
DEPARTMENT OF INFORMATION AND COMPUTING SCIENCES

MASTER’S THESIS

GAME & MEDIA TECHNOLOGY

Fast Divergent Ray Traversal by Batching Rays in a BVH

Tigran Gasparian
ICA-3705617

Supervisor

Dr. ing. J. (JACCO) BIKKER

Second Examiner

Dr. ir. A.F. (FRANK) VAN DER STAPPEN

5 December 2016

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 1

Fast Divergent Ray Traversal by Batching Rays in a BVH

Tigran Gasparian†1

1Department of Information and Computing Sciences, Utrecht University

Abstract
Ray tracing forms the basis of photorealistic rendering as seen in films and special effects. The process of rendering
all the frames of animated films can take thousands of CPU years. Improving the efficiency of the rendering
algorithm translates into large savings of time.
In this thesis, we focus on the algorithm that is at the core of all rendering systems, computing the intersection
point between a ray and a scene. Our contribution is a novel ray traversal scheme aimed at highly divergent ray
distributions. We improve traversal efficiency by batching rays at fixed points in a BVH during traversal. The
batched rays benefit from improved cache efficiency and utilization of instruction level parallelism and achieves
performance improvements of up to 99% for intersection queries and up to 123% for occlusion queries for ray
distributions seen after the first diffuse bounce when compared to a single-ray traversal scheme. Our scheme is
orthogonal to recent advances in divergent ray traversal, and for large scenes, substantially improves on state of
the art performance.

Keywords: Ray Tracing, Ray Traversal

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Raytracing—Visible line/surface algorithms

1. Introduction

Ray tracing is a technique that forms the basis of photorealis-
tic rendering. It consists of two basic operations: intersection
queries and occlusion queries. Given a scene and a ray with
an origin, direction and maximum intersection distance, an
intersection query determines the nearest intersection point
between the ray and a scene that is within the maximum dis-
tance from the ray origin, whereas an occlusion query only
determines whether there is an intersection of the ray with
the scene within the maximum distance.

To accelerate ray/scene intersections, a space partitioning
or object partitioning data structure is used. Popular choices
are the kD-tree and the Bounding Volume Hierarchy (BVH).
In this paper, we focus on BVHs, but our method can also be
applied to other acceleration structures.

As CPU speeds have increased at a much higher rate com-
pared to memory access times, many algorithms have be-
come increasingly memory bound. To alleviate this, the CPU

† gaspariantigran@gmail.com

uses a hierarchy of caches to hide the latency of retrieving
data from memory. To achieve high performance, an algo-
rithm has to optimally utilize these caches. In practice, most
scenes and their corresponding BVHs are too large to fit in
the CPU cache in its entirety. To achieve good performance,
a node from the BVH that is retrieved from memory should
be used to test against multiple rays before getting evicted
from the cache. Ideally, a node should only be read into the
cache once.

Ray tracing algorithms are known to exhibit highly irreg-
ular memory access patterns. This is particularly true for
divergent ray distributions commonly encountered in path
tracing. Under these circumstances, CPU caches fail to ef-
fectively hide memory access latency, resulting in poor ray
tracing performance.

In this work we propose a batching traversal scheme
called RayCrawler. Our scheme operates on a hierarchy of
BVHs by splitting an existing BVH into two separate layers,
creating a top-level tree and multiple small trees that fit in the
L2 cache of modern CPUs. The rays traverse the top-level
BVH and are batched at the leaf nodes before traversing the

2 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

second layer, amortizing the cost of retrieving the subtree
from the second layer from memory over the rays that are
batched in the leaf node.

Section 3 gives an overview of the algorithm. Sections 4
and 5 describe the details of the used data structures and the
traversal algorithm. Our results are presented in section 6,
with the conclusion and suggestions for future work in sec-
tion 7.

2. Previous work

Considerable progress has been made in improving the effi-
ciency of Whitted-style ray tracing by exploiting the coher-
ence of ray distributions which typically occur in this ren-
dering algorithm. This is achieved by amortizing the cost of
fetching data over multiple rays, using pyramid or packet
traversal [vdZRJ95] [WSBW01] [BEL∗07].

The ray coherence that these algorithms rely on is mostly
lost even after a single specular bounce. This led to the de-
velopment of packet traversal schemes that are still able to
exploit ray coherence for somewhat divergent ray distribu-
tions [ORM08].

Considering diminishing coherence for divergent ray dis-
tributions, several authors suggest using wide BVHs and
dropping packet traversal altogether. Vector hardware such
as SSE, AVX and AVX-512 benefits from 4-wide, 8-
wide and even 16-wide BVH traversal [WBB08] [EG08]
[DHK08].

Tsakok proposed a scheme that exploits ray coherence in
very incoherent distributions, such as those after the first dif-
fuse bounce in a path tracer [Tsa09]. This algorithm tra-
verses large groups of rays through a 4-wide BVH in a
breadth-first manner, intersecting many rays with a single
node before evicting the node from the cache. This approach
requires all rays to traverse the BVH in the same order,
which may resulting in unnecessary nodes being visited.

Dynamic Ray Stream Traversal (DRST) [BAM14] ex-
tends this idea by allowing rays to traverse through a 4-wide
BVH in different orders. This results in more nodes being
culled, but has increased bookkeeping overhead. DRST lim-
its the number of possible traversal orders of the rays from
24 to 8 to keep bookkeeping overhead low. This results in
suboptimal ray culling compared to a single ray traversal
scheme.

Ordered Ray Stream Traversal (ORST) [FLPE15] builds
upon this idea and allows rays to traverse in all possible or-
ders while decreasing bookkeeping costs by utilizing pre-
computed lookup tables to determine the traversal order of
the rays.

This paper proposes a traversal algorithm for incoherent
ray distributions based on the RayGrid scheme [Bik12]. This
scheme coarsely subdivides the scene using an octree and
stores a BVH of the parts of the scene in its leaf nodes.

The BVHs stored in the leaf nodes are small enough to fit in
the L2 cache. The algorithm traverses rays through the oc-
tree, batching them in the leaf nodes. Large batches then tra-
verse the BVHs, amortizing the cost of retrieving the BVH
from memory into cache over the batched rays. The scheme
achieves modest speedups compared to a single-ray traver-
sal algorithm for secondary rays and proves that a batching
scheme can outperform a naive single-ray traversal approach
for highly divergent rays. However, the performance gains
are limited by the high cost of traversing the octree, which in
turn becomes the performance bottleneck for this algorithm.

The comparisons in this work are made with the algo-
rithms implemented in the Embree framework version 2.7.1
[WWB∗14]. This framework contains highly optimized ray
tracing kernels with many industry applications. The single-
ray traversal scheme for 4-wide BVHs serves as the base-
line in the comparisons as this algorithm has the best perfor-
mance for highly divergent ray distributions.

3. Overview

This section gives a short overview of the data structure used
throughout the paper and an overview of the traversal al-
gorithm. The goal of our scheme is to improve cache effi-
ciency by batching rays together before traversing parts of
the scene, amortizing memory reads over the batched rays.
We achieve this by splitting a regular 4-wide BVH in two
layers. The rays are batched in the leaf nodes of the top
layer before traversing the bottom layer of the data struc-
ture. By using the same structure as a regular 4-wide BVH,
we can take advantage of existing traversal algorithms in
the scheme. Our approach is thus orthogonal to recent ap-
proaches that aim to improve traversal efficiency such as
DRST and ORST.

Our data structure is constructed by splitting a regular
4-wide BVH in two layers; a top level BVH (Top-BVH)
where the leaf nodes point to Leaf-BVHs. Each individual
Leaf-BVH is small enough to fit in the L2 cache of modern
CPUs. The traversal algorithm starts by first traversing each
ray depth-first through the Top-BVH; once the ray reaches
a leaf node of the Top-BVH, the ray is batched at the Leaf-
BVH that the leaf node is pointing to and the traversal of the
ray is suspended. The Top-BVH traversal stack of the ray is
stored to resume traversal later on.

Once all rays have traversed the Top-BVH and are dis-
tributed among the Leaf-BVHs, a Leaf-BVH is selected to
be traversed. All rays batched at the Leaf-BVH traverse this
tree. If the query is an occlusion query, the traversal of the
ray is terminated if an intersection is found. Otherwise, any
intersections found for the rays are stored and the rays are
shortened.

Once all rays batched at the Leaf-BVH have been pro-
cessed, traversal through the Top-BVH is resumed using the
stored traversal stacks and the nearest intersection distances

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 3

of the rays that traversed the Leaf-BVH. A new Leaf-BVH is
selected to be traversed after the rays have been distributed
among the Leaf-BVHs. This process continues until no Leaf-
BVH with batched rays remains. This process is illustrated
in Figure 1.

Figure 1: A high level example of the traversal using a Top-
BVH with 5 nodes and 4 Leaf-BVHs. All rays first traverse
the Top-BVH and are distributed among the Leaf-BVHs. (a)
Then a Leaf-BVH with a high number of batched rays is
selected, this is highlighted in yellow. All batched rays tra-
verse the Leaf-BVH. After traversing the Leaf-BVH, the rays
again traverse the Top-BVH and can be distributed among
the other Leaf-BVHs. This process is repeated until no Leaf-
BVH with batched rays remains.

This system tries to amortize the cost of retrieving a Leaf-
BVH from memory by traversing many batched rays through
the Leaf-BVH once it has been loaded into cache. A large
number of rays needs to be batched at the Leaf-BVH in or-
der to justify the overhead of the batching process itself.
This requires a large initial set of rays as the rays are dis-
tributed among all Leaf-BVHs. When selecting a Leaf-BVH
for traversal, selecting one with a large number of batched
rays is preferred.

Traversal of the Top-BVH thus serves to batch rays for
Leaf-BVH traversal. While the original rays may intersect
several Leaf-BVHs, truncating rays based on intersections
with geometry in the Leaf-BVHs may prevent them from
being batched in a subsequent Leaf-BVH. Pausing traversal
in the Top-BVH after one Leaf-BVH is found, enables us
to cull subsequent Leaf-BVHs if an intersection in the first
Leaf-BVH is found.

4. Data structures

The hierarchy of BVHs is constructed by splitting a regular
4-wide BVH in two layers. The Top-BVH is built by starting
at the root of the original BVH and adding nodes to the Top-
BVH until one of the following conditions is met:

• The node contains a child with a size smaller than a cer-
tain threshold, related to the size of the L2 cache.

• The node has a depth of 16. The Top-BVH can have a
maximum depth of 16 to limit the size of the stack in the
Top-BVH traversal. See section 5.1 for details.

The nodes that the leaf nodes of the Top-BVH point to are se-
lected as the root nodes of the Leaf-BVHs. The Leaf-BVHs
consist of the root nodes and all their descendants.

Buckets Rays are batched in buckets before traversing the
Leaf-BVHs. Every Leaf-BVH has a corresponding linked
list of buckets where every bucket can contain a fixed num-
ber of rays. The fixed size buckets are obtained from a pre-
allocated list of buckets, which prevents run-time memory
allocations.

Figure 2: Top-level node structure. The total size of the node
with 16-byte alignment is 224 bytes.

Top-BVH node structure In order to facilitate an efficient
way of pausing and resuming traversal and an efficient way
to store the traversal stack, the Top-BVH nodes are aug-
mented with:

• an array of ancestor pointers which is used to quickly nav-
igate up in the tree;

• and the depth of the node in the BVH.

A Top-BVH node also contains additional information to
batch rays for the Leaf-BVHs:

• a next and a prev pointer, to act as a node in a linked list;
• a linked list of buckets;
• the number of buckets in the linked list;
• and the room in the last bucket in the linked list.

Figure 2 shows the exact structure of the node.

Figure 3: Top-Level ray structure.

4 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Top-BVH ray structure In order to facilitate suspending
and resuming traversal, the traversal stack is stored in the ray
structure as a 64 bit unsigned integer. See section 5 for more
information on how the stack is managed. Together with the
origin, direction, index and the nearest intersection distance,
a ray can be stored in 40 bytes. See Figure 3 for the layout
of the ray.

Leaf-BVH node structure Leaf-BVH nodes have the same
structure as regular 4-wide BVH nodes and any algorithm
that can traverse a 4-wide BVH can be used to traverse
the Leaf-BVHs. Our implementation uses Tsakok’s Multi-
BVH Ray Stream tracing algorithm [Tsa09] and a single ray
traversal scheme to traverse the Leaf-BVHs.

5. Traversal

The traversal algorithm consists of two stages. In the first
stage, all rays traverse the Top-BVH and get distributed
among the Leaf-BVHs. In the second stage, we repeatedly
choose a Leaf-BVH with a high number of batched rays. The
batched rays traverse the Leaf-BVH and the non-terminated
rays traverse the Top-BVH afterwards to get redistributed
over the other Leaf-BVHs.

Two distinct traversal algorithms are used to traverse the
hierarchy of BVHs. Although any traversal algorithm that
works on regular BVHs can be used to traverse the Leaf-
BVHs, algorithms with low starting overhead work well here
as the Leaf-BVHs are generally small. The traversal algo-
rithm for the Top-BVH needs to be able to pause and resume
traversal. Therefore, the traversal algorithm needs to use as
little state as possible in order to efficiently store and retrieve
this state to resume traversal. This is achieved using a stack-
less traversal scheme.

5.1. Top-BVH traversal

A stackless traversal scheme is a scheme that uses as little
state as possible during traversal. Prior works have inves-
tigated stackless traversal schemes for kD-trees [FS05], bi-
nary BVHs [Lai10] [HDW∗11] and 4-wide BVHs [ÁSK14].
Áfra and Szirmay-Kalos propose a stackless 4-wide BVH
traversal scheme using 64 bits to hold the stack by extending
the nodes to contain parent and sibling pointers.

This method however does not guarantee an ordered
traversal of the tree resulting in more visited nodes. As the
Top-BVH is a relatively small tree, it is worth trading in
some traversal speed to visit the leaf nodes in the correct
order, which may result in more Leaf-BVHs being culled.
We propose a different stackless traversal scheme that guar-
antees an ordered traversal of the nodes, but can intersect the
same nodes multiple times. The stack management is pre-
sented below followed by the traversal algorithm.

Stack management Because the Top-BVH has a maximum
depth of 16, we can encode the stack in a 64 bit unsigned
integer. We call this the bitstack.

Every node in the traversal path is represented by four bits
in the bitstack. The four bits in the bitstack corresponding to
the depth of the current node that is being visited is called
the interestMask. The interestMask represents the children
of the current node that are being considered to be visited
and does not include already visited children.

The root node’s children are represented by the four least
significant bits in the bitstack. Each child node intersected by
the ray (taking into account the current length of the ray) is
set to 1. Upon traversal into a child node, the bit correspond-
ing to the child node in the bitstack is set to 0 to prevent the
child node from being visited again. The next four bits cor-
responding to the depth of the child node are set to 1, which
initializes traversal at the next level of the tree. This process
is illustrated in Figure 4.

Once a ray resumes traversal starting from a leaf node or
when there are no children to traverse into, the next node to
be visited can be found by determining the most significant
bit set in the bitstack. This can be done by a bit scan reverse
operation. The most significant bit can be used to determine
the depth of the next node (e.g. the four least significant bits
represent depth 0, next four bits represent depth 1, etc.). The
next node to be visited can be found by using the depth of the
current node and the list of ancestor pointers that is stored in
the node. See Figure 5 for an example of upward traversal.

Traversal The traversal algorithm is similar to a single-ray
depth first BVH traversal scheme with the modification that
the traversal stack has been replaced by the bitstack de-
scribed above. The Top-BVH traversal algorithm is shown
in Listing 1.

1 def Traverse (ray , n) :
2 (hitmask , d i s t a n c e s) = I n t e r s e c t (ray , n)
3 stackMask = 15 << (n . depth ∗ 4)
4 in te res tMask = (stackMask & ray . b i t s t a c k) >> (n . depth ∗ 4)
5 # Clear the b i t s t a c k to make s e t t i n g i t eas i e r l a t e r .
6 ray . b i t s t a c k &= ~stackMask
7 toVisitMask = hitmask & interes tMask
8 i f toVisitMask == 0:
9 i f ray . b i tS t ack == 0:

10 return # Traversal i s terminated
11 ancestorDepth = Mos tS ign i f i can tBi t Idx (ray . b i t s t a c k) >> 2
12 Traverse (ray , n . ances to r s [ancestorDepth])
13 e l s e :
14 c lo se s tCh i ld Idx = Closes t (toVisitMask , d i s t a n c e s)
15 toVisitMask −= 1 << c lose s tCh i ld Idx
16 # Update the b i t s t a c k
17 ray . b i t s t a c k |= toVisitMask << (n . depth ∗ 4)
18 ch i l d = n . ch i l d r en [c lo se s tCh i ld Idx]
19 i f not ch i l d . i sLeaf () :
20 # Set the next four b i t s to 1
21 ray . b i t s t a c k |= 15 << (ch i l d . depth ∗ 4)
22 Traverse (ray , ch i l d)
23 e l s e :
24 i f ch i l d . bucketCount > 0:
25 ch i l d . l a s tBucke t . add (ray)
26 i f ch i l d . l a s tBucke t . i s F u l l () :
27 ch i l d . addBucket (getNewBucket ())

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 5

Figure 4: An example of downward traversal in the Top-BVH. The orange-colored node depicts the current node being visited,
dark gray depicts nodes that do not intersect the ray, yellow nodes intersect the ray, the node with dashed outline indicates the
nearest active child node and brown nodes indicate already visited nodes. a) The stack is initialized by setting the four least
significant bits to 1. We get the hitmask by intersecting the child nodes of the current node. Performing a bitwise AND with the
interestMask results in the toVisitMask. We then select the nearest child node that is active in the toVisitMask to traverse into. We
set the bit in toVisitMask corresponding to the selected child node to 0 and update the bitstack. b) The four bits corresponding
to the depth of the child node are set to 1. The same process is repeated until a leaf node is reached.

28 i f ch i l d . bucketCount == 2:
29 nodesWithPar t ia lBuckets . remove (ch i l d)
30 nodesWithFullBuckets . add (ch i l d)
31 e l s e :
32 nodesWithPar t ia lBuckets . add (ch i l d)
33 ch i l d . addBucket (getNewBucket ())
34 ch i l d . l a s tBucke t . add (ray)
35 return # Traversal i s paused

Listing 1: Top-BVH traversal algorithm

Upon creation of a ray, the bitstack is initialized by setting
the four least significant bits to 1.

The ray is tested against the bounding volumes of the chil-
dren of node n that is currently being visited, resulting in 4
bits representing which bounding volumes intersect with the
ray (hitmask) and the intersection distances if an intersection
is found (line 2). The child nodes that are not being consid-
ered to be visited are masked out using the interestMask,
resulting in the toVisitMask (lines 3-7).

If the toVisitMask is 0 (i.e. there is no child node to be
visited) we check if the bitstack is 0. If this is the case, the
traversal of the ray terminates (line 9). Otherwise, the index

of the most significant bit set on the bitstack is found. This
index is used to determine the depth of the node to traverse
into next and using the ancestor pointer array in n, the new
node to be visited is found (lines 10-11). See Figure 5 for an
example.

If the toVisitMask is not 0, the closest child node that is
active in the toVisitMask is selected to be visited next (line
14). The bit corresponding to the closest child is set to 0 in
the toVisitMask to mark this child as traversed (line 15). The
bitstack is updated by setting the four bits corresponding to
node n to toVisitMask (line 17).

If the child node that is going to be visited next is not a
leaf node, the four bits in the bitstack corresponding to the
child node are set to 1 and traversal continues into the child
node. (line 17-20). See Figure 4 for an example.

If the child node is a leaf node, the node is checked
whether there is already a bucket assigned to it (line 23-24).
If there is already a bucket assigned to the node, the ray is
added to the bucket and the bucket is checked whether it
is full (lines 25-26). If the bucket is full, a new bucket is
added to the linked list of the node (line 27) If this is the first

6 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Figure 5: An example of backtracking in the Top-BVH traversal. The dashed arrows indicate the ancestor pointers of the
current node. See Figure 4 for the color coding. Once a ray resumes traversal starting from a leaf node or when there are no
children to traverse into, we compute the index of the most significant bit set. We can determine the depth of the next node by
dividing this index by 4. Using the depth of the next node and the current node, we select the correct ancestor pointer to move
to the next node. Thus we find the first ancestor with unvisited child nodes in O(1) time. This is shown by the orange arrow.

full bucket in the node, the node is moved from the list of
nodes with partially filled buckets to the list of nodes with
full buckets (lines 28-30) and the traversal is paused.

If there is no bucket assigned to the node, a new bucket
is added to the linked list of the node, the ray is added to
the bucket, the node is added to a list of nodes with partially
filled buckets (line 32-34) and the traversal is paused.

5.2. Leaf-BVH traversal

Once all rays have traversed the Top-BVH and have been
distributed among the Leaf-BVHs, we select a Leaf-BVH
that has a full bucket. If no Leaf-BVH with a full bucket
can be found, a Leaf-BVH with a partially filled bucket is
selected. If all Leaf-BVHs are empty, every ray has found
the nearest intersection (if any) and the algorithm terminates.

The rays in the bucket are converted to the required struc-
ture for the Leaf-BVH traversal algorithm and traverse the
Leaf-BVH. Occlusion queries terminate when an intersec-
tion is found; intersection queries record the intersection re-
sults and shorten the ray.

The rays that are still active (i.e. occlusion rays that have
not intersected and intersection rays that have a non-zero bit-
stack) resume traversal in the Top-BVH and get distributed
among other Leaf-BVHs.

Traversing the Leaf-BVH can be done with any traversal
algorithm. Leaf-BVHs are generally small and the number
of rays in the buckets is also relatively small; we found that

traversal algorithms with a low starting overhead that don’t
require too many rays in the ray stream tend to perform well.

In our implementation, we use a hybrid of Tsakok’s Multi-
BVH Ray Stream Tracing algorithm and a single ray traver-
sal scheme. The single ray traversal scheme is chosen when
we have less than 12 rays in the bucket. This number is cho-
sen empirically.

6. Results

This section evaluates the performance of RayCrawler com-
pared to a single ray traversal algorithm that will act as our
baseline (Single Ray). The single ray traversal implementa-
tion is taken from Embree 2.7.1 and adapted to work in our
framework. The code is optimized for 4-wide SIMD instruc-
tions to support a wide range of CPU architectures.

The tests are run on a system with an Intel Xeon E5-
1620v3 processor clocked at 3.5GHz. This CPU has a 32KB
L1 instruction cache, a 32KB L1 data cache, a 256KB L2
cache and a shared 10MB L3 cache. The tests are ran on a
single core, but the algorithm can be scaled to multiple cores
by assigning a different tile of pixels to each core.

The path tracer used in the tests traces rays that bounce up
to five times before being terminated. Every bounce spawns
a shadow ray towards a light source. Russian roulette path
termination has been disabled to ensure a high number of
rays at all path depths. All tests are ran using 16 samples per
pixel and unless mentioned otherwise, the tile size is set to
512x512 pixels, for a total of 4M paths. We omit the results

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 7

Figure 6: From left to right, ROBOT LAB (472K triangles), HAIRBALL (2.88M triangles), ICOSPHERE (3.14M triangles),
SIBENIK (75K triangles), SAN MIGUEL (7.88M triangles), CRYTEK SPONZA (262K triangles).

for the primary rays, because these are outside the scope of
our algorithm, as primary rays are commonly traversed using
much faster packet traversal schemes.

The comparison is based on six test scenes (see Figure
6) where we measured the time spent performing the inter-
section and occlusion queries at five different path depths,
averaged over 3-5 camera positions per scene. The scenes
are chosen to show a variety in complexities and to enable
comparisons with previous work. HAIRBALL is chosen be-
cause it contains a lot of overlapping geometry, which will
cause a traversal algorithm to visit many BVH nodes where
no intersection can be found. SAN MIGUEL is chosen to
evaluate the performance of our scheme on very large scenes
and ICOSPHERE is chosen to demonstrate the performance
of our algorithm when there is one detailed object in a rela-
tively simple scene.

In this section we evaluate the effect of three variables on
the performance of our scheme: the amount of divergence
in the ray distribution, the number of available rays in the
system and the number of primitives in the scene.

6.1. Divergence

We use a path tracer to generate ray distributions with vary-
ing levels of divergence. After every diffuse bounce, the
ray distribution becomes more divergent. Ray traversal algo-
rithms tend to perform better when a ray distribution is co-
herent and degrade in performance after each diffuse bounce,
as the average number of rays that traverse each node de-
creases and memory access patterns essentially become ran-
dom.

Figure 7 shows the performance results for two test scenes
for various path depths. We see that the traversal speed de-
grades as the path depth increases. Our scheme shows no-
ticeably less degradation in performance compared to our
baseline algorithm as our batching scheme still manages to
group rays together even for highly divergent ray distribu-
tions. Table 1 shows the raw results for all scenes. We see
increases in traversal speed of up to 63% for intersection
queries and up to 123% for occlusion queries for path depths
after the first bounce compared to the baseline algorithm.

6.2. Available rays

Because our scheme relies on batching rays at Leaf-BVHs
to amortize the cost of loading the Leaf-BVHs from mem-
ory into the cache over many rays, a high ray count is re-
quired to fill the buckets at the leaf nodes. Figure 8 evaluates
the performance of our scheme with respect to the number
of active rays in the system. We vary the number of active
rays in the system by choosing different tile sizes. Recall
that we always use 16 samples per pixel. As we would ex-
pect, the traversal efficiency of our scheme increases as the
number of active rays is increased. Our scheme becomes
worthwhile after a tile size of 64x64 pixels, but a tile size
of 256x256 or higher is needed to achieve significant perfor-
mance increases. Choosing the right tile size will depend on
the amount of available memory, the number of rays avail-
able in the system and the required granularity when paral-
lelizing the algorithm. See Table 2 for the raw results.

6.3. Primitive count

We can see in Table 1 that the relative traversal speed of our
scheme is significantly higher for the SAN MIGUEL scene
than the other test scenes. This scene also has significantly
more triangles than the other test scenes. As a scene becomes
more complex, the geometry and its BVH cannot fit in the
caches of the CPU anymore and a larger part of the scene be-
comes solely available in main memory, which leads to high
latencies when accessing this data. Because our scheme in-
creases cache efficiency by amortizing the cost of loading a
Leaf-BVH into the cache over many rays, we see less degra-
dation in performance than the single ray traversal scheme
as the number of triangles in the scene increases.

To evaluate this hypothesis, we simulate higher triangle
counts by measuring the traversal speed of our scheme rela-
tive to the baseline algorithm for different subdivisions of the
ROBOT LAB and CRYTEK SPONZA test scenes. The sub-
divisions of the scenes are generated using different varia-
tions of the subdivision and decimation modifiers in Blender
[Ble16]. Figure 9 shows an increase in the relative traversal
speed as we increase the number of triangles in the scene.
The results become comparable to the performance increases
we saw for the SAN MIGUEL scene in Table 1. See Table 5
for the raw results.

8 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Figure 7: The traversal speed of our scheme and the single ray traversal algorithm for different path depths. The traversal
speed is displayed in millions of rays per seconds (MRay/s).

Scene Scheme 1i 2i 3i 4i 0o 1o 2o 3o 4o
ROBOT LAB Single Ray 2.029 1.465 1.371 1.33 8.076 2.771 2.455 2.288 2.234

RayCrawler 2.406 2.082 2.045 2.036 4.486 3.332 3.201 3.155 3.128
+19% +42% +49% +53% -44% +20% +30% +38% +40%

HAIRBALL Single Ray 1.239 1.28 1.346 1.347 1.303 1.316 1.212 1.198 1.16
RayCrawler 1.615 1.622 1.496 1.488 2.268 2.261 2.18 2.226 2.201

+30% +27% +11% +10% +74% +72% +80% +86% +90%
ICOSPHERE Single Ray 2.553 1.126 0.818 0.788 0.789 2.971 1.861 1.567 1.598

RayCrawler 2.553 1.565 1.309 1.288 1.293 2.433 2.342 2.139 2.235
+0% +39% +60% +63% +64% -18% +26% +36% +40%

SIBENIK Single Ray 2.493 1.906 1.834 1.823 7.587 3.356 2.971 2.843 2.769
RayCrawler 3.008 2.54 2.463 2.446 5.089 3.813 3.585 3.526 3.488

+21% +33% +34% +34% -33% +14% +21% +24% +26%
SAN MIGUEL Single Ray 0.748 0.605 0.622 0.655 2.696 0.675 0.649 0.598 0.595

RayCrawler 1.191 0.963 0.92 0.908 2.613 1.394 1.387 1.332 1.311
+59% +59% +48% +39% -3% +107% +114% +123% +120%

CRYTEK SPONZA Single Ray 2.366 1.712 1.619 1.565 5.991 2.694 2.362 2.265 2.198
RayCrawler 2.619 2.197 2.144 2.12 3.924 3.057 2.941 2.904 2.896

+11% +28% +32% +36% -35% +13% +25% +28% +32%

Table 1: The traversal speed of our scheme compared to the baseline single ray traversal scheme. The results are presented in
absolute numbers in MRay/s, the performance difference between the two algorithms is shown in every third row. The columns
1i, 2i, 3i and 4i correspond to intersection queries at different path depths (e.g. 1i for rays spawned after the first bounce, 2i for
rays after the second bounce, etc.). 0o, 1o, 2o, 3o and 4o correspond to occlusion queries at different path depths (e.g. 0o for
the shadow rays spawned by the primary rays, etc.).

6.4. Memory usage

Acceleration structure The total number of nodes in our ac-
celeration structure (i.e. the sum of the nodes in the Top-
BVH and all Leaf-BVHs) is the same as the number of nodes
in the initial BVH that was used to construct our acceleration
structure. Although Top-BVH nodes are larger than regular
BVH nodes, the Top-BVH doesn’t contribute significantly
to the overall memory usage of our acceleration structure, as
it is typically very small compared to the combined size of

all Leaf-BVHs. Thus we ignore the size of this acceleration
structure in our memory usage analysis.

Traversal The amount of memory required during traversal
is determined by equation 1.

n ≤
⌈ r

b

⌉
+ l (1)

Where n is the number of required buckets, r is the num-
ber of rays, b is the bucket capacity and l is the number of

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 9

Figure 8: The traversal performance of our scheme relative to our baseline algorithm for the tile sizes 16x16, 32x32, 64x64,
128x128, 256x256 and 512x512. The number of samples per pixel is always set to 16.

Scene Scheme 1i 2i 3i 4i 0o 1o 2o 3o 4o
ROBOT LAB Single Ray 2.03 1.46 1.37 1.33 8.08 2.77 2.46 2.29 2.23

RayCrawler (16x16) +5% +7% +6% +6% -43% -10% -8% -7% -8%
RayCrawler (32x32) +8% +11% +10% +10% -42% +4% +3% +6% +8%
RayCrawler (64x64) +12% +20% +22% +24% -43% +9% +13% +18% +19%
RayCrawler (128x128) +15% +30% +34% +36% -44% +15% +23% +28% +30%
RayCrawler (256x256) +18% +39% +45% +49% -44% +19% +29% +36% +38%
RayCrawler (512x512) +19% +42% +49% +53% -44% +20% +30% +38% +40%

SAN MIGUEL Single Ray 0.75 0.6 0.62 0.65 2.7 0.68 0.65 0.6 0.6
RayCrawler (16x16) +12% -6% -16% -24% -10% -44% -45% -48% -48%
RayCrawler (32x32) +23% +3% -9% -17% -4% -5% -5% -9% -11%
RayCrawler (64x64) +37% +19% +7% -1% -2% +38% +37% +35% +31%
RayCrawler (128x128) +48% +36% +24% +15% -2% +72% +71% +73% +69%
RayCrawler (256x256) +55% +50% +38% +28% -3% +95% +101% +105% +105%
RayCrawler (512x512) +59% +59% +48% +39% -3% +107% +114% +123% +120%

Table 2: The traversal speed of our scheme for varying tile sizes. The results are shown relative to the performance of our
baseline single ray traversal scheme. See Table 1 for an explanation of the columns.

Leaf-BVHs. We have fixed the bucket capacity to 128 rays
in our tests. With a ray size of 40 bytes, this results in a size
of 5120 bytes per bucket.

The first part of the equation,
⌈ r

b
⌉
, is only dependent of the

tile size while the second part is only dependent of the scene.
Table 3 shows the required amount of memory for varying
tile sizes and Table 4 shows the number of Leaf-BVHs and
required memory for all scenes. We see that the number of

10 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Figure 9: The relative traversal speed of our scheme compared to the baseline for different path depths as the number of
triangles in the scene is increased.

Leaf-BVHs in the scene only becomes significant with very
large scenes.

Tile size #buckets Memory (MB)
16 32 0.156
32 128 0.625
64 512 2.5
128 2048 10
256 8192 40
512 32768 160

Table 3: The number of buckets and amount of memory re-
quired for varying tile sizes. Recall that the number of sam-
ples per pixel is fixed to 16.

7. Conclusion

We presented an efficient ray traversal scheme for highly di-
vergent ray distributions that uses batching at fixed points

Scene #Leaf-BVHs Memory (KB)
SIBENIK 4 20
ICOSPHERE 10 50
CRYTEK SPONZA 13 65
ROBOT LAB 16 80
HAIRBALL 46 230
SAN MIGUEL 49 245

Table 4: The number of Leaf-BVHs for all test scenes. One
(partially filled) bucket is reserved for every Leaf-BVH.

in the BVH during traversal. We significantly improved the
traversal performance for secondary rays compared to the
baseline single-ray traversal scheme by up to 99% for inter-
section queries and 123% for occlusion queries. We showed
that a batching scheme can be a viable approach to improve
performance for divergent ray traversal. Our scheme is or-
thogonal to recent advances in divergent ray traversal algo-

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 11

rithms and can be combined with these techniques to achieve
even higher traversal speeds.

The requirement of a high ray count, as seen in Section
6.2, makes our scheme less suitable for real-time ray trac-
ing applications, where progressive refinement is desired, as
these applications typically have a low number of available
rays in the system. This makes our scheme more suitable
for offline rendering tasks where the number of samples per
pixel is typically very high and a single frame can take sev-
eral hours to render.

For future work, our scheme can be improved in several
areas. Leaf-BVH traversal may be improved by using Or-
dered Ray Stream Traversal instead of our current hybrid
approach. Switching from a 4-wide BVH to a BVH2 for
the Top-BVH may yield two benefits; splitting a binary tree
in two layers will be easier and will result in more optimal
splits as we only have to consider two children instead of
four. Traversing the Top-BVH will also become simpler as
we will not have to worry about the order of the child nodes
in the traversal stack. A more thorough investigation on split-
ting the initial BVH into two layers may also result in a
more optimal data structure, as the optimal splitting strategy
is scene dependent.

Furthermore, we would like to investigate adapting our
scheme for higher SIMD widths. This will however largely
depend on the chosen traversal algorithms for the Top- and
Leaf-BVHs. It may also be worth investigating the feasibility
of our scheme on a GPU.

Given the high performance gains for complex scenes, it
may make sense to add an additional level in the BVH hierar-
chy for extremely large scenes where the individual subtrees
no longer fit in the L2 cache.

8. Acknowledgements

Many thanks to the authors of our test scenes Frank Meinl
and Marko Dabrovic for CRYTEK SPONZA, Samuli Laine
and Tero Karras for HAIRBALL, Guillermo M. Leal Lla-
guno for SAN MIGUEL, Unity Technologies for ROBOT
LAB and Marko Dabrovic for SIBENIK. Also thanks to
Valentin Fuetterling for the discussions on possible ap-
proaches to integrate ORST into our scheme.

References
[ÁSK14] ÁFRA A. T., SZIRMAY-KALOS L.: Stackless Multi-

BVH traversal for CPU, MIC and GPU ray tracing. Computer
Graphics Forum 33, 1 (2014), 129–140. doi:10.1111/cgf.
12259. 4

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray
stream traversal. ACM Transactions on Graphics (TOG) 33, 4
(2014), 151. 2

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS
J., KAUTZ J., SHIRLEY P., WALD I.: Packet-based whitted and
distribution ray tracing. In Proceedings of Graphics Interface
2007 (2007), ACM, pp. 177–184. 2

[Bik12] BIKKER J.: Improving data locality for efficient in-core
path tracing. In Computer Graphics Forum (2012), vol. 31, Wiley
Online Library, pp. 1936–1947. 2

[Ble16] BLENDER ONLINE COMMUNITY: Blender - a 3D mod-
elling and rendering package. Blender Foundation, Blender Insti-
tute, Amsterdam, 2016. URL: http://www.blender.org.
7

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast simd ray tracing of inco-
herent rays. In Computer Graphics Forum (2008), vol. 27, Wiley
Online Library, pp. 1225–1233. 2

[EG08] ERNST M., GREINER G.: Multi bounding volume hier-
archies. In Interactive Ray Tracing, 2008. RT 2008. IEEE Sym-
posium on (2008), IEEE, pp. 35–40. 2

[FLPE15] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J.,
EBERT A.: Efficient ray tracing kernels for modern cpu architec-
tures. Journal of Computer Graphics Techniques Vol 4, 4 (2015).
2

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration structures
for a gpu raytracer. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware (2005), ACM,
pp. 15–22. 4

[HDW∗11] HAPALA M., DAVIDOVIČ T., WALD I., HAVRAN V.,
SLUSALLEK P.: Efficient stack-less bvh traversal for ray trac-
ing. In Proceedings of the 27th Spring Conference on Computer
Graphics (2011), ACM, pp. 7–12. 4

[Lai10] LAINE S.: Restart trail for stackless bvh traversal. In
Proceedings of the Conference on High Performance Graphics
(2010), Eurographics Association, pp. 107–111. 4

[ORM08] OVERBECK R., RAMAMOORTHI R., MARK W. R.:
Large ray packets for real-time whitted ray tracing. In Interactive
Ray Tracing, 2008. RT 2008. IEEE Symposium on (2008), IEEE,
pp. 41–48. 2

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-bvh ray
stream tracing. In Proceedings of the Conference on High Per-
formance Graphics 2009 (2009), ACM, pp. 151–158. 2, 4

[vdZRJ95] VAN DER ZWAAN M., REINHARD E., JANSEN F. W.:
Pyramid clipping for efficient ray traversal. In Rendering Tech-
niquesâĂŹ 95. Springer, 1995, pp. 1–10. 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of
packets-efficient simd single-ray traversal using multi-branching
bvhs. In Interactive Ray Tracing, 2008. RT 2008. IEEE Sympo-
sium on (2008), IEEE, pp. 49–57. 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive rendering with coherent ray tracing. In Computer
graphics forum (2001), vol. 20, Wiley Online Library, pp. 153–
165. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: a kernel framework for efficient cpu ray
tracing. ACM Transactions on Graphics (TOG) 33, 4 (2014),
143. 2

http://dx.doi.org/10.1111/cgf.12259
http://dx.doi.org/10.1111/cgf.12259
http://www.blender.org

12 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Appendices

1 void RayCrawler : : Traverse (ToplevelNode∗ node , RayInstance&
ray)

2 {
3 const unsigned __int64 mask = (unsigned __int64 (1) << ((

node−>bi tPos & 63) + 4)) − 1;
4 unsigned __int64 s tack = ray . s tack & mask ; / / s l i g h t l y

f a s t e r to cache t h i s
5 while (node)
6 {
7 / / ge t t r a v e r s a l b i t s a t curren t depth
8 const u i n t b i tPos = node−>bi tPos & 63;
9 const u i n t b i t s = (s tack >> bi tPos) & 15;

10 / / f i n d neares t i n t e r s e c t i o n of the ray and the ch i l d
boxes

11 __m128 tmin4 , r e s u l t 4 ;
12 { / / scope l i m i t i n g
13 const __m128 rdx4 = _mm_set_ps1 (ray . rdx) , ox4 =

_mm_set_ps1 (ray . ox) ;
14 const __m128 rdy4 = _mm_set_ps1 (ray . rdy) , oy4 =

_mm_set_ps1 (ray . oy) ;
15 const __m128 rdz4 = _mm_set_ps1 (ray . rdz) , oz4 =

_mm_set_ps1 (ray . oz) ;
16 const __m128 t4 = _mm_set_ps1 (ray . t) ;
17 / / remove the b i t s fo r now so we can e a s i l y add them

back l a t e r
18 s tack −= b i t s << bi tPos ;
19 / / Compute i n t e r s e c t i o n
20 const __m128 t1x = _mm_mul_ps(_mm_sub_ps (node−>

bmin4x , ox4) , rdx4) ;
21 const __m128 t2x = _mm_mul_ps(_mm_sub_ps (node−>

bmax4x , ox4) , rdx4) ;
22 const __m128 t1y = _mm_mul_ps(_mm_sub_ps (node−>

bmin4y , oy4) , rdy4) ;
23 const __m128 t2y = _mm_mul_ps(_mm_sub_ps (node−>

bmax4y , oy4) , rdy4) ;
24 const __m128 tmin4x = _mm_min_ps(t1x , t2x) , t x f =

_mm_max_ps(t1x , t2x) ;
25 const __m128 t1z = _mm_mul_ps(_mm_sub_ps (node−>

bmin4z , oz4) , rdz4) ;
26 const __m128 tmin1 = _mm_max_ps(eps4 , tmin4x) ;
27 const __m128 tmax1 = _mm_min_ps(t4 , t x f) ;
28 const __m128 t2z = _mm_mul_ps(_mm_sub_ps (node−>

bmax4z , oz4) , rdz4) ;
29 const __m128 tyn = _mm_min_ps(t1y , t2y) , t y f =

_mm_max_ps(t1y , t2y) ;
30 const __m128 tmin2 = _mm_max_ps(tmin1 , tyn) , tmax2 =

_mm_min_ps(tmax1 , t y f) ;
31 const __m128 tzn = _mm_min_ps(t1z , t2z) , t z f =

_mm_max_ps(t1z , t2z) ;
32 tmin4 = _mm_max_ps(tmin2 , tzn) ;
33 r e s u l t 4 = _mm_cmple_ps (tmin4 , _mm_min_ps(tmax2 , t z f

)) ; / / always va l i d ?
34 }
35 / / determine va l i d c h i l d s & wri te back f i n d i n g s
36 const u i n t newBits = b i t s & _mm_movemask_ps(r e s u l t 4) ;
37 i f (newBits)
38 {
39 / / f i n d neares t a c t i v e ch i l d for t h i s ray
40 u i n t ch i ld Idx ;
41 { / / scope l i m i t i n g
42 const __m128 v1 = _mm_blendv_ps (inf4 , tmin4 ,

bitMask [newBits]) ;
43 const __m128 v2 = _mm_and_ps (v1 , idxmask4) ;
44 const __m128 v3 = _mm_or_ps (v2 , idxadd4) ;
45 const f l o a t sma l l e s t = hor_min (v3) ;
46 ch i ld Idx = (reinterpret_cast <const unsigned int&>(

sma l l e s t)) & 3;
47 }
48 / / t h i s ray w i l l now v i s i t the neares t ch i l d
49 ToplevelNode∗ ch i l d = &pool [node−>data + ch i ld Idx] ;
50 s tack += (15 << (b i tPos + 4)) + ((newBits − (1 <<

ch i ld Idx)) << bi tPos) ;

51 i f (l i k e l y (! chi ld−>t r e e l e t)) { node = ch i l d ;
continue ; }

52 / / ray reached t r e e l e t l e v e l ; add to ray conta iner for
postponed batch process ing

53 i f (l i k e l y (chi ld−>room >> 16))
54 {
55 / / ear ly in ; we know we have room
56 RayBucket∗ bucket = (RayBucket∗) chi ld−>buckets .

PeekLast () ; / / guaranteed to have room
57 const u i n t nextIdx = bucket−>rays ++;
58 ray . s t ack = s tack ;
59 chi ld−>room −= 65536;
60 i f (un l i ke ly (! (chi ld−>room >> 16)))
61 {
62 const u i n t idx = ((chi ld−>bucketCount >> 8) & 255)

− 1;
63 i f (idx < 2)
64 {
65 / / move t h i s node from ’ nodesWithPart ialBucket ’

to ’ nodesWithFullBucket ’
66 chi ld−>Detach () ;
67 nodesWithBucket [idx] . Add(ch i l d) ;
68 }
69 }
70 bucket−>ray [nextIdx] = ray ;
71 }
72 e l s e
73 {
74 RayBucket∗ newBucket = (RayBucket∗)emptyBuckets .

PopFi rs t () ;
75 newBucket−>rays = 1;
76 newBucket−>node = ch i l d ;
77 i f (chi ld−>buckets . Empty ()) / / no buckets at a l l ;

make room
78 {
79 chi ld−>bucketCount = (chi ld−>bi tPos & 0 x f f 0 0 f f) +

256;
80 nodesWithPart ia lBucket . Add(ch i l d) ;
81 }
82 e l s e chi ld−>bucketCount += 256; / / we have buckets ,

but no p a r t i a l f i l l e d buckets ; make room
83 chi ld−>buckets . AddAtEnd(newBucket) ;
84 ray . s t ack = s tack ;
85 newBucket−>ray [0] = ray ;
86 chi ld−>room = ((BUCKETSIZE − 1) << 16) + (chi ld−>

bi tPos & 65535) ;
87 }
88 return ;
89 }
90 / / t h i s ray has no ch i ldren l e f t to v i s i t ; f i n d the

f i r s t ances tor t h a t has work l e f t
91 { / / scope l i m i t i n g
92 unsigned long index ;
93 const __int64 mask = (unsigned __int64 (1) << bi tPos)

− 1;
94 i f (! (s t ack & mask)) break ;
95 _BitScanReverse64 (&index , s t ack & mask) ;
96 node = &pool [node−>ances to r [index >> 2]] ;
97 }
98 }
99 }

Listing 2: C++ code of the Top-BVH traversal algorithm

1 template <bool shadow> void Node4 : : TraceEmbree (const vec3& O,
const vec3& D, f l o a t& t , f l o a t& u , f l o a t& v , u i n t&

t r i I d x) const
2 {
3 Node4∗ pool4 = Scene : : mbvh−>pool4 ;
4 / / s tack s t a t e
5 __declspec (a l i gn (64)) StackItem s tack [64] , ∗s t a c k P t r =

s tack + 1;
6 s tack [0] . p t r = (u i n t) (t h i s − Scene : : mbvh−>pool4) ;
7 s tack [0] . d i s t = s td : : numeric_l imits <uin t > : : min () ;

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 13

8 / / load the ray i n t o SIMD r e g i s t e r s
9 const __m128 r a y _ r d i r = rcp_safe (_mm_set_ps (D. x , D. y , D.

z , D. z)) ;
10 const __m128 org_x = _mm_set_ps1 (O. x) , org_y =

_mm_set_ps1 (O. y) , org_z = _mm_set_ps1 (O. z) ;
11 const __m128 rd i r_x = _mm_set_ps1 (((f l o a t∗)&r a y _ r d i r) [3]

) ;
12 const __m128 rd i r_y = _mm_set_ps1 (((f l o a t∗)&r a y _ r d i r) [2]

) ;
13 const __m128 r d i r _ z = _mm_set_ps1 (((f l o a t∗)&r a y _ r d i r) [1]

) ;
14 const __m128 ray_near = _mm_setzero_ps () ;
15 const __m128 ray_fa r = _mm_set_ps1 (t) ;
16 / / o f f s e t s to s e l e c t the s ide t h a t becomes the lower or

upper bound
17 const in t nearX = ((f l o a t∗)&r a y _ r d i r) [3] >= 0.0 f ? 0 : 16;
18 const in t nearY = ((f l o a t∗)&r a y _ r d i r) [2] >= 0.0 f ? 32 :

48;
19 const in t nearZ = ((f l o a t∗)&r a y _ r d i r) [1] >= 0.0 f ? 64 :

80;
20 / / pop loop
21 while (true) pop :
22 {
23 / / pop next node
24 i f (s t a c k P t r == s tack) break ;
25 s tackP t r−−;
26 u i n t cur = s tackP t r−>p t r ;
27 / / i f popped node i s too far , pop next one
28 i f (un l i ke ly (∗(f l o a t∗)&s tackPt r−>d i s t > t)) continue ;
29 / / downtraversal loop
30 while (true)
31 {
32 __m128 tNear ;
33 / / s top i f we found a l e a f node
34 i f (un l i ke ly ((cur & (1 << 31)) != 0)) break ;
35 const Node4∗ p t r = &pool4 [cur] ;
36 const in t farX = nearX ^ 16 , farY = nearY ^ 16 , farZ =

nearZ ^ 16;
37 const __m128 tNearX = _mm_mul_ps(_mm_sub_ps (

_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + nearX)) , org_x) , rd i r_x) ;

38 const __m128 tNearY = _mm_mul_ps(_mm_sub_ps (
_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + nearY)) , org_y) , rd i r_y) ;

39 const __m128 tNearZ = _mm_mul_ps(_mm_sub_ps (
_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + nearZ)) , org_z) , r d i r _ z) ;

40 const __m128 tFarX = _mm_mul_ps(_mm_sub_ps (
_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + farX)) , org_x) , rd i r_x) ;

41 const __m128 tFarY = _mm_mul_ps(_mm_sub_ps (
_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + farY)) , org_y) , rd i r_y) ;

42 const __m128 tFarZ = _mm_mul_ps(_mm_sub_ps (
_mm_load_ps ((const f l o a t∗) ((const char∗)&ptr−>
bmin4x + farZ)) , org_z) , r d i r _ z) ;

43 tNear = _mm_max_ps(_mm_max_ps(tNearX , tNearY) ,
_mm_max_ps(tNearZ , ray_near)) ;

44 const __m128 tFar = _mm_min_ps(_mm_min_ps(tFarX ,
tFarY) , _mm_min_ps(tFarZ , r ay_fa r)) ;

45 const __m128 vmask = _mm_cmple_ps (tNear , tFa r) ;
46 const in t mask = _mm_movemask_ps(vmask) ;
47 / / i f no ch i l d i s h i t , pop next node
48 switch (mask)
49 {
50 case 0:
51 goto pop ;
52 case 1:
53 cur = pt r−>data [0] ;
54 continue ;
55 case 2:
56 cur = pt r−>data [1] ;
57 continue ;
58 case 3:
59 {
60 const u i n t c0 = ptr−>data [0] , d0 = ((u i n t∗)&tNear)

[0] , c1 = ptr−>data [1] , d1 = ((u i n t∗)&tNear)
[1] ;

61 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

62 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

63 continue ;
64 }
65 case 4:
66 cur = pt r−>data [2] ;
67 continue ;
68 case 5:
69 {
70 const u i n t c0 = ptr−>data [0] , d0 = ((u i n t∗)&tNear)

[0] , c1 = ptr−>data [2] , d1 = ((u i n t∗)&tNear)
[2] ;

71 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

72 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

73 continue ;
74 }
75 case 6:
76 {
77 const u i n t c0 = ptr−>data [1] , d0 = ((u i n t∗)&tNear)

[1] , c1 = ptr−>data [2] , d1 = ((u i n t∗)&tNear)
[2] ;

78 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

79 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

80 continue ;
81 }
82 case 7:
83 {
84 / / Push a l l nodes on the s tack
85 s t a c k P t r [0] . p t r = pt r−>data [0] ; s t a c k P t r [0] . d i s t =

((u i n t∗)&tNear) [0] ;
86 s t a c k P t r [1] . p t r = pt r−>data [1] ; s t a c k P t r [1] . d i s t =

((u i n t∗)&tNear) [1] ;
87 s t a c k P t r [2] . p t r = pt r−>data [2] ; s t a c k P t r [2] . d i s t =

((u i n t∗)&tNear) [2] ;
88 s t a c k P t r += 2;
89 / / Sor t them
90 i f (! shadow) s o r t (s t a c k P t r [0] , s t a c k P t r [−1],

s t a c k P t r [−2]) ;
91 / / Pop top element
92 cur = s tackP t r−>p t r ;
93 continue ;
94 }
95 case 8:
96 cur = pt r−>data [3] ;
97 continue ;
98 case 9:
99 {

100 const u i n t c0 = ptr−>data [0] , d0 = ((u i n t∗)&tNear)
[0] , c1 = ptr−>data [3] , d1 = ((u i n t∗)&tNear)
[3] ;

101 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

102 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

103 continue ;
104 }
105 case 10:
106 {
107 const u i n t c0 = ptr−>data [1] , d0 = ((u i n t∗)&tNear)

[1] , c1 = ptr−>data [3] , d1 = ((u i n t∗)&tNear)
[3] ;

108 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

109 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

110 continue ;
111 }
112 case 11:

14 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

113 {
114 / / Push a l l nodes on the s tack
115 s t a c k P t r [0] . p t r = pt r−>data [0] ; s t a c k P t r [0] . d i s t =

((u i n t∗)&tNear) [0] ;
116 s t a c k P t r [1] . p t r = pt r−>data [1] ; s t a c k P t r [1] . d i s t =

((u i n t∗)&tNear) [1] ;
117 s t a c k P t r [2] . p t r = pt r−>data [3] ; s t a c k P t r [2] . d i s t =

((u i n t∗)&tNear) [3] ;
118 s t a c k P t r += 2;
119 / / Sor t them
120 i f (! shadow) s o r t (s t a c k P t r [0] , s t a c k P t r [−1],

s t a c k P t r [−2]) ;
121 / / Pop top element
122 cur = s tackP t r−>p t r ;
123 continue ;
124 }
125 case 12:
126 {
127 const u i n t c0 = ptr−>data [2] , d0 = ((u i n t∗)&tNear)

[2] , c1 = ptr−>data [3] , d1 = ((u i n t∗)&tNear)
[3] ;

128 i f (shadow | | d0 < d1) { s tackP t r−>p t r = c1 ,
s t ackP t r−>d i s t = d1 , s t a c k P t r ++, cur = c0 ; }

129 e l s e { s tackP t r−>p t r = c0 , s t ackP t r−>d i s t = d0 ,
s t a c k P t r ++, cur = c1 ; }

130 continue ;
131 }
132 case 13:
133 {
134 / / Push a l l nodes on the s tack
135 s t a c k P t r [0] . p t r = pt r−>data [0] ; s t a c k P t r [0] . d i s t =

((u i n t∗)&tNear) [0] ;
136 s t a c k P t r [1] . p t r = pt r−>data [2] ; s t a c k P t r [1] . d i s t =

((u i n t∗)&tNear) [2] ;
137 s t a c k P t r [2] . p t r = pt r−>data [3] ; s t a c k P t r [2] . d i s t =

((u i n t∗)&tNear) [3] ;
138 s t a c k P t r += 2;
139 / / Sor t them
140 i f (! shadow) s o r t (s t a c k P t r [0] , s t a c k P t r [−1],

s t a c k P t r [−2]) ;
141 / / Pop top element
142 cur = s tackP t r−>p t r ;
143 continue ;
144 }
145 case 14:
146 {
147 / / Push a l l nodes on the s tack
148 s t a c k P t r [0] . p t r = pt r−>data [1] ; s t a c k P t r [0] . d i s t =

((u i n t∗)&tNear) [1] ;
149 s t a c k P t r [1] . p t r = pt r−>data [2] ; s t a c k P t r [1] . d i s t =

((u i n t∗)&tNear) [2] ;
150 s t a c k P t r [2] . p t r = pt r−>data [3] ; s t a c k P t r [2] . d i s t =

((u i n t∗)&tNear) [3] ;
151 s t a c k P t r += 2;
152 / / Sor t them
153 i f (! shadow) s o r t (s t a c k P t r [0] , s t a c k P t r [−1],

s t a c k P t r [−2]) ;
154 / / Pop top element
155 cur = s tackP t r−>p t r ;
156 continue ;
157 }
158 case 15:
159 {
160 / / Push a l l nodes on the s tack
161 s t a c k P t r [0] . p t r = pt r−>data [0] ; s t a c k P t r [0] . d i s t =

((u i n t∗)&tNear) [0] ;
162 s t a c k P t r [1] . p t r = pt r−>data [1] ; s t a c k P t r [1] . d i s t =

((u i n t∗)&tNear) [1] ;
163 s t a c k P t r [2] . p t r = pt r−>data [2] ; s t a c k P t r [2] . d i s t =

((u i n t∗)&tNear) [2] ;
164 s t a c k P t r [3] . p t r = pt r−>data [3] ; s t a c k P t r [3] . d i s t =

((u i n t∗)&tNear) [3] ;
165 s t a c k P t r += 3;
166 / / Sor t them
167 i f (! shadow) s o r t (s t a c k P t r [0] , s t a c k P t r [−1],

s t a c k P t r [−2], s t a c k P t r [−3]) ;

168 / / Pop top element
169 cur = s tackP t r−>p t r ;
170 continue ;
171 }
172 # i f d e f _MSC_VER
173 default :
174 __assume (0) ; / / see h t t p s : / / msdn . microso f t . com /

en−us / l i b r a r y /1 b3fsfxw (VS .80) . aspx
175 # end i f
176 }
177 }
178 / / t h i s i s a l e a f node
179 i f (shadow)
180 {
181 i f (I n t e r s e c t ((cur & 0 x 7 f f f f f f f) >> 6 , cur & 63 , O, D,

t))
182 {
183 t r i I d x = 1;
184 return ;
185 }
186 }
187 e l s e
188 {
189 I n t e r s e c t ((cur & 0 x 7 f f f f f f f) >> 6 , cur & 63 , O, D, t ,

u , v , t r i I d x) ;
190 }
191 }
192 }

Listing 3: C++ code of the baseline SingleRay traversal
algorithm

T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH 15

Scene #Triangles Scheme 1i 2i 3i 4i 0o 1o 2o 3o 4o
CRYTEK SPONZA 0.262M Single Ray 2.366 1.712 1.619 1.565 5.991 2.694 2.362 2.265 2.198

RayCrawler 2.619 2.197 2.144 2.12 3.924 3.057 2.941 2.904 2.896
+11% +28% +32% +36% -35% +13% +25% +28% +32%

0.393M Single Ray 2.063 1.466 1.374 1.33 5.654 2.401 2.064 1.952 1.897
RayCrawler 2.286 1.977 1.937 1.923 3.659 2.931 2.795 2.773 2.745

+11% +35% +41% +45% -35% +22% +35% +42% +45%
0.589M Single Ray 1.908 1.347 1.254 1.215 5.42 2.198 1.878 1.787 1.728

RayCrawler 2.193 1.87 1.829 1.81 3.636 2.835 2.701 2.674 2.646
+15% +39% +46% +49% -33% +29% +44% +50% +53%

0.786M Single Ray 1.832 1.289 1.2 1.163 5.314 2.11 1.796 1.707 1.649
RayCrawler 2.124 1.796 1.751 1.737 3.595 2.744 2.609 2.574 2.549

+16% +39% +46% +49% -32% +30% +45% +51% +55%
1.573M Single Ray 1.649 1.144 1.062 1.029 4.884 1.816 1.552 1.462 1.42

RayCrawler 1.947 1.591 1.544 1.527 3.469 2.504 2.364 2.329 2.296
+18% +39% +45% +48% -29% +38% +52% +59% +62%

3.146M Single Ray 1.424 0.977 0.908 0.877 4.51 1.575 1.34 1.263 1.216
RayCrawler 1.732 1.373 1.322 1.303 3.307 2.244 2.09 2.058 2.03

+22% +40% +46% +49% -27% +42% +56% +63% +67%
6.293M Single Ray 1.327 0.899 0.832 0.807 4.236 1.399 1.188 1.13 1.087

RayCrawler 1.576 1.247 1.197 1.175 2.952 1.977 1.849 1.819 1.799
+19% +39% +44% +46% -30% +41% +56% +61% +65%

12.585M Single Ray 1.066 0.723 0.671 0.652 3.611 1.114 0.946 0.9 0.871
RayCrawler 1.391 1.109 1.059 1.047 2.702 1.765 1.651 1.633 1.615

+30% +53% +58% +61% -25% +59% +75% +81% +86%
ROBOT LAB 0.472M Single Ray 2.029 1.465 1.371 1.33 8.076 2.771 2.455 2.288 2.234

RayCrawler 2.406 2.082 2.045 2.036 4.486 3.332 3.201 3.155 3.128
+19% +42% +49% +53% -44% +20% +30% +38% +40%

2.833M Single Ray 1.317 0.9 0.832 0.803 6.137 1.736 1.524 1.396 1.362
RayCrawler 1.8 1.554 1.523 1.516 3.818 2.728 2.643 2.589 2.579

+37% +73% +83% +89% -38% +57% +73% +85% +89%
11.334M Single Ray 0.923 0.628 0.589 0.569 4.826 1.247 1.105 1.02 0.997

RayCrawler 1.382 1.17 1.14 1.132 3.282 2.25 2.166 2.121 2.112
+50% +86% +93% +99% -32% +80% +96% +108% +112%

Table 5: Evaluation of the performance of our scheme compared to the baseline algorithm for different subdivisions of the
CRYTEK SPONZA and ROBOT LAB scenes. See Table 1 for an explanation of the columns.

Single Ray RayCrawler, 64x64 RayCrawler, 128x128 RayCrawler, 256x256 RayCrawler, 512x512
intersection 0 4.103 4.183 4.090 4.102 4.081
intersection 1 2.029 2.272 2.330 2.398 2.406
intersection 2 1.465 1.758 1.898 2.033 2.082
intersection 3 1.371 1.675 1.836 1.986 2.045
intersection 4 1.330 1.650 1.810 1.976 2.036
occlusion 0 8.076 4.630 4.501 4.494 4.486
occlusion 1 2.771 3.030 3.186 3.304 3.332
occlusion 2 2.455 2.778 3.010 3.155 3.201
occlusion 3 2.288 2.699 2.939 3.106 3.155
occlusion 4 2.234 2.662 2.908 3.081 3.128

Table 6: Results in MRay/s for the ROBOT LAB scene for all tile sizes and depths.

16 T. Gasparian / Fast Divergent Ray Traversal by Batching Rays in a BVH

Single Ray RayCrawler, 64x64 RayCrawler, 128x128 RayCrawler, 256x256 RayCrawler, 512x512
intersection 0 2.055 2.081 2.084 2.088 2.067
intersection 1 0.748 1.027 1.110 1.158 1.191
intersection 2 0.605 0.720 0.821 0.906 0.963
intersection 3 0.622 0.668 0.774 0.862 0.920
intersection 4 0.655 0.646 0.752 0.841 0.908
occlusion 0 2.696 2.629 2.639 2.615 2.613
occlusion 1 0.675 0.932 1.159 1.318 1.394
occlusion 2 0.649 0.889 1.109 1.302 1.387
occlusion 3 0.598 0.807 1.035 1.224 1.332
occlusion 4 0.595 0.779 1.005 1.222 1.311

Table 7: Results in MRay/s for the SAN MIGUEL scene for all tile sizes and depths.

Single Ray RayCrawler, 128x128 RayCrawler, 256x256 RayCrawler, 512x512
intersection 0 2.408 2.424 2.418 2.412
intersection 1 1.239 1.601 1.618 1.615
intersection 2 1.280 1.662 1.631 1.622
intersection 3 1.346 1.534 1.496 1.496
intersection 4 1.347 1.519 1.486 1.488
occlusion 0 1.303 2.213 2.224 2.268
occlusion 1 1.316 2.262 2.305 2.261
occlusion 2 1.212 2.223 2.224 2.180
occlusion 3 1.198 2.242 2.212 2.226
occlusion 4 1.160 2.149 2.191 2.201

Table 8: Results in MRay/s for the HAIRBALL scene for all tile sizes and depths.

Single Ray RayCrawler, 128x128 RayCrawler, 256x256 RayCrawler, 512x512
intersection 0 4.529 4.579 4.572 4.484
intersection 1 2.493 3.047 3.038 3.008
intersection 2 1.906 2.497 2.532 2.540
intersection 3 1.834 2.400 2.445 2.463
intersection 4 1.823 2.379 2.426 2.446
occlusion 0 7.587 5.143 5.106 5.089
occlusion 1 3.356 3.811 3.831 3.813
occlusion 2 2.971 3.544 3.590 3.585
occlusion 3 2.843 3.468 3.522 3.526
occlusion 4 2.769 3.425 3.485 3.488

Table 9: Results in MRay/s for the SIBENIK scene for all tile sizes and depths.

Single Ray RayCrawler, 128x128 RayCrawler, 256x256 RayCrawler, 512x512
intersection 0 3.497 3.438 3.449 3.510
intersection 1 2.227 2.623 2.651 2.510
intersection 2 1.622 2.109 2.186 2.139
intersection 3 1.529 2.020 2.118 2.089
intersection 4 1.491 1.983 2.096 2.074
occlusion 0 6.010 3.971 3.961 3.824
occlusion 1 2.683 3.008 3.061 3.107
occlusion 2 2.328 2.833 2.931 2.969
occlusion 3 2.233 2.784 2.899 2.945
occlusion 4 2.166 2.770 2.880 2.915

Table 10: Results in MRay/s for the CRYTEK SPONZA scene for all tile sizes and depths.

