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Abstract

The focus of this thesis lies on the generic evaluation of levels. We believe this is the most crucial compo-
nent of a generic level generator. We describe three ’generic’ evaluation methods, of which the breaking-rule
approach was the most promising. A heuristic is used that predicts the problems the player has to overcome,
to solve the level. It uses a restricted input space and breaks certain rules to estimate the distance from a
solution. To test the evaluation method, we generated levels for 5 di↵erent puzzles and tested their di�culty
label in a small experiment. The levels are deemed hard by the experiment, even after generating an easier
level set, when most participants could not solve any levels in an hour of play. The solving time and di�culty
rating the participants gave to the levels has a high correlation with the evaluation scores of the breaking-rule
approach.
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1 Introduction

1.1 What is a Puzzle Level

People have di↵erent definitions for ’puzzle’ and
’level’. By a puzzle we mean the set of rules that
describe input possibilities, their consequences and
goal conditions: all necessary information needed in
order to solve each level created for the puzzle. While
a level is a certain configuration of puzzle elements
and provides the actual challenge to the player.
We want to generate fit levels, where a fit level is

perceived as enjoyable and interesting by the player.

1.2 Automatic Level Generation

Automatically generating puzzle levels has been done
for years on numerous puzzles and can provide sev-
eral benefits over hand-crafting levels, for example,
automatic generation is often faster than the level
design process done by humans. The puzzles can
be evaluated on di�culty, thereby presenting play-
ers with an appropriate challenge. Furthermore, the
generated levels can aid as a base for human design-
ers to create better levels.

1.3 Transportation Puzzles

A deterministic puzzle game is a one player game
that involves no chance. If a sequence of moves re-
sults in a solution, that sequence will always result
in a solution. In this thesis we focus on a sub-set of
deterministic puzzle games: transportation puzzles.
What is a transportation puzzle? Transportation

puzzles have multiple elements that are transformed
by input from the player. This transformation is of-
ten a change in position, but can also be a change
in element type, size, rotation, etc. Transportation
puzzles always have a goal-state which is defined on
an element level. In the case of Sokoban, the goal-
state is reached when the position of each box el-
ement is equal to the position of one of the depot
elements. Transportation puzzles have mutable el-
ements, and immutable elements. In the case of
Sokoban, the mutables are the boxes, while the im-
mutable elements are the walls and depots.
Note that we did not include the worker (which in-

teracts with the boxes) as a mutable here. Through-
out the course of this thesis we discuss Sokoban and
variations of Sokoban, we distinguish between the
worker and mutables themselves (the boxes). So
when we refer to mutables it does not include the
worker.
Examples of transportation puzzles are: Rush

Hour, Sokoban, Jelly no Puzzle, Snake Bird, and Zen
Garden.

1.4 Focus on the Evaluation of Levels

In our literature research [1] we broke the generation
of levels down into three parts:

• Puzzle level solving:
Is the level solvable?

• Puzzle level evaluation:
How fit/di�cult is a certain level?

• Puzzle level search:
How to find fit levels?

The focus of this thesis is on the level evaluation
part. We think the quality of the generated levels
is most dependent on the evaluator. The solver is
only influencing how quick we will get results (when
the solver is not intertwined with the evaluator).
The search method has influence on which levels
are found, but most search methods are guided by
the evaluation method, thus even mediocre search
methods are likely to find good levels when they are
guided by a perfect evaluation method. In the case
of the evaluation method being mediocre, the search
method is guided to worse quality levels. Further-
more, the program is more likely to output levels
with a wrong di�culty label.
The level evaluator is also the most specific part

of puzzle level generation. Well known search al-
gorithms can be used to make a generic solver [2].
Genetic Algorithm (GA) and Local Search can be
used as a generic search method. No such algorithm
can be used for generic puzzle level evaluation, as
the evaluation method needs to identify what makes
a problem hard for a human.
To test the evaluator’s performance we wanted to

generate new levels, so we had to implement a search
method. However, minimal e↵ort is spent on the
search method.
The way we evaluate levels is closely related to the

solver and in order to keep our approach feasible we
do concern ourselves with the time and mostly mem-
ory complexity of the level solver. Generating levels
quickly is deemed less important than the quality of
the levels.

1.5 Thesis Overview

We have narrowed generic down to: generic for trans-
portation puzzles. We started with a specific gen-
erator for one of the most popular transportation
puzzles (Sokoban), while ensuring that the program
is already generic for transportation puzzles (so we
would not have to remove Sokoban specific exploits
later on).
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When the program worked satisfactorily well,
we made it generic without touching the core
evaluation method. Instead we just transformed the
core system’s API to work on more di↵erent puzzle
rules incrementally.

We will first look at the literature on generic puz-
zle level generation. Then a extensive introduction
is given on the problem we want to tackle in this
thesis. From there the core part of the thesis be-
gins: the three approaches we have implemented and
an explanation on how generic the final method is.
Each approach led to the next. The third approach
gave the best results by far. We present all three
to inform the reader of our decisions along the way.
Afterwards we present a pilot experiment to test our
results. We end the thesis with our view on future
work and a conclusion.

2 Literature

This section will provide a compact literature
overview, for the full literature research see [1].
As mentioned before the generation of levels can

be broken down into three parts. We will look at
the literature on each of the three parts separately
(solve, evaluate and search).
The focus of this thesis is on the evaluation part.

So at the end of this section we will list some general
properties on level di�culty that can be used in a
generic evaluation function. We have put this list
together from the literature research.

2.1 Puzzle Level Solving

The puzzle level solving methods used throughout
previous research can be split into the following cat-
egories:

• Exhaustive Search Solvers:
By far the most general and easy to implement
is an exhaustive search based solver. Drawbacks
are often computing resources. Depending on
the algorithm large amounts of time, memory,
or both can be needed in order to find a solution.

Some examples of exhaustive search algorithms
used in puzzle level solving are: breadth
first search (BFS) [3] [2], depth first search
(DFS) [4], A*/BestFS [2] [3], iterative deepen-
ing (ID/IDA*) [5], and dynamic programming
(DP) [6].

• Techniques Partially Considering the
Search Space:
Researchers have tried to omit exhaustively

searching a level’s search space by partially
traversing it [7] and with plausible move gen-
eration [8]. Plausible move generation cuts o↵
branches that are never to be considered again.
A drawback of this is the possibility to cut o↵
essential moves.

• CSP and ASP:
Constraint Satisfaction Programming (CSP) is
a popular and general technique for modeling
combinatorial optimization problems. Pelánek
[9] and Je↵erson et al. [10] make use of CSP to
solve their generated levels, and use the solving
time directly as evaluation score.

Answer Set Programming (ASP) [11] is similar
to CSP. Smith et al. [12] [13] and Neufeld et
al. [7] use ASP to ensure their generated levels
are solvable.

• Deductive Solvers:
In deductive reasoning methods guarantee that
any advances within the reasoning, are correct.
No guesses are made at any time.

Deductive solvers use deduction techniques to
gather more information on a level. With this
information, more deductions can be made un-
til a solution is found. Researchers often claim
that their deduction solvers are based on general
techniques that can be applied to many puz-
zles [14] [15] [16].

2.2 Puzzle Level Evaluation

• Trained Model as Evaluation Method:
The work of Mutser [17], and Vendrig [18] both
involve fitting user data on a linear model with
several hand-crafted metrics.

Wang et al. [19] present a Genetic Algo-
rithm (GA) approach that evolves an evaluation
method to fit user data. This approach is tested
on Sudoku only, although Wang claims it to be
generic.

These methods are generic as long as there is
good quality user data available. In our thesis
we cannot use these methods, as we aim for a
method that works when only a definition of the
puzzle rules is given.

• Deduction Based Evaluation Method:
Deductive reasoning is based on information
that is known to be true.

Meng and Lu [15] presents a method to generate
Sudoku levels, the levels are evaluated by the
necessary application of five deduction methods.
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The most di�cult required assignment is used
as rating, so a level gets a rating between 1 and
5. A similar approach is presented by Oranchak
[20] for Shinro1 levels.

Browne [14] presents a solving and evaluation
technique for logic puzzles called Deductive
Search (DS). The authors measure the required
recursive depth of the deductive reasoning, and
use this to evaluate the levels. The technique
has been tested on 5 di↵erent logic puzzles and
the di�culty rating seems accurate.

Other work that uses deduction based evalua-
tion are [9] [10].

• Search Space Related Evaluation Method:
A puzzle’s search space is the directed graph
(may contain cycles) that has a node for each
state the level can be in. It has a directed edge
from node N1 to N2 when the corresponding
state N2 is reachable from N1.

Jarušed and Pelánek [21] [22] [23] label each
state in the search space of Sokoban, with the
distance from the closest solution and analyze
how a human solving model solves the level. The
method shows promising results, although it will
require a lot of computing resources.

Guid and Bratko [24] argue that a problem is
more di�cult when new and better solutions are
found at higher search depths in Chess.

Kotovsky and Simon [25] present experiments
aimed to explain the di↵erences in di�culty
of isomorphic puzzles. As the search spaces
are identical in isomorphic puzzles, something
about the presentation of puzzles has influence
on their di�culty.

Other relevant research related to the search
space of puzzles are [12] [26] [27].

2.3 Puzzle Level Search

• Local Search:
Local Search is a very general search method.

Oranchak [20], Je↵erson et al. [10] and Haupt-
man et al. [28] all use local search in their search
method.

• Generation with Genetic Algorithms:
Genetic Algorithms are another common search
method in puzzle level generation.

The drawback is that in practice it is hard to
define a useful crossover method for many puz-
zles, which reduces the GA on those puzzles to a

1
en.wikipedia.org/wiki/Shinro

simultaneous local search algorithm, that man-
ages the time spent per local search instance
(which is still more e↵ective than plain local
search).

Williams-King et al. [26], Ashlock [6], Khalifa
and Fayek [2] and Lim and Harrell [3] all use
GA in their search method.

• Constructive Search Approaches:
Constructive search approaches define parame-
ters for a random generator, which then gener-
ates levels. The evaluation method is only con-
sulted after the level is created. This approach
often ensures the solvability of levels with the
generation parameters.

Browne [16], Vendrig [18], Taylor and Parberry
[5] and Murase et al. [29] all use constructive
algorithms in their search method.

2.4 General Evaluation Properties

We have encountered several general properties that
influence puzzle level di�culty. The list of general
properties we deem most important follows:

• Required changes of interaction / Muta-
ble switches: In Sokoban for instance, inter-
acting with a di↵erent box.
The need to change the interaction a number of
times, in order to find a solution, seems to in-
dicate di�culty and interesting level design [5]
[30].

• Shortcut solutions: Unintended solutions
that can be found without grasping the concept
the level designer intended the player to under-
stand.
Shortcut solutions function like cheats and are
very likely to reduce a level’s di�culty [12].

• Potential sub-problems that lead to
checkpoints: A solved sub-problem gives a
partial solution, when this partial solution is in-
cluded in a complete solution it is a checkpoint.
A level is generally more di�cult if a lot of
potential sub-problems exist and only a few of
these form checkpoints. A similar observation
was made by [27].

• Linear search space: The player has no
choices to make in a linear search space, there
is basically one option. Once the player real-
izes the search space is linear the level becomes
trivial. A similar observation was made by [25].
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• Tricky search space: When a search space
contains a lot of seeming shortcut solutions that
fail once the search is continued to a deeper
level, this is a tricky search space. The player
will probably get tricked in thinking he or she
found a shortcut solution.
Once the player is tricked, he must then think
outside ’the box’ to find the real solution. A
similar observation was made by [24].

• Elegance: This is more related to player inter-
est than level di�culty. Elegance is the ratio
between perceived di�culty and the complexity
in terms of elements in the level.
For instance, a Sokoban level with 3 boxes, that
is equally di�cult as a level with 10 boxes; is
considered more elegant than the latter, and
thus the former is preferred.

Each of the properties listed above is utilized in at
least one of our approaches.

3 What is Necessary for an Evalua-

tion Function and what Character-

istics are Desirable?

The purpose of this section is to bring the reader
up to speed with some of the problems we want to
overcome in this thesis. We will explain what we are
looking for in terms of characteristics and what we
want to avoid, in an evaluation function.
First we will look at level solvability, then intro-

duce a fully functional Sokoban specific generator as
a prototype to build upon in the rest of the thesis.
Afterwards we cover 3 subsections on the character-
istics we desire our evaluation method to possess and
why.

3.1 Is a Level Solvable?

We want our generated levels to be solvable. There
might be puzzle rules for which the existence of un-
solvable levels does have meaning, but we will as-
sume we are generating for puzzles that always need
solvable levels.
To ensure all final levels are solvable, we simply

made a puzzle solver that verifies whether a level
is solvable. The solver uses a ’ruleAPI’ so it will
solve levels for each puzzle that has implemented the
’ruleAPI’.
We cannot use a naive breadth first search (BFS)

implementation for our solver, as transport puz-
zles are often PSPACE Complete and even reason-
ably sized instances can consume several gigabytes of
memory in the solving process. We did end up using

an A* algorithm with our own invented heuristics to
be able to solve a bigger range of levels.

3.2 Simple Iterative Local Search Generator

We set up a Sokoban level generator prototype. The
main purpose of the prototype was to get a feeling
of the di↵erent parts needed for a generic generator,
to give a better judgment on how the evaluator /
generator performed later on.

3.2.1 How the Iterative Local Search Gener-
ator works

The level evaluator counts the smallest number of
box switches necessary to solve a level. A box switch
is counted when a di↵erent box is pushed from the
last box that has been pushed. The level search /
generation part uses a simple iterative local search
(ILS) like algorithm. The algorithm works as fol-
lows: a local search is performed on Y neighbors.
Neighbors are generated by applying X changes to
a level. Once no improvement is found the process
is repeated with X + 1 changes. The next iteration,
local search will be performed on the best improve-
ment. If an improvement is found, X is set to its
minimum value: two. This process is repeated un-
til G generations/iterations of the local search phase
have been performed. After G generations/iterations
the best level is returned as the result.

3.2.2 Analyzing the Generated Levels

This simple setup produced decent quality levels in
a reliable time frame, but the level evaluator was of
course not perfect. We would often see that the first
3 box switches were trivial in the sense that only a
small number of wrong moves can be made during
this phase of the level. Furthermore, the possible
wrong moves immediately result in a deadlock or a
box unable to reach any goal independent of other
boxes. In other words; the possible wrong moves
(in the start of the level) were easy to identify as
such. This pattern is destructive as the actual level
di�culty has not increased much by these 3 neces-
sary early switches. A neighbor level with more non-
trivial box switches is now harder to find, since we
require a level with 4 extra non-trivial box switches,
or a similarly locally optimized level with one extra
box switch. The latter is easy to achieve with a local
search on this particular neighbor, but not likely to
occur directly in the neighborhood.
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Figure 1: ILS performance, generations versus eval-
uation score of tried levels. A more opaque color
means more levels scored this evaluation.

3.2.3 Small Conclusion

As mentioned before, the purpose of this prototype
was not focused on the generation results yet. We
gathered data on the results from the generation pro-
cess. In Figure 1 a scatter diagram of the evalua-
tion score of tried levels per elapsed generation is
shown. The data indicates that further on in gen-
eration, the levels get a higher evaluation score, as
well as that most tried levels are either unsolvable
or get a low evaluation score throughout the whole
generation process. The increase of evaluation score
is due to the nature of ILS which iterates on the
previously best level found. It would be interesting
to have an adapting algorithm that interprets the
metrics while it is solving and adapts its strategies
likewise, however this thesis is more focused on the
evaluation part. The graph is thus only used to indi-
cate that the ILS generator does decent work and is
viable for testing evaluation functions (more on this
is explained in subsection 3.5).
Throughout the rest of the thesis we have used the

ILS generator to generate levels in combination with
several di↵erent level solvers and evaluation func-
tions.

3.3 Performance, Desired Correlation of
Level Di�culty and Processing Time

Since we strive for a generic generator it is di�cult to
keep the solving process optimized. Optimization is
often about finding specific cases and exploiting them
with a clever data-structure, which is the opposite of
a generic solution.
Generating hard/interesting levels for transport

puzzles will in general take longer than the genera-
tion of a simple and easy level, not the least because
for most transport puzzles, there are much fewer in-
teresting levels than easy or unsolvable ones.

(a) A deadlock example, the two boxes at the bottom
cannot ever move.

(b) Not a deadlock example, each box can move if we
disregard the boxes that can move initially.

Figure 2: Deadlock example.

If program A is going to take X time to evaluate
any level, and program B takes, for instance, X/Y
time to evaluate an easy/uninteresting level, while
taking X ⇤ Y time to evaluate a di�cult/interesting
one; we prefer program B over A, since the vast
majority of levels our generator tries in the process,
are either unsolvable or uninteresting (see Figure 1).
This leads to two conclusions. Firstly: if easy levels
are processed quickly, very long evaluation processes
of hard levels are feasible. Secondly: optimizing the
filtering of unsolvable levels is relevant.
There are two easy and generic ways to optimize

the filtering of unsolvable levels (both of these often
also speedup the process for solvable levels by stop-
ping the solver from expanding an unsolvable state).
One way is ’deadlock detection’: are mutables that
have not yet reached their goal unable to move inde-
pendent of other mutables that can still be moved?
(See Figure 2). The other way is ’unreachable goals’:
mutables that are no longer able to reach a goal state,
independent of any other mutable.

3.4 Relative Di�culty

In a perfect world, where a heuristic models the way
humans solve puzzles perfectly, the number of nodes
the solving algorithm has to expand in order to find
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a solution, will have a linear correlation with the
humanly perceived di�culty. Because the heuristic
guides the solver to the same clever shortcuts (or
misleading pitfalls for that matter) as a typical hu-
man would (we will come back to this observation in
the next subsection).
Note that this ’perfect’ heuristic does not exist by

fact, since humans perceive relative di�culty di↵er-
ent from one another.
Player A might have solved a thousand Sudokus

that are very similar to Sudoku instance X but dif-
ferent from Sudoku instance Y , while player B might
have solved a thousand Sudokus that all have very
di↵erent characteristics. Level X is probably easier
for player A compared to level Y , while player B
might think of both levels to be equally di�cult.
In this work we want to create an objective di�-

culty evaluator with the possibility to distinguish be-
tween the required solving strategies during the solv-
ing procedure, so that the relative di�culty within
a level set, can be accounted for later on. We will
not do anything with this relative di�culty in this
thesis, apart form keeping it in mind while designing
the di�culty evaluation function.

3.5 Iterating on the Evaluation Function us-
ing the Generation-Validation Method

From the observation about the perfect human like
heuristic, from the previous subsection, follows that
once we have a sub-optimal model of a typical hu-
man solving behavior, we can measure the heuristic’s
e↵ectiveness with the correlation between expanded
nodes and the human perceived di�culty. We can
use the observation of subsection 3.3: the evaluator
must be quick on easy levels, and may be slow on
hard levels, in our algorithm design combined with
the ILS generator, to find levels that took long to
evaluate. So when an easy level comes up, we can
analyze the flaws of the evaluator.
The generator searches for the level with the high-

est evaluation score. Thus once a level is evaluated
too high, because of a certain flaw in the evaluator,
this flaw will have been exploited as much as the
generator possibly could, which makes it easier to
understand and address the problem. We call this
the generation-validation method
The same holds for hard levels that receive a rel-

atively low score. If the heuristic works too well on
these levels, there is probably some computer solv-
ing advantage in the level that the heuristic exploits.
For instance, a harder level often has less free space
to traverse, as movement through the level needs to
be restricted to one or two clever and concealed solu-
tion paths. This results in less feasible nodes in the

Figure 3: Sokoban example level that requires 14 box
switches, we call it the ’staircase example’.

search space making a brute-force search quicker on
a tight hard level than on an open easy level, such a
flaw is easy to see when multiple easy levels with a lot
of open traversing space come up in the generation
process.
An example of a flaw of the prototype generator,

identified through the generation-validation method,
can be seen in Figure 3 of the staircase example. It
has only two boxes and requires 14 switches, this
is the highest number of box switches encountered
(and maybe possible) for this level size and box
count. Interestingly, the level turned up on multiple
occasions which was never the case for any other
level. The search space of this level is linear (when
the player has deduced that a box cannot reach its
goal when pushed in one of the corners). This level
exploits the fact that the mutables-switched metric
does not consider a level’s search space, to such an
extreme, that it is easy to identify the problem and
a direction on how to fix it: make the evaluation
dependent on the search space.

Overrating easy levels is much worse than underrat-
ing hard levels. We want hard levels, and eventu-
ally a set of interesting levels. When the easy lev-
els (which are not interesting after one or two intro-
duction levels) are overrated, these levels are more
likely to end up in the final level set, which results in
wrongly labeled levels in the final level set. On the
other hand, when hard levels are underrated, these
levels are less likely to end up in the final level set:
other levels get a better score and overshadow the
wrongly labeled hard levels. However, as long as the
easy levels receive a correct label and not all hard
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levels are underrated, the final level set will not con-
tain wrongly labeled levels. The biggest impact of
underrating a percentage of hard levels would be a
longer generation time for the same quality of a level
set.
The generation-validation method has less bene-

fit on ’hard but underrated’ levels as these are often
kept under the radar (others score higher and are
pushed to the top), but for puzzles like Sokoban we
can use the widely available level-sets with hard lev-
els, to help analyze when the evaluator is underrating
levels.
Note that any algorithm characteristic can be eval-

uated using the generation-validation method. For
instance, we tested memory use by making the eval-
uating score dependent on the memory consumed
while solving a level, as well as time and many other
characteristics.

4 Sub-Problem Driven Approach

Humans often break problems down into multiple
sub-problems. As we explained in subsection 3.3 we
believe that mimicking human solving strategies has
a lot of potential in the evaluation of human per-
ceived di�culty of a level. With the sub-problem
driven approach we wanted to break the problem of
a whole level up into smaller pieces and estimate how
hard it would be for humans to split the problem up
into meaningful sub-problems.
In this section we will take an in depth look at the

sub-problem driven approach. We will first provide
an overview of how the approach works. Then we in-
troduce an abstracted view of a level’s search space
with the goal-step-plan and the goal-step graph, look
at how the problem is split up into sub-problems us-
ing this abstraction, and explain how the search for
a solution is driven by the expansion of nodes. Af-
terwards we explain how the heuristic works that
greatly improved the performance of the approach,
how the filtering of less potential nodes was unsuc-
cessful, and how an order in newly generated nodes
could potentially improve the computational perfor-
mance. The section is concluded with the reasoning
behind the choice to continue with a di↵erent ap-
proach.

4.1 Sub-Problem Driven Approach
Overview

The main method of the sub-problem driven ap-
proach receives a problem P0, we check if this prob-
lem is trivially solved, and when it is not, we split the
problem up into two smaller sub-problems. We split

the problem in di↵erent places, each time creating a
new sub-problem pair and a new node for the search
algorithm. A node contains a sub-problem pair and
a set of valid moves to reach its current state. We de-
cide which sub-problem pair is most promising and
repeat the process on each sub-problem separately.
The first problem that is handed to the algorithm

is the whole level we want to solve. We calculate
a higher level abstraction of the level’s search space
and traverse it until we get stuck. We use the infor-
mation on where we got stuck at, to create the new
sub-problem pairs.

4.2 Goal-Step-Plan

The goal-step-plan is an abstraction over the raw in-
put possibilities of a puzzle, to a level and mutable
specific input scheme. It resembles a naive linear
plan for one mutable towards its goal. The plan is
broken into steps of equal subsequent player inputs.
See Figure 4 for the individual steps each box (mu-
table) will take in the displayed Sokoban level. The
goal-step-plan is the path with the smallest number
of steps towards the mutable’s goal.
In the next section we will explain how the goal-

step-plan is used in the sub-problem driven ap-
proach.

4.3 Goal-Step Graph

For the abstraction of the level we make use of the
goal-step-plan. It is set up as follows. Each mutable
generates a goal-step-plan, and we use these together
to create a goal-step graph. The goal-step graph is
a directed graph, and it resembles the search space
in which mutables can only move forward in whole
steps from their goal-step-plan. So a node represents
at which step each mutable is. Nodes have at most
M outgoing edges, where M is the number of muta-
bles in the level. Outgoing edges only exist when the
changed step can be accomplished without interact-
ing with any other goal related mutable.
The goal-step graph is exhaustively searched for

the goal-state, in which all mutables have finished
their goal-step-plans. When the goal-state is found, a
valid sequence of moves that results in the goal-state
is determined. Note that the goal-state might be the
solution to the level, but could also be a solution to
a sub-problem, depending on the original problem
(P0) that is focused on at the time.
If the goal-state cannot be reached with the goal-

step graph, the traversal of the graph will reach dead
ends: none of the mutables can take the next step
towards their goal. We use the dead ends as points to
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(a)

(b)

Figure 4: Goal-step-plan example, subsequent input
is seen as one step. The numbers indicate the order
in which the steps are taken.

split the problem up into sub-problems, this process
is explained in the next subsection.
One benefit of using this goal-step graph, is that

a search to the goal-state in this abstracted view
can only move towards a potential solution and not
away from it. Any possible cycles have been elim-
inated and mutables only move from their current
state to their next goal-step. This makes an exhaus-
tive search approach with the goal-step graph input
space feasible in terms of memory and computing
complexity, while it was not with the raw player in-
put for most puzzles. A level is however, often not
solvable using this naive input scheme.
The level is simplified so much that when a level

is solvable from in this abstracted state, the level is
often trivially easy. Also, when the traversal comes
to a dead end and no step can be taken, there is a
good chance this is a planning challenge the player
has to overcome in order to solve the level. More on
this will be explained further in this section.

4.4 Creating and Resolving Sub-Problems

When we split up a problem we generate multiple
sub-problem pairs. Each sub-problem pair contains
a starting problem P1 that starts the same as P0,
but has a di↵erent goal-state, and an ending prob-
lem P2 that starts at the goal-state of P1, P2 has
the same goal-state as P0. The starting state of P2
is chosen such that the goal-step graph from that
state has at least one mutable which is guaranteed
to make progress on its goal-step-plan further than
the place it got stuck at before. The exact genera-
tion of the starting state of P2 is explained in the
next subsection.
While the algorithm progresses, we break the

problem in more and more sub-problem pairs, one
pair describes a potential path to the solution but
not necessarily from the start of the level. A node
in the solving algorithm is one pair of sub-problems
and the valid moves which have led to the start of
the first sub-problem. When we expand a node, we
always try to resolve the sub-problem closest to the
start first. As only afterwards, we are sure that the
starting position of the next sub-problem is actually
reachable. When a sub-problem is solved, the neces-
sary moves are added to the node.
The problem the level imposes is broken down step

by step until each individual sub-problem is trivially
solved and we have found a solution.

4.5 Expanding Nodes

To calculate the minimal number of sub-problems
needed to find a solution, we used an A* algorithm.
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A node in the A* algorithm consists of the sub-
problems that are not solved yet, and a list of moves
that brings us from the start of the level to the first
unsolved sub-problem. The heuristic score of nodes
is calculated as follows: number of sub-problems (in-
cluding the solved ones), times the sum of the dis-
tance each mutable has to travel on their goal-step-
plans before they reach their goal. Which results
in a BFS like behavior, with DFS jumps when the
mutables made decent progression in their goal-step-
plans. This heuristic gave the best result when only
distance functions and sub-problem count is consid-
ered in the heuristic.
Once a node is expanded, we generate a set of

new nodes. For each mutable we calculate the list of
places it can reach without breaking a puzzle rule.
We then take these lists and calculate all the com-
binations wherein one place is picked from each list,
such that the final configuration is consistent with
the puzzle rules (for instance no overlap of boxes in
the case of Sokoban). The new place combinations
are then filtered to guarantee for at least one of the
mutables that it can proceed further in its goal-step-
plan, than where it got stuck at before.

4.6 Ways to Optimize the Sub-Problem
Driven Approach

The explored sub-problems depth throughout the
search was very low. Even for hard levels this number
would not reach 10 (at least not before running out
of memory). However, the number of sub-problems
that were possible and thus generated in large lev-
els, was enormous (see Table 2). This resulted in
infeasible memory use for those levels.
There are three evident ways to improve on this

matter:

• 1. Heuristic: We can optimize which sub-
problems are tried first with a heuristic that
picks out the most promising node.

• 2. Filter: We can reduce the number of sub-
problems generated at each dead end with the
use of a filtering process.

• 3. Ordering: We can create an ordering in
how the sub-problems are generated, so a single
choice of expansion becomes less critical. The
progression in the ordering would be seen as a
new expansion and is only performed when this
node is still deemed promising.

We choose to go with the heuristic first, as the fil-
ter has the potential of filtering out tricky solutions
when it gets confused by good level design (resulting
in not finding a solution), and the ordering option

raised hard questions of when to continue expanding
an already expanded node, over a new one. A heuris-
tic seemed more promising as the sub-problems that
were mistakenly scoring low would eventually still
be expanded, so there is no danger of not solving
solvable levels. We can even use the misguidance of
the heuristic as an additional measure of di�culty:
expanding more nodes before finding a solution indi-
cates a harder level. The solving time of hard levels
would be much higher than that of easy ones, but
as mentioned in subsection 3.3 this is acceptable for
hard/high quality levels.

4.7 The Sub-Problem Estimating Heuristic

What kind of heuristic can be used to pick bet-
ter nodes to expand? We will first define a ’better
node’. When we created the sub-problem algorithm,
we had a hypothesis in mind: the number of (trivially
solved) sub-problems needed to form a solution, cor-
relates with human perceived di�culty. So we want
to find the shortest (or at least a relatively short)
sequence of sub-problems that leads to a solution.
With this observation the best node to expand is the
node for which the sub-problem distance away from
a solution, plus the sub-problems tackled already, is
minimal. So our heuristic must estimate how many
sub-problems will be needed to reach a solution.
Sub-problems are generated when the traversal of

the goal-step graph reaches a dead end. So natu-
rally the heuristic traverses the goal-step graph and
inspects the dead ends. We could base a metric on
the number of steps left at a dead end. But a bet-
ter way to estimate the number of problems ahead
comes from estimating the minimal number of dead
ends the traversal will get stuck on, before reaching
a solution. So instead of finding the dead end that
gets us closest, in terms of steps away from a solu-
tion, we compute the least number of illegal steps
we need to take, in order to reach a solution. This
is done by computing the cheapest path through the
goal-step-cost graph. This graph has the same nodes
as the goal-step graph but the edges that represent
mutables taking an illegal step, are present in this
graph. The edges are weighted with either 1 or 0.
Edges representing an illegal step get a weight of 1,
the others get a weight of 0.
This heuristic performed very well as can be seen

in Table 1. The problem estimating heuristic de-
creased the number of expanded nodes by a factor of
2.5 to 4. However, calculating the heuristic took a
long time and in order to select the best node, all the
en-queued nodes must receive a heuristic score. The
number of potential nodes generated at each expan-
sion was too high (see Table 2) which meant the al-
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Table 1: Expanded nodes comparison of the heuris-
tics, n/a means more than 8 GB RAM was needed.

Level name BFS like Problem
estimating

Factor

Hand-crafted 1 79 22 3.6
Hand-crafted 2 132 51 2.6
Hand-crafted 3 445 73 6.1
Hand-crafted 4 991 393 2.5
Hand-crafted 5 n/a n/a n/a
Hand-crafted 6 n/a n/a n/a
[21] 43 minutes n/a n/a n/a

Table 2: Average generated nodes per expansion.

Level name Generated nodes
per expansion

Hand-crafted 1 9
Hand-crafted 2 8
Hand-crafted 3 42
Hand-crafted 4 32
Hand-crafted 5 18093
Hand-crafted 6 2306
[21] 43 minutes 41433

gorithm was still infeasible on medium to large sized
levels, especially in combination with a high number
of mutables. The average nodes generated at an ex-
pansion were over 40000, for a level of size 8x6 and
4 boxes that players solved in a median time of 43
minutes [21]. We did not manage to solve this level
with the sub-problem driven approach.

4.8 Filtering Redundant and Unwanted
Nodes

The natural next approach is filtering the unlikely
nodes. This improvement complements the heuristic,
and should solve the problem of having too many
potential sub-problems for which the heuristic must
be calculated. However, the anticipated drawback
of filtering came up of almost every non-trivial level:
removing necessary nodes and eventually deeming a
level unsolvable when it is actually solvable.
The filtering process checks for every new node,

if they are trivially accessible from any other new
node. They are deemed trivially accessible when
they are one mutable-switch apart from each other,
those nodes are discarded one after the other.
We tried this way of filtering because it seemed un-

likely that the filter would interfere with the solver’s
ability to find a solution. When it turned out most
levels were deemed unsolvable after this filtering at-
tempt, we thought it was due to a bug we just cre-

ated. However, the levels became unsolvable (for our
solver) because of how the goal-step-plans were set
up. Even though the nodes were trivially reachable
from other queued nodes, their goal-step-plans could
take a completely di↵erent path the queued nodes
might not consider. Thus the filter process could fil-
ter out solution-nodes even when none of the other
nodes were leading to a solution.
The goal-step-plan is the complete path towards

a mutable’s goal, in the most naive way possible.
This path could be drastically di↵erent from another
position, even if the starting positions are trivially
accessible from each other, as can be seen in Figure
4. Thus the filter process could filter out solution-
nodes even when none of the accepted nodes were
leading to a solution.

4.9 Defining an Order in the Node Genera-
tion Process

Because so many nodes are generated each expan-
sion (see Table 2), we want to look at a subset of
the possible new nodes. Also, when we look at more
of them, we want to do so in a meaningful order.
We could achieve this with an ordering function that
discriminates between generated nodes: first gener-
ate all new nodes and then order them so we can look
at them in a meaningful way. Or, we could define an
ordering inherent in the node generation process, in
that way the nodes of a higher order do not have to
be generated. We can then generate new nodes in
meaningful chunks, without having to generate the
other possible nodes at all. The number of generated
nodes each expansion was so huge, that this last ap-
proach was desired.
There are two reasons why it is a good idea to

define an ordering in the node generation process:
Firstly, we can speed up the solving process by stop-
ping to look for more nodes when we already have
one or more good candidates (and save valuable time
by not calculating the expensive heuristic score for
these nodes). Secondly, if we can correlate the order
in which nodes are generated by how likely they are
to be thought of by humans, we can estimate how
hard a certain node is to be found and improve our
di�culty evaluation with this information.
How would such an ordering be defined? We want

the ordering to correlate with how likely humans are
to see the potential of this new node when they first
stumble on the current problem. The most naive way
to do this, is generating new nodes in the order of dis-
tance away from the problem state. For instance, the
combined number of grid-points all mutables moved.
Another ordering may reuse the mutables switched

metric: generate new nodes with only one mutable
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changed, before generating nodes with two, three,
etc, changed mutables. This ordering can be com-
bined with the problem-distance ordering.
We could use the reachability of new nodes as

well. For instance, first generate all nodes that can
be reached from the problem state. Then take one
(goal-)step back from the problem state for each mu-
table and generate nodes that can be reached from
there. Or, instead of the mutables that have been
changed, define an order in the number of mutable
switches that must be made to reach this new node.
Note however, that if we were to expand in this man-
ner indefinitely, we would just brute force the level’s
search space, thus a restriction must be added.
Lastly we can define an ordering by estimating how

hypothetical a new node is. This ordering is best
used in combination with another ordering, as it is
computationally expensive. A node that is reachable
like the way we described above is not hypotheti-
cal: we have just calculated that this node can be
reached. The degree of how hypothetical a node is,
is best estimated with the heuristic we use to esti-
mate the number of problems we are likely to face.
Even though we are looking to optimize the number
of nodes for which the heuristic must be calculated
in the first place, the heuristic can be useful here.
The complexity of the heuristic is highly dependent
on the goal-step-plans and the number of mutables
involved. So by restricting these factors we can gen-
erate nodes in the order of how hypothetical they
are, in a feasible way and thus balance between node
quality and the number of new nodes generated each
expansion.

4.10 Shortcomings of the Sub-Problem
Driven Approach

The computation time of a brute force level solver is
highly dependent on the possible states of the search
space. Thus levels with a large grid and many mu-
tables take the longest to solve, even though they
might require only a few trivial moves. These prop-
erties are undesirable and we tried to avoid them in
the sub-problem driven approach. However, mod-
erately di�cult levels with a lot of open space did
not fulfill this desire. A small number of expansions
were needed, but the openness of the level allowed
for many new nodes each expansion. Furthermore,
the solving algorithm often needed more then 8 GBs
of memory on hard levels with 4 or more mutables
(again magnified by the amount of open space in the
level), which led to not finding a solution.
Problems were encountered from multiple places

(di↵erent traversal dead ends) without the algorithm
being aware of this, so the guarantee of one muta-

ble progressing in its goal-step-plan does not always
influence the actual problem that we want to solve,
which made this guarantee not as useful as we had
intended it to be. In other words: the search was not
informed enough.
The last three subsections are full of promising

improvements to the sub-problem driven approach
in its current state. We believe that all these
improvements have potential and would make the
sub-problem driven approach perform much better.
However, we decided to try a new approach.
Time spent with the sub-problem driven approach

is not wasted, as we have gained valuable knowledge
and experience with level abstractions, and the prob-
lem estimating heuristic, both are promising tools for
a good evaluation function. However, the di�culty
of optimizing the computational complexity in the
current implementation made us consider a di↵erent
approach.
The next section is about this new approach, we

set up the approach with a di↵erent but similar level
abstraction as the goal-step graph to allow for a
faster computation of the heuristic, as well as a more
informed solver with better evaluation opportunities,
and a computation complexity more dependent on
level di�culty.

5 Constraint Clash Approach

After the sub-problem driven approach, we decided
to use our newly gained knowledge and try a new
approach for the evaluator.
The goal of this approach is to support a broader

range of levels. We wanted to improve the calcu-
lation time of the problem estimating heuristic by
redesigning the abstraction of the level. As in the
goal-step graph the same problems were encountered
from multiple places, without providing more infor-
mation to guide the search towards more promising
places in the future. The calculation of identifying
the problems ahead, is much less dependent on grid-
size and the number of mutables in the constraint
clash approach.
This section is about the constraint clash ap-

proach, we will first look at an overview of how the
approach works. Then explain how we updated the
abstraction of the search space from the goal-step
graph to the constraint graph. We then look at how
the constraint graph can be used to identify problems
the level imposes to the player and how these can be
resolved. Afterwards explain in depth what makes
this approach more promising than the sub-problem
driven approach, and conclude with an argumenta-
tion on why we ultimately decided to continue with
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the breaking-rule approach.

5.1 Constraint Clash Approach Overview

The constraint clash approach calculates an ab-
stracted view of the level in the form of the constraint
graph. This is a directed graph. A node in the graph
represents the state of one mutable in terms of which
step it is at in itsmust-step-plan (see the next subsec-
tion). Each edge in the constraint graph represents a
constraint between two mutables. When we identify
a cycle in this graph, we have identified a problem.
We then zoom in on a constraint cycle/problem and
fix it for the relevant mutables.
Resolving a problem is similar to the way we re-

solved problems in the sub-problem driven approach:
we find configurations of the mutables such that the
problem is improved upon. However, this time we
do not try hypothetical configurations, and we have
more reliable information on whether a problem has
actually been improved.

5.2 Goal-Step-Plan Revised to: Must-Step-
Plan

The goal-step-plan represents a completely thought
out plan. However, there might be more ways to
progress towards our goal. For the constraint clash
approach we revised the goal-step-plan to: the must-
step-plan.
The must-step-plan contains only the absolute

necessary states the relevant mutable should be in,
in order to reach its goal. See Figure 5 for the indi-
vidual steps each box (mutable) should take in the
displayed Sokoban level. A step is the path from
one state the mutable must reach, to the next. If
the next state can be reached by repeating an input,
these states are grouped together to one step.

5.3 Setting up the Constraint Graph

The constraint clash approach creates a set of con-
straints for each mutable. Constraints come in the
form: mutable A should move toX before mutable B
has been at Y . Or: mutable B should move to Y af-
ter mutable A has been at X. Constraints are calcu-
lated for the must-step-plan abstraction. So for each
step S of mutable M we calculate the constraints be-
tween all the steps of the other mutables and S. The
upper bound on constraints is thus O(n2) where n is
the combined number of steps of all mutables.
Constraints are also di↵erentiated by the elements

that impose the constraint. In the case of Sokoban,
constraints exist for the worker: can he find his path
when box B has been at place Y ? And for boxes:

(a) A must-step-plan does not necessarily plan out every
state the mutable will be in, along the way to its goal.

(b) A must-step-plan can be the same as a goal-step-plan.

Figure 5: Must-step-plan example, subsequent must-
visit gird points are seen as one must-step, when the
path to its goal is restricted. The numbers indicate
the order in which the steps are taken.
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can box A reach place X when box B has been at
place Y ? This distinction is important as a clash of
boxes is harder to workaround than a clash of the
worker and a box. The worker might, for instance,
push this particular box along while he proceeds.
While calculating the constraints, we set up a con-

straint graph. Each individual step represents a node
in the graph, and a directed edge is added for each
constraint. So if mutable A should move to X be-
fore mutable B has been at Y , an edge is added from
respective node A to node B. In other words, all in-
coming edges to arbitrary node N

x

are constraints
that must be resolved before the corresponding step
S
x

can be performed.
When the constraint graph is set up, edges are

added from node N1 to node N2 when the corre-
sponding step S2 comes after step S1. This is neces-
sary to calculate where the constraints clash and a
problem occurs.

5.4 Identifying Constraint Clashes

The constraints are based on the must-steps each
mutable has to take in order to reach its goal. This
abstracted view on mutable movability will identify
problems, just like traversing the goal-step graph did
in the sub-problem driven approach. However, in-
stead of ’traversing’ the constraint graph to find sit-
uations where the mutables can no longer move for-
ward, we search for cycles in the constraint graph.
When there is a cycle in the constraint graph, the

traversal of the goal-step graph would have gotten
stuck around those steps as well. This is true because
a constraint from step S

x

to S
y

is added when step
S
y

cannot be taken in the goal-step graph, before
step S

x

is performed, so when the constraints form
a cycle, there are two or more steps that cannot be
taken before one another. Therefore, none of these
steps can be performed and the goal-step graph will
inevitably get stuck.

5.5 Resolving Constraint Clashes

Once the problems are identified, we want to get rid
of them. This phase is similar to that of the sub-
problem approach. Just as with the sub-problems
we find places for which the problem P does not ex-
ist anymore. This time however, we consider only
the mutables on the cycle and take them one step
back in their must-step-plan (continue taking steps
back for individual mutables, if the state is not fea-
sible) let us call this state S. From S we consider
the places each mutable can travel to and search the
space for configurations of the mutables such that
they do not create any constraint cycle, or the first

cycle these mutables create, is further towards the
goal than the cycle we are trying to resolve. When
we reach that state we have made progress on prob-
lem P , but not necessarily on the level. We have
to merge the new must-step-plans and update the
constraint graph. We do this for each improvement
found for P and pick the best emerging constraint
graph. A new heuristic is used to evaluate which
constraint graph is the best.
The state S is preserved as new solutions to P

might emerge when we take the mutables back an-
other step.

5.6 Why the Constraint Clash Approach is
Promising

The constraint clash approach has many aspects
in common with the sub-problem driven approach.
Problems are (indirectly) still based on the traversal
of the goal-step graph getting stuck at some point,
and the generation of new sub-problems is very sim-
ilar to the way we look for configurations which omit
a constraint cycle. There are however, a number of
significant changes that result in big di↵erences on
how the algorithm progresses.

5.6.1 Solving Performance gains

The heuristic used in the sub-problem approach tra-
verses through every reachable edge in the goal-step
graph. The constraint graph is searched for cycles to
identify all constraint clashes. The number of con-
straints can only be less than the edges in the goal-
step graph (and they are usually much less). More
importantly though, the constraint graph can be up-
dated by deleting and inserting constraints. New
cycles can then be found very e�ciently.
We will now discuss the performance gains on un-

solvable levels. In section 3 we discussed certain
properties we wanted our solver to have. We argued
that the solver can be slow on hard levels as long as it
is fast on the easier ones. Fast detection of unsolvable
levels was very important too. Because the goal-step
graph was used by the sub-problem driven approach,
some unsolvable levels are detected very fast: if no
complete goal-step-plan can be formulated, the level
is unsolvable. But in most other cases the unsolvable
levels could take up a lot of time.
The constraint clash approach has a few promising

characteristics when it comes to detecting unsolvable
levels. For one, the identified problems can be tack-
led in any order and it is obvious whether a problem
has been solved, or when it is just shifted; either to
another sub-set of mutables, or further along their
must-step-plans. This means that a problem can be
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tracked down, until it is evident that the problem is
resolved. When a single problem cannot be resolved,
we do not have to look for possibilities to advance on
other problems. Something that is inevitable in the
sub-problem approach, as we would then not know
if we are trying to solve a di↵erent problem. The
sub-problem driven approach would first try a lot of
useless angles, but because the constraint clash ap-
proach uses facts to progress instead of hypothetical
situations, it is less likely to get lost in the search
space, when a human would not, before it deems a
level unsolvable.

5.6.2 Isolating Problems with just the Rele-
vant Mutables

Once the clashes are identified, they must be re-
solved. When a clash is resolved only the relevant
mutables are taken into account, we isolate them
from the rest. This was not possible for the sub-
problems; there was no information on which mu-
tables actually posed the problem encountered on
a stuck branch. Furthermore, in the sub-problem
driven approach, one problem can be encountered
from many di↵erent angles resulting in many di↵er-
ent branches getting stuck on the same problem. To
gather the same knowledge in the sub-problem driven
approach, another analysis should be done to iden-
tify individual problems from the set of dead ends
that have occurred.
The isolation of the relevant mutables functions as

a reliable filter on the potential configurations that
can resolve the problem (which was hard to do for the
sub-problems), this will speed up the solving process.
Another advantage is that we can distinguish be-

tween the problems in size by counting the number
of mutables involved: is a problem big or small? We
can use that information (as well as the number of
constraint clashes) when we predict which constraint
graph is closer to a solution, this will speed up the
solving process and enhance the evaluation score (an-
other metric that can evaluate if a counter intuitive
move has to be made, when the right move seems
less obvious than other wrong moves).

5.6.3 Informed Search is Desirable

The biggest advantage of the constraint clash ap-
proach, is the extra information we can access about
the problems in a level. We can gather reliable in-
formation by analyzing what happened to the con-
straint graph after a problem is resolved: are other
problems resolved as well? Are the other problems
exchanged for di↵erent problems? Did the problem
slightly shift to a further state? Did we just wriggle

a mutable out of the problem? If so did we also in-
troduce a new mutable into the problem? Etc. This
information is very useful for making the decision of
with which constraint graph we want to continue,
as well as when we estimate how di�cult that same
choice was for a human being.

5.7 Shortcomings of the Constraint Clash
Approach

Just as with the sub-problem approach, the open
spaces form a problem, but for di↵erent reasons this
time. See Figure 6a displaying a Sokoban level. The
must-step-plan of box M has one step: from its cur-
rent state A to its goal. M has just one step be-
cause there are two completely di↵erent paths from
A towards its goal, so the only state he must be in,
is being at the position of its goal. An undetailed
must-step-plan like this, leads to an undetailed set
of constraints.
The places the box is in at Figure 6b and Figure 6c

have a detailed must-step-plan and thus constraint
set, even though they are one distance away from A.
The reason for this is of course the choice available
at state A, in this particular case the problem will
resolve itself as the box at A has to move to a more
restricted area right away in order to get to its goal.
However, consider a big hallway, mutables could tra-
verse this in many ways on their own. A challenge
will not be recognized when the hallway is crowded
with mutables, because each individual can formu-
late a flexible plan resulting in undetectable clashes.
The flexibility of these plans makes constraint

clashes rare in levels that give mutables multiple op-
tions to reach their goal. So unless all mutables are
considered at once, clashes are hard to detect in lev-
els with many mutables, because these often pro-
vide multiple options for a single mutable to reach
its goal state, while in reality, most of those options
are blocked by other mutables. This is a big problem
as our expanding heuristic relies highly on informa-
tion about the problems ahead, if the problems are
not identified, the solving process is slowed down un-
til the mutables get to a more restricted area (more
towards the goal-state mutables often have less op-
tions) in the meanwhile the heuristic is blind and
the algorithm will perform more like a brute-force
approach.
If we take another look at Figure 6 where state

A has no meaningful constraint set. We see that
upon branching the state of A out into B and C
we do get meaningful constraints. As soon as we
branch out to a place from which a meaningful set
of constraints can be formed, the flexible plan issue
is resolved. This leads to the idea of branching in
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(a) Flexible path, only one must-step is defined.

(b) Strict path 1.

(c) Strict path 2.

Figure 6: Flexible path example.

constraint sets when a certain part of a mutable’s
path has multiple options. However, the same levels
still impose a problem: when a level has a lot of
open space, each mutable will have a big constraint
tree/graph and in order to define clashes we must
prove that the branches alone are not enough to
get all mutables to their goal. This requires going
through all combinations of relevant branches for all
mutables. The bigger these trees/graphs the more
time the computation will take, while often the
more open space a level has, the easier they are; this
clashes with our desired characteristics explained in
subsection 3.3.

When all mutables are considered at once the con-
straints become less useful: we could also try valid
input and see where we end up. However, the flaws
of the constraint clash approach point towards con-
sidering all mutables and creating a path on the go,
instead of analyzing the whole level at once. In
the next section we will look at the evaluation ap-
proach used in the final product and how the insights
gained from the previous two approaches have led to
a cleaner solution that works on a broad set of levels
and can be built upon in future research.

6 Breaking-Rule Approach

In this section we will take an in depth look at the
breaking-rule approach. First an overview is given on
how the approach works. We then explain the sophis-
ticated heuristic that is build out of three separate
metrics, the heuristic is the core of this approach.
Afterwards we explain how each individual metric
works and what it adds to the final heuristic. We
then explain the pre-processing and post-processing
procedures that enhance the evaluation score for a
more accurate di�culty label.

6.1 Breaking-Rule Approach Overview

The A* algorithm’s search is guided by a sophisti-
cated heuristic. Nodes in the search are states of
the mutables’ must-step-plan. Each node expansion
resembles a mutable switch.
The final evaluation score is calculated with the

following formula: score = E ⇤ S where E is the
number of nodes that are expanded before a solution
is found, and S is an estimation of the number of
mutable-switches required to find the solution.
We used three di↵erent metrics that together form

one heuristic that determines which node is ex-
panded. There is a hard ordering in the metrics.
To discriminate between two nodes, a less important
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metric is only consulted when the more important
one scored equally.
The three metrics in order of importance follow:

• Breaking-Rule Metric
The first and most important is the breaking-
rule metric (BRM), it is similar to the heuristic
introduced in subsection 4.7 which guided the
expansion of nodes in the sub-problem driven
approach by estimating the number of problems
that lay ahead.

• New-Nodes Metric
The new-nodes metric is not trying to predict
how distant a node is from a potential solution.
Instead it tries to point towards directions that
have not been explored yet.

• Movement-Freedom Metric
The movement-freedom metric is trying to pre-
dict how much movement is possible from a
given node. It is similar to the new-nodes met-
ric, but instead of guiding towards new places,
the movement-freedom metric guides the search
towards less intertwined states.

After a level is verified to be solvable, the ex-
panded nodes are analyzed in a graph representation
(expanded-node graph) to make an estimation of the
required mutable-switches to reach a solution. We
tried to get more metrics from the expanded-node
graph, but these were not useful.

6.2 Expanding Nodes

Throughout the solving phase we explore the level’s
search space by expanding from one node to several
others. Instead of applying the raw player input on
the level state, we expand towards all states that are
reachable when we interact with one mutable only.
So an expanded state might be 50 moves away from
the expanding node, but only one mutable will have
been interacted with, in those 50 moves.
Each expansion resembles a mutable switch, we

continue the expansion from the node we estimate to
be the most potential. This estimation is the most
important part of this approach and determines the
level evaluation, as the number of node expansions
greatly impacts the final evaluation score.

6.3 Breaking-Rule Metric

The most important metric is the breaking-rule met-
ric (BRM). The other metrics are only consulted
when the BRM score is scored equally. When we cal-
culate the BRM for node X, we will first calculate

all the must-step-plans and then set up the must-
step-cost graph. This is similar as the goal-step-cost
graph, except the weights are not always 1 when a
step cannot be taken. Instead the weights are deter-
mined by the cost of the puzzle rules that are bro-
ken. The cost of rules follow a hard ordering. A rule
that is broken for elements that are closer related to
the puzzle goal are of a higher order. In the case of
Sokoban, the boxes are closer related to the puzzle
goal, compared to the worker. Moving the worker
X times through a box is thus always cheaper than
moving a box through another box.
With an exhaustive search through the must-step-

cost graph we find the cheapest path towards the
goal-state. The cost of this path is the final BRM
score.
A level is deemed solved once the BRM score of

a node is 0, as no rules have to be broken to reach
a goal-state, even though this node might be several
moves (and mutable switches) away from the actual
goal-state.
We have experimented with fusing the mutables-

switched metric into the BRM score: keep track of
the mutable that has been interacted with last; when
this is not the same as the one that is interacted with
right now, add additional cost to this move. The
mutables-switched cost is of a lower order than the
cost of breaking any single rule, so we only discrimi-
nate between paths that have the same rule breaking
cost. The expanded nodes were reduced on many
levels and often to 50% of the original expansions or
lower. However, we did cut this addition as the ex-
panded nodes on the harder levels is often reduced
too much in comparison with other levels, thus label-
ing these hard levels much worse than without the
addition, since the final evaluation score is highly
dependent on the number of expanded nodes.

6.4 New-Nodes Metric

The new-nodes metric’s main purpose is to enhance
the diversity of the search for a solution. It is less im-
portant than the BRM. The new-nodes metric itself
does not direct the solver towards a solution.
The new-nodes metric identifies which nodes can

reach more unseen nodes than others. A node N
r

is
considered reachable by node N

e

, if N
r

is generated
when N

e

gets expanded. A node N
u

is considered
unseen when it has never been expanded towards.
In cases where the BRM does well and nodes re-

ceive a big diversity in BRM scores, the new-nodes
metric is not as important. However, the BRM often
scores equal on nodes, as the number of rules that
must be broken to reach the goal-state in the must-
step graph, is often below 5 throughout the whole
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solving process. This is where the new-nodes metric
comes in. It prevents the solver from behaving like
a BFS when the BRM scores are equal. Instead the
solver’s attention is pointed to places that have not
been expanded much, for a better diversity of the
expanded nodes, until a leap forwards in BRM score
takes over again.

The new-nodes score is dependent on the nodes
that have been expanded so far. When a node A
gets elected as new best node, others have proba-
bly been expanded while A was queued. This means
that the new-nodes score A received when it got en-
queued, could be outdated. We thus recalculate the
new-nodes score and A is only expanded when the
final score is equal to the old one. We cannot un-
derestimate the number of new nodes, so there is no
need to update all the queued nodes every expansion
to ensure we find the best one.

6.5 Movement-Freedom Metric

The least important metric is the movement-freedom
metric. This metric pre-expands the given node
and counts how many places are reachable with one
mutable-switch. A higher score is better. The rela-
tive movement-freedom between states gives an indi-
cation of how free the mutables are to move around
the level. We want to move towards states with a lot
of movement freedom to make sure we do not miss
out on promising paths. The movement-freedom
metric mostly serves the new-nodes metric. It tries
to find states that provide a lot of movement possi-
bilities.

The new-nodes metric evaluates the relative num-
ber of new nodes a node will generate upon expan-
sion. It pushes the search towards new places, while
the movement-freedom metric evaluates the absolute
number of paths possible from a certain node and
pushes the search towards states in which the muta-
bles are less intertwined.

Many transport puzzles cannot be reversed so the
freedom of mutables can be very low in a solved
state. To compensate for this, we assign the maxi-
mum movability score (dependent on the level’s grid-
size) to a mutable that is already at its goal state.
This will guide the solver to bring single mutables
to their goal state which likely prevents other mu-
tables from ever reaching their goal state (at least
in most interesting puzzle levels). However, this ac-
tually improves the di�culty evaluation, since the
cases in which this naive solving strategy does work,
the solution is found earlier on and will result in a
lower di�culty score which is desirable.

6.6 Metric Influence Comparison

We started developing the new-nodes and movement-
freedom metrics after we noticed that generating lev-
els with only the BRM as heuristic resulted in some
easy levels with too high evaluation scores. We se-
lected a few easy levels that received high evaluation
scores to test our new metrics on while developing
them. For this comparison we searched through old
levels generated with only the BRM and selected four
levels we felt were easy, without looking at the scores
they received and these levels were not used during
the development of the new-nodes and movement-
freedom metrics.
The main purpose of the new-nodes and

movement-freedom metrics is to reduce the ex-
panded nodes of easy levels, occasionally reducing
the expanded nodes on hard levels is less important,
as we have stated before in section 3.3. The com-
parison results are shown in Table 3. The levels are
ordered on di�culty by our two experts. Except for
the last two levels that have our experts have not
(tried to) solve, instead we based the order on the
findings of [21]. Furthermore, for the first 4 levels
no meaningful order is agreed upon, they are all
deemed very easy. These are the levels we selected
from the generated levels with only the BRM as
heuristic. The levels of [21] are all hand-crafted,
the accompanying times are median human solving
times [21] gathered from online playing data. The
numbers shown are all final evaluation scores.

From the results we can see that adding the BRM
is clearly better, mostly in the easy levels. When
only the BRM is used we see that the ’hardest’ level
scores even lower, and that two of the four easy levels
score much too high. Not using the new-nodes metric
results in an equal or higher number of expanded
nodes for all levels except the two ’hardest’ levels.
Overall we see that the levels ”hand-crafted 5” and
” [21] 53 minutes” score too low for their order of
di�culty with every tried metric combination.

6.7 Pre-Processing: Naive Solving Filter

In the section on the sub-problem driven approach,
we discussed optimizing the solving process by filter-
ing unpromising nodes. We did not put this opti-
mization into work because it made the solver label
many levels as unsolvable when they were not. How-
ever, for the breaking-rule approach we did end up
using a similar filtering process to identify easy levels
early on, with a cheap operation. Levels that where
still solvable, even after we would filter out many
nodes and only try the most naive options, were of-
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Table 3: This table shows a performance comparison of the metric combinations. The levels are from various
sources, see the appendix, and [21].

Level name All metrics Only BRM No new-nodes No movement-freedom No BRM
Only BRM gen 1 6 6 6 6 528
Only BRM gen 2 25 85 25 35 150
Only BRM gen 3 6 423 6 9 132
Only BRM gen 4 126 725 126 156 540
Hand-crafted 1 104 42 136 88 144
Hand-crafted 2 28 108 32 28 104
[21] 3 minutes 128 852 1296 66 1734
Hand-crafted 3 200 192 240 184 240
Hand-crafted 4 370 905 830 425 1120
Hand-crafted 5 175 585 175 180 750
Hand-crafted 6 1155 1520 1254 1287 2508
[21] 43 minutes 7680 12256 13070 8570 22140
[21] 49 minutes 16226 12796 13776 15988 32424
[21] 53 minutes 2562 432 2112 2160 6846

ten lacking any interesting characteristics and thus
deemed easy. When a new level is tried we first try
to solve it in this naive way, before applying the full
solving algorithm.
This is most useful at the start of the generation

process as most levels further in the process were
either unsolvable or decently hard. In both cases the
naive solver would not find a solution and the full
solving algorithm had to be applied anyway.

6.8 Post-Processing: the Expanded-Node
Graph

After the solving process, we analyze the level struc-
ture with the expanded-node graph. The expanded-
node graph is an undirected graph that is set up
during the solving process. Each node that gets ex-
panded, is also a node in the expanded-node graph.
When we expand a node we add an edge from this
node to each node it expands towards. So we build
up a graph representation of the level’s search space,
specific for the nodes that have been expanded dur-
ing the solving process.
In our prototype Sokoban level generator, we eval-

uated levels by the minimal number of box switches
required to solve it. This worked decently well and
the idea is backed by a number of previous papers [5]
[30]. Therefore, we wanted to have the final di�culty
evaluation to be dependent on the mutable-switches
as well. Especially since the heuristic already deals
with the biggest pitfalls of the mutables-switched
metric: the staircase example shown in Figure 3 re-
quires 14 mutable switches (the highest found for two
boxes), but the solution is found in 14 node expan-
sions (which is very low), so the final score would be

14 ⇤ 14 = 196 which indicates easy for Sokoban lev-
els, since the staircase example has a linear search
space a low score is desired. Furthermore the pre-
processing described in the previous subsection will
filter this level out, because the solution is too naive.

To actually calculate the mutables-switched met-
ric, we do a quick BFS on the expanded-node graph
(remember a node expansion is equal to a mutable
switch), the BFS is quick as the number of expanded
nodes has not yet been over 3000. This calcula-
tion gives a good estimation of the minimal mutable-
switches necessary to solve a level. Although it al-
most always estimates too low, because a node with
a BRM score of 0, can still be some trivial mutable-
switches away from the goal-state. This is fortunate
however, as we do not want these switches to increase
the evaluation score.

The search space of a level is often too big to
exhaustively search it, so naturally we often do
not find every possible solution. The shortest
path through the expanded-node graph, therefore,
does not always represent the minimal number of
mutable switches required to solve the level (even
with the trivial mutable-switches at the end). To
minimize this problem, we expand all the nodes
that are queued when we find a solution. We do not
calculate the heuristic scores of these nodes as we
just want a more accurate expanded-node graph,
this keeps it a cheap operation.

Apart from the mutables-switched estimation, none
of the analysis from the expanded-node graph was
directly useful. We looked at the ratio of nodes
that lead to a solution. We calculated the must-visit
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nodes to identify the crux of the level, however the
crux was often still hidden because of the way we
expand nodes (one mutable can traverse the whole
level in one expansion if there is room), this meant
that many must-visit nodes were skipped, as jumps
can be made between nodes even when the nodes in
between have to be visited to reach a solution.
We also analyzed how hard it was for the solver to

solve the level from one must-visit node to the other,
however this was almost always trivially solved in one
expansion, even though not all must-visit nodes were
present. Only the extremely di�cult levels had no
trivially reachable must-visit nodes. Lastly we ana-
lyzed how often counter intuitive moves were needed
in terms of the BRM score of nodes. Again this al-
most never occurred. There was almost always a
path from start to goal that had nodes with equal or
a lower BRM values than the previous nodes, thus
traversing the level this way was not considered coun-
terintuitive in terms of BRM score.

6.9 Why the Breaking-Rule Approach Per-
formed Better

The breaking-rule approach has a similar problem
as the constraint clash approach: when a mutable
has multiple options towards its goal, its must-step-
plan will be less useful. In the constraint clash ap-
proach this meant a problem was not identified. In
the must-step graph however, it is explicitly checked
whether the step can be taken or not (all muta-
bles are taken into account), which means a prob-
lem will always be identified. Furthermore, there is
a much higher chance that an undetailed must-step-
plan causes problems in the traversal of the must-
step graph, since the steps the mutable has to take
are bigger. This means that an undetailed must-
step-plan can only overestimate the problems ahead
and is likely to do so. Thus the solving algorithm
will progress towards places where its mutables have
more detailed must-step-plans. This is desirable as
the BRM is more reliable in these situations.
A node with a lower BRM score is almost always

better, but during the search we also see a lot of
nodes with the same BRM score. The new-nodes
metric is good at enhancing the search and provides
a balance in depth and breadth first search which
was a big problem in the sub-problem driven ap-
proach. Also, expanding a node as if one mutable-
switch happened enhances the balance in depth and
breadth first search, whilst better mimicking human
solving characteristics, as the solving algorithm now
progresses in terms of mutable-switches.
This results in the number of expanded nodes giv-

ing a good impression of the levels search space.

That combined with the number of mutable-switches
that measures how complex the actual solution is,
gives a good indication of level di�culty. Not count-
ing the last few trivial mutable switches improves
upon this indication.
The breaking-rule approach can evaluate a much

larger range of levels making the method feasible
for generating hard levels on a standard computer
of 2016.

7 Generic Rule API

7.1 Implemented Puzzle Rules

We started generating test levels with our Sokoban
box-switch evaluator. For every improvement of the
evaluator we kept in mind what restriction it forced
on the supported puzzle rules. The actual transfor-
mation towards the generic evaluator was done after
the BRM gave decent results for Sokoban.
The puzzles implemented consist of Sokoban, and

four variations on Sokoban:

• Pull Mechanics:
In the original Sokoban the worker can only
push boxes. In the pull mechanics variation,
the worker cannot push any box, but will al-
ways pull a box along. When there is a box on
the grid-point opposite of the direction where
the worker is moving toward, this box will be
moved to the grid-point the worker was moving
from. This is di↵erent from reversed Sokoban
rules as the worker may not choose whether to
pull a box or not, it is as if the box is glued to
the worker and the worker can only stop pulling
a box by moving perpendicular to it.
Behavior: we found the generated levels for
this puzzle were the hardest to solve (for hu-
mans). This is probably due too the extra plan-
ning layer introduced by the mandatory interac-
tion with boxes, as a worker cannot necessarily
traverse through empty spaces without conse-
quences, which is hard to see for humans. This
is also an additional rule that may be broken,
the evaluator is thus likely to work better as
the heuristic will be more nuanced during the
search, which in turn means that easy levels are
solved with fewer node expansions.

• Strong Worker:
In the original Sokoban the worker can only
push one box at a time. A box cannot be pushed
towards a grid-point that is already occupied
by another box. The strong worker can move
as many boxes as it likes at once, as long as
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no box ends up in a wall. Essentially this is a
relaxed version of Sokoban, since each feasible
Sokoban level is feasible with the strong worker
rules as well. We tried evaluating a few very
hard Sokoban levels, and all of them became
easy with the strong worker rules.
Behavior: these rules allow for a valid Sokoban
level to be generated, but this never happened.
For every generated level multiple boxes have to
be pushed at once in order to reach a solution.

• Big Boxes:
In the original Sokoban the boxes occupy only
one grid-point. In the big box variation each
box occupies four grid-points.
Behavior: these rules naturally needed bigger
levels for the same number of boxes, compared
to the other variations. The levels feel quite
di↵erent from conventional Sokoban levels as the
boxes can partially block each other and seem
to get stuck easier.

• Swap Mechanics:
In the original Sokoban the worker can only in-
teract with a box if this box is touching the
worker. In the swap mechanics variation, the
worker swaps positions with the nearest box in
its moving direction. If the nearest box is behind
a wall or when there is no box in the direction
the worker moved towards, the worker will move
one grid-point just as in Sokoban. Similar to the
pull mechanics, the interaction with a box can-
not be omitted by the player, when the worker
moves towards a box in sight he will swap posi-
tions, always.
Behavior: these rules had the most altering ef-
fect on the generation and evaluation score. The
ILS generator could barely find non-trivial levels
with the conventional parameter settings. Af-
ter increasing iterations/generations, neighbors
tried per iteration, and the number of muta-
bles, good quality levels did emerge. What is
interesting though, is the extremely low eval-
uation scores each swap mechanic level would
receive. A level that scored 40 would be con-
sidered medium to hard for the swap mechanics
while similar di�culty would receive a score of
±1000 for the other puzzle rules. The genera-
tion process is also much quicker with the same
parameter settings compared to the other rule-
sets.

7.2 Transforming the Sokoban Generator to
a ’Generic’ Generator

As mentioned before, the final product is not generic.
It is not even generic for all transportation puzzles.
However, the previous subsection provides us with
evidence that the methods are generic to a certain
degree. We want to add to this in this subsection by
explaining the transformation process of the Sokoban
generator to the ’generic’ generator we have now.
While making the program generic, and thus work

for each Sokoban variation, it was never a question
of: how do we remain the functionality for the other
puzzles. Rather the question of: how to make sure
the evaluator uses the new puzzle rules in a mean-
ingful way. If we wanted to do new things in our
puzzles, we often had to change the ruleAPI. For in-
stance, before the big boxes variation we had only
mutables that fit on one grid-point, however, allow-
ing mutables to occupy multiple grid-points in the
ruleAPI did not change anything for the other puz-
zle rules. Another example is the swap mechanics.
For the swap mechanics to make sense in the evalua-
tor, the ruleAPI needed to allow an interaction with
mutables at an arbitrary distance. This was not pos-
sible yet, but the change in the ruleAPI did not a↵ect
the implementations of the other puzzle rules at all.
We think this progression throughout the trans-

formation is very promising. Never did we have to
change the definition of a puzzle once it was imple-
mented, even though the ruleAPI kept on changing
as we added new possibilities for puzzle rules. The
generated levels from each variation feel very di↵er-
ent from those of the other puzzles. Still the evalua-
tion function seems to work well on all four variations
without applying any tweaks to it. This is achieved
even though, during its development, it was tested
on the original Sokoban puzzle only.
All these points are promising signs for the evalu-

ation function to be generic in its core.

7.3 A Generic Must-Step-Plan

We think that the core systems are generic for trans-
portation puzzles, although adjusting the program
will require a decent amount of work. At the core of
the program is the BRM. For the BRM to work, we
need the must-step-cost graph and for that we need
a must-step-plan for each goal-related mutable.
A big chunk of generality is lost because the must-

step-plan in its current state assumes that mutables
can reach their goal states without the help of other
mutables. This cuts o↵ a big variety of puzzles, for
instance, in ’Jelly no puzzle’ (see Figure 7) the goal
state is reached once all elements of the same color
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touch each other. So if we take one piece, it will
always be at its goal state. For this particular ex-
ample the goal state’s dependence on all similar col-
ored mutables, can easily be derived from the puz-
zle rules. So the program could calculate a must-
step-plan for each independent color. This is indeed
a valid method for this puzzle. However, when we
look at another puzzle ’Snake Bird’ (see Figure 8 for
the rules) we have a similar case of needing other
mutables to reach our goal (snakes can be lifted by
other snakes). This time the single elements cannot
be grouped in a meaningful way (all snakes in the
level, which leaves the abstraction to be equal to the
original level).

There are other options, these have however, not
been tested at all. Consider a single Snake in ’Snake
Bird’, in order for this snake to reach its goal it of-
ten needs another snake to climb on. If we imple-
ment ’Snake Bird’ as a puzzle in the current pro-
gram, it will say these levels are not solvable, because
the must-step-plans cannot be formulated when the
goal-state cannot be reached by the Snake. However,
when we allow for individual mutables to break rules
for their must-step-plans as well, the must-step-plans
can be formulated and the levels can be solved (as
long as the right time and memory is at hand).

What kind of rules can an individual mutable
break to find its goal, in a way that the must-step-
plan still makes sense? We could restrict when rules
may be broken such that the cheating path a mutable
takes is theoretically possible. In the case of ’Snake
Bird’ this would mean that a snake A might mag-
ically move upwards, but only the number of grid-
points that would be feasible when another snake B
(that is present in the level) is supporting snake A.
This might sound like a very specific solution, but it
comes down to considering the other mutables when
the must-step-plans are defined, and deducing addi-
tional properties from the puzzle rules on how they
interact with each other. These additions, would not
a↵ect the way Sokoban boxes define their must-step-
plan, as the interaction-rules for boxes only limit
their movement and they will thus not be able to
help each other. Furthermore, in the case of ’Jelly
no puzzle’ only mutables with the same color will be
considered in their must-step-plans as here too, the
others will just limit the movement.

7.4 What is Needed to Start Generating
Levels for a new Puzzle?

An ideal implementation of a new puzzle rule-set
would be with the use of a simple scripting lan-

(a) You can move jellies to the left and right.

(b) When jellies touch, they are fused together.

(c) Jellies are a↵ected by gravity.

(d) The goal state is reached when all jellies of the same
color are fused together (jellies of a di↵erent color cannot
be fused).

Figure 7: Jelly no Puzzle, overview of the rules.
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(a) Snakes can sit on-top of each other.

(b) The up key is pressed once. Snakes move like in the
original snake action game: the head goes to the grid
point the snake is moving towards, the last tail part is
removed.

(c) The player can switch snakes at any time.

(d) The goal state is reached when all snakes went
through the rainbow/snake-hole.

Figure 8: Snake Bird, overview of the rules.

guage like, for instance, PuzzleScript2, which is a
video-game description language created by Stephen
Lavelle designed to easily create transportation
puzzle games. However, we knew that the time
frame did not allow for all the extra components to
be finished and polished by the end of the project.
So we decided that making the ideal ruleAPI
component was not important. There is no question
of ’can it be implemented’ as [2] deduces similar
information as we would need from PuzzleScript
scripts for their generic puzzle level generator for
PuzzleScript games. Furthermore, this should be
done after the solving, evaluation, and generation
components are finished, since these determine what
information needs to be analyzed from the rule-
set. Finishing these components is already out of
this thesis’s scope, as the focus is on level evaluation.

To start generating levels for a new puzzle, we need a
starting level for the search method to work, and im-
plement a list of functions for the evaluator to work.
As starting level we use an almost empty level as dis-
played in Figure 9. For the pull mechanics this level
is unsolvable. This slows down the generation, but
mostly just for one iteration of the ILS, because as
soon as a solvable level is found the search continues
with this level.
A complete list of the functions that must be im-

plemented in order to start generating levels for a
new puzzle follows:

• PuzzleName:
Input: nothing.
Functionality: this function is just a String,
representing the name of the puzzle. The gen-
erator uses this to name new levels and puts it
in the level’s meta data.

• WorkerMoveStaticConditions:
Input: current level state and player-input.
Functionality: this function checks if the
player-input provides a valid move considering
the worker and all static elements in the level.
For our puzzles this comes down to all the ele-
ments except the boxes.

• WorkerMoveConditions:
Input: current level state and player-input.
Functionality: this function checks if the
player-input provides a valid move considering
all the elements in the level.

• MutableMoveStaticConditions:
Input: current level state, player-input and one
mutable M .

2
www.puzzlescript.net
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Functionality: this function checks if the
player-input provides a valid move wherein mu-
table M is modified if we consider the worker,
the mutable M , and all static elements in the
level. For our puzzles this comes down to all
the elements, without the other boxes, and in-
cluding the supplied box (M).

• MutableMoveConditions:
Input: current level state, player-input and one
mutable M .
Functionality: this function checks if the
player-input provides a valid move wherein mu-
table M is modified considering all the elements
in the level.

• MutableTriggered:
Input: current level state, player-input and one
mutable M .
Functionality: this function checks if the
player-input would result in a move wherein mu-
table M is modified.

• WorkerPreMutableRule:
Input: player-input and one mutable M .
Functionality: this function returns a position
for the worker in which the MutableTriggerd
function would return ’True’ for mutable M .

• DoMutableMove:
Input: current level state, player-input and one
mutable M .
Functionality: this function processes the
player-input and mutable M and returns the
modified level along with the modified muta-
ble. The modified level contains the modified
mutable as well, but it is returned separately
also. The function does not check whether the
player-input is valid, nor if it would result in
the mutable being modified. These conditions
are assumed to be true.

• DoWorkerMove:
Input: current level state and player-input.
Functionality: This function processes the
player-input and returns the modified level. The
function does not check whether the player-
input results in a valid move.

7.5 Rule Analyzer to Avoid Writing Code
when a new Puzzle is Introduced

The programming of the functions from the previous
subsection is trivial and does not cost a lot of time.
However, if we would deduce the implementation of
these functions from a valid script of a PuzzleScript
puzzle, anybody can come up with new puzzles and

Figure 9: A basic level used to start generation.
This basic level can be used for all the implemented
puzzles. The number of mutables stays the same
throughout the generation as does the level size.

generate levels for their own ideas.

The deductions needed at this point are very mi-
nor. We have to know which elements are muta-
bles/immutables. How and when the player-input
changes the mutables, which mutables are goal re-
lated, and when they are at their goal state.

All this information would provided in a valid
PuzzleScript script, so the implementation of the
ruleAPI could be deduced from such a script. This
can be achieved with simple pattern matching: ele-
ments that never change after player-input are im-
mutables, the others are mutable. Furthermore,
queries like these: ’in the current state, is mutable
A changed after player input I?’, and: ’is mutable A
currently at its goal state?’ are easy to calculate and
will provide the information we need for the rest of
the breaking-rule approach to work.

When many di↵erent types of mutable elements
are present in the puzzle rules, we also have to define
an order of importance related with the goal-state,
this is needed to properly define the cost order for
breaking rules.

This functionality is not implemented in the final
program as we have explained in the previous sub-
section: given the size of our scope we did not deem
making the ideal ruleAPI as important. More im-
portant are things like algorithm characteristics that
provide us with the potential for creating this ideal
ruleAPI.
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8 Experiment and Results

We did a small experiment to test if our generated
levels were of high quality and whether their di�-
culty label was accurate.
We will explain how the experiment is set up,

state the hypothesis we had for the results, interpret
the results, and compare results of previous research
with ours.

8.1 Setup and Execution

The focus of this research lies on the evaluation com-
ponent of a generic puzzle level generator. We must
thus test the evaluator for multiple puzzles, in or-
der to get meaningful data. The evaluation scores
represent an ordering of levels from the same puzzle.
So we must also test multiple levels per puzzle to
get meaningful data. However, we could not require
our participants to solve puzzles for over 3 hours and
have to be careful with the (random) selection of our
test levels to get a high ratio of quality data versus
required time per participant. We decided to test 3
levels per puzzle, for 3 di↵erent puzzles.
During the experiment the participant is faced

with the 3 levels of one puzzle type at a time. The
levels are presented next to each other horizontally,
in a random order (di↵erent for each participant).
The participants have to solve the levels and put
them in an ordering on perceived di�culty, before
they can proceed to the next puzzle type. We log
every move they make so we can split the data af-
terwards and see the amount of time that was spent
on each level separately, as well as the down time
during the solving sessions. A down time of more
than a minute is not counted as solving time, nor is
the time spent replaying a level after the solution has
been reached.
While the levels are presented the following text

is displayed above the levels: ”We encourage you
to try and solve the level that seems easiest first.
Furthermore, it is allowed to switch between levels
at any time, so feel free to mess around”.
To enhance the random selection of test levels, we

picked a few levels from the level pool and played
them (afterwards removing them so they could not
be selected as test levels). We did this to define an
appropriate distance in evaluation for which the lev-
els should have a noticeable di↵erence in di�culty (as
the evaluation numbers are not automatically nor-
malized to perceived di�culty).
We ended up iterating once on the evaluation rat-

ing of the levels, as during the first try, people were
having a hard time solving levels at all. Of 5 partici-
pants 4 did not manage to solve any level other than

Figure 10: This column diagram shows which level
is solved first per puzzle type.

the tutorial (which is solved in less than a minute),
while all played over half an hour and most a full
hour.
We decided that easier levels should be picked in

order to get meaningful data from a small group of
participants. We generated 30 new levels for each
puzzle type, this took 8 hours on a Macbook Pro
from 2015 with the standard i5 CPU, running three
processes. Over 30% of the levels received a higher
score (multiple even double) than the highest level
in the experiment for that puzzle type (except for
the swap mechanics, with which the generator has
the most trouble), this indicates that during those 7
hours many high quality levels were found.

8.2 Hypothesis

Our three hypothesis follow:

• The easy levels are likely to be solved first, even
though all levels are presented together, as the
big di↵erence in evaluation score will become
apparent by trying out the levels.

• Participants will spend more time on levels with
a higher evaluation score.

• Participants will label a level which receives a
higher evaluation score, to be harder.

8.3 Results

We have results from 12 participants.
In this subsection we will interpret the data. Since

the experiment was performed by only 12 people, the
significance of the results is questionable. However,
good correlations are scored with the Spearman cor-
relation coe�cient.
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Figure 11: This column diagram shows the given
di�culty ratings per level.

Figure 12: This column diagram shows the average
time spent on solving each level in percentages per
player.

8.3.1 First Solved Levels

Our first hypothesis stated that the easier levels are
more likely to be solved first. When we look at the
data in Figure 10 we see that for every puzzle type
50% or more of the participants solved the level with
the lowest evaluation score first. Although for the
swap and pull mechanics 50% also solved one of the
other two levels first, this still indicates that the low-
est scoring levels were in fact the easiest.

8.3.2 Time Spent on Levels

The second hypothesis stated that the time spent on
each level would correlate with the evaluation score
of the levels. This is the only hypothesis for which
we can include the tutorial levels, each of the tutorial
levels received an evaluation score of zero.
The strong worker and swap mechanics both show

a high correlation by the Spearman correlation co-
e�cient 0.88 and 0.76 respectively. The pull me-
chanics however, shows a much lower correlation of
0.62. This is due to the medium scoring level which
received a score of 600 compared to 125 and 1458
of the lowest and highest scoring levels respectively,
while people on average spent a factor of 1.45 more
time on the medium scoring level versus the highest
scoring level. When we switch the evaluation order
of these two levels, we get a correlation of 0.77 for
the time spent and evaluation order of the pull levels.
This indicates the evaluation of 600 is too low.

8.3.3 Player Di�culty Rating

The third hypothesis stated that the order of evalu-
ation score would correlate with the di�culty label
the participants would rate the levels. For the strong
worker mechanics the Spearman correlation coe�-
cient is 0.85 which is a strong positive correlation.
The ratings of the swap mechanics has a less strong
positive correlation of 0.81. The pull mechanics re-
ceived a slight positive correlation of 0.61, and when
we change the results from the highest and medium
evaluated levels we get a correlation of 0.72. This
indicates that the order of the highest and medium
labeled levels for the pull mechanics was not correct.

8.4 Comparing the Results of other Work

In this section we will compare the levels of other
research with our own. We only look at Sokoban
levels of other researchers, as the only well known
transportation puzzle we implemented is Sokoban.
The work of Murase et al. [29] is from 1996, thus

their level results are likely of less quality due to the
limitation of computation power compared to today,
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Table 4: Evaluation of the four ’good’ problems ac-
cording to the generator of [29] and their human ex-
perts (in our perceived di�culty order lower is eas-
ier).

Level
name

Evaluation
score

Mutable-
switches

Node ex-
pansions

Our
perceived
di�culty
order

Problem 1 42 6 7 4
Problem 2 16 4 4 2
Problem 3 322 6 46 3
Problem 4 12 3 4 1

twenty years later. However, we can still evaluate
their levels.

They generated 44 levels the generator consid-
ered ’good’ (levels are only evaluated by this ’good’
threshold, no further ordering is attempted) and of
those, 14 were also considered good by Sokoban ex-
perts. 4 of those 14 are given at the end of the paper,
they all contain 3 boxes. We evaluated them with
our method, the highest received a score of 322 and
the rest a score of less than 100 (see Table 4). The
levels are all solved in under two minutes by two ex-
perts of our own, both deeming one level intriguing
as counterintuitive moves are needed, however the
search space of the level is too small and thus the
level is solved quickly. This is the first level of Table
4, it received a very low rating even though it is per-
ceived the most interesting of the four, it would be
better if the evaluator labeled this highest of these
four levels. However, all these levels are solved too
quickly to our liking which means the low evaluation
score of these levels in general is a good result.

Their generation method is not easily made
generic, as they make use of hand-crafted templates
specific for Sokoban.

Taylor and Parberry [5] also use hand-crafted tem-
plates in their Sokoban generator. We think these
level are of higher quality than those of [29]. The lev-
els are evaluated by how far their starting position is
away from any solution. This distance is calculated
by a metric they call box-lines metric. It counts the
times the worker changes the direction in which a
box is pushed. The authors themselves state that
the box-switches would probably be a better metric,
however, implementation di�culty is deemed as an
obstacle. We also think that box-switches is better
than box-lines, because it favors a level with more
pushing in circles instead of a more intertwined so-
lution, as changing a box count the same as one di-
rection switch. The box-lines metric has the same
problems as the box-switches metric (see Figure 3),
and a few additional problems of its own.

Table 5: Evaluation of the first (top-left to right-
bottom) 8 problems presented by [5]. The levels are
in order of di�culty labeled by one of experts.

Level
name

Evaluation
score

Node ex-
pansions

Mutable-
switches

Expert
time

level 5 2 1 2 0:11
level 6 20 5 4 1:53
level 8 112 28 4 0:18
level 7 130 26 5 0:55
level 1 165 33 5 0:51
level 3 1260 126 10 2:16
level 4 600 100 6 3:54
level 2 749 107 7 11:29

16 levels are presented in the appendix with the
caption: ”Some levels of varying di�culty created
by our generator.”, one of our experts has played
and ordered the levels on di�culty. In Table 5 the
evaluation of the levels is compared with the order
of our expert, along with the time our expert spent
on the levels.

The time spent on level 6 is very high compared to
its di�culty order, this is because the level requires
one specific move in the beginning and is trivial af-
terwards. However, the level requires a lot of moves
that our expert had to reverse and do over.

Level 3 receives a too high score to our liking, it
is not very di�cult. The solution involves a lot of
mutable-switches, but they were perceived as intu-
itive, we are thus disappointed with the relatively
high number of node expansions needed to find the
solution.

Furthermore, we deem level 2 to be underrated,
it is a tricky level that requires expertise. It is by
far the best level of this set, a score of ±1200 would
have been more appropriate for this level. Overall
we think these results are good, as the order seems
to correlate with that of our expert and most easy
levels get a low rating. Also, the levels of [5] are
the best generated levels of those we have tested,
however, apart from level 2 they are still fairly easy,
and not of the extreme di�culty that we want from
our levels.

Jarušed and Pelánek [21] [22] [23] present an eval-
uation method for Sokoban using a human solving
model. For the model to work, the full search space
must first be labeled with the number of moves each
state is away from a solution. This makes the eval-
uation method infeasible for generic level generation
of transportation puzzles as of today, since several
levels must be evaluated if not hundreds, labeling
the whole search space for these PSPACE Complete
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Table 6: Evaluation of the four problems presented
in [21].

Level
size

Median
solving time
in minutes

Evaluation
score

Mutable-
switches

Node ex-
pansions

9x6 3 128 8 16
6x6 54 2562 14 183
8x6 43 7680 10 768
7x7 49 16226 14 1159

problems will not be feasible.
The data used in this study is gathered from 785

hours of play, in the paper 4 levels are presented
along with their median solving time; only the times
of players that have solved the level are counted. We
evaluated these levels with our method. The level
with a median solving time of 3 minutes received an
score of 128, the others have a median solving time of
over 40 minutes and are evaluated in the thousands
(see Table T4).
Many papers on puzzle level generation or dif-

ficulty evaluation claim their methods are generic.
Three papers [2], [3] and [14] actually test their
methods on multiple puzzles. [3] evolves puzzle rules
within given levels and does not generate any new
levels, their results3 show only easy levels. [14] does
not work on transportation puzzles, they focus on
Sudoku like puzzles.
Khalifa and Fayek [2] present a generic puzzle

level generator for transportation puzzles and has
the same goal as we have, except we choose to focus
on the evaluation function as we believed this was
the most important part for good results. Their lev-
els are playable here: http://amidos-games.com/

puzzlescript-pcg/. Khalifa and Fayek managed
to create a generator that ’works’ on all transporta-
tion puzzles were ours does not (but might with the
enhancements of the must-step-plan described in the
previous section). However, they test their method
only on puzzles our generator can generate for in its
current state as well.
The levels that are generated are of much worse

quality than the levels generated when we only used
the mutable-switched metric for evaluation. The
mutable-switched metric is generic for all transporta-
tion puzzles and easily deducible from the puzzle
rules, which makes it a generic evaluation method.
Khalifa and Fayek state that the: ”Heuristic mea-

sures ensure that the level’s solution is challenging”.
However, our two experts have tested over 40 levels,
all of them are solved in less then half a minute. Fur-
thermore, our evaluator would give a score of zero to

3
http://imgur.com/a/AkiMv

more than 40% of those levels, as the starting must-
step graph can reach the goal-state. We did not eval-
uate the others, as it was apparent these would need
less than 10 node expansions by our solver, and are
thus deemed trivial. Lastly, many levels are present
twice in a level set.
Although their work is interesting and proba-

bly the first generic level generator for transporta-
tion puzzles, the actual generation results are less
than mediocre and not likely to engage people, even
though they ”ensure that the level’s solution is chal-
lenging”.

9 Future Work

Throughout the thesis we have introduced many
ideas for improvement on existing methods, as well
as why these ideas are worth looking into. In this
section we group the improvement ideas into cate-
gories and give a summary on what is most urgent
in each category.

• Broader Experiment:
Designing an experiment for a much higher
number of participants is desired. We cannot
require multiple hours of our participants (at
least not from all). So we need more in order to
test the evaluation score on a broader range of
levels. We also need to test a broader range of
levels for a more accurate experiment, as well as
more data per level to test our hypothesis with
proper statistics.

• More Generic:
The evaluation method does not work when mu-
tables need to help each other in order to reach
their goals, because the must-step-plans cannot
be formulated. With an extension of the imple-
mentation, such that a sensible must-step-plan
can be formulated for this case, the method will
be applicable for a very broad range of trans-
portation puzzles.

We can achieve this when we reason about the
other mutables in a level, whilst formulating the
must-step-plan.

• More Thorough Analysis/Post-
Processing:
The expanded-node graph is now only used
to estimate the number of mutable switches
required to solve a level. If the analysis is done
more thoroughly, many other insights on the
search space of a level can be estimated. The
evaluation method can be improved further
with this information.
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• Feasible Informed Search with the work-
ing Heuristic:
The sub-problem driven approach and the con-
straint clash approach both show a lot of poten-
tial for an accurate evaluation, because of their
informed solving characteristics.

In the final product we have stripped away
most of these characteristics to optimize the
breaking-rule heuristic in an isolated environ-
ment. To utilize the potential of this heuris-
tic to its fullest, we will have to create an in-
formed search method, without requiring infea-
sible amounts of memory or time.

• Improved Level Search over the ILS:
This thesis is focused on the evaluation method.
Generating puzzle levels also requires algorithms
that find fit levels. The simple ILS works
well enough for demonstration purposes, using
more sophisticated meta-heuristics in the search
method has the potential to find more quality
levels in less time. Also, to generate the most
interesting level set, an adapting search method
which looks at the already generated levels is
desired.

10 Conclusion

We presented three new methods for evaluating puz-
zle levels. The methods are made with the in-
tention to work well on all transportation puzzles.
The breaking-rule approach worked best. We have
generated levels with the breaking-rule approach as
our evaluator for 5 transportation puzzles to verify
the method is indeed not specific to, for instance,
Sokoban. However, the must-step-plan in its current
state does not work on transportation puzzles with
mutables that can support each other to their goal.
We do have a plan thought out to address this prob-
lem, whether this plan works well in practice still has
to be seen.
We can reliably generate several very hard levels

using a simple ILS generator with the breaking-rule
approach as evaluator, in only a few hours on mod-
ern computers. Thereby generating faster than our
experts can solve the levels.
We tested the generated Sokoban levels of other

researchers and evaluated them with the breaking-
rule approach. Most of the previous work generates
very poor quality levels except for [5]. They how-
ever, make use of a worse metric than the mutables-
switched metric. They state so themselves, reasoning
the box/mutable-switched metric is harder to imple-
ment, while we have shown our method tackles the

biggest problems of the mutables-switched metric.
We thus believe our generator generates levels of

higher quality than any other Sokoban like generator.
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Figure 13:
The ordered data of the time spent on levels. The order is on percentages of time spent per level per

participant.
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(a)
Score: 1504.

Expantions: 188.
Switches: 8.

(b)
Score: 2233.

Expantions: 319.
Switches: 7.

(c)
Score: 35074.

Expantions: 2698.
Switches: 13.

Figure 14: Generated Sokoban levels.

(a)
Score: 4172.

Expantions: 596.
Switches: 8.

(b)
Score: 2844.

Expantions: 237.
Switches: 12.

(c)
Score: 4284.

Expantions: 476.
Switches: 9.

(d)
Score: 16030.

Expantions: 1145.
Switches: 14.

(e)
Score: 9010.

Expantions: 901.
Switches: 10.

(f)
Score: 12811.

Expantions: 557.
Switches: 23.

Figure 15: Generated pull mechanic levels.
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(a)
Score: 6062.

Expantions: 433.
Switches: 14.

(b)
Score: 6648.

Expantions: 554.
Switches: 12.

(c)
Score: 7588.

Expantions: 542.
Switches: 14.

(d)
Score: 17292.

Expantions: 1572.
Switches: 11.

Figure 16: Generated strong worker mechanic levels.

(a)
Score: 530.

Expantions: 106.
Switches: 5.

(b)
Score: 5310.

Expantions: 590.
Switches: 9.

(c)
Score: 11590.

Expantions: 1159.
Switches: 10.

Figure 17: Generated big box levels.
(The overlapping boxes were a bug, but the levels became better of it, you can only push them out of each

other)

(a)
Score: 28.

Expantions: 7.
Switches: 4.

(b)
Score: 32.

Expantions: 8.
Switches: 4.

(c)
Score: 32.

Expantions: 8.
Switches: 4.

Figure 18: Generated swap mechanic levels.
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(a)
Only BRM gen 1.

(b)
Only BRM gen 2.

(c)
Only BRM gen 3.

(d)
Only BRM gen 4.

Figure 19: Easy Sokoban levels generated with only the BRM as heuristic.

(a)
Hand-crafted 1.

(b)
Hand-crafted 2.

(c)
Hand-crafted 3.

(d)
Hand-crafted 4.

(e)
Hand-crafted 5.

(f)
Hand-crafted 6.

Figure 20: Hand-crafted levels used to test the methods during development.
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