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Abstract

Hosting a robust and high-performance Software as a Service so-
lution requires resources and efficient usage of those resources. This
relies on the infrastructure where the application is running on. If the
usage of a SaaS solution gradually scales overtime the infrastructure
can be managed on-the-fly. However if it is a new product and it is
known that there will be a lot of users from the start, the infrastructure
needs to be prepared for the load. The effectiveness of a configuration
for the infrastructure can be measured in multiple objectives such as:
costs, performance and robustness.

In this research we create insight into how the configuration of the
infrastructure influences the objectives and present the decision maker
with the best options to make a well informed trade-off, this is achieved
with the use of a Pareto front.

We have created a configuration for hardware and orchestrator with
13 parameters. The focus of these parameters are the objectives. To
create the Pareto front we use the non-dominating sorting genetic al-
gorithm, this requires a fast evaluation of the configurations. We use
heuristics to speed up the evaluation. Training these heuristics requires
training data, to make sure the training data covers the possibilities
evenly and with few samples we use a sampling strategy. The nearly
orthogonal Latin hypercube sampling design is created to fulfil these
properties, following this design we got 65 sample points.

The sample points are evaluated with a load test to obtain the
measurements of the output variables. With this training data set the
heuristics were trained, five additional samples were taken and used as
a validation set. The heuristic that approximates the reality most ac-
curately is used in the non-dominated sorting genetic algorithm. This
algorithm creates the Pareto front, on the front analysis can be per-
formed and a trade-off can be made.

Keywords: Software as a Service, infrastructure, cloud, orchestrator, micro-
services, multi objective optimization, Pareto, heuristics, sampling, genetic
algorithm
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1 Introduction

As a user, you have certain expectations of how software behaves. For
instance you expect that you are able to use the software whenever you
want to. You want it to work fast, and not wait for data to load. If you
store new data in the system it should not disappear unless you explicitly
delete it.

As a provider of the software, you want the users to be happy with the
product. If they are happy they keep using it and are willing to continue
paying for it, that way the company can stay in business. To keep the
business running, you also need to keep the costs low. For a company
that is providing Software as a Service (SaaS), the costs of keeping the
service running are an important portion of the costs. It is pointed out by
Warfield [1] and Key [2] that it is important to reduce the cost of the service,
as each month a user can be supported with fewer costs it is more profitable
for the company.

The operational costs can be reduced by writing better performing soft-
ware, unoptimized code can increase the running time of the software, use
more memory or make it unable to scale to more users. Operational costs
also depend on the infrastructure on which the software is deployed. You
can have the best driver in the world, but if you put him in a golf cart
he is not going to win the race. With infrastructure we mean hardware,
server parts like processors or disks, but also the orchestrator, which is a
layer between the hardware and the software that manages the applications
that are deployed. It takes care of balancing the applications over multiple
machines, it handles failures and helps with the process of upgrading the
software. We need to balance the performance of the software and the price
of the infrastructure. There are multiple ways to adapt the infrastructure
but you always have to watch out for underprovisioning, lacking the capac-
ity to run the software up to your standard. Handling a request utilizes
resources from the infrastructure, if all of these resources are already being
utilized by requests then any new requests that come in cannot be handled
or will be slowly handled. On the other hand there is the chance of over-
provisioning, meaning the resources that are available are not used enough.
For a user this is good, as every request can be handled in the fastest way
possible. For the company however it means that there is infrastructure
being paid for, that is not used intensively. Under- and over-provisioning is
described by Lim et al. [3] and Armbrust et al. [4].

There are three important concepts when providing a SaaS solution.
These concepts have resources in common, the hardware provides resources,
software uses resources based on where the orchestrator allocates it.

Software Software requires resources to run. The performance of the soft-
ware depends on the available resources and how efficient the software
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uses them.

Hardware The hardware provides resources to the system on which the
software is hosted. The cost of hosting software comes from the hard-
ware.

Orchestrator The orchestrator handles the allocation of software on the
hardware. Trying to give the software the resources it needs.

A common practise for creating an infrastructure is adding servers on the
fly, using the current performance metrics and some insight into projected
growth. Such an advice is given by Intel in a white paper by Cahal and
Mailman [5], which is using Compound Annual Growth Rate to size the
servers for the coming four years. There are cases however, when a new
product is launched of which the performance is not yet known. This is
not a problem when the load gradually scales up in usage. But when it is
a new version with a completely new architecture (so not an update of the
software but a replacement), there will be a large number of clients instantly
on this new platform. The architectural changes come with a new kind of
performance, it will behave in a different way than the other architecture to
the usage of the system. This makes the old data no longer relevant, as it
does not give us information about how the new architecture will behave.

Good examples of misjudgements in new software are found in the online
gaming industry, as on launch day there can be real rushes for big games.
The problems become visible fast and to a lot of people, as it is bothering a
lot of individual customers. There have been numerous launches where the
servers were not up to the task at hand, resulting in slow connections, large
queues, random disconnects or even no availability at all. Examples of this
are the launch of the original World of Warcraft game, where players were
placed into a queue to join a server. The time you had to wait to play could
run up to multiple hours, an experience of this is described by Lopez [6]. The
start of Simcity not only made it a long wait to play the game, but also had
impact on other games by the same company. The whole game library of
EA Games (Origin) was not responsive, influencing the experience of players
that wanted to play another EA game than Simcity, this failure is described
on Ars Technica [7]. As a final example, Pokémon Go, an application for on
a mobile device that uses the environment to play, there was such a large
interest that the first couple of days that the servers could not handle the
load, giving players the message to come back later as explained on the news-
site Polygon [8]. Obviously customers are put off by these kind of events,
and are likely to think twice before purchasing another game or even start
discouraging other potential buyers. To avoid getting bad reviews and a
decline in business, it is paramount to have the infrastructure ready.

Creating a stable and high performance configuration while keeping the
costs of the infrastructure low, is a Multi Objective Optimization problem.
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These types of problems are explained in multiple forms by Ehrgott [9], each
form has one thing in common which is the multi objective nature of the
problem. Examples of objectives in a multi objective optimization could be
durability of a product versus the production costs, the speed of a plane
versus the fuel consumption of the flight or in the software case, the cost
of the hardware and the duration a user needs to wait for a response. The
objectives are working against each other, if we go for cheaper hardware the
user needs to wait longer as there are less resources available in the system.
There is no impartial way to combine them into a single objective, we can
only give a subjective priority. Because of this it is impossible to give an
objective single optimal configuration without requiring a precise weighing
of objectives by the decision maker or turning all but one of the objectives in
to a constraint. A solution to this problem is called a Pareto front, instead
of giving one answer, the decision maker is presented with multiple answers
all laying on the Pareto front. A solution lays on the Pareto front if and
only if it can not improve in any of the objectives while not worsening in any
of the other objectives. According to Goel et al. [10] as well as Loghmani
and Ghoddosian [11] this concept is used to make it possible for the decision
maker to come in as the last step in a multi objective optimization, pushing
the introduction of subjective priority to the end.

The research was conducted at AFAS Software, a Dutch software com-
pany. They are developing a new ERP application to replace their current
product. They would like insight into the behaviour of the application based
on the infrastructure on which it is deployed. This is one of the aspects which
is being researched at AFAS in connection with Utrecht University and Vrije
Universiteit Amsterdam. These two universities together with AFAS are col-
laborating in the AMUSE research project, which looks at software compo-
sition, configuration, deployment and monitoring in combination with cloud
and generated software.

1.1 Problem Statement

We have an unproven system in terms of performance and scaling. We
want to be prepared with an infrastructure that can handle the load of
the application. We do not have insight in how the configuration of the
infrastructure will impact the performance of the application. There is no
documented way of getting such an insight on which we can base decisions.
This problem leads to the following research question.

How to guide a company to create a fitting configuration
of hardware and orchestrator for hosting new cloud-based
software?

From the research question, the sub questions below followed to make it
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possible to help a company with such a decision.

1. What is configurable on hardware and orchestrator level?

Before we can start searching for candidate configurations we need to
look at what is actually possible or useful. We need to explore what parts of
the hardware and orchestrator can be adapted to our needs. But also what
would impact our performance, you could configure your car in a different
colour, however that would not make it faster.

2. How to traverse the search space to get candidate configurations?

We need a process to search through all possible candidate configura-
tions. As we are guiding the company we need to present options that are
interesting, these would be the configurations that are Pareto optimal. As
these would make up a set of solutions that are in the mathematical sense
the best. These could then be used in a trade-off.

3. How to mitigate the cost of an evaluation?

As we are searching through the configurations we need to evaluate how
the configuration behaves. In the case of software this would mean creating
the infrastructure and simulating users to obtain measurements. This can
take a lot of time and money, which is something we would like to avoid.
This is why we look at other ways to gain this information besides just doing
the test.

4. How to present the decision maker with Pareto optimal solutions?

The Pareto front contains multiple options that require a manual trade
off, we need to make the possibilities clear to the person making the decision.
This is not necessarily a technical person, meaning we need to present the
data in an understandable format.

1.2 Solution Structure

First we determined what should be part of the configuration, in the Next
case we used 13 dimensions. Each dimension covers a parameter in either
hardware or orchestrator. With the help of a sampling design we determined
65 different combinations, which cover the configuration space evenly. These
65 samples are tested in a testing environment, by building a cluster of
virtual machines with the settings provided by the sample. We then ran four
different test scenarios (Duration, type of input, failures) on each sample,
this was done by running a load on the application. In two scenarios we
test the performance of the configuration. In the other two scenarios we
tested the robustness of the application by stress testing, this was done by
inducing failures in the infrastructure.
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We used the output from these test samples to create heuristics that will
approximate the output variables. We tried several types of heuristics, they
were validated by testing additional samples and comparing the output from
reality with the output from the heuristic. The heuristic that approximated
the reality the best was used in the algorithm and is static in the rest of the
process. The heuristics made it possible to quickly evaluate the output of a
new (untested) configuration without really testing it. This enabled the use
of a genetic algorithm to generate an approximation of the Pareto front.

1.3 Thesis Structure

In Section 2 we provide background information and context to the prob-
lem. Sections 3 through 7 contain the minimal information about the case,
to keep the approach and case separated. In Section 3 we look into the
possibilities with configurations, what is of influence on the performance
and costs. In Section 4 we look at how to traverse the search space of all
possible configurations. After this we look at how to keep the evaluation
of a configuration manageable and how to complete it in a reasonable time
with the help of approximations in Sections 5 and 6. Then in Section 7 we
look at ways to present the resulting data in a way that the decision maker
can actually use it. In Section 8 we present the execution of the approach
with the case study company AFAS. We present the results of this case in
Section 9. We close off with the discussion and the conclusion.
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2 Research Context

This section gives context to the research, what and who the key components
and parties of this research are.

2.1 AFAS Software

AFAS1 is a Dutch vendor of ERP software. The privately held company
currently employs over 350 people and annually generates ¤100 million of
revenue. AFAS currently delivers a fully integrated ERP suite which is
used daily by more than 1.000.000 professional users of more than 10.000
customers.

2.2 Next

The ERP software that will succeed the current product is currently in
development and is called Next. The software is generated based on a model
of the business. In this model only business terms need to be used and no
software specific definitions. The application is fully derived from this model
and is tailored to the business. For this research the whole generation step
is not really relevant, as we are interested in the deployment and operational
side of it. What is relevant is the structure or architecture of the application.
There are two key concepts used in the application, microservices and CQRS.
The concept of microservices means the application is divided in smaller
parts that work together as a whole. The division can be done in different
ways, the important part is that each microservice is responsible for his own
task. For example if you have a video streaming website, the searching can
be done in a different service than the streaming of a video itself. CQRS
is an acronym for Command Query Responsibility Separation, this pattern
is based on the notion that the data should not change when someone is
looking at it as described by Dahan [12]. If you would look at the traditional
CRUD (Create, Read, Update, Delete) data model it can be divided in two
types, data altering operations which are the create, update and delete. The
other type is read, which only retrieves the data but cannot change it. In
CQRS the read operation is done by the query side and the data altering
operations, CUD, are handled on the command side.

In the CQRS framework there are three types of messages that convey
information in the system.

Query Queries are used to view the data that is in the application, it
is a request for data. They are used to get the information that will be
displayed for the user. This can be in the form of an instance, information
of one person, or an entire set, a table of all persons. But it is not limited

1http://afas.nl
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to database tables, it can also be another type of file such as an invoice in
pdf format. One important thing a query can not do in a CQRS framework
is alter the data, queries are read-only.

Command A command is issued when the data of the application needs
to be altered. For example adding a person because there is a new employee.
After entering the data in the browser it is sent to the server as a command.
The command handler verifies whether all required data is in the command
and whether any constraints are violated. If it is accepted the browser/user
gets confirmation, otherwise an error is returned. It does however not return
data itself, as that is the job of the query side, commands can be seen as
write-only. The command handler also needs to notify the rest of the system,
this is done by sending an event.

Event Events are the internal messages keeping everything updated. The
moment that the command handler accepts the command, some data in the
system has changed. This event needs to propagate through the system to
make sure the query side also knows the latest update of the data. The
event can be sent to multiple event handlers, as a change can be relevant
for multiple components. The event handlers then update the data store on
which the queries are executed. This can be a simple database or as stated
before a file, if the address of a company changes it should also change on
the invoices that are mailed to that company.

Figure 1: Simplified version of the CQRS framework with the flow of the
messages.

Figure 1 shows a simple version of the CQRS framework. Because of
the separation it does mean there can be a delay in accepting a change on
the command side and being able to show that change to the user, on the
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query side. With this architecture we have three locations in which we can
measure how the system is performing, commands, events and queries. For
each command, event and query we will log the time it was sent and when it
was completed, giving us the processing time of each of them. The logging of
events contains more information as they have a waiting time as well. There
is a queue between the command handler and the event handler, which
makes it possible for the command handler to keep accepting commands at
a fast pace. The queue dispatcher makes sure the events actually get to the
event handlers that need the new information.

2.3 Service Fabric

Service Fabric is a product from Microsoft, a product that is available on
Azure, the cloud platform of Microsoft, but is also available to be hosted
elsewhere. This technology was being used internally at Microsoft for some
time and at this point they are making it a public technology. Examples of
services that run on the internal version are, Bing, Cortana, Azure SQL and
Halo. AFAS is one of the early adopters of the program. Service fabric is an
Infrastructure as a Service (IaaS) solution with abstractions and intelligence,
it also contains an orchestrator. Orchestrators make use of machines called
nodes, these can have different characteristics like number of cores and size of
RAM. The concept of orchestrator relies on having multiple nodes(machines)
in a cluster. On these nodes multiple smaller applications or services are
being run.

Services are a small part of a bigger application with a public API (Appli-
cation Program Interface, a set of subroutine definitions) for communication.
A service can be partitioned to make load balancing possible, meaning re-
quests within a certain key range get mapped to a partition. Partitions each
do the same work but for different data. Each partition is also replicated to
make high availability and no data loss possible. So of each partition there
are multiple replicas in the cluster, the primary replica handles the requests
and updates the secondaries. The secondaries exist to make sure no data
gets lost in the case of a failure and to quickly fail over in case the primary
goes down. In Figure 2 on the next page an overview of a service is depicted.
An important thing to remember is that even though it is now shown as one
big component, in reality each replica can be on a different machine. Each
service is distributed through the whole cluster.

Actors are an even smaller entity, they are isolated units of data and
computing. An actor handles all the computation and data for one specific
object/task. For example it handles all the data regarding one product type
in the system, then for each individual product type an actor is spawned.
Multiple actors are inside a partition of a service and are spawned when
necessary. To summarize, these concepts are described below.

Service In the microservice architecture, an application consists of multiple
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Figure 2: Schematic overview of a service in Service Fabric.

smaller services. They can be stateless or stateful. Stateful services
require replication, to make sure the state is never lost. Stateless
services, do not use state for their computation, an example could be
a service that multiplies two numbers. It gets the numbers and returns
the answer but it does not retain any information. Stateless services
can still be replicated to make it possible to load balance over multiple
machines.

Partition Stateful services are divided into partitions, either by name or
by a range of identifiers. This helps keeping the state smaller per
partition, therefore a partition is easier to move.

Replica Partitions have multiple copies called replicas, one of these copies
is the primary and handles the computation. The secondaries keep
their state the same as the primary. So in the case that the primary
becomes unavailable the secondaries can take over immediately.

Actor Actors are independent objects that do the computation for only
one identifier. They are created on the fly in a stateful service when
required.

Service Fabric has its own services running on the cluster, the most rele-
vant to this research are the failover manager and the resource balancer. The
failover manager tries to ensure availability, if a service fails it will bring up
another copy. Often this is done by having secondary replicas already run-
ning and in-sync with the primary on different nodes. The resource balancer
tries to balance all services that are run on the cluster. This system takes
multiple aspects into consideration, standard things like capacity and load.
But also placement constraints like node type or geographical placement.

The final thing the resource balancer considers are fault and upgrade
domains, it tries to place replicas of the same service in different domains.
The fault domains indicate possible places of a coordinated failure, if you can
place replicas in different domains the chance all replicas will go down at the
same time is reduced. Fault domains are determined by the infrastructure
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and are defined in a hierarchy, from data center to blades in a rack. The
upgrade domains are determined by a policy. It is used for rolling out
updates without losing availability, it updates all the nodes in an upgrade
domain at the same time. By default a policy is chosen which spreads
upgrade domains over multiple fault domains. The resource balancer tries to
get good service placement using a local search algorithm based on simulated
annealing. This algorithm is executed when the cluster is out of balance, the
load ratio exceeds a threshold. The load ratio is the load of the node with
the heaviest load divided by the load of the node with the lowest load [13,14].

2.4 AMUSE

The AMUSE research project2 is an academic collaboration between Utrecht
University, Vrije Universiteit Amsterdam, and AFAS Software to address
software composition, configuration, deployment and monitoring on hetero-
geneous cloud ecosystems through ontological enterprise modelling.

2http://amuse-project.org
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3 Configurations

We want to optimize the infrastructure that will run the software in such
a way that the company is content. To be able to optimize the infrastruc-
ture we need to look at what can we change to make an impact on the
infrastructure. The configuration will contain parameters that are relevant
to the infrastructure and the performance of the software. Parameters that
have an impact, can be on one of two levels. They can be on the hardware
level, the physical resources provisioned to the system. Or they can be on
the orchestrator level, these parameters influence how the orchestrator be-
haves. All these parameters come together in the infrastructure and make
it possible to run the application. They influence the performance of the
application and how well it can deal with failures in the system. We want
to configure these parameters to get the performance we want for a price
we can afford. In every environment you will encounter different possible
parameters to tweak. It is important to carefully choose which of these pa-
rameters will make up your configuration. If you pick too many to configure
it becomes difficult to find the impact of different factors, this is due to the
Curse of Dimensionality described by Bellman [15]. In order to get a statis-
tically reliable result, the amount of data needed to support the result grows
rapidly (often exponentially) with the dimensionality. So you will want to
choose those parameters which are relevant to what you want to achieve
and not make every parameter part of the configuration as it will diminish
the quality of the optimization. This choice can be made based on domain
expert knowledge or results of other experiments.

3.1 Hardware Level

The hardware level has a lot of different parts which could impact the over-
all performance of the system. Examples of parts that influence the per-
formance are, the processor, RAM and disks, as these are being the main
influences on processing time and the access time of the system. However
there are a lot more choices which could impact performance, such as graph-
ical cards for heavy parallelization, network interfaces for more throughput
or connectivity. Another thing that can vary is the cluster size, how many
servers are we using. Even outside of the main servers you can change parts
of the systems configuration, think of things like hardware firewalls, routers
and cables.

The bare machines approach could be a problem, either all the compo-
nents need to be swapped for each test that needs to be done or have all the
configurations completely in the first place. As components cost money and
if you do not have a use for them after the test it is a costly way to do your
testing. Especially if you need multiple machines for a configuration. To test
multiple configurations you would need to update the machines in between
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each test, requiring manual attention. Therefore it is useful to make this
level a bit more abstract, moving away from these properties that come with
physical machines. This can be done by using a virtual machine approach,
Virtual Machines (VMs) can be given certain properties to simulate different
types of real machines, while using the same hardware to host those VMs.
This also enables us to not have the hardware ourselves at all. We can now
move towards the cloud, in the cloud VMs are the way to rent server space.
The cloud provider has all kinds of hardware available as there are a lot
users. This makes it easy to support different types of VMs and to create
them quickly. Instead of having to rebuild the hardware for each test you
just need to wait 15 minutes and all VMs are ready to go. If you pick the
types in a way such that they represent differences in the components you
are interested in, you can deduce what your hardware configuration should
look like.

This does require a footnote, with virtual machines you always have
a little bit of overhead. The (physical) hosting machine uses some of the
resources to make the virtual machine run. Another thing that could impact
the performance is noisy neighbour, it is possible to run multiple VMs on
one physical machine. If they are all running full power they can affect each
others performance.

3.2 Orchestrator Level

The orchestrator level is very specific, it fully depends on what the orches-
trator exposes to the user. This differs between available and home-made
orchestrators. To orchestrate means to arrange, organize or build up for spe-
cial or maximum effect. In the context of software deployment this means, it
arranges placement of the microservices on the servers, replicating the data,
updating of the application, etc.

We will look at Service Fabric from Microsoft as this is used at AFAS.
Other orchestrators might have different but in concept similar options, as
in concept they want to achieve the same things. Service Fabric uses metrics
to indicate how much load there is on a node. The default metrics that are
tracked are.

Count The number of replicas on a node.

Primary count The number of primary replicas on a node.

Replica count The number of stateful replicas on a node

The reason for tracking the stateful services is because these require stor-
age space, while stateless replicas do not and are therefore less interesting
to track. The primaries are tracked to make the system more robust, by
spreading the primaries over multiple nodes the fail over can be managed
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easier as fewer primaries will be hit at the same time. These default met-
rics can be extended with custom metrics, which can also be dynamically
reported. The microservices that run on Service Fabric can report load on
their own. This can be based on how many items there are in the queue
or how many events have been handled in a certain time period. We can
report different types of resources, however performance counters such as
CPU-time or memory used is not available [16]. This is due to the structure
of Service Fabric, it aggregates multiple partitions and replica’s in the same
process and all performance counters work on the level of process.

Service Fabric offers a lot of parameters that can be tweaked. We are
interested in the resource balancing part of these parameters. The param-
eters are extracted from the online Microsoft documentation written by
Snider [13, 14, 17]. There are numerous more settings but they do not have
an impact on the resource balancing and that is why they are left out. In
the following list the most options have an interaction with the metrics that
were just explained above, as these indicate how much work is being done
in a microservice.

Replication count How many replications of the microservice are spawned.
With more replica’s you are able to handle more failure. It takes more
space and computation to keep them all up.

Partition count How many partitions the microservice is split into. Each
partition handles a part of the input. This is based on names or hash
ranges.

Balancing Weight How important is a resource metric for a microservice.
A service might have a lot of state and rates metrics regarding to mem-
ory/space higher, while another service is computationally intensive
but does not use space and is therefore not interested in metrics re-
garding to space. These weights are given on an ordinal scale of; Zero,
Low, Medium, High. The resource balancer will use these weights to
determine where a service will be placed, paying the most attention to
the resource labelled with High for that service.

Balancing Thresholds If a metric ratio, the highest load on a node di-
vided by the lowest load on a node for a specific metric, exceeds the
balancing threshold for that metric, Service Fabric will start rebalanc-
ing the microservices over the cluster.

Activity Thresholds This is an extra threshold requirement which can be
set. In this case the highest load should exceed the activity threshold
otherwise the rebalancing will not trigger. This is to make sure a high
ratio will not trigger rebalancing when the load is still low.
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Capacity How much load of a resource metric can a node hold. For example
a node can handle up toX events per second. The balancer will respect
these constraints and will roll-back application upgrades if necessary.

Buffer ratio This can specify a buffer in the capacity, this buffer can only
be used by the balancer if there are node failures or maintenance.

The first two parameters are per microservice. The balancing weights are
defined for combinations of microservice and resource metric. These three
parameters are all based inside one application, so if there are multiple
application instances on the same cluster these parameters can differ. The
rest of the settings are per resource metric and are therefore not bound to
an application, as multiple applications can use the same resource metrics.
So these are Service Fabric cluster wide parameters.

If you would use all these parameters at the same time the number of
dimensions in a configuration gets very large. This negatively affects the
results of the optimization, as it becomes harder to extract which parame-
ter influences the results. The choice for using particular parameters as a
dimension in the configuration should follow the idea of impact, which of the
parameters are expected to influence the infrastructure in a way it affects
the objectives. In our case we use virtual machines, balancing weights and
balancing thresholds. In total the configuration consists of 13 dimensions,
the specification will be handled in Section 8 where the full case is described.
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4 Optimization

The problem we are trying to optimize has multiple objectives. In the SaaS
industry this often means cost versus performance, but there are more pos-
sible objectives such as security, scalability or stability. In our case we will
have four objectives: costs, command performance, event performance and
event robustness. A configuration consists of 13 dimensions, each value
represents a parameter for either hardware or orchestrator the precise for-
mulation of the configuration and objectives will be given in Section 8. To
make this more abstract, we say F is a set of objective functions. For the
sake of simplicity we assume that all objective functions need to be mini-
mized, you can easily swap between maximizing and minimizing by adding a
minus sign in front of the function. We can now formulate the optimization
problem.

minx fj(x) ∈ F
s.t.

∀i li ≤ xi ≤ ui
optionally xi ∈ Z

Minimizing all objective functions in F at the same time by finding the opti-
mal configuration x, while the values of xi are bound with lower li and upper
ui bounds. Some parts of the configuration are categorical, meaning they
can not be represented in rational numbers but require to be integer(xi ∈ Z).
There are no other constraints on the configuration. Minimizing all objec-
tive functions at the same time is not always possible, if one of the objectives
gets better another can get worse. The example in software is the costs of
hosting the software versus the performance, it is not possible to have both
at their respective minimals with the same configuration.

4.1 Reducing to Single Objective

A possible solution to multi objective optimization is reducing it to a single
objective optimization. This can be done by scalar or weighted sum of all the
objectives. This combines all the objectives into a new objective function.
This gives a weight to each of the objectives, meaning the trade-off between
objectives is now explicitly known. This makes it possible to end up with a
single optimal configuration. The optimization formulation then becomes.

minx

|F |∑
j=1

cj ∗ fj(x)

s.t.

∀i li ≤ xi ≤ ui
optionally xi ∈ Z
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x x′ x′′

f1 2 3 1
f2 2 2 3

Table 1: x and x′′ are non-dominated, x′ is dominated by x.

The objective is now a weighted sum of all original objectives, the constraints
did not change. As we are now minimizing for just one value there also
exists one minimum value. Even though multiple configurations could have
the minimum value, returning only one of them is sufficient as they are all
equal in the optimal sense.

The only problem that remains in this approach is how to weigh each of
the objectives. It is really difficult to determine these weights, being abstract
weights it is hard to imagine the impact on the solution. Furthermore the
moment you start weighing the objectives is the moment the optimization
will return a subjective optimal solution. If someone else has other priorities
for the objectives, there is another optimal solution. This would mean you
need to re-run the optimization.

Another solution that also suffers from the subjectivity argument is the
(epsilon)ε-constraint method. This method makes all objectives except one
into a constraint, which results that those objectives can no longer be larger
than a certain epsilon. This again means you need to give these restrictions
early in the process, and re-run if you want to relax or tighten up one of
the constraints. Also if you are able to do this, you should have started
with a single objective optimization as apparently the other objectives can
be represented as a constraint. This notion of ε-constraints can be used in
another way which is described below.

4.2 Pareto Optimality

There exists a solution that enables us to make the subjective decision after
the optimizing step. This is achieved by generating all possible ”optimal” so-
lutions. All these solutions together are called the Pareto-front because they
are Pareto optimal or efficient, named after an economist Vilfredo Pareto
who defined the concept as explained by Ehrgott [18]. A solution is Pareto
optimal if it is non-dominated. To know what non-dominated means we first
need to know what dominated means.

Solution x is dominating x′ if and only if x is equal or better than x′ in
all objectives and there is at least one objective where x is strictly better.
The mathematical notation of this concept is:

x � x′ ⇔ ∀f ∈ F f(x) ≤ f(x′) ∧ ∃f ∈ F f(x) < f(x′)

Table 1 shows examples of (non-)dominance. x is better than or equal to x′

in both objectives and strictly better in objective 1, so x dominates x′. x′′
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Figure 3: Pareto front example, (3,9) dominates the rectangular area.

does not dominate and does not get dominated because it is best in objective
1 and worst in objective 2. Now we know what dominance is we can define
the Pareto front mathematically.

P (X) = {x′ ∈ X : {x′′ ∈ X : x′′ � x′} = ∅}

The equation above states that a solution is only part of the Pareto front
if there does not exist a solution that dominates it, by showing that the
set of dominators for x′ is empty. If we take Table 1 as the solution space,
P (X) would contain x and x′′, as both these solutions stay non-dominated.
Another example is given in Figure 3, all points that lay on the dashed
line between feasible and infeasible would be part of the Pareto front. It
also shows how one solution dominates a part of the solution space. If a
point would lay on the vertical or horizontal line of the dominated square it
would mean that it is equal in one of the objectives but worse in the other
objective. In reality the boundary between infeasible and feasible does not
always follow such a clean curve, it is entirely possible to have a jagged
Pareto front.

Creating the Pareto front by adaptations of (Integer) Linear Programs
has been studied extensively. Such as ε-constraint method by Haimes [19]
which is capable of generating the entire Pareto front. This is done by iterat-
ing through each combination of epsilons, solving to optimality and save that
optimal point to the Pareto front. Generating the entire front is expensive so
more research has been done into generating an approximation or subset of
the Pareto front. Examples of this are scalarization described by Veerapen
et al. [20], multi-level programming described by Bialas and Karwan [21] or
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goal programming described by Charnes and Cooper [22]. These methods
create a subset of the front by smoothing out the jaggedness of the front,
they can only find the peak values of the jagged teeth. Methods to generate
an approximation of the Pareto front are evolutionary algorithms. Exam-
ples of this are Pareto Archived Evolution Strategy (PAES) by Knowles and
Corne [23] or Non-dominated Sorting Genetic Algorithm II (NSGA-II) by
Deb et al. [24, 25].

4.3 Non-dominated Sorting Genetic Algorithm

We have chosen to use NSGA-II as the optimizing algorithm. In the choice
between evolutionary algorithms and linear programs, we have chosen for
an evolutionary algorithm firstly because not all objectives can be expressed
in a linear function. As the relation between the input and the output
does not have to be linear, in the case of SaaS performance this relation
is more complex. This removes the possibility of using linear programs to
solve the problem. Besides linear programs evolutionary algorithms are used
often in multi objective optimization problems. A comparison among multi
objective evolutionary algorithms has been done by Kunkle [26], this showed
that NSGA-II is one of the most used algorithms. NSGA-II is capable to
deal with noisy objectives and is able to find the solutions on the outlying
edges of the Pareto front. For making a trade-off we want a wide spread
of solutions, NSGA-II provides this by finding the outlying solutions. The
sorting of solutions makes this algorithm capable of finding a broad range of
solutions. It uses the same domination property as the Pareto front, to rank
solutions but also thinks about what evolutionary algorithms need, namely
variation in the population. How this works is explained in the rest of this
section, it follows the structure of NSGA-II that is described in Algorithm 1.

Seed Population;
while Stop criterion not reached do

Select Parents;
Create Children; /* Crossover and Mutation */

Evaluate Children;
Rank Population;
Reduce Population; /* Survival of the fittest */

end
Return best solution;

Algorithm 1: General structure of Non-dominated Sorting Genetic Al-
gorithm.
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4.3.1 Seeding population

In genetic algorithms we use names from biological origin, the set of solu-
tions in the algorithm is called a population. A solution consists of n values,
one for each of the dimensions in the configuration. Each iteration of the
algorithm is called a generation, the old solutions become parents and create
new solutions, children. To start the algorithm we need an initial popula-
tion. The solutions in this population are required to be diverse, because
of the inheritance of the generations. If all starting solutions are equal the
children will resemble the parents greatly, except for mutations. The start-
ing solutions can be chosen in various ways as long as the solutions are not
identical, per default they are randomly generated.

4.3.2 Creating Children

In NSGA-II we use tournament selection for the parents, which means we
pick two solutions at random and the better one becomes a parent. We will
define shortly what a solution makes better than another, in 4.3.3. This is
twice which results in two parents that have been selected, these are used
to create two children. These children are created by crossover, in our case
one-point crossover. This crossover picks a random spot in the solutions
and the children each get the start of the solution from one parent and the
last part from the other parent. The child solutions can have a mutation,
which manifests as a change in one small part of the solution. This process
is repeated until there are equally many old solutions as new solutions. The
new/child solutions need to be evaluated for each of the objectives.

4.3.3 Ranking the population

After creating and evaluating the child solutions we get a NSGA specific step,
determining which solutions are better than the other. The first distinction
is the dominance rank, the Pareto front to the solutions or non-dominated set
of solutions gets the best dominance rank. Then excluding those solutions
we look for the next non-dominated set, these get the next dominance rank.
Repeating this until all solutions have a rank, this way we have an ordering
which follows straight from the property of dominance. This is however
a long running process with a running time of O(MN2), where M is the
number of objectives and N the number of solutions. An improvement on
this running time was made by D’Souza et al. [27], their approach reduced
the running time to O(MN log(N)). This is done by sorting each objective
independently. Than taking the sum of the positions in each sorted list for a
solution. Each solution with the same sum is on the same dominance rank.
An example of dominance ranking is given in Figure 4 on the following page.

So we now can calculate different ranks, however we have yet to make a
distinction between solutions that are in the same rank. Since we can not

19



Figure 4: Example of dominance ranks.

differentiate in optimality as we do not have priorities or weights, we will sort
the solutions in a way that is suitable for genetic algorithms. An important
part in genetic algorithms is variation in the population, if the solutions in
the population are all nearly the same it is hard to get new solutions we
have not yet seen before. But if we have some variation in the population
it is easy to find new solutions by combining two old solutions. This means
that more of the possible configurations are being considered during the
search. The distinction between solutions that are in the same rank will
be uniqueness, this is measured by taking the crowding distance. Similar
solutions are close together, but when a solution is unique there will be less
solutions crowding around him. So we want to prefer solutions that have
a large crowding distance. This distance is calculated by taking the sum
of the normalized Euclidean distances between itself and all neighbouring
solutions in the same dominance rank. It is a neighbour if it is the next
or previous best solution in one dimension. If either of those do not exists
it, the solution gets a very high distance because it is an extreme value of
that dimension. So we can now sort the solutions within a rank and get an
overall ordering in solutions. Using this ordering we can determine which
solution is better during the selection of parents and when the population
is reduced in size.

To give an example of the crowding distance calculation we use an opti-
mization problem with two objectives. The lowest and highest found values
in the population determine the range which will be used to normalize the
dimensions.

range r(f1) = 8

range r(f2) = 16

For each dimension there are two neighbours on the dominance rank or one
if the solution is on the extrema of that dimension, in rare occasions there is
a rank with only one solution which leaves no neighbours. In this example
we use two neighbours per dimension, meaning we have four neighbouring

20



Solution f1(x) f2(x) ||f1(x1)−f1(xi)||
r(f1)

||f2(x1)−f2(xi)||
r(f2)

x1 4 6 - -
x2 3 16 0.125 0.625
x3 5 2 0.125 0.125
x4 1 5 0.375 0.0625
x5 7 7 0.375 0.0625

Table 2: Crowding distance example data.

solutions. The solution for which the crowding distance is being calculated
is x1, this solution and its neighbours and their respective objective values
are shown in Table 2. In the last two columns the normalized distance per
dimension is shown. As example this is how the distance in dimension f1(x)

is calculated between solution x1 and solution x2,
||f1(x1)−f1(x2)||

r(f1)
= ||4−3||

8 =
1
8 = 0.125. The total crowding distance for x1 is the sum of all the values in
both columns, which results in a crowding distance of 1.875. In the case that
a neighbour is missing we add n to the crowding distance, where n is the
number of dimensions. This ensures that the crowding distance of extreme
points is always larger than points in the middle of the population.

4.3.4 Reducing the population

For reducing the population NSGA-II uses an elitist scheme as explained by
Deb [25], which means it will pick the best half of the population (old and
new solutions combined) and toss the rest away. With this approach the
fronts are preserved as the first sorting criteria is the dominance rank. Only
one dominance rank can be chopped up, some of the solutions from this
rank will continue in the population and some will be removed. This is done
based on the crowding distance, preserving variation in the population.

4.3.5 Stopping the algorithm

As a stopping criterion we have multiple options. We can set a fixed amount
of time, when this is elapsed we stop the algorithm. Another option is
running the algorithm for a fixed number of generations. The last option
is a number of generations without improvement in fitness of the optimal
solution, there is an adoption of this criterion for multi objective which
follows from an additional step in the algorithm explained below. Obviously
it is also possible to set multiple stopping criterion, so when either of them
is met the algorithm finishes.
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4.3.6 Archive extension

The size of the Pareto front can exceed the population size of the genetic al-
gorithm. This means it is possible to throw away candidate Pareto optimal
solutions when reducing the population. That is why there have been exten-
sions of NSGA-II which include archiving, this has been described by Goel et
al. [10] and Hassan et al. [28]. Each generation we archive the non-dominated
set of the population, which are the solutions in the first dominance rank.
This way we can be sure we do not lose any Pareto optimal solutions. The
only thing is that newly added solutions could be dominating old solutions
in the archive, so these old solutions will need to be removed. The stopping
criterion of not improving the fitness in a certain amount of generations is
based on this archive. Instead of improving the fitness we look at improve-
ment of the archive, when a solution is added to the archive we see this as an
improvement of the fitness of the Pareto front. When the stopping criterion
is reached the algorithm stops and returns the full archive. Figure 5 shows
the flow of the Non-dominated Sorting Genetic Algorithm with the archive
extension.

Figure 5: Schematic flow of the optimization.

4.3.7 Evaluation of the solutions

A problem with genetic algorithms is the number of evaluations. In each
generation all the new solutions need to be evaluated, which means hun-
dreds of thousands of evaluations during the entire optimization. Calculat-
ing the price of a given configuration is easy, there is a price per machine
and you know how many machines there are in the configuration. There is
no problem with doing these calculations for every single configuration. But
evaluating performance of a configuration is much more time consuming,
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you would need to run the entire program with a workload and collect the
data to analyse. Even if this could be done in a couple of minutes, which
realistically we can not, this would result in a running time in the orders of
years for the optimization. To mitigate the evaluation time we will use ap-
proximation functions or heuristics, more on this in Section 6. Using these
heuristics we are able to evaluate at a much quicker rate and making it
feasible to run the genetic algorithm. Heuristics require training data, you
need examples to be able to approximate. The training should be done with
a good representation of the entire solution space, this will be explored in
the next section.
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5 Sampling

We need to reduce the evaluation time of a configuration to make the genetic
algorithm run in a feasible time. This will be done with the help of heuris-
tics. To make these heuristics accurate we need an accurate view of the
entire configuration space i.e. all of the possible combinations of hardware
and orchestrator settings. This is done by sampling the possible configura-
tions, each sample will be evaluated with the original method, simulating
user activity on the system, so we can use its outcome to train the heuristic.
To get the most accurate heuristic we should sample each individual config-
uration, but that would defeat the purpose of sampling as it would become a
brute force calculation. We want to save time and money by this approach,
each sample takes just that, time and money. We want to take few samples
but these samples should accurately represent all possible configurations.

5.1 Sampling Strategy

To make sure the configuration space is sampled correctly we need a sam-
pling strategy, a way to pick the configurations to use. The most basic
strategy is random sampling, for each dimension of the configuration taking
a random value between a lower and upper bound. Each sample is taken
without knowledge of each other meaning there is no guarantee on the spread
of the samples. This strategy can give you all kinds of results but there is
no certainty whether the samples represent the entire configuration space,
statistically the samples will avoid the edges of the configuration space, as
it is unlikely to randomize all dimensions in their respective extremes.

To get a more representative view of a sampling space Neyman [29] cre-
ated a strategy called stratified sampling. With this strategy the sample
space is split up, creating mutually exclusive subspaces called strata. Then
you can use random sampling within such a strata. By splitting up the
sample space, it is certain that all possible subspaces are reached and rep-
resented in the data which is used for the heuristic. In this case you have
to sample each subspace, which means the subspaces become large or the
number of samples increases. To decrease the number of samples, McKay
et al. [30] thought of a new strategy called Latin hypercube sampling. This
takes the same stratification of the configuration space, but now for each
sample the subregion is remembered and the future samples can not be in
the same subregion that shares the same range in one of its dimensions.
So each sample restricts in which subregions the following samples can be
taken.
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Figure 6: Solution to the queens problem.

5.2 Orthogonal Design

Orthogonal Latin hypercube (OLH) is the next step in this direction which
was developed by Ye [31]. This way of creating a sampling design requires to
determine all samples at once. Because of the orthogonal property, each pair
of samples should be uncorrelated, with the previous method you could end
up with correlating samples as not every sample was determined beforehand.
To illustrate how orthogonality works, we give a two dimensional example
in the form of a game. There is a challenge with a chess board (8x8), by
placing eight queens on the board. However those eight queens may not be
capable of capturing each other. This means they can not be on the same
row, column or diagonal. A solution to the problem, there are multiple, is
shown in Figure 6. If you would use this placement as a basis for sampling,
the samples are orthogonal.

The problem with OLHs is that they are hard to construct for higher
dimensions (larger than 7) and do not have a guarantee to fill the configura-
tion space equally, it is possible to have large spaces without samples. That
is why Cioppa and Lucas [32] relaxed the orthogonality property and added
a space filling property. Creating the so called space filling nearly orthogonal
Latin hypercube(NOHL), this is done using two space filling measurements
Euclidean maximin distance and modified L2 discrepancy. To keep the Latin
hypercube nearly orthogonal they set a maximum on the pairwise correla-
tion between samples, which may not be exceeded. Based on this research
Sanchez [33] created a template for the best found designs for configuration
spaces up to 29 dimensions. We only need to fill in the lower and upper
bound and the number of decimals of each dimension into the template. It
then gives us the best space filling nearly orthogonal Latin hypercube for
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our problem. The number of samples that need to be taken are dependent
on the number of dimensions. The number of dimensions are rounded up to
the nearest k where:

k = m+

(
m− 1

2

)
Then the number of samples generated by the NOHL design is equal to:

n = 2m + 1

As example, for m = 6 we can cover up to k = 16 dimensions with n = 65
samples.

These sample points will be our initial samples, if necessary we can per-
mute the columns to get more sample points. This will retain the same near
orthogonality and space filling properties while giving more sample points,
according to Cioppa and Lucas [32]. Only the center sample point should
be excluded because that will be the center no matter how the columns are
permuted.

The near orthogonal Latin hypercube design fulfils the sampling proper-
ties we are looking for. It uses a low number of samples while guaranteeing
an unbiased evenly spread sampling design through the entire configuration
space. The NOHL sampling design is therefore chosen as our design to sam-
ple for the heuristic training data. These sample points will be evaluated
using simulated user activity to get the output data required to train the
heuristics.
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6 Heuristics

As explained in Section 4, we need to speed up the evaluation of a configura-
tion to make the genetic algorithm run in feasible time. To do this there are
two options, heuristics and simulation. In a simulation the real-life situation
is modelled, each step of the situation is calculated. To run a simulation a
great understanding of the process is required, as each step needs to be mod-
elled. Therefore simulation is not always possible, the inability in our case
comes from the complexity of the software and closed box nature of Service
Fabric. We are unable to model each step in the process, so simulation is
not an option for our case. Heuristics also model the real-life situation, but
it ignores each step in between. A heuristic is a model from input to output
and an approximation of what happens in the middle. As we are interested
in the output and do not have the information of all the steps of the process
we will use heuristics. In this section we take a look at a couple of different
heuristics. When using heuristics it is useful to compare multiple types as
each heuristic has its strengths and models certain types of functions. This
means that it is possible that for each output dimension you have, a different
heuristic is approximating reality the best.

6.1 Linear Regression

Linear models are the simplest models. These models assume there is a
linear correlation between the input variables (predictors) and the output
variables (responses). Meaning if you would plot it you would get a straight
line without curves or gaps. In the simplest form with only one predictor
and one response variable you get the basic formula of y = ax + b where
a determines the slope of the line and b the offset. We however have more
than one predictor in our problem, each dimension in the configuration is a
predictor. We can extend this formula to n-dimensions.

y = b+

n∑
i=1

ai ∗ xi

Training this model means we need to get the line as close as possible to
all data points at the same time. To measure how close the data points are
we use the squared sum of residuals. The residual is the difference between
the real response value and the result of the linear equation, which results
in the following formula where k is the number of samples.

SSR =

k∑
i=1

(yi −AXi + b)2

To get a line that fits the data best, the formula needs to be minimized by
changing A and b. With this model you can now, given a new point X ′

predict y′ by entering the point into the model.
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6.2 Non-linear Regression

Not every relation between the predictor and response variables is linear.
This also presents the difficult portion of creating a non-linear model, deter-
mining the shape of the formula. There are infinitely many different formulas
that possibly fit the data the best. With two or three dimensions you could
make an educated guess by looking at the plots. However when we have
more than three input dimensions, it becomes hard to create a meaningful
plot to deduce a type of function.

For our test case we use a squared function for the non-linear approach,
this includes pairwise interaction of the dimensions. As a lot of the dimen-
sions we use functionally affect each other. For example we have the number
of virtual machines and the type, the balancing weights for a microservice
or the combination of the balancing weights with the ratio threshold. By
incorporating this information in the heuristic it might give better results.

In the non-linear case, minimizing the squared sum of residuals is still
the method that is used. So we want to have results of the heuristic that
resemble the reality by changing the constants and scaling factors in the
model.

6.3 Kriging

Kriging uses the sample points themselves as the predictor and is described
by Cressie [34]. This means there is no real training involved, the data points
themselves are everything that is needed. This also means the heuristic can
be easily updated with new data points without re-training. When you
want to evaluate an unknown solution it uses a weighted average of nearby
sample points to determine the value of the unknown solution. The method
comes from geostatistics where it is used to get an estimation of the land by
sampling, originally it was used in finding the best place to mine for gold,
this was part of a Master thesis of a student called Krige after whom the
method is eventually called. The method has since then spread to other
disciplines as the approach is applicable to approximations in general. It
is a linear interpolator, as the computation is done with the neighbouring
samples. This does mean this heuristic is lacking when trying to extrapolate
solutions, which is described by Santana-Quintero et al. [35]

6.4 Neural Network

Neural networks are inspired by how our brains and neurons work, it is
described by Broomhead and Lowe [36]. There are nodes (neurons) and
arcs (synapses), the arcs connect the nodes to transfer information just like
how synapses connect neurons in our brains. Each arc has a weight which
is multiplied with the value of the source node, the target node gets all the
weighted information and puts this through an activation function. The
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Figure 7: Example of a multilayer perceptron (Neural Network).

output is then sent through the outgoing arcs to the next layer of nodes.
There are three types of nodes, the first type are the hidden nodes which
are explained above the other two are different as they deal with the input
and output of the system. The nodes are ordered in layers, there are only
arcs between two consecutive layers in the multilayer perceptron as seen in
Figure 7, in other types of neural networks this constraint is not necessary.
The first layer is not hidden but contains the input nodes, each input node
takes one of the predictor variables and sends this into the network. The last
layer contains the output nodes which give the final response variable, so in
our case the estimation of an objective. An example of this structure is given
in Figure 7, the number of nodes in each layer and the number of hidden
layers can vary. In our case we use a RBF network, which is a single hidden
layer network with radial basis functions as activation function. Radial basis
function depends on the distance from the input to a basis point or center.
The function can vary, in our case we use the most common function which
is a Gaussian function.

φ(r) = e−(εr)
2

where r = ||x− xi||

During training each of the samples is fed through the network. The result
is then used to give feedback and update the weights on the arcs and the
epsilon in the activation function. After doing this the network is ready
to use and predict new samples. For new samples the input variables are
entered into the input nodes and the result will roll out of the output node.
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6.5 Support Vector Regression

The support vector regression is based on support vector machines. The
idea starts the same as with most heuristics, we need to find a function
such that all response variables are at most ε away from the value of the
function. In this method we use the dot product of the input variables and
a vector w, which the is capturing the model. This can be formulated as an
optimization problem like this:

minimize
1

2
||w||2

s.t.

yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

Where yi is the output value, xi is the input vector. The idea is that
the training samples all lay within the high-dimensional tube which has a
radius of ε. Later this hard constraint has been softened to allow for outliers
and not create anomalies in the heuristic just to sustain those constraints.
This is done by introducing slack variables, that are also a part of the objec-
tive function. However the method now takes some steps transforming the
problem. The result is actually what gives this method the name Support
Vector, after the transformations there are a number of input data points
still relevant, the supporting vectors. These points lay on the boundary of
the ε-tube and define the form of the tube. For new points we can make a
prediction by taking a combination of these support vectors, using a kernel
function and weights that have been trained. [37,38]

6.6 Accuracy

To train the heuristics we use samples which have their input variables and
output variables known, all samples together are called the training set. The
heuristics are trained using this training set. We would like to know how
accurate a heuristic is. This is done by validating the heuristic with other
sample points, the validation set. If the data points to validate the heuristics
are equal to the original training set, the validation will favour the heuristic
that is fitting tightly to the original dataset. However this might be too
tight, resulting in erratic approximations for data points that are not close
to the original set or the training set might have included an outlying sample
which dominates the heuristic. This is called over fitting or over training
and should be avoided.

To measure how accurate the heuristics are, we use the root mean
squared deviation or RMSD. This is calculated by taking the difference
between the predicted value and the observed value. This is then squared to
make sure that negative and positive deviations do not cancel each other out
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when taking the average as well as punishing large deviations even more as
they are not acceptable. The root mean squared deviation is mathematically
defined as:

RMSD =

√∑n
j=1(ŷj − yj)2

n

All the algorithms have parameters which can be set, you could optimize
these parameters with the help of the RMSD. However this can also lead to
over fitting, this time you are actually fitting towards the validating data
set. In this research these parameters are not further investigated and the
default settings are used.

At this moment we have not yet chosen which heuristic to use. As
for each problem the type of function is different we cannot choose the
best heuristic. We will pick the heuristic which came closest to reality,
the heuristic with the best accuracy. We can only determine this after
training and testing all of the heuristics, which will be done in Section 8.
After comparing the heuristics we will use the most accurate heuristic in the
evaluation step of the optimization.
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7 Presentation

Given that we now have the tools to run the genetic algorithm, it will result
in an approximate Pareto front which can contain a lot of configurations.
So the next problem we face, the final sub research question, is to present
this data in a clear way. We want to inform the decision maker with the
different possibilities. But we need to make sure we feed the information in
such a way that he does not feel overwhelmed. The first thing we can do is,
only show the output variables and not the input variables. The trade-off
should be made based on the merits of the configuration and not on which
setting it uses to get there.

If however you are looking for more insight in the configuration and are
less interested in a decision it is more useful to analyse the configurations
themselves. For instance, are there settings converging on a specific value,
meaning that there is an optimal way to use that setting? Looking at the
configuration is more about analysing than it is about presenting the data.
In this section we look how to convey the information by presenting the
results.

7.1 Visual Presentation

Originally our data is just a table with rows for each configuration and
columns for the different output values. Humans can read tables easily,
we can find values we want to know. However it is hard to reason about
the data in the table, in the sense of patterns, trends or exceptions. It
is also hard to see the relative position of configurations, the differences
between configurations are less noticeable. Furthermore the Pareto front can
contain thousands of configurations, making a table unusable. If however
the same data is presented graphically our brains can do these things with
ease, this has been researched by Friendly [39] and Few [40]. As we have
a multi objective optimization problem we have at least two dimensions to
represent in our visualization, for instance in the case with Next we have
four dimensions. The first option to visually enhance the table is by using
colour-coding, by simply adding a gradient to the columns we are able to
spot the differences. This serves good as a first indication but is limited to
what it can achieve. The following parts will show graphical representations
of high dimensional data.

7.1.1 Scatter Plot

Scatter plots are used to display the values of the configuration in a coordi-
nate system. Where each axis represents one of the variables, the most often
used scatter plot only uses two axes, but a three dimensional scatter plot
is also possible. In the case of a three dimensional scatter plot it is useful
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Figure 8: Higher dimensional scatter plot example (Iris data set).

to have it interactive, so you can rotate around the plot and get a better
grasp of the location of each dot. Even though we only can visualize three
dimensions on the axes, we can add more information in different ways to
the scatter plot.

Colour You can add a colour-coding for a dimension. Either categorical
giving each category its own distinctive colour. Or you can use a
gradient to show a continuous variable.

Size You can change the size of each point in the plot. Giving a larger point
to higher values in one of the variables.

Shape You can also change the shape of the points. This is only possible
for categorical variables. Each category can then be bound to a shape
such as; circle, square, triangle or cross.

With these additions we can reach six dimensions in a scatter plot. However
you should pick the representations carefully for each dimension. As it can
make such a plot intuitively or fail to convey the information properly. An
example with the iris data set is given in Figure 8, where two axes are used
and the three other representations described above.

Another option using scatter plots is a pairwise scatter plot. This uses
a scatter plot for each pairwise combination of variables. These are placed
in a matrix, an example with the Iris data set in shown in Figure 9 on
the following page. Even though all relations between paired variables is
represented, it is hard to make a trade-off with this representation as the
connection between more than two dimensions becomes unclear.
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Figure 9: Example pairwise scatter plot matrix (Iris data set).

7.1.2 Radar Chart

Radar chart is sometimes called a star, web or spider chart, because it can
resemble each one of these. Each dimension has an axis between each of
them is an equal sized angle. The axes are normalized, they are all equal
length. A configuration is plotted by connecting the points on each of these
axes. This can result in an image which resembles a star, which is why it is
sometimes called a star chart. Figure 10 on the next page shows an example
of a radar chart with four data points. If we would try to plot all our data
points on one radar chart, it would be hard to make any distinctions when
the number of data points represented goes higher than twenty. So either
we would need multiple charts to plot the points in or we need to reduce the
number of points we want to present at the time. A drawback of radar charts
is that the comparison between data points uses the area of the polygon a
data point creates. During extensive experimentations back in 1984, it is
shown that humans tend to misjudge relative areas much more than for
example lengths [41]. This might influence the decision making process if
radar charts are used.

7.1.3 Parallel Coordinates

Parallel coordinates uses a lot of the same principals as the radar chart.
Instead of having the axes in a circle, the axes are now parallel to each
other. The configurations are plotted as series of connected line segments.
In Figure 11 on page 36 an example is given with the Iris data set, in this
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Figure 10: Example of a radar chart.

you can see relations between two objectives at the time. However this is
influenced by the placement of the axes, you can swap them around and
get a different picture. Only the relation with the neighbouring objective is
visible. Because the placement of the objectives on the axes makes it hard to
see the interaction between all objectives, in the same way a pairwise scatter
plot does. Because of this, the method may not be the best for making a
trade-off decision.

7.2 Reduce Dimensions

Besides trying to fit all dimensions into one graphical representation we can
also try to reduce the number of dimensions. If we can successfully do this,
we can have a simpler graphical representation, making it easier for the
decision maker to understand the data.

We can show the ranges, minimum and maximum value, of the dimen-
sions in the Pareto front. The decision maker could then give a smaller range
for one of the output variables, in which the eventually chosen configuration
must lay. This also indicates that for this smaller range the decision maker
is indifferent to the exact value. This means the total decision set becomes
smaller as some configurations do not fulfil the new range constraint. But
more importantly we can remove the dimension from the presentation, as it
does not matter any longer for the remaining configurations. This method
should be used with care, as the full picture of the configuration is no longer
shown to make the final decision.

7.3 Smart Presenting

Instead of presenting all configurations at the same time we can also use
a procedure for showing the configurations. Thousands of configurations
make us numb to the differences. But if we are presented with twenty
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Figure 11: Parallel coordinate example chart (Iris data set).

configurations we are able to make distinctions and have a clear preference.
It also benefits the presentation itself as less data needs to be represented we
can use different methods easier, such as the radar chart. Using this we can
present the information step-wise, creating an iterative/guided search. Each
step we have a set of configurations, starting with the full Pareto front. From
this set we pick a number of configurations that each represent a group of
other configurations, how this is done will be explained shortly. The decision
maker now selects the preferred configuration. This will then shrink the
original set of configurations, by only including configurations that have
comparable values. This process can than be repeated to eventually get
to the most preferred configuration. The process is described step by step
below.

1. Pick representative configurations from the given set.

2. Present these to the decision maker.

3. Decision maker picks the favourite of presented configurations.

4. Reduce the set by only using the configurations that are comparable
with the chosen configuration.
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5. Repeat from step 1 until only one configuration is left.

We now have to solve two parts: how to pick representative configura-
tions and how to shrink the set of configurations. The latter is quite simple
if we just shrink the set to the configurations that are represented in the
first place. To get these representatives we can use clustering, by clustering
similar performing configurations we can pick the mean of the cluster to
represent that group of configurations. The clustering algorithm that really
fits here is the k-means clustering, with this algorithm we can even specify
the number of representatives (clusters) we end up with. On average each
round of this approach you will divide the total set of configurations by the
number of representatives, as the clusters tend to have similar size. However
as it could bias the presentation, so having a comparison with the full Pareto
front should be done.
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8 Next Implementation

In this section we present the case study, the process to find the optimal
infrastructure for AFAS Next. Next is an ERP application that will be
SaaS solution, meaning the hosting of the software is done by AFAS, the
service providing company. During this study we want to optimize three
objectives, performance, robustness and costs. Performance is based on the
time a user has to wait for the application to complete its tasks. This will be
measured in the time a command takes to complete and how fast events are
handled to make the data available to read. Query time is not a part of this
objective as it solely depends on the database, which is not altered in our
configuration. Robustness is based on how well the application can deal with
disruptive behaviour, such as failing infrastructure. This is measured with
the same metrics as the performance but with a different testing scenario.
Costs are the operational costs of the hardware.

We go through specifying the configuration and the samples, the ex-
periment set-up to evaluate the configurations with workload scenario. We
analysed the output of the evaluations to reduce the output dimensions from
the experiments to use in the optimization. With these samples and output
variables we trained the five heuristics described in Section 6. The most
accurate heuristic will be used in the optimization.

8.1 Configuration

In our experiment we do not use all of the parameters described in Section 3.
The reason for this is the number of dimensions, if we make the configuration
too big it becomes hard to tell which part of the configuration contributes to
success. This has been researched by Bellman [15] and is part of the Curse
of Dimensionality.

We use the virtual machine approach and have selected four different
types in the Azure cloud. In Table 3 you can see the specifications of the
virtual machine types. Secondly we will vary the size of the Service Fabric
cluster, how many of these virtual machines there will be in a cluster.

VM Type CPU (Cores) Memory (GB) Disk (IOPS) Price p/h

A2 2 (2.1GHz) 3.5 4x500 (HDD) ¤0.1518
A5 2 (2.1GHz) 14 4X500 (HDD) ¤0.2867

D2V2 2 (2.4GHz) 7 4x1600 (SSD) ¤0.2505
D3V2 4 (2.4GHz) 14 8x1600 (SSD) ¤0.5001

Table 3: Specifications of the virtual machine types.

At the orchestrator level we have chosen to focus on the resource balanc-
ing. But even within the resource balancing there are multiple parameters

38



as described before, we start with the two most basic parameters. Balanc-
ing weights and balancing threshold, these parameters are indicated as the
starting point to configure the resource balancer by the Microsoft Service
Fabric team. To recap from Section 3, balancing weights determine how
important a resource metric is for a service. Balancing thresholds determine
when the resource balancer needs to re-balance the cluster, because the bal-
ance of a resource metric exceeds the threshold ratio. That is why we add
the balancing weights and the balancing thresholds to the configuration.

For these parameters we see the built-in metrics of Count, Primary Count
and Replica Count, as one. This only means the weights of the built-in
metrics can not vary from each other, but the weight for them together can.

We define three resources that will be used in conjunction with the built-
in metrics. These custom resource metrics are, unlike the static built-in
metrics, dynamic, meaning they will change over time.

Actor Executions The number of executions done by actors in a specific
time, for now this is mainly the handling of commands.

Event dispatch queue count The number of events that are waiting to
be dispatched to the event handlers.

Events handled The number of events that are handled by an event han-
dler during a period.

In total we define seven balancing weights, we have three distinct custom
metrics, these and their relative defaults will have weights. This is done to
see whether the original metrics or our custom metrics are more important
to each service. As a final weight we add all the other microservices that
do not fit with a custom metric yet, but still count towards the load in the
default metrics. For the ratios, as it is defined once per metric, we use four
thresholds, the three custom metrics and one for the default metrics.

In Table 4 on the following page all the input variables are displayed
with their lower and upper bound and whether the value should be an inte-
ger. The virtual machine types are mapped to the numbers 0,1,2,3. These
are a representation of an ordinal scale, meaning we can not apply normal
arithmetic. The number of virtual machines per cluster has a lower bound of
five, this is given by Service Fabric. They can not give their guarantees with
fewer machines in the cluster. For instance if there are three machines in a
cluster, one goes down for maintenance/upgrade only two machines remain
on which the replicas need to be placed. This results in replicas being on the
same machine which means there is no reliable quorum, meaning it is unable
to accept new data safely. That is why the Service Fabric team advises a
minimum of five machines for a production cluster. The balancing weights
are, like the VM types, ordinal, so these are also easily mapped to zero
through three. The balancing ratio thresholds are not necessarily integer as
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ID Setting Lower Upper Integer

V1 VM Type 0 3 Yes
V2 Number of VM’s 5 15 Yes
V3 Actor Executions Weight 0 3 Yes
V4 Actor Defaults Weight 0 3 Yes
V5 Events Handled Weight 0 3 Yes
V6 Event handler Defaults Weight 0 3 Yes
V7 Queue Count Weight 0 3 Yes
V8 Queue Defaults Weight 0 3 Yes
V9 Defaults Weight 0 3 Yes
V10 Actor Executions Threshold 1 5 No
V11 Events Handled Threshold 1 5 No
V12 Queue Count Threshold 1 5 No
V13 Defaults Threshold 1 5 No

Table 4: Specification of the characteristics of the possible configurations.

ratios are in definition rational numbers. They have a fixed lower bound of
one, just because of the specification of a ratio. Maximum divided by mini-
mum, minimum is always equal to or smaller than maximum so the ratio is
always greater or equal to one. To get a sense of scale, if we use one decimal
for the none integer parameters and the bounds we just specified there are
1845493760000 or 1.8 ∗ 1012 possible configurations. To compare there are
approximately 3.1 ∗ 1010 seconds in a year, if we evaluate one configuration
each millisecond it would still take 50 years to evaluate all configurations.

8.2 Sampling

For sampling the configuration space we use the spreadsheets from Sanchez [33],
as described in Section 5 this gives us the sample points according to a nearly
orthogonal Latin hypercube design. In Table 4 we specified 13 dimensions
for Next, this means we need to use the design for up to 16 factors, as per
instruction we only use the first 13 columns of the design. For each column
the boundaries are set. The number of decimals for the discrete dimensions
is set to zero, for the continuous dimensions this is set to two decimals. The
mapping for integers to (Azure) virtual machine types is:

0. Standard A2

1. Standard A5

2. Standard D2 V2

3. Standard D3 V2
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Sample point 1 Mapped to Next Sample point 2 Mapped to Next

V1 1 D2 V2 2 D3 V2
V2 5 5 12 12
V3 1 Low 0 Zero
V4 1 Low 1 Low
V5 0 Zero 1 Low
V6 2 Medium 1 Low
V7 2 Medium 2 Medium
V8 1 Low 2 Medium
V9 3 High 2 Medium
V10 3.88 3.88 4.69 4.69
V11 3.19 3.19 4.06 4.06
V12 4.75 4.75 2.94 2.94
V13 1.75 1.75 1.94 1.94

Table 5: Example sample points with the mapping to the Next configuration.

The balancing weights are Zero, Low, Medium and High, these are mapped
from zero to three. The number of virtual machines and the ratio thresholds
do not require a mapping, the data from these columns is used as is. As an
example the first two samples from this design are depicted in Table 5, with
the mapping to a Next configuration besides them. The full sample design
consists of 65 nearly orthogonal space filling configurations. All the samples
are shown in Appendix A.

8.3 Sampling Execution

We have 65 sample configurations which require evaluation. We need to
test the performance and robustness of each configuration. We evaluate the
configurations in the cloud of Microsoft, Azure. The cloud use the virtual
machine approach and makes it possible for us to create any kind and size of
cluster. Using the cloud relieves us from the necessity to set-up an physical
infrastructure to create multiple different clusters. The choice for Azure
was made because at the time it was the only cloud that ran Service Fabric
reliably.

8.3.1 Testing Environment

Besides the virtual machines for the Service Fabric cluster we create three
more machines, each dedicated to a task. In Figure 12 on the following page
the environment used for testing is depicted. The database machine is a
Standard A3 (Azure VM type) machine running PostgreSQL 9.5. This SQL
server is storing the data of the application and is cleared between each test.
Another machine (Standard A2) is configured for logging, it contains the full
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Figure 12: Overview of the test environment.

ELK-stack, Elastic Search, Logstash and Kibana. ELK is an open source
software stack for collecting and analysing data3. This machine gets the data
from all machines in the Service Fabric Cluster. This includes logging on
commands, events, queries, warnings and errors. The management machine
(Standard A2) is in control of all the experiments.

8.3.2 Deployment of the configuration

On this machine there is tooling to automatically create the resources in
Azure, including installation of the required frameworks on the virtual ma-
chines. During this process the virtual machine type and number specified
in the configuration is used. When Service Fabric is deployed on these ma-
chines the threshold ratio’s are set from the configuration. The management
machine now waits until the Service Fabric Cluster is operational. At that
point first a logging service is deployed to make sure all of the test data is
actually gathered and shipped to the logging machine. Now the Next appli-
cation gets deployed, in this step the balancing weights for the microservices
are being set.

8.3.3 Executing the Workload

When the application is correctly deployed a workload is played, following
this scenario:

• Seeding data (set-up phase)

• Wait for events to complete

• Run insert commands

3www.elastic.co
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• Wait for events to complete

• Run update commands

• Wait for events to complete

In the set-up phase the default data is inserted, this consists of data which is
required by other commands and data that will be referenced in the update
commands. The waiting periods make sure the collected measurements are
not leaking into other phases of the test. During the first test scenario we
only send insert commands, meaning new records are created in the system.
This scenario is time bound by three minutes, in this time between 10.000
and 20.000 commands are processed by the system. This results roughly
in tenfold events, these are handled in 15-25 minutes. In the second test
scenario only update commands are used, meaning records are updated but
not created. It is again time bound by three minutes. The records that
are updated are inserted in the set-up phase, so we know for sure they are
available for updating. The number of commands and events is in the same
range as with the insert commands. The event handling time is also in the
same time range as with the insert scenario. After this the test tooling
aggregates the data on the logging machine and stores these results on the
logging machine. The application is now removed to clear all state. This
concludes the default load test.

8.3.4 Robustness Stress Test

Following the initial load test a stress test will be executed, to test how
the system reacts to failures. This is done by deploying a chaos service on
the cluster. This will keep inducing failures in the cluster. A couple of
actions this service will do are; resetting a code package on one machine,
moving partitions between machines, kill partitions and restart machines.
Each iteration of failures contains one to five failures with a two second
delay between each failure. After each iteration the chaos service waits until
the application has recovered, when it has recovered there is a five second
delay before the next iteration starts. The failures that occur are mostly
low impacting such as moving partitions, but in one percent of the cases it
will restart an entire machine which has a high impact on the performance.
While this service is active the application will be deployed once more and
the workload 8.3.3 will be executed again.

Once this is all done the resources are removed from Azure and the
next configuration can be tested. To get an accurate view we should run
each test multiple times to account for variability. These tests have a lot of
variability due to the distributed nature of the application, the placement of
the services, and the chaos service. However this is just a proof of concept
on how to execute the process and not decision making material. We will

43



keep it at one run for each test, to keep the time more manageable and the
experiments costs lower.

8.4 Analysing Samples

The tests give us a lot of measurement data. The metrics we use are events
per second and the duration of a command as this determines our perfor-
mance. The measurements are split in two ways, default or stress test and
insert or update commands. This is based on the scenarios in the tests,
to look at the performance with and without failures but also the type of
operations that are performed. The stress test results are our measurements
for the robustness objective. The inserts create new data while the update
commands only change the data. These different types of commands might
have a different performance. This means we end up with eight different
output variables for each test next to the costs of the configuration. These
eight are labelled as defined below.

O1 Events per second - Default - Inserts

O2 Events per second - Default - Updates

O3 Events per second - Stress - Inserts

O4 Events per second - Stress - Updates

O5 Command duration - Default - Inserts

O6 Command duration - Default - Updates

O7 Command duration - Stress - Inserts

O8 Command duration - Stress - Updates

These eight output variables and the cost of the configuration result
in nine output values for each of the 65 samples. If we use all nine output
variables, it would be too much to start the optimization. This follows again
from the Curse of Dimensionality with so many objectives it becomes very
hard to make the trade-off. Furthermore with each dimension the number of
configurations in the Pareto front will increase significantly, which will make
the decision only harder. This is why we need to reduce the dimensionality of
the data. We can reduce the number of dimensions by removing dimensions
without extra information, if a dimension does not contain new information
it is not helping the optimization. To do this we need to analyse the data.
The first step is looking at our data and see if there are any patterns, this
is done by making pairwise scatter plots for each of the output variables,
you can see this in Figure 13 on the next page. In each sub plot two output
variables are plotted against each other containing the 65 data points. In
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Figure 13: Pairwise scatter plot of the measurements.

the top-left and bottom-right you can see there are indications of a linear
correlation.

However we can not make a decision based on those plots, it gives us
an indication but now we need to confirm it with mathematics. This can
be done with the sample correlation coefficients. This is estimating the
population Pearson correlation [42], which is the correlation when all the
data is available. As we only have samples of the entire configuration space
and not the output data of every possible configuration, we can only estimate
the correlation coefficients. All coefficients are between -1 and 1, where -1
is a perfect negative correlation. 1 is a perfect positive correlation and 0
means there is no correlation at all. From this follows that we are looking
for numbers close to -1 or 1, so we can combine these variables and reduce
the number of dimensions that way. To calculate the coefficient between
output variables x and y we use the following formula.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

The results of the correlation coefficients in Table 6 are confirming the
graphical indication. The values in the top-left and bottom-right of the table
are higher than the other quadrants. However we need to be sure the values
are significant enough to actually use. To test whether a value is significantly
different from 0 we can calculate the confidence of the coefficient. This is
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O1 O2 O3 O4 O5 O6 O7 O8

O1 1.000 0.714 0.431 0.544 -0.015 -0.118 0.058 -0.019
O2 0.714 1.000 0.574 0.678 0.395 0.272 0.417 0.356
O3 0.431 0.574 1.000 0.799 0.080 -0.026 0.040 0.005
O4 0.544 0.678 0.799 1.000 0.238 0.167 0.155 0.168
O5 -0.015 0.395 0.080 0.238 1.000 0.871 0.752 0.802
O6 -0.118 0.272 -0.026 0.167 0.871 1.000 0.743 0.786
O7 0.058 0.417 0.040 0.155 0.752 0.743 1.000 0.824
O8 -0.019 0.356 0.005 0.168 0.802 0.786 0.824 1.000

Table 6: Sample correlation coefficients.

relative to the number of samples n and the value of the coefficient rxy.
It is based on the Cumulative Probability Density function (CPD) of the
t-distribution. The full formula is stated below. We are more confident of
the correlation if this Pxy is closer to 0. The results of this calculation can
be found in Table 7.

Pxy = 2 ∗

(
1− CPD

(
|rxy|

√
n− 2

1− r2xy
,DF=n− 2

))

O1 O2 O3 O4 O5 O6 O7 O8

O1 2.36e-11 3.42e-04 2.78e-06 0.9034 0.3498 0.6439 0.8818
O2 2.36e-11 5.79e-07 5.38e-10 0.0011 0.0284 0.0006 0.0036
O3 3.42e-04 5.79e-07 1.33e-15 0.5250 0.8371 0.7490 0.9711
O4 2.78e-06 5.38e-10 1.33e-15 0.0559 0.1838 0.2188 0.1815
O5 0.9034 0.0011 0.5250 0.0559 0 5.45e-13 8.88e-16
O6 0.3498 0.0284 0.8371 0.1838 0 1.35e-12 9.33e-15
O7 0.6439 0.0006 0.7490 0.2188 5.45e-13 1.35e-12 0
O8 0.8818 0.0036 0.9711 0.1815 8.88e-16 9.33e-15 0

Table 7: P-values: Confidence of the correlation.

From the confidence values we can conclude that the bottom-right quad-
rant is correlated. So we can simplify O5-O8 to reduce the dimensionality of
the problem. The range of O1-O4 has a difference between the default test
(O1,O2) and the stress test (O3,O4). But this still means we can reduce the
dimensionality. O1 and O2 will be combined into O9, O3 and O4 create O10
and O5-08 will make O11. To combine dimensions we will use the average,
note that if the variables would have a different order of magnitude you need
to normalize it in some way before combining.

O9 Events per second - Default - Combined

O10 Events per second - Stress - Combined
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O11 Command duration - Combined

To test whether the new response variables actually capture the originals
we perform the correlation and confidence calculations again. The results
of those calculations are shown in Tables 8 and 9. We can see that all
intended correlations are higher than 0.9, and the confidence is rounded to
zero because it becomes too small. It once more confirms there is a difference
between the default and stress test for the event handling.

O9 O10 O11

O1 0.917 0.513 O5 0.914
O2 0.934 0.659 O6 0.909
O3 0.547 0.950 O7 0.919
O4 0.664 0.946 O8 0.935

Table 8: Correlation values of the combined output variables.

O9 O10 O11

O1 0 1.257461e-05 O5 0
O2 0 2.392023e-09 O6 0
O3 2.449197e-06 0 O7 0
O4 1.627278e-09 0 O8 0

Table 9: P values of the combined output variables.

8.5 Heuristics

We try all the heuristics specified in Section 6, because there is not a uni-
versal heuristic that can be used for every problem. We need to make an
informed decision, which of the heuristics is best for the objectives. All
heuristics were tested with existing packages in the programming language
R. R is developed as one of the frontrunners in statistical and predictive
algorithms and has numerous packages that facilitate these operations.

To train the heuristics we use the samples generated via the approach
explained above. To counter over fitting we require more samples that will
not be used in the training. This is why five more sample tests were done,
these samples were taken within the same boundaries as the training data
but were randomly constructed. These configurations can be found in Ap-
pendix A. These were tested in the same way as the rest of the samples so
the environment was equal except for the dimensions in the configuration.
The measured output variables are found in Appendix B.

The root mean squared deviation of each combination of heuristic and
output variable is calculated. The root mean squared deviation was ex-
plained in Section 6, it determines the deviation from reality for the ap-
proximation. The results can be seen in Table 10 on the next page, as we
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O9 O10 O11

Linear Model 26.4569 35.3014 27.5312
Non-linear 31.6856 41.2493 48.7933

Kriging 26.4569 35.3072 27.5106
Neural Network (RBF) 27.7464 32.2345 25.7079

Support Vector Regression 25.6650 27.5827 22.6611

Table 10: Accuracy approximation algorithms, root mean squared deviation
of the validation samples.

are looking at deviations from reality a lower score means the heuristic rep-
resents reality better. The table shows that for each response variable the
best heuristic is the support vector regression. The results also show that
the heuristics do not need to have the same ordering for each variable. For
example, the neural network is worse than Kriging and the linear model in
the first column but better in the other two. Linear and Kriging are having
near identical accuracy in each of the objectives. This table shows us that
not every variable behaves like each other, making it important to try out
several heuristics before picking one. There exists no ultimate heuristic that
fits every problem. In this case, support vector regression is superior for all
the output variables. So this will be the heuristic used in the evaluation
step of the genetic algorithm to optimize the configurations.
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9 Results

We have created a configuration for hardware and orchestrator with 13 pa-
rameters. The focus of these parameters was resource balancing to get better
performance and robustness for the application. To create the Pareto front
we have used the non-dominating sorting genetic algorithm, but this required
a fast evaluation of the configurations. We were unable to use simulation to
solve this problem, so we used heuristics. Training these heuristics required
training data, to make sure the training data covers the possibilities evenly
and with few samples we have chosen a sampling design. The nearly orthog-
onal Latin hypercube sampling design is created to fulfil these properties,
following this design we got 65 sample points.

The sample points were evaluated with a load test to obtain the mea-
surements of the output variables. With this training data set the heuristics
were trained, five additional samples were taken and used as a validation set.
During validation the support vector regression showed the best accuracy
and is therefore used in the genetic algorithm.

The non-dominated sorting genetic algorithm was run. As parameters
the population size was set to forty. The mutation chance was set to one
mutation per generation of new solutions (children), so one in forty. As a
stopping criterion the number of generations without improvement of the
archive was used, this number was set to 300. The genetic algorithm ran for
nearly two hours and iterated through 44861 generations. Each generation
between ten and twenty configurations were on the first dominance rank
within the population and therefore compared with the archive. In total
5993 configurations were part of the archive during the optimization, but as
new configurations are added old configurations get dominated and need to
be removed. After the algorithm completed there were 2873 configurations
left in the archive. In the rest of this section we will present the results of
this Pareto front.

Showing all Pareto optimal configurations in a table takes too much
space and will not give a lot of information. So instead this section will
present the data in other representations. A benefit of having all Pareto
optimal configurations is the possibility to look at commonalities between
them or how factors influence each other. We can analyse both sides of the
configurations in the Pareto front, the thirteen dimensions that make up the
input of a configuration and the side which is more important for decision
making, the four output variables of the configurations.

9.1 Configuration Analysis

One thing all configurations have in common is they are all Pareto opti-
mal, which means they excel in either one objective or a combination of
objectives. It is interesting to know whether there exist commonalities be-
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tween these configurations. If so, we can try to explain it and try to change
other settings in the configuration that were not part of this test with this
knowledge in mind.

Cluster size(V2)\VM type (V1) A2 A5 D2V2 D3V2 Total

5 35 13 31 47 126
6 27 3 4 3 37
7 25 0 7 0 32
8 42 0 20 17 79
9 111 8 59 98 276
10 79 9 16 166 270
11 134 36 70 185 425
12 205 82 70 193 550
13 137 48 48 199 432
14 176 99 56 101 432
15 81 37 38 58 214

Total 1052 335 419 1067 2873

Table 11: Occurrences of cluster size and virtual machine type combinations
in the Pareto front.

9.1.1 Hardware (V1, V2)

In Table 11, we take a look at the occurrences of cluster size and virtual
machine type combinations. This is the hardware subset of the configuration
and solely determines the output variable of costs. The first observation is
that the A2 and D3V2, cheapest and most expensive in the test, both have
more than thousand occurrences, while the other two combined make up less
than thousand configurations. The cheap A2 machines can be explained as
one of the objectives is cost of the cluster. A possible explanation for the
large number of D3V2 machines could be, that they have the most resources
at their disposal. With the most resources available it becomes easier to get
better performing configurations. The reason that the two other types, A5
and D2V2, are in the Pareto front is because they are in between price
wise but also performance, they bridge the trade-off gap between the cheap
and expensive machines. The second observation is based on the number of
machines in the cluster. To get a better idea of the distribution of the sizes
we can take a look at Figure 14 on the next page. What we see is, a bell curve
or Gaussian distribution with a peak at twelve machines. Clusters with a
size from six to eight are under represented in the Pareto front. However
there is a remarkable peak at five machines. For the A2 machines this could
be explained as being the cheapest of all configurations, but this trend also
shows with the other three types of machines. An explanation for the curve
at a higher number of machines could be, firstly there are more resources
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Figure 14: Number of virtual machines in a cluster (V2).

ID Balancing weight Zero Low Medium High

V3 Actor executions 3 141 2719 10
V4 Actor defaults 0 747 1221 905
V5 Events handled 93 909 904 967
V6 Event handler defaults 1 872 1996 4
V7 Dispatch queue count 1 901 1967 4
V8 Dispatcher defaults 2 49 2793 29
V9 Defaults for remaining services 4 1823 1042 4

Table 12: Occurrences of balancing weights input variable.

available. Secondly if one machine has trouble, it affects less services at the
same time as there are more machines to spread the services over. It also
has a less likely chance to become imbalanced, there is more spread so the
chance that one node becomes really overburdened declines. The downward
slope towards 15 machine clusters means the extra machine does not add
to the performance significantly, thus these configurations get overshadowed
by cheaper alternatives.

9.1.2 Balancing Weights (V3-V9)

Now we look towards the settings of the orchestrator. First we take a look
at the balancing weights, there are seven dimensions in the configuration
using these weights. The weights are divided in four categories, Zero, Low,
Medium and High. For the seven dimensions the number of occurrences is
counted in the Pareto front, the results are shown in Table 12. In this table
we see a large tendency towards the medium setting, with low as a great
runner up. With the exception of events handled the zero weight does not
see much use. Only two dimensions make use of the high setting in the
Pareto front.

What might be more interesting is the interaction between the weights.
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Micro-service Specific Default Equal

Actors (V3&V4) 651 943 1279
Event handler (V5&V6) 1472 845 556

Event dispatcher (V7&V8) 35 905 1933

Table 13: Relation between the default and the specific balancing weight in
a microservice. How often is the specific metric more important than the
default.

For three services we have the specific metric and the default metrics, actors,
event handler and event dispatcher. Table 13 shows how the weights are
relative to each other in the Pareto optimal configurations. For the event
dispatcher the specific metric is nearly always equal or lower rated than the
default metrics. For actors and the event handler there is no clear distinction
which should be weighted heavier.

9.1.3 Balancing Thresholds (V10-V13)

Figure 15: Cumulative of the threshold values found in the Pareto optimal
configurations (V10-V13).

When looking at the balancing thresholds we notice that in the Pareto
front the thresholds become high values. All the configurations are shown
as a cumulative graph in Figure 15. In this graph, a base line is drawn
for a uniform distribution. If all values would be used evenly between the
boundaries the line should be close to this uniform line. However what
we see is that all thresholds stay on zero percent until the value of the
threshold exceed two or even three in some cases. After a threshold of 3.5
the cumulative really takes off, around eighty percent of the values are bigger
than 3.5.

This favour for higher thresholds can be explained. The threshold deter-
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mines when Service Fabric finds the cluster unbalanced. So if the value of
the threshold is low, Service Fabric calls the cluster unbalanced faster. This
results in more balancing, which in turn results in more microservices get-
ting moved. During a move the service might temporarily respond slower,
giving a lower fitness in the objective.

9.1.4 Conclusions

From the analysis of the configurations in the Pareto front we made some
observations. The virtual machine type and number of virtual machines
per cluster contain the most variability in the Pareto front. These variables
have the most impact on the differences in the objectives, in the case of costs
they solely determine the objective. The balancing weights do not have a
preferred priority between the resource metrics. They favour the average
values of Low and Medium. In a following experiment we could zoom in
on these variables by locking the other variables down on a constant value.
All of the balancing thresholds ended up with a high threshold, from this
we can conclude that we always want a higher threshold value to make sure
that Service Fabric does not start balancing for each tilt in resource usage.

9.2 Objectives Analysis

Now we have seen what makes up the input of the Pareto optimal configu-
rations, it is time to look at the output. First we look at objectives on their
own and we end with a full picture of the Pareto front.

9.2.1 Cost

First up is the cost of a cluster, this objective did not need an heuristic.
The calculation was simply, the price of the machine type times the number
of machines. The cheapest option was a five machine cluster of type A2,
which costs ¤565 per month. The most expensive set up was fifteen D2V2
machines, is nearly tenfold of the cheapest, coming down at ¤5580 per
month. In Figure 16 on the next page, we can see the range between these
extreme points is covered quite evenly. It is a cumulative graph of the costs
found in the Pareto front with the uniform distribution as reference. The
large number of occurrences between ¤1000 and ¤1500 are the large A2
clusters. Because an A2 machine is relatively cheap all large clusters fit
into just that range, the expensive D2V2 clusters are spread over a wider
range and do not show one clear bump. From a decision making stand point
this spread of choices is what we would like, there are no gaps or under
represented price ranges.
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Figure 16: Cumulative of configuration price occurrences found in the Pareto
front.

9.2.2 Performance and Robustness

The command durations (O11) in the Pareto front are between 75ms and
141ms. These can not be related in the same way to the input as the price of
a cluster. For this objective a cumulative graph is also made, which can be
seen in Figure 17 on the following page. This graph is nearly linear, meaning
we have a near perfect spread between the minimum and maximum value
of this objective. This means the Pareto front offers choice all across the
range.

The events per second objectives, default (O9) and under stress (O10),
are both between 75 per second and 144 per second and follow the same
kind of distribution in the Pareto front. Just as the command duration this
can not be related to the input in an explainable way, it comes from the
heuristic. The range is also nearly the same as the command duration, so
the cumulative of the events per second are plotted in the same graph, Figure
17. There are more configurations that have higher events per second, which
is nice as we want to maximize the number of events handled. However there
are no gaps or under representation, so the trade-off can be made here as
well. One thing that stands out is the relation between the two objectives.
In the graph the line of the stress scenario is below that of the default
scenario, which means that there are less low values in the stress scenario.
This implies that for a lot of configurations the stress scenario is performing
better than the default scenario. This might be explained by two factors,
the inaccuracy of the samples, the tests should be executed multiple times
to make sure no artefacts end up in the results. Secondly extrapolation can
be a cause for this phenomenon, the heuristic for the default scenario and
the heuristic for the stress scenario can be formed in such a way that the
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Figure 17: Cumulative of the threshold values found in the Pareto optimal
configurations.

Figure 18: Example of extrapolation error in heuristics (Not real data).
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Figure 19: Full Pareto front of the Next case.

stress will overtake in performance. This would mean that according to the
heuristics a configuration performs better while failures are occuring than
when the system is stable. To illustrate this effect a simplified example, not
results from the case, can be seen in Figure 18 on the previous page. In
this graph the stress samples have lower scores than the default samples,
as we are looking at the events we want to maximize so the stress is doing
worse in the samples. Due to the way the samples lay the heuristics of the
default and stress scenarios are different. In the range of the samples the
relative order between default and stress is preserved but when looking at
either tail ends the stress is doing better. This is because the default has a
gradual ascend over the entire span of the samples, while the stress has a
steep ascend in the samples resulting in a steeper heuristic. This could also
have happened to the stress data from our study.

9.2.3 Pareto front

After seeing each objective independently, we take a look at the interaction
between all of them in the approximate Pareto front. In Figure 19 the front
is depicted in a scatter plot, the x-axis represents events per second in the
default scenario, the y-axis shows the duration of a command. The size
of the circles represents the events per second in the stress scenario where
bigger equals more events. The colour scale represents the costs of infras-
tructure, green is cheap and red is expensive. To give a sense of direction,
the optimization was going towards a large green circle in the bottom right
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Figure 20: K-means clustered Pareto front.

as this would be the optimal configuration.
We observe a linear laying group which excels in the combination of low

command duration and a high number of events per second, bottom layer
in the graph, consisting of red points i.e. expensive configurations. These
points have the best performance in the default scenario but are the most
expensive in costs. This phenomenon is expected, costs and performance are
the objectives which work against each other. Behind this red group there
are similar parallel groups, which gradually lie higher in the chart. These
parallel groups become cheaper when the configurations become worse in
the command duration objective.

Another observation can be made about the cheaper solutions, the green
circles. They occupy a large cloud to the top right. In these configurations
the event throughput is high in both the default and the stress scenario, but
they are slow on the command side. It appears that the cheap configurations
are not able to compete for dominance with low command durations.

To make the trade-off easier, we can simplify the Pareto front. This
is done by clustering the Pareto front and only presenting representative
points from each cluster. We use k-means clustering, which is an iterative
clustering algorithm. Each iteration every point is attached to the closest
of the k centroids, then the mean value of each cluster is calculated which
becomes the centroid of the next iteration. This stabilizes after a couple of
iterations, at that point we can use the centroids of the last iteration as our
representative points. However the starting centroids, which are randomly
created, influence the final clustering. That is why the algorithm is executed
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multiple times and the clustering with the least distance between the points
and their representative is chosen. The clustering of our case can be seen in
Figure 20 on the previous page, the trade-off between the objectives becomes
more apparent. After picking one of the clusters this process can be repeated
with the points from that cluster.

9.2.4 Conclusions

We have seen that for each independent objective there is a near uniform
spread of configurations. There are no apparent gaps in the independent
objectives, between the minimum value and maximum value there is plenty
of choice. This translates to the full Pareto front, there are no big gaps
in the front of combined objectives. The Pareto front that is created by
our approach, gives the decision maker a set of configurations to make an
informed trade-off. As the Pareto front is a set of configurations that are
mathematically optimal we advise the company to use any of the given
candidates, but are impartial to the choice of any configuration within the
Pareto front.
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10 Discussion

The problem we faced is configuring the infrastructure for a new SaaS solu-
tion. The client base will expand rapidly and that is why the infrastructure
must be good from the start. It is not possible to define “good” as this
is a opinion, therefore we look to present Pareto optimal configurations as
trade-off candidates. This enables us to optimize the configurations without
having knowledge upfront about how the configuration would influence the
objectives.

We have created and executed an approach to find the trade-off candi-
dates for the configuration of hardware and orchestrator in the case of new
cloud software. The trade-off is based on the costs, performance and ro-
bustness of the configuration. Finding these candidates is done by a genetic
algorithm that takes the mathematical property of domination in consider-
ation while searching. To enable the use of this genetic algorithm we had
to reduce the evaluation time of a configuration. Heuristics are the solution
to reduce the evaluation time, by approximating reality with a function we
can quickly evaluate each configuration. To train the heuristics real world
examples are required, since these cost time and money this number should
be kept to a minimum. Near orthogonal Latin hypercube sampling gives
us the possibility to get an unbiased evenly spread sampling strategy, while
using as few as possible samples.

The entire process makes it possible to search for trade-off candidates,
which we show by using the approach at the case company AFAS. We suc-
cessfully create a Pareto front within limited time for the new Software as
a Service solution called AFAS Next. This approach that is used here for
finding trade-off configurations for a new SaaS solution could also be used
in different fields. For example designs that cannot be replaced or adjusted
easily such as bridges (material type, thickness, type of suspension, etc.),
satellites (material type, size, space debris shielding, etc. ) or the design
of a Formula 1 car spoiler (thickness, angle, width, etc.). Each of these
problems can have multiple objectives for example the spoiler is responsible
for the downward force of the car, making sure the wheels can get grip on
the track but at the same time the spoiler should not add too much weight
and the car needs to stay aerodynamic so the speed does not get restrained
by the air friction. In these cases the evaluation the product is expensive,
building multiple configurations may be impossible an example would be a
bridge. The computer simulations are not the complete answer as they can
take multiple hours. It could be possible to apply the same approach of
sampling configurations, training heuristics and generating a Pareto front
to reduce the costs of finding a fitting design.
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10.1 Limitations

Problems might be complex, for example having additional constraints on
the input of a configuration such as in the case of a bridge it might have as
input the number of lanes and the width of a lane however the total width
of the bridge can be limited. The non-dominated sorting genetic algorithm
as most evolutionary algorithms has no built-in way of dealing with extra
constraints on a configuration. It is only capable of lower and upper bounds
as well as whether values need to be integer. This was not a factor with
the configuration used for Next, but could limit other applications of this
approach.

Another limitation of NSGA is that it is not possible to use preconceived
knowledge of the problem to steer the search process. It will use, vary and
mutate each of the input dimensions. There is no way to guide the search,
by for example only changing a part of the configurations in the first half of
the algorithm and when they have converged on an optimal value for those
settings, the rest of the settings would be used in the search as well.

The experiment for Next could use some improvements. Firstly the
workload that was used does not represent a realistic scenario. Not all areas
of the application are hit during the test. The second part of the workload
that might have influenced the results, during the stages we used a time
based stage of sending commands instead of a fixed number of commands.
This causes that more events need to be handled if the commands were
handled quickly as this would make more commands possible in the same
time period. The variable number of events might cause differences in the
measurement results of the events. The use of one application is another
simplification, in reality we want to host multiple applications/clients on
one cluster. That way you can share the resources and keep the costs lower
per client.

In the execution of the sampling we should have accounted for the
stochastic nature of the process. There can be differences between two very
similar configurations because the resource balancer decided to start moving
critical processes in a certain time frame. To battle this each sample should
be run multiple times, then taking the average of all the runs for a sample.
This would reduce the chance of outliers that are used in the training of the
heuristic. We chose not to do this in the current research because of time
limitations. This should also be done for the validation set as they require
the same treatment as the training set. The validation set could also be
enlarged we currently used five samples in the validation set. We used 13
input dimensions, so five samples might not validate for the entire range of
possibilities.
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10.2 Future Work

The unstructured search method of non-dominated sorting genetic algorithm
is a possible point to improve upon. When structure is introduced it could
improve the results of the Pareto front or decrease the time required to find
the results. The current search pattern uses crossover and mutation on the
solutions in the population, applying this on every value in the configuration
each iteration. The initial configurations are randomized in each dimension.
It would be interesting to adjust the initial configurations in such a way that
only a couple of the dimensions get randomized while the other will get a
fixed value. Secondly the structure of the search could be changed so that it
is possible to specify which dimension gets altered in an iteration, starting
with a couple of dimensions and after X generations also start varying the
other dimensions. This can also be done with conditional rules, for example
when the progress of the Pareto front stagnates another dimension could be
unlocked to start improving the Pareto front even further.

As future work for AFAS, there should be a follow up experiment. When
the application gets near production-ready, the findings become more accu-
rate and relevant. Besides improving the experiment by solving the lim-
itations stated above, it is also possible to change the dimensions of the
configuration. As we have seen in Section 9 the balancing threshold has a
clear preference of a high value in all of the configurations in the Pareto
front, which means it is not interesting to search those parameters again in
a follow up experiment. By making the thresholds a constant, the number
of dimensions is reduced and the remaining dimensions get a closer inspec-
tion. We expect with fewer dimensions that the running time will improve,
as there is less variability in the configuration.
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11 Conclusion

In this research we described an approach to help finding a fitting infras-
tructure configuration for hosting new cloud-based software. We use the
definition of Pareto optimal to find configurations that are mathematically
not worse than the other configurations, which enables the decision maker
to choose while being fully informed of the possibilities. This approach
with the steps of creating a configuration schema, sampling, heuristics, and
finding the Pareto optimal configurations can be used for finding a fitting
infrastructure for hosting a SaaS solution, but it can also be used in de-
sign other products as the notion of expensive evaluation is not limited to
software deployment.

In our case a configuration is made up of 13 dimensions with a focus on
performance on the command side and the information transfer to the query
side by the means of events. By using the sampling design of near orthogonal
Latin hypercube it is possible to evaluate a low number of samples that are
evenly spread through out all possible configurations. These samples are
used to train the heuristics, which make it possible to approximate the
performance and robustness of a configuration of the infrastructure. With
heuristics we have seen that the accuracy can differ and there does not
exist an universal heuristic that fits all problems. In our case support vector
regression approximated reality the most accurate. The heuristics enable the
use of a genetic algorithm in reasonable time. The non-dominated sorting
genetic algorithm uses the principle of dominance to search through the
configuration space, this keeps the essence of a Pareto front in the search
process and results in a well rounded Pareto front. By keeping an archive we
made sure not to lose any of the configurations that are on the Pareto front.
After creating the Pareto front we are able to gain insights in the behaviour
of the various dimensions in the configuration and present a trade-off to the
decision maker.
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A Sample Configurations

Vm Type The Vm sizes used in the experiment, all types are prefixed with
Standard in Azure.

Count The number of machines in the cluster.

Weight 1 Service Fabric balancing weight for Actor executions.

Weight 2 Service Fabric balancing weight for Actor default metrics.

Weight 3 Service Fabric balancing weight for Events handled.

Weight 4 Service Fabric balancing weight for Eventhandler default met-
rics.

Weight 5 Service Fabric balancing weight for Dispatch queue size.

Weight 6 Service Fabric balancing weight for Dispatcher default metrics.

Weight 7 Service Fabric balancing weight for default metrics of the other
services.

Ratio 1 Service Fabric balancing threshold for Actor executions.

Ratio 2 Service Fabric balancing threshold for Events handled.

Ratio 3 Service Fabric balancing threshold for Dispatch queue size.

Ratio 4 Service Fabric balancing threshold for default metrics.

The first 65 samples are generated with NOHL design for up to 16 factors
using only the first 13 columns and are used for training the heuristics.
The final 5 samples are generated randomly and are used for testing the
heuristics.
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ID Vm Type Count Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 Weight 7 Ratio 1 Ratio 2 Ratio 3 Ratio 4

1 D2 V2 5 Low Low Zero Medium Medium Low High 3.88 3.19 4.75 1.75
2 D3 V2 12 Zero Low Low Low Medium Medium Medium 4.69 4.06 2.94 1.94
3 D3 V2 9 High Low Low High Zero Low Low 3.31 4.19 4.5 2.88
4 D2 V2 14 Medium Low Zero Low Low Low Zero 4.94 4.63 3.5 1.31
5 D3 V2 10 Low Zero Zero Zero Low Medium Medium 2.94 1.25 4.38 3.56
6 D2 V2 14 Low Low Zero Medium Zero High High 1.44 2.63 4.13 4.56
7 D2 V2 7 Medium Zero Low Low High Low Zero 2.75 2.38 4.63 4.81
8 D2 V2 13 High Low Low High Medium Zero Low 2.25 1.06 3.56 3.88
9 D2 V2 5 Zero Medium Low Medium Low Zero Medium 2.19 4.38 2.56 2.31
10 D3 V2 12 Low Medium Zero Low High Low Medium 1 3.69 1.13 2.69
11 D2 V2 5 High Medium Low Low Low Medium Zero 1.94 3.88 1.75 1.88
12 D3 V2 10 Medium High Low Zero Low Medium Low 2.5 3.13 2 2.81
13 D2 V2 7 Low Medium Low Low Low Low High 4.81 1.56 1.19 4.94
14 D2 V2 10 Low High Low High Zero Zero Medium 3.13 2 2.19 3.06
15 D2 V2 8 Medium High Low Low Low High Zero 4.31 1 2.75 4.88
16 D2 V2 11 Medium Medium Zero High High Medium Low 4.25 2.44 1.44 3.75
17 D3 V2 9 Low Zero Medium High Medium High Medium 3.38 2.25 2.13 2.63
18 D2 V2 14 Low Low Medium Low Medium Medium Low 3.94 1.44 1 1
19 D2 V2 9 Medium Low Medium High Zero Low Medium 4.19 2.94 1.31 1.81
20 D2 V2 12 High Zero Medium Low Low Low Medium 4.5 1.19 2.69 1.69
21 D2 V2 7 Low Zero High Low Zero Medium Low 1.38 2.69 1.69 3.44
22 D2 V2 13 Zero Zero Medium Medium Low High Low 2.38 4.69 2.25 3.94
23 D3 V2 9 Medium Low High Zero Medium Zero Medium 2.31 3.25 2.06 3.25
24 D2 V2 15 Medium Low Medium Medium Medium Low High 1.25 3.81 1.81 4.44
25 D2 V2 8 Zero Medium Medium Medium High Zero Zero 1.63 2.06 3.63 1.5
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ID Vm Type Count Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 Weight 7 Ratio 1 Ratio 2 Ratio 3 Ratio 4

26 D2 V2 11 Zero High Medium Low Medium Low Low 2.81 1.13 4.44 2.38
27 D3 V2 6 Medium Medium Medium High Low High Medium 2 1.88 3.38 2.19
28 D3 V2 13 Medium Medium High Low Zero Medium Medium 2.44 2.5 4.94 1.25
29 D3 V2 8 Zero Medium Medium Low Low Zero Low 4.44 4.5 3.19 4.63
30 D2 V2 14 Low Medium High High Low Medium Zero 4.13 3.44 3.69 4.38
31 D2 V2 6 Medium Medium High Low Medium Medium High 4.88 4.25 3.13 4
32 D3 V2 12 High High Medium Medium High Medium Medium 3.44 4.31 4.06 3.5
33 D2 V2 10 Medium Medium Medium Medium Medium Medium Medium 3 3 3 3
34 A5 15 Medium Medium High Low Low Medium Zero 2.13 2.81 1.25 4.25
35 A2 8 High Medium Medium Medium Low Low Low 1.31 1.94 3.06 4.06
36 A2 11 Zero Medium Medium Zero High Medium Medium 2.69 1.81 1.5 3.13
37 A5 6 Low Medium High Medium Medium Medium High 1.06 1.38 2.5 4.69
38 A2 10 Medium High High High Medium Low Low 3.06 4.75 1.63 2.44
39 A5 6 Medium Medium High Low High Zero Zero 4.56 3.38 1.88 1.44
40 A5 13 Low High Medium Medium Zero Medium High 3.25 3.63 1.38 1.19
41 A5 7 Zero Medium Medium Zero Low High Medium 3.75 4.94 2.44 2.13
42 A5 15 High Low Medium Low Medium High Low 3.81 1.63 3.44 3.69
43 A2 8 Medium Low High Medium Zero Medium Low 5 2.31 4.88 3.31
44 A5 15 Zero Low Medium Medium Medium Low High 4.06 2.13 4.25 4.13
45 A2 10 Low Zero Medium High Medium Low Medium 3.5 2.88 4 3.19
46 A5 13 Medium Low Medium Medium Medium Medium Zero 1.19 4.44 4.81 1.06
47 A5 10 Medium Zero Medium Zero High High Low 2.88 4 3.81 2.94
48 A5 12 Low Zero Medium Medium Medium Zero High 1.69 5 3.25 1.13
49 A5 9 Low Low High Zero Zero Low Medium 1.75 3.56 4.56 2.25
50 A2 11 Medium High Low Zero Low Zero Low 2.63 3.75 3.88 3.38
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ID Vm Type Count Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 Weight 7 Ratio 1 Ratio 2 Ratio 3 Ratio 4

51 A5 6 Medium Medium Low Medium Low Low Medium 2.06 4.56 5 5
52 A5 11 Low Medium Low Zero High Medium Low 1.81 3.06 4.69 4.19
53 A5 8 Zero High Low Medium Medium Medium Low 1.5 4.81 3.31 4.31
54 A5 13 Medium High Zero Medium High Low Medium 4.63 3.31 4.31 2.56
55 A5 7 High High Low Low Medium Zero Medium 3.63 1.31 3.75 2.06
56 A2 11 Low Medium Zero High Low High Low 3.69 2.75 3.94 2.75
57 A5 5 Low Medium Low Low Low Medium Zero 4.75 2.19 4.19 1.56
58 A5 13 High Low Low Low Zero High High 4.38 3.94 2.38 4.5
59 A5 9 High Zero Low Medium Low Medium Medium 3.19 4.88 1.56 3.63
60 A2 14 Low Low Low Zero Medium Zero Low 4 4.13 2.63 3.81
61 A2 7 Low Low Zero Medium High Low Low 3.56 3.5 1.06 4.75
62 A2 12 High Low Low Medium Medium High Medium 1.56 1.5 2.81 1.38
63 A5 6 Medium Low Zero Zero Medium Low High 1.88 2.56 2.31 1.63
64 A5 14 Low Low Zero Medium Low Low Zero 1.13 1.75 2.88 2
65 A2 8 Zero Zero Low Low Zero Low Low 2.56 1.69 1.94 2.5

66 D2 V2 8 Low Zero High High Medium Zero High 1.516 1.830 3.418 2.76
67 A2 10 Zero Zero Low Low High Zero High 4.612 3.512 4.789 3.35
68 A5 11 Low Zero Medium High Low Medium Low 2.029 4.196 1.778 1.03
69 D3 V2 13 Low Low Medium High Low Medium Low 4.550 1.911 3.165 1.75
70 A5 9 Zero Zero Zero High Zero High Zero 4.356 4.041 3.080 3.52
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B Results

O1 Events per second - Default - Inserts

O2 Events per second - Default - Updates

O3 Events per second - Stress - Inserts

O4 Events per second - Stress - Updates

O5 Command duration - Default - Inserts

O6 Command duration - Default - Updates

O7 Command duration - Stress - Inserts

O8 Command duration - Stress - Updates

O9 Events per second - Default - Combined

O10 Events per second - Stress - Combined

O11 Command duration - Combined
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ID O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

1 114.7914 75.04885 81.72864 67.72253 86.03015 105.7126 104.0164 122.9916 94.92014 74.72559 104.6877
2 104.8297 71.37305 104.669 62.54412 90.93925 85.16875 94.20655 97.80301 88.10136 83.60658 92.02939
3 107.1134 80.6805 104.8074 70.15052 97.2697 101.0951 97.07876 87.73414 93.89697 87.47894 95.79441
4 102.6388 61.24717 149.7964 125.753 91.39976 96.76773 88.89392 92.99883 81.94296 137.7747 92.51506
5 117.5852 63.34212 81.44345 62.88863 96.02775 92.73115 87.5061 85.01622 90.46365 72.16604 90.3203
6 118.2917 59.47448 99.76095 50.34468 92.69785 92.33305 92.08368 97.99815 88.8831 75.05282 93.77818
7 131.2646 67.23177 129.8805 56.46274 109.1312 84.42628 111.5526 104.0471 99.24818 93.17162 102.2893
8 116.556 52.24108 72.7695 53.20525 84.70403 89.44483 92.38489 92.14206 84.39854 62.98738 89.66895
9 108.5525 79.93498 98.72849 75.17696 103.8281 90.89846 127.3888 96.53376 94.24375 86.95272 104.6623
10 99.40717 54.93946 63.15304 51.51925 91.0307 81.08698 84.00645 101.553 77.17331 57.33614 89.41928
11 106.7658 57.34851 95.46728 64.20824 100.3787 83.8531 104.1909 109.3687 82.05714 79.83776 99.44786
12 87.14591 51.33102 77.59856 52.01458 81.95092 98.29838 86.61238 89.46755 69.23846 64.80657 89.08231
13 109.2997 52.88912 82.86566 57.73872 92.68333 104.3042 87.16638 96.51415 81.0944 70.30219 95.16702
14 97.64324 51.26912 94.23897 60.08369 116.2258 111.0655 99.9616 95.12072 74.45618 77.16133 105.5934
15 87.84389 52.32875 165.9402 114.0694 91.69203 86.75904 98.27052 91.59425 70.08632 140.0048 92.07896
16 107.6837 65.12067 82.46149 43.88897 107.2337 93.65026 102.6417 88.64989 86.40217 63.17523 98.04387
17 150.1984 51.24725 100.2503 88.67947 97.41975 84.34456 108.724 95.3989 100.7228 94.4649 96.4718
18 92.0917 45.6314 56.66397 40.22381 108.2274 115.9779 96.93288 109.1312 68.86155 48.44389 107.5673
19 112.2852 72.22469 91.79188 63.3919 104.3491 95.16399 108.2843 122.8903 92.25496 77.59189 107.6719
20 96.09173 59.74266 74.67957 45.1835 106.6772 108.0503 102.9696 95.25614 77.91719 59.93153 103.2383
21 88.18253 53.57297 68.895 45.78346 114.9931 108.4925 111.1413 108.9903 70.87775 57.33923 110.9043
22 94.52305 47.70656 60.93093 58.15966 87.02178 101.821 91.82597 92.4955 71.11481 59.54529 93.29106
23 153.4245 45.73869 83.26189 69.07319 108.6128 107.2625 105.8178 112.4236 99.58162 76.16754 108.5292
24 101.0126 50.95554 60.1767 32.80113 92.12932 94.85953 102.8915 96.6593 75.98409 46.48891 96.6349
25 77.39404 53.06562 126.453 33.4142 95.98898 94.68365 109.444 96.34274 65.22983 79.9336 99.11485
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ID O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

26 94.64571 65.20402 83.33575 53.31193 94.24228 94.92664 90.25895 116.4206 79.92487 68.32384 98.96211
27 106.2928 66.89113 118.9176 95.19244 91.7128 99.47554 128.8462 110.0925 86.59196 107.055 107.5318
28 152.9694 110.5248 121.2135 114.3341 88.46227 104.3275 111.5062 90.32051 131.7471 117.7738 98.65411
29 168.377 115.4207 140.8317 106.7403 89.90456 101.085 108.6069 96.35355 141.8989 123.786 98.9875
30 170.5599 126.9359 155.5943 117.9635 84.6171 90.5472 91.99702 119.0204 148.7479 136.7789 96.54544
31 172.6334 124.8041 128.9604 122.5616 97.47433 100.9088 101.2112 104.4591 148.7188 125.761 101.0134
32 144.9713 113.5051 135.9599 111.2906 106.4936 88.85998 113.8449 124.9336 129.2382 123.6253 108.533
33 138.15 113.743 126.1961 103.0905 110.1962 95.60881 116.0887 100.5647 125.9465 114.6433 105.6146
34 147.4902 102.5964 147.9203 123.9445 119.8046 112.3748 113.6263 116.9623 125.0433 135.9324 115.692
35 136.7096 111.1947 96.77261 53.19638 146.7731 144.3161 206.1333 160.1825 123.9521 74.98449 164.3513
36 135.9014 121.9403 127.3609 92.47663 123.142 104.146 146.8089 129.8979 128.9209 109.9187 125.9987
37 125.6462 105.825 104.3553 92.20651 140.67 143.8062 196.9849 218.0397 115.7356 98.28088 174.8752
38 144.069 110.8301 137.5281 93.68846 124.0743 118.5031 138.8341 136.1585 127.4496 115.6083 129.3925
39 117.5732 102.5723 81.20394 76.02791 151.9315 141.5811 179.2472 146.2765 110.0727 78.61592 154.7591
40 144.9403 111.556 124.6242 95.12881 100.2227 104.8768 215.8028 121.364 128.2482 109.8765 135.5666
41 109.8127 87.53687 99.76253 86.58968 146.2534 163.0258 212.407 156.7678 98.6748 93.1761 169.6135
42 117.4694 84.79369 128.3333 106.4299 115.8956 98.18057 105.01 103.2417 101.1315 117.3816 105.582
43 124.0964 98.91671 112.2907 95.45712 136.291 116.1563 156.918 131.0222 111.5066 103.8739 135.0969
44 148.1187 126.2054 151.2857 119.2539 125.5158 118.1348 115.0444 118.8571 137.162 135.2698 119.388
45 113.853 94.09633 106.2982 75.81269 119.7018 131.9422 150.407 143.7973 103.9747 91.05545 136.4621
46 116.9985 96.8421 132.841 112.2293 134.4763 118.6639 119.7646 113.3929 106.9203 122.5352 121.5744
47 131.1963 110.1643 138.862 112.9244 122.7209 119.4187 129.2279 130.534 120.6803 125.8932 125.4754
48 136.4444 101.007 98.33291 65.4126 125.6471 117.6506 140.2428 132.547 118.7257 81.87276 129.0219
49 134.3153 110.9871 120.2895 110.7786 130.771 137.1177 128.5637 120.5466 122.6512 115.5341 129.2498
50 139.38 103.8461 128.7817 108.5831 134.9612 122.5581 113.707 129.1187 121.6131 118.6824 125.0863
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ID O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

51 86.68322 87.67976 93.76983 82.94228 180.1667 185.6121 197.3252 223.1696 87.18149 88.35606 196.5684
52 123.6591 105.7232 116.0989 98.6704 119.1036 119.1523 126.2799 140.7884 114.6912 107.3847 126.3311
53 125.5237 99.69458 135.7304 100.3006 134.1128 124.286 133.3063 140.3328 112.6092 118.0155 133.0094
54 132.7382 114.3143 146.1699 118.7265 115.572 103.9229 121.9889 114.0803 123.5263 132.4482 113.891
55 83.6872 71.35818 119.1511 102.6556 160.1157 174.4027 150.1557 164.2734 77.52269 110.9034 162.2369
56 137.3357 119.9337 126.9104 96.92902 112.8334 101.7307 121.2815 116.8521 128.6347 111.9197 113.1744
57 116.3609 100.1532 93.25331 88.25181 151.5299 161.6237 198.6542 217.4299 108.2571 90.75256 182.3094
58 152.3521 120.9451 125.1438 101.4333 131.9048 91.41113 108.6834 127.8104 136.6486 113.2885 114.9524
59 110.7745 101.1486 127.3286 74.78005 117.7871 114.3459 120.3233 110.6775 105.9615 101.0543 115.7834
60 90.12787 66.44067 151.217 115.9706 112.1947 110.3438 109.6502 113.7628 78.28427 133.5938 111.4878
61 121.5611 102.6283 115.8177 108.328 152.4635 141.3305 144.5332 137.103 112.0947 112.0728 143.8575
62 136.9147 102.8941 139.6809 100.5042 109.0514 111.9231 123.0081 117.7247 119.9044 120.0926 115.4268
63 97.11666 77.85012 93.38577 72.63215 151.7351 140.5692 199.7038 217.4563 87.48339 83.00896 177.3661
64 138.8374 101.4655 74.08447 99.58069 120.3213 107.0751 120.9244 116.8182 120.1514 86.83258 116.2847
65 121.0305 92.83283 108.6853 87.0793 163.1282 189.7853 157.7391 148.2838 106.9317 97.88231 164.7341

66 158.6555 119.6287 142.4997 118.951 90.35284 108.7717 94.96264 106.2701 139.1421 130.7254 100.0893
67 130.7692 106.5389 132.7667 105.2915 117.5455 130.4654 120.5246 111.6382 118.654 119.0291 120.0434
68 93.82453 83.09332 105.2493 89.58382 160.3952 139.1004 166.4842 176.7044 88.45892 97.41658 160.6711
69 143.1445 113.4444 118.1653 99.73639 102.5009 92.9506 109.0914 99.85329 128.2944 108.9508 101.0991
70 127.5995 113.0045 138.4465 105.1395 122.939 125.8401 142.458 128.2741 120.302 121.793 129.8778
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