1:

lim
n→∞

∑
m∈µn∩[c−α,c+α]

P(`(Cn) = mn) = 1 ∀α > 0

In other words, when n goes to infinity, the probability that a random caterpillar
Cn has spine length arbitrary close to cn goes to 1 almost surely.

Proof We’ll separate in two cases of the spine length ` first, being of a certain
size and see how big Sn,` is.

1. ` ≤ εn,

2. εn < ` ≤ n− 2

where ε is fixed with ε < 1
e+1 .

We’ll first look at the first case. Basic calculation gives:

∑
`≤εn

Sn,` =
∑
`≤εn

(
n

`

)
`!`(n−`)

(
1− 2

(
1− 1

`

)n−`
+

(
1− 2

`

)n−`)

≤
∑
`≤εn

(
n

`

)
`!`(n−`)

= n!
∑
`≤εn

`n−`

(n− `)!

And by Stirlings approximation in Theorem 2, we know that for large enough
(n− `)! ≥ (n−`e )(n−`), so we get:

∑
`≤εn

Sn,` ≤ n!
∑
`≤εn

(
e`

n− `

)(n−`)
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Since ` ≤ εn and n− ` ≥ (1− ε)n, we get:

∑
`≤εn

Sn,` ≤ n!
∑
`≤εn

(
eε

1− ε

)n−`
By choice of ε, eε

1−ε ≤ 1, and then we find that:∑
`≤εn

Sn,` ≤ n!(εn)

Now, for the second case, we take ` s.t. εn < ` ≤ n and for any such ` we
can write ` = mn, with m ∈ µn and m bounded away from zero, since it’s
bigger than ε. Then:

Sn,` =

(
n

`

)
`!`(n−`)

(
1− 2

(
1− 1

`

)n−`
+

(
1− 2

`

)n−`)

=
n!

(n− `)!
`n−`

(
1− 2

(
1− 1

`

)n−`
+

(
1− 2

`

)n−`)

= n!
(mn)(1−m)n

((1−m)n)!

(
1− 2

(
1− 1

mn

)(1−m)n

+

(
1− 2

mn

)(1−m)n
)

For any fixed n and m ∈ µn,m > ε, we can use Stirling’s approximation to
find:

((1−m)n)! ∼
(

(1−m)n

e

)(1−m)n√
2π(1−m)n

So we can write:

(mn)(1−m)n

((1−m)n)!
∼ 1√

2π(1−m)n

(
e

(1−m)n

)(1−m)n

(mn)(1−m)n

∼ 1√
2π(1−m)n

(
em

1−m

)(1−m)n

This leads to:

Sn,mn ∼ n!
1√

2π(1−m)n

(
em

1−m

)(1−m)n
(

1− 2

(
1− 1

mn

)(1−m)n

+

(
1− 2

mn

)(1−m)n
)

For logarithms log(1−x), a series expansion around 1 results in log(1−x) =
−x+O(x2). And, we can write:(

1− 1

mn

)(1−m)n

= e(1−m)n log(1− 1
mn

)

(
1− 2

mn

)(1−m)n

= e(1−m)n log(1− 2
mn

)
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Applying the expansion, using that mn > εn, thus 1
mn <

1
εn � 1, to get:(

1− 1

mn

)(1−m)n

= e
(1−m)n

(
− 1
mn

+O( 1
(mn)2

)
)

= e−
1−m
m

+O( 1
n
)

(
1− 2

mn

)(1−m)n

= e
(1−m)n

(
− 2
mn

+O( 1
(mn)2

)
)

= e−
2(1−m)
m

+O( 1
n
)

Using this to find:

1− 2

(
1− 1

mn

)(1−m)n

+

(
1− 2

mn

)(1−m)n

= 1− 2e−
1−m
m

+O( 1
n
) + e−

2(1−m)
m

+O( 1
n
)

=
(

1− e−
1−m
m

+O( 1
n
)
)2

So we can write:

Sn,mn ∼ n!
1√

2π(1−m)n

(
em

1−m

)(1−m)n (
1− e−

1−m
m

+O( 1
n
)
)2

We now have estimates of the number of caterpillars of certain spine length.
That is, we know that:

` ≤ εn
∑
`≤εn

Sn,` ≤ n!(εn)

εn <`(= mn) Sn,` ∼
n!√

2π(1−m)n

(
em

1−m

)(1−m)n (
1− e−

1−m
m

+O( 1
n
)
)2

When we look at Sn,`n for larger n, the caterpillars with spine length less
than εn are outnumbered by those with bigger spine length. There are only
n!O(n) caterpillars in total with spine length ` ≤ εn. On the other hand, for
` > εn, Sn,` ∼ n!p(n)An, with A = ( em

1−m)1−m > 1. This exponential term
will be dominating for large n, since exponential growth is faster than poly-
nomial growth. Since |Cn| =

∑
`≤εn Sn,` +

∑
`>εn Sn,`, the first summation

becomes negligible for large n.
Recall equation 2.1 and rewrite this to get:

Pn(`(Cn) = mn) =
Sn,mn
|Cn|

=
Sn,mn∑
k Sn,kn

=
1∑

k
Sn,kn
Sn,mn

(2.2)

For any n, we can look at the the ratio between Sn,mn and Sn,m̃n, with
m, m̃ ∈ µn and m, m̃ > ε, which is given by:

Sn,mn
Sn,m̃n

∼

((
em

1−m

)1−m(1− m̃
em̃

)1−m̃
)n√

1− m̃
1−m

(
1− e−

1−m
m

+O( 1
n
)

1− e−
1−m̃
m̃

+O( 1
n
)

)2

= AnB
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Where

A =

(
em

1−m

)1−m(1− m̃
em̃

)1−m̃
B =

√
1− m̃
1−m

(
1− e−

1−m
m

+O( 1
n
)

1− e−
1−m̃
m̃

+O( 1
n
)

)2

In this ratio, as n becomes large, An will be the dominant term, either be-
coming arbitrarily large or getting arbitrarily close to 0. For A, we know
that:

A > 1 ⇐⇒
(

em

1−m

)1−m
>

(
em̃

1− m̃

)1−m̃
(2.3)

A < 1 ⇐⇒
(

em

1−m

)1−m
<

(
em̃

1− m̃

)1−m̃
(2.4)

Define the function f to be:

f : (0, 1)→ R f(x) =

(
ex

1− x

)1−x

When f(x) attains a maximum in x0, the function log f(x) = (1−x)(log x+
1− log(1− x)) will also attain a maximum at x0. A basic calculation yields:

0 =
d

dx
log f(x) = − log

x

1− x
− 1 + (1− x)

(
1

x
+

1

1− x

)
=⇒ log

1− x
x

+
1− x
x

= 0

This is only true when 1−x
x = ρ, the solution of zez = 1. This solution is

unique, as zez is increasing on R≥0. As 1−x
x = ρ, we get x = 1

1+ρ as the
unique point on (0, 1) where f(x) attains its maximum value - to be called
c from this point on. That this is indeed a maximal value, is imminent as
f(ε) = 1 and f(12) =

√
e > 1, while c > 1

2 . This is also the only local
maximum, thus f is increasing on (0, c) and decreasing on (c, 1), meaning
that f(x) < f(y), when 0 < x < y < c and f(x) > f(y) when c < x < y < 1.

We can use this in relation to the ratio Sn,mn
Sn,m̃n

. Pick α > 0. By construction
of µn, there’s anN s.t. for every n ≥ N , [c− α

2 , c]∩µn 6= ∅ and [c, c+ α
2 ]∩µn 6=

∅. When we have an m ∈ µn with m ∈ (0, c − α), and a m̃ ∈ µn with
m̃ ∈ (c − α

2 , c], we can find an upper bound for the corresponding A in the
ratio Sn,mn

Sn,m̃n
:

A =

(
em

1−m

)1−m(1− m̃
em̃

)1−m̃
≤
(

e(c− α)

1− (c− α)

)1−(c−α)(1− (c− α
2 )

e(c− α
2 )

)1−(c−α
2
)

And define this upper bound as Aα. Recall (2.14) and rewrite this, for
m, m̃ ∈ µn and m ≤ c− α and m̃ ∈ [c− α

2 , c]:

Pn(`(Cn)) =
Sn,mn∑
k Sn,kn

≤ Sn,mn
Sn,m̃n

≤ AnαB(
1

n
)
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Then, the probability that `(Cn) < (c− α)n, when n→∞, is given by:

lim
n→∞

Pn(`(Cn) < (c− α)n) = lim
n→∞

∑
m∈µn∩[0,c−α]

Pn(`(Cn) = mn)

≤ lim
n→∞

(c− α)nAnB = 0

As A < 1 and exponential decline dominates the behavior of B(n). Analo-
gously, it can be shown that limn→∞ Pn(`(Cn) > (c− α)n) = 0, thus result-
ing in:

lim
n→∞

∑
m∈µn∩[c−α,c+α]

P(`(Cn) = mn) = 1

Importantly, this result holds for all α > 0.
�

2.2 Distribution of the legs

Knowing the distribution of the spine length of a random caterpillar, we
can also look at the distribution of its legs. If we would pick a random spine
vertex v of the random caterpillar Cn, we want to determine the probability
that d(v) = k + 2, i.e., that v has exactly k legs attached to it.

2.2.1 Single vertex

We want to determine for a spine vertex v and a fixed k ∈ N, the existence
and the value of:

lim
n→∞

Pn(d(v) = k)

However, this probability depends on the choice of v. As we take limit over
the caterpillars, two different caterpillars obviously have different spine
vertices. We can chose to pick the first vertex in every oriented caterpil-
lar Cn, or we chose a regular spine vertex of Cn randomly, and this gives
different results. If we enumerate all spine vertices of an oriented random
caterpillar Cn as v1, . . . , v`, with ` = `(Cn), where v1 will be the left-most
vertex, then, for the distribution of d(v1) in the random caterpillar Cn, we
have, for n ≥ 3 :

Pn(d(v1) = k + 1) =
n−2∑
`=1

Pn(d(v1) = k + 1|`(Cn) = `)Pn(`(Cn) = `) (2.5)

Notice that we sum from 1 to n− 2, as the outer vertices must both have at
least 1 leg, and those leg vertices can’t be part of the spine. Caterpillars of
order 1 or 2 have no spine vertices at all.

Lemma 2 Let v1 be the vertex of the spine of Cn (often called an ’outer vertex’
in this thesis) and fix k. Then limn→∞ Pn(d(v1) = k + 1) exists and is equal to
ρk+1

k! (1− ρ)−1
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Proof As we saw in Theorem 3, there’s a constant value c such that the
expected spine length E[`(Cn)] get’s arbitrarily close to cn, as n → ∞ and
limn→∞

`(Cn)
n = c with high probability.

Thus, limn→∞ Pn(`(Cn) 6∈ ((c − α)n, (c + α)n) = 0, ∀α > 0. Applying
this to (2.5), we get:

lim
n→∞

Pn(d(v1) = k + 1) (2.6)

= lim
n→∞

n−2∑
`=1

Pn(d(v1) = k + 1|`(Cn) = `)Pn(`(Cn) = `) (2.7)

= lim
n→∞

∑
m∈µn∩((c−α),(c+α))

Pn(d(v1) = k + 1|`(Cn) = mn)Pn(`(Cn) = mn)

(2.8)

To further determine this limit, we need to calculate P(d(v1) = k+1|`(Cn) =
`), which can be done by an analysis similar to finding Sn,`. Assume that
` > εn, with ε > 0, which we can do, since the number of caterpillars with
small spine length is neglectable. The ` vertices in the spine can be labeled
in
(
n
`

)
`! ways, the k legs in

(
n−`
k

)
ways and the remaining n− `− k vertices

can be distributed over `− 1 spine vertices. Thus, for k ≥ 1, we have:

Pn(d(v1) = k + 1|`(Cn) = `)

=
1

Sn,`

(
n

`

)
`!

(
n− `
k

)(
(`− 1)n−`−k − (`− 2)n−`−k

)
=

1

Sn,`

n!

(n− `− k)!k!
(`− 1)n−`−k

(
1−

(
1− 1

`− 1

)n−`−k)

Applying the expression found for Sn,` earlier, we get:

Pn(d(v1) = k + 1|`(Cn) = `) (2.9)

=
(n− `)!

(n− `− k)!k!

(`− 1)n−`−k

`n−`

1−
(

1− 1
`−1

)n−`−k
1− 2

(
1− 1

`

)n−`
+
(
1− 2

`

)n−` (2.10)

=

(
n− `
k

)(
`− 1

`

)n−` 1

(`− 1)k

1−
(

1− 1
`−1

)n−`−k
1− 2

(
1− 1

`

)n−`
+
(
1− 2

`

)n−` (2.11)

We can rewrite a part of this, using that ∃m ∈ µn s.t. ` = mn:

(n− `)!
(n− `− k)!k!

(`− 1)n−`−k

`n−`
1

(`− 1)k

=
1

k!

n− `
`− 1

· · · n− `− (k − 1)

`− 1

(
`− 1

`

)n−`
=

1

k!

(1−m)n

mn− 1
· · · (1−m)n− (k − 1)

mn− 1

(
1− 1

mn

)(1−m)n
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We can write:

(1−m)n

mn− 1
· · · (1−m)n− (k − 1)

mn− 1
=

k−1∏
i=0

(1−m)n− i
mn− 1

=

k−1∏
i=0

(
1−m
m

(
1 +

1

mn− 1

)
− i

mn− 1

)

=

(
1−m
m

)k (
1 +O

(
1

n

))
Using that, for x� 1, we have the series expansion log(1−x) = −x+O(x2),
we can write:(

1− 1

mn

)(1−m)n

= exp(1−m)n log

(
1− 1

mn

)
= e−

1−m
m

+O( 1
n
)

And in a similar way, we can rewrite the big fraction in (2.11):

1−
(

1− 1
`−1

)n−`−k
1− 2

(
1− 1

`

)n−`
+
(
1− 2

`

)n−` =
1−

(
1− 1

mn−1

)(1−m)n−k

1− 2
(
1− 1

mn

)(1−m)n
+
(
1− 2

`

)(1−m)n

=
1− e−

1−m
m

+O( 1
n
)

1− 2e−
1−m
m

+O( 1
n
) + e−2

1−m
m

+O( 1
n
)

=
1

1− e−
1−m
m

+O( 1
n
)

Combining all this, gives:

Pn(d(v1) = k + 1|`(Cn) = `) =
1

k!

(
1−m
m

)k
e−

1−m
m

+O( 1
n
) 1 +O

(
1
n

)
1− e−

1−m
m

+O( 1
n)

Applying this to (2.8), and combining all the O( 1
n) terms, gives:

lim
n→∞

Pn(d(v1) = k + 1) (2.12)

= lim
n→∞

∑
m∈µn∩(c−α,c+α)

1

k!

(
1−m
m

)k e−
1−m
m

1− e−
1−m
m

(
1 +O

(
1

n

))
Pn(`(Cn) = mn)

(2.13)

We only sum overm in (c−α, c+α), so we can find upper and lower values
of every term in the summation. So:

∀m ∈ (c− α, c+ α)
1− (c+ α)

c+ α
≤ 1−m

m
≤ 1− (c− α)

c− α

Hence:(
1− (c+ α)

c+ α

)k e−
1−(c−α)
c−α

1− e−
1−(c−α)
c−α

≤
(

1−m
m

)k e−
1−m
m

1− e−
1−m
m

≤
(

1− (c− α)

c− α

)k e−
1−(c+α)
c+α

1− e−
1−(c+α)
c+α
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Which means that:

lim
n→∞

(
1− (c+ α)

c+ α

)k e−
1−(c−α)
c−α

1− e−
1−(c−α)
c−α

∑
m∈µn∩(c−α,c+α)

Pn(`(Cn) = mn)

(
1 +O

(
1

n

))
≤ lim

n→∞

∑
m∈µn∩(c−α,c+α)

Pn(d(v1) = k|`(Cn) = mn)P(`(Cn) = mn)

≤ lim
n→∞

(
1− (c− α)

c− α

)k e−
1−(c+α)
c+α

1− e−
1−(c+α)
c+α

∑
m∈µn∩(c−α,c+α)

Pn(`(Cn) = mn)

(
1 +O

(
1

n

))

As we may choose α arbitrarily close to zero, we have:

lim
α↓0

1

k!

(
1− (c+ α)

c+ α

)k e−
1−(c−α)
c−α

1− e−
1−(c−α)
c−α

≤ lim
n→∞

Pn(d(v1) = k + 1|`(Cn) = `)

≤ lim
α↓0

1

k!

(
1− (c− α)

c− α

)k e−
1−(c+α)
c+α

1− e−
1−(c+α)
c+α

Evaluating the limits yields:

1

k!

(
1− c
c

)k e−
1−c
c

1− e−
1−c
c

≤ lim
n→∞

Pn(d(v1) = k + 1|`(Cn) = `) ≤ 1

k!

(
1− c
c

)k e−
1−c
c

1− e−
1−c
c

So the inequalities are actually equalities. When we use that 1−c
c = ρ, with

ρ = e−ρ, we get:

lim
n→∞

Pn(d(v1) = k + 1|`(Cn) = `) =
1

k!
ρk

e−ρ

1− e−ρ
=

1

1− ρ
ρk+1

k!

Thus, we’ve proven that:

lim
n→∞

Pn(d(v1) = k + 1|`(Cn) = `) =
1

1− ρ
ρk+1

k!

�
We now want to establish a similar result, but for spine vertices that aren’t
outer vertices. First, we’ll define how to pick a random spine vertex on Cn.

Definition 3 A random picked spine vertex v, not an outer one, on a caterpillar
Cn ∈n Cn, is uniformly random picked out of the not-outer spine vertices in the
random picked caterpillar Cn. Thus, the distribution of the degree d(v) of vertex v
is given by:

Pn(d(v) = k + 2) =
n−k−5∑
`=3

Pn(d(v) = k + 2|`(Cn) = `)Pn(`(Cn) = `) (2.14)

This leads to the following lemma:

Lemma 3 For a random, non outer spine vertex v on Cn, we have:

lim
n→∞

Pn(d(v) = k + 2) =
ρk+1

k!
∀k ∈ N
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where ρ is the solution of xex = 1. This also holds for spine vertex vi, the fixed i-th
spine vertex from the left in an oriented caterpillar.

Proof We’ll first prove the statement with the randomly chosen spine ver-
tex. The proof is similar to that of Lemma 2. Fix k ∈ N. We can rewrite,
when n approaches infinity, (2.14), using Theorem 3, for any α > 0 and c
the limit spine length of random caterpillars:

lim
n→∞

Pn(d(v) = k + 2) = lim
n→∞

∑
m∈µn∩[c−α,c+α]

P(d(v) = k + 2|`(Cn) = mn)P(`(Cn = mn))

When a caterpillar has spine length mn, then a non outer spine vertex v has
degree d(v) = k + 2 with probability:

Pn(d(v) = k + 2|`(Cn) = mn) (2.15)

=
n

Sn,mn

(
n− 1

k

)(
n− k − 1

mn− 1

)
(mn− 1)!(mn− 1)(1−m)n−k (2.16)

·

(
1− 2

(
1− 1

mn− 1

)(1−m)n−k
+

(
1− 2

mn− 1

)(1−m)n−k
)

(2.17)

=
1

Sn,mn

n!(mn− 1)(1−m)n−k

((1−m)n− k)!k!

(
1− 2

(
1− 1

mn− 1

)(1−m)n−k
+

(
1− 2

mn− 1

)(1−m)n−k
)

(2.18)

For a fixed non-outer vertex, we can label it in n different ways, its k legs in(
n−1
k

)
ways, the remaining mn− 1 spine vertices in

(
n−k−1
mn−1

)
(mn− 1)!, since

we work with oriented caterpillars, and the remaining (1−m)n−k vertices
are legs of the other spine vertices, where the outer vertices must have at
least one leg each. This is the amount of caterpillars of order n with spine
length mn where v is of degree d(v) = k + 2. Divided by the total number
of caterpillars with spine length mn, gives the probability that d(v) = k + 2
given spine length mn.

We have an exact formula for Sn,mn, and we can apply this to get:

Pn(d(v) = k + 2|`(Cn) = mn)

=

(
(1−m)n

k

)(
mn− 1

mn

)(1−m)n 1

(mn− 1)k

1− 2
(

1− 1
mn−1

)(1−m)n−k
+
(

1− 2
mn−1

)(1−m)n−k

1− 2
(
1− 1

mn

)(1−m)n
+
(
1− 2

mn

)(1−m)n
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By the same analysis as in the proof of Lemma 2, we can write:(
(1−m)n

k

)
1

(mn− 1)k
=

1

k!

(1−m)n

mn− 1
· · · (1−m)n− k + 1

mn− 1

=
1

k!

(
1−m
m

)k (
1 +O(

1

n
)

)
(
mn− 1

mn

)(1−m)n

=

(
1− 1

mn

)(1−m)n

= e−
1−m
m

+O( 1
n
)

1− 2
(

1− 1
mn−1

)(1−m)n−k
+
(

1− 2
mn−1

)(1−m)n−k

1− 2
(
1− 1

mn

)(1−m)n
+
(
1− 2

mn

)(1−m)n

=
1− 2e−

1−m
m

+O( 1
n
) + e−2

1−m
m

+O( 1
n
)

1− 2e−
1−m
m

+O( 1
n
) + e−2

1−m
m

+O( 1
n
)

= 1 +O
(

1

n

)
Combining all this, including the O( 1

n) terms, results in:

Pn(d(v) = k + 2|`(Cn) = mn) =
1

k!

(
1−m
m

)k
e−

1−m
m

(
1 +O

(
1

n

))
(2.19)

Hence, we get:

lim
n→∞

Pn(d(v) = k + 2) = lim
n→∞

∑
m∈µn∩[c−α,c+α]

P(d(v) = k + 2|`(Cn) = mn)P(`(Cn = mn))

= lim
n→∞

∑
m∈µn∩[c−α,c+α]

1

k!

(
1−m
m

)k
e−

1−m
m

(
1 +O

(
1

n

))

As m ∈ [c− α, c+ α], we can find bounds:

1

k!

(
1− (c+ α)

c+ α

)k
e−

1−(c−α)
c−α ≤ 1

k!

(
1−m
m

)k
e−

1−m
m ≤ 1

k!

(
1− (c− α)

c− α

)k
e−

1−(c+α)
c+α

And as this holds for any α > 0, we can use the same argument as in the
proof of the previous Lemma, taking the limit of α ↓ 0 on both sides, to find:

lim
n→∞

Pn(d(v) = k + 2) =
1

k!

(
1− c
c

)k
e−

1−c
c =

ρk+1

k!

As:

1− c
c

= ρ e−
1−c
c = e−ρ = ρ

To see that this also holds for spine vertex vi, for fixed i, notice that the
formula to determine the probability of being of degree k + 2, given the
spine length ` = mn, and with this spine length bigger than i, is equal to
the probability given for a randomly chosen spine vertex, also with spine
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length `, which is given in (2.15). As the spine vertex will be bigger than i
with probability going to 1, as n → ∞, we can apply the same arguments
to complete the proof for a fixed spine vertex vi.

�

For an oriented caterpillar with spine length `, let v1, . . . , v` be the spine
vertices from left to right.

Lemma 4 Fix i, r ∈ N and let Cn be a uniformly random caterpillar with suf-
ficiently large (larger than i + r) spine length. Fix k0, . . . , kr−1 ∈ N and take
K =

∑
i ki. When i > 1, thus the sequence doesn’t start at the first vertex of the

spine, we get:

lim
n→∞

Pn(d(vi) = k0 + 2, . . . , d(vi+r−1) = kr−1 + 2) = lim
n→∞

r−1∏
j=0

P(d(vi+j) = kj + 2)

=
ρr+K

k0! · · · kr−1!

When i = 1, we would get:

lim
n→∞

Pn(d(vi) = k0 + 2, . . . , d(vi+r−1) = kr−1 + 2) = lim
n→∞

r−1∏
j=0

P(d(vi+j) = kj + 2)

=
1

1− ρ
ρr+K+1

(k0 + 1)! · · · kr−1!

Proof As the proof of this Lemma is similar to that of Lemma 2, we’ll only
prove the statement for i > 1. The statement for i = 1 is completely anal-
ogous, only adjusting with v1 being an outer vertex Again, we use that
` = mn, with m ∈ µn and that when n → ∞, all caterpillars will have a
spine length close to cn. We also condition on Cn of having a spine length
` = i + r, but as this is true with high probability when n → ∞, it’s not
incorporated into the formula for reading purposes.

lim
n→∞

Pn(d(vi) = k0 + 2, . . . , d(vi+r−1) = kr−1 + 2)

= lim
n→∞

∑
m∈µn∩[c−α,c+α]

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1|`(Cn) = mn)Pn(`(Cn) = mn)

The r segments with k0, . . . , kr−1 legs in each segment respectively, can be
labeled in L different ways, where:

L =

(
n

r

)
r!

(
n− r
k0

)
· · ·
(
n− r −K + kr−1

kr−1

)
=

n!

k0! · · · kr−1!(n− r −K)!
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and the remaining vertices can be distributed over the remaining spine ver-
tices. So:

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1|`(Cn) = mn)

=
L

Sn,mn

(
n−K − r
mn− r

)
(mn− r)!(mn− r)n−K−mn

·

(
1− 2

(
1− 1

mn− r

)n−K−mn
+

(
1− 2

mn− r

)n−K−mn)

=
1∏r+1

i=2 ki!

(n−mn)!

(n−K −mn)!

(mn− r)n−K−mn

mnn−mn

·
1− 2

(
1− 1

mn−r

)n−K−mn
+
(

1− 2
mn−r

)n−K−mn
1− 2(1− 1

mn)n−mn + (1− 2
mn)n−mn

Similar to Lemma 2, we can write:

(n−mn)!

(n−K −mn)!
(mn− r)−K =

(n−mn)

mn− r
· · · (n−mn−K + 1)

mn− r
(2.20)

=

(
1−m
m

)K (
1 +O

(
1

n

))
(2.21)(

mn− r
mn

)n−mn
=
(

1− r

mn

)(1−m)n
= e−r

1−m
m

+O( 1
n
) (2.22)

And, as (1 − 1
mn)n−mn = e−

1−m
m

+O( 1
n
), and similar for (1 − 1

mn−r )n−mn−K ,
we have:

1− 2
(

1− 1
mn−r

)n−K−mn
+
(

1− 2
mn−r

)n−K−mn
1− 2(1− 1

mn)n−mn + (1− 2
mn)n−mn

= 1 +O
(

1

n

)
(2.23)

When we combine all this, we see that:

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1|`(Cn) = mn) =
1∏
j kj !

(
1−m
m

)K
e−r

1−m
m

(
1 +O

(
1

n

))
As we sum over m ∈ [c− α, c+ α], we get boundaries:

1∏
j kj !

(
1− (c+ α)

c+ α

)K
e−r

1−(c−α)
c−α ≤ 1∏

j kj !

(
1−m
m

)K
e−r

1−m
m

≤ 1∏
j kj !

(
1− (c− α)

c− α

)K
e−r

1−(c+α)
c+α
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And, as this holds for all α > 0, we find:

lim
α↓0

lim
n→∞

1∏
j kj !

(
1− (c+ α)

c+ α

)K
e−r

1−(c−α)
c−α

(
1 +O

(
1

n

))
(2.24)

≤ lim
n→∞

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1) (2.25)

≤ lim
α↓0

lim
n→∞

1∏
j kj !

(
1− (c− α)

c− α

)K
e−r

1−(c+α)
c+α

(
1 +O

(
1

n

))
(2.26)

Evaluating the limits gives:

lim
n→∞

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1) =
1∏
j kj !

(
1− c
c

)K
e−r

1−c
c (2.27)

And, as 1−c
c = ρ, with e−ρ = ρ, we get:

lim
n→∞

Pn(d(vi+j) = kj + 2, ∀j ≤ r − 1) =
ρK+r∏
j kj !

�
As we have converging limiting distribution for the legs attached to a spine
vertex in a random caterpillar, we can now prove:

Theorem 4 Let v1, . . . , v` denote the spine vertices of an oriented random cater-
pillar Cn with spine length `. Then, for fixed k1, . . . , kr ∈ N, we have:

lim
n→∞

Pn(∃i d(vi+1) = k1 + 2, . . . , d(vi+r) = kr + 2) = 1

This is a crucial result, stating that every finite sequence of segments in a
caterpillar will eventually occur in Cn.

Proof Take R = g · r, g ∈ N. Let p > 0 be the limit probability p =
limn→∞ Pn(d(v2) = k1 + 2, . . . , d(vr+1) = kr + 2). This is the same prob-
ability as P(d(vr(j−1)+2) = k1 + 2, . . . , d(vrj+1) = kr + 2), for all j ≤ g by
Lemma 4. So, the probability that in the first R + 1 vertices, there is no leg
sequence ki, is smaller than (1 − p)g. As the size of the caterpillar, and the
spine length, goes to infinity, we can take g →∞ and see that:

P(∃i d(vi+1) = k1 + 2, . . . , d(vi+r) = kr + 2)) ≥ lim
g→∞

1− (1− p)g = 1

�

Corollary 2 Every fixed finite sequence of segments will occur arbitrarily often in
Cn, when n→∞.

Proof Every finite sequence of degrees k1, . . . , kr occurs with probability 1
when n → ∞. Thus, any finite repetition of this sequence will also occur
with probability 1, so every finite sequence will occur arbitrarily often inCn.

�
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Chapter 3

Ehrenfeucht-Fraisse Games

3.1 General idea

In order to determine wether or not two graphs are the same, we can check
their properties. Do they both contain a triangle? Do they both contain
two disjoint vertices? These questions can be formalized, using logical op-
erators AND, OR, NOT (∧,∨,¬), variables (usually denoted as x, y, z, . . .)
and quantifiers EXISTS and FORALL, (∃,∀). This is applied as ∀x and ∃y.
Further, we have two relations, =,∼, where = is equality (x = y means
that x is the same vertex as y) and ∼ is adjacency, x ∼ y means there’s an
edge between x and y. The existence of a triangle would then become the
sentence:

∆ = ∃x∃y∃z x ∼ y ∧ x ∼ z ∧ y ∼ z

That is, there exist three different vertices, that have edges between them.
For any graph G containing a triangle, we would write G |= ∆, and if G
doesn’t contain a triangle, we would write G |= ¬∆. Since ϕ is either true
or not true, exactly one of these must hold.

Questions like this, containing quantifiers, variables and logical opera-
tors are called formulas. When all variables in ϕ are quantified, ϕ is called a
sentence. A sentence, like the previous one with the triangle, is always true
or false for any graph G. An example of a formula which isn’t a sentence
would be:

ψ = ∀x(x 6= y) =⇒ x ∼ y

This can be true for a graph G, depending on the choice of y. We’ll usually
work with sentences, denoted with ϕ. The set of all finite sentences that
can be constructed with said operators and quantifiers, is called First-Order
logic. For every sentence, the quantifier depth of a sentence is the depth of
the nesting of the quantifiers in ϕ, denoted qd(ϕ), and is defined by the
following axioms:

• qd(¬ϕ) = qd(ϕ)

• qd(ϕ ∨ ψ) = qd(ϕ ∧ ψ) = qd(ϕ =⇒ ψ) = max(qd(ϕ), qd(ψ))

• qd(∃xϕ) = qd(∀xϕ) = 1 + qd(ϕ)

• qd(x = y) = qd(x ∼ y) = 0
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3.1.1 Equivalence

When L is the set of all logical FO-sentences ϕ, we can define Lk ⊂ L as the
subset of sentences which quantifier depth at most k. Two graphs G,H are
said to be k-equivalent, G ≡k H , when G |= ϕ iff H |= ϕ, ∀ϕ ∈ Lk. That
is, G ≡k H when G is true for expression ϕ, which is of quantifier depth at
most k, only if it’s also true for H and vice versa.

A way to check if two graphs are the same, is playing the (First Order)
Ehrenfeucht-Fraisse game [1]. In this game, there are two players, Spoiler and
Duplicator. They alternate making moves, Spoiler goes first, then Duplica-
tor, then Spoiler, etc.. A move consists of Spoiler picking a vertex in either
graphG orH , and Duplicator picking a vertex in the other graph. This way,
after k moves, there are induced graphs Gk = ([k], Ek) and Hk = ([k], E′k)),
where vertices can be chosen multiple times. Both graphs consist of the
labeled vertices (labels 1, . . . , k) and there are edges between two vertices
if and only if there’s and edge between the two corresponding vertices in
the original graphs G,H . Duplicator has as objective to make sure that
Gk = Hk and Spoiler has as objective to pick it’s vertices xi in such a way
that Duplicator can’t pick it’s yi s.t. GI = HI . If Duplicator succeeds, thus
Gi = Hi, for all i ≤ k, irrespective of Spoilers moves, Duplicator is said to
have a winning strategy.

Theorem 5 [1] Fix k > 0 and let G,H be graphs. Then the following are equiva-
lent:

• G ≡k H

• Duplicator has a winning strategy in the k-move Ehrenfeucht-Fraisse game.

Example 3

LetG = (V,E) be a path of length 3, so V = {x, y, z} andE = {(x, y), (y, z)}
and let H be a path of length 4. Then, Spoiler has a winning strategy in a
2-move game. This strategy is to pick y ∈ G, the middle vertex in move
1, labeling y as 1. Then, Duplicator has to pick a vertex x1 ∈ H in his first
move. In the second move, Spoiler chooses vertex x2 ∈ H s.t. x2 6∼ x1. Such
a vertex always exists, independent of the choice of x1. Now, Duplicator has
to pick a vertex y2 ∈ G s.t. y2 6∼ y, but this vertex doesn’t exist. So Spoiler
always wins the game, and G 6≡2 H . See Figure 3.1 for a visualization of
how the game could play out. �

FIGURE 3.1: How Spoiler wins in 2 moves

Lemma 5 When F ≡k G and G ≡k H , then F ≡k H .
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Proof Suppose that Spoiler and Duplicator play a game on F,H . Dupli-
cator also keeps a copy of G next to it. When Spoiler plays the j-th move
on F , Duplicator first applies his winning strategy on the F vs. G game,
for his pick of G. Then, his move on H would be following his winning
strategy if it were a G vs H game and Spoiler played a move on G. Clearly,
the same can be done when Spoiler plays a move on H . Since Duplicator
has a winning strategy in both games, he can always proceed this way, thus
he has a winning strategy comparing F and H . �

3.1.2 Zero-One (convergence) laws

Let A be a class of graphs and let An ⊂ A be the graphs of size n. If An ∈n
An is a graph, chosen randomly via some probability measure onAn, and ϕ
is a sentence, we have P(An |= ϕ) as the probability that a randomly chosen
graph in An satisfies ϕ. We say that a class A obeys the Zero-One law on a
logical language L, if:

∀ϕ ∈ L lim
n→∞

P(An |= ϕ) ∈ {0, 1}

This means that the probability that a sentence is true for a randomly picked
graph, is either always 1 or always 0 when the size of the graph goes to
infinity.

In terms of the Ehrenfreucht-Fraisse Game, we can see this in the fol-
lowing way. Suppose that A obeys a Zero-One law. Thus, for two random
graphs G ∈ An, H ∈ Am, for any finite sentence ϕ, the probability that
G,H |= ϕ or G,H¬ |= ϕ tends to 1 as n,m → ∞. In particular, this holds
for all ϕ ∈ Lk, thusG ≡k H with probability tending to 1 as n,m go infinity,
for all k ∈ N. This implies that Duplicator has a winning strategy for all
k-move games, for all k, as n,m go to infinity.

Example 4

The Erdos-Renyi random graph G(n, p) is a graph on the vertices [n] in
which, for every distinct duo x, y ∈ V , (x, y) ∈ E with probability p. To-
gether, these random graphs form the class G with sub-classes Gn. We can
choose a graph Gn ∈ Gn randomly, where a graph G = ([n], E) has proba-
bility P(Gn = G) = p|E|(1− p)(

n
2)−|E| to be chosen.

For p = n−α, α ∈ (0, 1], due to Shelah and Spencer [7] we know that G
satisfies a Zero-One law if and only if α /∈ Q. When p = 1

2 is fixed, there’s
the so-called Rado Graph G, for which:

G |= ϕ ⇐⇒ lim
n→∞

P(G(n, p) |= ϕ) = 1

The class corresponding to this p = 1
2 , G, also obeys a Zero-One law [2].

We’ll prove this last statement.
We’ll first prove that two graphs having the extension property are equal,

and then that the random graph limn→∞G(n, p) has indeed the extension
property. A graph G is said to have the extension property P when:

∀n,m∈N∀u1,...,un,v1,...,vm∈G∃z∈G(z 6= ui, vj) ∧ (ui ∼ z) ∧ (vj 6∼ z) (3.1)
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That is, for any two finite subsets of vertices U, V ∈ G, there exists a vertex
z ∈ G such that z is adjacent to all vertices in U and not to any vertex in V .

Lemma 6 If graphs G,H both have property P , then G ≡ H .

Proof Let G,H be graphs having property P and enumerate the vertices in
G, x1, . . . and the vertices in H , y1, . . .. We’ll play the E-F game, to show
equivalence between G and H . Suppose k moves are already played and
Gk ∼= Hk. Spoiler moves next, playing w ∈ G. When w ∈ Gk, w is
played before, as j-th move, Duplicator can play the opposite j-th move
and Gk+1

∼= Hk+1. Otherwise, there’s a partition U, V of the vertices in Gk,
such that:

w ∼ u ∀u ∈ U w 6∼ v ∀v ∈ V

AsGk ∼= Hk, there’s a partitionUh, Vh ofHk as well, s.t. Uh ∼= U and Vh ∼= V .
By property P , there also exists a z ∈ H s.t.

z ∼ u ∀u ∈ Uh z 6∼ v ∀v ∈ Vh (3.2)

As k+1-th move, Duplicator will play z = yj ∈ H satisfying (3.2), where j ∈
N is the lowest number that has not been played. Clearly, by construction,
Gk+1

∼= Hk+1. As, after zero moves, G0
∼= H0, this is a winning strategy for

Duplicator. �
Next, we’ll prove that any countable random graph (with p = 1

2 ) has
this property.

Lemma 7 When G is a graph with countably many vertices and P(u ∼ v) = 1
2

for all u, v ∈ G independently, G has property P .

Proof Let G be such a random graph. Then, for two disjoint finite sets
U, V , the probability that a vertex z ∈ G \ U, V is adjacent to all vertices
in U is 2−|U | and that it’s not adjacent to any vertex in |V | is 2−|V |. Thus,
the probability that z isn’t the vertex needed, is 1 − 2−|U |+|V |. However,
by independence of all edges, the probability that none of the vertices in
G \ U ∪ V satisfy, is equal to (1− 2−|U |+|V |)|G|−|U |−|V |. As G is of countable
size, this probability is zero.

There are only countably many different selections ofU, V , and the union
of countably many sets of measure zero is still of measure zero. So for all
finite disjoint sets U, V , there’s a z ∈ G adjacent to all vertices in U and to
none in V . Thus, G has property P . �

As we’ve seen that any countable random graph G has the extension
property, and all graphs with the extension property are equivalent to each
other, we can conclude that there’s a Zero-One law on the class G. �

Example 5

As we’ll see, the class of caterpillars doesn’t obey a Zero-One law with re-
spect to First Order logic. However, the class of forests of caterpillars, F ,
where each graph consists of disjoint caterpillars, does obey a Zero-One
law. [4] �
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Let A again be a class of graphs and suppose there is a sentence ϕ ∈ L
for which, with An ∈ An uniform randomly chosen, limn→∞ P(An |= ϕ) /∈
{0, 1}, but the limit does exist. Then, obviously, there is no Zero-One law.
However,A can still satisfy a convergence law with respect to L, that is to say
that:

∀ϕ ∈ L lim
n→∞

P(An |= ϕ) exists.

SoA obeys a convergence law when the limit with n going to infinity of the
probability that ϕ ∈ L holds for a random graph An ∈ An exists for all ϕ.

3.2 E-F games on paths

Let P denote the class of labeled paths, where a path is a connected graph
with vertices of degree at most 2. There’s obviously only one unlabeled
path of length n, so we have |Pn| = n!

2 for n ≥ 2, as the only difference
between paths of length n is their labeling. For the random path Pn ∈n Pn,
this will also be just a path of length n with probability 1. The class of paths
obeys a Zero-One Law. In order to prove this, we’ll need to prove a few
lemma’s, using the Ehrenfeucht-Fraisse game extensively.

We’ll first introduce some notation. In general, x represents a vertex on
G and y a vertex on H . In a k-move game on G,H , xi, yi are the vertices
played (labeled) in move i, with xi ∈ G and yi ∈ H . We’ll denote a vertex
adjacent to x as x−1 or x+ 1 and a vertex a away from vertex x in a path as
x−a or x+a. This way, [x−a, x+a] will denote the path created taking all
vertices within a distance a of x, preserving any labels given to any vertices.
When x is within distance a of the end of the path, that is, x − a or x + a
doesn’t exist, [x − a, x + a] will consist of less vertices than the expected
2a + 1. The only way to recognize an outer vertex x0 in [x − a, x + a] as an
outer vertex, is when x0 6= x± a, since that will leave blanks in the interval.

When comparing the two intervals [xl, xr] ⊂ G, [yl, yr] ⊂ H between
xl, xr ∈ G, yl, yr ∈ H , we write [xl, xr] = [yl, yr] if all of the following is true:

• |[xl, xr]| = |[yl, yr]|

• For all labels xi ∈ [xl, xr], there’s a corresponding label yi ∈ [yl, yr]
and {|[xl, xi]|, |[xi, xr]|} = {|[yl, yi]|, |[yi, yr]|}.

• For all labels xi, xj ∈ [xl, xr], there are corresponding labels yi, yj ∈
[yl, yr] and |[xi, xj ]| = |[yi, yj ]|.

When we want to compare [x − a, x + a] on G with [y − a, y + a] on H ,
with a ∈ N and x ∈ G, y ∈ H , it’s possible that any of these intervals is
not of size 2a+ 1, since they can be around the outer end of the paths G,H .
Let xl, xr and yl, yr be the outer most vertices in [x− a, x+ a], [y − a, y + a]
respectively. Then, [x − a, x + a] = [y − a, y + a] if [xl, xr] = [yl, yr] and
{|[xl, x]|, |[x, xr]|} = {|[yl, y]|, |[y, yr]|}.

On intervals of different sizes, we can prove the following useful lemma:

Lemma 8 Suppose the E-F game is played on pathsG,H and x1, x2 ∈ G y1, y2 ∈
H are already played with j moves left and |[x1, x2]| < |[y1, y2]|. If |[x1, x2]| ≤
2j + 1, Spoiler has a winning strategy.
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Proof We prove this by induction on j. If j = 0, |[x1, x2]| ∈ {1, 2} and either
x1 = x2, while y1 6= y2 or x1 ∼ x2 while y1 6∼ y2, thus Spoiler has won.

Suppose it’s true for all j′ < j. Spoiler plays x3 s.t. |[x1, x3]|, |[x2, x3]| ≤
2j−1 + 1. In every move y3 Duplicator plays, at least one of |[y1, y3]| >
|[x1, x3]| and |[x2, x3]| > |[y2, y3]| has to hold. Then, by induction hypothe-
sis, Spoiler has a winning strategy. �

An example of this, with iS , iD representing the i-th move made by Spoiler
and Duplicator respectively, can be seen in Figure 3.2. Duplicator’s third
move is absent, since he’ll lose the game whatever he plays.

FIGURE 3.2: Spoiler wins 3 moves after x1, x2, y1, y2 are
played

Lemma 9 Suppose the E-F game is played on paths G,H and j ≥ 1 moves have
already been played. When |G|, |H| ≥ (j + 1)(2k−j + 1) and:

∀i≤j [xi − 2k−j , xi + 2k−j ] = [yi − 2k−j , yi + 2k−j ]

Duplicator has a winning strategy. In particular this implies that when |G|, |H| ≥
2k+2, if Duplicator can match the first move by Spoiler, he’ll win the k-move game.

Proof. We’ll prove it by backward induction on j. Suppose the conditions
hold after j = k. Then, for m,n ≤ k, xn ∼ xm iff xn ∈ [xm − 1, xm + 1] and
since, by assumption, [ym − 1, ym + 1] = [xm − 1, xm + 1], we get yn ∼ ym.
Thus, for the induced subgraphs Gk, Hk we have Gk ∼= Hk, and we have an
induction basis.

Suppose the Lemma is true for k ≥ j′ > j and suppose j moves have
been played. Let xj+1 ∈ G be the (j + 1)-th move played by Spoiler (the
assumption that Spoiler plays in G is wlog) and let I = {i : xi ∈ [xj+1 −
2k−j−1, xj+1+2k−j−1]} be the indices of the moves already played near xj+1.

If I = ∅, then, Duplicator needs to play yj+1 = y such that ∀i ≤ j,
yi 6∈ [y − 2k−j−1, y + 2k−j−1]. The previously played j moves yi divide the
path into j + 1-parts, and by the hypothesis |H| ≥ (j + 1)(2k−j + 1), there
has to be a path γ of length |γ| = 2k−j + 1 in H containing no yi and in this
path, and for the center point y ∈ γ it holds that [y−2k−j−1, y+2k−j−1] = γ.
Then, Duplicator plays this yj+1 = y.

Suppose that I 6= ∅. Then:

[xj+1 − 2k−j−1, xj+1 + 2k−j−1] ⊂ [xi − 2k−j , xi + 2k−j ] ∀i ∈ I
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And since [xi − 2k−j , xi + 2k−j ] = [yi − 2k−j , yi + 2k−j ] ∀i, there’s a point
y ∈ H s.t.:

[xj+1 − 2k−j−1, xj+1 + 2k−j−1] = [y − 2k−j−1, y + 2k−j−1]

And this point y will be the move played as yj+1.
Then, by choice of yj+1, for all i ∈ I we have that:

[xi − 2k−j−1, xi + 2k−j−1] = [yi − 2k−j−1, yi + 2k−j−1]

And this will obviously hold for all m 6∈ I . Further, we chose yj+1 s.t. it
matches xj+1. Notice that for the length |G|, |H|, we see:

(j + 1)
(

2k−j + 1
)
− ((j + 1) + 1)

(
2k−(j+1) − 1

)
= (j + 1)2k−j−1 −

(
2k−j−1 − 1

)
= j2k−j−1 − 1 ≥ 0

Where the inequality is a result from taking j ≥ 1. Thus, if |G|, |H|matches
the length criterion after j moves, they will satisfy the criterion also after
j + 1 moves. Thus, we can apply the induction hypothesis that for j + 1
moves, the Lemma is true. Therefore, Duplicator has a winning strategy.

When |G|, |H| ≥ 2k + 2, we can apply this lemma. For every first move
x1 played by Spoiler, Duplicator can play y1 s.t. [x1 − 2k−1, x1 + 2k−1] =
[y1 − 2k−1, y1 + 2k−1] and the lemma can be applied to guarantee a win by
Duplicator. So G ≡k H when |G|, |H| ≥ 2k + 2.

�
This is already enough to prove the Zero-One Law on paths. However, a
further specification in equivalence classes of paths is given in the following
lemma:

Lemma 10 When G and H are paths then

• k = 1, G ≡k H iff |G| = |H| or |G|, |H| ≥ 1.

• k = 2, G ≡k H iff |G| = |H| or |G|, |H| ≥ 4

• k = 3, G ≡k H iff |G| = |H| or |G|, |H| ≥ 7

• ∀k ≥ 4 it holds that G ≡k H iff |G| = |H| or |G|, |H| ≥ 2k.

Proof
Notice that when |G| = |H|, Duplicator has a winning strategy; he can just
copy every move made by Spoiler. In the rest of the proof, we’ll assume
that |G| 6= |H|.

When k = 1, Spoiler picks a vertex, wlog in G. This is possible as G,H
can’t be both of order 0. Then, if |H| ≥ 1, Duplicator can respond by picking
a vertex in H and win the game. So if both |G|, |H| ≥ 1, G ≡1 H .
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When k = 2, If |G| = 2, |H| ≥ 3, Spoiler plays both outer vertices of
H , these are non-adjacent, this isn’t possible on G. By Example 3, Spoiler
wins when |G| = 3, |H| = 4. When |G|, |H| ≥ 4, Duplicator wins as, in
the second move, he can always play a vertex adjacent to the earlier played
vertex when Spoiler did this, as well as non-adjacent, since no vertex in
either G or H is adjacent to all others.

When k = 3, Spoiler wins when |G| = 6, |H| = 7, Spoiler wins as G con-
tains two vertices x, y such that all other vertices are adjacent to either x or
y, while H doesn’t contain this vertex. Spoiler picks x, y ∈ G as first two
moves and then plays a vertex non-adjacent to the ones played by Duplica-
tor.

Suppose |G|, |H| ≥ 7. When Spoiler plays x1 ∈ G, splitting G in G1, G2

withG1∩G2, where we assume wlog that |G1| ≤ |G2|, Duplicator plays y1 ∈
H , such that |H1| = min |G1|, 4. Spoiler plays a second move, for instance
x2, and Duplicator plays y2 and makes sure that the distances |[x1, x2]| =
|[y1, y2]|, if |[x1, x2]| ≤ 3, and |[y1, y2]| > 3, when |[x1, x2]| > 3. This is
always possible, and also works when Spoiler played y2 instead of x2. In
the final move, Duplicator can always play a vertex such that x3 ∼ xi if and
only if y3 ∼ yi, and he won the game.

That Spoiler wins when |G|, |H| ≤ 6 isn’t shown here, but requires little
work.

Suppose k ≥ 4. If Spoiler wants to win a k-move game, he either has to
play a vertex not-adjacent to earlier vertices, while Duplicator can’t copy
this, or he plays a vertex adjacent to earlier played vertex/vertices, and Du-
plicator can’t do the same. However, in a path of size more than 3(k − 1),
after k − 1 moves, there’s always a vertex not adjacent to earlier played
vertices. So, in a k-move game, if |G|, |H| > 3(k − 1), Spoiler can’t beat Du-
plicator by only playing non-adjacent vertices, since Duplicator can always
copy this. And, as 2k > 3(k−1) ∀k ≥ 4, to prove the Lemma we have to find
a strategy in which Spoiler plays a vertex adjacent to 1 or 2 earlier played
vertices and Duplicator can’t copy this.
For the rest of the proof of the theorem, we’ll separate cases. We already
have that |G|, |H| ≥ 2k + 2 results in k-equivalence.

1. |G| = 2k + 1, |H| = 2k + 2, D wins

2. |G| = 2k − 1, |H| ≤ 2k − 2, S wins

3. |G| = 2k − 1, |H| = 2k, S wins

4. |G| = 2k, |H| = 2k + 1, D wins

Case 1 Notice that at the start, that is, after 0 moves, for every x ∈ G,
there is a y in H s.t. [x − 2k−1, x + 2k−1] = [y − 2k−1, y + 2k−1] and vice
versa. Thus, Duplicator can always respond playing a matching y1 ∈ H (or
x1 ∈ G).

Next, every move made by Spoiler can be copied by Duplicator, unless
x1 was the center vertex of G and Spoiler plays y2 ∈ H s.t. [y2 − 2k−2, y2 +
2k−2] is a path, not containing y1 and not being cut-off by some outer vertex,
since there’s no such path of length 2k−1+1 inG left. In order to win, Spoiler



3.2. E-F games on paths 29

must create this situation, otherwise the conditions of Lemma 9 are satisfied
after 2 moves and Duplicator would have a winning strategy. Thus, as
Spoiler plays perfect, he has to play as described in the first two moves. The
response by Duplicator will be to pick x2 ∈ G, such that [x2−2k−2, x2+2k−2]
will be a path of length 2k−1, not containing x1 (in fact, x1 has to be adjacent
to one of the outer vertices of this path) and containing an outer vertex.

For the following moves, Spoiler has to play xj ∈ G s.t. [xj − 2k−j , xj +
2k−j ] contains xj−1 and an outer vertex (there’s only one possible vertex to
pick every time) and Duplicator can respond to this by playing yj s.t.

yj ∈ [yj−1 − 2k−j−1, yj−1 + 2k−j−1] = [xj−1 − 2k−j−1, yj−1 + 2k−j−1]

If Spoiler wouldn’t play this way, Duplicator can play yj s.t. the conditions
of Lemma 9 are satisfied and he has a winning strategy.

Playing this way for k−1 moves, Spoiler still can’t win the game. In the
last round, xk−1 will be a vertex adjacent to an outer vertex. Thus, xk−1 has
a neighboring vertex x s.t. xk−1 ∼ x 6∼ xk−2 and another vertex xk−2 ∼ x′ ∼
xk−1. However, there are corresponding y and y′ that satisfy these proper-
ties on H with respect to yk−1, yk−2. Since [ym−1, ym+1] = [xm−1, xm+1]
∀m ≤ k− 2, every move made by Spoiler can be copied by Duplicator, thus
Duplicator has a winning strategy.

Case 2 Spoiler starts with x1 ∈ G, splitting G in two paths G1, G2 both of
length 2k−1. Duplicator has to play y1 ∈ H , splittingH in two pathsH1, H2,
where one of the two (wlog we pick H1) has to have a length |H1| < 2k−1.
To simplify notation, we introduce y0, which is the outer vertex of H1 and
H1 = [y0, y1] and similarly, we introduce x0 ∈ G, also the outer vertex of
G1.

Spoiler continues from here and plays y2 ∈ H1 such that |[y1, y2]| = 2r +
1, with r the largest possible integer. For this r, we know that r ≤ k − 2, as
|H1| < 2k−1. Notice that |[y0, y2]| ≤ |[y2, y1]|. Duplicator has to play x2 ∈ G1

(wlog) and he plays s.t. either |[x1, x2]| 6= |[y1, y2]| or |[x0, x2]| 6= |[y0, y2]|.
If the former is the case, by the first Lemma, Spoiler has a winning strat-

egy. If only the latter is the case, thus, |[x0, x2]| 6= |[y0, y2]|, then |[x0, x2]| =
2k−2 while |[y0, y2]| ≤ 2k−2 − 1. As third move, Spoiler can play y3 s.t.
|[y3, y2]| = 2r

′
+ 1, with r′ < r, and again, whatever Duplicator responds,

there has to be a path of non matching length, just like after move 2. If
|[y3, y2]| 6= |[x3, x2]|, by the same lemma as before, Spoiler has a winning
strategy. So, in perfect play, Duplicator has to keep matching |[xj , xj−1]| =
|[yj , yj−1]| in the next moves. After at most j = k − 1 moves, however,
|[x0, xk−1]| = 2, while [y0, yk−1] ≤ 2, thus yk−1 is an outer vertex of the path
H . This means that if y ∼ yk−1, y ∼ yk−2 as well so if Spoiler plays xk = x0,
Duplicator can’t respond to this. Therefore, Spoiler has a winning strat-
egy.
NB: The same can be done when both |G|, |H| < 2k − 2, since Spoiler can
always play such that there’s a two corresponding parts of different length,
both smaller than 2k−j + 1 after j moves and win the game.

Case 3 We label the outer vertices ofG,H preliminary x0, x∞ and y0, y∞.
These labels are not part of the game.
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In the first move, Spoiler plays x1 ∈ G the middle vertex of G, s.t.
|[x0, x1]| = |[x1, x∞]| = 2k−1. Next, Duplicator plays y1 ∈ H , s.t. |[y0, y1]| 6=
2k−1 or |[y1, y∞]| 6= 2k−1. If any of the two paths has a length less than 2k−1,
by analysis done in Case 2, Spoiler has a winning strategy. So suppose that
|[y0, y1]| = 2k−1 + 1 and |[y1, y∞]| = 2k−1.

In the second move, Spoiler plays y2 s.t. |[y1, y2]| = 2k−2+2 and |[y2, y0]| =
2k−2. If Duplicator plays x2 s.t. |[x1, x2]| ≤ 2k−2 + 1, by the first Lemma,
Spoiler has a winning strategy. Thus, Duplicator has to play x2 s.t. |[x1, x2]| ≥
2k−2 + 2, thus leaving |[x2, x0]| ≤ 2k−2 − 1. From here, Spoiler continues
playing xj s.t. |[xj , xj−1]| = 2k−j +1 and |[x0, xj ]| ≤ 2k−j−1 and Duplicator
has to follow with |[yj , yj−1]| = 2k−j +1 and |[yj , y0]| ≥ 2k−j , otherwise he’ll
lose. After j = k− 1 moves, there’s no vertex x ∼ xk−1 = x0 not adjacent to
xk−2, and there is a y ∼ yk−1 not adjacent to yk−2. To win, Spoiler plays this
y in it’s k-th move. So Spoiler has a winning strategy.

Case 4 We label the outer vertices ofG,H preliminary x0, x∞ and y0, y∞.
These labels are not part of the game.

Spoiler plays first, either x1 or y1 and Duplicator responds, s.t. he matches
the smallest value of |[x0, x1]|, |[x1, x∞]| with it’s equivalent on H with his
move y1 (or vice versa if Spoiler plays on H in his first move). This way,
after this move, there are two matching parts [x1, x∞],[y1, y∞], two odd
paths s.t. |[x0, x1]| ≥ 2k−1, |[y0, y1]| ≥ 2k−1 + 1. If |[y0, y1]| > 2k−1 + 1,
|[x0, x1]| ≥ 2k−1+1 and by analysis done in Case 1, Duplicator can win, thus
|[y0, y1]| = 2k−1 + 1, which means that |[y0, y1]| = |[y1, y∞]| = |[x1, x∞]|. So,
in his second move, Spoiler has to play a vertex x2 ∈ [x0, x1]. If |[x1, x2]| ≤
2k−2 + 1, Duplicator plays y2 s.t. |[y1, y2]| = |[x1, x2]|, otherwise he matches
|[x0, x2]| = |[y0, y2]| and wins by the previous lemma. The next moves go
similar and after j = k−1 moves, |[x0, xk−1]| = 2 and |[y0, yk−1]| = 3, which
is won by Duplicator. So, Duplicator has a winning strategy. �

From here, the Zero-One law on P follows immediately:

Theorem 6 The class P of paths obeys a Zero-One law.

Proof By Lemma 10 we know that Pn ≡k Pm when m,n ≥ 2k. Thus:

∀k ∈ N ∀ϕ ∈ Lk Pn |= ϕ ⇐⇒ Pm |= ϕ if m,n ≥ 2k

And:

∀ϕ ∈ L lim
n→∞

P(Pn |= ϕ) = P (P2qd(ϕ) |= ϕ) ∈ {0, 1} (3.3)

�
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Chapter 4

Convergence law on
Caterpillars

4.1 Basic games

Example 6

We can apply the Ehrenfeucht-Fraisse game on caterpillars, to see if they
are in some sense the same. We could ask the question, whether or not a
caterpillarG has an outervertex of degree 2, i.e. it only has 1 leg. The logical
question would be:

ϕ = ∃xyz((y 6= z) ∧ x ∼ y ∧ x ∼ z) ∧ (∃w((w 6= x) ∧ y ∼ w) (4.1)
∧ (∀w(z ∼ w) =⇒ w = x) ∧ (∀w(w ∼ x) =⇒ (w = y ∨ w = z))) (4.2)

This can be read in the following way. There exists x, connected to 2 distinct
vertices y, z. There is another vertex w connected to y and there is no other
vertex connected to either x or z. This means that x is of degree d(x) = 2
and it has only one neighbor which is also of degree at least 2, namely y.
The only vertices in a caterpillar of degree at least 2 with only one neighbor
of degree at least 2 are the outer vertices. Thus, x is an outer vertex and
since it’s of degree 2, it has only 1 leg.

A strategy for Spoiler to defeat Duplicator if we have two caterpillars,
G andH , whereG has outer vertex v1 of degree 2 andH has higher degrees
on it’s outer vertices (so both outer vertices are of degree at least 3), would
be the following. In it’s first move, Spoiler picks v1 ∈ G. Then, Duplicator
has multiple options:

• if Duplicator decides not to pick a vertex on the spine (so he picks a
leg) in H , Spoiler wins in two moves, by picking two vertices con-
nected to v1 in G.

• if Duplicator doesn’t pick an outer vertex in H , but just a vertex w
on the spine of H for which d(w) = 2, Spoiler wins in 2 more moves.
He picks the vertex y ∈ G, which is a leg of v1. Now, Duplicator has
to choose a point z adjacent to w in H, but this point has to be in the
spine. Then, Spoiler picks another point, not w, inH adjacent to z and
Duplicator can’t counter this move.

• if Duplicator picks a vertex w on the spine of H of degree d(w) ≥ 3,
Spoiler wins in three moves by choosing three neighbors of w in H .
Since x has only two neighbors, Duplicator can’t win this game.
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• if Duplicator picks an outer vertex, say w ∈ G, Spoiler can win in 3
moves. He first picks the two neighbors of v1 in G, then Duplicator
has to choose two neighbors of w in H . Then, Spoiler chooses another
neighbor of w in H , which exists by assumption. Duplicator can’t
respond to this.

All four situations are drawn in Figure 4.1.

FIGURE 4.1: Spoiler needs at most 4 moves

So, Spoiler needs at most 4 moves to prove that the two caterpillars aren’t
the same. Obviously, this can be extended to show the difference between
any two different sets of outer vertices in a certain number of moves.

In the example, a winning strategy for Spoiler is described, when compar-
ing two outer vertices of caterpillars with degree 2 and 3 (or more). This
can be generalized, to comparing regular vertices of different degree.

Proposition 1 Let G,H be caterpillars on which Spoiler and Duplicator play the
Ehrenfeucht-Fraisse game. If Spoiler and Duplicator picked vertices x ∈ G, y ∈ H
in round 1, then:

• If Spoiler and Duplicator both picked a spine vertex, with degrees d1, d2, for
which d1 > d2, it takes at most d2− 1 additional steps for Spoiler to win the
game.

• If Spoiler and Duplicator both picked legs connected to vertices of degree
d1, d2, for which d1 > d2, it takes Spoiler at most d2 additional steps to win
the game.

• If Spoiler picked a spine vertex and Duplicator a leg, or vice versa, it takes
Spoiler at most 2 additional steps to win the game.

Proof For the first statement, Spoiler chooses to pick a leg of x, where Dupli-
cator has to respond by picking legs of y, otherwise, Spoiler picks a vertex
in H adjacent to the one chosen by Duplicator but not y and wins the game.
After d2 − 2 moves - a spine vertex of degree d2 has d2 − 2 legs if it’s not
an outer vertex - all legs of y have been chosen and some legs of x haven’t
been chosen yet. Spoiler picks one of these. Duplicator can only respond by
picking a spine vertex adjacent to y. Now, Spoiler chooses a point adjacent
to the last choice by Duplicator (not y) and wins the game.

For the second statement, assume x is a leg of X and y of Y . Spoiler
again chooses to pick legs of X and Duplicator again has to respond by
choosing legs of Y . Again, when all legs of Y are chosen, Spoiler picks
a leg of X that isn’t chosen yet. When Duplicator doesn’t respond by a
spine vertex z adjacent to Y , Spoiler wins by picking X . If Duplicator does
respond in this way, Spoiler picks a vertex u adjacent to Duplicators choice
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z, but not Y - as z is another spine vertex, z is of degree at least 2 and there
will exist such a vertex u. Duplicator can’t respond, as he has to play a
vertex adjacent to a leg of X , and it can’t be the spine vertex X . Notice that
Spoiler doesn’t have to pick X itself, the idea of doing so is enough.

For the third statement, Spoiler picks two vertices adjacent to the spine
vertex and wins the game. �

Spoiler doesn’t have a strategy that guarantees him a faster win. Suppose
a game is played on G,H , where G and H are copies, except one spine
vertex z has an extra leg in H , compared to its counterpart w in G. When
x = w, y = z are played in the first moves, the only way for Spoiler to
win, is to show that z has indeed an extra leg; anything otherwise can be
copied by Duplicator, as both graphs are completely the same. To show z
is of higher degree, Spoiler needs to create a situation in which Duplicator
can’t select a new leg of w, while Spoiler selected a new leg of z. In order
to do this, Spoiler has to select all the legs of w first, which is exactly the
described strategy.

In the same way it can be argued that the other two options are the
fastest methods that guarantee a win by Spoiler.

4.2 Convergence law

Recall C, the class of labeled caterpillars. This class does not obey a Zero-
One law. Take ϕ ∈ L as in (4.2), the probability of having an outer vertex of
degree two. By Lemma 2, we have for an outer vertex v1 ∈ Cn

lim
n→∞

Pn(d(v1) = 2) =
ρ2

1− ρ

So we find:

lim
n→∞

Pn(Cn |= ϕ) = 1−
(

1− ρ2

1− ρ

)2

/∈ {0, 1}

As this probability isn’t either 0 or 1, the class C doesn’t obey a Zero-One
law. However, we can prove that there’s a convergence law on caterpillars.
To do this, we’ll introduce some notation first.

Let C denote a caterpillar. We define a segment in C as a spine vertex to-
gether with its legs. Thus, if C has spine length `, it has exactly ` segments.
With [X,Y ] ⊂ C we denote the subgraph of C containing and including all
segments between X and Y , so [X,X] = X and if X,Y are the outer seg-
ments of C, [X,Y ] = C. Further, |[X,Y ]| is equal to the number of segments
in [X,Y ]. When v1, v2 ∈ C are spine vertices of segments V1, V2, we can also
write [v1, v2] instead of [V1, V2]. As was the case with the paths, for a ∈ N
and segment V ⊂ C, we can define [V −a, V +a] as all the segmentsW ∈ C
s.t. |[W,V ]| ≤ a + 1. When V is an outer segment of C, [V, V + a] the first
a+ 1 segments of C, starting from V .

4.2.1 Strategy

We want to show that there’s a convergence law on C. To do this, we want
to show that for every k, there’s a converging probability that Duplicator
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can win the k-move E-F game.
First, notice that we can see the segments in a caterpillar C as single ver-

tices, connected if the segments are connected. This way, we can create a
path of length `. For paths, we already found important properties, regard-
ing strategies for Spoiler and Duplicator. Looking at Lemma 10, we see that
when Spoiler and Duplicator play a k-move game on two caterpillars G,H ,
with `(G), `(H) ≥ 2k, there’s no winning strategy for Spoiler which con-
sists of showing that `(G) 6= `(H), as the paths P`(G) and P`(H) of length
`(G), `(H) respectively, are k-equivalent.

For a connected series of segments of length r, we have the following
proposition:

Proposition 2 There’s a finite set Ak,r of graphs, where each graph consists of r
oriented connected segments, such that for every oriented graph G of r connected
segments, ∃A∈Ak,rA ≡k G.

Proof By Proposition 1, we know that Duplicator has a winning strategy
comparing two segments with k legs or more in a k-move game, thus it’s k
equivalent if a segment has k or more than k legs. There are r segments, and
every segment has 0, . . . , k − 1 or k or more legs. So, up to k-equivalence,
there are k + 1 options per segment, thus we can conclude that there need
to only be at most (k + 1)r different graphs in Ak,r. �

As a caterpillar consists of connected segments with outer segments con-
taining at least 1 leg, for an oriented caterpillar C with spine length r and a
k ∈ N, ∃A ∈ Ak,r s.t. A ≡k C.

Corollary 3 Let Cn ∈n Cn be a uniformly chosen random caterpillar of order n.
Let A be a sequence of r connected segments and fix k ∈ N. Let V1, . . . , Vj , . . .
denote the segments of Cn. Then:

lim
n→∞

Pn(∃i[Vi, Vi+r−1] ≡k A) = 1

And not only will the sequence of segments occur, it will occur arbitrarily often
almost surely in Cn, when n→∞.

Proof By Proposition 2 we know that ∃B ∈ Ak,r s.t. A ≡k B, and B has
segments with at most k legs. By Theorem 4, B will eventually occur in
Cn with probability 1. Applying Corollary 2 directly gives that it will occur
arbitrarily often. �

Next, we’re going to describe a winning strategy for Duplicator in a k-
move game. If G,H are caterpillars, we can name their outer spine vertices
v1, v∞ and w1, w∞ respectively, being the spine vertices in the segments
V1, V∞,W1,W∞. For a fixed parameter k, we define Gl, Gr, Hl, Hr on G,H
as the 2k+1 + 1 segments on both outer ends:

Gl = [V1, V1 + 2k+1] Gr = [V∞ − 2k+1, V∞] (4.3)

Hl = [W1,W1 + 2k+1] Hr = [W∞ − 2k+1,W∞] (4.4)

These subgraphs are obtained by starting on an outer segment and picking
the segments following in the caterpillar, clearly having an orientation from
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the outside to the inside. We define Gl, Gr, Hl, Hr such that this orientation
is preserved, so for instance V1, V∞ are recognizable as outer vertices. How-
ever, as the original caterpillar has no ’left’ or ’right’ orientation, V1, V∞ are
not distinguishable.

Lemma 11 Let k ∈ N. Let Gn ∈n Cn, Hm ∈m Cm be uniform randomly cho-
sen caterpillars, conditioned on having Gl, Gr and Hl, Hr with recognizable outer
vertices V1, V∞,W1,W∞ to be equivalent, so that the following holds:

(Gl ≡k Hl ∧Gr ≡k Hr) ∨ (Gr ≡k Hl ∧Gl ≡k Hr) (4.5)

Then, the probability that Duplicator has a winning strategy goes to 1 almost
surely, when n,m→∞.

The proof will consist of describing a winning strategy for Duplicator, where
we use that by only looking at caterpillarsG,H for which (4.5) holds, we are
assured that the outer ends of the caterpillars are k-equivalent to each other.
Next, we use that every finite sequence of caterpillars will occur eventually
in a caterpillar of order n, when taking the limit n→∞.

Proof During this proof, we’ll use capitals like X to denote segments, and
lowercase x to denote the spine vertex in X . Further, we assume that Gl ≡k
Hl and Gr ≡k Hr. As basic rule, when Spoiler plays a leg vertex, so will
Duplicator, and when Spoiler plays a spine vertex, Duplicator will also play
a spine vertex. Suppose that as j-th move, Spoiler plays xj ∈ G, with xj
in segment Xj . That Spoiler plays in G can be assumed without loss of
generality. As response, Duplicator is going to play yj ∈ H such that:

[Xj − 2k−j , Xj + 2k−j ] ≡k−j [Yj − 2k−j , Yj + 2k−j ]

We’ll prove by induction that this is a winning strategy for Duplicator.
Suppose that k moves are played, with x1, . . . , xk ∈ G and y1, . . . , yk ∈

H and for all xi, yi in segments Xi, Yi, we have:

[Xi − 1, Xi + 1] ≡0 [Yi − 1, Yi + 1]

This directly implies that the induced graphs Gk, Hk are exactly the same,
as any vertex xm adjacent to xi will be in [Xi − 1, Xi + 1], and therefore, ym
will be in [Yi − 1, Yi + 1], and adjacent to yi, and vice versa.

As induction hypothesis, assume that it’s true for all j′ > j and that we
have a game where x1, . . . , xj−1 ∈ G and y1, . . . , yj−1 are already played,
such that ∀i ≤ j − 1:

[Xi − 2k−j+1, Xi + 2k−j+1] ≡k−j+1 [Yi − 2k−j+1, Yi + 2k−j+1] (4.6)

As j-th move, we may assume that Spoiler plays xj ∈ G. We now separate
cases.

If ∃m<jxm ∈ [Xj − 2k−j , X + 2k−j ], by (4.6), we know there’s a y ∈
[Ym − 2k+1, Ym + 2k−j+1] such that:

[Y − 2k−j , Y + 2k−j ] ≡k−j [Xj − 2k−j , Xj + 2k−j ] (4.7)

And this y will be the move yj .
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If there’s no such m, but either v0, v∞ ∈ [Xj − 2k−j , Xj + 2k−j ], as we
know that Gl ≡k Hl and Gr ≡k Hr, there exists a y s.t. (4.7) holds, and this
will be Duplicators yj .

And, if xj isn’t played close to v0, v∞, [Xj − 2k−j , Xj + 2k−j ] is just a
series of segments without any labeling. Then, we just need to find a y
such that (4.7) holds. This isn’t necessarily possible and depends ofGn, Hm,
obviously. However, we may apply Corollary 3 to find that the probability
that such a y exists, approaches 1 almost surely when m,n → ∞. So, this y
and this will be Duplicators yj .

As we’ve a response for Duplicator in all situations, we’ve found a win-
ning strategy by applying the induction hypothesis, as (4.6) is clearly satis-
fied for the j + 1-th move, by choice of yj .

So, we have an almost surely winning strategy for Duplicator asm,n→
∞.

�

4.2.2 Convergence

Recall Ak,r, the set of all different k-equivalent oriented graphs consisting
of r connected segments, as seen in Proposition 2. Define Ek ⊂ Ak,2k+1+1

as the set containing all different k-equivalent outer 2k+1 + 1 segments a
caterpillar can have. This means that for any caterpillarGwith a sufficiently
large spine and Gl as defined in (4.4), ∃!E ∈ Ek s.t. E ≡k Gl. For every two
E,E′ ∈ Ek, not necessarily distinct, we can define:

CkEE′ = {C ∈ C|(Cl ≡k E ∧ Cr ≡k E′) ∨ (Cl ≡k E′ ∧ Cr ≡k E)}

So CkEE′ consists of all caterpillars where of the outer 2k+1 + 1 segments on
both sides, one is k-equivalent to E and the other to E′. In any caterpillar,
there’s no difference between left and right orientation, thus CkEE′ = CkE′E .
The random caterpillar of order n in CkEE′ is denoted with Ck,nEE′ .

Proposition 3 Fix k ∈ N and let Cn ∈n Cn be as usual. Then

∀E,E′∈Ek lim
n→∞

Pn(Cn ∈ CkEE′) = pkEE′
∑

E,E′∈Ek

pkEE′ = 1 (4.8)

Where we have taken every combination E,E′ only once. Furthermore, the class
CkEE′ obeys a Zero-One Law on Lk.

Proof The existence of pkEE′ is a consequence of Lemma 4.
For every element E ∈ Ek, there are at most countably many 2k+1 + 1

oriented connected segments k-equivalent to E. For all such possible se-
quences of segments, the probability that the first 2k+1 + 1 outer segments
of Cn are of exactly equal degree, converges when n → ∞ by Lemma 4.
For any two E,E′ ∈ Ek, there are also countably many different 2k+1 + 1
segments on both sides of Cn, that are k-equivalent to E,E′. Thus, the
probability that Cn has its outer 2k+1 + 1 segments such that they are k-
equivalent to E,E′ is a sum over the probability of countably many disjoint
events, all having converging when n → ∞. The probability that any of
countably many, converging events hold, converges as well in a probability
space, thus pkEE′ exists.
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The second statement,
∑

E,E′∈Ek p
k
EE′ = 1, is the same as saying

lim
n→∞

P(∃E,E′Cn ∈ CkEE′) = 1

Which is true, as the spine length of Cn goes to infinity when n→∞ and Ek
is chosen to contain all possible different k-equivalent outer 2k+1 + 1 con-
nected segments. That CkEE′ obeys a Zero-One Law on Lk, is a direct conse-
quence of Lemma 11, as Duplicator has a winning strategy for k moves.

�

Theorem 7 There’s a convergence law on the class of caterpillars C.

Proof Let ϕ ∈ L be a logical question with qd(ϕ) = k. Then:

Pn(Cn |= ϕ) =
∑

E,E′∈Ek

P(Cn ∈ Ck,nEE′)Pn(Cn |= ϕ|Cn ∈ Ck,nEE′)+

Pn
(
@E,E′∈EkCn ∈ CEE′

)
P(Cn |= ϕ|@E,E′∈EkCn ∈ CEE′)

When n → ∞, the spine length of Cn goes to infinity almost surely and by
choice of Ek, we know that:

lim
n→∞

Pn
(
@E,E′∈EkCn ∈ CEE′

)
= 0

By Proposition 3, we know that:

lim
n→∞

Pn(Cn ∈ CkEE′) = pkEE′ lim
n→∞

Pn
(
Ck,nEE′ |= ϕ

)
∈ {0, 1} (4.9)

Combining all this gives:

lim
n→∞

Pn(Cn |= ϕ) = lim
n→∞

∑
E,E′∈Ek

P(Cn ∈ Ck,nEE′)Pn(Cn |= ϕ|Cn ∈ Ck,nEE′)

= lim
n→∞

∑
E,E′∈Ek

pkEE′P(Ck,nEE′ |= ϕ)

Thus, limn→∞ Pn(Cn |= ϕ) converges for all ϕ ∈ L and C obeys a conver-
gence law. �

We now have a convergence law on the class of caterpillars, which guaran-
tees the existence of c in limn→∞ P(Cn |= ϕ) = c, but it doesn’t say anything
about the possible values of c. For this values of c, we can prove the follow-
ing:

Proposition 4 Define the set P(L) over the class of caterpillars C as:

P(L) = {c ∈ [0, 1]|∃ϕ∈L lim
n→∞

P(Cn |= ϕ) = c}.

This set P(L) is dense in [0, 1].

Proof If we would randomly pick a spine vertex v ∈ Cn, not an outer spine
vertex, in the way described in Definition 3, we have:

lim
n→∞

Pn(d(v) = k + 2) =
ρk+1

k!
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In particular, for such a spine vertex, we have limn→∞ Pn(d(v) = 2) = ρ.
So, the probability that both the segments next to both outer vertices in Cn
contain no legs, which means that d(v) = 2 for both spine vertices, is equal
to p = ρ2 when n approaches infinity. The same holds for the two segments
next to these, and next to those, and so on.

Let x ∈ [0, 1] and ε > 0. We’ll show that there’s a sentence ϕ ∈ L s.t.:

lim
n→∞

|Pn(Cn |= ϕ)− x| < ε

Which would prove that P(L) is indeed dense in [0, 1].
The probability that the first r non-outer segments on both sides have no

legs, has a limit equal to pr. The logical sentence, checking if these segments
indeed have no legs, ϕr, can be written down as:

ϕr = ∃x0 6=x1 6=···6=xr+2(x0 ∼ x1) ∧ (x1 ∼ x2) ∧ · · · ∧ (xr+1 ∼ xr+2) (4.10)
∀w∼x1((w 6= x2) =⇒ (¬∃v 6=x1w ∼ v)) (4.11)
∀y∼xi,2≤i≤r+1(y = xi−1) ∨ (y = xi+1) (4.12)

As explanation, the first part picks r + 3 vertices x0, . . . , xr+2, all different,
forming a path x0 ∼ x1, x1 ∼ x2, etcetera. Then, for all vertices w adjacent
to x1, when w is not x2, it is of degree 1 (only adjacent to x1). In a caterpillar,
this would mean that w is a leg. That means that x1 is only adjacent to 1
vertex of degree 2 or more, namely x1, but it’s also adjacent to x0, so x1 is
of degree 2 or more, thus x1 must be an outer spine vertex. Also, for all
vertices y adjacent to xi, with 2 ≤ i ≤ r+ 1, y is either equal to xi−1 or xi+1.
Thus, as x2, . . . , xr+1 are all of degree 2, all are spine vertices but they all
are exactly of degree 2, so they all have no legs.

Thus, ϕr isn’t true when somewhere on both sides of the caterpillar, one
of the first r non-outer segments has a leg, so:

lim
n→∞

Pn(Cn |= ϕr) = 1− (ρr)2 = 1− pr

As p 6= 1, ∃r such that pr < ε and limn→∞ P(Cn |= ¬ϕr) = 1−pr > 1−ε. For
all a ∈ [0, 1], we have a−a(1−ε) = aε < ε, thus the set {(1−pr)i}, with i ∈ N
forms a mesh on [0, 1], partitioning [0, 1] in parts in which two elements in
the same part are within a distance of ε. As x ∈ [0, 1], x is also in one of
these parts, thus there must be a finite k such that |x − (1 − pr)k| < ε. We
can now construct a sentence ϕ̃, checking if the first k blocks of r non-outer
segments all have at least 1 leg, which has limiting probability:

|x− lim
n→∞

P(Cn |= ϕ̃)| = |x− (1− pr)k| < ε

�
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Chapter 5

Similar results

5.1 Unlabeled caterpillars

So far, we’ve only talked about labeled caterpillars. However, we can also
look at the class of unoriented unlabeled caterpillars UC. As before, UCn ⊂
UC are the caterpillars C of order n, and |C| = n if C contains n vertices.

5.1.1 Properties

To derive the basic properties of the class of unlabeled caterpillars, it’s easier
to first look at oriented, unlabeled caterpillars. For this set of caterpillars,
we have the following useful lemma:

FIGURE 5.1: Every RB-coloring encodes an unlabeled cater-
pillar

Lemma 12 There is a one-to-one correspondence between oriented caterpillars of
order n ≥ 3 and the R \B-coloring of a path of n− 3 vertices.

Proof Let there be a path consisting of nodes v1, . . . , vn, where every vertex
is colored red or blue, with v1 red and v2, vn are blue. Then, we can con-
struct a caterpillar in the following way. Then, we start moving from v1 up
to vn. When we see a red vertex, it’s a spine vertex and the next blue vertices
are it’s legs, up until the next red vertex. Every spine vertex in the caterpil-
lar is connected to the spine vertices corresponding to the surrounding red
vertices on the path. This way, we can describe every oriented unlabelled
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caterpillar. By coloring v1, v2, vn in advance, we made sure that the outer
vertices have at least one leg, thus always creating a caterpillar in this way.

The other way around, having an oriented caterpillar, also gives a color-
ing of n vertices in a path. Start at the left spine vertex, this gives a red node
on v1. Then, for all legs the spine vertex had, we color v2, . . . blue. Then,
we continue with the next spine vertex on the caterpillar, thus coloring a
vertex red on the path. This way, all oriented caterpillars are translated to a
coloring on the path. Thus, this procedure constructs all possible oriented
caterpillars of size n exactly once. Since there are n − 3 vertices to color
freely on a path of length n, there’s a one-to-one correspondence between
unlabeled caterpillars of order n and R \ B-coloring of a path of n − 3 ver-
tices. �

Corollary 4 The set UCn ⊂ UC has size |UCn| ∼ 2n−4

Proof For n ≥ 3, with Lemma 12, we can determine the number of oriented
unlabeled caterpillars. With the R \ B-coloring correspondence, we imme-
diately see that there are 2n−3 such oriented caterpillars. Roughly, for every
unoriented caterpillar, there are two oriented caterpillars. This is true for
all but the symmetric caterpillars. Thus:

|UCn| =
1

2

(
2n−3 + |{Symmetric caterpillars of order n}|

)
(5.1)

Say n = 2k or n = 2k + 1, when n is even or odd respectively. To create
a symmetric caterpillar, the first k + 1 vertices in the R \ B representation
can be colored freely, besides v1, v2. If n is odd, any symmetric caterpillar
will have to have an odd spine length, restricting the remaining k vertices
to 1 particular coloring. When n is even, the color of the k + 1-th vertex
determines whether the spine needs to have an even length (red) or odd
(blue). The colors of the remaining k − 1 are restricted for the caterpillar to
be symmetric. Thus:

|{Symmetric caterpillars of order n}| = 2b
n
2
c−1

This is clearly negligible to the total size of |UCn|, when n → ∞. So UCn ∼
2n−4. �
This corollary also shows that, for large enough n, we can approach some
characteristics of the class of random caterpillars as if it were an oriented
one, as for almost every random caterpillar, there are precisely two oriented
random caterpillars.

Proposition 5 Let Cn ∈ UCn denote a uniformly random chosen unlabeled cater-
pillar of size n, let `(C) = ` be the function with output the spine length of the
caterpillar C. Then:

1.

E[`(Cn)] =
1

2
(n− 1) + o(1) P[`(Cn) = `] =

(
n− 3

`− 1

)
2−n+3 + o(1)
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2. Let v be a random spine vertex. Then:

lim
n→∞

P(d(v) = k) =

(
1

2

)k−1
∀k ≥ 2 lim

n→∞
E[d(v)] = 3

Proof We’ll use the R \ B-coloring of Lemma 12 sometimes, which uses
a way to describe every oriented caterpillar of order n as the result of the
coloring of n− 3 vertices.

For the first statement, with the R \ B-coloring, the spine length of ori-
ented caterpillarsCn of order n is given by `(Cn) = 1+#{chosen red vertices}.
As there are n− 3 vertices to be colored red or blue with equal probability,
we expect 1

2(n− 3) to be colored red and `(Cn) = 1 + 1
2(n− 3) = 1

2n− 1.
As we saw, there are also symmetric oriented caterpillars, so E(`(Cn)) is

not necessarily the same for unoriented caterpillars. However, in the proof
of Corollary 4, it’s argued that we can still use theR\B-coloring as the total
number of symmetric caterpillars is negligible for large n.

For the distribution of the spine length `(Cn), we have `(Cn) = ` if
` − 1 of the n − 3 vertices are colored red. All colorings occur with equal
probability 2−n+3 and there are

(
n−3
`−1
)

ways to color `−1 out of n−3 vertices
red. Again, we can write o(1) to deal with the symmetric cases.

The second statement. Again, we analyse the oriented caterpillars and
when n → ∞, a random caterpillar is asymmetric almost surely, we can
directly use the results. Every spine vertex is already adjacent to 2 vertices,
namely the neighboring spine vertices or, if it’s an outer vertex, also the
obligatory leg vertex. The degree of a spine vertex being k corresponds
to the next k − 2 vertices being blue in the R \ B-coloring, and the one
after that being red. In the R \ B-coloring, we can pick a red vertex, not
an outer one, randomly and the probability that the next k − 2 vertices are
indeed blue and the following red, is 2−(k−2)−1 = 2−(k−1) (given that there
are that many vertices to color left). When it is an outer vertex, the next
k − 1 vertices should be blue, following with a red vertex. However, the
first blue vertex is already colored, so again, there’s just need to be exactly
k− 2 blue vertices following the first blue vertex. Again, this happens with
probability 2−(k−1). When the order of the caterpillar goes to infinity, we
get:

lim
n→∞

P(d(v) = k) = 2−k+1

Finally, for any red vertex v, when n → ∞, the expected value of consecu-
tive blue vertices is given by:

E[d(v)] = lim
n→∞

n−1∑
i=2

i2−i+1 = lim
n→∞

2 +

n−3∑
i=0

i2−i−1 = 2 + 1 = 3 (5.2)

Where we’ve used that:

lim
n→∞

n−3∑
i=0

i2−i−1 =
1

2

∞∑
i=0

i2i =
1

2
· 2 = 1

�
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We can also state a Lemma similar to Lemma 4 and Theorem 4, only this
time for unlabeled caterpillars.

Lemma 13 Fix i, r ∈ N and let Cn be a uniformly random oriented unlabeled
caterpillar, with spine length ` > r + i. Let v1, . . . , v` denote the spine vertices of
Cn. Fix k0, . . . , kr−1 ∈ N≥2 and take K =

∑
j kj . Then:

lim
n→∞

P(d(vi) = k0, . . . , d(vi+r−1) = kr−1) = lim
n→∞

r−1∏
j=0

P(d(vi+j) = kj)

= 2−K+r

Furthermore, the probability that there is a sequence of r segments with degrees
k0, . . . , kr−1, goes to 1 almost surely as n→∞:

lim
n→∞

Pn(∃i d(vi) = k0, . . . , d(vi+r−1) = kr−1) = 1

Proof Starting from a red vertex vi in an oriented caterpillar, the prob-
ability that the following K − r-vertices are correctly colored red or blue
to satisfy d(vi+j) = kj for all j < r, is given by 2−K+r. When n → ∞,
the random unoriented caterpillar will have an equal distribution the to the
random oriented caterpillar. That any finite sequence of segments will oc-
cur, can be proven in the same way as done in Theorem 4, once the positive,
converging limit probability is proven. �

Now that we’ve proven the existence of any finite sequence in Cn, when
n→∞, we can formulate and prove the FO-convergence law on UC

Theorem 8 The class UC of unlabeled caterpillars obeys a convergence law on L.

Proof The structure of an unlabeled caterpillar is the same as for labeled
caterpillars, they are isomorphic when disregarding the labeling, so the
strategy of Duplicator as described in Lemma 11 can still be applied.

We can create unlabeled versions UCkEE′ of the labeled classes CkEE′ as
seen in Propostion 3, and by Lemma 13 together with Proposition 2, we can
prove that there’s a Zero-One law on these UCkEE′ with regard to Lk. Then,
the theorem can be proven in the same way as Theorem 7. �

5.2 Self-eating caterpillars

The class of caterpillars obeys a convergence law, and no Zero-One law, on
First Order logic, since there’s an F-O question ϕ checking the degree of
the outer ends in a caterpillar. Even when the size of the caterpillar goes to
infinity, the distribution of the legs on the outer ends converges to different
values with different positive probabilities, so limn→∞ P(C |= ϕ) /∈ {0, 1}.
However, there’s a Lemma that says that every finite series of segments
will occur in every caterpillar. This leads to the thought that, when Spoiler
isn’t allowed to play in the outer ends, or, when there are no outer ends,
Duplicator would always have a winning strategy.
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Definition 4 A graph B = (V,E) is a bracelet when it consists of a polygon, the
spine, with attached to each spine vertex some leg vertices, which are of degree 1.
The order of a bracelet is as usual the number of vertices |V | and B denotes the
class of all labeled bracelets, and Bn ⊂ B all labeled bracelets of order n.

FIGURE 5.2: Some bracelets of small order

In Figure 5.2, the first couple of bracelets are shown, together with the num-
ber of different labelings they have.

5.2.1 Zero-One Law

To prove a Zero-One Law on this bracelet, we first need to determine the
distributions of the spine length and the legs of the random bracelet Bn.

Proposition 6

|Bn| =
n∑
k=3

Bn,k =
1

2

n∑
k=3

n!

(n− k)!
kn−k−1

where Bn,k is the number of bracelets of size n with spine length k.

Proof When labeling a bracelet B of order n, one uses the labels 1, . . . , n. To
some vertex v ∈ B, the label 1 will be assigned and this vertex is either a
spine vertex or a leg.

When v is a spine vertex and B a bracelet of spine length k, then there
are 1

2

(
n−1
k−1
)
(k − 1)! different ways to label the other spine vertices, since it’s

basically an unoriented path of length k − 1, and kn−k ways to distribute
the left over n− k vertices with their labels as legs over the k spine vertices.
So:

|Bn,k ∩ {1 is a spine vertex}| = 1

2

(
n− 1

k − 1

)
(k − 1)!kn−k =

1

2

(n− 1)!

(n− k)!
kn−k

When the vertex v, assigned to label 1, is a leg, however, there are n− 1
options for its corresponding spine vertex, 1

2

(
n−2
k−1
)
(k − 1)! to label the other
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spine vertices and kn−k−1 options to distribute the other n−k−1 leg vertices
over k spine vertices. This gives:

|Bn,k ∩ {1 is a leg vertex}| = 1

2
(n− 1)

(
n− 2

k − 1

)
(k − 1)!kn−k−1 =

1

2

(n− 1)!

(n− k − 1)!
kn−k−1

Combining these two terms gives:

Bn,k =
1

2

(n− 1)!

(n− k)!
kn−k +

1

2

(n− 1)!

(n− k − 1)!
kn−k−1

=
1

2

(n− 1)!

(n− k)!
kn−k−1 (k + (n− k))

=
1

2

n!

(n− k)!
kn−k−1

Obviously, |Bn| =
∑

k Bn,k, so we see that:

|Bn| =
1

2

n∑
k=3

n!

(n− k)!
kn−k−1

�
Having an expression for the number of bracelets of order n, and an

expression for the number of bracelets of order n with spine length k, we
can formulate a Lemma similar to Theorem 3, determining the limiting dis-
tribution of `(Bn) when n → ∞. Recall µn = { 1n , . . . , 1} and the constant
c = 1

1+ρ , with ρ the solution of xex = 1.

Lemma 14 For a random bracelet Bn ∈n Bn of order n:

lim
n→∞

∑
m∈µn∩[c−α,c+α]

Pn(`(Bn) = mn) = 1 ∀α > 0

Proof The probability that a uniformly random bracelet of order n has spine
length `, is given by:

Pn(`(Bn) = `) =
Bn,`
|Bn|

As |Bn| =
∑

k∈µn |Bn,kn|, and we can write ` = mn, with m ∈ µn, we find
that:

Pn(`(Bn) = mn) =
1∑

k∈µn
|Bn,mn|
|Bn,kn|
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The number of bracelets with spine length ` is equal to Bn,` = n!
2(n−`)!`

n−`−1.
We can write, using Stirlings approximation and ` = mn:

Bn,mn =
n!

2((1−m)n)!
(mn)(1−m)n−1

∼ n!

2

1√
2π(1−m)n

(
e

(1−m)n

)(1−m)n

(mn)(1−m)n−1

=
n!

2(mn)

1√
2π(1−m)n

(
em

1−m

)(1−m)n

For m̃ ∈ µn, with m 6= m̃, we can calculate |Bn,mn||Bn,m̃n| :

|Bn,mn|
|Bn,m̃n|

∼ m̃

m

√
1− m̃
1−m

((
em

1−m

)1−m(1− m̃
em̃

)1−m̃
)n

= b ·An

b =
m̃

m

√
1− m̃
1−m

A =

(
em

1−m

)1−m(1− m̃
em̃

)1−m̃

Recall the analysis of A as done in Theorem 3, around equation (2.4), and
that Bn,mn takes its largest values around when m is around c, Fix α > 0,
for large enough n, we know that µn∩ [c− 1

2α, c] 6= ∅ and µn∩ [c, c+ 1
2α] 6= ∅.

For any ` = mn, m ∈ µn, with m ≤ c− α, we can find the bound:

P(`(Bn) = mn) =
|Bn,mn|∑
k∈µn |Bn,kn|

≤ |Bn,mn|
|Bn,m̃n|

m̃ ∈ µn ∩
[
c− α

2
, c
]

Since m ≤ (c − α)n, we have an upper bound for |Bn,mn| and since cn ≥
m̃ ≥ (c− α

2 )n, we have a lower bound for Bn,m̃n. Combining this gives:

Pn(`(Bn) = mn) ≤ bAnl Al =

(
e(c− α)

1− (c− α)

)1−(c−α)(1− (c− α
2 )

e(c− α
2 )

)1−(c−α
2
)

Where A < 1. Then:

Pn(`(Bn) ≤ (c− α)n) =
∑

m∈µn,m≤(c−α)n

Pn(`(Bn) = mn) ≤ n · bAn

As An dominates the polynomial n when n→∞, we get:

lim
n→∞

Pn(`(Bn) ≤ (c− α)n) ≤ lim
n→∞

nbAn = 0

This line of reasoning can also be applied to find an upper bound of Pn(`(Bn) =
mn), with m ≥ (c + α)n and to find that limn→∞ P(`(Bn) ≥ (c + α)n) = 0.
So, we see that:

lim
n→∞

∑
m∈µn∩[c−α,c+α]

Pn(`(Bn) = mn) = 1

And this holds for all α > 0. �

To find the distribution of the legs of a random spine vertex on a random
bracelet, in the sense of Definition 3, when n → ∞, we use an approach
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which is again similar to the caterpillar case and Lemma 2. So if v is a
randomly chosen spine vertex on a random bracelet Bn with spine length
` = mn, the probability that it has k legs is equal to:

Pn(d(v) = k + 2) =

n−k∑
`=3

Pn(d(v) = k + 2|`(Bn) = `)Pn(`(Bn) = `)

We have an exact expression for Pn(d(v) = k + 2|`(Bn) = mn), given by:

Pn(d(v) = k + 2|`(Bn) = mn) =
1

2(mn)|Bn,mn|

(
n

k

)(
n− k
mn

)
(mn)!(mn− 1)n−mn−k

As we pick k labels for the vertices in the leg of v, mn labels for the vertices
in the spine of Bn, which can be in 1

2(mn)! different orders on the spine
and distribute the remaining n−mn−k vertices as legs over the remaining
mn − 1 spine vertices. Then, we divided by 2(mn), since the bracelet can
be rotated and it’s not oriented, and by |Bn,mn|. We use that |Bn,mn| =

n!
2(n−mn)!(mn)n−mn−1 to find:

Pn(d(v) = k + 2|`(Bn) = mn) =
1

(mn)k!

(n−mn)!

(n−mn− k)!

(mn− 1)n−mn−k

(mn)n−mn−1

=
1

k!

(n−mn)!

(n−mn− k)!

(mn− 1)n−mn−k

(mn)n−mn

=
1

k!

(
mn− 1

mn

)n−mn ∏k−1
j=0(n−mn− j)

(mn− 1)k

Like we did in Lemma 2, we can write:(
1− 1

mn

)(1−m)n

= exp

(
−(1−m)n log 1− 1

mn

)
= e−

1−m
m

+O( 1
n
)

k−1∏
j=0

(1−m)n− j
mn− 1

=

(
1−m
m

)k (
1 +O

(
1

n

))

Pn(d(v) = k + 2|`(Bn) = mn) =
1

k!

(
1−m
m

)k
e

1−m
m

(
1 +O

(
1

n

))
By Lemma 14, we may assume m ∈ [c−α, c+α] for α > 0. For these m, we
can find upper and lower bounds for Pn(d(v) = k + 2|`(Bn) = mn), as:

Pn(d(v) = k + 2|`(Bn) = mn) ≥ 1

k!

(
1− (c+ α)

c+ α

)k
e−

1−(c−α)
c−α

(
1 +O

(
1

n

))
Pn(d(v) = k + 2|`(Bn) = mn) ≤ 1

k!

(
1− (c− α)

c− α

)k
e−

1−(c+α)
c+α

(
1 +O

(
1

n

))
For any α > 0, we now have an upper and lower bound for:

lim
n→∞

Pn(d(v) = k + 2) = lim
n→∞

∑
m∈µn∩[c−α,c+α]

Pn(d(v) = k + 2|`(Bn) = mn)Pn(`(Bn) = mn)
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And as the lower bound equals the upper bound when α ↓ 0, we get, using
that 1−c

c = ρ, with ρeρ = 1:

lim
n→∞

Pn(d(v) = k + 2) = lim
α↓0

1

k!

(
1− (c+ α)

c+ α

)k
e−

1−(c−α)
c−α =

ρk+1

k!
(5.3)

We can extrapolate this approach to any sequence of legs k1, . . . , kr on con-
nected spine vertices v1, . . . , vr to get, with K =

∑r
i=1 ki:

lim
n→∞

P(d(v1) = k1 + 2, . . . , d(vr) = kr + 2) =
ρK+r

k1! · · · kr!
(5.4)

From here, we immediately get that any sequence of legs k1, . . . , kr will
eventually occur on Bn, when n → ∞. After all, if any sequence v1, . . . , vr
has legs k1, . . . , kr with probability p, it won’t with probability 1−p and the
same holds for the next r spine vertices, and the next, etc, so the probability
of not having a sequence v1, . . . , vr with legs k1, . . . , kr is less than (1−p)b

`
r
c.

Since `(Bn) → ∞, (1 − p)b
`
r
c → 0 and the probability that Bn has such

a connected sequence of segments goes to 1, when n → ∞. So, we can
combine this all to:

Lemma 15 The probability that a connected sequence of spine vertices, with v1 as
randomly chosen starting point, v1, . . . , vr in Bn has legs k1, . . . , kr, with K =∑

i ki, is in the limit of n → ∞ given by ρK+r

k1!···kr! . The probability that there is no
such sequence of connected spine vertices in Bn approaches 0 almost surely when
n→∞.

�

Theorem 9 The class B obeys a Zero-One Law on L.

Proof We’ll describe a strategy for Duplicator. Let a spine vertex together
with its legs be a segment, as it was with caterpillars, where the spine vertex
v is in segment V . For m ∈ N, we define [V −m,V +m] the sequence of m
segments on both sides of V .

Spoiler and Duplicator play a k-move game on uniform, randomly cho-
sen bracelets G,H , where G is of order m and H or order n and we’ll de-
scribe a stratey that will be winning with high probability for Duplicator
when m,n→∞.

The strategy Suppose x1, . . . , xj−1 ∈ G, y1, . . . , yj−1 ∈ H are already
played and Spoiler plays its j-th move, wlog we assume xj ∈ G, in segment
Xj . Duplicator will respond by playing yj ∈ H , in segment Yj , such that
[Yj − 2k−j , Yj + 2k−j ] ≡k−j [Xj − 2k−j , Xj + 2k−j ], playing a spine vertex
when Spoiler played a spine vertex and a leg vertex when Spoiler played a
leg vertex.

Why is this a winning strategy for Duplicator almost surely, when n →
∞? We’ll first prove the following claim:
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Claim Suppose x1, . . . , xj ∈ G, y1, . . . , yj ∈ H are already played, xi a
spine vertex iff yi is a spine vertex. When

[Xi − 2k−j , Xi + 2k−j ] ≡k−j [Yi − 2k−j , Yi + 2k−j ] ∀i≤j , (5.5)

Duplicator has a winning strategy almost surely.
Proof of Claim We’ll prove it by backward-induction. When j = k, the
game is over and [Xi − 1, Xi + 1] = [Yi − 1, Yi + 1] ∀i. Thus, all adjacent
xp, xq are also adjacent as yp, yq, thus the induced subgraphs Gk, Hk are
equal and Duplicator has won.

Suppose that for all j′ < j, the claim is true, and j moves are already
played, and (5.5) holds. Suppose Duplicator plays xj+1 ∈ G as j + 1-th
move.

When ∀i≤jxi 6∈ [Xj+1 − 2k−j−1, Xj+1 + 2k−j−1], Duplicator only has to
find y such that

∀i≤jyi 6∈ [Y − 2k−j−1, Y + 2k−j−1]

[Xj+1 − 2k−j−1, Xj+1 + 2k−j−1] ≡k−j−1 [Y − 2k−j−1, Y + 2k−j−1]

We can apply Corollary 3, together with the existence of all finite sequence
of segments as proven in Lemma 15, to see that this y will exists almost
surely when n→∞ and this y will be the j + 1-th move.

Otherwise, when ∃i≤jxi ∈ [Xj+1 − 2k−j−1, Xj+1 + 2k−j−1], as equation
(5.5) holds, we know that:

[Xj+1 − 2k−j−1, Xj+1 + 2k−j−1] ⊂ [Xi − 2k−j , Xi + 2k−j ] ≡k−j [Yi − 2k−j , Yi + 2k−j ]

Thus, there will be a y ∈ [Yi−2k−i, Yi+2k−i] such that [Xj+1−2k−j−1, Xj+1+
2k−j−1] ≡k−i [Y − 2k−j−1, Y + 2k−j−1], and Duplicator will play this y as
yj+1. By playing this, Duplicator assures that during the game, after j + 1
moves:

∀i≤j+1 [Xi − 2k−j−1, Xi + 2k−j−1] ≡k−j−1 [Yi − 2k−j−1, Yi + 2k−j−1]

And, by the induction hypothesis, Duplicator has an almost surely winning
strategy from here and we’ve proven the Claim.

When Spoiler and Duplicator start the game over kmoves on two bracelets
G ∈m Bm, H ∈n Bn, Duplicator will follow his strategy. By his choice of yj ,
such that:

[Xj − 2k−j , Xj + 2k−j ] ≡k−j [Yj − 2k−j , Yj + 2k−j ]

After j moves, it’s guaranteed that (5.5) holds. And this is true for all j, so
when j = k, it’s also true, thus Duplicator has won. The probability that he
can apply this strategy, is 1 as |G|, |H| → ∞. Thus, there’s a Zero-One Law
on B.

�
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Chapter 6

Discussion

In this master thesis, we’ve mostly discussed the class of caterpillars C and
the limiting behavior of its uniform randomly chosen caterpillar Cn ∈ Cn
of order n. When n → ∞, the spine length `(Cn) of the caterpillar will be
(c + o(1))n with high probability. Furthermore, when picking a random
spine vertex, we know how the number of legs attached to it, is distributed,
whether the spine vertex was an outer vertex or not. Moreover, this distri-
bution is independent of the legs of other spine vertices.

Also, every finite sequence of connected spine vertices with fixed de-
gree will eventually occur in the random caterpillar Cn almost surely, as n
approaches infinity. This is an important step in showing the convergence
law on Cn, as it shows that Duplicator can find any desired sequence of
segments almost surely, thus giving him a winning strategy under certain
conditions, leading to the convergence law on the class C.

On the unlabeled class, the expected spine length of UCn, differs. How-
ever, the unlabeled caterpillar still has spine length converging to 1

2 almost
surely, and the distribution of the legs per spine vertex converges as well.
So any finite sequence of segments will also occur on the unlabeled cater-
pillar UCn almost surely, so on UCn there’s also a convergence law.

There’s no Zero-One law on these classes, as the outer ends can be
very different and are recognizable as outer ends. However, when the two
outer ends of the caterpillars are attached, creating bracelets and the class of
bracelets Bn, this disappears. As any finite sequence of segments still occurs
almost surely on Bn ∈n Bn, when n → ∞, Duplicator will have a winning
strategy with high probability, On the class Bn, we did find a Zero-One law.

The strategy applied by Duplicator to win the Ehrenfeucht-Fraissé game
in all these classes, is based on a few things. First of all, there’s the spine.
The spine consists of all vertices of degree 2 or more, and importantly, is
just a path to which other vertices are attached. Via this construction, the
caterpillar can be seen as a series of disjoint graphs, all connected via one
particular vertex in every graph. In the case of the caterpillar, these disjoint
graphs are stars, graphs with a single vertex that is attached to all other
vertices.

This approach could perhaps be extended, to for instance graphs where
a spine connects all types of circular graphsD3, D4, D5, . . ., or a graph where
a spine connects graphs chosen out of a finite (or even infinite) set M of
possible graphs. As long as the construction of the spine can be done in
a non-ambiguous way, the spine length goes to infinity almost surely, and
the distribution of the graphs attached to the spine converge when n→∞,
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there will be a possibility for Duplicator to win the game, perhaps under
certain conditions around the ends of the spine.

The main reason why Duplicator can hope for a winning strategy, is
that if the spine grows, most of the vertices will be ’far’ away from each
other. In Kn, every vertex is adjacent to every other vertices, so there’s only
a distance of 1 between two vertices. When a graph consists of a spine
connecting disjoint graphs, most vertices will be far away from each other,
the shortest path of adjacent vertices between v and w will most likely still
be long. This allows Duplicator to play his move y in a way that, locally
around y, so within a certain distance, everything seems equal how it looks
locally around x, the move made by Spoiler.

Overall, it seems that the convergence law on the caterpillar class could
be extended to some kind general law on graphs with a ’spine’ that satisfy
some requirements.
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