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0.1 Abstract

This research has been motivated by recent discoveries of new states of matter in
solid state physics such as the Weyl semimetal. This semimetal hosts electrons that
behave as massless Weyl fermions and has the unique ability to conduct an electric
current in the same direction as the magnetic field by which it is induced. This is
called the chiral magnetic effect and it is related to the chiral anomaly in quantum
field theory.

In this thesis the conductivity of a Weyl semimetal due to the chiral magnetic
effect is derived by using field-theoretical techniques. It was found that the renor-
malization procedure is ambiguous in the sense that it determines the conductivity
of the chiral magnetic effect up to a constant. This constant is found to be different
in a system with broken inversion symmetry than in a system with broken time re-
versal symmetry. It is also argued that no current can flow in the static limit when
inversion symmetry is broken, from which this constant is determined. In accor-
dance with previous research, an analytic function is obtained for the conductivity
in the presence of a chemical and chiral potential at zero temperature when apply-
ing a magnetic field with a given frequency and wavenumber. It was found that the
value of the conductivity is not well-defined in experiments in which the frequency
and wavenumber of the applied magnetic field are zero. This is due to the fact that
the value for the conductivity was found to depend on the ratio between these two
quantities. For a full understanding of Weyl semimetals in a realistic environment,
further research must be conducted to determine their behaviour at finite tempera-
ture and interactions between the Weyl fermions must be incorperated into future
models.

http://www.uu.nl
http://www.uu.nl/organisatie/faculteit-betawetenschappen
http://web.science.uu.nl/itf/
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Preface

Since the experimental discovery of the two-dimensional material graphene in 2004
the interest of the physics community in new states of solid matter has exploded.
Graphene shows great possiblities for applications, because of its special properties,
such as its immense strength and the ability to conduct electric current better than
even copper. Another new state of solid matter was discovered in 2005, the topolog-
ical insulator. This material is a mix of an insulator in the bulk and a conductor on its
surface. The electronic surface states are symmetry protected, making them robust
to perturbations on the surface. A great interest has been developed in the possible
applications of these surface states in fields such as quantum computing. As late
as 2015 yet another new type of material was discovered, the Weyl semimetal. This
semimetal exhibits similar electronic states as the surface of topological insulators,
but they are topologically protected, instead of symmetry protected. This feature
makes them even more robust against perturbations. Furthermore, the material is
able to conduct non-dissipative currents, making it a great candidate for radical im-
provements in different types of industry, as it does not produce any heat at all. The
enormous burst of interest in topological materials, and in particular Weyl semimet-
als has motivated me to dedicate my thesis to investigate transport features of this
new type of material.

In this thesis I start by giving an introduction on the nature of electronic trans-
port in materials, starting from regular conductors, semiconductors and insulators,
up to three-dimensional Weyl semimetals. Then follows an explanation of the topo-
logical nature of this material and the chiral magnetic effect. Then an experiment in
which the chiral magnetic effect was observed is discussed. I state that the central
result in this thesis poses a technical difficulty in this experiment. This discussion
is followed by the derivation of the conductivity due to the chiral magnetic effect in
Weyl semimetals at zero temperature. After presenting the results, I conclude with
discussing this technical difficulty, along with another technicality that arises when
comparing the theory with the experiment. The technicality is that materials that
are intrinsically a Weyl semimetal behave differently in an experiment than a Dirac
semimetal that is turned into a Weyl semimetal by breaking time reversal symme-
try. The two materials behave differently because a different symmetry is broken in
these materials.

I was engaged in writing this thesis from February to December 2016 at the uni-
versity of Utrecht. I would like to thank my supervisor, Henk Stoof, for his excellent
guidance and support during this period of time, along with his PhD student, Erik
van der Wurff, who has taken the time to help me out various times. I would also
like to thank my fellow physics students with whom I have discussed several prob-
lems and who helped me to gain new insights. Naturally, my thanks also go out to
Vasileios Dimitripoulos, whose thesis I have based my research on.

I hope you enjoy the reading of this thesis.

Richard van Dongen
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Chapter 1

Introduction

1.1 Classification of Solids

Solid materials can be divided in classes in various ways. We catergorize them by
their ability to conduct an electric current. From low to high conductance, we make
a distinction between insulators, semi-conductors and conductors. The difference
between these classes lies in their electronic band structures, which dictates the pos-
sible states of electrons in a material. Henceforth, understanding the band structure
of a material allows us to get insight into transport properties of its electrons, such
as electric conductance. In this section we will learn about this relation between
the electronic band structure and electric conductance for the three types of materi-
als. To simplify matters we consider large, homogeneous systems, making it a valid
assumption that the band structure is continuous and that the band structure is iden-
tical everywhere in the material. We also focus only on crystalline materials, with a
periodic structure on the microscopic scale.

The idea of a band structure stems from the notion that electrons in a (crystalline)
material are described by the rules of quantum mechanics. The eigenstates of elec-
trons can be expressed as Bloch waves, which are solutions of the Schrödinger equa-
tion. Their energies are given by the eigenvalue of the Schrödinger equation as a
function of their wavenumber. Depending on the microscopic structure of the mate-
rials, more than one Bloch wave may exist with the same wavenumber. Each Bloch
wave corresponds to an electronic band of the material and has its own dispersion
relation. The electrons tend to fill up the bands with lowest energy first, after which
bands of higher energy will be filled. Two specific bands are of primary interest
when investigating transport properties of materials, the valence band and the con-
duction band. These are the last non-empty band and the first empty band at a
temperature of 0 K, respectively. The relative position of these bands governs the
behaviour of free electrons in the material. As an example, the full electronic band
structure of diamand is displayed in Fig. 1.1. It is important to understand that band
structures are complex in general, like for the example. However, in this thesis we
will zoom in on interesting points of the band structure, where we encounter only
the valence band and the conduction band. This is a valid approximation for low-
energy electrons.

The electrons in the valence band can be excited to the conduction band by
thermal fluctuations or by the absorption of photons. An electron in the conduction
band can also emit a photon and go to the valence band accoringly. Such a transition
will only take place if the new state of the electron is allowed by the band structure
and is not yet occupied. Hence, the presence of vacancies at energies close the va-
lence band determine the ability of a material to conduct a current. The chance of
finding an electron with energy ε at temperature T is described by the Fermi-Dirac
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FIGURE 1.1: Dispersion relation of diamond. Every line denotes an
electronic band. The symbols on the x-axis denote points in momen-

tum space with symmetric properties. Adapted from Ref. [1].

distribution, NFD(ε) and has the form

NFD(ε) =
1

e(ε−µ)/kBT + 1
, (1.1)

where kB is the Boltzmann constant and µ the chemical potential. The position of
the chemical potential with respect to the valence band and conduction band are
important for the electric properties of a material. Fig. 1.2 shows a schematic rep-
resentation of the position of the chemical potential for each type of material. We
see that for a metal and semimetal, together forming the group of conductors, the
chemical potential lies inside the conductance band, while for a semiconductor and
insulator the chemical potential lies between the bands. Electrons in a metal can
easily be excited to a higher, vacant energy level and therefore metals are good con-
ductors. In semimetals the number of allowed states is negligible at the chemical
potential, but increases significantly around it. Excitation of electrons will happen
less often than in a metal and the conductance will therefore not be as good as for
a metal. However, semimetals still belong to the group of conductors, as they con-
duct currents relatively well. In semiconductors and insulators the electrons are not
allowed to be excited to certain energies at all. There is a so called band gap be-
tween the valence band and the conduction band in which the chemical potential
is located. Electrons with not enough energy to bridge this gap will not be exited,
limiting the conductance. If the band gap is smaller than roughly the order of mag-
nitude of the thermal energy kBT , the material is considered to be a semiconductor,
because the electrons can now occasionally be thermally excited. Thus a semicon-
ductor does conduct electrical currents, albeit poorly in comparison to metals and
semimetals. The chemical potential in semiconductors can be shifted by doping the
material with impurities. Depending on the doping used, doped semiconductors
end up as p-type or n-type semiconductors, having positive holes (of electrons) or
negative electrons as current carriers, respectively. Doped semiconductors have dif-
ferent electrical properties than intrinsic semiconductors and they have their own
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FIGURE 1.2: Schematic respresentation of the valence band and con-
duction band in an insulator, semiconductor, semimetal and conduc-
tor. The upper band are conduction bands and the lower bands are
valence bands. For insulators and semiconductors the chemical po-
tential, µF lies in the band gap between the valence band and con-
duction band. If the band gap is greater than roughly the order of
magnitude of kBT , the material is generally regarded as an insulator.
The chemical potential in a semimetal lies on the touching point of the
valence band and the conduction band and for a metal the chemical

potential lies within the conduction band. Adapted from Ref. [2].

application in electronics. If the band gap of a material is greater than the order of
magnitude of kBT , it is considered to be an insulators and it practically does not
conduct electric currents. For a more complete explanation of the electronic band
structure and its implications, the reader can consult books, such as(Charles Kittel,
Introduction to Solid State Physics).

1.2 Dirac Semimetals

The picture as drawn thus far shows the state of our understanding of solid materials
as it was up until just a few years ago. In 2004 Novoselov et al. confirmed the exis-
tence of the two-dimensional material graphene for the first time [3]. Since then the
material has been praised for its great electric and thermal conductivity, its immense
strenght and many other convenient properties. These macroscopic properties can
be understood by looking at the material on the microscopic scale, like we did in the
previous section. Fig. 1.3 shows the microscopic structure of graphene, which con-
sists of carbon atoms in a hexagonal lattice, which can be subdivided in sublattices
A and B. Electrons can hop from one sublattices to the other. The dispersion relation
of the electrons in graphene is shown in Fig. 1.4, where we see six different Dirac
points, the touching points of the valence band and conduction band. However, due
to symmetry we can subdivide these points in two groups of three equivalent points.
The two unique points are denoted by K and K ′. Around the Dirac points, we see
that the dispersion relation can be approximated by so-called Dirac cones, that have
a linear behaviour on the momenta. The Hamiltonian of such a Dirac cone is given
by

H(~k) = ~vF (σxkx + σyky), (1.2)

where ~ is the reduced Plank’s constant, ~k the momentum vector with x-component
kx and y-component ky, vF the Fermi velocity and σi the i-th Pauli matrix. The
Fermi velocity is typically of the order of 106 m/s [5]. The eigenenergies of this
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FIGURE 1.3: Microscopic structure of graphene. The red and blue
dots represent carbon atom and the lines between them represent
their bonds. The hexagonal structure can be subdivided in sublat-
tices A and B, denoted by blue and red dots, respectively. Adapted

from Ref. [4].

Hamiltonian are given by E± = ±~vFk, where k is the length of the momentum.
Because of this semimetallic behaviour and its linear dispersion relation around the
Dirac point, graphene is dubbed a two-dimensional Dirac semimetal.

It is possible to generalize the Hamiltonian of Eq. (1.2) to three dimensions to
describe three-dimensional Dirac semimetals. The existence of these materials has
been verified by experimental observations. An example of such material is Na3Bi,
which was discovered in 2014 [6]. The Hamiltonian of a three-dimensional Dirac
semimetal reads

H(~k) = ~vF

(
~σ · ~k 0

0 −~σ · ~k

)
, (1.3)

where ~σ denotes the three-dimensional vector of Pauli matrices. The two entries in
the matrix correspond to electrons of different chirality. This is equal to ±1, depend-
ing on the direction of the momentum with respect to the spin of the electron. The
plus (minus) sign corresponds to a(n) (anti)parallel orientation. In this model there
exist a chiral symmetry, which means that electrons of both chiralities behave the
same. This is a direct result of the symmetries in the Hamiltonian. Let us therefore
take a moment to inverstigate these symmetries. We claim that the Hamiltonian ad-
mits inversion symmetry and time reversal symmetry. Inversion send a momentum
~k → −~k and time reversion sends both ~k → and σ → −σ. It is evident that the
Hamiltonian is invariant under these transformations, as it gives back the same set
of eigenstates with corresponding energies. Since it is symmetric in these operations,
two electrons can occupy the same energy state and the Dirac point is occupied by
four electrons. This means that the cones are two-fold degenerate and the Dirac
point four-fold degenerate. This can be interpreted as two cones lying on top of each
other. These cones are called Weyl cones.
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FIGURE 1.4: Dispersion relation of electrons in graphene. The hor-
izontal axes shows the momenta of the electrons in the x− and y-
direction and the vertical axis shows their energy. Six touching points
of the valence band and conduction band are shown, but only two of
them are non-equivalent due to symmetry. These points are denoted
by K and K ′. Around the touching point the dispersion relation be-
haves linearly and can be approximated by a Dirac cone. Adapted

from Ref. [7].

1.3 Three-dimensional Weyl Semimetals

New physics arises when inversion symmetry or time reversal symmetry in a Dirac
semimetal is broken. Such a material is called a Weyl semimetal (WSM). The result
of this symmetry breaking is shown in Fig. 1.5. When inversion symmetry is broken,
the Weyl cones split up in energy and when time reversal symmetry is broken, they
are seperated in momentum. Breaking of time reversal symmetry can be realized in
experiments by applying a magnetic field, while inversion symmetry is a property
of the lattice of material. This cannot be easily broken, but a material can have an
intrinsically broken inversion symmetry. In experiments inversion symmetry is usu-
ally broken, so we will use the picture of a broken inversion symmetry in this thesis
as well.

The Hamiltonian of one Weyl cone can be described by

H(~k) = ±~vF~k · ~σ. (1.4)

The sign corresponds to the chirality of the electrons again. We see from this Hamil-
tonian that perturbations of the material in any direction do not drastically change
the form of the Hamiltonian. Such a perturbation will only shift the position of the
cone in its momentum. Since this does not destroy the electronic states, we say that
they are topoligical protected [9]. This amounts to a large stability of the electrons in
a three-dimensional Weyl semimetal.

Before turning to the topological nature of WSMs we would like to mention the
experimental discovery of a WSM in 2015 when experimental groups have observed
Weyl fermions in a crystal of tantalum arsenide (TaAs), in which inversion symmetry
was broken [10].
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FIGURE 1.5: Symmetry breaking of a Dirac cone. The left picture
shows a Dirac cone with both inversion and time reversal symmetry
intact. The Dirac cone consists of two Weyl cones lying on top of
each other. The middle picture shows the Weyl cones seperated in
energy as a result of inversion symmetry breaking. In the right picture
time reversal symmetry is broken and the Weyl cones are seperated

in momentum. Adapted from Ref. [8].

1.4 Topology in Weyl semimetals

It must be clear by now that Weyl semimetals have nontrivial properties due to the
form of their electronic band structure. The Weyl points play a crucial role in the
unique properties of the material. These points are of topological nature. Therefore
the topological nature of the Weyl points deserve a discussion. Although we try to
be complete, we also have to be concise. Therefore the interested reader may consult
Ref. [11] for a complete description.

Let us first elaborate shortly on some general topics in topology. Topology is a
study in which one aims to ascribe properties, that are invariant to continuous de-
formations, of topological spaces. Allowed deformations are for example stretching
and bending, while prohibited transformations are tearing and gluing of the space.
Whenever a continuous transformations exists that deforms one space into another,
the two spaces are topologically equivalent. Topologically equivalent spaces share
common properties and theories on topologically equivalent spaces have a one-to-
one connection, making it possible to define a theory on one space and deform it
onto the other space.

The topology of a space can be determined with the use of topological invariants.
These quantities depend only on the topology of the space and not on other details,
such as its shape. One such quantity is the Euler characteristic, χ, which can be re-
lated to the Gaussian curvature, K. This is the product of the curvature of a surface
in two orthogonal directions and depends on the position on the surface. However,
if we integrate this Gaussian curvature over a whole surface, M , we obtain

1

2π

∫
M
KdA = 2− 2g = χ (1.5)

where dA is the infinitessimal area of M and g is the genus of the object, which
counts the number of holes in it. This shows that the Euler characteristic does not
depend on the shape of the object, but only on its topology. Any object with the
same number of holes in it has the same Euler characteristic. Fig. 1.6 shows a couple
examples of the genera of different object. We see that whenever two objects have a
completely different shape, they can still be topologically equivalent.

Now that we have become familiar with topology, we can turn to the task at
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FIGURE 1.6: Various objects and their genera. Objects with the same
genus are topologically equivalent and can thus be continuously de-

formation into one another. Adapted from Ref. [12].

hand, i.e. discussing the topological nature of WSMs. If WSMs can be described
by their topological properties, a topological invariant must be attributed to it. This
turns out to be determined by the so called Berry phase, which was introduced by
Michael Berry in 1984 [11]. Before Berry’s discovery, it was believed that when-
ever a quantum mechanical system would undergo a cyclic, adiabatic evolution, it
would return to its original eigenstate without gaining an extra phase. In an adi-
abatic process the change is gradual enough for the system to adjust to it without
leaving equilibrium. However, this does not cover the whole story as in some cases
the eigenstate picks up an extra geometrical phase, called the Berry phase. The Berry
phase, γn, is a topological quantity and is defined by

γn = i

∮
C
d~R〈n(~R)|~∇~R|n(~R)〉, (1.6)

where C is a closed curve, |n(~R)〉 the eigenstate as a function of a vector of parame-
ters , ~R, on which the eigenstate depends and ~∇~R is the gradient in parameter space.
Since the eigenstates in a crystal can be decomposed in Bloch waves, we find that
the only parameter is the wavenumber, k. Hence we might define the Berry phase
as an integral in momentum space. Let us then redefine the Berry phase and write

γn = i

∮
C
d~k
∑
n

〈u
n,~k
|~∇~k|un,~k〉 =

∮
C
d~k · ~A(~k), (1.7)

where |u
n,~k
〉 is the eigenstate in the n-th band and ~A(~k) = i

∑
n〈un,~k|~∇~k|un,~k〉 is the

Berry connection. Since the Berry phase is invariant under transformations of the
form

~A(~k)→ ~A(~k) + ~∇~kβ(~k) (1.8)

the field ~A(~k) shows a resemblance to the electromagnetic gauge field. Along with
the Berry connection, we define the Berry curvature (sometimes referred to as Berry
flux) as

~B(~k) = ~∇~k × ~A(~k), (1.9)
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which shows similarities to the definition of the magnetic field in electrodynamics.
Using Stokes’ theorem we can rewrite Eq. (1.7) as

γn =

∫
S

~B · d~S. (1.10)

We know from Cauchy’s theorem that an integral along a closed path can only be
nonzero if it encloses a singular point. This is the Weyl point in momentum space
and it turns out to create the Berry curvature, being either a source or a sink of it,
corresponding to a Weyl point of positive or negative chirality, respectively.

To better understand the physical meaning of these quantities, let us apply the
found formulas to the Hamiltonian we wrote down in Eq. (1.4). The eigenstates of
this Hamiltonian are

|+〉 =

(
cos θ2e

−iφ

sin θ
2

)
and

(
sin θ

2e
−iφ

cos θ2

)
(1.11)

and have corresponding positive energies E±(~k) = ~vfk. Plugging in these eigen-
states in the definitions of the Berry connection and Berry curvature, we obtain the
Berry curvature

~B(~k) = ± 1

2k2
k̂, (1.12)

where k̂ is the unit vector of the momentum. Because of its radial form and the
similarities between the definition of the Berry curvature and the magnetic field,
this solution has the form of a magnetic monopole or antimonopole in momentum
space, depending on the chirality (sign). It turns out that the integral of the Berry
flux over a closed surface, S, that encloses a Weyl point gives∫

S

~B(~k) · d~S = ±2π (1.13)

which is a measure of the number of Weyl point, multiplied by its chirality in units of
2π. As we have mentioned before, Weyl point cannot be destroyed by perturbations
in the Hamiltonian, as it does not need symmetry to survive. However, two Weyl
points at the same point in momentum space will annihilate each other, much like
how an electric monopole (electron) and antimonopole (positron) annihilate each
other when they meet. The Weyl points would combine into a Dirac point, which
does not have any topological nature. Therefore we justify that inversion symmetry
or time reversal symmetry must be broken to seperate the Weyl points in momentum
space for a WSM to exist.

1.5 Introduction to the Chiral Magnetic Effect

After all this effort to introduce Weyl semimetals, one would expect this material
to have some special properties that can show up in experiments. Luckily, there
is such a property. This is its ability to conduct an electric current parallel to an
applied magnetic field. This is called the Chiral Magnetic Effect (CME). This effect is
only predicted in Dirac and Weyl semimetals and quark-gluon plasmas. It was first
observed in the Dirac semimetal ZrTe5 in 2014 [13]. The effect was also measured in
two independent particle accelerators in a quark-gluon plasma [14].
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The CME current induced by a magnetic field is of the form

~j = σCME
~B, (1.14)

with ~j the CME current, ~B the applied magnetic field and σCME the associated con-
ductivity. We will aim to find an analytic expression for the latter in this thesis. It
measures the ability of the WSM to conduct an electric current in the direction in
which the magnetic field is applied. The conducivity is also known as the inverse
of resistivity. It is worth noting that this CME current is non-dissipative of nature,
as it is topologically protected. Realizing systems that are able to conduct currents
of this nature has quite a big impact on how we use electronics in everyday life.
Not only does it reduce the energy loss in electric wires to zero, it also reduces the
heat produced by electric transport. The latter has been a highly limiting factor in
building compact machines, such as telephones and (super)computers, but also in
high-power machines. Furthermore, non-dissipative currents are much more fire re-
sistant as wires will not melt due to dissipation.

It may be clear from the name of the CME and from the preceding discussions
that the CME is made possible by the fact that the fermions in a WSM are chiral
fermions. Chiral systems in quantum mechanics are drastically different from clas-
sical chiral systems by the chiral anomaly and this is exactly what drives the CME.
Let us therefore discuss this difference and its implications briefly. A full discussion
on the subject can be found in Refs. [15] and [16].

Let us consider a system that consists of chiral fermions. Classically, one would
expect the current of both types of fermions to be conserved. Two linear combina-
tions of these current can be defined, the so-called axial current jµA and the vector
current jµV , which we identify as the usual current from electromagnetism. The cur-
rents have the form

jµV = ψ̄γµψ

jµA = ψ̄γµγ5ψ,
(1.15)

where ψ and ψ̄ are the fermionic spinor field and its conjugate, γµ denotes the
gamma matrices and γ5 is the fifth gamma matrix. The spinor fields can be decom-
posed asψ = (ψ+, ψ−)ᵀ, whereψ+/− denotes the fermion field with positive/negative
chirality and ᵀ denotes the transpose. Writing out Eq. (1.15) in terms of this decom-
position yields

jµV = jµ+ + jµ−

jµA = jµ+ − j
µ
−,

(1.16)

where j+ and j− are the currents of the fermions with positive and negative chirality,
respectively. It is now obvious that the vector current is the current from electromag-
netism, as it is the total current of fermions, where the axial current is the difference
between the currents of the fermions with positive and negative chirality. As men-
tioned before, both currents would be conserved in a classical system and both the
total number of fermions and the difference of the fermions of positive and negative
chirality would be conserved. This can be translated to the fact that the number of
positive and negative chiral fermions would be conserved, independently. However
in a quantum system the best one can hope for is to conserve only one of the currents.
The current from QED must still be conserved and therefore the conservation of the
axial current cannot be satisfied. This means that the number positive and negative
chiral fermions can change, as long as the total number of fermions remains con-
stant. Hence, fermions of different chirality can be interchanged with one another.
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[h!]

FIGURE 1.7: Charge pumping between the right and left chiral cones,
having chirality χ = 1 and χ = −1, respectively. The magnetic field
rearranges the dispersion relations of both types of fermions in Lan-
dau levels. When an electric field is applied in the direction of the
magnetic field, the fermions in the zeroth mode contribute to the
pumping of right or left handed fermions to their opposite cones, de-
pending on the sign of the electric field. In this case the electric field is
parallel to the magnetic field and therefore the left handed fermions
are pumped to the right handed cone. The particles are depicted by
the grey circles and vacancies are white. This process causes an im-

balance between the chiral fermions. Adapted from Ref. [17].

This way it is possible to create an imbalance between the two chiralities. The ques-
tion now is how to realize this imbalance between chiral fermions in practise.
This can be understood by taking a look at how the conservation of the currents is
not satisfied. For a suitable configuration of the electromagnetic field, this is cap-
tured by

∂µj
µ
R =

e2

4π2
~E · ~B

∂µj
µ
L = − e2

4π2
~E · ~B,

(1.17)

where we can clearly see that the loss of current in one chirality is gained in the
other. It turns out that applying an electric and magnetic field that are not orthogonal
to each other creates the imbalance in right and left chiral fermions. This can be
explained by the fact that the magnetic field splits up the allowed energies in the
Weyl cones in Landau levels, as depicted in Fig. 1.7. An electric field (anti)parallel
to the magnetic field causes the fermions to move from the negative(positive) cone
to the positive (negative) cone. This process is called charge pumping.

1.6 Experimental evidence of the chiral magnetic effect

The goal of every theoretical prediction is to be verified in experiments. This section
is dedicated to an experimental observation that has been performed on the chi-
ral magnetic effect. The results from this experiment will be discussed. Moreover, a
short discussion is presented about the temperature-dependence in the experiments,
which is interesting for our results, since we will investigate a model at temperature
0 K and for practical applications we need to understand the CME for finite temper-
atures. Furthermore we will discuss an ambiguity in the experiment, which we will
try to fix in this thesis. We will discuss the observations of the CME in ZrTe5 [18].
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This material is intrinsically a Dirac semimetal, but by applying an external mag-
netic field, time reversal symmetry is broken and the material behaves like a Weyl
semimetal.

Eq. (1.14) shows the form of the CME current when a magnetic field is applied.
The autors of the paper claim that

~jCME =
e2

2π2
∆µ~B, (1.18)

where ∆µ denotes the magnitude of the chiral imbalance. This result was obtained
from Ref. [19]. In Section 1.5 we have given a way to produce a chiral imbalance
in experiments. The description we used is however incomplete, as the imbalance
undergoes an unrestrained growth and will never reach equilibrium. In this paper
an extra process was added that inhibits this growth, i.e. a scattering process that
changes the chirality of the fermions. We will only give a short sketch of the model
used in this paper, refraining from giving much mathemetical detail. The interested
reader can use the given references to study the subject in more depth. The chiral
charge density in the used model is

ρA =
µ3A

3π2v3F
+

µA
3v3F

(T 2 +
µ2

π2
), (1.19)

where ρA is the chiral charge, µA the chiral imbalance, µ the chemical potential and
T the temperature. The change in this chiral charge density is given by

∂ρ5
∂t

=
e2

4π2
~E · ~B − ρ5

τV
, (1.20)

where the first term drives the chiral charge pumping as we have seen in section 1.5
and the second term is the scattering effect, with τV the scattering time. After a time
t � τV the system has found an equilibrium and after plugging in Eq. (1.19), one
obtains the chiral chemical potential

µ5 =
3

4

v3

π2
e2

h̄2c

~E · ~B
T 2 + µ2

π2

τV . (1.21)

This chiral chemical potential can be substituted in Eq. (2.1) and one obtains, after
redefining the temperature-dependent function a(T )

~JCME = a(T )
(
~E · ~B

)
~B. (1.22)

The paper defines the CME conductivity as

J iCME = a(T )BiBkEk = σikexpE
k, (1.23)

where we have given the conductivity a different subscript to distinguish it from the
conductivity defined in Eq. (1.14). Also one should note that the value of σikexp is
independent of its indices, so we will leave them out for the rest of the discussion.
One finds that the CME conductivity has the form

σexp = a(T )B2 cos θ. (1.24)
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It is important to note the quadratic behaviour in the magnetic fields strength and
the angular dependence θ between the electric and magnetic field. However, the
chiral magnetic effect is not the only process in play. The electric field also produces
an electric current through the material, so the total current has the form

J = JOhm + JCME = (σOhm + σexp)E = σtotE, (1.25)

where σtot is the total conductivity. The resistivity can be approximated by

ρ =
1

σtot
≈ 1

σOhm
− a(T )B2 cos θ. (1.26)

With this background we can take a look at the observations made by the team,
which are shown in Fig. 1.8. The electric field was applied in the a-direction on the
axis shown in the middle panel. The first panel shows the resistivity as function of
the temperature for various magnetic field strengths when the magnetic and elec-
tric field are aligned. It exhibits a maximum at approximately 60 K. The location
of the peak is thought to depend on the impurities of the sample and is not of any
relevance for us. In the second panel we see the resistivity as function of the mag-
netic field strength for different angles, φ, between the magnetic and electric field.
The angluar dependence is captured in Eq. (1.24), but one should notice that the
angle φ from the figure and θ from the equation are different from each other in the
sense that they are complementary angles. This has no physical relevance, but this
is a result of the choice of definitions. In this graph the line at 90◦ has therefore no
connection to the CME, because the electric and magnetic field are orthogonal. This
displays the conventional restitivity of the material, which is a quadratic dependent
on the magnetic field for low magnetic field strengths and experiences saturation at
higher values. When increasing the angle, the contribution of the CME becomes in-
creasingly important as the positive intrinsic resistivity is partially canceled out by
the negative contribution of the CME resistivity. The data for φ = 90◦ is not well
respresented in this plot and therefore the same data is shown in the last panel, but
the vertical axis has been scaled logarithmically. The (negative) contribution from
the CME is evidently clear in this figure.

Furthermore the team has investigated the temperature-dependence of the CME.
The resistivity has been measured for various temperatures when the electric and
magnetic field are aligned. This is shown in the left panel of Fig. 1.9. Recalling
that the intrinsic resistivity of the material is positive and the CME contribution is
negative, we see that the CME becomes of less relevance at greater temperatures.
The right panel shows the measured resistivity (red lines) and its theoretical predic-
tion and they match for the most part. However, the curve exhibits a minimum at
zero magnetic field, where a peak is predicted to show up. The researchers do not
have a definite explanation for this behaviour, but they suspect it might be caused
by a small perpendicular contribution of the magnetic and electric field as a result
of a small miss-alignment in the experiment. The inset in the right panel shows
the temperature-dependent behaviour of the function a(T ) in Eq. (1.24). The func-
tion was shown to fall off faster than 1/T which is in accord with the temperature-
dependence of Eq. (1.21) that dictates the behaviour of the CME conductivity with
respect to temperature.

Eventhough this paper has presented evidence for the CME, something does not
seem to be quite clear. Eq. (2.1) is used in this experiment to determine the magni-
tude of the chiral magnetic effect. This expression was calculated in Ref. [19] for the
static limit. In the static limit the applied magnetic field is time-independent and this



1.6. Experimental evidence of the chiral magnetic effect 13

FIGURE 1.8: Measurements of the resistivity of ZrTe5 for as function
of different parameters. The electric field is applied in the a direc-
tion as depicted in the inset in the second panel. (a) The Resistivity
is plotted as a function of temperature for different strengths of the
mangetic field, which is applied perpendicular to the cleavage plane
of the crystal, as shown in the inset. The cleavage plane is the a − c
plane in the second panel and is shown in the inset. (b) Resistivity as
function of the magnetic field strength for various angles φ between
the electric and magnetic field at temperature T = 20K. (c) The same
data as in the second panel, but with a logarithmic scale on the ver-
ical axis to emphasize the behaviour at φ = 90◦, where the CME is

optimal. Adapted from Ref. [18].

FIGURE 1.9: (a) Resistivity as function of the magnetic field strength
for various temperatures ranging from 5 K to 150 K. The curves have
been shifted by 1.5mΩcm (150 K), 0.9mΩcm (100 K), 0.2mΩcm (70
K and 5K). (b) Experimental value of the resistivity at 20 K for par-
allel electric and magnetic field (red line) and the theoretical pre-
diction for the CME resistivity (blue line). The inset shows the
temerature-dependence of the proportionality function a(T ) in units

of S/(cm T2). Adapted from Ref. [18].

is exactly the case in the experiment. However, the magnetic field was also uniform,
which corresponds to the uniform limit. The central result in this thesis shows that
both limits behave differently, even when they are combined and the magnetic field
is time-independent and uniform. This raises the question if the choice of the static
limit in this experiment is justified. This question will be answered in this thesis.

Now that we have established a solid understanding of the connection between
macroscopic and microscopic properties of materials, the nature of the WSM and
CME, it is time to conclude the introduction and commence the calculation of the
CME conductivity.
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Chapter 2

The Chiral Magnetic Effect

2.1 Linear Response Theory

In quantum physics it is important to acquire measurable, physical properties of the
system under investigation from the somewhat abstract quantum mechanical quan-
tities. This section aims to do exactly that by finding a way to relate the applied
magnetic field to the expectation value of the electric current flowing through the
WSM. For this purpose we apply linear response theory, which gives a valid approx-
imation for calculating small fluctuations of physical quantities about their average
values when small (electromagnetic) fields are applied. We will mainly follow the
line of thought of Ref. [20] throughout the derivation.

The general idea of linear response theory is to apply a small perturbation to the
system at some position ~x′ and time t′ and determine its response at position ~x and
time t > t′. One should note that t > t′ must hold in order to satisfy causality. The
quantity we would like to calculate is

〈jµ (~x, t)〉 = 〈ψ̄ (~x, t) γµψ (~x, t)〉, (2.1)

which is the current of quantum electrodynamics, which is conserved by the sym-
metry of the theory. This current couples to the electromagnetic gauge field with
coupling constant e, which we know as the electron charge. The total Hamiltonian
for the fermions, HT , can be expressed as

HT (t) = H (t) +Hint (t) = H (t) + e

∫
d3x′jµ

(
~x′, t

)
Aµ
(
~x′, t

)
, (2.2)

with Aµ (~x, t) the electromagnetic gauge field and Hint (t) the interacting part of the
Hamiltonian. Since we consider fluctuations around the equilibrium of the unper-
turbed system, the expectation value of the current can be expressed as

〈jµ (~x, t)〉 = 〈G|jµ (~x, t) |G〉, (2.3)

with |G〉 the ground state ofH . In the Heisenberg picture, where the time-dependence
is captured inside the operators, the perturbation of the Hamiltonian will result in
the redefinition jµ (~x, t) = U−1 (t) jµ (~x, t)U (t). U (t) is the unitary time evolution
operator, defined as

U (t) = e−
i
~
∫ t
−∞ dt′Hint(t′). (2.4)
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For small perturbations Eq. (2.1) can be expanded as

〈jµ (~x, t)〉 = 〈G|e
i
~
∫ t
−∞ dt′Hint(t′)jµ (~x, t) e−

i
~
∫ t
−∞ dt′Hint(t′)|G〉

≈ 〈G|jµ (~x, t) |G〉+
i

~

∫ t

−∞
〈G|

[
Hint

(
t′
)
, jµ (~x, t)

]
|G〉

= 〈G|jµ (~x, t) |G〉+ δ〈G|jµ (~x, t) |G〉.

(2.5)

For the free fermion theory there is no reason for a net current to flow in any di-
rection, so we can safely set the first term in Eq. (2.5) to zero and we see that the
expectation value of the current will be equal to only the linear response to the per-
turbation. Writing out the interaction Hamiltonian as in Eq. (2.2) gives us a grasp of
what the response will look like.

〈jµ (~x, t)〉 = − i
~

∫ t

−∞
dt′
∫
d3x′〈G|

[
jµ (~x, t) , jν

(
~x′, t′

)]
|G〉Aν

(
~x′, t′

)
=

∫ t

−∞
dt′
∫
d3x′χµν

(
~x, t; ~x′, t′

)
Aν
(
~x′, t′

)
,

(2.6)

with
χµν

(
~x, t; ~x′, t′

)
=
−i
~
θ
(
t− t′

)
〈G|

[
jµ (~x, t) , jν

(
~x′, t′

)]
|G〉 (2.7)

defined as the WSM’s susceptibility to electromagnetic fields. Please note that the
Heaviside step function, θ (t− t′) is included in order to define it in the general case,
where t and t′ are not yet defined. The electromagnetic susceptibility of a material
is something we can actually measure! However, it is still not very practical to mea-
sure the susceptibility in the form of Eq. (2.7). We will therefore Fourier transform
the susceptibility in both the temporal and spatial variables, as it is more convenient
to measure the response of a material for an electromagnetic field with a specific
frequency and wavenumber. We start with a transformation in the temporal coordi-
nates by writing

Aµ (~x, t) =

∫ ∞
−∞

dω

2π
e−iωtAµ (ω, ~x) . (2.8)

We plug this into Eq. (2.6) to obtain

〈jµ (~x, t)〉 = − i
~

∫ ∞
−∞

dω

2π
eiωt

∫
d3x′

∫ t

−∞
dt′e−iω(t

′−t)χµν
(
~x, t; ~x′, t′

)
Aν
(
ω, ~x′

)
= − i

~

∫ ∞
−∞

dω

2π
e−iωt

∫
d3x′

∫ 0

−∞
dt′e−iωt

′
χµν

(
~x, t; ~x, t′ + t

)
Aν
(
ω, ~x′

)
,

(2.9)
where we used the identity e−iωte−iω(t

′−t) = eiωt
′

in the first line. Furthermore, we
may claim that the time dependence of the electromagnetic susceptibility is only
proportional to t − t′, since it only depends on the time difference between the the
moment of perturbation and the moment of measurement. The system must be only
invariant under time translation under which this difference is preserved. We can
therefore write Eq. (2.6) as

〈jµ (~x, t)〉 =

∫
d3x′

∫ t

−∞
dt′χµν

(
~x, ~x′; t− t′

)
Aν
(
~x′, t′

)
=

∫
d3x′χµν

(
~x, ~x′, t

)
∗Aν

(
~x′, t

)
,

(2.10)
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in which the asterisk denotes the convolution operator. We can now use the convo-
lution theorem to find

〈jµ (~x, t)〉 =

∫ ∞
−∞

dω

2π
e−iωt

∫
d3x′χµν

(
ω; ~x, ~x′

)
Aν
(
ω, ~x′

)
(2.11)

Comparing Eq. (2.9) with Eq. (2.11) shows us that

χµν
(
ω; ~x, ~x′

)
= − i

~

∫ 0

−∞
dt′e−iωt

′〈G|
[
jµ (~x, t) , jν

(
~x′, t+ t′

)]
|G〉

= − i
~

∫ 0

−∞
dt′e−iωt

′〈G|
[
jµ (~x, 0) , jν

(
~x′, t′

)]
|G〉,

(2.12)

where in the last line we used the fact that the susceptibility is invariant under time
translation that preserve the time difference between the applied perturbation and
the moment of measurement, as mentioned earlier.

For the spatial Fourier transformation we can follow precisely the same steps,
since the electromagnetic susceptibility must only be invariant to spatial translation
that preserve ~x−~x′. The spatial Fourier transformation of the electromagnetic gauge
field is

Aµ(~x, ω) =

∫
d3q

(2π)3
ei~q·~xAµ(ω, ~q) (2.13)

and Eq. (2.11) becomes

〈jµ (~x, t)〉 = − i
~

∫ ∞
−∞

dω

2π
e−iωt

∫
d3~q

(2π)3
ei~q·~x

∫
d3x′ei~q·(

~x′−~x)

× 〈G|
[
jµ (ω, ~x) , jν

(
ω, ~x′

)]
|G〉Aν (ω, ~q)

= − i
~

∫ ∞
−∞

dω

2π
e−iωt

∫
d3~q

(2π)3
ei~q·~x

∫
d3x′ei~q·

~x′

× 〈G|
[
jµ (ω, ~x) , jν

(
ω, ~x′ + ~x

)]
|G〉Aν (ω, ~q)

(2.14)

Using the convolution theorem again, we find

〈jµ (~x, t)〉 =

∫ ∞
−∞

dω

2π
e−iωt

∫
d3x′χµν

(
ω, ~x− ~x′

)
Aν(ω, ~x′)

=

∫ ∞
−∞

dω

2π
e−iωtχµν (ω, x) ∗Aν (ω, ~x)

=

∫ ∞
−∞

dω

2π
e−iωt

∫
d3q

(2π)3
ei~q·~xχµν (ω, ~q)Aν (ω, ~q)

(2.15)

and combining Eqns. (2.14) and (2.15) yields

χµν (q, ω) = − i
~

∫ 0

∞
dt′e−iωt

′
∫
d3x′ei~q·~x

′〈G|
[
jµ (~x, 0) , jν

(
~x′, t+ t′

)]
|G〉

= − i
~

∫ 0

∞
dt′e−iωt

′
∫
d3x′ei~q·~x

′〈G|
[
jµ (0, 0) , jν

(
~x′, t′

)]
|G〉.

(2.16)

Now that we have found the Fourier transform of the electromagnetic suscep-
tibility, there is one problem left to solve. Namely, we are interested in the case in
which a magnetic field is applied to the WSM and up till now we have applied an
arbitrary electromagnetic field, Aµ (ω, ~q). Let us assume that the magnetic field is
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applied in the x-direction. This choice may always be made, as the system is rota-
tionally invariant. The magnetic field is related to the gauge field by

Bi (ω, ~q) = iεijkqjAk (ω, ~q) , (2.17)

where εijk is the complete anti-symmetric symbol with ε123 = 1. We still have one
unfixed gauge degree of freedom. By choosing a suitable gauge fixing, the magnetic
field can be expressed as

Bx (ω, ~q) = −iqzAy (ω, ~q) . (2.18)

We can eventually write the Fourier transform of the expectation value of the electric
current as

〈jx (ω, ~q)〉 =
i

qz
χxy (ω, ~q)Bx (ω, ~q) = σxCME (ω, ~q)Bx (ω, ~q) , (2.19)

where σxCME (ω, ~q) is the CME conductivity, as a function of the frequency ω and
momentum ~q of the applied magnetic field. The conductivity is a measure of the
material’s ability to conduct an electric current, whereas its real part is the conduc-
tivity of a DC current and the imaginary part of an AC current. We thus aim to find
an expression for

σxCME (ω, ~q) =
i

qz
χxy (ω, ~q) =

i

qz
Πxy (ω, ~q) , (2.20)

where we identify χµν (ω, ~q) as the vacuum polarization diagram and call it Πµν (ω, ~q).
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2.2 Green’s function

In this section we calculate the Green’s functions (also referred to as propagators) of
the positive and negative chiral fermions from their free Lagrangian. Before going
directly to the calculation, we first define the conventions we use throughout the
thesis. We fix the reduced Planck’s constant and the Fermi velocity by ~ = 1 and
c = 1. The metric is defined by ηµν = (−1, 1, 1, 1) and the gamma-matrices are
expressed in the Weyl basis. This is defined by {γµ, γν} = 2ηµν . Explicitly this reads

γµ =

((
0 −I
I 0

)
,

(
0 σi

σi 0

))
, γ5 =

(
I 0
0 −I

)
, (2.21)

and

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(2.22)
The free Lagrangian we start from is

L = ψ̄
(
−i/∂ − µγ0 + µ5γ

0γ5
)
ψ. (2.23)

This massless Dirac Lagrangian contains a chemical potential µ, accompanied by a
shift in energy of magnitude ±b0 for fermions with positive and negative chirality,
respectively. The fermion field ψ is represented in Weyl spinors, i.e. ψ = (ψ+, ψ−)ᵀ,
such that ψ+ has positive chirality and ψ− negative chirality. The two types of
fermions will be described by different Green’s functions due to the anti-symmetry
in the chiralities.

As a first step, let us go to momentum space by writing

ψ(xµ) =

∫
d4k

(2π)4
ψ̃(kµ)eik·x, ψ̄(xµ) =

∫
d4k

(2π)4
˜̄ψ(kµ)e−ik·x. (2.24)

We will drop the tilde on the ψ’s from now on, as we will not go back to real space.
The action can now be written as

S =

∫
d4k

(2π)4
ψ̄(kµ)

(
/k − µγ0 + µ5γ

0γ5
)
ψ(kµ). (2.25)

The inverse Green’s function is defined by

S =

∫
d4k

(2π)4
ψ̄(kµ)G−1(kµ)ψ(kµ). (2.26)

However, we will use a slightly different definition in accord with the literature,
such that

G̃−1(kµ) = γ0G−1(kµ) = γ0
(
/k − µγ0 + µ5γ

0γ5
)
. (2.27)

Again, we will drop the tilde. Inverting G−1(kµ) yields the Green’s function. This
can easily be done by writingG−1(kµ) out explicitly. We define the effective chemical
potential as µ± ≡ µ∓ µ5 for positive and negative chirality. The explicit form of the
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inverse Green’s function becomes

G−1(kµ) =

(
− (k0 − µ+) I− k · σ 0

0 − (k0 − µ−) I + k · σ

)
=(

G+(kµ)−1+ 0
0 G−(kµ)−1

)
,

(2.28)

where G+(kµ) and G−(kµ) are the propagators for the fermions with positive and
negative chirality, respectively. These matrices can easily be inverted separately,
yielding

G±(kµ) =
− (k0 − µ±)± k · σ
(k0 − µ±)2 − |~k|2

. (2.29)

It turns out to be convenient to decompose the propagators into the Dirac basis by
writing

G±(kµ) = Gµ(kµ)±σµ, with σµ =
(
I, σi

)
. (2.30)

The coefficients read

G±0 (kµ) = − k0 − µ±
(k0 − µ±)2 − |~k|2

, G±i (kµ) = ± ki

(k0 − µ±)2 − |~k|2
. (2.31)

It is worth noting that the denominators of the propagators of the positive and
negative chiral electrons give rise to particles that live in the Weyl cones, as we have
defined in the previous chapter. Using k0 = −ω, where ω is the frequency of the
particle, we find a pole at

ωα = ±k − µα (2.32)

for a particle with chirality α = ±1. This indeed describes two Weyl cones that are
split up in energy.

With this explicit form of the free propagators, we are fully equipped to perform
calculations on interacting fermions.

2.3 CME Conductivity

In this section we are interested in calculating the conductivity due to the chiral
magnetic effect (CME). The CME conductivity in momentum space is expressed by
the Kubo formula as

σxCME(~q, ω, µ+, µ−) =
i

q
Πxy(~q, ω, µ+, µ−), (2.33)

which is equivalent to Eq. (2.20), but with a different set of parameters and qz has
been replaced by q, the length of ~q. Hence, ~q is chosen to be directed entirely in the
z − direction. This is justified by the rotational symmetry of the system.

To describe the interactions of the fermions with the electromagnetic field, we
add a coupling to the Lagrangian from Eq. (2.23). This reads

L = ψ̄
(
−i/∂ − µγ0 + µ5γ

0γ5
)
ψ + eψ̄γµAµψ, (2.34)

where e is the electronic charge. This is the Lagrangian from which the vacuum
polarization diagram is calculated. A schematic representation for the diagram is
shown in Fig. 2.1. The incoming and outgoing photon carry momentum ~q and the
electrons have momentum ~k and ~k+~q. The vacuum polarization follows from plug-
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FIGURE 2.1: Vacuum polarization diagram in which the photon splits
up into an electron and positron of equal chirality and later recom-
bines to form a photon again. The electron propagators are shifted in
energy as described in Eq. (2.28). The momentum of the incoming
photon is ~q, so that one electron carries momentum ~k and the other

has ~k + ~q. Adapted from Ref. [21].

ging the vector current from Eq. (1.15) into Eq. (2.16) and performing the Fourier
transform. We obtain

Πµν(q) = e2
∫

d4k

(2π)4
Tr[G(k)γ0γµG(k + q)γ0γν ]. (2.35)

One should note that the extra terms γ0 are added to be consistent with the choice of
definition in Eq. (2.27). We will first determine the trace in this expression and then
perform the integral explicitly.

Since we are interested in the xy-component of the vacuum polarization, we
should consider the trace (dropping the arguments of the G’s for a moment)

Tr[Gσβγ0γµGσδγ0γν ], (2.36)

which simplifies to

Tr

[(
G+α G+β σ

ασxσβσy 0

0 G−α G−β σ
ασxσβσy

)]
=
∑
a=±
GaαGaβ Tr[σασxσβσy] (2.37)

after substituting µ = x, ν = y and using Eqns. (2.21) and (2.30). Please note that the
Latin indices run over the three spatial directions, while the Greek indices run over
the four spacetime indices. We would like to find a tangible result for the trace, i.e.
an expression containing only Pauli matrices with Latin indices. Then we can use
known identities of the Pauli matrices to determine the trace. Writing the trace out
explicitly yields

Tr
[
σασxσβσy

]
= Tr

[(
δα0 I + δαk σ

k
)
σx
(
δβ0 I + δβkσ

k
)
σy
]

=

Tr
[
δα0 δ

β
0σ

xσy + δα0 δ
β
kσ

xσkσy + δαk δ
β
0σ

kσxσy + δαk δ
β
l σ

kσxσlσy
] (2.38)

The anti-commutation relation of the Pauli matrices is {σa, σb} = 2δabI, which can
be used to write the middle two terms in the last line of Eq. (2.38) as

δα0 δ
β
kσ

xσkσy + δαk δ
β
0σ

kσxσy =
(
δα0 δ

β
x − δαk δ

β
0

)
σxσkσy + 2δαx δ

β
0σ

y. (2.39)
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Now every term in the trace is proportional to Pauli matrices with Latin indices, for
which we have the identities

Tr [σa] = 0

Tr
[
σaσb

]
= 2δab

Tr
[
σaσbσc

]
= 2iεabc

Tr
[
σaσbσcσd

]
= 2

(
δabδcd − δacδbd + δadδbc

)
.

(2.40)

Applying these identities to Eq. (2.38) yields

Tr
[
σασxσβσy

]
= 2δα0 δ

β
0 δ

xy + 2iεxky
(
δα0 δ

β
k − δ

α
k δ

β
0

)
+2δαk δ

β
l

(
δkxδly − δklδxy + δkyδxl

) (2.41)

and because x 6= y, we end up with

Tr
[
σασxσβσy

]
= 2i

(
δαz δ

β
0 − δ

α
0 δ

β
z

)
+ 2

(
δαxδβy + δαyδxβ

)
. (2.42)

The contribution of the integral over the terms in the last brackets in Eq. (2.42) is
taken to be zero, since the system is rotationally invariant in the xy-plane, so the
expression for the polarization diagram becomes

Πxy(q) = 2ie2
∫

d4k

(2π)4

∑
σ=±

(Gσz (k)Gσ0 (k + q)− Gσ0 (k)Gσz (k + q)) . (2.43)

In order to make the integral in Eq. (2.43) well-defined, we express the Green’s
functions in Matsubara frequencies, i.e. k → (iωn,~k), q → (iωb, ~q) and we apply

1

2πi

∫
C
dk0f(k0, ω) = − 1

~β

∞∑
n=−∞

f(iωn, iωb)

= − 1

2πi

∫
C+C′

dzf(z, iωb)NFD(z) ,

(2.44)

where NFD(z) is the Fermi-Dirac distribution as defined in Eq. (1.1). The polariza-
tion diagram becomes, after plugging in the definitions of the Green’s functions,

Πxy(iωb, ~q, µ+, µ−) = 2e2
∑
σ=±

σ

∫
d3~k

(2π)4

∫
C+C′

dz

(
z − µσ

(z − µσ)2 − |k|2
×

kz + qz

(z + iωb − µσ)2 − |~k + ~q|2
− z + iωb − µσ

(z + iωb − µσ)2 − |~k + ~q|2
kz

(z − µσ)2 − |k|2

)
NFD(z).

(2.45)
One should note that a factor i has been picked up because of the Wick rotation.

Let us first evaluate the integral over z for the first term. The term has poles at
z1 = µσ − |~k|, z2 = µσ + |~k|, z3 = −iωb + µσ − |~k + ~q| and
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z4 = −iωb + µσ + |~k + ~q|.∫
C+C′

dz
z − µσ(

z − µσ + |~k|
)(

z − µσ − |~k|
)

× kz + qz(
z + iωb − µσ + |~k + ~q|

)(
z + iωb − µσ − |~k + ~q|

)NFD(z) =

2πi
∑
α=±

 (kz + qz)NFD(α|~k|+ µσ)

2
(
iωb + |~k + ~q|+ α|~k|

)(
iωb − |~k + ~q|+ α|~k|

)
+α

(
iωb + α|~k + ~q|

)
(kz + qz)NFD(−α|~k + ~q|+ µσ)

2|~k + ~q|
(
iωb + α|~k + ~q|+ |~k|

)(
iωb + α|~k + ~q| − |~k|

)


(2.46)

Please note that the term iωb falls out of the Fermi-Dirac distributions, because it is a
bosonic frequency and the Fermi-Dirac distribution is periodic in those frequencies.
Next we shift the integration variable in the last two terms of Eq. (2.46) by shifting
~k → k̃ = ~k − ~q and we drop the tilde again. The latter is allowed, since both k and k̃
are integration variables. This yields

2πi
∑
α=±

 (kz + qz)NFD(α|~k|+ µσ)

2
(
iωb + |~k + ~q|+ α|~k|

)(
iωb − |~k + ~q|+ α|~k|

)
+α

(
iωb + α|~k|

)
kzNFD(−α|~k|+ µσ)

2|~k|
(
iωb + |~k − ~q|+ α|~k|

)(
iωb − |~k − ~q|+ α|~k|

)
 (2.47)

We shall now split the denominators of the four terms in Eq. (2.47) into partial
fractions, obtaining more convenient expressions.
First term

1(
iωb + |~k + ~q|+ α|~k|

)(
iωb − |~k + ~q|+ α|~k|

) =
A

iωb + |~k + ~q|+ α|~k|
+

B

iωb − |~k + ~q|+ α|~k|
(2.48)

We let
A = −1

2

1

|~k + ~q|
, B =

1

2

1

|~k + ~q|
. (2.49)

Second term

1(
iωb + |~k − ~q|+ α|~k|

)(
iωb − |~k − ~q|+ α|~k|

) =
A

iωb + |~k − ~q|+ α|~k|
+

B

iωb − |~k − ~q|+ α|~k|
(2.50)

A =
1

2

1

iωb + α|~k|
, B =

1

2

1

iωb + α|~k|
(2.51)

Eq. (2.46) can now be written as

−2πi

4

∑
α,β=±

(
β
kz + qz

|~k + ~q|
NFD(α|~k|+ µσ)

iωb + β|~k + ~q|+ α|~k|
− α kz
|~k|

NFD(−α|~k|+ µσ)

iωb + β|~k − ~q|+ α|~k|

)
. (2.52)
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We follow through the same steps for the second term in Eq. (2.45). For the sake
of brevity we have performed the shift ~k → k̃ = ~k − ~q implicitly in the terms that
contain |~k + ~q| in the argument of the Fermi-Dirac distribution.

−
∫
C+C′

dz
z + iωb − µσ(

z + iωb − µσ + |~k + ~q|
)(

z + iωb − µσ − |~k + ~q|
)

× kz(
z − µσ + |~k|

)(
z − µσ − |~k|

)NFD(z) =

−2πi
∑
α=±

 (kz − qz)NFD(−α|~k|+ µσ)

2
(
iωb + |~k − ~q|+ α|~k|

)(
iωb − |~k − ~q|+ α|~k|

)
+α

(
iωb + α|~k|

)
kzNFD(α|~k|+ µσ)

2|~k|
(
iωb + |~k + ~q|+ α|~k|

)(
iωb − |~k + ~q|+ α|~k|

)


(2.53)

We split the denominators again in partial fractions.
First term

1(
iωb + |~k − ~q|+ α|~k|

)(
iωb − |~k − ~q|+ α|~k|

) =
A

iωb + |~k − ~q|+ α|~k|
+

B

iωb − |~k − ~q|+ α|~k|
(2.54)

A = −1

2

1

|~k − ~q|
, B =

1

2

1

|~k − ~q|
(2.55)

Second term

1(
iωb + |~k + ~q|+ α|~k|

)(
iωb − |~k + ~q|+ α|~k|

) =
A

iωb + |~k + ~q|+ α|~k|
+

B

iωb − |~k + ~q|+ α|~k|
(2.56)

A =
1

2

1

iωb + α|~k|
, B =

1

2

1

iωb + α|~k|
(2.57)

Eq. (2.53) can now be written as

2πi

4

∑
α,β=±

(
β
kz − qz
|~k − ~q|

NFD(−α|~k|+ µσ)

iωb + β|~k − ~q|+ α|~k|
− α kz
|~k|

NFD(α|~k|+ µσ)

iωb + β|~k + ~q|+ α|~k|

)
. (2.58)

Combining the results from Eqns. (2.52) and (2.58), the polarization diagram be-
comes

Πxy(iωb, ~q, µ+, µ−) = − ie
2

2

∑
σ,α,β=±

σ

∫
d3~k

(2π)3

(
Aα,β(~k, ~q)

NFD(α|~k|+ µσ)

iωb + β|~k + ~q|+ α|~k|

−Bα,β(~k, ~q)
NFD(−α|~k|+ µσ)

iωb + β|~k − ~q|+ α|~k|

)
,

(2.59)
where we have defined Aα,β(~k, ~q) = αkz~k

+ β kz+qz
|~k+~q|

and Bα,β(~k, ~q) = kz
~k

+ β kz−qz
|~k−~q|

. We

manipulate the expression by writing NFD(−|~k| + µσ) = 1 − NFD(|~k| − µσ), such
that the |~k|’s in the Fermi-Dirac distribution have the same sign, which will turn out
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to be handy later on.
Moreover, there is still a divergence hidden in each of the cones serperately due

to the contribution of the Dirac sea. We therefore define

Π̃xy(ω, ~q, µ+, µ−, C) = Πxy(ω, ~q, µ+, µ−)−Πxy(ω, ~q, 0, 0) + C (2.60)

as the true contribution of the vacuum polarization diagram, where the integration
over the Dirac sea is subtracted. We subtract a divergence that consists of an infinite
and a finite part. The choice of the finite part is somewhat arbitrary, which leaves the
freedom to add the constant, C, and fit this to experimental results. The subtraction
of the divergence results only in a shift NFD(|~k| − µσ)→ NFD(|~k| − µσ)−NFD(|~k|).
Combined with the manipulation of the Fermi-Dirac distribution the cancellation of
the divergence is evident, as the term that is not proportional to any Fermi-Dirac
distribution will vanish. The expression we shall be working with now becomes

Π̃µν(iωb, ~q, µ+, µ−, C) = − ie
2

2

∑
σ,α,β=±

σα

∫
d3~k

(2π)3
×

(
Aα,β(~k, ~q)

NFD(|~k|+ αµσ)−NFD(|~k|)
iωb + β|~k + ~q|+ α|~k|

+Bα,β(~k, ~q)
NFD(|~k| − αµσ)−NFD(|~k|)

iωb + β|~k − ~q|+ α|~k|

)
+ C,

(2.61)
Now that we have obtained a complete expression for the vacuum polarization

diagram, we can simplify the angular integral by rewriting it. In addition, since
the system is rotationally invariant, we choose ~q to be in the z-direction, whereas
the direction of ~k remains unspecified. From now on we use adapt the convention

|~k| = k and |~q| = q. Using these conventions and taking cosφ =
~k·~q
kq , we can define

cos θq,k+q =
~q · (~k + ~q)

q|~k + ~q|
=
kz + qz

|~k + ~q|
=
k cosφ+ q

|~k + ~q|

cos θq,k−q =
~q · (~k − ~q)
q|~k − ~q|

=
kz − qz
|~k − ~q|

=
k cosφ− q
|~k − ~q|

.

(2.62)

Also, let
k′ = |~k + ~q| =

√
k2 + q2 + 2qk cosφ

k′′ = |~k − ~q| =
√
k2 + q2 − 2qk cosφ,

(2.63)

so that

cosφ =
k′2 − k2 − q2

2kq
, cosφ =

k′′2 − k2 − q2

−2kq
(2.64)

and we obtain

kz

|~k|
+ σ

kz + qz

|~k + ~q|
=
k′2 − k2 − q2

2kq
+ σ

k′2 − k2 + q2

2k′q

kz

|~k|
+ σ

kz − qz
|~k − ~q|

= −
(
k′′2 − k2 − q2

2kq
+ σ

k′′2 − k2 + q2

2k′′q

)
.

(2.65)
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The integration variables change as

sinφdφ = −k
′dk′

kq
, with k′ ∈ [|k + q|, |k − q|] and

sinφdφ =
k′′dk′′

kq
with k′′ ∈ [|k − q|, |k + q|].

(2.66)

We recognize the terms from Eq. (2.65) in Eq. (2.61) and after substituting them,
along with the integration variable, we obtain the simpler form

Π̃xy(iωb, ~q, µ+, µ−, C) =

−ie2

4(2π)2q

∑
σ=±

σ

∫ ∞
0

dk

∫ k+q

|k−q|
dk′
[
k′(k′2 − k2 − q2) + k(k′2 − k2 + q2)

iωb + k′ + k

−k
′(k′2 − k2 − q2) + k(k′2 − k2 + q2)

iωb − k′ − k
− k′(k′2 − k2 − q2)− k(k′2 − k2 + q2)

iωb + k′ − k

+
k′(k′2 − k2 − q2)− k(k′2 − k2 + q2)

iωb − k′ + k

]
(NFD (k + µσ)−NFD (k − µσ)) + C,

(2.67)
where the trivial integration over the angle θ has been performed implicitly. Since
we are working in the limit of zero temperature, the Fermi-Dirac distribution is sim-
plified to

NFD(k ± µσ) = θ(−k ∓ µσ), (2.68)

where θ(x) is the Heaviside step function. We change the bosonic frequency back
to a real frequency, but we add a small, positive imaginary part to the frequency in
order to make the integral well-defined, such that ω+ = ω + iε. At the end of the
calculation we take the limit ε→ 0. Also, let us write out the whole expression again,
which is convenient to evaluate the integrals. We are left with

Π̃xy(ω+, ~q, µ+, µ−, C) =

−ie2

4(2π)2q

∑
σ=±

σ

∫ ∞
0

dk

∫ k+q

|k−q|
dk′
[
k′(k′2 − k2 − q2) + k(k′2 − k2 + q2)

ω+ + k′ + k

−k
′(k′2 − k2 − q2) + k(k′2 − k2 + q2)

ω+ − k′ − k
− k′(k′2 − k2 − q2)− k(k′2 − k2 + q2)

ω+ + k′ − k

+
k′(k′2 − k2 − q2)− k(k′2 − k2 + q2)

ω+ − k′ + k

]
(θ (−k − µσ)− θ (−k + µσ)) + C.

(2.69)
For the evaluation of the k′-integral we use the standard integrals∫

dx
1

±x+ a
= ± log[±x+ a]∫

dx
x

±x+ a
= ±x− a log[±x+ a]∫

dx
x2

±x+ a
= ±1

2
x2 − ax± a2 log[±x+ a]∫

dx
x3

±x+ a
= ±1

3
x3 − 1

2
ax2 ± a2x− a3 log[±x+ a]

(2.70)
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The integral over k′ yields

Π̃xy(ω+, ~q, µ+, µ−, C) =

−ie2

4 (2π)2 q2

(
ω+ − q2

)∑
σ=±

σ sgn(µσ)

∫ |µσ |
0

dk
[(

2k + ω+
) (

log
[
ω+ + 2k + q

]
+ log

[
ω+ − q

]
− log

[
ω+ + |k − q|+ k

]
− log

[
ω+ − |k − q|+ k

])
+
(
2k − ω+

) (
log
[
ω+ − 2k − q

]
+ log

[
ω+ + q

]
− log

[
ω+ − |k − q| − k

]
− log

[
ω+ + |k − q| − k

])]
+ C.

(2.71)
The integrand for k < q is identical to when k > q, hence we can simplify the integral
to

Π̃xy(ω+, ~q, µ+, µ−, C) =
−ie2

4 (2π)2 q2

(
ω+2 − q2

)∑
σ=±

σ sgn(µσ)

∫ |µσ |
0

dk×[(
2k + ω+

) (
log
[
ω+ + 2k + q

]
− log

[
ω+ + 2k − q

]
+ log

[
ω+ − q

]
− log

[
ω+ + q

])
+
(
2k − ω+

) (
log
[
ω+ − 2k − q

]
− log

[
ω+ − 2k + q

]
+ log

[
ω+ + q

]
− log

[
ω+ − q

])]
+ C.

(2.72)

For the last integral we use the standard integrals∫
dx log [ax+ b] = −x+

(
x+

b

a

)
log [ax+ b]∫

dxx log [ax+ b] =
1

2

[
−x

2

2
+
bx

a
+

(
x2 − b2

a2

)
log [ax+ b]

]
.

(2.73)

The evaluation of the integral results in

Π̃xy(ω+, ~q, µ+, µ−, C) =
−ie2

16 (2π)2 q2

(
ω+2 − q2

)∑
σ=±

σ sgn(µσ)×{
8|µσ|q +

[(
2|µσ|+ ω+

)2 − q2] (log
[
ω+ + 2|µσ|+ q

]
− log

[
ω+ + 2|µσ| − q

])
+
[(

2|µσ| − ω+
)2 − q2] (log

[
ω+ − 2|µσ| − q

]
− log

[
ω+ − 2|µσ|+ q

])
+8|µσ|ω+

(
log
[
ω+ − q

]
− log

[
ω+ + q

])}
+ C.

(2.74)

2.3.1 Static and Uniform Limit

Now we can evaluate the CME conductivity in the static limit and in the uniform
limit, by evaluating Eq. (2.33). However, one should note that taking the limit ε→ 0
causes trouble whenever the real part of the argument of a logarithm is negative.
This is dealt with by using

lim
ε→0

log [−x+ iε] = iπ + log [x] . (2.75)

When taking the limit q → 0, we will encounter the limit

lim
a→0

1

a
(log [x+ a]− log [x− a]) =

2

x
. (2.76)



28 Chapter 2. The Chiral Magnetic Effect

The static limit is defined by taking the limit ω → 0 and subsequently q → 0 of
the CME conductivity. As was mentioned before this corresponds tow a system with
a time-independent applied magnetic field that has small spatial fluctuations with
an amplitude that tends to zero. Making the argument of the logarithms positive,
Eq. (2.74) can be written for ω < q as

Π̃xy(ω+, ~q, µ+, µ−, C) =
−ie2

8 (2π)2 q2

(
ω+2 − q2

)∑
σ=±

σ sgn(µσ)×{
8|µσ|q +

[(
2|µσ|+ ω+

)2 − q2] (log
[
ω+ + 2|µσ|+ q

]
− log

[
ω+ + 2|µσ| − q

])
+
[(

2|µσ| − ω+
)2 − q2] (log

[
−ω+ + 2|µσ|+ q

]
− log

[
−ω+ + 2|µσ| − q

])
+8|µσ|ω+

(
iπ + log

[
−ω+ + q

]
− log

[
ω+ + q

])}
+ C.

(2.77)
The CME conductivity in the static limit is

lim
q→0

lim
ω→0

σxCME(ω+, ~q, µ+, µ−, C) = lim
q→0

−e2

32π2

∑
σ=±

σ sgn(µσ) {8|µσ|

+
4|µσ|2 − q2

q
(log [2|µσ|+ q]− log [2|µσ| − q])

+
4|µσ|2 − q2

q
(log [2|µσ|+ q]− log [2|µσ| − q])

}
+
iC

q

=
−e2

4π2

∑
σ=±

σµσ +
iC

q
.

(2.78)

If we take a moment to interpret this result, we find something odd. We are consider-
ing a system with broken inversion symmetry, such that the two cones are seperated
in energy by an amount ∆E. The effective chemical potential of both cones lies on
the same energy. If we then turn off the time-dependence in the system, it should be
in an equilibrium. If we find a nonzero conductivity, an electric current runs through
the system, from which one can extract energy. However, a system in equilibrium
must be in a state of lowest energy, so this is clearly a contradiction. We thus con-
clude that the conductivity in the static limit in equilibrium must be zero and

C =
−ie2q
4π2

∑
σ=±

σµσ =
−ie2q
4π2

∆E. (2.79)

We thus claim that in equilibrium

lim
q→0

lim
ω→0

σxCME

(
ω+, ~q, µ+, µ−

)
= 0. (2.80)
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Now that the constant C has been determined, we can write down a universal ex-
pression for the conductivity for any seperation in energy. This reads

σxCME(ω+, ~q, µ+, µ−,∆E) =
e2

8 (2π)2 q3

(
ω+2 − q2

)∑
σ=±

σ sgn(µσ)×{
8|µσ|q +

[(
2|µσ|+ ω+

)2 − q2] (log
[
ω+ + 2|µσ|+ q

]
− log

[
ω+ + 2|µσ| − q

])
+
[(

2|µσ| − ω+
)2 − q2] (log

[
−ω+ + 2|µσ|+ q

]
− log

[
−ω+ + 2|µσ| − q

])
+8|µσ|ω+

(
iπ + log

[
−ω+ + q

]
− log

[
ω+ + q

])}
+

e2

4π2
∆E.

(2.81)
This is the central result in this thesis. Now the general expression for the static limit
is

lim
q→0

lim
ω→0

σxCME(ω+, ~q, µ+, µ−,∆E) =
−e2

4π2

(∑
σ=±

σµσ −∆E

)
. (2.82)

The uniform limit is defined by taking the limit q → 0 followed by ω → 0. This
corresponds to a system with an applied magnetic field that is completely homoge-
neous, but has small fluctuations in time with an amplitude that tends to zero. For
q < ω we write Eq. (2.74) as

Π̃xy(ω+, ~q, µ+, µ−,∆E) =
−ie2

16 (2π)2 q2

(
ω+2 − q2

)∑
σ=±

σ sgn(µσ)×{
8|µσ|q +

[(
2|µσ|+ ω+

)2 − q2] (log
[
ω+ + 2|µσ|+ q

]
− log

[
ω+ + 2|µσ| − q

])
+
[(

2|µσ| − ω+
)2 − q2] (log

[
−ω+ + 2|µσ|+ q

]
− log

[
−ω+ + 2|µσ| − q

])
+8|µσ|ω+

(
log
[
ω+ − q

]
− log

[
ω+ + q

])}
− ie2q

4π2
∆E

(2.83)
To compute the CME conductivity in the uniform limit, we need to Taylor expand
the function up to second order to find

lim
ω→0

lim
q→0

σxCME(ω+, ~q,∆E) = lim
ω→0

−e2

64π2

∑
σ=±

64(|µσ|)3σ sgn(µσ)

3 ((2|µσ| − ω) (2|µσ|+ ω))

+
e2

4π2
∆E =

−e2

12π2

∑
σ=±

σµσ +
e2

4π2
∆E.

(2.84)

The expressions found in the uniform and static limit are in accordance with the
literature, such as Ref. [22]. In order to present the results graphically in the next
chapter, we would like to express Eq. (2.81) in a different set of variables, i.e. x = ω

q ,
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y± = µ±
q and µ±. We also shorten the expression by writing

σxCME (x, y+, y−, µ+, µ−,∆E) =
∑
σ=±

e2µσ

(2π)2
σ
(
x2 − 1

)
×

1−
∑

α,α′=±

α

16|yσ|

[(
2|yσ|+ α′x

)2 − 1
]

log

(
α′x+ 2|yσ| − α

α′x− α

)
+

e2

4π2
∆E.

(2.85)

This can be put in the form

σxCME (ω, qµ+, µ−,∆E) =
e2

4π2

(∑
σ=±

σµσf(ω/q, µσ) + ∆E

)
, (2.86)

where f(ω/q, µσ) captures the structure of the dependence of the conductivity on the
frequency and momentum. The full expression for the CME conductivity coincides
with expressions found in the literature, such as Ref. [23].
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Results

3.1 Results

In this section we investigate the properties of the obtained formula for the CME
conductivity by plotting Eq. (2.81) for different choices of parameters in the case
∆E =

∑
σ=± σµσ. We are mostly interested in its behaviour as a function of ω/q, for

various values of µ+, µ− and q.
We will first take a look at the typical behaviour of the function for an arbitrary

set of parameters. In Fig. 3.1 the real and imaginary part of the CME conductivity
are plotted for µ+ = 15, µ− = −10 and q = 2. The real part is the conductivity
for an applied alternating magnetic field, while the imaginary part is the conductiv-
ity when a constant magnetic field is applied. The real part of the conductivity is
caused by the imaginary part of the vacuum polarization diagram, which amounts
to the self-energy of the photons. This is visualized by the emission and absorption
of virtual photons at all energies. The imaginary part of the conductivity is caused
by the real part of the vacuum polarization diagram. This contributes only when the
electron that emits or absorbs a physical photon is restricted to the Weyl cone. This
can be seen in the behaviour of the graphs. The imaginary part of the conductivity is
zero in the biggest part of the graph, because for those ω and q absorption and emis-
sion of photons is not allowed. It is nonzero for ω < q and 2µσ − q < ω < 2µσ + q for
σ = ±. The last two regions have a width 2q because the direction of the momentum
can be altered in a transition, making it possible for an electrons to emit or absorb
a photon in this region without leaving the cone. The real part of the conductivity
does not have these prohibited regions, since it is caused by the emission and ab-
sorption of virtual photons, which is not restricted by the Weyl cone.

It is immediately clear that there are three interesting regions where the real
and imaginary part undergo a more rapid change than outside these regions. These
regions are centered around the vertical lines that are located at ω = q, ω = 2µ+ and
ω = 2µ−. The first of these regions is a result of both the electrons with positive and
negative chirality, while the second and last are contributions of only the latter and
the former, respectively. These regions exhibit typical resonance behaviour, which is
caused by interband transitions in both cones. The second peak is higher than the
first, because the conductivity has a prefactor, containing an (ω/q)2, as can be seen in
Eq. (2.85). The real part of the conductivity exhibits a local extremum when ω = q.
The real part also has two minima and maxima around the second and last verti-
cal line, due to resonance. After the last resonance the real part relaxes to a certain
value. The imaginary part has a small bump for 0 < ω/q < 1, after which it becomes
zero until it reaches the two resonances.

In Fig. 3.2 we show the CME conductivity for all the possible combinations of the
signs of the chemical potentials of the cones when q = 3. First of all one can see that
the resonances lie closer to each other in these graphs, when compared to Fig. 3.1,
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FIGURE 3.1: Real(red, solid) and imaginary(blue, dashed) part of the
CME conductivity as a function of ω/q with µ+ = 15, µ− = −10,
q = 2 and ∆ =

∑
σ=± σµσ . The conductivity is normalized by a factor

C0 = e2

4π2 . The vertical lines are positioned at ω/q = 1, ω/q = 10 and
ω/q = 15.

due to the different choice of q. The peaks in the real part overlap a bit and choosing
a greater q will result in even more overlap. In the Fig. 3.2a and 3.2b the effective
chemical potentials are of the same sign and opposite in Fig. 3.2c and 3.2d. It is im-
mediately clear that both the real and imaginary part flip vertically when the sign of
an effective chemical potential is changed at the corresponding resonance frequency.
We see that the sign of the biggest effective chemical potential determines the sign of
the assymptotic value of the conductivity. Furthermore we see that the amplitude of
the peak for 0 < ω/q < 1 depends on the relative sign of the two effective chemical
potentials. The amplitude is biggest when the chemical potentials have a relative
minus sign, as the contributions from both cones amplify each other, while they par-
tially cancel each other out when the signs are the same.

It is also interesting to investigate the behaviour of the static and uniform limits
of the conductivity. In order to do so, we use the form of Eq. (2.86). To simplify
matters we set µ+ = −µ− = µ5 and we investigate the behaviour of the funtion
f(ω/q, µ5). This is also the case in the experiment that is discussed in this thesis.
We choose the numerical value µ5 = 50. This is arbitrarily chosen, since there is
no obvious preference. This is plotted in Fig. 3.3. In this plot we see that function
f(ω/q, 50), and therefore also the conductivity, does not depend on ω and q seper-
ately, but is depends on their ratio. ω/q � 1 corresponds to the static limit, while
ω/q � 1 corresponds to the uniform limit. It is now clear that the conductivity is
drastically different in both limits. We can now look back at the experiment that
has been discussed in the introduction. The team had applied a time-independent,
homogeneous magnetic field on the material. In this case the ratio ω/q is not well-
defined. The real value can vary over the whole range of the positive numbers. Any
perturbation, however small, in either the time-dependent behaviour or the homo-
geneity of the magnetic field during the experiment could have determined the limit
the team was working in. Since the limit in which the experiment was performed is
not well-defined, the authors’ claim in the paper that they looked at the static case is
not necessarily true. To investigate the limit used in the experiment further, the exact
value of µ5 in Eq. (1.21) can be calculated, after which the prefactor in Eq. (2.1) is
determined from the given data. However, the values of the parameters in equation
µ5 should be precisely determined before this can be done.
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(A) CME conduc-
tivity for µ+ =
15, µ− = −10

and q = 3.

(B) CME conduc-
tivity for µ+ =
−15, µ− = 10

and q = 3.

(C) CME conduc-
tivity for µ+ =
15, µ− = 10 and

q = 3.

(D) CME conduc-
tivity for µ+ =
−15, µ− = −10

and q = 3.

FIGURE 3.2: Real(red, solid) and imaginary(blue, dashed) part of the
CME conductivity as a function of ω/q for ∆ =

∑
σ σµσ . The con-

ductivity is normalized by a factor C0 = e2

4π2 . The vertical lines are
positioned at ω/q = 1, ω/q = 20

3 and ω/q = 15.
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FIGURE 3.3: Plot of the function f(ω/q, 50) as function of ω/q for ∆ =∑
σ σµσ . The function is equal to 1 in the static limit, while it is 1/3 in

the uniform limit.

Naively, one would claim that the experiment was not conducted in the static
limit, because we have argued in Section 2.3 that there should be no current in the
static limit in equilibirum. However, looking back at Eq. (2.81), we find that the
choice of ∆E might be different than ours in the experiment. This is indeed the case,
since the material used in the experiment is not inherently a Weyl semimetal. It is a
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TABLE 3.1: CME conductivity in the static and uniform limit in the
case of both effective chemical potential on the same energy and both
Weyl points at the same energy in the first and second column, re-

spectively.

∆E =
∑

σ=± σµσ ∆E = 0

Static limit 0 −e2
4π2

∑
σ=± σµσ

Uniform limit e2

6π2

∑
σ=± σµσ

−e2
12π2

∑
σ=± σµσ

Dirac semimetal, but the Dirac fermions were turned into Weyl fermions by apply-
ing a magnetic field and therefore breaking time reversal symmetry. In this case the
Weyl points lie on the same energy and ∆E = 0. In this case the CME conductivity
does not vanish, as can be seen from Eq. (2.81). This is not in contradiction with the
argument that systems in equilibrium cannot conduct a current, because there is no
equilibrium in this case. The effective chemical potentials of the two cones lie on a
different energy, which indicates a non-equilibrium state. The chemical imbalance
is fueled by the electric and magnetic fields that are applied. Therefore, extracting
energy from the current is possible, because the energy is in fact extracted from the
applied fields. Summarized, the value of the CME conductivity depends on which
symmetry is broken. In table 3.1 we have presented the static and uniform limit for
the case that the effective chemical potentials lie on the same energy and for the case
that the Weyl points lie on the same energy.
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3.2 Discussion and Outlook

A full derivation has been made of the chiral magnetic conductivity in a Weyl semimetal
with a chemical and chiral potential at zero temperature when a magnetic field with
a certain wavenumber and frequency. We have derived an analytic function for the
conductivity due to the chiral magnetic effect using field-theoretical methods and
it is in agreement with the literature. It was found that one has to be careful when
deriving this result, since the subtraction of the contribution of the Dirac sea yields a
result that is determined up to a constant, ∆E. It is argued that no current is allowed
to flow in the static. This statement allowed us to determine ∆E. However, an ex-
periment was presented that might have been conducted in the static limit and the
researchers observed a current. We came to the conclusion that in this experiment
the static limit does not correspond to an equilibrium, because the time reversal sym-
metry was broken instead of inversion symmetry. This leads to a different value for
∆E. The values for the conductivity in both limits and for breaking of both sym-
metries was represented in table 3.1. We emphasize the importance of considering
which symmetry is broken when conducting an experiment on the chiral magnetic
effect.

Furthermore, the authors of the paper on this experiment claimed to have per-
formed the experiment in the static limit. Because the applied magnetic field was
both time-independent and uniform, the limit was not well-defined. Small pertur-
bations in the experiment could have caused a shift to the uniform limit in which
the experiment is valid. This shows us that in further experiments the limit has to
be taken into account and should be made less sensitive to perturbations. This can
be done by applying a magnetic field that is either homogeneous and has nonzero
frequency or that is time-independent and has nonzero wavenumber.

Before being able to use WSMs in practical applications, we first need to expand
our theoretical knowledge of these materials. This thesis has discussed a model for
the conductivity due to the chiral magnetic effect at zero temperature and free of in-
teractions between the electrons themselves. Naturally, in practise the model needs
to be extended to finite temperatures. In this thesis one can find an expression, Eq.
(2.67), for the chiral magnetic conductivity at finite temperature, but in the end result
the temperature has been put to zero. Therefore, from this intermediate expression
a temperature-dependent answer can easily be extracted, but this is only possible
in a numerical manner. It is impossible to find an exactly solvable analytical model
for nonzero temperature. However, one can find a model for low temperatures,
which has been done in Ref. [23], or one could use numerical methods to describe
temperature-dependent behaviour of the conductivity. Furthermore, a model that
incorperates the interactions between the electrons is vital. These interactions are
strong of nature. This type of physics can be studied using AdS/CFT correspon-
dence, such as in Refs. [24] and [25], in which a way has already been paved into the
world of AdS/CFT correspondence for Weyl semimetals.
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