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Abstract

It is well known that dissipation usually induces decoherence in quantum systems. However,
recently it has been employed to engineer zero-energy Majorana modes on the boundary
of a one-dimensional fermionic chain by using the Lindblad master equation [1]. In this
thesis, by employing the Caldeira-Leggett theory of quantum dissipation, we study the
equivalence between a particle on a one-dimensional lattice coupled to a thermal bath, and
the massless Luttinger liquid with an impurity on the boundary in a closed system [2–4]. In
particular, the Luttinger liquid with a single impurity at the boundary of a semi-infinite chain
is bosonized into the boundary sine-Gordon theory. Here, a zero-energy Majorana mode
appears at the boundary when the Luttinger parameter K = 1/2. The equivalence is shown to
apply also in the case of helical Luttinger liquids, which play an important role in topological
insulators. This equivalence is then generalized to the full sine-Gordon theory, such that
massive Luttinger liquids can be mapped to a single-particle one-dimensional tunneling
Hamiltonian with a dissipative Ohmic Caldeira-Leggett bath.
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Chapter 1

Introduction

1.1 Historical background

The field of condensed matter physics exhibits a rich variety of phenomena, which recently
have been embellished by a connection to the mathematical branch of topology, the study
of properties that are preserved through deformations of objects. In 2005, Kane and Mele
[5] and Bernevig, Hughes, and Zhang [6] proposed models for a two-dimensional quantum
spin Hall insulator, which realizes the quantum spin Hall effect (QSHE). Here, the edge
states carry a quantized spin Hall current, in contrast to the insulating bulk states. A strong
spin-orbit coupling and time-reversal invariance protect the edge states from scattering due
to disorder in the material. This system is an example of a topological insulator, a system
that is insulating in the bulk, but has protected conducting states at the edges. Its physical
observables depend on its topological properties. In 2007, the group of Molenkamp found
experimental evidence of the QSHE in mercury-telluride quantum wells [7]. Similarly to
topological insulators, the existence of topological superconductors also has been theoreti-
cally investigated. In 2001, Kitaev proposed a model of a one-dimensional chain of spinless
fermions, where a superconducting energy gap leads to a state that supports zero-energy
Majorana modes at the edges of the chain [8]. These brought an impulse to the field of topo-
logical quantum computation, as their topological protection shields them from decoherence.
Experimental signatures of zero-energy Majorana modes have been found by the groups led
by Kouwenhoven [9] and Marcus [10]. These developments have given a large impetus to
the field of condensed-matter physics.

Contrary to the superconducting Kitaev model, the Luttinger-liquid theory describes
conventional one-dimensional fermionic systems [11]. This low-energy theory includes
density-density interactions between electrons, and can be rewritten in terms of a free-bosonic
theory. It is the paradigm of the method of bosonization, a non-perturbative method used to
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switch between fermionic and bosonic language to describe one-dimensional systems [2].
In its bosonized form, the Hamiltonian is Gaussian. If impurities or other types of electron-
electron interactions are added, a cosine interaction appears. Together, they constitute a
Hamiltonian corresponding to the sine-Gordon equation. A local interaction or an impurity
at the boundary of the system leads to the boundary sine-Gordon equation.

Dissipation, the exchange of energy corresponding to the interaction of a system with its
environment, usually is highly detrimental to quantum-mechanical systems. The transition
from a pure quantum state to a mixed state, i.e. decoherence, is one of the common culprits
that prevent creating a stable qubit in quantum computation. The paradigmatic model to
describe quantum dissipative systems is the Caldeira-Leggett model [12, 13]. Here, the
system of interest is studied together with a reservoir, responsible for its energy losses. The
reservoir is modelled as a set of harmonic oscillators, linearly coupled to the system of
interest. In the classical limit, this model correctly reproduces the Langevin equation, used
to classically characterize open systems. The model has been used in the ‘80s and ‘90s to
successfully describe Josephson junctions and superconducting quantum interference devices.
However, dissipation also does have another face. In 2011, Diehl et al. have proposed how to
use dissipation as a mean to engineer topological states in quantum systems [1]. Using the
Lindblad formalism, a general dynamical description of open quantum systems, they showed
that at the edges of a one-dimensional chain of spinless fermions, zero-energy Majorana
modes appear as a consequence of dissipation. The analogy of this model with the Kitaev
chain is clear, whilst it differs in the sense that in the latter the origin of the zero-energy
Majorana modes lies in the Cooper pairing terms in the Hamiltonian, instead of dissipation as
in the former model. This indicates that dissipation can play a constructive role in quantum
systems as well. This is very promising, because experimentally it is very difficult to simulate
systems that are truly isolated from their environment.

1.2 This thesis

The research thesis reports on the study of dissipation effects in the Kitaev chain using
the Caldeira-Leggett formalism. The central question is: how can dissipation on a lattice,
represented by the Caldeira-Leggett formalism, be connected to the appearance of zero-
energy Majorana modes in a fermionic chain? Instrumental in this thesis is the equivalence
between a dissipative particle on a one-dimensional lattice, in the Caldeira-Leggett model
with Ohmic bath, and the boundary sine-Gordon equation, as reported by Guinea, Hakim,
and Muramatsu [3, 4], and later by Gogolin, Nersesyan, and Tsvelik [2].
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The equivalence can be extended from the boundary sine-Gordon equation to several
kinds of Luttinger liquids. Initially, it will be shown for an impurity at the boundary of
a semi-infinite chain for both fermionic left- and right-moving modes. Subsequently, the
chiral Luttinger liquid is considered, containing electrons moving in a single direction, and
the helical Luttinger liquid, where the spin variable is added, but the spin orientation is
locked to the direction of motion. It is shown that the boundary sine-Gordon equation hosts a
zero-energy Majorana mode a the boundary of the chain. Furthermore, the correspondence
may be generalized to the full sine-Gordon theory, where a cosine interaction term is present
at each lattice site. This allows the application of the equivalence to a much wider range of
Luttinger liquids.

1.3 Outline

This thesis can be divided in two parts. The first part, Chapters 2-4, serves as an introduction
to the topic, and provides background for the models used in the equivalence presented in
Chapter 5. The second part, Chapters 5-7, reveals the equivalence between a dissipative
particle on a one-dimensional lattice with Ohmic bath and the boundary sine-Gordon equation,
as well as several extensions and generalizations of this equivalence. Chapter 5 is the core
of this thesis. Chapters 6 and 7 concern the analytic application of this theory to related
quantum systems, and represent own work of the author.

The first part starts with Chapter 2, where topological insulators and topological super-
conductors are discussed. The integer quantum Hall effect and the quantum spin Hall effect
are briefly reviewed. Also, their behaviour and classification are discussed. Then we look
in detail into the Kitaev chain, a one-dimensional superconductor that supports zero-energy
Majorana modes at its edges, and say a few words about its possible practical applications.
Chapter 3 covers the topic of quantum dissipation and how to treat it mathematically, with a
strong focus on the Caldeira-Leggett model. Chapter 4 deals with the theory of fermionic
systems in one dimension, the Luttinger liquid, and explains the method of bosonization.
Finally, it is shown that the interacting Luttinger liquid after bosonization has the form of the
sine-Gordon equation. In the last section, it is shown that, for a specific parameter choice, a
zero-energy Majorana mode appears at the boundary of a semi-infinite chain, described by
the boundary sine-Gordon equation.

The second part begins with Chapter 5, where the central equivalence of this thesis
is proved. It follows in detail the outline provided by Ref. [2]. Some intuition for the
correspondence is provided, and it includes the calculations showing the equivalence. The
differences with Refs. [3, 4] are briefly adressed. Furthermore, the boundary sine-Gordon
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equation is linked to the Luttinger liquid with an impurity at the boundary. In Chapter 6, it is
shown that the equivalence also applies to the helical Luttinger liquid, describing edge states
in the quantum spin Hall effect. In Chapter 7 the same procedure is used as in Chapter 5,
but starting from the sine-Gordon theory. The procedure ensures that a Caldeira-Legget
dissipative contribution appears. This case also may be mapped to a dissipative particle on a,
albeit different, lattice.

In Chapter 8, the main contents of this thesis are summarized, and an outlook into further
research is provided.

Finally, in Chapter 9, I provide a Dutch summary of the work for the non-expert reader.



Chapter 2

Topological states of matter

2.1 Introduction

It is well known that most of the phases of matter and their quantum phase transitions have
been classified according to Landau’s theory of spontaneous symmetry breaking [14]. The
phase transition between liquid and solid can be understood from the breaking of rotational
invariance and continuous translational symmetry. A ferromagnetic system abruptly loses
its long-range order for temperatures higher than its Curie temperature. Superconductivity
is caused by a condensate of Cooper pairs, which spontaneously break the U(1)-gauge
symmetry. However, in the 1980’s the quantum version of the Hall effect was discovered.
Here, for a specific parameter regime, the insulating bulk was found to be surrounded by
gapless edge states. This proved the classification based on geometrical properties to be
insufficient, since the physical observables of this new quantum state instead depended on its
topological properties. Since then, other types of topological materials have been unveiled,
like topological insulators and topological superconductors [5, 6, 8, 15].

In this chapter, first we will briefly discuss conventional insulators and superconductors.
Then we examine topological phases of matter, such as topological insulators, the quantum
Hall effect, topological superconductors, and their properties. The difference between
topological and trivial phases of matter can be explained by looking at the Hamiltonian
of a system. Two Hamiltonians are topologically equivalent if they can be adiabatically
transformed into each other without closing the energy gap. As a consequence, gapped band
structures can be classified according to the symmetries that their Hamiltonians possess. We
will also look briefly into possible applications of these topological states of matter. Finally,
we will analyze one of the most basic topological superconductors: the Kitaev chain, which
supports topologically protected Majorana zero modes on its edges.
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2.2 Topological insulators and the quantum Hall effect

2.2.1 Insulators and conductors

In solid-state physics, the electronic-band theory has successfully been used to understand
many properties of solids, such as electrical conductivity. Whereas individual atoms have
an energy spectrum with discrete energies, when they are grouped into larger structures, the
spectrum consists of separate energy bands, which group several energy levels together. Due
to the fermionic character of electrons, at low temperatures all consecutive energy levels
above the ground state will be occupied, until the Fermi level, which is the highest occupied
energy level in the system. The highest fully-filled band and the one above are named the
valence and conduction bands, respectively. The insulating and conducting properties of
a material can be understood in terms of the relation between the Fermi energy and these
bands, as represented in Fig. 2.1. In conducting materials, like metals, the Fermi energy lies
within a band, such that the conduction and valence band overlap and there is no band gap.
Electrons can be moved to slightly higher-energy levels, thus leading to an electric current.
Insulators, however, have a Fermi energy between the completely filled valence band and
the empty conduction band, such that in order to be excited, electrons will have to cross the
intermediate energy gap. Typically, these gaps are of the order of electron volts or ionization
energies, which is a large energy on the atomic scale. In semiconductors, the band gap is
much smaller, such that thermal or other excitations can bridge the gap [16].

2.2.2 Superconductors

In 1911, Heike Kamerlingh Onnes discovered superconductivity. He observed that when he
cooled mercury below 4 K, the resistivity of the metal suddenly dropped to zero. This is
one of the characteristics of the superconducting phase, together with the Meissner effect,
which is the screening of a magnetic field by the Cooper pairs that leads to a zero magnetic
field inside the superconductor. In 1957, Bardeen, Cooper, and Schrieffer (BCS) proposed
a successful mean-field theory of superconductivity [18], for which they were awarded the
Nobel Prize in 1972. They described superconductivity as a superfluid of Cooper pairs, i.e.
bosons created by the interactions between electrons and phonons. Importantly, in the ‘80s
superconducting materials were discovered at very high temperatures, which could not be
explained anymore by the BCS theory [19].

One can distinguish different kinds of superconductivity by looking at the pairing sym-
metries. The quantum mechanical wavefunction that describes a superconducting Cooper
pair has both a spin and orbital angular-momentum components. The spin can be in a singlet



2.3 Topological states of matter 7

Figure 2.1 Band filling diagram for different types of conductors and insulators. The y-axis
shows the energy of bands, and the x-axis shows how these bands are positioned with respect
to the Fermi level EF . The filling of these bands is indicated by the shaded region, where
the dark regions correspond to fully occupied energy levels. The most left band structure
belongs to a metal, where electrons can easily access higher energy levels as the conduction
and valence bands are connected, and likewise for the semimetal. However, the conduction
and valence bands are separated by a gap for semiconductors and insulators. A p-type
semiconductor has a larger concentration of holes than electrons, and vice versa for a n-type
semiconductor. Figure taken from Ref. [17].

or in a triplet state, with total spin 0 and 1, respectively. The orbital component depends on
the angular momentum, with l = 0,1,2, ..., or respectively electron orbitals s,p,d, f , et cetera.
Because the wavefunction obeys the Fermi-Dirac statistics and is odd under exchange of
particles, an antisymmetric singlet-spin state must be accompanied by a symmetric orbital
part. A s-wave superconductor has s= 0, l = 0, a p-wave s= 1, l = 1, and a d-wave s= 0 and
l = 2. Conventional superconductivity, which can be explained by BCS theory, is described
in terms of s-wave Cooper pairs. Here, the superconducting gap, the energy needed to create
a Cooper pair, is independent of the pair momentum. All standard superconductors, such as
Al, Nb, and Pb, fall into this class. Cuprate high-temperature superconductors are typically
d-wave, while Sr2RuO4 is a p-wave superconductor [20].

2.3 Topological states of matter

2.3.1 Quantum Hall effect and topological insulators

The Hall effect

The classical Hall effect was discovered by Edwin Hall in 1879 [21]. In the experimental
setup, graphically represented in Fig. 2.2, a potential Vx leads to an electric current Jx that
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Figure 2.2 The Hall effect. Electrons are moving in a two-dimensional plane because of
a electric potential difference Vx, and a perpendicular homogeneous magnetic field Bz is
applied. As a consequence, the electrons experience a Lorentz force FL which causes them to
deflect, leading to a transverse Hall voltage VH .

flows through a conducting sheet of material in the x-direction. A homogeneous magnetic
field Bz is applied perpendicularly to the sheet. Electrons in a magnetic field experience a
Lorentz force FL, which causes them to orbit with frequency ωB = eB/m, where B is the
magnetic field strength, m the electron mass, and e the electric charge. By adding a friction
term to account for interactions with electrons or impurities, we arrive at a model known in
literature as the Drude model, with the equation of motion given by

m
dv
dt

=−eE+ ev×B− mv
τ
, (2.1)

where E is the electric field corresponding to the potential difference Vx, and the last term
denotes the friction and depends on the average velocity v and the scattering time τ , which
can be interpreted as the average time between collisions.

Physically speaking, initially the electrons are moving in the x-direction, but due to
the Lorentz force they are deflected towards the transverse direction. This causes a charge
build-up at the edges of the sheet, producing a transverse electric field Ey. This transverse
electric field gives rise to a voltage difference between the two sides, the so-called Hall
voltage VH . The longitudinal conductivity σx and Hall conductivity σH can be calculated and
read [22]

σx =
ne2τ

m
, σH =

ne
B
, (2.2)

with n the density of charge carriers. Thus, in the classical picture, the Hall conductivity
scales inversely proportional with the magnetic field B.
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Figure 2.3 Experimental results in measuring the integer quantum Hall effect [23]. The Hall
resistivity (ρxy) versus the applied magnetic field is depicted at a temperature of 8 mK, and
its quantized behaviour is clearly visible.

Integer quantum Hall effect

In 1980, the quantum version of the Hall effect (integer quantum Hall effect, IQHE) was
discovered by Klaus von Klitzing [15]. For this discovery, he was awarded the Nobel Prize
in 1985. He investigated the Hall effect in a two-dimensional electron gas at temperatures of
the order of 1K, and observed a quantized Hall resistivity, unlike what would be expected
classically from Eq. (2.2). More recent results for the Hall resistivity (inverse conductivity)
and the longitudinal resistivity are shown in Fig. 2.3. On the plateaus, the electric Hall
conductivity goes as

σH =
e2

h
ν , ν ∈ Z, (2.3)

where ν is the filling factor. It is worth noting that the value of the constant e2/h has been
measured with extraordinary precision, up till 10−9, and is referred to as the Von Klitzing
constant. In the middle of each plateau, the magnetic field is

B =
hn
νe

=
n
ν

Φ0, (2.4)

where Φ0 = h/e is defined as the flux quantum. It is possible to describe these quantum states
through the Hamiltonian for a charged particle moving in a magnetic field. The corresponding



10 Topological states of matter

energy levels are given by

En = h̄ωB

(
n+

1
2

)
, n ∈ N, (2.5)

where ωB = eB/m is the cyclotron frequency. These equally spaced energy levels are the so-
called Landau levels, which are degenerate with respect to the quantum number kx = 2π p/L,
with p integer and L the length of the system. Remarkable behaviour occurs at the edges of
the material. Adding an electric field to the system causes the energy levels to tilt slightly
and lifts the degeneracy, as the energy levels now depend linearly on kx. The current in the
x-direction of one Landau level is given by

In =− e
L ∑

kx

vkx , (2.6)

where vkx represents the average single mode velocity,

vkx =
1
h̄

∂Enkx

∂kx
=

1
h̄

∆Enkx

∆kx
=

L
2π h̄

∆Enkx . (2.7)

The energy difference between two Landau levels is ∆Enkx = ∆En,kx+1 −∆En,kx , such that

In =−e
h

(
En,kmax −En,kmin

)
. (2.8)

A voltage difference V between the two sides of the material gives En,kmax −En,kmin =−eV ,
such that we find

In =
e2

h
V. (2.9)

Pictorially, we can understand this in the following way. Due to the magnetic field, the
electrons obey cyclotron motion, say for example in the clockwise direction. The electrons in
the bulk do not contribute to the current. However, near the edges, the electrons are reflected
at the boundary and propagate in the x-direction. These modes are called chiral edge modes.
Usually, if electrons in the material encounter an impurity, they would scatter in various
directions. However, for chiral modes the scattering is not possible, as the movement along
the boundary is the only allowed movement there is. This means that chiral edge modes
are highly immune to scattering off impurities [24]. Now, we will generalize the previous
discussion for a single Landau level to all energy levels. The Landau levels are completely
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filled up till level ν [22]. The total current then reads

Itot =
ν−1

∑
n=0

In = ν
e2

h
V, (2.10)

and for the quantized Hall conductivity

σH =
1

ρH
=

Itot

V
= ν

e2

h
, (2.11)

which is indeed Eq. (2.3) [25]. We can briefly anticipate the next section, and explain why
the IQHE is a topological phase. In the next section, we will discuss the fact that ν is a
topological invariant, called the Chern number [26].

Its robustness against disorder would make this topological phase extremely useful for
applications in semiconductor devices, but at the same time the low temperatures and strong
magnetic field that are required leave the possibilities for practical applications limited.
However, there exist novel topological phases called Chern insulators, where time-reversal
symmetry is broken and a finite Berry phase leads to the IQHE even in the absence of an
external magnetic field. In these materials, we can still observe the quantization of the electric
conductivity without the presence of any external magnetic field [27].

In 1998, another Nobel prize was awarded to Tsui, Störmer and Laughlin for the discovery
and theoretical description of the fractional quantum Hall effect (FQHE) [28, 29]. In this
phenomenon, the Hall conductance shows quantized behaviour as in Eq. (2.3), but now with
ν ∈ Q. Whereas the IQHE can be explained by the theory of free electrons, interactions
between electrons need to be incorporated to account for the FQHE.

Quantum spin Hall effect and two-dimensional topological insulators

In 2005, Kane and Mele [5], and Zhang, Bernevig, and Hughes [6] predicted the existence of
the quantum spin Hall effect (QSHE), which was indeed later found experimentally in HgTe
quantum wells by Molenkamp’s group [7]. In these systems, the magnetic field is no longer
the driving mechanism, but instead a strong spin-orbit coupling triggers a quantized spin
Hall conductance. They are now also well known under the name of topological insulators.
A topological invariant Z2 distinguishes the ordinary insulator from the quantum spin-Hall
phase [30]. The QSHE effect is analogous to the IQHE, which is characterized by insulating
behaviour in the bulk accompanied by metallic gapless electron states at the edges. The main
difference is that here the edge states are helical and spin up and down counter-propagate,
contrarily to the chiral states that characterize the QHE, where the time-reversal symmetry is
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broken. As a result, the net charge current is zero, but the spin current is quantized. Second,
the IQHE requires a strong magnetic field, which breaks time-reversal invariance of the
system. The QSHE however, is time-reversal invariant and does not require any magnetic
field [31].

Besides the two-dimensional mercury telluride quantum wells, topological insulators
also have been discovered in three-dimensional materials, such as Bi2Se3 and Bi2Te3 bulk
crystals [31, 32].

What makes these systems topological insulators?

Two Hamiltonians are said to be topologically equivalent if they can be continuously trans-
formed into each other, without closing the energy gap. The set of all topologically equivalent
Hamiltonians are charcterized by a topological invariant. A topological invariant is a number
that does not change under continuous transformations inside the set of gapped Hamiltonians.

To give an example, a conventional insulator could be transformed into a semi-conductor,
by smoothly (without closing the energy gap) decreasing the gap size in the Hamiltonian.
In this sense, conventional conductors and semi-conductors belong to the same phase. In
fact, they are topologically equivalent to the vacuum. Now, if one would transform the
Hamiltonian and close the energy gap, the topological invariant (e.g. the Chern number,
discussed below) changes, and therefore the topological phase of the material changes.

We can apply this idea now, for instance, to the IQHE. Usually, the conductivity of a
system depends on the microscopic details of the system. For the quantum Hall state this
is different. In 1982, Thouless, Kohmoto, Nightingale, and Den Nijs (TKNN) showed that
the Hall conductivity is a topological invariant of the system [26], and therefore can be
characterized by an integer. This topological quantity is the Chern number, which will be
introduced in section 2.3.2. This explains the quantized behaviour of the Hall conductance.
As for the edge states, we have seen the IQHE supports chiral edge states between the
insulating bulk and the vacuum. We explain in the next section that these are highly robust to
scattering due to their topological protection, called the bulk-boundary correspondence [24].

2.3.2 Characterization of the topological phase

Berry phase and curvature

Some topological invariants can be calculated from the Berry phase and curvature. An
example is the TKNN invariant in the IQHE, where the Hall conductance is calculated from
the Berry curvature [26]. The Berry phase can be measured experimentally [33]. In this
section, I will follow the introduction to the Berry phase by Bernevig [34].
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Consider a Hamiltonian H(R), depending on parameters R1,R2, ... as magnetic field,
electric field, and so on. The parameters R depend on time, but for notational clarity we will
leave this out. Here, the eigenstates read

H(R) |n(R))⟩= En(R) |n(R)⟩ , (2.12)

and the time evolution of the system is given by Schrödinger’s equation

H(R(t)) |ψ(t)⟩= ih̄
d
dt

|ψ(t)⟩ . (2.13)

The state of the system is written as |ψ(t)⟩ = e−iθ(t) |n(R(t))⟩ with phase θ(t). Using the
eigenvalue equation

En(R) |n(R)⟩= h̄
(

d
dt

θ(t)
)
|n(R)⟩+ ih̄

d
dt

|n(R)⟩ , (2.14)

we take the scalar product with ⟨n(R)| and assuming that the state is normalized, ⟨n(R)|n(R)⟩=
1, we find

En(R)− ih̄⟨n(R(t))| d
dt

|n(R(t))⟩= h̄
d
dt

θ(t), (2.15)

which leads to the solution for the phase

θ(t) =
1
h̄

∫ t

0
En(R(t ′))dt ′− i

∫ t

0

〈
n(R(t ′))

∣∣ d
dt

∣∣n(R(t ′))
〉

dt ′. (2.16)

The first term is the conventional dynamical phase, and the second is the Berry phase γn

γn = i
∫ t

0

〈
n(R(t ′))

∣∣ d
dt

∣∣n(R(t ′))
〉

dt ′, (2.17)

which arises because the states at t and t +dt are not the same. Interestingly, we can make
an analogy with electromagnetism by considering the Berry phase as the magnetic flux in
parameter space. If the parameters R are varied along a path C in parameter space, we
rewrite it as an integral over R,

γn = i
∮
C
⟨n(R)|∇R |n(R)⟩dR = i

∮
C

dR ·An(R), (2.18)

with the Berry connection (or, analogously, the Berry vector potential) An,

An(R) = i⟨n(R)|∇R |n(R)⟩ . (2.19)
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For a three-dimensional integral, we apply Stokes’ theorem to find

γn =
∫
S

dS ·Fn(R), F(R) = ∇R ×An(R), (2.20)

with Fn(R) the Berry curvature, which is the curl of the Berry potential (or the magnetic field
in parameter space).

Chern number

From the Berry curvature, the topological invariant Chern number can be calculated. It is
used to distinguish between the trivial and topological phases of systems.

The Chern invariant is the total Berry flux in the Brillouin zone, which is integer,

mn =
1

2π

∫
d2kFn(k), (2.21)

and summing over all occupied bands gives the total Chern number,

m = ∑
n

mn, (2.22)

with m ∈ Z. The special thing is that this number is invariant, as long the energy gap is not
closed. Thus, it can be used to classify Hamiltonians according to their topology.

In the case of the integer quantum Hall state, the Chern number is the same as the integer
ν appearing in Eq. (2.3), the so-called TKNN invariant [26]. The topological character then
explains the robust quantization of the Hall resistivity.

We are now ready to discuss another intriguing property of topological materials: the
bulk-boundary correspondence. It relates the topological structure of the bulk to the existence
of gapless modes at the surface. For two-dimensional insulators, for example, the topological
invariant Chern number in the bulk is connected to the number of edge states. The dispersion
of the conducting edge states connects the conduction and valence bands. The energy can
be deformed such that it crosses the Fermi energy multiple times. However, the difference
between the number of left- and right-moving modes at the edge, NL and NR, does not change.
It can be related to the topological invariant of the bulk,

NR −NL = ∆n, (2.23)

where ∆n is the difference in Chern number across the interface [24].
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2.3.3 Symmetries

Discrete symmetries play a central role in the classification of different types of topologi-
cal systems. The symmetries present in the Hamiltonians define the possible topological
invariants associated to their bulk. We consider three important types of intrinsic symme-
tries: time-reversal, particle-hole, and sublattice or chiral symmetry. Note however that the
overview of topological invariants and symmetries in this section is not complete: firstly, it
applies only to free-fermion models, and secondly, spatial symmetries, e.g. related to the
cristalline structure of a material, can give rise to so-called cristalline topological insulators,
and are not included in the discussion [35].

Time-reversal symmetry

Time reversal is a transformation that reverses the arrow of time, and time-reversal symmetry
(TRS) indicates that the Hamiltonian stays unchanged with respect to this transformation.
Let Θ be the time-reversal operator, such that

Θ : t →−t, |α⟩ → Θ |α⟩ , (2.24)

where Θ |α⟩ denotes the time-reversed state. Time-reversal invariance dictates that

[H,Θ] = 0. (2.25)

The operator Θ is anti-unitary, such that Θ∗Θ = −1. This can be seen from the
Schrödinger equation for a time-reversal invariant system

ih̄
∂

∂ t
Ψ(x, t) = HΨ(x, t), (2.26)

with Θ∂tΘ
−1 = ∂−t . The position operator x is not changed by this operation, but the

momentum operator p = ih̄ d
dx is

ΘxΘ
−1 = x, ΘpΘ

−1 =−p. (2.27)

The anti-unitary operator can be written as the product of a unitary matrix times the complex
conjugation operator: Θ =UK.

We consider now time-reversal for systems with spin 1
2 . Interestingly, by applying the

time-reversal operator twice does not necessarily yield the original result. For spin-1
2 systems,
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the time-reversal operation is
Θσ jΘ

−1 =−σ j, (2.28)

with the label j = x,y,z, and σ j the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Note that

σyσxσy =−σx, (2.29)

σyσyσy =+σy, (2.30)

σyσzσy =−σz. (2.31)

Since σx,z are real-valued and σy is complex-valued, we have that Kσx = σxK and Kσy =

−σyK. Combining this, we write the time-reversal operator as

Θ =−iσyK = e−iπSy/h̄K, (2.32)

with spin matrix Sy =
h̄
2σy, and using that

e−iπSy/h̄ =
∞

∑
k=0

1
k!

(
−iπσy

2

)k

= cos
(

π

2

)(1 0
0 1

)
+ sin

(
π

2

)(0 −1
1 0

)
=−iσy. (2.33)

For general angular momentum Jy, we have

Θ = e−iπJy/h̄K, (2.34)

which satisfies
Θ

2 =−1. (2.35)

Kramer’s theorem states that in a TRS-invariant system, if Θ2 = −1, all energy states
must be at least doubly degenerate. This holds for any system with an odd total number
of fermions, and can be seen by proving that Θ |ψ⟩ ̸= |ψ⟩, even when both states have
the same energy. Thus, if Θ |ψ⟩ = eiφ |ψ⟩, then Θ2 |ψ⟩ = e−iφ eiφ |ψ⟩ = |ψ⟩. But, this is
in contradiction with Θ2 |ψ⟩ = −|ψ⟩. Hence, the fermionic states Θ |ψ⟩ and |ψ⟩ are not
equivalent, but have the same energy, so the corresponding energy level must be doubly
degenerate.
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The time-reversal transformation of the Hamiltonian reads

iσyHT (−iσy) = H. (2.36)

For integer-spin particles, the time-reversal operator is unitary, such that Θ2 = 1, and the
transformation becomes

HT = H. (2.37)

Particle-hole symmetry

Particle-hole symmetry (PHS) appears in superconducting systems and refers to viewing
creation operators for electrons as annihilation operators for holes. The transformation is
represented by

(σxK)H(σxK)−1 =−H. (2.38)

Because of this symmetry, the spectrum is symmetric around the Fermi energy. The particle-
hole symmetry is of central importance in the Kitaev chain, as we will see in section 2.4.

Chiral symmetry

Chiral or sublattice symmetry (CS) arises when the lattice can be divided into two sublattices,
as in the honeycomb carbon lattice of graphene. The symmetry operation is

σzHT
σz =−H. (2.39)

All energy eigenstates come in pairs (En,−En).
In fact, a system with both PHS and TRS also automatically has CS. However, also when

neither of those symmetries are present, the CS can hold. An example of this is the AIII class
of topological insulators, introduced in the next paragraph.

Classification

Crucially, the features of topological states of matter can be classified according to their sym-
metries. In 2009, Schnyder et al. published an exhaustive classification of topological phases
of insulators and superconductors based on the above symmetries [36]. This classification is
based on two types of symmetry operations P and C, given by

P : H =−PHP−1, PP† = 1, P2 = 1, (2.40a)

C : H =−εcCHC−1, CC† = 1, CT = ηcC, (2.40b)
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where H represents the single-particle Hamiltonian, εc =±1 and ηc =±1.
The C-type symmetry represents a TRS operation when εc =+1 and a PHS operation

when εc =−1. More specifically, (εc,ηc) = (1,1) corresponds to a TRS for integer spin or
spinless particles, and (εc,ηc) = (1,−1) corresponds to a TRS for half-integer spin particles.
Furthermore, (εc,ηc) = (−1,1) represents a PHS for a triplet pairing Bogoliubov-de Gennes
(BdG) Hamiltonian, and (εc,ηc) = (−1,−1) represents a PHS for a singlet pairing BdG
Hamiltonian.

The classification scheme is given in Table 2.1 [37]. The different classes are identified
following the Altland-Zirnbauer classification [38] in the first column. The next three
columns correspond to the symmetries present in these classes. The symbol 0 denotes the
absence of the regarding symmetry. The presence of a given symmetry is indicated by ±1,
depending on whether the symmetry operator squares to +1 or −1. The other columns on
the right show whether topologically non-trivial ground states exist for the given symmetries
as a function of spatial dimension d. The symbols Z and Z2 denote whether the topologically
distinct phases within a given symmetry class are characterized by an integer topological
invariant, such as the Chern number, or by an invariant which is either 0 or 1, such as the
Fu-Kane invariant [30], respectively, and the 0 indicates that all quantum ground state are
topologically equivalent to the trivial state. Note that the table does not cover topological
semi-metals like Weyl-semimetals, that also support gapless excitations, so-called Fermi arcs
[39]. Extensions of this classification scheme with mirror or inversion symmetries can be
found in Ref. [35].

The AII class covers the well-known topological insulators, such as HgTe in 2D and
BiSe in 3D. The quantum Hall effect and Chern insulators belong to class A in 2D. The
topological superconducting Kitaev chain in class D is characterized by a Z2 topological
number, as shown in the next section.

2.4 Topological superconductors

2.4.1 Introduction

In the mean-field BCS theory of superconducting materials, a superconductor has a supercon-
ducting gap in the bulk, which corresponds to the energy needed to create a Cooper pair. For
a specific parameter regime, a topological superconductor supports topologically protected
zero-energy Majorana modes at its edges, as predicted by Kitaev [8]. In contrast to the QHE
and QHSE which are single-particle phenomena, here the interactions need to be incorporated
into the model in order to have a superconducting phase. However, at mean-field level, the



2.4 Topological superconductors 19

Table 2.1 Symmetry classification of non-interacting free-fermion Hamiltonians of topolog-
ical insulators and superconductors, as a function of the spatial dimension d. Table taken
from Ref. [37].

AZ class TRS PHS CS d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2
BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2
D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
DIII -1 1 1 0 Z2 Z2 Z 0 0 0 2Z
AII -1 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII -1 -1 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 -1 0 0 0 2Z 0 Z2 Z2 Z 0
CI 1 -1 1 0 0 0 2Z 0 Z2 Z2 Z

model becomes equivalent to a free-fermion system described by a Bogoliubov-de Gennes
Hamiltonian, where the particle-hole symmetry plays a central role.

Hence, topological superconductors are closely connected to the phenomenon of Majo-
rana modes [40, 41]. In 1937, Majorana predicted that real wavefunctions also satisfy the
Dirac equation, which correspond to particles that are equal to their own antiparticles [42].
However, experimentally still no fundamental particles have been found to be Majorana
fermions, though a possible candidate might be the neutrino. On the other hand, in the area
of condensed matter, where ions, electrons, and their interactions are the main objects of
study, quasiparticles may arise that satisfy the Majorana character. The operators that math-
ematically create these electrons, dressed with interactions, are equivalent to the ones that
annihilate them, thus leading to a zero-energy Majorana mode. The Kitaev chain (Ref. [8])
is an example of a topological superconductor that hosts these Majorana modes, and will
be discussed extensively in section 2.4. Apart from providing a fundamental understanding
of the rich behaviour of one-dimensional topological superconductors, Majorana modes
have attracted much theoretical interest because their alleged practical applications, see
section 2.4.6. Recently, signatures of Majorana modes in topological superconductors have
been found experimentally [9, 43].

A superconductor is called topological if any topological number that can be associated to
the occupied states is nonzero [39]. This can be explained by making the above more precise.
At the ends of a one-dimensional superconductor, bound states can be present. If so, then
for every state with energy E, there also exists a state with energy −E. These finite-energy
pairs are not topologically protected. Smooth transformations of the Hamiltonian can push
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these states out of the energy gap. However, if the bound state has energy E = 0, this single
unpaired state is topologically protected, as it cannot move away from E = 0. The topological
invariant of these systems is a Z2 = {0,1} quantity. Though this number is calculated from
the bulk properties, it indicates whether such a zero-energy mode exists. These are the
Majorana modes discussed in the above, each comprising half a Dirac fermion. Since they
always come in pairs (there are two edges), the states together define a degenerate two-level
system, where quantum information can be stored non-locally [24, 41].

2.4.2 The Kitaev chain

In 2001, Kitaev showed that a 1D quantum wire of spinless fermions can host zero-energy
states at the edges of the chain [8]. These edge states are called Majorana zero modes because
they can be rewritten in terms of operators that equal their Hermitian conjugate. Kitaev’s
model is described by a tight-binding Hamiltonian with p-wave pairing on a one-dimensional
lattice, given by

H =−µ

N

∑
j=1

n j −
N−1

∑
j=1

[
t
(

c†
jc j+1 + c†

j+1c j

)
+

∆

2

(
c jc j+1 + c†

j+1c†
j

)]
. (2.41)

Here, c†
j (c j) is the fermionic creation (annihilation) operator acting on site j, and n j = c†

jc j

the occupation number operator, µ the chemical potential, t ≥ 0 the hopping amplitude, and
∆ =< c†

jc
†
j+1 > the superconducting pairing amplitude, giving rise to the Cooper pairs (note

that BCS is a mean-field theory). For p-waves, typically the energy gap is dependent on the
momentum, whereas for s-wave it is a constant. This will become apparent when we write
the Hamiltonian in k-space.

In other words, the first term counts the number of particles present in the system. The
second tight-binding term describes the energy gain of a particle hopping to an adjacent site.
The third term describes the formation of nearest-neighbour electron pairs, and corresponds
to the formation of superconducting Cooper pairs.

We rewrite the Hamiltonian in the momentum space by introducing the Fourier transforms

c†
j =

1√
N ∑

k
e−ika jc†

k , c j =
1√
N ∑

k
eika jck, (2.42)
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with a the atomic lattice spacing, −πm/aN ≤ k ≤ πm/aN denoting the first Brillouin zone,
and |m| ≤ N/2. The first term of Eq. (2.41) reads

−µ

N

∑
j=1

n j =−µ

N

N

∑
j=1

∑
k,k′

e−i(k−k′)a jc†
kck′ =−µ ∑

k
c†

kck, (2.43)

where we used the definition of the delta function

N

∑
j=1

e−i(k−k′)a j = Nδk,k′ . (2.44)

Similarly, the second term becomes

− t
N−1

∑
j=1

(
c†

jc j+1 + c†
j+1c j

)
=− t

N

N−1

∑
j=1

∑
k,k′

c†
kck′e

−i(k−k′)a j
(

e−ika + eik′a
)

=−t
N −1

N ∑
k

c†
kck

(
e−ika + eika

)
=−2t ∑

k
c†

kck cos(ka), (2.45)

where in the last step we took the limit N → ∞. The third term yields

∆

2

N−1

∑
j=1

(
c jc j+1 + c†

j+1c†
j

)
=

∆

2
1
N

N−1

∑
j=1

(
∑
k,k′

ckck′e
i(k+k′)a j+ik′a +∑

k,k′
c†

kc†
k′e

−i(k+k′)a j−ika

)

=
∆

2
N −1

N ∑
k

(
ckc−ke−ika + c†

kc†
−ke−ika

)
. (2.46)

In the last expression, we take again the limit N → ∞, and we set k =−k in the first term.
Combining all terms, we obtain

H = ∑
k

εkc†
kck +

∆

2 ∑
k

(
c−kckeika + c†

kc†
−ke−ika

)
, (2.47)

with
εk =−µ −2t cos(ka). (2.48)

Introducing the two-component Nambu spinor N†
k =

(
c†

k ,c−k

)
, we rewrite the Hamiltonian

in the standard Bogoliubov-de Gennes form [40], with ∆̃k = ∆eika,

H =
1
2 ∑

k
N†

k HkNk, Hk =

(
εk ∆̃∗

k

∆̃k −ε−k

)
. (2.49)
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Furthermore, using e±ika = cos(ka)± isin(ka), we find

Hk = ∆cos(ka)σ1 +∆sin(ka)σ2 + εkσ3 = σ⃗ · d⃗(⃗k) (2.50)

with σi the Pauli spin matrices.
Note that by introducing the Nambu spinors, we have doubled the number of degrees of

freedom. The reason behind this is the equal footing on which electrons and holes can be
treated, resulting in a particle-hole symmetry of our Hamiltonian.

The particle-hole symmetry can be used to perform a Bogoliubov transformation on the
Hamiltonian. This transformation describes excitations above the superconducting ground
state as new quasi-particles, which are a superposition of electrons and holes [40]. The new
quasiparticle operators are given by

ak = ukck + vkc†
−k, (2.51)

uk =
∆̃k

|∆̃k|

√
Ebulk + ε√

2Ebulk
, (2.52)

vk =

(
Ebulk − ε

∆̃k

)
, (2.53)

and the bulk excitation energies read

Ebulk =
√

ε2
k + |∆̃k|2. (2.54)

2.4.3 Topological invariant

The Kitaev Hamiltonian belongs to class D (particle-hole symmetry, no time-reversal sym-
metry), and the topological and trivial phases are distinguished by a Z2 invariant. In the same
paper where Kitaev proposes the topological superconductor [8], he introduces the Majorana
number, given by

M(H) =±1, (2.55)

associated with the Hamiltonian H. It is related to the fermionic parity of the ground state of
a closed chain with length L, denoted by P(H(L)),

P(H(L1 +L2)) = M(H)P(H(L1))P(H(L2)). (2.56)

where the invariant can be expressed as

M(H) = (−1)
∆ϕ

π , (2.57)
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where ∆ϕ denotes a phase change, which can be calculated by a winding integral over half
of the Brillouin zone,

∆ϕ = i
∫

π

0

{
∂k log

[
W̃ (k)

]}
dk, (2.58)

where W̃ (k) is Fourier transform of the transformation matrix W that brings the Majorana
representation matrix of the Hamiltonian B into the form

WBW T = diagλ

(
0 ελ

−ελ 0

)
, (2.59)

where ελ are the eigenvalues of B.
In 2013, Budich and Ardonne showed that the invariant M(H) is equivalent to the

topological invariant calculated with the quantized Zak-Berry phase ΦZB in the Bogoliubov-
de Gennes mean field description of superconductivity [44], as

ΦZB =
∫

π

−π

dk A(k) = ∆ϕ, (2.60)

with A(k) the Berry connection as defined in Eq. (2.19).

2.4.4 Majorana modes

In this section, we show how to write the Kitaev chain in terms of Majorana operators. We
write the fermionic creation (annihilation) operators c†

j (c j) with
{

c j,c
†
j′

}
= δ j, j′ in terms of

Majorana operators η j and γ j as

c j =
1
2
(
η j + iγ j

)
, c†

j =
1
2
(
η j − iγ j

)
, (2.61)

with η
†
j = η j and γ

†
j = γ j, such that Majoranas always come in even numbers. Equivalently,

η j = c j + c†
j , γ j =−i

(
c j − c†

j

)
(2.62)

From this, we find the anticommutator and the squares of the operators, namely{
η j,γ j

}
=
{(

c j + c†
j

)
,−i
(

c j − c†
j

)}
= 0, (2.63)(

η j
)2

=
(

c j + c†
j

)2
=
{

c j,c
†
j

}
= 1, (2.64)(

γ j
)2

=−
(

c j − c†
j

)2
=
{

c j,c
†
j

}
= 1. (2.65)
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γ1 η1 γ2 η2 γN ηN

γ1 η1 γ2 η2 γN ηN

Figure 2.4 Schematic representation of the Kitaev Hamiltonian in Eq. (2.66), for (top) µ < 0,
t = ∆ = 0, and (bottom) µ = 0 and t = ∆

2 ̸= 0. In the former, representing the trivial phase,
the Majorana operators pair at the same lattice site, whereas in the latter, representing the
topological phase, they pair with their adjacent lattice sites, leaving two unpaired operators
at the boundaries γ1 and ηN .

By introducing the Majarana operators given in Eq. (2.61), the Hamiltonian becomes

H =−µ

2

N

∑
j=1

(
1+ iη jγ j

)
− i

4

N−1

∑
j=1

[(
∆

2
+ t
)

η jγ j+1 +

(
∆

2
− t
)

γ jη j+1

]
. (2.66)

We consider two interesting limits, represented schematically in Fig. 2.4. First, take
µ ̸= 0 and t = ∆ = 0. The Hamiltonian given in Eq. (2.41) reduces to

H =−µ

2

N

∑
j=1

(
1+ iη jγ j

)
. (2.67)

This is the trivial case. The Majorana operators η j and γ j from the same site j are paired
together. The ground state corresponds to the empty chain. The spectrum is gapped, since
the cost of adding a particle is |µ|.

Second, take µ = 0 and t = ∆

2 ̸= 0. The Hamiltonian becomes

H =− it
2

N−1

∑
j=1

η jγ j+1. (2.68)

Here, the topological phase appears. The Majorana operators η j and γ j+1 of adjacent physical
sites j, j+1 are paired together.

Note that this last Hamiltonian does not depend on the operators γ1, ηN , which obey
γ

†
1 = γ1 and η

†
N = ηN . Since these sites do not contribute to the Hamiltonian, we recognize

them as zero-energy Majorana modes.
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2.4.5 QFT approach of Hamiltonians in Class D

The symmetry class D contains Hamiltonians with PHS, but no TRS and CS. In this case, we
need to fulfill

H(k) =−CH∗(−k)C−1, CC† = 1, CT =C, (2.69)

such that we need a symmetric unitary representation of C.
We can easily show now that the particle-hole symmetric topological superconductor is

described by the 1+1-dimensional Dirac Lagrangian in Minkowski spacetime [45], given by

L = ψ̄iγµ
∂µψ −mψ̄ψ − im5ψ̄γ

5
ψ, (2.70)

with m the normal mass and m5 the axial mass, {γµ ,γν} = ηµν , ηµν = diag(1,−1). The
Dirac matrices are chosen real γ0 ≡ σx, γ1 ≡ −iσy, γ5 ≡ γ0γ1 = σx. The corresponding
Hamiltonian

H =−iγ0
γ

1
∂1 +mγ

0 + im5γ
0
γ

5 (2.71)

is then Hermitian because
{

γµ ,γ5}= 0, and reads in momentum space

H(k) = γ
0
γ

1k+mγ
0 + im5γ

0
γ

5. (2.72)

Since
−H∗(−k) = γ

0
γ

1k−mγ
0 + im5γ

0
γ

5, (2.73)

we choose C = I if m = 0, and C = γ5 if m5 = 0, such that the requirements are fullfilled.
Thus, the Hamiltonian H(k) describes a class D system. In fact, all the topological phases in
Table 2.1 can be mapped to Dirac Hamiltonians, which can be classified in terms of their
underlying Clifford algebras [36].

2.4.6 Applications

Topological insulators are interesting for applications in electronic circuits and thermo-
electrics due to their electronic band structure and topological protection of the edge states.
Furthermore, the QSHE might be very interesting in the context of spintronics [6].

One of the most important contributions of topological systems will be in the implemen-
tation of a new quantum computer. Whereas the classical bit only can take values 0 and 1,
the quantum qubit represents the linear superposition of the states |0⟩ and |1⟩. Furthermore,
the system state is a superposition of the individual qubits, the so-called entangled states.
This highly increases the number of possible states, and thus its computing power compared
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to current machines using classical bits (2n to 2n for n (qu)bits). Furthermore, qubits are
evolved by quantum gates, which are operations that change one quantum state into any
other. However, in order to build a reliable quantum computer, qubits must be configured,
evolved and read very precisely. Quantum measurement errors and unavoidable environ-
mental perturbations (quantum decoherence) make the conditions very difficult to realize
experimentally. At this point, the aforementioned topological robustness might be a solution
to this problem. For example, topological superconductors support zero-energy Majorana
modes at their edges, which could act as a stable qubit. These quasi-particles are non-abelian
anyons, meaning that their statistics are neither fermionic nor bosonic, and that the order in
which they are multiplied is important as the operation of multiplication is not commutative.
Logical gates are formed by using braiding, the exchange of particles, and fusion, which
corresponds to bringing two anyons together and using their collective behaviour. Hence,
topological systems could prove to be essential in building a fault-tolerant quantum computer
[46, 47].



Chapter 3

Dissipation in quantum systems

3.1 Introduction

Usual quantum mechanics deals with closed systems, for which a Hamiltonian can be con-
structed. Systems in the real world, however, can hardly be regarded as truly isolated from
their environment. Systems constantly interact and exchange energy with their environment.
To study this dissipative behaviour in the quantum context, one has to go beyond the Hamil-
tonian formalism, in which the total energy always is conserved and, take the dissipation
somehow into account. The paradigmatic example of a classical open system is Brownian
motion. This refers to the dynamics of a macroscopic particle constantly exchanging thermal
energy with its environment, for example a nanoparticle in a fluid. If a nonexternal force is
applied, the average displacement is zero, whereas the average squared displacement obeys
⟨(∆x)2⟩ ≠ 0. Theoretically, Brownian motion is described by the Langevin equation in one
dimension [48]

Mq̈+η q̇+V ′(q) = f (t), ⟨ f (t)⟩= 0, ⟨ f (t) f (t ′)⟩= 2ηkBT δ (t − t ′), (3.1)

in which q(t) is the coordinate of the macroscopic particle, M is the particle mass, η is a
constant parametrizing how much the particle is slowed down by its surroundings (friction),
V (q) is some external potential, and kBT is the thermal energy. The equation of motion
can be generalized to higher dimensions by using the same equation for each direction
individually. The most important term is the fluctuating force f (t), which represents the
influence of the environment on the particle. Similar to the displacement of a random walk,
the mean of f (t) is zero, but the mean of the square is some nonzero quantity, dependent on
the friction coefficient and on the temperature of the system. The Langevin equation assumes
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that the particle mass M is much larger than that of the particles making up the viscous fluid,
and that the time scale t is much larger than the typical time between molecular collisions.

Next to the paradigm of classical Brownian motion, the Langevin equation appears in
other systems as well. For example, in an RLC circuit, which is a circuit with a resistance R,
a capacitor C, and a non-linear element L connected in parallel, the dynamics of magnetic
flux obey to the following equations

Cφ̈ +
RC
L

φ̇ +
φ

L
= I f (t), ⟨I f (t)⟩= 0, ⟨I f (t)I f (t ′)⟩=

2RC kB T
L

δ (t − t ′), (3.2)

with I f (t) some fluctuating current. An important example of such a system is a supercon-
ducting ring closed with a weak contact, the so-called superconducting quantum interference
device (SQUID) [49].

The Langevin equation (3.1) is purely classical. The interesting thing is now to study
open systems in the quantum regime. In order to find a proper quantum description, the
quantum model should reduce to the Langevin equation in the classical limit. There are
roughly three ways of doing this. Firstly, one can try to generalize the canonical commutation
relations such that dissipation on the quantum level can be described. However, there is
no safe way to do this [12]. The second way is to consider the environment together with
the system of interest, such that the entire system is closed again. One can now model the
environment and its coupling to the system of interest to study dissipation. This procedure
was proposed by Caldeira and Leggett in the 80’s [12, 13]. A third way is to use probabilistic
processes, as happens in the Lindblad formalism [50]. In 2011, Diehl and others showed
that topologically protected Majorana modes appear in open quantum systems [1]. The key
feature in the approach was engineered dissipation for a spinless quantum wire, which is
coupled to a bath with dissipative behaviour, governed by the Lindblad master equation. In
this chapter, the emphasis lies on the discussion of the successful Caldeira-Leggett formalism.

3.2 Caldeira-Leggett model

3.2.1 Introduction

The basic idea in the study of dissipative quantum systems is to separate the system in two
parts: the first one represents the main system of interest, and the second one is some bath,
where the energy can flow to. The simplest way to do this splitting is by coupling the system
of interest to an infinite bath of harmonic oscillators, as suggested by Feynman and Vernon
in 1963 [51]. In 1983, Caldeira and Leggett proposed a model that was able to reproduce
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the Langevin equation in the classical limit in one dimension [12, 13]. They modelled the
environment as a set of simple quantum harmonic oscillators, which are coupled linearly to
the main system. The Caldeira-Leggett model has been very helpful in many applications,
including dissipative quantum tunneling and quantum decoherence [49].

3.2.2 The model

The Caldeira-Leggett model is based on the following Lagrangian

L = LS +LI +LR +LCT , (3.3)

where

LS =
1
2

Mq̇2 −V (q), LI =−∑
k

Ckqkq,

LR = ∑
k

1
2

mkq̇2
k −∑

k

1
2

mkω
2
k q2

k , LCT =−∑
k

1
2

C2
k

mkω2
k

q2, (3.4)

are the Lagrangian of the main system, interaction term, reservoir, and counter-term, respec-
tively. The first and third terms need no further explanation. They have the standard form of
a particle interacting with an external potential V (q) and a harmonic oscillator, respectively,
for simplicity all living in one spatial dimension. Note that the interaction is bilinear in the
positions of the oscillators and of the particle, but obviously other choices can be made too.
The last term might seem odd at first glance, but it has an important physical explanation.
Generally, a coupling to the oscillators in the bath modifies the natural frequency of the
system. This causes a change in V (q), up till the point that original minima are rendered
unstable. These are called frequency-renormalization effects, and in order to account for
these effects, the counter-term is added [12]. As a final remark, one can define a canonical
transformation to get rid of the counter-term [49]. However, in this chapter we study the
Caldeira-Leggett theory in its original formulation.

First, we calculate the equations of motion for both the particle and the SHO’s, by using
the corresponding Euler-Lagrange equations

Mq̈ =−V ′(q)+∑
k

Ckqk −q∑
k

C2
k

mkωk
, (3.5)

mkq̈k =−mkω
2
k qk +Ckq. (3.6)
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Next, we use the Laplace transform, which is defined by

F(s) =
∫

∞

0
e−st f (t)dt, (3.7)

and its inverse transform

f (t) =
1

2πi
lim

T→∞

∫
γ+iT

γ−iT
estF(s)ds, (3.8)

where s ∈ C. The Laplace transform of the second equation of motion then reads

mk

∫
dte−st q̈k(t) =−mkω

2
k

∫
dte−stqk(t)+Ck

∫
dte−stq(t)

=−mkω
2
k q̃k(s)+Ckq̃(s). (3.9)

By partially integrating the left-hand side twice, we obtain

mk

∫
dte−st q̈k(t) = mk

[
e−st q̇k(t)

]t=∞

t=0 +mk

∫
dtse−st q̇k(t)

=−mkq̇k(0)+mk
[
se−stqk(t)

]t=∞

t=0 +mk

∫
dts2e−stqk(t)

=−mkq̇k(0)−mksqk(0)+mks2q̃k(s). (3.10)

We put now Eqs. (3.9) and (3.10) together, and we find

q̃k(s) =
q̇k(0)

s2 +ω2
k
+

sqk(0)
s2 +ω2

k
+

Ckq̃(s)
mk(s2 +ω2

k )
. (3.11)

By taking the inverse Laplace transform of the above, and by substituting this into the first
equation of motion, we have

Mq̈+V ′(q)+q∑
k

C2
k

mkωk
= ∑

k
Ckqk

=
1

2πi

∫
γ+i∞

γ−i∞
est

{
∑
k

Ck

[
q̇k(0)

s2 +ω2
k
+

sqk(0)
s2 +ω2

k

]}
ds+∑

k

C2
k

mk

1
2πi

∫
γ+i∞

γ−i∞
est q̃(s)

s2 +ω2
k

ds.

(3.12)

We use that
1

s2 +ω2
k
=

1
ω2

k

(
1− s2

s2 +ω2
k

)
. (3.13)
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Due to the inverse Laplace transform, the last term on the right-hand side of Eq. (3.12)
generates two terms, one of which cancels the last term on the left-hand side.

Summarizing, so far we have

Mq̈+V ′(q)+∑
k

C2
k

mkω2
k

1
2πi

∫
γ+i∞

γ−i∞
dsest s2q̃(s)

s2 +ω2
k

=
1

2πi

∫
γ+i∞

γ−i∞
dsest

{
∑
k

Ck

[
q̇k(0)

s2 +ω2
k
+

sqk(0)
s2 +ω2

k

]}
. (3.14)

Inspecting the last term on the left-hand side, we note that it can be written as a total time
derivative. By subsequently using the convolution theorem [49], it reduces to the Laplace
transform of a simple cosine,

∑
k

C2
k

mkω2
k

1
2πi

∫
γ+i∞

γ−i∞
dsest s2q̃(s)

s2 +ω2
k
=

d
dt

[
∑
k

C2
k

mkω2
k

1
2πi

∫
γ+i∞

γ−i∞
dsest sq̃(s)

s2 +ω2
k

]

=
d
dt

{
∑
k

C2
k

mkω2
k

∫ t

0
dt ′ cos[ωk(t − t ′)]q(t ′)

}
. (3.15)

In order to replace the summation over k with an integral, we introduce the spectral function
J(ω),

J(ω)≡ π

2 ∑
k

C2
k

mkωk
δ (ω −ωk). (3.16)

This allows us to rewrite

∑
k

C2
k

mkω2
k

cos[ωk(t − t ′)] =
2
π

∫
∞

0
dω

J(ω)

ω
cos[ω(t − t ′)]. (3.17)

Note that the spectral function is the imaginary part of the Fourier transform of the retarded
dynamical susceptibility of the bath [49]. We now assume that J(ω) is Ohmic,

J(ω) =

ηω if ω < Ω

0 if ω > Ω,
(3.18)

where Ω is some high-frequency cut-off. Then, for the Ohmic case we find

∑
k

C2
k

mkω2
k

cos[ωk(t − t ′)] =
2η

π
lim

Ω→∞

∫
Ω

0
dω cos[ω(t − t ′)] =

η

π

∫
∞

−∞

dω cos[ω(t − t ′)]

=
η

π

∫
∞

−∞

dω
{

cos[ω(t − t ′)]+ isin[ω(t − t ′)]
}
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=
η

π

∫
∞

−∞

dω eiω(t−t ′) = 2η

∫
∞

−∞

dω ei(2πω)(t−t ′) = 2ηδ (t − t ′). (3.19)

In the above expression, we have used the fact that the cosine function is an even function
in order to extend the integration boundaries. Moreover, because of the odd property of the
sine function, we have redefined the integration variable, and finally used a definition for the
Dirac delta function. Thus, the last term on the left of Eq. (3.14) reduces to

d
dt

[∫ t

0
dt ′ 2ηδ (t − t ′)q(t ′)

]
= η q̇(t), (3.20)

in which we already recognize the friction term in the Langevin equation [49].
The last bit of work we have to do is on the right-hand side of Eq. (3.14). These two

terms can be interpreted as a fluctuating force,

f (t) = ∑
k

Ck
1

2πi

∫
γ+i∞

γ−i∞
estds

[
q̇k(0)

s2 +ω2
k
+

sqk(0)
s2 +ω2

k

]
. (3.21)

By performing the inverse Laplace transform, this term becomes

f (t) = ∑
k

Ck

[
q̇k(0)

ωk
sin(ωkt)+qk(0)cos(ωt)

]
. (3.22)

Now, we have to make some assumptions on the state of the bath. There are multiple op-
tions, as shown in Ref. [49]. Let us suppose that at t = 0, each oscillator is at thermodynamic
equilibrium. We make use of the equipartition theorem from statistical physics, which states
that each quadratic term in the Hamiltonian contributes 1

2kBT to the total energy. We then
find

⟨qk(0)⟩= 0, ⟨q̇k(0)⟩= 0, ⟨q̇k(0)qk(0)⟩= 0,

⟨qk(0)qk′(0)⟩=
kBT

mkω2
k

δk,k′,

⟨q̇k(0)q̇k′(0)⟩=
kBT
mk

δk,k′. (3.23)

The thermodynamic average of f (t) is trivial. The average of its square is calculated by
employing the Ohmic spectral function

⟨ f (t) f (t ′)⟩=∑
k,k′

CkCk′
[⟨q̇k(0)q̇k′(0)⟩

ωkωk′
sin(ωkt)sin

(
ωk′t

′)+ ⟨qk(0)qk′(0)⟩cos(ωkt)cos
(
ωk′t

′)]
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=∑
k

C2
k kBT

mkω2
k

cos[ωk(t − t ′)] =
2kBT

π

∫
∞

0
dω

J(ω)

ω
cos[ω(t − t ′)]

=2ηkBT δ (t − t ′), (3.24)

where we have used the identity sinusinv+ cosucosv = cos(u− v), and afterwards we have
taken the same steps employed in Eq. (3.19).

Putting the previous calculations together, we find

Mq̈+η q̇+V ′(q) = f (t), ⟨ f (t)⟩= 0, ⟨ f (t) f (t ′)⟩= 2ηkBT δ (t − t ′), (3.25)

which represents exactly the Langevin equation, introduced in Eq. (3.1). Hence, for the
current set of assumptions and choice for the coupling, the microscopic Caldeira-Leggett
model reproduces the classical Brownian motion. Other choices can also be made, such as
different particle-bath couplings, a different spectral function J ∝ ωs, s > 0, and so on, and
different kinds of physics will emerge [52].

3.2.3 Integrating out the bath

To study the influence of the bath on the dynamics of the particle, the degrees of freedom of
the harmonic-oscillator bath has to be integrated out in the equations. We will show how this
is done, by following Ref. [51].

Ultimately, we are interested in the partition function Z, which is the trace over the density
matrix

Z = tre−βH =
∫

dx⟨x|e−βH |x⟩=
∫

∞

−∞

dx
∫ q(h̄β )=x

q(0)=x
Dq(τ)e−

1
h̄ SE [q(τ)]

=
∫

∞

−∞

dxρ(x,x,β ). (3.26)

Note that we can interpret Z also as the trace over the transition amplitude ⟨q|e−iHt/h̄ |q⟩ taken
at imaginary time t =−ih̄β , where β = 1/kBT with T the temperature. This implies that it
is natural to look at the Wick rotated (imaginary time, t →−iτ) path integral representation
with the Euclidean action SE .

For our system, the density matrix for the composite system in equilibrium is

ρ(x,R;y,Q,β ) = ⟨x,R|e−βH |y,Q⟩ (3.27)

=
∫ x

y
Dq(τ)

∫ R

Q
DR(τ)exp

{
−1

h̄
SE [q(τ),R(τ)]

}
, (3.28)
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where H is the Hamiltonian of the full system, H = HS +HI +HR +HCT . Here, x,y denote
the particle’s coordinates, and R,Q are the bath coordinates. The Euclidean action is given
by

SE [q(τ),R(τ)]≡ S0 +SCT +SΛ

=
∫ h̄β

0
dτ

[
1
2

Mq̇2 +V (q)+∑
k

C2
k

2mkω2
k

q2

+∑
k

(
CkRkq+

1
2

mkṘ2
k +

1
2

mkω
2
k R2

k

)]
. (3.29)

In the first line, S0 corresponds to the action of the main system, SCT to the part containing
the counter-term, and SΛ the remaining bath contribution. Note that all the time derivatives
pick up an extra factor i due to the transformation to imaginary time. As a consequence, we
find an overall minus sign in front of the Euclidean action, containing now strictly positive
terms. We are interested in how the bare particle action changes due to the presence of the
bath. In order to do this, we have to set x = y, R = Q, and integrate out the bath coordinates
R(τ). In other words, we want to compute the reduced density operator

ρ̃(x,y,β )≡
∫ x

y
Dq(τ)

∫
∞

−∞

dR
∫ R

R
DR(τ)exp

{
−1

h̄
SE [q(τ),R(τ)]

}
. (3.30)

The general path integral solution for the forced harmonic oscillator is given in Ref. [53]. We
consider a system with Lagrangian

L =
1
2

mq̇2(t)− 1
2

mω
2q(t)+ f (t)q(t), (3.31)

where we require that q(t) is a periodic function in the imaginary time representation,
q(τ + h̄β ) = q(τ). Hence, the kinetic term is partially integrated, where the boundary term
[qq̇]h̄β

0 vanishes. The action reads

SE =
∫ h̄β

0
dτ

[m
2

q(τ)Dω2(τ,τ ′)q(τ ′)−q(τ) f (τ)
]
, (3.32)

with the functional matrix given by

Dω2(τ,τ ′)≡ (−∂
2
τ +ω

2)δ (τ − τ
′), τ − τ

′ ∈ [0, h̄β ]. (3.33)
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The Euclidean Green’s function is then

Gω2(τ,τ ′) = Gω2(τ − τ
′) = D−1

ω2 (τ,τ
′) = (−∂

2
τ +ω

2)−1
δ (τ − τ

′). (3.34)

We complete the square in the action with a variable shift

q(τ)→ q(τ)+
1
m

Gω2(τ,τ ′) f (τ). (3.35)

Note that the measure remains unchanged. The action then becomes

SE =
∫ h̄β

0
dτ

m
2

q(τ)Dω2(τ,τ ′)q(τ ′)−
1

2m

∫ h̄β

0
dτ

∫ h̄β

0
dτ

′ f (τ)Gω2(τ − τ
′) f (τ ′). (3.36)

Now, if f (τ) = 0, the partition function is the simple Gaussian result for the standard
harmonic oscillator, namely

Zω =
1

2sinh(β h̄ω/2)
. (3.37)

The generating functional for f (τ) then reads

Z[ f (τ)] = Zω exp
[

1
2m

∫ h̄β

0
dτ

∫ h̄β

0
dτ

′ f (τ)Gω2(τ − τ
′) f (τ ′)

]
, (3.38)

where the Green’s function is calculated as follows. First, the eigenfunctions of the operator
−δ 2

τ are exp(−iωmτ) with eigenvalues ω2
m. Requiring periodic boundary conditions, the

frequencies are recognized as Matsubara frequencies: ωm = 2πm/h̄β , with m ∈ Z. By
definition, the eigenvalues for Gω2(τ − τ ′) are the inverse of those of Dω2(τ,τ ′). Hence, we
write the function in a Fourier expansion

Gω2(τ) =
1

h̄β

∞

∑
m=−∞

1
ω2

m +ω2 e−iωmτ . (3.39)

If we take now the zero-temperature limit T → 0, the Matsubara sum becomes an integral,

Gω2(τ) =
∫ dωm

2π

1
ω2

m +ω2 e−iωmτ =
1

2ω
e−ω|τ|. (3.40)

However, this step serves only a calculational purpose, as we are interested in the finite-
temperature regime. We use the Poisson sum formula

∑
m

f (m) =
∫

dµ ∑
n

e2πiµn f (µ), (3.41)
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and by choosing a delta function, we include an extra Poisson sum in the Matsubara integrand,

∞

∑
m̄=−∞

δ (m̄−m) =
∞

∑
n=−∞

ei2πnm =
∞

∑
n=−∞

einωmh̄β . (3.42)

The Green’s function then becomes a sum

Gω2(τ) =
1

2ω
∑
n

e−ω|τ−nh̄β | =
1

2ω

cosh[ω(τ − h̄β

2 )]

sinh ω h̄β

2

, (3.43)

and the contribution to the action for the Caldeira-Leggett model then reduces to

SΛ[q(τ)] = ∑
k

C2
k

4mkωk

∫ h̄β

0
dτ

′
∫ h̄β

0
dτq(τ)q(τ ′)

cosh
(

ωk|τ − τ ′|− h̄βωk
2

)
sinh

(
h̄βωk

2

) . (3.44)

If we define q(τ ′) to be a periodic function, such that outside the domain 0 ≤ τ ′ ≤ h̄β :
q(τ ′+ h̄β ) = q(τ ′), we can take the boundaries to infinity and have to modify the integrand
accordingly [54]. Formally, we have, with T = τb − τa,

lim
T→∞

cosh(ω|τ − τ ′|−T/2)
sinh(T/2)

=
eω|τ−τ ′|−T/2 + e−ω|τ−τ ′|+T/2

eT/2 − e−T/2 = e−ω|τ−τ ′|. (3.45)

The dissipation term in the action reduces to

SΛ[q(τ)] = ∑
k

C2
k

4mkωk

∫
∞

−∞

dτ
′
∫ h̄β

0
dτq(τ)q(τ ′)e−ωk|τ−τ ′|. (3.46)

Combining all these calculations, we find

ρ̃(x,y,β ) = ρ̃0(β )
∫ x

y
Dq(τ)exp

{
−1

h̄
S(0)E [q(τ)]− 1

h̄
SCT [q(τ)]−

1
h̄

SΛ[q(τ)]
}

= ρ̃0(β )
∫ x

y
Dq(τ)exp

{
−1

h̄
Seff[q(τ)]

}
, (3.47)

where the effective action reads

Seff[q(τ)] = S(0)E [q(τ)]+SCT [q(τ)]+SΛ[q(τ)] (3.48)

=
∫ h̄β

0
dτ

[
1
2

Mq̇2 +V (q)
]
+

1
2

∫
dτ

′
∫

dτ K(τ − τ
′)
[
(q(τ)−q(τ ′)

]2
, (3.49)
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with

K(τ − τ
′)≡ ∑

k

C2
k

4mkωk
e−ωk|τ−τ ′| =

1
2π

∫
∞

0
dω J(ω)e−ω|τ−τ ′|. (3.50)

In the second step, we have completed the square in order to cancel the counter-term in the
action,

1
2

∫
dτ

′
∫

dτ e−ωk|τ−τ ′| [(q(τ)−q(τ ′)
]2

=
1
2

∫
dτ

′
∫

dτ e−ωk|τ−τ ′| [(q2(τ)−2q(τ)q(τ ′)+q2(τ ′)
]2
, (3.51)

where the second term is recognized in SΛ[q(τ)]. The first one is calculated as follows,

∫
∞

−∞

dτ
′
∫ h̄β

0
dτ q2(τ)e−ωk|τ−τ ′| =

∫ h̄β

0
dτ q2(τ)

[∫
∞

τ

dτ
′e+ωk(τ−τ ′)+

∫
τ

−∞

dτ
′e−ωk(τ−τ ′)

]
=
∫ h̄β

0
dτ q2(τ)

{[
− 1

ωk
eωk(τ−τ ′)

]∞

τ

+

[
1

ωk
e−ωk(τ−τ ′)

]τ

−∞

}
=
∫ h̄β

0
dτ q2(τ)

[
0+

1
ωk

+
1

ωk
+0
]
=
∫ h̄β

0
dτ

2
ωk

q2(τ), (3.52)

and cancels partially the counter-term in the action. The third term is more difficult, because
the integration also extends over q(τ). However, by transforming back to the initial bound-
aries [0, h̄β ] this problem is then solved. Because of symmetry, it follows that the result has
to be equal to that of the first term. The full calculation reads

∫
∞

−∞

dτ
′
∫ h̄β

0
dτ q2(τ ′)e−ωk|τ−τ ′|

=
∫ h̄β

0
dτ

′
∫ h̄β

0
dτ q2(τ ′)

cosh[ωk|τ − τ ′|− β h̄ωk
2 ]

sinh
(

β h̄ωk
2

)
=
∫ h̄β

0
dτ

′ q2(τ ′)

sinh
(

β h̄ωk
2

)[∫ h̄β

τ ′
dτ cosh[ωk(τ − τ

′)− β h̄ωk

2
]

+
∫

τ ′

0
dτ cosh[−ωk(τ − τ

′)− β h̄ωk

2
]

]
=
∫ h̄β

0
dτ

′ q2(τ ′)

sinh
(

β h̄ωk
2

){[ 1
ωk

sinh[ωk(τ − τ
′)− β h̄ωk

2
]

]h̄β

τ ′

+

[
− 1

ωk
sinh[−ωk(τ − τ

′)− β h̄ωk

2
]

]τ ′

0

}
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=
∫ h̄β

0
dτ

′ q2(τ ′)

ωk sinh
(

β h̄ωk
2

)[sinh
(
−ωkτ

′+
β h̄ωk

2

)
− sinh

(
−β h̄ωk

2

)

− sinh
(
−β h̄ωk

2

)
+ sinh

(
ωkτ

′− β h̄ωk

2

)]
=
∫ h̄β

0
dτ

′ 2
ωk

q2(τ ′), (3.53)

where we have used the identity sinh(−x) =−sinh(x). The full result is given by

1
2

∫
dτ

′
∫

dτ ∑
k

C2
k

4mkωk
e−ωk|τ−τ ′| [(q(τ)−q(τ ′)

]2
=
∫ h̄β

0
dτ ∑

k

C2
k

2mkω2
k

q2(τ)+SΛ[q(τ)]. (3.54)

These contributions indeed cancel the counter-term SCT .
In the case of Ohmic dissipation, by using integration by parts, the kernel Eq. (3.50)

becomes
K(τ − τ

′) =
1

2π

∫
∞

0
dω ηω e−ω|τ−τ ′| =

η

2π

1
(τ − τ ′)2 , (3.55)

and the effective action reads

Seff[q(τ)] =
∫ h̄β

0
dτ

[
1
2

Mq̇2 +V (q)
]
+

η

4π

∫
dτ

′
∫

dτ
[(q(τ)−q(τ ′)]2

(τ − τ ′)2 . (3.56)

Thus, the correction on the action of the main system due to the linear interaction with the
bath in the Ohmic case becomes the third term in Eq. (3.56). When τ approaches τ ′, the only
way of avoiding a divergence in the integrand is to let q(τ) approach q(τ ′). This is exactly
what friction does: it is much more profitable energetically for the particle to stay at the same
position than being displaced. Thus, the bath in the Caldeira-Leggett model reproduces a
friction-like contribution in the effective action.



Chapter 4

Bosonization of the Luttinger liquid

4.1 Introduction

Electrons in one dimension behave very differently compared to electrons living in higher-
dimensional systems. An example of this difference is the characterization of excitations. In
two dimensions, fermions are generally described by Fermi-liquid theory [55]. The Pauli
exclusion principle forbids that one state is occupied by more than one electron, such that
in the ground state subsequent energy levels are filled, until the highest energy state, which
is the Fermi level. Excitations of this ground state can be characterized by their charge,
momentum, and spin. If we now add interactions to the problem, these parameters and
the statistics remain unchanged. However, electron properties like mass, velocity, etc. are
renormalized due to the effect of the interactions. Excitations are therefore not anymore
described in terms of the original fundamental electrons, but as quasi-particles, electrons
‘dressed’ with interactions. In one dimension, however, the Fermi liquid description breaks
down, and there are no single-particle excitations. Imagine that we have a wire with electrons
on it. Now, if we add an extra electron, the others get pushed to the sides. It creates a
density fluctuation, which is a collective excitation of all the electrons in the wire. Generally,
individual motion does not exist in 1D, only collective modes occur. One-dimensional
electrons can be described by the Luttinger theory [11].

To see the difference between 1D and 2D on a more formal level, consider Fig. 4.1a.
Here, the energy of a single particle and the spectrum of particle-hole excitations are plotted,
measured with respect to the ground state, in one dimension. Because of the linear character
of the dispersion around the Fermi points, the pair momentum near k = 0 is very narrow, so
that the particle and hole excitations propagate coherently. A weak attraction between them
produces a coherently propagating quasi-particle. Compare this to the two-dimensional case
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in Fig. 4.1b. A particle-hole pair with momentum k can have a wide degeneracy of energies.
Interactions are much less likely to form coherently propagating particle-hole pairs.

(a) The single-particle dispersion in 1D is shown on the left. Low-energy excita-
tions exist of an electron leaving a state just below the Fermi level to a state just
above it. On the right, the spectrum of particle-hole pairs with pair momentum k
is depicted.

(b) Single particle excitation in 2D, shown in the two-dimensional momentum
space (kx,ky) on the left. On the right, the particle-hole energy as a function of
momentum is plotted. Already from k = 0 on, a range of energies is allowed for
the pair, thus making coherent propagation of the pair unlikely.

Figure 4.1 Single particle excitations and the particle-hole dispersion in (a) 1D and (b) 2D.
Figures taken from Ref. [56].

This peculiar behaviour of electrons in one dimension is also the basis for bosonization,
which is one of the most widely used techniques in one-dimensional quantum physics.
Because the low-energy particle-hole excitations are bosonic in character, a theory formulated
in terms of fermionic fields can be reformulated in terms of bosonic fields, which opens up a
new way to solving problems in one-dimensional fermionic systems. Though this also can
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be done in higher dimensions [57, 58], the special feature of one dimension is that here, the
bosonization mapping is exact [2, 56].

In this chapter, first we lay the groundwork for discussing fermionic theories in one
dimension by describing the method of bosonization, and a few expressions that are needed
further on will be calculated. Then, we derive the Luttinger-liquid Hamiltonian for a
spinless fermionic chain. We discuss the free theory, various types of interactions, the chiral
Luttinger liquid, which contains only modes propagating in one direction, and the helical
Luttinger liquid, where the spin orientation is locked to the direction of motion because of
the underlying time-reversal symmetry. Luttinger liquids take after bosonization the form of
the sine-Gordon theories. We will show that a Luttinger liquid in presence of impurities on
the edge can be mapped to a boundary sine-Gordon equation, which is a Gaussian theory
with a cosine interaction at the boundary. Finally, we will show that in such a kind of theory
with Luttinger parameter K = 1

2 , a Majorana zero-energy mode can be found at the edge of
the chain. Note that throughout this chapter, we set h̄ = 1.

4.2 Bosonization

4.2.1 Introduction

Bosonization is a powerful technique in the areas of both condensed-matter and high-energy
physics. It allows to reformulate problems in bosonic systems in terms of fermions, and
vice versa. As such, it opens the path to new analytic solutions. The underlying idea is that
fermionic particle-hole excitations are bosonic in character and therefore allow rewriting
a strongly interacting fermionic (1+1)-dimensional theory into a bosonic free theory. The
method the other way around is called fermionization. The earliest example of bosonization
is given by the Jordan-Wigner transformation, where the equivalence between the anisotropic
Heisenberg chain and a chain of interacting spinless fermions was shown in Ref. [59].

4.2.2 Dictionary

Approach

Starting from a fermionic field ψ(x, t), the density operator is defined as ρ = ψ†(x, t)ψ(x, t).
It is interpreted as a creation and annihilation operator for an electron, but at the same time as
two consecutive creation operators for an electron-hole pair. In the latter view, two coupled
spin-1

2 particles are created. Together they can be viewed as a bosonic excitation of the field.
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This is the main idea underlying bosonization. In this subsection, the approach by Sénéchal
(Ref. [56]) is used.

The bosonization method roughly works as follows. First, a low-energy Fermi theory is
written in terms of operators around the Fermi points kF , such that the energy is linearized.
The second step is to distinguish between left- and right-moving modes, so-called chiral
components. Together, these modes are written as a spinor. Third, a formulation in terms of
Bose fields satisfying fermionic commutation relations is needed. Finally, the Hamiltonian
of interest is rewritten in terms of the free bosonic fields.

Complex coordinates

We start by considering complex coordinates z instead of x and t. The relation between the
different coordinates is given by

z =−i(x− vt) = vτ − ix, z̄ = i(x+ vt) = vτ + ix, (4.1)

and their corresponding derivatives are

∂t = iv(∂z +∂z̄), ∂x =−i(∂z −∂z̄)

∂z =− i
2

(
1
v

∂t −∂x

)
, ∂z̄ =− i

2

(
1
v

∂t +∂x

)
. (4.2)

Bosonization formula

We are now ready to study a Fermi field in terms of a Bose field. The standard expression for
bosonization reads

ψL =
1√
2π

e+i
√

4πφL(z̄), ψ
†
L =

1√
2π

e−i
√

4πφL(z̄),

ψR =
1√
2π

e−i
√

4πφR(z), ψ
†
R =

1√
2π

e+i
√

4πφR(z) (4.3)

Two subtleties should be discussed. First, the dimension of the Fermi operators here is L1/2.
This means that an extra factor 1/

√
a must be added for the normalization, where in the

non-interacting case a equals the lattice constant. Second, if one is dealing with more than
one species of fermions (e.g. working with spin degrees of freedom), Klein factors have to
be introduced to ensure the proper fermionic anticommutation relations for the bosonized
expressions [60]. They are Hermitian and obey the Clifford algebra{

ηL,µ ,ηL,ν
}
=
{

ηR,µ ,ηR,ν
}
= δµ,ν ,

{
ηL,µ ,ηR,ν

}
= 0. (4.4)
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One can now formulate a dictionary between interacting Fermi fields and decoupled
massless Bose scalar fields, which is given in Table 4.1 [56, 2]. In the next sections, we will
explicitly calculate some entries from the table.

Table 4.1 Bosonization dictionary. The procedure for replacing Fermi fields Ψ(z) in terms
of Bose fields Φ(z). In doing so, a crucial point is distinguishing between the left- (ψL) and
right-moving modes (ψR). Similarly, the bosonic field Φ is separated into an analytic part
φR(z) and an anti-analytic part φL(z̄) (so-called chiral components): Φ(z, z̄) = φR(z)+φL(z̄)
[56, 2].

Massless fermions Massless bosons
Hamiltonian

i
(

ψ
†
R∂xψR +ψ

†
L∂xψL

)
[∂zΦ(z, z̄)]2 +[∂z̄Φ(z, z̄)]2

Operators
ψR,ψ

†
R

1√
2π

e∓i
√

4πφR(z)

ψL,ψ
†
L

1√
2π

e±i
√

4πφL(z̄)

ψ
†
RψR − i√

π
∂z̄Φ

ψ
†
LψL

i√
π

∂zΦ

ψ
†
RψL +ψ

†
LψR

1
π

cos
[√

4πΦ(z, z̄)
]

Products of fermionic fields

The next move is to consider products of fermionic fields. They are more difficult to handle,
because normal ordering of the operators is required. In principle, one can achieve normal
ordering by expanding the operators, but another way of calculating the densities is, for
instance, by point splitting. The exponentials have to be combined as follows [56]

eiaφ(z)eibφ(z′) = eiaφ(z)+ibφ(z′)e−ab⟨φ(z)φ(z′)⟩, (4.5)

where ⟨. . .⟩ denotes a ground-state expectation value if the left-hand side is a normal product,
or a Green’s function if it is a time-ordered product. The Green’s function for free bosons is
a standard result, which is calculated by compactifying the fields on a cilinder, and yields,
[61, 62]

⟨φR(z)φR(z′)⟩=− 1
4π

ln
(
z− z′

)
. (4.6)

The right-moving density is defined as

ρR = ψ
†
RψR = lim

ε→0

[
ψ

†(z+ ε)ψ(z)−⟨ψ†(z+ ε)ψ(z)⟩
]
, (4.7)
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where ε is some positive time that describes the normal ordering. The expectation value is

⟨ψ†(z)ψ(z′)⟩=
∫

k>0

dk
2π

∫
q>0

dq
2π

⟨0|α(k)β †(q) |0⟩e−kz+qz′

=
∫

k>0

dk
2π

e−k(z−z′) =
1

2π

1
z− z′

, (4.8)

since ⟨0|α(k)β †(q) |0⟩= δ (k−q). Now, Eq. (4.7) can be calculated using the bosonization
formula Eq. (4.3), by combining the exponentials according to Eq. (4.5), the Green’s function
in Eq. (4.6), and a Taylor expansion,

ρR =
1

2π
lim
ε→0

[
ei
√

4πφR(z+ε)e−i
√

4πφR(z)− 1
ε

]
=

1
2π

lim
ε→0

[
ei
√

4π[φR(z+ε)−φR(z)] 1
ε
− 1

ε

]
=

1
2π

lim
ε→0

[
eiε

√
4π∂zφR(z) 1

ε
− 1

ε

]
=

1
2π

i
√

4π∂zφR(z) =
i√
π

∂zφR(z). (4.9)

Similarly, the left-moving density is

ρL =− i√
π

∂z̄φL(z̄). (4.10)

Furthermore, for the bosonization of the Hamiltonian, we need to calculate ψ
†
L/R∂xψL/R.

Again, we define

ψ
†
R∂xψR =−i lim

ε→0

[
ψ

†(z+ ε)∂zψ(z)−⟨ψ†(z+ ε)∂zψ(z)⟩
]
, (4.11)

such that the derivative is written as

∂zψR(x) = lim
δ→0

ψR(z+δ )−ψR(z)
δ

. (4.12)

The Hamiltonian term becomes

ψ
†
R∂zψR =−i lim

ε→0

[
ψ

†
R(z+ ε)∂zψR(z)−⟨ψ†

R(z+ ε)∂zψR(z)⟩
]

=−i lim
δ ,ε→0

1
δ

{
ψ

†
R(z+ ε) [ψR(z+δ )−ψR(z)]

−⟨ψ†
R(z+ ε) [ψR(z+δ )−ψR(z)]⟩

}
=−i lim

δ ,ε→0

1
δ

[
ψ

†
R(z+ ε)ψR(z+δ )−ψ

†
R(z+ ε)ψR(z)

−⟨ψ†
R(z+ ε)ψR(z+δ )⟩+ ⟨ψ†

R(z+ ε)ψR(z)⟩
]
. (4.13)
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The last two ground-state expectation values have already been calculated. In order to
calculate the first two products, we Taylor expand the Bose field around z with variable
ε = z′− z,

φR(z′) = φR(z)+ ε∂zφR(z)+
ε2

2
∂

2
z φR(z)+O(ε3). (4.14)

Now, the right-moving density becomes (to order ε2, we choose to suppress the index R for
now, as the argument z tells us we are dealing with the right-moving field, as opposed to z̄ for
the left-moving field)

ψ
†
R(z

′)ψR(z) =
1

2π
ei
√

4πφ(z′)e−i
√

4πφ(z) =
1

2πε
ei
√

4π[φ(z+ε)−φ(z)] =
1

2πε
ei
√

4πε∂zφ(z)

=
1

2πε

{
1+ i

√
4πε∂zφ(z)−

4π

2
ε

2 [∂zφ(z)]
2 +O(ε3)

}
=

1
2πε

+ i
1√
π

∂zφ(z)− ε[∂zφ(z)]2 +O(ε2). (4.15)

The first product of Eq. (4.13) is

ψ
†
R(z+ ε)ψR(z+δ ) =

1
2π

ei
√

4πφ(z+ε)e−i
√

4πφ(z+δ ) =
1

2π(ε −δ )
ei
√

4π[φ(z+ε)−φ(z+δ )].

(4.16)

The full expression from Eq. (4.11) yields

ψ
†
R(x)∂xψR(x) =−i lim

δ ,ε→0

1
δ

{
1

2π(ε −δ )
ei
√

4π[φ(z+ε)−φ(z+δ )]− 1
2πε

− i√
π

∂zφ(z)+ ε[∂zφ(z)]2 −
1

2π(ε −δ )
+

1
2πε

}
=−i lim

δ→0

1
δ

{
− 1

2πδ
e−i

√
4π

δ

δ
[φ(z+δ )−φ(z)]− i√

π
∂zφ(z)+

1
2πδ

}
=−i lim

δ→0

1
δ

{
− 1

2πδ
e−i

√
4πδ∂zφ(z)]− i√

π
∂zφ(z)+

1
2πδ

}
=−i lim

δ→0

1
δ

{
− 1

2πδ

[
1− i

√
4πδ∂zφ(z)−2πδ

2[∂zφ(z)]2
]
− i√

π
∂zφ(z)+

1
2πδ

}
=−i lim

δ→0

1
δ

{
i√
π

∂zφ(z)+δ [∂zφ(z)]2 −
i√
π

∂zφ(z)
}

=−i[∂zφ(z)]2 = iπρ
2
R, (4.17)
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where we have refermionized the expression in the last line, by using Eq. (4.7). Identically
for the left-moving mode, we obtain

ψ
†
L(x)∂xψL(x) = iπρ

2
L. (4.18)

Mode expansion

For later use, a proper expansion of the Bose field Φ has to be defined. The field is massless,
such that the zero-mode is ill-defined, and therefore it needs to be treated separately [56].
Furthermore, in order for bosonization to be properly defined, Φ should have an angular
character, and the boson must be compactified on a circle of radius R. Consider the Fourier-
mode expansion of Φ that satisfies the following conditions,

Φ(x, t) = q+
π0vt

L
+

π̃0x
L

+ ∑
n>0

1√
4πn

(
a†

nekz +ane−kz + ā†
nekz̄ + āne−kz̄

)
, (4.19)

where q is the zero mode, π0 and π̃0 are the conjugate momenta. The wavevectors are
quantized as k = 2πn/L, where L is the length of the chain. The creation and annihilation
operators ān are defined as ān = a−n, such that only positive modes appear in the expansion.
The operators satisfy the commutation rules[

an,a†
m

]
= δn,m,

[
ān, ā†

m

]
= δn,m. (4.20)

The zero mode is treated separately from the other modes. It is written explicitly as the
combination of two pairs of canonical variables q and π0, and q̃ and π̃0, where q̃ does
not appear in the original mode expansion, but will be used in the separation of left- and
right-moving parts of the field. They are related by the commutation relations

[q,π0] = i, [q̃, π̃0] = i. (4.21)

The operator q is not single-valued, since it is an angular variable. Only exponentials
exp(inq/R) are well defined. The Bose field Φ is separated in left- and right-moving parts
φR(z) and φL(z̄), respectively. In terms of the mode expansion variables, they read

φR(z) = Q+
P
2L

(vt − x)+ ∑
n>0

1√
4πn

(
ane−kz +a†

nekz
)
, (4.22)

φL(z̄) = Q̄+
P̄
2L

(vt + x)+ ∑
n>0

1√
4πn

(
āne−kz̄ + ā†

nekz̄
)
, (4.23)
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with variables

Q =
1
2
(q− q̃), P = π0 − π̃0, [Q,P] = i,

Q̄ =
1
2
(q+ q̃), P̄ = π0 + π̃0,

[
Q̄, P̄

]
= i. (4.24)

Dirac Hamiltonian

Let us consider the one-dimensional Dirac Hamiltonian, given by

H =−ivF

∫
dx
[
ψ

†
R(x)∂xψR(x)−ψ

†
L(x)∂xψL(x)

]
, (4.25)

where the Dirac two-component spinor is Ψ = (ψL,ψR), and vF is the Fermi velocity. By
using Eqs. (4.17) and (4.18) together, it can be bosonized to

H = πvF

∫
dx
(
ρ

2
R +ρ

2
L
)
=−vF

∫
dx
{
[∂zΦ]2 +[∂z̄Φ]2

}
. (4.26)

The coordinates are rewritten using Eq. (4.2).

H =−vF

∫
dx
{
[∂zΦ]2 +[∂z̄Φ]2

}
=−vF

∫
dx

{[
− i

2

(
1
vF

∂t −∂x̄

)
Φ

]2

+

[
− i

2

(
1
vF

∂t +∂x

)
Φ

]2
}

=
vF

2

∫
dx

{[
1
vF

∂tΦ

]2

+[∂xΦ]2
}
. (4.27)

This expression is the standard form of the free bosonic massless scalar field in two dimen-
sions, also known as the Gaussian Hamiltonian,

H0[Φ] =
vF

2

∫
dx
{

Π(x)2 +[∂xΦ(x)]2
}
, (4.28)

where Π(x) is the momentum canonically conjugated to Φ(x), and

Π =
1
vF

∂tΦ,
[
Π(x),Φ(x′)

]
=−iδ (x− x′). (4.29)

It is worth noting that often in literature, also a dual Bose field is defined as Θ = φR −φL,
and as a consequence, ∂xΘ =−Π.
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4.3 Luttinger liquid

The Luttinger model was first introduced to describe the behaviour of interacting electrons in
one dimension [11, 63]. It is based on the work done by Tomonaga [64], so that sometimes it
still is referred to as the Tomonaga-Luttinger liquid.

In this section, we investigate the free Hamiltonian of a one-dimensional spinless
fermionic chain. Subsequently, electron interactions are added to the problem. Next, we will
consider the case of an impurity in the spinless Luttinger liquid, and we will investigate the
system that preserves time-reversal symmetry and gives rise to the helical Luttinger liquid.

4.3.1 Noninteracting spinless electrons

In this section, we follow the introduction of Ref. [56]. A system consisting of noninteracting
spinless fermions is described by the following microscopic Hamiltonian

H = ∑
k

εkc†
kck, (4.30)

where ck is the annihilation operator at wavevector k, obeying the usual Fermi anti-commutation
relations {

c(k),c†(k′)
}
= δ (k− k′),

{
c(k),c(k′)

}
=
{

c†(k),c†(k′)
}
= 0. (4.31)

The corresponding field operators are given by

ψ(x j) =
1√
N ∑

k
eikx jck, ck =

1√
N

N

∑
j=1

e−ikx jψ(x j), (4.32)

where k increases with steps of 2π/L, L = Na, x j = ja, and a is the lattice constant. The
energy of state k is denoted by εk. For example, a free electron gas has energy εk = h̄2k2/2m,
whereas electrons hopping on a lattice have energy εk = cos(ka). At the ground state, all the
energy levels up to the Fermi point (|k|< kF) are filled, and those above (|k|> kF) are empty.

Excitations from the ground state involve an electron hopping to a higher momentum
state, leaving an empty state behind. These excitations are called particle-hole excitations.
By switching on interactions in this system, several excitations are created and are located at
momenta around the Fermi point. Thus, to investigate the low-energy behaviour, we have to
expand the wavevectors around kF. We define annihilation operators for electrons and holes,
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respectively given by

αk = ckF+k, α−k = c−kF−k,

βk = c†
kF−k, β−k = c†

−kF+k, (4.33)

with k positive. Thus, αk and βk annihilate electrons and holes, respectively, around the right
Fermi points, and similarly for α−k and β−k around the left Fermi point.

The energy is linearized around the left (minus sign) and right Fermi points: εk =±vFk,
with vF the Fermi velocity. Note that the energy now is defined with respect to the ground
state energy ε = vFkF. At the same time, we have to introduce a momentum cut-off Λ to
define the region where this approximation is valid. By doing so, we limit our approach
to the contribution of low-energy states, and high-energy states far from the cut-off do not
contribute. In the limit Λ → ∞, only low-energy states contribute, which mathematically
allows us to properly define field operators ψ(x j) in the low-energy limit.

In terms of the new operators, the Hamiltonian gets a contribution from the expansion
around each Fermi point, and reads

H ≃
kF+Λ

∑
k=kF−Λ

εkc†
kck +

−kF+Λ

∑
k=−kF−Λ

εkc†
kck =

Λ

∑
k=−Λ

[
vFkc†

kF+kckF+k +(−vk)c†
−kF−kc−kF−k

]
=

Λ

∑
k>0

vF

[
kc†

kF+kckF+k +(−k)c†
kF−kckF−k +(−k)c†

−kF+kc−kF+k + kc†
−kF−kc−kF−k

]
,

=
Λ

∑
k>0

vFk
[
α

†
k αk −βkβ

†
k −α

†
−kα−k +β−kβ

†
−k

]
. (4.34)

The operators βk and β
†
k can be switched with the commutators, such that

∑
k>0

vFk
[
α

†
k αk +β

†
k βk −1−α

†
−kα−k −β

†
−kβ−k +1

]
(4.35)

and the Hamiltonian yields in the continuum limit,

H =
L

2π

∫
Λ

−Λ

dk vF|k|
[
α

†(k)α(k)+β
†(k)β (k)

]
, (4.36)

which is now written in terms of particle-hole excitation operators and is defined with respect
to the non-excited ground state. The boundaries [+Λ,−Λ] cover the areas around the left
and the right Fermi points (±kF).
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In position space, the procedure of expanding around both Fermi points amounts to
expanding the electron field in slow-varying in space parts,

ψ(x j)≃
1√
N

(
kF+Λ

∑
k=kF−Λ

+
−kF+Λ

∑
k=−kF−Λ

)
eikx jck

=
1√
N

[
eikFx j ∑

k>0

(
eikx jαk + e−ikx jβ

†
k

)
+ e−ikFx j ∑

k<0

(
eikx jαk + e−ikx jβ

†
k

)]
=

1√
a

eikFx jψR(x j)+ e−ikFx jψL(x j). (4.37)

It is written in terms of the left- and right-moving fields ψL(x) and ψR(x) (we drop the index
j for now), defined as

ψR(x) =
1√
L ∑

k>0

(
eikx

αk + e−ikx
β

†
k

)
, ψL(x) =

1√
L ∑

k<0

(
eikx

αk + e−ikx
β

†
k

)
. (4.38)

The fields obey the following anti-commutators{
ψL(x),ψ

†
L(x

′)
}
= δ (x− x′),

{
ψR(x),ψ

†
R(x

′)
}
= δ (x− x′),

{
ψL(x),ψ

†
R(x

′)
}
= 0.

(4.39)

The behaviour of ψL(x) and ψR(x) is slow-varying relative to the exp(ikFx), because they are
defined in the regime where |k|<< kF. In the continuum limit they read

ψR(x) =

√
L

2π

∫
k>0

dk
[
eikx

α(k)+ e−ikx
β

†(k)
]
,

ψL(x) =

√
L

2π

∫
k<0

dk
[
eikx

α(k)+ e−ikx
β

†(k)
]
. (4.40)

Time-dependence is added by multiplying with the phase exp(−iv|k|t), which translates to

ψR(z) =

√
L

2π

∫
k>0

dk
[
e−kz

α(k)+ ekz
β

†(k)
]
,

ψL(z̄) =

√
L

2π

∫
k<0

dk
[
ekz̄

α(k)+ e−kz̄
β

†(k)
]
, (4.41)

where the coordinates defined in Eq. (4.1) are used. Note that the wavevectors of the left- and
right-moving fields are still separated by roughly 2kF. In terms of the left- and right-moving
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fields, the total current is defined as

J =
∫

dx
[
ψ

†
L(x)ψL(x)−ψ

†
R(x)ψR(x)

]
=−

∫
dx

i√
π
[∂zφR(z)+∂z̄φL(z̄)] =

1√
πvF

∫
dx∂tΦ(x, t), (4.42)

where time-dependence was introduced to bosonize the expression, and the derivative has
been rewritten in real coordinates using Eq. (4.2). Similarly for the total charge, we obtain

Q =
∫

dx
[
ψ

†
L(x)ψL(x)+ψ

†
R(x)ψR(x)

]
=
∫

dx
i√
π
[∂zφR(z)−∂z̄φL(z̄)]

=− 1√
π

∫
dx∂xΦ(x, t) =− 1√

π
[Φ(L)−Φ(0)] , (4.43)

where the time-dependence has been taken out in the end by putting t = 0.
The Dirac Hamiltonian can be found by using the expansion Eq. (4.37) in Hamiltonian

Eq. (4.34),

H =−ivF

∫
dx
[
ψ

†
R(x)∂xψR(x)−ψ

†
L(x)∂xψL(x)

]
. (4.44)

The easiest way to show this is to start from the above and plug in Eq. (4.40). For notational
clarity, the k < 0 and k > 0 indices of the integrals are omitted, α(k) is written as αk, and
when the integrands of the left- and right-moving modes are identical, the second is not
shown fully, but indicated by (. . .),

H =−ivF
L

(2π)2

∫
dx
[∫

dk
∫

dk′
(

e−ikx
α

†
k + eikx

βk

)
(ik′)

(
eik′x

αk′ − e−ik′x
β

†
k′

)
−
∫

dk
∫

dk′ (. . .)
]

=
vFL
(2π)2

∫
dx
[∫

dk
∫

dk′ k′
(
α

†
k αk′e

−i(k−k′)x −α
†
k β

†
k′e

−i(k+k′)x

+βkαk′e
i(k+k′)x −βkβ

†
k′e

i(k−k′)x)−∫ dk
∫

dk′ k′ (. . .)
]

=
vFL
2π

[∫
dk
∫

dk′ k′
(
α

†
k αk′δ (k− k′)−α

†
k β

†
k′δ (k+ k′)

+βkαk′δ (k+ k′)−βkβ
†
k′δ (k− k′)

)
−
∫

dk
∫

dk′ k′ (. . .)
]
,

where the Fourier transform of the delta function is used. Now, note that all terms with
δ (k+ k′) yield zero, as the integrals only cover the positive (or negative, for the left-moving
modes) values of k and k′, and the combination (k,−k) does not occur. The βk operators can
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be switched, and the two integrals are combined, for which the absolute value of k has to be
employed. This gives

H =
vFL
2π

[∫
k>0

dk k
(

α
†
k αk −βkβ

†
k

)
−
∫

k<0
dk k

(
α

†
k αk −βkβ

†
k

)]
=

vFL
2π

[∫
k>0

dk k
(

α
†
k αk +β

†
k βk −1

)
−
∫

k<0
dk k

(
α

†
k αk +β

†
k βk −1

)]
=

L
2π

∫
dk vF|k|

(
α

†
k αk +β

†
k βk

)
, (4.45)

which is identical to Eq. (4.34).

4.3.2 Interactions

i) backward g1 ii) dispersion g2

iii) Umklapp g3 iv) forward g4

Figure 4.2 Electron-electron interactions in one dimension for right-moving (continuous)
and left-moving (dashed) modes. The arrows indicate time. i) Backward scattering; a right-
moving electron becomes left-moving and vice versa. ii) Dispersion; (left-) right-moving
modes scatter off (right-) left-moving modes. iii) Umklapp; two (left-) right-moving electrons
switch directions. iv) Forward scattering; the two particles keep moving in their original
directions. In the diagram, spin indices are suppressed. Note that in i) and iii) the incoming
electrons have opposed spins (↑ and ↓ or vice versa), whereas in ii) and iv) all combinations
of spin orientations of the incoming electrons are allowed. Figure taken from Ref. [56].

The general Hamiltonian of two-body interactions between electrons in one dimension
reads

Hint =
1
2 ∑

σ ,σ ′
∑

k1,k2,k3

Vσ ,σ ′c†
σ (k1)c

†
σ ′(k2)cσ ′(k3)cσ (k4), (4.46)

with spin indices σ =↑,↓, and momentum conservation fixes the value of k4. In the low-
energy limit, all interactions occur close to the Fermi point. Four different types of inter-
actions can be distinghuished: backward, dispersive, Umklapp, and forward scattering, all
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graphically represented in Fig. 4.2. Each of them will be briefly discussed. The interactions
are written in terms of the field operators ψa,σ , with a = L,R, and σ =↑,↓. The densities
are denoted by Ja,σ = ψ

†
a,σ ψa,σ . The charge and spin parts are decoupled because of spin-

charge separation in 1D. The spinful Bose fields Φ↑,↓, needed to write down the bosonized
expression for the interactions, are rewritten into spin and charge combinations

Φc =
1√
2

(
Φ↑+Φ↓

)
, Φs =

1√
2

(
Φ↑−Φ↓

)
. (4.47)

Backward scattering

The direction of motion is reversed, but the electrons keep their spin,

H1 = vFg1 ∑
σ

ψ
†
R,σ ψL,σ ψ

†
L,−σ

ψR,−σ . (4.48)

Applying the bosonization formulas, we find

H1 =
vFg1

(2π)2 ∑
σ

ηR,σ ηL,σ ηL,−σ ηR,−σ exp
[
i
√

4π(φR,σ +φL,σ −φL,−σ −φR,−σ )
]

=
vFg1

(2π)2

[
ηR,↑ηL,↑ηL,↓ηR,↓ei

√
8πΦs +ηR,↓ηL,↓ηL,↑ηR,↑e−i

√
8πΦs

]
=

vFg1

2π2 ηR,↑ηL,↑ηL,↓ηR,↓ cos
(√

8πΦs

)
=

vFg1

2π2 cos
(√

8πΦs

)
, (4.49)

where we have used the anticommuting properties of the Klein factors ηa,σ , and the calcula-
tion of the Klein factor as shown in Ref. [56].

Dispersion

Density-density interaction of a left- and a right-moving particle. Afterwards, the particles
keep moving with their respective directions and spin orientations,

H2,c = vFg2,c
(
JR,↑+ JR,↓

)(
JL,↑+ JL,↓

)
, (4.50)

H2,s = vFg2,s
(
JR,↑− JR,↓

)(
JL,↑− JL,↓

)
, (4.51)

where Ja,σ denotes the electronic density. After bosonization, we find for the charge part,

H2,c =
vFg2,c

π
∑

σ ,σ ′
∂zΦσ ∂z̄Φσ ′ =

2vFg2,c

π
∂zΦc∂z̄Φc, (4.52)
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and similarly for the spin part

H2,s =
2vFg2,s

π
∂zΦs∂z̄Φs. (4.53)

Umklapp scattering

Two left-moving electrons become right-moving electrons, or vice versa,

H3 =
1
2

vFg3 ∑
σ

(
ψ

†
R,σ ψ

†
R,−σ

ψL,σ ψL,−σ +h.c.
)
. (4.54)

Similar to the backward scattering, we obtain for the bosonized expression

H3 =
vFg3

2(2π)2

[(
ηR,↑ηR,↓ηL,↑ηL,↓+ηR,↓ηR,↑ηL,↓ηL,↑

)
× ei

√
4π(φR,↑+φR,↓+φL,↑+φL,↓)+h.c.

]
=

vFg3

(2π)2

[
ηR,↑ηR,↓ηL,↑ηL,↓ei

√
4πΦc +h.c.

]
=

vFg3

2π2 cos
(√

8πΦc

)
. (4.55)

Forward scattering

Density-density interaction of two left-moving (right-moving) particles with different spin
orientation. Afterwards, the particles keep moving with their respective directions and spin
orientations,

H4,c =
1
2

vFg4,c

[(
JR,↑+ JR,↓

)2
+
(
JL,↑+ JL,↓

)2
]
, (4.56)

H4,s =
1
2

vFg4,s

[(
JR,↑− JR,↓

)2
+
(
JL,↑− JL,↓

)2
]
. (4.57)

Similar to the bosonized dispersive scattering, we find that the charge part in terms of Bose
fields is given by

H4,c =−
vFg4,c

2π

[(
∂zΦ↑+∂z̄Φ↓

)2
+
(
∂z̄Φ↑+∂zΦ↓

)2
]

=−
vFg4,c

π

[
(∂zΦc)

2 +(∂z̄Φc)
2
]
, (4.58)

and similarly for the spin part, we have

H4,s =−
vFg4,s

π

[
(∂zΦs)

2 +(∂z̄Φs)
2
]
. (4.59)
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Since the form of the Hamiltonian is the same as the Gaussian Hamiltonian in Eq. (4.26),
this type of scattering effectively changes the speed vF of the excitations.

4.3.3 Luttinger liquid

If one sets the interactions g1 = g3 = 0, such that the only type of interactions are density-
density interactions, the resulting model is called the Luttinger liquid (LL). In bosonized
form, the charge and spin degrees of freedom are fully separated:

HLL = Hc[Φc]+Hs[Φs], (4.60)

with
Hµ = H0,µ +H2,µ +H4,µ , (4.61)

where µ = c,s, and

H0,µ =
∫

dx
vF

2

[
Π

2
µ +(∂xΦµ)

2
]

(4.62)

H2,µ =
∫

dx −
vFg2,µ

2

[
Π

2
µ − (∂xΦµ)

2
]

(4.63)

H4,µ =
∫

dx
vFg4,µ

2

[
Π

2
µ +(∂xΦµ)

2
]
, (4.64)

and combined

Hµ =
∫

dx
vµ

2

[
KµΠ

2
µ +

1
Kµ

(∂xΦµ)
2
]
, (4.65)

with

Kµ =

√
π −g2,µ +g4,µ

π +g2,µ +g4,µ
, vµ = vF

√(
1+

g4,µ

π

)2
−
(g2,µ

π

)2
, (4.66)

where K is called the Luttinger parameter. Observe that g2 ̸= 0 strictly decreases the excitation
velocity, whereas g4 < 0 decreases the velocity, and g4 > 0 increases the velocity. A non-
interacting system has g2 = g4 = 0 and K = 1, repulsive interactions are represented by
g2,g4 > 0 and K < 1, and attractive interactions by g2,g4 < 0 and K > 1.

By rescaling the fields as

Φ
′
µ =

1√
Kµ

Φµ , Π
′
µ →

√
KµΠµ , (4.67)

brings us back to the Gaussian Hamiltonian Eq. (4.28). Therefore, in order to introduce
interactions in a non-interacting theory, one only has to perform the reverse scaling of
Eq. (4.67), and replace vF → vµ . In short, an interacting electron theory is mapped to a free
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boson theory, with general Luttinger liquid Hamiltonian

HLL =
vF

2

∫
dx
[

K Π
2 +

1
K
(∇Φ)2

]
. (4.68)

If one adds Umklapp or backward scattering, this yields an additional cosine term and leads
to the sine-Gordon equation, which will be the topic of the next section.

4.3.4 Impurity in the spinless Luttinger liquid

Now that we have discussed the free theory and interactions, we will consider the problem
of an impurity in the spinless Luttinger liquid. The scattering process of the impurity can
be divided into a forward and backward scattering process. The forward scattering can be
transformed into the latter [2], and the latter will be bosonized. The resulting Hamiltonian
is the same as the boundary sine-Gordon Hamiltonian. The presented calculation follows
Ref. [2]. The Hamiltonian of the impurity scattering problem for spinless electrons is

H = HLL +V, (4.69)

where HLL is the Luttinger liquid Hamiltonian. Note that in this section electron-electron
interactions are not taken into account, only the interaction between the electrons and the
impurity. The potential scattering operator is given by

V =
∫

dxV (x)ψ(x)ψ(x), (4.70)

where V (x) represents some nonzero potential, localized in a region of finite radius a. In this
calculation we take V (x) =V δ (x), i.e. the impurity is located at the origin.

The first step is to expand the electron field in slow-varying in space chiral parts, using
the expansion Eq. (4.37). Second, the potential scattering operator Eq. (4.70) is divided into
a forward and backward scattering part,

V =Vf s +Vbs, (4.71)

where
Vf s =

∫
dxV f s(x)

[
ψ

†
R(x)ψR(x)+(R → L)

]
, (4.72)

while
Vbs =

∫
dxVbs(x)

[
ψ

†
R(x)ψL(x)+h.c.

]
. (4.73)
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The forward and backscattering amplitudes are related to the original scattering potential
V (x) by

Vf s(x) =V (x), Vbs(x) =V (x)e2ikFx. (4.74)

Third, the standard bosonization procedure is used, with help of the relations defined in
Table 4.1,

ψR(x) =
1√
2πa

ei
√

4πφR(x), ψL(x) =
1√
2πa

e−i
√

4πφL(x), (4.75)

with φL,R the left- and right-moving Bose fields and a0 the lattice constant. Together, they
constitute the full Bose field

Φ = φL +φR. (4.76)

Fourth, interactions between electrons in the conduction band are manually inserted by
rescaling the field,

Φ(x)→
√

KΦ(x). (4.77)

Here, K denotes the Luttinger liquid parameter. These steps bring us to the Hamiltonian

H = H0[Φ]+

√
K
π

Vf s∂xΦ(0)+
Vbs

πa
cos
[√

4πKΦ(0)
]
, (4.78)

where H0[Φ] is the Gaussian Hamiltonian in Eq. (4.28). Because the forward scattering and
backscattering processes are independent, the total Hamiltonian can be decomposed into two
parts

H = H f s +Hbs. (4.79)

Moreover, they are related to different chiral fields. Consider the decomposition of the Bose
field by parity with respect to the origin x = 0, written in terms of the left- and right-moving
fields of Eq. (4.76),

Φ(x)± =
1√
2
[Φ(x)±Φ(−x)] = φR±(x)+φL±(x) (4.80)

These fields are defined on the semi-axis x > 0, and satisfy φR±(0) = φL±(0). This allows
us to replace these fields by two new chiral right-moving fields, one of them being the even
parity combination,

ϕp(x) =

φR+(x) if x > 0

φL+(−x) if x < 0,
(4.81)



58 Bosonization of the Luttinger liquid

and the other one the odd parity combination

ϕq(x) =

φR−(x) if x > 0

φL−(−x) if x < 0.
(4.82)

In terms of these new fields, the Bose field at the boundary reads

Φ(0) =
√

2ϕp(0), ∂xΦ(0) =
√

2∂xϕq(0). (4.83)

Now, Eq. (4.79) can be reformulated in terms of these fields,

Hbs = H0[ϕp]+
Vbs

πa
cos
[√

8πKϕp(0)
]
, H0[ϕp] = v

∫
dx [∂xϕp(x)]

2 , (4.84)

H f s = H0[ϕq]+

√
2K
π

Vf s∂xϕq(0), H0[ϕq] = v
∫

dx
[
∂xϕq(x)

]2
. (4.85)

4.3.5 Chiral and helical Luttinger liquid

The chiral Luttinger liquid contains modes that move either to the right or to the left direction.
This means that backscattering of an impurity or by electron-electron interactions is not
allowed. Considering only the right-moving mode, the Hamiltonian reads

H = ∑
k>0

vFk
(

α
†
k αk +β

†
k βk

)
, (4.86)

and the fermion number is
NF = ∑

k>0

(
α

†
k αk −β

†
k βk

)
. (4.87)

In the chiral case, this number is equivalent to the charge and the current, as all modes in the
system move in the same direction. When we consider both the left and the right-moving
modes, the Hamiltonian has the Gaussian form of Eq. (4.68). Chiral modes emerge, for
instance, at the edge of the two-dimensional electron gas displayed in the integer or fractional
quantum Hall effect [65].

There exists another important family of Luttinger liquids, called the helical Luttinger
liquid (HLL). It describes one-dimensional conductors with spin-filtered transport [6]. For
instance, the right-moving modes solely carry spin up, and the left-moving modes solely
spin down, due to the presence of time-reversal symmetry. They have been predicted to
exist in 2D edge states in topological insulators (Ref. [65]), 3D arrays of 1D nanowires, 1D
semiconductor wires with strong Rashba spin-orbit interaction in an external magnetic field,
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and in carbon nanotubes. If a HLL is brought close to a superconductor, it supports Majorana
bound states at the edges [66, 67]. In 2015, their existence has been verified experimentally
[68].

The linearized non-interacting Hamiltonian is given by

H0
HLL =−ivF

∫
dx
[
ψ

†
R,↑(x)∂xψR,↑(x)−ψ

†
L,↓(x)∂xψL,↓(x)

]
. (4.88)

We see the similarity with the Dirac Hamiltonian for the Luttinger liquid Eq. (4.25). The
strong spin-orbit coupling makes that the spin and chirality properties of the fields coincide.
Rewriting the fields in terms of spinless fields makes the spin index redundant. Bosonizing
this Hamiltonian, and writing Φ = 1√

2
(φR↑+φL↓) and Θ = 1√

2
(φR↑−φL↓), we find

HHLL =
∫ dx

2π
v
[

1
KHLL

(∇Φ)2 +KHLL(∇Θ)2
]
, (4.89)

where the parameter KHLL accounts for the interactions, and v= vF/KHLL denotes the velocity
in the boson model [69].

The time-reversal symmetry of this system dictates that only two kinds of interactions
are allowed: the forward and Umklapp scattering [69]. The Hamiltonian for an impurity at
the boundary is rewritten to

H =
∫

dx
v
2

[
1

KHLL
(∇Φ)2 +KHLL(∇Θ)2

]
+

vg3

2π2 cos
√

8πKHLL Φ(0), (4.90)

where the cosine term is completely induced by the Umklapp term, given in Eq. (4.55), due
to the time-reversal symmetry of the system. To account for density-density interactions in
the chain, the parameters have been rescaled, such that vF → v and Φ(z)→

√
KΦ(z).

The expressions for the current Eq. (4.42) and charge Eq. (4.43) remain the same for this
system, where only the locked spin index has to be added.

4.4 Boundary sine-Gordon model

In this section, we briefly discuss the boundary sine-Gordon (BSG) model. We will see that
the BSG Hamiltonian is equivalent to the Hamiltonian describing the backscattering process
of an impurity in the chiral spinless Luttinger liquid. For an overview of this theory, see
Ref. [70]. Finally, we show that for a particular value of the Luttinger liquid parameter K,
the BSG theory supports a zero-energy Majorana mode at the boundary.
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4.4.1 Sine-Gordon theory

The sine-Gordon theory has Lagrangian density

L =
1
2

[
(∂tΦ)2 +(∂xΦ)2

]
−1+ cosΦ. (4.91)

Its equation of motion is a variation on the standard linear wave equation and is given by

∂ttu(x, t)−∂xxu(x, t)+ sinu(x, t) = 0. (4.92)

Though the equation stems from the 19th century, the discovery that the equation gives rise
to soliton solutions caused it to be a topic of recent interest [71, 72]. The name is a play on
the Klein-Gordon equation. The BSG model differs with respect to the sine-Gordon model
by the interaction term being present only at the spatial boundary, and not in the bulk. The
BSG model is exactly solvable [73].

4.4.2 Partition function of the BSG

The BSG Hamiltonian is given by

HBSG = H0 +
Vbs

πa
cos
[√

4πKΦ(0)
]
. (4.93)

This is equivalent to the Hamiltonian solely describing backscattering off an impurity in the
chiral spinless Tomonaga-Luttinger liquid Eq. (4.78). To study the BSG model into more
detail, we investigate its action [2]. The partition function for the above Hamiltonian is the
partition function Z for a field Φ(x,τ),

Z =
∫

DΦ(x,τ)e−S0[Φ(x,τ)]−S1[Φ(0,τ)], (4.94)

where S0 is the Gaussian action for a free bosonic massless scalar field in a two-dimensional
Euclidean space,

S0 [Φ(x,τ)] =
v
2

∫
β

0
dτ

∫
∞

−∞

dx
[
(∂τΦ)2 +(∂xΦ)2] , (4.95)

where β is the inverse temperature kBT , which now also plays the role of the time scale
(as mentioned before, we set h̄ = 1). S1 denotes the local action, describing the impurity



4.4 Boundary sine-Gordon model 61

potential term at x = 0,

S1 [Φ(0,τ)] =−Vbs

πa

∫
β

0
dτ cos

[√
4πKΦ(0,τ)

]
. (4.96)

We are primarily interested in the dynamics of the impurity Φ(τ) = Φ(0,τ), so we have to
integrate out all x ̸= 0 degrees of freedom of the local action. In order to do this, we employ
a trick by using a Lagrange multiplier with the auxiliary field λ (τ). This leads us to writing

δ [Φ(0,τ)−Φ(τ)] =
∫

Dλ (τ)exp
{

i
∫

β

0
λ (τ)dτ [Φ(0,τ)−Φ(τ)]

}
. (4.97)

We put its Fourier transform into the partition function and find

Z =
∫

DΦ(τ)e−S1[Φ(τ)]
∫

Dλ (τ)exp
{
−i
∫

β

0
λ (τ)dτΦ(τ)

}
Z [λ (τ)] , (4.98)

and

Z [λ (τ)] =
∫

DΦ(τ)exp
{
−S0 [Φ(x,τ)]+ i

∫
β

0
dτλ (τ)Φ(0,τ)

}
. (4.99)

The general form of the generating functional is

Z [η(ξ )] =
∫

Dφ exp
{
−S0 [φ(ξ )]+

∫
dξ φ(ξ )η(ξ )

}
(4.100)

= Z [0]exp
[

1
2

η(ξ )G(ξ ,ξ ′)η(ξ ′)

]
, (4.101)

where G(ξ ,ξ ′) is the Green’s function, and η(ξ ) a source field. We identify Eq. (4.99) as
exactly such a generating functional with coordinate ξ = τ , source field η(x,τ) = iδ (x)λ (τ),
and using delta functions written as Fourier transforms. Then, Eq. (4.99) gives

Z [λ (τ)] = Z [0]exp
[
− 1

2β
∑
ω

λ (ω)G0(ω)λ (−ω)

]
, (4.102)

where G0(ω) is the Green’s function of the Bose field in an infinite system,

G0(ω) =
∫

∞

−∞

dq
1

2π

1
v−1ω2 + vq2 =

1
2|ω| . (4.103)

Finally, we perform the integration over λ (τ) and find∫
Dλ (τ)exp

[
−i
∫

dτλ (τ)Φ(τ)− 1
2β

∑
ω

λ (ω)G0(ω)λ (−ω)

]
(4.104)
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= exp
[

1
2β

∑
ω

Φ(ω)G0(ω)Φ(−ω)

]
. (4.105)

The full action then reads

S = S0 +S1 +
1

2β
∑
ω

Φ(ω)G0(ω)Φ(−ω). (4.106)

4.4.3 Majorana mode in the BSG model

For a particular value of the Luttinger parameter K, the boundary sine-Gordon model supports
a zero-energy Majorana mode at the edge. We follow here section 27.IV from Ref. [2].

In the particular case K = 1
2 , the boundary sine-Gordon equation Eq. (4.93) has a simple

nonperturbative solution. First, the original Hamiltonian is replaced by

HBSG → HBSG = H0[Φ]+
2Vbs

πa
sx cos

[√
4πΦ(0)

]
, (4.107)

where H0[Φ] denotes the non-interacting bulk part of the Hamiltonian and sx =±1/2 is the
x-component of the spin-1/2 operator. This trick is employed to write the theory in terms
of a fermionic spinor instead of a bosonic scalar field. Mathematically speaking the Hilbert
space is doubled, but the physics of the problem remains the same. Second, the Hamiltonian
is re-fermionized,

s+ = d† (= sx + isy), (4.108)

Ψ(x) =
1√

2πa
eiπd†dei

√
4πΦ(x), (4.109)

where d is a Fermi operator and Ψ(x) is a Fermi field. At this point, the importance of
introducing sx and the exponential of the number operator becomes clear: we have to map
a Fermi spinor to a Bose scalar field, so we need to introduce a matrix representation. The
Jordan-Wigner type product d†d serves to ensure the proper commutation relations, and
reads

d†d =

(
0 1− i

1+ i 0

)(
0 1+ i

1− i 0

)
= 2

(
1 0
0 1

)
. (4.110)

Furthermore, exp(2πi) = 1, such that the extra exponential does not change the bosonization
formula in Eq. (4.109). With the identities in Eqs. (4.108) and (4.109), the Hamiltonian
yields

HBSG = H0[Ψ]+
4Vbs√
2πa

1
2

(
d† +d

)[
Ψ(0)+Ψ

†(0)
]
. (4.111)



4.4 Boundary sine-Gordon model 63

Third, we introduce Majorana components of the Fermi fields. The real and imaginary
components equal their Hermitian conjugate by construction

d =
1√
2
(v+ iw), (4.112)

Ψ(x) =
1√
2
[ξ (x)+ iζ (x)] . (4.113)

The Hamiltonian then becomes

HBSG = H0[ξ ,ζ ]+
2Vbs√
2πa

1√
2
(v+ iw+ v− iw)

1√
2
[ξ (x)+ iζ (x)+ξ (x)− iζ (x)]

= H0[ξ ,ζ ]+
2Vbs√
2πa

1√
2

2v
1√
2

2ξ (x)

= H0[ξ ,ζ ]+
2
√

2√
πa

Vbsvξ (0). (4.114)

Now, following Ref. [74], we show that this edge mode actually is a zero-energy Majorana
mode. First, we discretize the theory, with

ξ (x)→ 1√
2a

ξ j, ζ (x)→ 1√
2a

ζ j, (4.115)

such that

HBSG = H0[ξ j,ζ j]+
2√
πa

Vbsvξ0. (4.116)

We observe that ζ0 does not appear in the Hamiltonian. The interacting part of the
Hamiltonian only depends on ξ0, such that the ζ j contribution is decoupled from the impurity.
We have that ζ0 = ζ

†
0 by construction. Therefore, we recognize ζ0 as a zero-energy Majorana

mode, located on the edge.





Chapter 5

Equivalence between the boundary
sine-Gordon theory and
Caldeira-Leggett model

5.1 Introduction

In this section, the equivalence between the boundary sine-Gordon theory and the Caldeira-
Leggett model for a particle on a one-dimensional lattice with Ohmic bath will be established.
First, the field for the calculation is set up and some intuition is provided. Subsequently,
the equivalence is shown in three steps. First, the bosonized BSG-Hamiltonian Eq. (4.93) is
expanded in terms of bosonic creation and annihilation operators. Second, the Hamiltonian
is transformed with a canonical rotation. Third, a mapping between the operators in the
BSG Hamiltonian and the variables in the Caldeira-Leggett model is identified. All steps are
separately discussed, and correspond to a subsection. The calculation presented here is for
the spinless one-dimensional system with both left- and right-moving fermionic modes. The
outline for the equivalence is given in Refs. [2, 4].

5.2 Intuitive approach

Action of the Caldeira-Leggett model

Before showing the equivalence, we would like to provide some intuition for the physics
behind this mapping. The starting point is the Caldeira-Leggett Lagrangian Eq. (3.3). To
study the effect of the dissipation, the degrees of freedom of the bath of harmonic oscillators
{qk, q̇k} are integrated out. As a result, the action of the particle acquires an extra dissipation
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term (Ref. [49])

Sdiss =
∫

∞

−∞

dτ
′
∫

β

0
dτK(τ − τ

′)x(τ)x(τ ′), (5.1)

with the kernel
K(τ − τ

′) =
1

2π

∫
∞

0
dωe−ω|τ−τ ′|J(ω), (5.2)

and J(ω) the spectral function, as defined in Eq. (3.16). Note that in this case mk = 1, h̄ = 1,
and the factor of 1/2 has been left out. In these equations, the similarity between this action
with the dissipation term and the action of the boundary sine-Gordon model Eq. (4.106)
already becomes apparent. Note that throughout this chapter, we set h̄ = 1.

Particle on a lattice

In order to understand the outcome of the equivalence, we study the localization of the
particle due to the interaction with the bath. Consider a particle on a lattice with lattice
constant a, such that x = na. The Hamiltonian contains only hopping terms and reads

H0[x] = ω̄ ∑
n
(|na⟩⟨(n+1)a|+h.c.) , (5.3)

where ω̄ is the bare tunneling amplitude.
Next, the high- and low-energy degrees of freedom of the environment, which are the bath

oscillator frequencies, have to be separated. Generally, those with high energy can follow the
particle adiabatically, whereas the low-energy ones cannot adjust to the moving particle, and
hence do not influence the kernel. The two regimes are separated by the frequency ω0, which
denotes the actual renormalized tunneling amplitude [75]

ω0 = ω̄
〈
na,{xq}

∣∣(n+1)a,{xq}
〉
= ω̄ exp

[
− a2

2π

∫
∞

ω0

dω

ω2 J(ω)

]
. (5.4)

The overlap integral is calculated by using a path integral, with the lattice Hamiltonian and
the correction for dissipation. In the Ohmic dissipation regime, the spectral function is linear
in ω up to a bath cut-off frequency ωc, as we encountered in Eq. (3.18). The integral reduces
to

ω0 = ω̄ exp
[
−ηa2

2π

∫
ωc

ω0

dω

ω

]
= ω̄ exp

[
−ηa2

2π
ln
(

ωc

ω0

)]
= ω̄

(
ω0

ωc

)α

, (5.5)
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with the dissipation strength characterized by the dimensionless constant

α =
ηa2

2π
. (5.6)

The self-consistent equation for the renormalized tunneling amplitude Eq. (5.5) yields

ω0 =

ωc

(
ω̄

ωc

) 1
1−α for α < 1,

0 for α > 1.
(5.7)

The latter property comes from the fact that ω0 must increase as a function of ω̄ , and α > 1
would yield decreasing behaviour for increasing ω0, which is unphysical. Hence, as the
dissipation strength α increases, the effective tunneling amplitude decreases. At α = 1 there
is a crossover, beyond which the tunneling amplitude is zero and therefore the particle is
localized. Thus, there are two kinematic regimes for the particle: diffusive motion for α < 1,
and localized for α > 1.

5.3 Mode expansion

The first step for proving the equivalence is to expand the modes in the boundary sine-Gordon
Hamiltonian Eq. (4.93), given by

HBSG = H0 +
Vbs

πa
cos
[√

4πKΦ(0)
]
, (5.8)

in terms of bosonic creation and annihilation operators. Therefore the mode expansion
Eq. (4.19) reads

Φ(x, t) = q+
π0vt

L
+

π̃0x
L

+ ∑
n>0

1√
4πn

(
a†

nekz +ane−kz + ā†
nekz̄ + āne−kz̄

)
, (5.9)

where the Bose field Φ(x, t) is defined on a circle of circumference L.
Additionally, we define the operator

bk =
ak + āk√

2
, (5.10)

where the factor of 1/
√

2 makes sure the commutators of the operators bk, b†
k are normalized,[

bk,b
†
k′

]
= δk,k′,

[
b†

k ,b
†
k′

]
= [bk,bk′] = 0. (5.11)
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Furthermore, we introduce the rescaled phase variable θ

θ =−
√

4πKΦ0, (5.12)

where θ corresponds to the full zero mode (i.e. the first term of Eq. (4.19)), and Φ0 ≡ q,
using the notation of Ref. [2]. It satisfies a commutation relation with J, which is the total
electron current through the system, and has been introduced in Eq. (4.42),

[θ ,J] = 2i. (5.13)

The origin of the factor 2 is the counting of the difference between the left- and right-moving
modes, where changing the direction of one mode gives a difference of 2 in the current.
Moreover, we will see that the bosonic operator J can be interpreted as a coordinate of a
particle moving on a lattice with period 2, such that its allowed values are J = 2n, with n
integer. To achieve the quantization x → 2n, we change the canonical commutation relation
[x, p] = i to [2n, p] = 2i to arrive at the above commutator. Note that the needed additional
minus sign is a matter of convention.

Finally, the expansion of Φ(z) is evaluated at z = 0. This means that the impurity is
located at the spatial boundary and is static, which yields

Φ(0) =− θ√
4πK

+ ∑
k>0

1√
kL

(
bk +b†

k

)
. (5.14)

The mode expansion can now be used in the Hamiltonian.

5.3.1 Cosine interaction

We plug the Fourier mode expansion Eq. (5.14) into the cosine term of Eq. (5.8), and find

Vbs

πa
cos[

√
4πKΦ(0)] =

Vbs

πa
cos

[
−θ + ∑

k>0

√
4πK
kL

(
bk +b†

k

)]
. (5.15)

5.3.2 Non-interacting part

The Gaussian part of Eq. (5.8) is expanded, so that we find the bosonized Luttinger Hamilto-
nian (1D chain of non-interacting fermions), as found in the seminal work by Haldane [11].
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Our starting point is the Gaussian Hamiltonian Eq. (4.26). We calculate the derivatives

∂zΦ =− iP
2L

+ ∑
k>0

√
k

2L

(
a†

kekz −ake−kz
)
,

∂z̄Φ =− iP̄
2L

+ ∑
k>0

√
k

2L

(
ā†

kekz̄ − āke−kz̄
)
,

their squares being

(∂zΦ)2 = (∂zΦ)†(∂zΦ)

=

(
P
2L

)2

+ ∑
k>0,k′>0

√
kk′

2L

(
aka†

k′e
−(k−k′)z −a†

ka†
k′e

(k+k′)z

−akak′e
−(k+k′)z +a†

kak′e
(k−k′)z

)
, (5.16)

(∂z̄Φ)2 =

(
P̄
2L

)2

+ ∑
k>0,k′>0

√
kk′

2L

(
ākā†

k′e
−(k−k′)z̄ − ā†

k ā†
k′e

(k+k′)z̄

− ākāk′e
−(k+k′)z̄ + ā†

k āk′e
(k−k′)z̄

)
. (5.17)

The double sums and exponentials are handled with the Fourier transform of a delta
function

δk,k′ =
1
L

∫ L

0
dxei(k−k′)x. (5.18)

Note that all terms with factor δk,−k′ become zero, since the summation only covers the
positive values of k and k′, and the combination (k,−k) does not occur. The parts with
operators an of both squared derivatives are put together, and reduce to

∑
k>0

k
2

(
aka†

k +a†
kak + ākā†

k + ā†
k āk

)
= ∑

k>0

k
2

(
aka†

k +a†
kak +a−ka†

−k +a†
−ka−k

)
=∑

k

|k|
2

(
2a†

kak +1
)
= ∑

k
|k|
(

a†
kak +

1
2

)
, (5.19)

where āk = a−k is written out and the commutator
[
ak,a

†
k

]
= 1 is employed. Note that the

second term does not depend on the bosonic operators, and represents an irrelevant shift in
energy. Therefore, it is often left out in literature. Here, we keep the term, since it will be
part of the mapping.
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Since the first term of Eq. (5.16) does not depend explicitly on x, integration over x yields
an extra factor L. The zero modes are rewritten with Eq. (4.24), such that

P2 + P̄2 = (π0 + π̃0)
2 +(π0 − π̃0)

2 = 2
(
π

2
0 + π̃

2
0
)
. (5.20)

The full expanded Hamiltonian then reads

H =
v

2L
(π2

0 + π̃
2
0 )+ v∑

k
|k|
(

a†
kak +

1
2

)
, (5.21)

where v is the renormalized velocity of the model, given in Eq. (4.66).
The zero mode terms can be related to the charge Q and the electric current J. By using

Eq. (4.43) and the Fourier-mode expansion Eq. (4.19), the charge reads

Q =− 1√
π
[Φ(L, t)−Φ(0, t)] =

π̃0√
π
. (5.22)

Similarly, by using Eq. (4.42) and the mode expansion Eq. (4.19), the current J reads

J =
1√
πv

∫
dx∂tΦ(x, t) =

π0√
π
, (5.23)

where is used the property that Φ(x, t) is defined on a circle of circumference L, and therefore
the only difference between Φ(0, t) and Φ(L, t) is in the value of the zero mode of the
expansion.

The final Hamiltonian becomes

H =
πv
2L

(J2 +Q2)+ v∑
k
|k|
(

a†
kak +

1
2

)
. (5.24)

Scaling the Luttinger parameter
√

K in the field Φ yields an extra factor K in the second term.
The first part of the second term is rewritten by redefining bk = (ak +a−k)/

√
2,1

∑
k
|k|a†

kak = . . .= ∑
k>0

k
(

a†
kak +a†

−ka−k +a†
ka−k +a†

−kak

)
= ∑

k>0
k(a†

k +a†
−k)(ak +a−k) = ∑

k>0
kb†

kbk. (5.25)

1Please note that at the time of writing, this step is still unclear. We expect the calculation from Ref. [2] to
be correct and follow its steps.
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Interactions can be introduced by scaling the parameter K, with J →
√

KJ, and Q →√
K
−1

Q. This can be seen from their derivation in Eqs. (5.22) and (5.23). Furthermore, in
the above Hamiltonian, we set the charge of the excited states Q = 0, and because we work
in the low-energy limit, this term may be neglected.

By taking all separate terms together, the expanded Hamiltonian reads

HBSG = ∑
k>0

vk
(

b†
kbk +

1
2

)
+

πKv
2L

J2 +
Vbs

πa
cos

[
−θ + ∑

k>0

√
4πK
kL

(
bk +b†

k

)]
. (5.26)

5.4 Rotation of basis

In the second step, the canonical transformation

UCL = exp
{

i
2

√
4πK [Φ(0)−Φ0]J

}
= exp

[
i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J

]
, (5.27)

is used, and the Hamiltonian is transformed in the following way

HBSG = UCLHBSGU†
CL. (5.28)

To calculate the rotation, the Baker-Campbell-Hausdorff formula is employed,

eXYe−X = Y +[X ,Y ]+
1
2!
[X , [X ,Y ]]+

1
3!
[X , [X , [X ,Y ]]]+ . . . . (5.29)

The required commutators are then calculated with Eq. (5.11) and give[
bk +b†

k ,−b†
k′ +bk′

]
=−

[
bk,b

†
k′

]
+[bk,bk′]−

[
b†

k ,b
†
k′

]
+
[
b†

k ,bk′
]

=−δk,k′ +0−0−δk,k′ =−2δk,k′, (5.30)

[
bk +b†

k , b†
k′ +bk′

]
=
[
bk,b

†
k′

]
+[bk,bk′]+

[
b†

k ,b
†
k′

]
+
[
b†

k ,bk′
]

= δk,k′ +0+0−δk,k′ = 0, (5.31)

[
bk , b†

k′bk′
]
= bkb†

k′bk′ −b†
k′bk′bk = (δk,k′ +b†

k′bk)bk′ −b†
k′bk′bk

= δk,k′bk′ +b†
k′bk′bk −b†

k′bk′bk = bk′δk,k′ , (5.32)
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[
b†

k , b†
k′bk′

]
= b†

kb†
k′bk′ −b†

k′bk′b
†
k = b†

k′b
†
kbk′ −b†

k′bk′b
†
k

= b†
k′(bk′b

†
k −δk,k′)−b†

k′bk′b
†
k =−b†

k′δk,k′, (5.33)

and

[bk,J] =
[
b†

k ,J
]
= 0, [bk,θ ] =

[
b†

k ,θ
]
= 0, [θ ,J] = 2i. (5.34)

5.4.1 First and second term

The rotation of the first term is given by

UCL ∑
k>0

vk
(

b†
kbk +

1
2

)
U†

CL =

exp
[

i ∑
k>0

√
πK
kL

(
bk +b†

k

)
J︸ ︷︷ ︸

≡ ξ

]
∑
k>0

vk
(

b†
kbk +

1
2

)
︸ ︷︷ ︸

≡ ∆

exp
[
− i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J︸ ︷︷ ︸

≡ ξ

]
. (5.35)

We introduce the abbreviations ξ and ∆ for notational ease and apply the Baker-Campbell-
Hausdorff formula given in Eq. (5.29). In order to do so, the commutators between ξ and ∆

have to be calculated, up until the order in which the result commutes with ξ . Subsequent
higher-order contributions will vanish. Note that all commutators with the ground state
energy vk/2 also vanish. The first commutator then reads[

i ∑
k>0

√
πK
kL

(
bk +b†

k

)
J , ∑

k′>0
vk′b†

k′bk′

]
= i ∑

k>0
∑

k′>0

√
πK
kL

vk′J
[
bk +b†

k , b†
k′bk′

]
= i ∑

k>0
∑

k′>0

√
πK
kL

vk′J
(
−b†

k′δk,k′ +bk′δk,k′
)
= i ∑

k>0

√
πkK

L
vJ
(
−b†

k +bk

)
. (5.36)

The second commutator reads

1
2

[
i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J , i ∑

k′>0

√
πk′K

L
vJ
(
−b†

k′ +bk′
)]

=− ∑
k>0

∑
k′>0

πKv
2L

√
k′

k
J2
[
bk +b†

k ,−b†
k′ +bk′

]
=− ∑

k>0
∑

k′>0

πKv
2L

√
k′

k
J2 (−2δk,k′

)
= ∑

k>0

πKv
L

J2. (5.37)
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Since J commutes with itself and bk, higher-order commutators will be zero. Thus, the
complete expression becomes2

UCL ∑
k>0

vk
(

b†
kbk +

1
2

)
U†

CL

= ∑
k>0

vk
(

b†
kbk +

1
2

)
+ i ∑

k>0

√
πkK

L
vJ
(
−b†

k +bk

)
+ ∑

k>0

πKv
L

J2. (5.38)

The second term of the backscattering Hamiltonian transforms trivially, as J commutes
with itself and the bosonic field operators[

i ∑
k>0

√
πK
kL

(
bk +b†

k

)
J ,

πKv
2L

J2

]
= 0. (5.39)

Therefore, we have

UCL
πKv
2L

J2U†
CL =

πKv
2L

J2. (5.40)

5.4.2 Third term

The third term of the backscattering boundary sine-Gordon Hamiltonian Eq. (5.8) transforms
as

UCL
Vbs

πa
cos
[
−θ + ∑

k>0

√
4πK
kL

(
bk +b†

k

)]
U†

CL

= exp
[

i ∑
k>0

√
πK
kL

(
bk +b†

k

)
J︸ ︷︷ ︸

≡ ξ

]
Vbs

πa
cos
[
−θ + ∑

k>0

√
4πK
kL

(
bk +b†

k

)
︸ ︷︷ ︸

≡ χ

]

× exp
[
− i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J︸ ︷︷ ︸

≡ ξ

]
, (5.41)

where we have introduced the abbreviations ξ and χ for notational clarity.
To calculate this expression, we rewrite the cosine as

cos(x) =
1
2
(
eix + e−ix) . (5.42)

2Note that in Ref. [2] the summation covers all values of k, and the first term should contain an extra factor
vk to match the mapping. These seem to be typos, as they are not consistent with the above calculations.
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The irrelevant prefactor is now left out of the calculation for clarity. Symbolically, the goal
of this step is to calculate

eξ ei(−θ+χ)e−ξ + eξ ei(+θ−χ)e−ξ , (5.43)

where ξ , χ , and θ are generic variables, with the first two defined above. In order to combine
the exponentials, one must use the Zassenhaus formula for two possibly noncommutative
operators X ,Y [56],

etX+tY = etX etY e−
t2
2! [X ,Y ]e

t3
3! (2[Y,[X ,Y ]]+[X ,[X ,Y ]]) · · · (5.44)

We have that

[θ ,χ] ∝ [θ ,bk]+
[
θ ,b†

k

]
= 0, (5.45)

[ξ ,θ ] =

[
i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J , θ

]
= i ∑

k>0

√
πK
kL

(
bk +b†

k

)
[J , θ ]

= i ∑
k>0

√
πK
kL

(
bk +b†

k

)
(−2i) = 2 ∑

k>0

√
πK
kL

(
bk +b†

k

)
, (5.46)

[θ , [ξ ,θ ]] = 0, (5.47)

[ξ , [ξ ,θ ]] = 2i ∑
k>0

∑
k′>0

πK
L

√
1

kk′
J
[
bk +b†

k , bk′ +b†
k′

]
= 0, (5.48)

[ξ ,χ] =

[
i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J , ∑

k′>0

√
4πK
k′L

(
bk′ +b†

k′

)]

= i ∑
k>0

∑
k′>0

2πK
L

√
1

kk′
J
[
bk +b†

k , bk′ +b†
k′

]
= 0. (5.49)

From these results, it can be seen that subsequent higher-order commutators vanish as well.
This implies that the Zassenhaus formula for our case reduces to

etX etY = etX+tY e
t2
2! [X ,Y ] = etX+tY+ t2

2! [X ,Y ]. (5.50)
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Now, we will evaluate the expression in Eq. (5.43). By writing out symbolically the
outcome of the first exponential of the cosine,

exp(ξ )exp(−iθ + iχ)exp(−ξ )

= exp(ξ )exp(−iθ)exp
(

iχ −ξ +
i
2�

����:0
[χ,−ξ ]

)
= exp(ξ )exp

(
−iθ + iχ −ξ +

i
2�

����:0
[−θ ,χ]+

i
2
[−θ ,−ξ ]

)
= exp

(
ξ − iθ + iχ −ξ +

i
2
[θ ,ξ ]+

1
2
[ξ ,−iθ ]+

1
2�

���*
0

[ξ , iχ]+
1
2�

����:0
[ξ ,−ξ ]+

1
4�

�����:0
[ξ , i[θ ,ξ ]]

)
= exp(−iθ + iχ + i[θ ,ξ ]) , (5.51)

which reads in full

exp

[
−iθ + i ∑

k>0

√
4πK
kL

(
bk +b†

k

)
−2i ∑

k>0

√
πK
kL

(
bk +b†

k

)]
= exp(−iθ) . (5.52)

By proceeding similarly for the second part, we find

exp(ξ )exp(+iθ − iχ)exp(−ξ )

= exp(ξ )exp(iθ)exp
(
−iχ −ξ +

1
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�����:0
[−iχ,−ξ ]

)
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����:0
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1
2
[iθ ,−ξ ]

)
= exp

(
ξ + iθ − iχ −ξ − 1

2
[iθ ,ξ ]+

1
2
[ξ , iθ ]+

1
2�

����:0
[ξ ,−iχ]+

1
2�

����:0
[ξ ,−ξ ]− 1

4�
�����:0

[ξ , [iθ ,ξ ]]
)

= exp(iθ − iχ − i[θ ,ξ ]) , (5.53)

which reads in full

exp

[
iθ − i ∑

k>0

√
4πK
kL

(
bk +b†

k

)
+2i ∑

k>0

√
πK
kL

(
bk +b†

k

)]
= exp(iθ) . (5.54)

By combining both results, the rotated third term yields

Vbs

2πa

(
eiθ + e−iθ

)
=

Vbs

πa
cosθ . (5.55)
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5.4.3 Result

After the rotation, the boundary sine-Gordon Hamiltonian Eq. (5.8) reads

HBSG = ∑
k>0

vk
(

b†
kbk +

1
2

)
+ i ∑

k>0

√
πkK

L
vJ
(
−b†

k +bk

)
+ ∑

k>0

πKv
L

J2

+
πKv
2L

J2 +
Vbs

πa
cosθ . (5.56)

5.5 Mapping the variables

The above Hamiltonian can be understood as a particle on a lattice with a dissipative term.
This identification also encourages us to welcome a new interpretation of J, that is, to view it
as a coordinate of a fictitious particle. In order to do this, the bosonic creation and annihilation
operators b†

k , bk must be rewritten in terms of the bath oscillator coordinates xk, pk. The
variables corresponding to the harmonic oscillators are identified by

xk =
i√

2mkωk
(bk −b†

k), pk =

√
mkωk

2
(b†

k +bk),

Ck =

√
2πKv3k2mk

L
, ωk = vk. (5.57)

5.5.1 First and second term

The first three terms of Eq. (5.56) give the contribution of the Caldeira-Leggett model
Eq. (3.3). The first term corresponds to the energy of the harmonic oscillators in the bath.
The second (first commutator) yields the coupling between the particle and the bath, and the
third (second commutator) gives us the counter-term. This is most easily seen by working
backwards,

1
2mk

p2
k +

1
2

mkω
2
k x2

k =
vk
4
(b†

k +bk)(bk +b†
k)+

−i2v2k2

4vk
(bk −b†

k)(b
†
k −bk)

=
vk
2

(
b†

kbk +bkb†
k

)
=

vk
2

(
2b†

kbk +1
)
= vkb†

kbk +
vk
2
, (5.58)

CkxkJ =−i

√
2πKv3k2mk

2mkvkL
(b†

k −bk)J =−i

√
πKk

L
v(b†

k −bk)J, (5.59)
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C2
k

2mkω2
k

J2 =
2πKv3k2mk

2mkv2k2L
J2 =

πKv
L

J2. (5.60)

The full identified expression reads

UCL ∑
k>0

vk
(

b†
kbk +

1
2

)
U†

CL = ∑
k>0

(
p2

k
2mk

+
1
2

mkω
2
k x2

k +CkxkJ+
C2

k

2mkω2
k

J2
)
, (5.61)

which now clearly equals the bath contribution in the Caldeira-Leggett model, Eq. (3.3).
The second term does not need to mapped, as it is already formulated in terms of J.

5.5.2 Third term

Continuous model

By remembering the definition θ =−
√

4πKΦ0, we start our inspection from the following
identity

Vbs

πa
cosθ =

Vbs

πa
cos
(√

4πKΦ0

)
. (5.62)

Assuming θ to be small, we expand the interaction term as

Vbs

πa
cosθ ≃ Vbs

πa

(
1+

1
2

θ
2
)
=

Vbs

πa

(
1+2πKΦ

2
0
)
, (5.63)

where the constant gives just a change in the energy spectrum and thus is ignored.
In the mapping of the Caldeira-Leggett term in Eq. (5.61), we have seen that J plays the

role of coordinate of a fictitious particle. If we look at the commutator [θ ,J] = 2i, we notice
the similarity with the position-momentum Heisenberg commutator [x, p] = h̄i (throughout
here, h̄ = 1). Recognizing J as a coordinate, the commutator then implies that we can view
θ as some kind of momentum. However, since we lack a summation over θ , it is more
appropriate to view the contribution quadratic in θ as a mass term, which here causes a shift
in the energy spectrum.

Discrete lattice

It has been shown in Ref. [2] that the discrete case corresponds to an effective hopping term
between two lattice sites J and J+2, where the lattice spacing 2 comes from the commutator
in Eq. (5.13). The cosine interaction is written as

Vbs

πa
[|J⟩⟨J+2|+h.c.] (5.64)
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As we originally have defined J as the total electron current in Eq. (4.42), this also has a
physical interpretation in terms of the original picture in the Luttinger liquid. If we count the
number of left- and right-moving modes, their difference gives us the total electron current J.
Any scattering event or interaction that leads to annihilating a left (right-)moving mode, and
creating a right (left)-moving mode, changes the numerical value of J by 2. This allows us to
think of the above term as a transition between two states, characterized by the numbers J
and J+2.

5.5.3 Final result

The final result of this section is

HBSG =
Vbs

πa
[|J⟩⟨J+2|+h.c.]+

πKv
2L

J2 +∑
k

(
p2

k
2mk

+
1
2

mkω
2
k x2

k +CkxkJ+
C2

k

2mkω2
k

J2
)
.

(5.65)

Comparing the above with the tunneling Hamiltonian in Eq. (5.3), we observe that the scaled
backscattering potential Vbs/πa plays the role of the bare tunneling amplitude ω̄ . The second
term, which goes with the squared ‘coordinate’ J2, acts a weak harmonic potential, which
vanishes in the limit L → ∞.

As a corollary of Eq. (5.57), we calculate the spectral function Eq. (3.16), which is
required to be Ohmic (linear in ω),

J(ω) =
π

2 ∑
k

C2
k

mkωk
δ (ω −ωk) =

π

2 ∑
k

2πKv3k2

vkL
δ (ω −ωk)

=
π2vK

L ∑
k

ωkδ (ω −ωk). (5.66)

In order to evaluate the delta function, we replace the summation by an integral,

∑
k
→ L

2π

∫
dk, (5.67)

and use δ (ax) = δ (x)/|a|, such that

J(ω) =
π2vK

L
L

2π

∫
dk k δ

(
ω

v
− k
)
=

πK
2

ω = ηω, (5.68)
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where the friction coefficient reads η = πK
2 . The dissipation strength Eq. (5.6) for lattice

constant 2 then becomes
α =

2η

π
= K. (5.69)

5.6 Conclusion

In the above, we have shown that the boundary sine-Gordon theory is exactly equivalent to
the Caldeira-Leggett theory for a particle on a one-dimensional lattice with an Ohmic bath.
The coordinate of the dissipative particle is identified as the total electron current J, and its
mass term is represented by the backscattering potential.

In fact, in chapter 4, it has been shown that the spinless double chiral Luttinger liquid
with an impurity can be bosonized into the boundary sine-Gordon theory. Therefore, the
equivalence extends to this system as well. As a consequence, this might imply that every
Luttinger theory that can be rewritten into a BSG, also can be reformulated in terms of a
dissipative system with a particle moving in one dimension. This is analyzed in the next
chapter.

The different parameter regions of the BSG and CL models map to each other in the
following way. Remember that in section 5.2, two kinematic regimes for the particle have
been found: diffusive motion for dissipation strength α < 1, and localized for α > 1. With
the identification Eq. (5.69), we connect this to the Luttinger parameter K. If K < 1, the
backscattering is relevant, and J is delocalized. If K > 1, the backscattering is irrelevant, and
J is localized. This means that if there is no backscattering, the total current is conserved.
When the backscattering is switched on, the total current becomes a dynamic variable.

In Refs. [3, 4], an equivalence very similar to the one discussed in this chapter has
been shown. Starting from the Caldeira-Leggett model with linear coupling to a fermionic
particle in a periodic potential, the same rotation UCL is applied. The resulting Hamiltonian is
diagonal in the momentum basis of the fermionic creation and annihilation operators. Fixing
a particular value of the particle momentum in the Hamiltonian then yields the BSG equation.
There are three main differences with the approach in this chapter. First, we work from
the BSG theory to the Caldeira-Leggett model instead of the other way around. Second, in
the current work a more general definition of the field Φ(x, t) is used, since the zero modes
are not taken into account in the literature. Third, the summation over all momenta yields
a hopping in the full chain, whereas here a hopping between two states is found. These
references have been found shortly before the end of this research project. It would be very
interesting to reconcile both approaches, since only the form used in this work can be written
as a Luttinger-liquid theory.





Chapter 6

Extension to the helical Luttinger liquid

6.1 Introduction

In chapter 4, the spinless double chiral Luttinger liquid with an impurity has been bosonized
into the boundary sine-Gordon equation. In chapter 5, the equivalence between the boundary
sine-Gordon equation and a particle on a one-dimensional chain with dissipation has been
shown. In the last chapter, it has been remarked that therefore every Luttinger theory that
can be rewritten into a BSG, also can be reformulated in terms of a dissipative system with a
particle moving in one dimension. In this chapter, we extend this equivalence to the helical
Luttinger liquid. Note that throughout this chapter, we set h̄ = 1.

6.2 Helical Luttinger liquid

The helical Luttinger liquid, introduced in section 4.3.5, contains both left- and right-moving
fermionic modes, and the spin index is locked to the direction of motion. For example, all
left-moving modes have spin up, and all right-moving modes have spin down. Bosonized, it
yields a Gaussian Hamiltonian, given in Eq. (4.89), and with an Umklapp interaction at the
boundary, it yields the boundary sine-Gordon equation, given in Eq. (4.90),

HHLL =
∫

dxv
[

1
K
(∇Φ)2 +K(∇Θ)2

]
+

vg3

2(πa)2 cos
[√

4πK Φ(0)
]
, (6.1)

where we defined

Φ(z, z̄) = φR,↑(z)+φL,↓(z̄), Θ(z, z̄) = φR,↑(z)−φL,↓(z̄). (6.2)
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Note that these definitions change with a factor of 1/
√

2 compared to those in Eq. (4.89).
This specific choice makes sure that we start with the same boundary sine-Gordon equation
as in Chapter 5. The assignment of spin indices to a direction of motion is arbitrary and this
specific choice does not affect the calculation. This last expression is the starting point for
this section, in which we will show the correspondence to the system of a dissipative particle
on a lattice, analogously to that of the spinless Luttinger liquid in Chapter 5.

Mode expansion

We start with the mode expansion

Φ(x, t) = q+
π0vt

L
+

π̃0x
L

+ ∑
k>0

1√
2kL

(
a†

k,↑ekz +ak,↑e−kz +a†
−k,↓ekz̄ +a−k,↓e−kz̄

)
, (6.3)

which is exactly Eq. (4.19), but with additional spin indices. The creation and annihilation
operators satisfy the commutation rules[

ak,↑,a
†
k′,↑

]
= δk,k′,

[
a−k,↓,a

†
−k′,↓

]
= δk,k′,

[
ak,↑,a

†
−k′,↓

]
= 0. (6.4)

The expressions for the current and the charge are calculated as before in Eqs. (4.42) and
(4.43), respectively, and give

J =
∫

dx
[
ψ

†
L,↓(x)ψL,↓(x)−ψ

†
R,↑(x)ψR,↑(x)

]
=−

∫
dx

i√
π

[
∂zφR,↑(z)+∂z̄φL,↓(z̄)

]
=

1√
πvF

∫
dx∂tΦ(x, t) =

π0√
π
, (6.5)

Q =
∫

dx
[
ψ

†
L,↓(x)ψL,↓(x)+ψ

†
R,↑(x)ψR,↑(x)

]
=
∫

dx
i√
π

[
∂zφR,↑(z)−∂z̄φL,↓(z̄)

]
=− 1√

π

∫
dx∂xΦ(x, t) =− 1√

π
[Φ(L)−Φ(0)] =

π̃0√
π
, (6.6)

where time-dependence was introduced to bosonize the expression, and the derivative has
been rewritten in real coordinates with Eq. (4.2). Furthermore, we denote the spin down
operator by a−k,↓ = āk, analogous to the procedure in Chapter 5, such that

bk =
ak,↑+a−k,↓√

2
=

ak + āk√
2

, k > 0, (6.7)
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satisfying the commutation relations[
bk,b

†
k′

]
= δk,k′, [bk,bk′] =

[
b†

k ,b
†
k′

]
= 0. (6.8)

If we rewrite the Hamiltonian Eq. (6.1) with the expansion in Eq. (6.3), we use that1

∑
k>0

k
(

a†
k,↑ak,↑+a†

−k,↓a−k,↓+1
)
= . . .

= ∑
k>0

k
(

a†
k,↑ak,↑+a†

−k,↓a−k,↓+a†
k,↑a−k +a†

−k,↓ak,↑+
1
2

)
= ∑

k>0
k
(

a†
k,↑+a†

−k,↓

)(
ak,↑+a−k,↓

)
+

k
2
= ∑

k>0
k
(

b†
kbk +

1
2

)
, (6.9)

such that the expanded Hamiltonian reads

H = ∑
k>0

vk
(

b†
kbk +

1
2

)
+

πKv
2L

J2 +
vg3

2(πa)2 cos

[
−θ + ∑

k>0

√
4πK
kL

(
bk +b†

k

)]
, (6.10)

which is exactly Eq. (5.26), the expanded Hamiltonian employed in Chapter 5.

Rotation of basis and mapping

The commutators given in Eq. (6.8) determine the outcome of the rotation of basis. They
behave exactly in the same way as in section 5.4, so that the rotation gives the same result,
and we can use the same mapping as before. We then arrive at

HHLL =
vg3

2πa
[|J⟩⟨J+2|+h.c.]+

πKv
2L

J2 +∑
k

(
p2

k
2mk

+
1
2

mkω
2
k x2

k +CkxkJ+
C2

k

2mkω2
k

J2
)
.

(6.11)

6.3 Conclusion

We have shown that the helical Luttinger liquid is equivalent to a particle hopping on a
one-dimensional lattice, which is in contact with a harmonic oscillator bath.

Generally speaking, we have seen that the required Hamiltonian for the correspondence
is a boundary sine-Gordon Hamiltonian, i.e. a Gaussian Hamiltonian, with an interaction in
the form of a cosine of the field Φ at the boundary. Any physical system giving rise to this
kind of theory may be mapped in the same way, as long the commutation relations between

1Similar to Chapter 5, this step is currently unclear. We proceed analogously to the calculation in Ref. [2].
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the bosonic field operators are satisfied. For the spinless Luttinger liquid, an impurity at
the boundary or an Umklapp scattering at the boundary corresponds to the BSG theory. For
the spinful Luttinger liquid, one has to take into account the spin-charge separation. If one
takes a spinful Luttinger liquid with backward and Umklapp interaction at the boundary, this
system will correspond to a double system of dissipative particles. For the helical Luttinger
liquid, an impurity at the boundary or Umklapp does the trick, as we have seen in this chapter.
For all equivalences concerned, the characteristics of the Luttinger liquid are preserved in the
dissipative system and emerge in the system parameters v and K, as defined in Eq. (4.66).



Chapter 7

Extension to the sine-Gordon theory

7.1 Introduction

In Chapter 5, we have shown the equivalence between the boundary sine-Gordon theory
and a dissipative particle on a lattice. The particular form of the basis rotation used makes
sure that the Gaussian contribution can be interpreted as a Caldeira-Leggett bath and a weak
harmonic potential. The cosine interaction at the boundary can be interpreted as hopping
terms between two lattice sites. Now, one can wonder if the full sine-Gordon theory also
may be mapped. The Gaussian part will still yield the Caldeira-Leggett bath, but the cosine
interaction may yield another kind of lattice. This chapter shows the calculation of the cosine
term, and discusses its interpretation in terms of a dissipative particle on a lattice. Note that
throughout this chapter, we set h̄ = 1.

7.2 Equivalence in the sine-Gordon theory

The sine-Gordon Hamiltonian for a semi-infinite chain reads

HSG = H0 +
µ

πa

∫
dx cos

[√
4πKΦ(z)

]
, (7.1)

where H0 is the Gaussian Hamiltonian introduced in Eq. (4.65),

H0 =
∫

dx
v
2

[
KΠ

2 +
1
K
(∂xΦ)2

]
. (7.2)

It can be derived from the Lagrangian density given in Eq. (4.91), where µ denotes the inter-
action strength. Since the proof of equivalence for H0 will go exactly as in Chapter 5, yielding
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the Caldeira-Leggett contribution given in Eq. (5.61) and the weak harmonic potential given
in Eq. (5.40), we will focus here instead solely on the cosine term.

7.2.1 Mode expansion

We use the same mode expansion as before, given in Eq. (4.19). The zero modes are expressed
as current and charge with Eqs. (5.23) and (5.22). This gives

Φ(x, t) = q+
√

πJvt
L

+

√
πQx
L

+ ∑
n>0

1√
4πn

(
a†

nekz +ane−kz + ā†
nekz̄ + āne−kz̄

)
. (7.3)

The cosine term reads, assigning symbolical abbreviations for later calculational use,

cos
[√

4πKΦ(x, t)
]
≡ cos(−Θ+Ω) , (7.4)

where Θ denotes the three zero mode terms, and Ω entails the k-dependence,

Θ ≡−
√

4πK
(

q+
√

πJvt
L

+

√
πQx
L

)
,

Ω ≡ ∑
k>0

√
2πK
kL

(
a†

kekz +ake−kz + ā†
kekz̄ + āke−kz̄

)
. (7.5)

7.2.2 Basis rotation

We use the same unitary rotation matrix as before in section 5.4,

UCL = exp

[
i ∑

k>0

√
πK
kL

(
bk +b†

k

)
J

]
≡ exp(ξ ), (7.6)

where ξ denotes the argument of the exponential. The Hamiltonian is transformed as follows,

HSG = UCLHSGU†
CL. (7.7)

This procedure ensures that H0 gives again the Caldeira-Leggett bath and the weak harmonic
potential, as calculated in section 5.4. However, the calculation for the cosine interaction
term has to be done explicitly. Symbolically, this amounts to calculating

exp(ξ )cos(−Θ+Ω)exp(−ξ ) . (7.8)
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In order to do so, we use the Baker-Campbell-Hausdorff formula

eXYe−X = Y +[X ,Y ]+
1
2!
[X , [X ,Y ]]+

1
3!
[X , [X , [X ,Y ]]]+ . . . . (7.9)

In addition to the commutators in section 5.4, we need the following commutators

[bk,ak′] =
[
b†

k ,a
†
k′

]
= 0,[

bk,a
†
k′

]
=−

[
b†

k ,ak′
]
=

1√
2

(
δk,k′ +δk,−k′

)
,

[Θ,J] = [θ ,J] = 2i,[
a(†)k ,J

]
=
[
a(†)k ,Q

]
=
[
a(†)k ,q

]
= 0, (7.10)

and for later use, we calculate

∑
k>0

∑
k′>0

[
a†

kekz +ake−kz + ā†
kekz̄ + āke−kz̄,bk′ +b†

k′

]
= ∑

k>0
∑

k′>0
ekz
[
a†

k ,bk′
]
+ e−kz

[
ak,b

†
k′

]
+ ekz̄

[
ā†

k ,bk′
]
+ e−kz̄

[
āk,b

†
k′

]
= ∑

k>0
∑

k′>0

1√
2

(
δk,k′ +δk,−k′

)(
−ekz + e−kz − ekz̄ + e−kz̄

)
= ∑

k>0

(
−ekz + e−kz − ekz̄ + e−kz̄

)
= ∑

k>0
evτ

(
−e−ikx + eikx − eikx + e−ikx

)
= ∑

k>0
evτ ×0 = 0, (7.11)

where we used the relations in Eq. (4.1), and the fact that in the summations over k,k′ > 0
the combination (k,−k′) does not occur. Furthermore, we have that

[ξ ,Θ] = i ∑
k>0

√
πK
kL

(
bk +b†

k

)
[J,Θ] = 2 ∑

k>0

√
πK
kL

(
bk +b†

k

)
, (7.12)

[ξ , [ξ ,Θ]] ∝

[
bk +b†

k ,bk′ +b†
k′

]
= 0, (7.13)

[Θ, [ξ ,Θ]] = 0, (7.14)
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[Ω, [ξ ,Θ]] = ∑
k>0

∑
k′>0

√
πK
2kL

√
πK
k′L

[
a†

kekz +ake−kz + ā†
kekz̄ + āke−kz̄,bk′ +b†

k′

]
= ∑

k>0
∑

k′>0

πK√
2kk′L

1√
2

(
δk,k′ +δk,−k′

)(
−ekz + e−kz − ekz̄ + e−kz̄

)
= 0, (7.15)

[ξ ,−ξ ] ∝

[
bk +b†

k ,bk′ +b†
k′

]
= 0, (7.16)

[Θ,Ω] = 0, (7.17)

[ξ ,Ω] = i ∑
k>0

∑
k′>0

√
πK
kL

√
πK
2k′L

[
bk +b†

k ,a
†
k′e

k′z +ak′e
−k′z + ā†

k′e
k′z̄ + āk′e

−k′z̄
]

= i ∑
k>0

∑
k′>0

πK√
2kk′L

1√
2

(
δk,k′ +δk,−k′

)(
ekz − e−kz + ekz̄ − e−kz̄

)
= 0, (7.18)

such that subsequent higher-order commutators will vanish. This implies that for the current
calculation, the Zassenhaus formula reduces to

etX etY = etX+tY e
t2
2! [X ,Y ] = etX+tY+ t2

2! [X ,Y ]. (7.19)

Now, we set to the task of evaluating the expression in Eq. (7.8). The cosine is written as
the sum of two exponentials. The first term yields, symbolically,

exp(ξ )exp(−iΘ+ iΩ)exp(−ξ )

= exp(ξ )exp(−iΘ)exp
(

iΩ−ξ +
1
2�

����:0
[iΩ,−ξ ]

)
= exp(ξ )exp

(
−iΘ+ iΩ−ξ +

1
2�

�����:0
[−iΘ, iΩ] +

1
2
[−iΘ,−ξ ]

)
= exp

(
ξ − iΘ+ iΩ−ξ +

1
2
[iΘ,ξ ]+

1
2
[ξ ,−iΘ]

+
1
2
[ξ , iΩ]+

1
2�

����:0
[ξ ,−ξ ] +

1
4������:0
[ξ , [iΘ,ξ ]]

)
= exp(−iΘ+ iΩ+ i[Θ,ξ ]) . (7.20)
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By substituting the symbols with Eqs. (7.5) and (7.6), we find

exp

[
i
√

4πKΦ(z)−2i ∑
k>0

√
πK
kL

(
bk +b†

k

)]
= exp

{
i
√

4πK [Φ(z)−Φ(0)+Φ0]
}
,

(7.21)

where in the last part the expansion of Φ(z) at z = 0 is employed, given by Eq. (5.14).
We proceed similarly for the second part of the cosine, and find, compared to the above,

a relative minus sign in the exponential. Together they are recombined into a cosine. The full
expression from Eq. (7.8) reads

cos
{√

4πK [Φ(z)−Φ(0)+Φ0]
}
= cos

{√
4πK [Φ(z ̸= 0)+Φ0]

}
. (7.22)

After the rotation, we find an expression with Φ(z ̸= 0), while the field at the boundary
changes from Φ(0) to the zero mode Φ0. As a sanity check, note that if we take z = 0 in the
result, we find exactly the term we found in the previous section for the rotated BSG.

The fact that the boundary field Φ(0) emerges in the rotated full sine-Gordon Hamilto-
nian might, at first glance, seem odd, because the sine-Gordon Hamiltonian contained no
information about the boundary. However, this information originates from the particular
form of the rotation matrix UCL, given in Eq. (5.27). It has already been stressed that this
precise form is needed to arrive at the Caldeira-Leggett bath. It contains J, which has a
nontrivial commutator with the zero mode term Φ0. Applied to the sine-Gordon theory, this
causes the boundary term to be present after the rotation.

7.2.3 Mapping the variables

In Chapter 5, we have focused on the interpretation of the boundary edge mode. For simplicity,
we now consider only the bulk part, and propose an interpretation in terms of the fictitious
coordinate J. By re-fermionizing the interaction, we arrive at

µ

πa
cos
[√

4πKΦ(z ̸= 0)
]
→ µ

[
ψ

†
L(x)ψR(x)+ψ

†
R(x)ψL(x)

]
, (7.23)

where ψL(x) and ψR(x) correspond to the left- and right-moving fermionic modes in the bulk.
If we count the number of left- and right-moving modes, their difference gives us the total
electron current J. This means that the above hopping term changes the numerical value
of J by 2 for every hopping event. This allows us to think of the above term as a transition
between two states, characterized by the numbers J and J+2. Since the integral covers the
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entire chain, we arrive at
µ ∑

J
(|J⟩⟨J+2|+h.c.) , (7.24)

which is simply the standard Hamiltonian for a particle hopping on a one-dimensional lattice,
with position J and lattice constant 2, and tunneling amplitude µ , given in Eq. (5.3).

The rotated bulk sine-Gordon Hamiltonian, by using the results in Eqs. (5.40) and (5.61)
for the Gaussian part, is then given by

HSG =µ ∑
J
(|J⟩⟨J+2|+h.c.)+

πKv
2L

J2 +∑
k

(
p2

k
2mk

+
1
2

mkω
2
k x2

k +CkxkJ+
C2

k

2mkω2
k

J2
)
.

(7.25)

It describes a system of a particle hopping on a one-dimensional chain with dissipation, given
by an Ohmic Caldeira-Leggett bath, subject to a weak harmonic potential.



Chapter 8

Conclusion and outlook

In this thesis, we set out with the question: how can dissipation on a lattice, represented by
the Caldeira-Leggett formalism, be connected to the appearance of zero-energy Majorana
modes in a fermionic chain? The answer to this comes in three parts. First, Luttinger liquids
with several types of interactions or impurities can be bosonized into a sine-Gordon theory.
If the interaction or impurity is localized at the boundary, this reduces to the boundary
sine-Gordon theory. Second, the boundary sine-Gordon and sine-Gordon theories can be
mapped to a system with a dissipative particle on a lattice, using a mode expansion and a
canonical transformation, where the dissipation is modelled as an Ohmic Caldeira-Leggett
bath. Third, in the boundary sine-Gordon theory, a zero-energy Majorana mode appears at
the boundary for a Luttinger parameter K = 1

2 .
Elaborating on the above, we have shown that Luttinger liquids with left- and right-

moving modes can be bosonized into a Gaussian Hamiltonian with interactions. In this
scheme, density-density type interactions yield a rescaling of theory parameters K and vF.
Adding other kinds of interactions, or an impurity, gives rise to an additional cosine in the
bosonized Hamiltonian. Together, they take the form of (boundary) sine-Gordon theories.
After the mapping, the transformed Gaussian part can be interpreted as a Caldeira-Leggett
bath of harmonic oscillators, and a weak harmonic potential. The cosine interaction yields
after fermionization a hopping term. Summarizing, the Luttinger liquid for electrons in
one-dimension maps to a dissipative particle on a one-dimensional lattice. Any terms leading
to a cosine interaction in the bosonic picture generate hopping terms for the particle. This
includes the helical Luttinger liquid, which describes edge states in two-dimensional time-
reversal invariant topological insulators. In this thesis, the calculation of the equivalence for
the helical Luttinger liquid to the dissipative system, and the generalization of the equivalence
to the full sine-Gordon theory, represent new work with respect to the literature.
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A few problems remain before the equivalence can be put to work. First, the exact
interpretation of the zero modes in the rotated interaction terms is not fully understood. In
particular, in the mappings from both the boundary sine-Gordon and sine-Gordon theory, at
this point the mapping from the cosine interaction term to the hopping terms on a discrete
lattice can be understood intuitively, but not be made precise mathematically. Second,
Refs. [3, 4] relate the boundary sine-Gordon theory to a particle on a periodic potential.
However, their approach does not include the zero mode in the Fourier-mode expansion,
necessary to describe a massless Bose field. Also, they write a summation over the momentum
that appears in the cosine interaction. This summation prevents the mapping to a Luttinger
liquid. Further study of the correspondence may connect these ideas to the more general
approach in Ref. [2], in the sense that here the zero mode is included and that this formulation
can be mapped to the Luttinger liquid. Combining the general approach of the latter and the
lattice description of the former will be an important achievement, because in this way the
equivalence between the Luttinger liquid and Caldeira-Leggett model may be made exact.

Before discussing possible implications of this work, the importance of dissipation has to
be stressed. Experimentally, it is practically impossible to simulate a system as truly isolated
from its environment. However, dissipation also can be taken advantage of. The first possible
implication of the equivalence between the dissipative and Luttinger models is its use in
studying the latter system. Currently, free electron systems can be simulated in experimental
set-ups of cold atoms. Simulating strongly correlated systems, however, is not possible with
the current technology. The correspondence may help in clarifying our understanding of the
Luttinger liquid by increasing the possibilities for its experimental realizations.

Second, regarding possible applications, the study of dissipation in topological materials
is an ongoing quest. The main goal is to experimentally observe zero-energy Majorana
modes, and see if these are topologically protected. A good understanding of dissipation and
its effect on these modes is essential for the development of topological quantum information.
It has been proposed to use dissipation to engineer Majorana modes at the edges of a one-
dimensional chain of electrons, using the Lindblad formalism [1]. In the current work, if
the Cooper pairs that give rise to the superconducting gap in the Kitaev Hamiltonian can
be incorporated into the description, the Kitaev chain can be coupled to a Caldeira-Leggett
bath. Eventually, the results of Ref. [1] might be reproduced out of this formalism. Also,
the action of a bosonized Kitaev chain written in Majorana operators and a thermal bath has
been studied [76], and it might be very interesting to map this system to a Luttinger liquid
and study the behaviour of the zero-energy Majorana modes at its edges.

Third, the equivalence that has been central in this thesis has been applied to the helical
Luttinger liquid, but may apply to many other forms of the Luttinger liquid as well, as long
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they can be bosonized into a sine-Gordon Hamiltonian. Also other forms of the sine-Gordon
may be mapped. For example, cosine interactions depending on the dual Bose field also may
be studied, so-called self-dual sine-Gordon models [77]. Since different kind of interactions
in the sine-Gordon picture lead to different dissipative systems, extensions of this equivalence
may allow to emulate the physics of systems that are difficult to probe experimentally by
using many kinds of dissipative systems. Moreover, the particular form of rotation and
mapping can be topics of further research. The currently employed rotation and mapping
yield the Caldeira-Leggett bath out of a Gaussian Hamiltonian. One can imagine that other
unitary transformations exist, for example, that give a Caldeira-Leggett bath that consists of
two-state systems, uses a non-Ohmic spectral function, or couples nonlinearly to the main
system. In this way, different models of dissipation may be mapped, and the equivalence may
be generalized beyond the bath of harmonic oscillators in the Caldeira-Leggett formalism.

In conclusion, the field of condensed-matter physics remains a rich and expanding field
of both experimental and theoretical physics, and is an excellent example of the wondrous
character of Nature.





Chapter 9

Nederlandse samenvatting

Zoals Pablo Picasso schildert, proberen theoretisch natuurkundigen de wereld te schetsen:
het doel is om in een paar penseelstreken het wezenlijke gedrag van de natuur te vangen. Dit
is een precair evenwicht: worden er teveel effecten meegenomen, dan wordt het systeem te
complex om op te lossen, maar worden er teveel eigenschappen weggelaten, dan benadert
het model de werkelijkheid niet meer. Het opstellen van zo’n theorie kan op twee analytische
manieren. Allereerst, door de relevante energieën te nemen bij elkaar te nemen, de zoge-
naamde Hamiltoniaan, en daar de exacte bewegingsvergelijkingen uit af te leiden. Het aantal
systemen waarvoor dit kan is zeer gering. Gelukkig is er één model dat bijzonder vaak in
de natuur voorkomt en dat ook exact op te lossen is: de harmonische oscillator, waarbij het
belangrijkste kenmerk is dat alle energieën een kwadratische vorm hebben. Een voorbeeld
hiervan is een eenvoudige slinger met een kleine uitwijking. De tweede manier is om een
systeem te modelleren als een kleine variatie op zo’n exact oplosbaar model, met behulp
van zogenaamde storingsrekening. Zwakke interacties tussen deeltjes kunnen hiermee goed
worden beschreven, maar voor sterke interacties werkt dit niet meer. Een mogelijke oplossing
is dan om de theorie te herformuleren zodat deze alsnog exact oplosbaar is. Uiteindelijk kan
er nog worden gewerkt met een numerieke benadering door middel van computersimulaties.

De natuurkunde van gecondenseerde materie is een bijzonder omvangrijk veld en gaat
over het macroscopisch en microscopische gedrag van materialen, en analyseert daarvoor
grote verzamelingen van ionen, electronen en hun interacties. In de natuur kunnen twee
soorten deeltjes onderscheiden worden aan de hand van spin, een intrinsieke eigenschap,
zoals massa, die erg lijkt op impulsmoment. Er zijn fermionen, deeltjes met halftallig spin
(1

2 ,3
2 ,etc.), en bosonen, deeltjes met heeltallig spin (0,1, etc.). Voor fermionen geldt het

Pauli uitsluitingsprincipe, dat stelt dat fermionen zich met niet meer dan één tegelijk in
dezelfde quantumtoestand kunnen bevinden. Bosonen kunnen zich wel allemaal in dezelfde
quantumtoestand zitten. Elektronen zijn fermionen, en er kan dus slechts één elektron per
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toestand zijn. Een voorbeeld van een veelbestudeerde materiaaleigenschap is elektrische
geleiding, het transport van elektrische lading. Geleidende en isolerende eigenschappen
van materialen kunnen worden verklaard aan de hand van de bandstructuur die uit de
Hamiltoniaan volgt, d.w.z. de ligging van bezette en onbezette energieniveaus van elektronen.
Omdat elektronen zich niet in dezelfde toestand kunnen bevinden, kunnen ze vanuit hun
eigen energieniveau alleen naar een onbezet niveau bewegen. Liggen de vrije en bezette
energieniveaus tegen elkaar aan, dan kan een electron makkelijk naar een hoger liggend
energieniveau springen, en is het materiaal geleidend. Scheidt een grote afstand beide niveaus,
de bandkloof, dan is het zeer lastig, en is het materiaal isolerend. Zo’n tien jaar geleden is
gebleken dat topologie een grote rol speelt in het fasegedrag van materialen. In deze tak uit
de wiskunde wordt bestudeerd welke eigenschappen van objecten hetzelfde blijven als ze
geleidelijk worden veranderd. Het klassieke voorbeeld is dat van een donut en een koffiemok:
allebei hebben ze één gat, en door het materieel te kneden kunnen ze in elkaar vervormd
worden, zonder het gat dicht te maken. Dit wordt topologische gelijkheid genoemd. Ze
zijn bijvoorbeeld niet gelijk aan een bord (geen gat) of een krakeling (twee gaten). Deze
topologische eigenschappen blijken grote invloed te hebben op, bijvoorbeeld, het geleidende
of isolerende karakter van materialen. Als nu de Hamiltoniaan van een bepaald systeem
geleidelijk veranderd kan worden in dat van een ander systeem, dat wil zeggen zonder dat de
bandkloof gesloten wordt, zijn zij topologisch aan elkaar gelijk. De eigenschappen van zo’n
topologische fase zijn erg bijzonder. Normaal gesproken is een materiaal overal geleidend
of overal isolerend, maar een topologische isolator heeft op de rand geleidende toestanden,
terwijl binnen het materiaal alleen maar isolerende toestanden voorkomen. Het gedrag van
topologische materialen wordt in onze onderzoeksgroep veelvuldig bestudeerd, en deze
thesis maakt ook deel van uit van het onderzoek. Hoofdstuk 2 geeft een introductie in dit
onderwerp.

Een bijzonder interessant topologisch systeem is de Kitaev-keten, een één-dimensionale
topologische supergeleider, die gemodelleerd is als een lange rij elektronen met bepaalde
interacties. Een supergeleider wordt onder andere gekenmerkt door een verdwijnende
elektrische weerstand voor lage temperaturen. In het model blijkt dat aan de randen van
de keten voor bepaalde parameterwaarden nul-energie Majorana-toestanden (‘zero-energy
Majorana modes’) verschijnen. Normaal gesproken heeft elk deeltje een ander anti-deeltje
(denk aan een elektron en een positron), maar het bijzondere van Majorana-deeltjes is dat ze
gelijk zijn aan hun eigen anti-deeltje. Hoewel hun bestaan al honderd jaar geleden theoretisch
is voorspeld, zijn ze tot op heden nog niet experimenteel waargenomen. Er is overigens
een verschil tussen fundamentele Majorana-deeltjes en de Majorana-toestanden die in deze
thesis worden beschreven. De wiskunde is voor beide hetzelfde, maar de eerste categorie
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betreft fundamentele deeltjes en de tweede categorie betreft quasideeltjes, een combinatie
van elektronen en interacties. Het doel van het bestuderen van deze deeltjes is allereerst
het verkrijgen van fundamenteel begrip, maar daarnaast zijn er ook interessante praktische
toepassingen. De eigenschappen van Majorana-toestanden komen namelijk van pas bij het
bouwen van een quantumcomputer, met een rekenkracht die vele malen groter is dan die van
onze huidige computers. De tweede helft van Hoofdstuk 2 gaat over de Kitaev-keten.

Eén van de hoofdrolspelers in deze thesis is dissipatie, waarmee de energie wordt bedoeld
die verloren gaat als gevolg van een interactie tussen een systeem en zijn omgeving. In
experimenten is dit vaak een groot probleem. Natuurkundige theorieën gaan doorgaans
uit van een Hamiltoniaan, en de veronderstelling dat deze totale energie van een systeem
behouden blijft. Dissipatie gooit echter roet in het eten, omdat het vaak nauwelijks mogelijk
is om grootheden in een compleet geïsoleerd systeem te meten, en dissipatie er voor zorgt
dat de theoretische beschrijving van het systeem moeilijk te vergelijken is met de experi-
mentele resultaten. In de jaren ‘80 hebben Caldeira en Leggett een theorie ontwikkeld om
dissipatie te beschrijven. In Hoofdstuk 3 wordt dit model besproken. De truc hier is om
de omgeving, waar de energie heen lekt, ook op te nemen in de Hamiltoniaan, zodat het
complete systeem gesloten is. Deze omgeving wordt beschreven door een warmtebad, d.w.z.
een grote groep harmonische oscillatoren, die individueel gekoppeld zijn aan het systeem dat
we eigenlijk willen bestuderen. Deze theorie is erg succesvol gebleken in het beschrijven van
decoherentie en tunneling, twee belangrijke verschijnselen in de quantumwereld. Gelukkig
is dissipatie niet alleen nadelig. Enkele jaren geleden is duidelijk geworden dat dissipatie
ook kan worden gebruikt om topologische toestanden te maken. De typische interactie die
nodig is in de Kitaev-keten om supergeleiding te modelleren en ook leidt tot het verschijnen
van de nul-energie Majorana-toestanden, kan vervangen worden door dissipatie. Dit is zeer
interessant, omdat daarmee het bijzondere gedrag van topologische systemen experimenteel
veel toegankelijker wordt. Dit nieuwe gebruik van dissipatie vormde de voornaamste moti-
vatie van dit onderzoek, en in eerste instantie zijn we begonnen met het doel om dissipatie in
de Kitaev-keten te bestuderen.

Hoofdstuk 4 beschrijft de theorie van de Luttinger-vloeistof (vloeistof omdat deeltjes met
interacties worden bekeken, in tegenstelling tot een gas waar de dichtheid van deeltjes zo
laag is dat er nauwelijks interacties plaatsvinden), de standaard manier om één-dimensionale
fermionische systemen te beschrijven. Hoewel fermionen en bosonen in het algemeen erg
verschillend zijn, lijken ze in één dimensie veel op elkaar. Dit heeft er mee te maken dat
hun verschillende eigenschappen vooral tot uiting komen als er twee worden omgewisseld,
en in één dimensie kunnen twee deeltjes niet om elkaar heen bewegen. Dit is de basis van
de bosonisatie-methode, waarmee het omschrijven van een één-dimensionale fermionische
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theorie naar een bosonische theorie wordt bedoeld. Dit is een erg krachtige methode, omdat
het mogelijk maakt om interacties tussen fermionen, die vaak wiskundig gecompliceerde
theorieën opleveren, om te schrijven naar een Hamiltoniaan van bosonische harmonische
oscillatoren. Zoals eerder gezegd, het systeem van een harmonische oscillator kan analytisch
worden opgelost, zodat nu via een omweg een oplossing van het systeem gevonden kan
worden. Op deze manier kan de Luttinger-vloeistoftheorie voor fermionen omgeschreven
worden naar een vergelijkbaar eenvoudige Hamiltoniaan, de sinus-Gordon vergelijking,
die nog een extra interactie bevat, wiskundig weergegeven door een cosinus. Als deze
interactie alleen plaatsvindt op de rand van een keten die zich verder oneindig uitstrekt
(voor wiskundig gemak kunnen we dan de andere rand negeren), dan vinden we de rand
sinus-Gordon vergelijking (‘boundary sine-Gordon equation’). Interessant is dat we in deze
laatste theorie op de rand van de keten een nul-energie Majorana-toestand vinden voor een
bepaalde parameterwaarde.

De kern van deze scriptie wordt gevormd door Hoofdstuk 5. Alle losse onderdelen van
het eerste deel van de scriptie komen hierin samen. In dit hoofdstuk wordt getoond dat
de Hamiltoniaan van de rand sinus-Gordon vergelijking en dat van een systeem dat een
deeltje dat tussen twee posities kan springen onder de invloed van dissipatie in het Caldeira-
Leggett model, met elkaar overeen komen. Dit bewijs gaat in drie stappen. Allereerst wordt
het natuurkundig veld dat de deeltjes beschrijft herschreven in termen van excitaties, een
zogenaamde Fourier-mode expansie. Daarna wordt de basis van de toestanden geroteerd,
zodanig dat de energieniveaus van het systeem niet veranderen. Dit komt grofweg overeen
met het veranderen van gezichtspunt. Stel je voor dat je langs een voetbalveld staat, en naar
de andere kant van het veld loopt. Hoe je de spelers ziet verandert, maar de opstelling blijft
hetzelfde. Ten derde gebruiken we verschillende formalismen die de quantum harmonische
oscillator beschrijven om de Hamiltoniaan te interpreteren als dat van een deeltje op een
rooster met dissipatie. Met de kennis van Hoofdstuk 4 kunnen we ook een Luttinger-vloeistof
naar het dissipatieve systeem omschrijven.

Hoofdstukken 6 en 7 vertegenwoordigen mijn eigen originele bijdrage. De oorspronke-
lijke correspondentie gaat uit van systemen zonder spin en de rand sinus-Gordon vergelijking.
In het eerste hoofdstuk wordt de equivalentie toegepast op ‘helical’ Luttinger-systemen,
waarin spin wordt toegevoegd en de spinoriëntatie gekoppeld is aan de bewegingsrichting:
naar links bewegende deeltjes hebben spin +1

2 , en naar rechts bewegende deeltjes hebben
spin −1

2 (of vice versa). Dit systeem beschrijft het gedrag van elektronen aan de rand van
topologische isolatoren, en is daarom van theoretisch belang. Ik laat zien dat de correspon-
dentie ook voor dit systeem geldt. In het tweede hoofdstuk generaliseer ik de correspondentie
naar de volledige sinus-Gordon vergelijking. Het blijkt dat de Hamiltoniaan van dit systeem
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gelijk is aan dat van een deeltje dat op een oneindig lange keten beweegt. Zulke systemen
komen in de natuur veel meer voor dan deeltjes die maar tussen twee posities kunnen sprin-
gen, en hiermee wordt de overeenkomst van de Hamiltonianen in Hoofdstuk 5 veel breder
inzetbaar.

De kracht van de overeenkomst is dat het de energetische beschrijving van experimenteel
moeilijk toegankelijke systemen van elektronen en hun interacties koppelt aan een systeem
dat experimenteel makkelijk is om te meten, namelijk dat van een deeltje op een rooster
met dissipatie. Uiteindelijk zou dit een middel kunnen zijn om de invloed van dissipatie op
nul-energie Majorana-toestanden in de Kitaev-keten te bestuderen, als een extra perspectief
tussen de vele aangezichten die Picasso ons in zijn werken laat zien.
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