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Abstract

I apply a principle components-based dimension reduction technique to for-
eign exchange (FX) basket option pricing. The underlying FX rates are
modeled by the Black-Scholes model extended with Hull-White stochastic
interest rates. A full correlation structure between the underlyings is in-
cluded. The dimension of the model is first reduced by switching to the
domestic forward measure. Second, the FX basket option pricing problem
is rewritten in terms of the principal components of the forward FX rates.
Further dimension reduction is then achieved by substituting all except for
a few principal components with large variance by their expected value. I
contribute to the existing literature by including the time-dependence of the
principle components composition in high-dimensional option pricing. Real
market data is used to calibrate the model to several emerging and non-
emerging market currencies. In line with expectations, the accuracy of the
dimension reduction technique depends on the correlation between the cur-
rencies: more accurate results are obtained for higher correlation values.

Keywords: foreign exchange, basket option, multi-dimensional option pric-
ing, dimension reduction, principal component analysis, time-dependent prin-
cipal components, Black-Scholes, Hull-White, stochastic interest rates.
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Chapter 1

Introduction

In the 70s and 80s, foreign exchange (FX) options became an important new
market innovation. Today the FX market is one of the largest and most liq-
uid over-the-counter (OTC) derivative markets worldwide. According to the
2016 BIS Triennial Central Bank Survey [1], FX markets trading averaged
$5.1 trillion per day in April 2016. This is down from $5.4 trillion in April
2013 but up from $4.0 trillion in April 2010 and $3.3 trillion in April 2007.
FX swaps ($2.4 trillion per day) and FX spots ($1.7 trillion per day) were
the most traded instruments in April 2016.

Nowadays there is an increasing demand for options to hedge the risks of
multiple currencies simultaneously. A typical example is a FX basket op-
tion, whose underlying is the (weighted) arithmetic or geometric average of
multiple FX rates. The two main challenges in basket option pricing are the
modeling of the underlying FX rates and the curse of dimensionality. The
research in this master thesis addresses both challenges.

Not all models are applicable for modeling multiple FX rates simultaneously.
Many models are inconsistent in the sense that they violate the inverse prop-
erty and triangle property (De Col, Gnoatto & Grasselli, 2013). These prop-
erties intuitively state that the stochastic model dynamics of the inverse FX
rate and cross FX rates have to be consistent. A large number of models for
financial derivatives that are extensively studied in academic literature are
not consistent for multi-FX modeling. The Black-Scholes model extended
with Hull-White interest rate components is consistent for multi-FX model-
ing. Therefore in this research this model is used to model multiple FX rates
simultaneously.

There are a number of studies on high-dimensional derivative pricing, many
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of them focussing on Quasi-Monte Carlo methods. Joy, Boyle and Tan (1996)
introduced this method in the field of numerical finance. With this method,
deterministic sequences are used for Monte Carlo simulations instead of the
random numbers, leading to faster convergence. Others focus on the radial
basis function (RBF) approximations to solve the pricing Partial Differential
Equation for 1 or 2 dimensions (e.g., Pettersson, Larsson, Marcusson & Pers-
son (2008); Shcherbakov & Larsson, 2016). Finally neural network methods
(e.g., Kohler, Krzyzak & Todorovic, 2010) and stochastic mesh methods (e.g.,
Broadie & Glasserman, 2004) have been used in high-dimensional derivative
pricing.

There is little literature on the application of these high dimensional deriva-
tive pricing methods to FX basket options. Several studies derive closed-
form approximations for valuing arithmetic FX basket options using moment
matching (e.g., Hakala & Wystup, 2008; Leippold, 2006). It is assumed that
the basket spot exchange rate itself is a log-normal process driven by a Brow-
nian motion1. Then, the sum of the log-normal processes of the single FX
rates is approximated by a log-normal process itself. The first and second
moment of the basket spot are then matched with the first and second mo-
ment of the log-normal model for the basket spot, respectively.

A more sophisticated approach of dimension reduction is to look at effective
dimensions. In this approach, the original high dimensional derivative pric-
ing problem is rewritten in terms of principal components that are weighted
averages of the original variables. The weights are equal to the eigenvector
coefficients of the covariance matrix of the original variables, yielding un-
correlated principal components with descending variances. Especially for
high correlations and similar variances among the original variables, it is
worth to rewrite the original derivative pricing problem in terms of princi-
pal components. Subsequently, only the first few principal components with

1A stochastic process W is a Brownian motion if:

� W (0) = 0;

� the process W (t)−W (u) ∼ N(0, t− u), for any 0 ≤ u < t;

� the process W (t)−W (u) is independent of (W (s))s≤u, for any 0 ≤ u < t;

� any sample path of the mapping t 7→W (t) is a continuous function.

Brownian motions are often used in the stochastic modeling of interest rates, stock prices,
FX rates, etcetera. The denotation Brownian motion is after Robert Brown, while it is
sometimes called Wiener process, after Norbert Wiener. For more information on Brow-
nian motions, see e.g., Boshuizen, van der Vaart, van Zanten, Banachewicz, Zareba and
Belitser, 2014, section 5.3.
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relatively high variance can be included in the pricing problem. The re-
maining principal components are substituted by their expectation. Most
effective dimension-based reduction techniques applied in multi-dimensional
derivative pricing are applied to the Quasi-Monte Carlo method. Often the
high-dimensional derivative pricing problems are of low effective dimension
(Wang & Sloan, 2005), such that functions can be well approximated by their
low-order ANOVA (e.g., Imai & Tan, 2006; Sabino, 2007).

In his doctoral thesis, Reisinger (2004) (see also Reisinger & Wissman, 2015;
Reisinger & Wittum, 2007) applies a principal components-based dimen-
sion reduction to the multi-dimensional Black-Scholes equation with con-
stant drifts and volatilities. Reisinger first transforms the original multi-
dimensional Black-Scholes pricing problem in terms of the principal compo-
nents. Then he substitutes all except for the first few principal components
with relatively high variance by their expectation. Ekedahl, Hansander and
Lehto (2007) apply this technique to the pricing of a basket option on multi-
ple stocks. For particular market data they show very accurate results, using
only 1 or 2 principal components.

The current applications of principal component analysis in multi-dimensional
option pricing are limited to the case of the Black-Scholes model with con-
stant drift and volatility terms. In this case the coefficients of the eigenvec-
tors of the covariance matrix are constant over time as the covariance matrix
itself is constant over time. As a consequence, the composition of the princi-
pal components is independent of time and can be calculated once using the
time-independent covariance matrix of the variables. The time-independence
of the principal components simplifies the dimension reduction heavily.

In this thesis I contribute to the literature by applying a time-dependent
principal components-based dimension reduction to multi-dimensional FX
option pricing. The FX rates are modeled by the calibrated Black-Scholes
model with Hull-White stochastic interest rates. For this model, the coef-
ficients of the principal components are time-dependent as the coefficients
of the eigenvectors of the covariance matrix are time-dependent. It will be
shown that the three-dimensional Black-Scholes-Hull-White model can be re-
duced to a one-dimensional Black-Scholes model with time-dependent volatil-
ity. This is accomplished by switching from risk measure and, consequently,
by switching to the forward FX rate. The original FX basket pricing problem
is then transformed in terms of the time-dependent principal components of
the multi-dimensional Black-Scholes-Hull-White model. The dimension of
the pricing problem is reduced by substituting all except for the first or first
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two principal components with relatively high variance by their time-zero
expected value. As the composition of the principal components changes
continuously over time, the challenge is to incorporate this in the derivative
pricing.

The research question in this master thesis is:

What is the accuracy and performance of time-dependent principal
components-based dimension reduction in FX basket option pric-
ing under the multi-dimensional Black-Scholes-Hull-White model?

This report is organized as follows. Chapter 2 gives an introduction to FX
markets, quotation rules and FX option pricing. Chapter 3 gives a short
overview of the Hull-White model for interest rates and the current stan-
dard of modeling FX rates. It extensively addresses the BSHW model and
its extension to multi-FX modeling. Chapter 4 first gives a brief introduc-
tion to principal component analysis. Then the time-dependent principle
components-based dimension reduction technique applied to FX basket op-
tion pricing under the multi-FX Black-Scholes-Hull-White model is intro-
duced. Chapter 5 gives a description of the two numerical valuation tech-
niques that are used in this thesis: Monte Carlo simulations and finite differ-
ences. Chapter 6 describes the calibration of the multi-dimensional Black-
Scholes-Hull-White model to real market data. Moreover it shows numerical
results for the valuation of FX basket call options under the calibrated model.
The accuracy of the principle components-based dimension reduction tech-
nique is assessed using a Monte Carlo reference solution. In chapter 7 I
present the conclusion of this research and suggestions for further research.
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Chapter 2

FX markets and option pricing

2.1 Quotation

The way FX rates are quoted in the market can be confusing. Although there
is no universal quotation rule, the exchange rate between a currency pair
(FX1,FX2) is often quoted as FX1FX2 (e.g., Clark, 2011; Wystup, 2008).
This exchange rate is the price of 1 unit of FX1 in units of FX2, or a ”FX2

per FX1 price”. FX1 is called the foreign currency or the base currency, FX2

is called the domestic currency or quote currency. Clark (2011) presents a
useful hierarchical order in which currencies should be used as FX1:

EUR > GBP > AUD > NZD > USD > CAD > CHF > JPY.

Consider as an example the following major spot FX rate values from August
15, 20161:

FX rate Spot value
USDEUR 0.8942
GBPEUR 1.1517
JPYEUR 0.0088310

Table 2.1: Spot FX rate values from August 15, 2016.

For example, the USDEUR exchange rate implies that the price of 1 USD
equals 0.8942 euro.

1Most FX rates are quoted to five significant figures. This will also be the base of this
thesis.
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2.2 Spot settlement, expiry and delivery

In general the payments of FX trades are not made on the trade date, but
mostly 2 business days later (often called the settlement date or spot date).
Similarly, if a FX option is exercised on the option expiration date, the spot
FX transaction is often delivered later than the expiration date. Often the
delivery date has the same relation to the expiry date as the spot date to
today (see e.g., Clark, 2011).

2.3 Options

Although FX swap trades and spot FX trading account for approximately
80% of trading in FX markets [1], several plain vanilla2 and exotic FX options
can be traded, with different exercise and monitoring styles (e.g., Castagna,
2010, Table 1.2, p. 10). The main focus of this thesis is on FX forwards
and FX plain vanilla options, with European-style exercise3. Both single FX
rate options and basket options are considered, which are discussed in the
subsections below.

2.3.1 Quotation

For FX trading, the jargon and the option definition slightly differs from
options on any other assets like the stock price. First of all, option prices
may be quoted in different ways (e.g., Wystup, 2008; Castagna, 2010). For
example, plain vanilla option prices are usually quoted in units, while exotic
option prices are usually quoted in percentages (in case the payoff of the
option is in domestic currency units). Denoting by K the strike price, πd the
option price in domestic currency units and πd% the option price in domestic
currency percentages, one has πd% = πd

K
· 100. The actual premium to pay

depends on the notional amount and the currency in which the notional is
defined.

Furthermore, the defintion of a FX option can sometimes be ambiguous. In
the example below the definition of a European-style FX call option contract
is clarified.

Example 1. A 6m EUR call GBP put 0.9 has to be interpreted as an option
in which the buyer has the right (but not the obligation) at expiry, 6 months

2Plain vanilla options are usually used to denote normal call and put options with no
extra features. These options are the opposite of the more complex exotic options.

3European options are options that can only be exercised at expiry date T .
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after initiation, to buy (sell) the notional amount in the EUR (GBP) cur-
rency, at strike price 0.9. The notional amount N in EUR currency units is
exchanged against N ×K units of the GBP currency.

In this thesis, the option price will be expressed in domestic currency
units, and the notional will be in foreign currency units.

2.3.2 Single FX option

Single FX options admit for hedging of the risk of a single currency pair. Be-
sides the trivial forward option, European-style call/put options and digital
call/put options are considered, with payoffs respectively equal to4:

f1

(
Sdf (T )

)
= Nf

(
Sdf (T )−K

)
,

f2

(
Sdf (T )

)
= Nf

(
δ
(
Sdf (T )−K

))+
,

f3

(
Sdf (T )

)
= Nd1{δ(Sdf (T )−K)≥0}.

(2.1)

Here δ equals 1 in case of a call option and −1 in case of a put option.
Sdf denotes the exchange rate between the foreign and domestic currency
according to the quotation from section 2.1, Nf (Nd) is the notional amount
expressed in foreign (domestic) currency units, T is the maturity in years
and K is the strike price.

2.3.3 Basket option

Although most FX options traded in the market have a single underlying
FX rate, there is a demand for options that can be used for the hedging
of multiple currencies simultaneously. An example is the FX basket option,
whose underlying is a weighted average of multiple FX rates. The price of a
FX basket option is often lower than the sum of the prices of the separate
FX options. Denoting by NFX the number of FX rates in the basket option
and by φi, i = 1, . . . , NFX , the basket weights, the payoffs of the FX basket
options are equal to:

f1

((
Sdi(T )

)
i≤NFX

)
= Nf

(
NFX∑
i=1

φiS
di(T )−K

)
,

f2

((
Sdi(T )

)
i≤NFX

)
= Nf

(
δ

(
NFX∑
i=1

φiS
di(T )−K

))+

.

(2.2)

4x+ = max(x, 0) for x ∈ R.
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Here f1 and f2 are a FX basket forward and FX basket call/put option,
respectively. Note that the digital option is not listed, as a digital FX basket
option is not traded in the FX markets.

2.4 Option pricing

Denote by Md(t) the money-market account and by rd(t) the domestic inter-
est rate at time t ≥ 0. The dynamics of Md(t) are given by the stochastic
differential equation (SDE)

dMd(t) = rd(t)Md(t)dt.

The time-t price of the single FX rate option of type k = 1, 2, 3 (see (2.1)) is
given by

πk(t) = EQ

[
Md(t)

fk
(
Sdf (T )

)
Md(T )

∣∣F(t)

]
, k = 1, 2, 3, (2.3)

and the time-t price of a FX basket option of type k = 1, 2 (see (2.2)) is
given by

πNFXk (t) = EQ

Md(t)
fk

((
Sdi(T )

)
i≤NFX

)
Md(T )

∣∣F(t)

 , k = 1, 2. (2.4)

See subsections 2.3.2 and 2.3.3 for definitions of the option payoffs. Q is the
risk-neutral measure, which will be discussed below.

2.4.1 Risk neutrality

One of the main theorems in financial mathematics is called the first fun-
damental theorem of asset pricing (FTAP). The FTAP states that there are
no arbitrage opportunities in a complete market, if and only if there ex-
ists a probability measure Q that is equivalent to the real-world measure
P and under which the discounted risky assets in the market are martin-
gales (e.g., Downarowicz, 2010). Therefore in option pricing, by ensuring
that all discounted underlying risky assets are martingales, one can change
the underlying measure from the real-world measure P to the corresponding
risk-neutral measure Q. The option price becomes equal to the expectation
under Q of the discounted option payoff. The change of measure from P to
Q is often guided by a change of the stochastic dynamics of the underlying
process. This will be shown multiple times in the next chapters.
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2.4.2 The volatility smile and the delta-sticky notation

For European-style vanilla options on a single underlying FX rate, implied
volatility can be derived by solving for the volatility parameter in the Black-
Scholes pricing formula, using the market price. If all assumptions underly-
ing the Black-Scholes model would hold, the Black-Scholes implied volatility
would be the same for different maturities and strike prices of the option.
In reality however, this is not true, and a so-called implied volatility surface
is observed. The implied volatility surface is a mapping of strike and matu-
rity to implied volatility. Considering implied volatility curves for a specific
maturity yields shapes that are often referred to as volatility smiles, skews
or frowns, depending on their shape (e.g., Beneder & Elkenbracht-Huizing,
2003). The existence of the volatility smile disagrees with the log-normality
assumption of FX rates; incorporating this skew in the model can be done
using local volatility, stochastic volatility and/or jumps.

Volatility smiles are not directly observable in the FX OTC derivative market,
as opposed to equity markets where volatility smiles are directly observable
from, for example, strike-volatility pairs. For FX options a complete volatil-
ity smile can nevertheless be constructed using market quotes on the implied
volatility of at-the-money (ATM) options, strangles and risk reversals (RR)
(e.g., Reiswich & Wystup, 2012). These quotes are different from equity
market quotes in the sense that in the FX OTC derivative market, strike
price quotes are given in terms of the delta of the option. The purpose of
this quotation is that the parties involved in a certain FX transaction agree
on a implied volatility level and a certain Black-Scholes delta level before
closing the deal.
When the deal is done, the strike is set equal to the level that yields the
agreed Black-Scholes delta, using the implied volatility and spot FX rate
(e.g., Norgaard, 2011). This agreement is referred to as the delta-sticky
notation.
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Chapter 3

FX modeling

Garman and Kohlhagen (1993) were one of the first to include domestic and
foreign interest rates in the standard Black-Scholes model, for the purpose of
FX derivative pricing. Using arbitrage arguments, they derived the following
stochastic differential equation dynamics for the FX rate S(t) at time t:

dS(t) = (rd − rf )S(t)dt+ σS(t)dWQ(t). (3.1)

Here rd and rf are the domestic and foreign interest rate, respectively, σ is
the volatility parameter and WQ is a Brownian motion under the risk-neutral
measure Q. Switching to the forward FX rate yields the following formula
for the time-t price of European-style FX options expiring at time T (e.g.,
Castagna, 2010, formula 2.28):

ΠGK(t) = Pd(t, T )
[
ωF (t, T )Φ (ωd1)− ωKΦ

(
ωd1 − σ

√
T − t

)]
,

d1 =
ln
(
F (t,T )
K

)
+ σ2

2
(T − t)

σ
√
T − t

,

(3.2)

with ω = 1 for a call and ω = −1 for a put, K the strike price and Φ the
cumulative standard normal distribution function. Furthermore F (t, T ) =
Pf (t,T )

Pd(t,T )
S(t) is the forward FX rate, with Pi(t, T ) (i = d, f) the zero-coupon

bonds for the domestic and foreign currency, respectively.

In the last decades, several model extensions, variations and alternatives
to the model (3.1) have been discussed and used in the FX option pric-
ing literature. Furthermore many literature studies focus on including the
volatility smile into the model. This chapter discusses the Hull-White model
for stochastic interest rates and addresses three of the most used stochastic
FX models before extensively discussing the Black-Scholes-Hull-White model
for the FX rate.
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3.1 The Hull-White model for interest rates

With the introduction of the Hull-White model for interest rates in 1990 (Hull
& White, 1990), an exact fit to the term-structure of interest rates became
possible. The term-structure of interest rates can be represented by the yield
curve, which shows the relation between the continuously compounded spot
rate for the time interval [0, T ], R(0, T ), and maturity T . Alternatively, it
can be represented by the discount curve, which shows the relation between
the zero-coupon bond price P (0, T ) and maturity T . P (0, T ) and R(0, T )
are related according to log(P (0, T )) = −TR(0, T ).

Under the real-world measure P, the Hull-White model is given by the follow-
ing dynamics for the instantaneous short rate, defined by r(t) = limT↓tR(t, T ):

dr(t) = λ (θ(t)− r(t)) dt+ σdW P(t).

The short-rate r(t) is pulled towards the time-dependent level θ(t) at a rate
λ, and a random term with variance σ2 per unit time is added to this process.
The mean-reversion function θ(t) can be chosen to let the model fit the initial
term-structure of interest rates. As Hull and White describe in their paper
(Hull & White, 1990, p. 576):

”It is reasonable to conjecture that in some situations the mar-
ket’s expectations about future interest rates involve time-dependent
parameters. [...] The time dependence can arise from the cyclical
nature of the economy, expectations concerning the future im-
pact of monetary policies, and expected trends in other macroe-
conomic variables.”

The Hull-White model has the affine term-structure 1 and its bond price
therefore satisfies the following formula:

P (t, T ) = eA(t,T )+B(t,T )r(t),

with expressions for A(t, T ) and B(t, T ) given in e.g., Filipovic (2009), Propo-
sition 5.2. The solutions are equal to (e.g., Grzelak & Oosterlee, 2012; Brigo
& Mercurio, 2007):

B(t, T ) =
1

λ

(
e−λ(T−t) − 1

)
,

A(t, T ) = log

(
P (0, T )

P (0, t)

)
−B(t, T )f(0, t)− σ2

4λ

(
1− e−2λt

)
B2(t, T ),

1For an extensive discussion on affine term-structures, see e.g., Filipovic, 2009, section
5.3.
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with the instantaneous forward rate f(0, t) with maturity t prevailing at time

0 defined by f(0, t) := −∂ logP (0,s)
∂s

∣∣
s=t

. Furthermore one has r(t) := f(t, t).
The risk-free dynamics of the zero-coupon bond P (t, T ) with maturity T are
given by [20]

dP (t, T ) = r(t)P (t, T )dt+ P (t, T )
σ

λ

(
e−λ(T−t) − 1

)
dW P(t). (3.3)

The mean-reversion function θ(t) can be calibrated to the initial term-structure
(P (0, T ))T≥0, yielding [6]:

θ(t) =
1

λ

∂f(0, t)

∂t
+ f(0, t) +

σ2

2λ2

(
1− e−2λt

)
. (3.4)

The short rate equals [6]

r(t) = r(s)e−λ(t−s) + λ

∫ t

s

e−λ(t−u)θ(u)du+ σ

∫ t

s

e−λ(t−u)dW P(u).

Therefore r(t) conditional on the filtration (Fs)s≤t2 is normally distributed
with mean and variance given by

E [r(t)|F(s)] = r(s)e−λ(t−s) + λ

∫ t

s

θ(u)e−λ(t−u)du,

Var [r(t)|F(s)] =
σ2

2λ

[
1− e−2λ(t−s)] ,

respectively.

3.2 Local volatility and stochastic volatility

models

Some of the most used FX models in the literature are the local volatil-
ity Black-Scholes-Hull-White model, and the Schöbel-Zhu-Hull-White model
and the Heston-Hull-White model, which are stochastic volatility models.
With stochastic volatility models it is possible to incorporate the volatil-
ity smile. The three above mentioned models are briefly discussed in the
subsections below.

2In the remaining of this thesis, F denotes the natural filtration of stochastic process.
For background information on filtrations and σ-fields, see e.g., Boshuizen, van der Vaart,
van Zanten, Banachewicz, Zareba and Belitser, 2014, section 5.3.
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3.2.1 The local volatility Black-Scholes-Hull-White model

Several literature studies on FX modeling have been devoted to a three-factor
model where the spot FX rate is modeled by the Black-Scholes model with
local volatility and the interest rates are modeled by Hull-White models (e.g.,
Dang, Christara, Jackson & Lakhany, 2010; Deelstra & Rayée, 2011). In this
model volatility is a function of both time and the spot FX rate itself. The
model dynamics are given by

dS(t) = (rd(t)− rf (t))S(t)dt+ γ(t, S(t))S(t)dWQ
S (t),

drd(t) = (θd(t)− kd(t)rd(t))dt+ σddW
Q
d (t),

drf (t) = [θf (t)− kF (t)rf (t)− ρfSσfγ(t, S(t))] dt+ σfdW
Q
f (t),

d
[
WQ
d ,W

Q
S

]
(t) = ρdSdt,

d
[
WQ
f ,W

Q
S

]
(t) = ρfSdt,

d
[
WQ
d ,W

Q
f

]
(t) = ρdfdt,

(3.5)

with Q the domestic spot risk-neutral measure, corresponding to taking the
domestic money market account as numéraire, and γ(t, S(t)) the local volatil-
ity function. The parameters ρdS, ρfS and ρdf denote the correlation values
between the Brownian motions. Furthermore, changing the measure from the
foreign spot risk-neutral measure to the domestic spot risk neutral measure
yields the ”quanto” drift adjustment −ρfSσfγ(t, S(t)). Deelstra and Rayée
derive expressions for the local volatility function by differentiating European
call price expressions with respect to the strike and maturity. Dang et al.
use a constant elasticity of variance (CEV)-type local volatility process.

3.2.2 The Schöbel-Zhu-Hull-White model

Van Haastrecht, Lord, Pelsser and Schrager (2009) extended the Schöbel and
Zhu stochastic volatility model by including Hull-White stochastic interest
rates. They call the resulting model the Schöbel-Zhu Hull-White (SZHW)

16



model, with a FX generalization that reads:

dS(t) = (rd(t)− rf (t))S(t)dt+ ν(t)S(t)dWQ
S (t),

drd(t) = (θd(t)− adrd(t))dt+ σddW
Q
d (t),

drf (t) = [θf (t)− afrf (t)− ρfSν(t)σf ] dt+ σfdW
Q
f (t),

dν(t) = κ(ψ − ν(t))dt+ τdWQ
ν (t),

d
[
WQ
d ,W

Q
S

]
(t) = ρdSdt,

d
[
WQ
f ,W

Q
S

]
(t) = ρfSdt,

d
[
WQ
ν ,WS

]
(t) = ρνSdt,

d
[
WQ
d ,W

Q
f

]
(t) = ρdfdt,

d
[
WQ
d ,W

Q
ν

]
(t) = ρdνdt,

d
[
WQ
f ,W

Q
ν

]
(t) = ρfνdt.

(3.6)

Here ν(t) denotes the stochastic volatility process at time t.

3.2.3 The Heston-Hull-White model

The widely used Heston stochastic volatility model can also be extended with
Hull-White interest rate models. The model dynamics are the following (e.g.,
Grzelak & Oosterlee, 2012):

dS(t) = (rd(t)− rf (t))S(t)dt+
√
ν(t)S(t)dWQ

S (t),

dν(t) = κ(ν̄ − ν(t))dt+ γ
√
ν(t)WQ

ν (t),

drd(t) = λd(θd(t)− rd(t))dt+ σddW
Q
d (t),

drf (t) = λf

[
θf (t)− rf (t)− ρfS

√
ν(t)σf

]
dt+ σfdW

Q
f (t),

d
[
WQ
d ,W

Q
S

]
(t) = ρdSdt,

d
[
WQ
f ,W

Q
S

]
(t) = ρfSdt,

d
[
WQ
ν ,W

Q
S

]
(t) = ρνSdt,

d
[
WQ
d ,W

Q
f

]
(t) = ρdfdt,

d
[
WQ
d ,W

Q
ν

]
(t) = ρdνdt,

d
[
WQ
f ,W

Q
ν

]
(t) = ρfνdt.

(3.7)

See Grzelak, Oosterlee and Van Weeren (2012) for a comparison of the
Schöbel-Zhu-Hull-White (SZHW), Heston-Hull-White (HHW) and the stochas-
tic volatility Heston model in their performance with respect to calibration
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and hybrid product pricing. See also Simaitis, de Graaf, Hari and Kandhai
(2016) for an application of the Heston-Hull-White model in counterparty
credit risk.

3.2.4 The Black-Scholes-Hull-White model

Several studies (e.g., Grzelak & Oosterlee, 2012; Simaitis, 2014) consider
the three-dimensional Black-Scholes-Hull-White model (henceforth BSHW
model) for the FX rate Sdf (t) under the domestic spot risk-neutral measure
Q. Its dynamics are given by

dSdf (t) = (rd(t)− rf (t))Sdf (t)dt+ σSdf (t)dWQ
Sdf

(t),

drd(t) = λd (θd(t)− rd(t)) dt+ σddW
Q
d (t),

drf (t) =
(
λf (θf (t)− rf (t))− ρSdf rfσσf

)
dt+ σfdW

Q
f (t).

(3.8)

The full correlation structure between the Brownian motions is represented
by

d
[
WQ
Sdf
,WQ

d

]
(t) = ρSdf rddt,

d
[
WQ
Sdf
,WQ

f

]
(t) = ρSdf rfdt,

d
[
WQ
d ,W

Q
f

]
(t) = ρrdrfdt.

The ”−ρSdf rfσσf”-term in the drift of the foreign interest rate is the quanto
drift adjustment resulting from changing the measure from the foreign spot
risk-neutral measure to the domestic spot risk neutral measure.

The BSHW model under the QT -measure

For the three-dimensional BSHW model given by (3.8) there are no analytical
formulas available for the prices of European-style options with a single FX
rate underlying. However by switching from the domestic spot risk-neutral
measure Q to the domestic forward risk-neutral measure, analytical formulas
for FX European options can be derived (e.g., [20], [43]). The domestic for-
ward risk-neutral measure corresponds to taking the domestic zero-coupon
bond Pd(t, T ) as numéraire. Let QT denote the T -forward risk-neutral mea-
sure. Under QT , the forward exchange rate given by

F df (t) = Sdf (t)
Pf (t, T )

Pd(t, T )
(3.9)
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has to be a martingale (Shreve, 2004)3. From (3.9) it is clear that F df (T ) =
Sdf (T ), i.e. the spot FX rate and forward FX rate are equal at maturity T .
As the payoff of European-style single FX options only depends on the FX
rate at maturity, it is therefore sufficient to determine the model dynamics
of the forward exchange rate F df (t) under the QT -measure. These dynamics
are given by (see appendix A for a complete derivation)

dF df (t)

= σF df (t)dWQT
Sdf

(t) + σfAf (t, T )F df (t)dWQT
f (t)− σdAd(t, T )F df (t)dWQT

d (t),

(3.10)

with

Ai(t, T ) =
e−λi(T−t)−1

λi
, i = d, f, (3.11)

and WQT
i (t) a Brownian motion under the QT measure, for i = Sdf , d, f .

From the above QT -dynamics it is clear that the stochastic processes rd(t)
and rf (t) are not incorporated in the model dynamics of the forward FX
rate. The European-style single FX option pricing problem under the 3-
dimensional BSHW model is therefore reduced to a ordinary pricing problem
under the one-dimensional Black-Scholes model with zero drift and time-
dependent volatility. Moreover by the change to the domestic forward risk-
neutral measure, the discounting with the stochastic domestic interest rate
can be taken out of the expectation. The European-style single FX option
pricing problem (2.3) transforms to

Πk(t) = Pd(t, T )EQT
[
fk
(
F df (T )

) ∣∣F(t)
]

under the QT -measure, with k = 1, 2, 3. The sum of three correlated, nor-
mally distributed random variables remains normal with mean equal to the
sum of the individual means and variance equal to the cross-covariance terms.
Therefore (3.10) can be represented as (e.g., Grzelak & Oosterlee, 2012, Re-
mark 1)

dF df (t) :=
[
σ2 + σ2

fA
2
f (t, T ) + σ2

dA
2
d(t, T ) + 2ρSdf rfσσfAf (t, T )

−2ρSdf rdσσdAd(t, T )− 2ρrdrfσdσfAd(t, T )Af (t, T )
]
F df (t)dWQT (t).

(3.12)

3For t ∈ [0, T ]. This addition will be omitted at similar martingale statements in the
remaining of this thesis.
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From (3.12) it is clear that under the QT -measure one has

F df (T ) = F df (0)e−
1
2

(σ∗(0,T ))2T+σ∗(0,T )
√
TZ , (3.13)

with Z ∼ N(0, 1)4 and σ∗(0, T ) the implied volatility given by (e.g., Lee,
2005)

(σ∗(0, T ))2

=
1

T

∫ T

0

(
σ2 + σ2

fA
2
f (t, T ) + σ2

dA
2
d(t, T ) + 2ρSdf rfσσfAf (t, T )

−2ρSdf rdσσdAd(t, T )− 2ρrdrfσdσfAd(t, T )Af (t, T )
)
dt

=
1

T

∫ T

0

(
σ2 +

σ2
f

λ2
f

[
e−2λf (T−t) − 2e−λf (T−t) + 1

]
+
σ2
d

λ2
d

[
e−2λd(T−t)

−2e−λd(T−t) + 1
]

+ 2ρSdf rfσ
σf
λf

[
e−λf (T−t) − 1

]
− 2ρSdf rdσ

σd
λd

×
[
e−λd(T−t) − 1

]
− 2ρrdrf

σdσf
λdλf

[
e−λd(T−t) − 1

] [
e−λf (T−t) − 1

])
dt

=
1

T

(
σ2t+

σ2
f

λ2
f

[
1

2λf
e−2λf (T−t) − 2

λf
e−λf (T−t) + t

]
+
σ2
d

λ2
d

[
1

2λd
e−2λd(T−t) − 2

λd
e−λd(T−t) + t

]
+2ρSdf rf

σσf
λf

[
1

λf
e−λf (T−t) − t

]
− 2ρSdf rdσ

σd
λd

[
1

λd
e−λd(T−t) − t

]
−2ρrdrf

σdσf
λdλf

[
1

λd + λf
e−(λd+λf )(T−t) − 1

λd
e−λd(T−t) − 1

λf
e−λf (T−t) + t

] ∣∣t=T
t=0

)
=

1

T

(
σ2T +

σ2
f

λ2
f

4e−λfT − e−2λfT − 3 + 2λfT

2λf

+
σ2
d

λ2
d

4e−λdT − e−2λdT − 3 + 2λdT

2λd

+2ρSdf rf
σσf
λf

1− e−λfT − Tλf
λf

− 2ρSdf rd
σσd
λd

1− e−λdT − Tλd
λd

−2ρrdrf
σdσf
λdλf

[
1− e−(λd+λf )T

λd + λf
− 1− e−λdT

λd
− 1− e−λfT

λf
+ T

])
.

Consider as an example a European-style call option on a single FX rate (the
calculation of the price of other European-style options goes similarly). The

4N(0, 1) denotes the standard normal distribution.
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time-zero price equals

Π2(0) = Pd(0, T )EQT

((
F df (T )−K

)+ ∣∣F(0)
)

= Pd(0, T )

∫ ∞
−∞

(
F df (0)e−

1
2

(σ∗(0,T ))2T+σ∗(0,T )
√
Tz −K

)+

fz(z)dz,

(3.14)

with fz the density function of the standard normal distribution. It holds
that F df (0)e−

1
2

(σ∗(0,T ))2T+σ∗(0,T )
√
Tz −K ≥ 0 if and only if

z ≥
ln
(

K
F df (0)

)
+ 1

2
(σ∗(0, T ))2 T

σ∗(0, T )
√
T

:= z0.

Then one has that

Π2(0)

= Pd(0, T )

∫ ∞
z0

(
F df (0)e−

1
2

(σ∗(0,T ))2T+σ∗(0,T )
√
Tz −K

)+

fz(z)dz

= Pd(0, T )

(∫ ∞
z0

F df (0)e−
1
2

(σ∗(0,T ))2T+σ∗(0,T )
√
Tzfz(z)dz −

∫ ∞
z0

Kfz(z)dz

)
= Pd(0, T )

(∫ ∞
z0

F df (0)
1√
2π
e−

1
2(z−σ∗(0,T )

√
T)

2

dz −K (1− Φ(z0))

)
= Pd(0, T )

(
F df (0)

∫ ∞
z0−σ∗(0,T )

√
T

fy(y)dy −K (1− Φ(z0))

)
= Pd(0, T )

(
F df (0)

(
1− Φ

(
z0 − σ∗(0, T )

√
T
))
−K (1− Φ(z0))

)
.

(3.15)

For σd = σf = 0 one has rd(t) = rd(0) and rf (t) = rf (0). Letting rf (0) = 0,
the single FX rate call option price should equal the Black-Scholes call option
price. This is immediate from (3.15).

Using similar calculations as in (3.15) one has for the time-zero price of
a digital call option:

Π3(0) = Pd(0, T )

∫ ∞
−∞

1{
F df (0)e−

1
2 (σ∗(0,T ))2T+σ∗(0,T )

√
Tz≥K

}fz(z)dz

= Pd(0, T )

∫ ∞
z0

fz(z)dz

= Pd(0, T ) (1− Φ (z0)) .

(3.16)
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3.3 Multi-FX modeling

In the previous sections, stochastic dynamic models for a single FX rate were
considered. These models allow for valuation of derivatives with a single
underlying FX rate. The financial sector however is in need of valuation
of multi-FX rate based instruments, like FX basket options. FX basket
options can be cheaper alternatives for hedging a portfolio with different FX
exposures.

3.3.1 Consistent multi-FX modeling

De Col, Gnoatto and Grassell (2013) list two intuitive properties for a multi-
FX model to be consistent, namely:

� Inversion property: the inverted process 1
Sdi(t)

has the same risk

modeling dynamics as the original process Sdi(t), but under the i-th
foreign risk neutral measure.

� Triangle property: the inferred cross rate Sji = Sdi

Sdj
has the same risk

modeling dynamics as the original processes Sdi and Sdj, but under the
j-th foreign risk neutral measure.

Doust (2012) and De Col et al. both show that although the widely-used
SABR and Heston stochastic volatility models are able to reproduce the
market’s volatility smiles and skews for single FX rates, they cannot be ex-
tended to model multiple FX rates in a consistent way. In both models, the
FX rates do not satisfy the triangle property. This means that when two
FX rates with a common domestic currency are both modeled by one of the
models (i.e. SABR or Heston dynamics), the inferred FX rate associated
with the three currencies has different model dynamics.

Consistency in the BSHW model

The disadvantage of the BSHW model is that, in contrast with models like the
SABR model or the Heston model extended with stochastic interest rates, the
model does not incorporate the volatility smile/skew effect by means of local
volatility or stochastic volatility. The advantage compared to other models
is that the model satisfies the inversion property and triangle property.

Theorem 1. The BSHW model (3.8) satisfies the inversion property under
the foreign risk neutral measure Z, i.e. the inverted rate 1

Sdf (t)
has the BSHW

dynamics under the foreign risk neutral measure Z.
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Proof. Applying Itô’s lemma to (3.8), the process 1
Sdf (t)

has the Q-dynamics
given by

d
1

Sdf (t)
=
(
rf (t)− rd(t) + σ2

) 1

Sdf (t)
dt− σ 1

Sdf (t)
dWQ

Sdf
(t), (3.17)

with the processes rf (t) and rd(t) still following the processes as given in
(3.8). The drift term rf (t) − rd(t) + σ2 is not equal to rf (t) − rd(t), this
asymmetry is introduced by the convexity of the function f(x) = 1

x
. The

solution to this problem (Siegel’s Exchange Rate Paradox, see Shreve, 2004)
is to change the measure from the domestic spot risk-neutral measure Q to
the foreign spot risk-neutral measure Z. From chapter 9 in Shreve we know
that the following processes should be martingales under the foreign risk
neutral measure:

C1(t) =
1

Sdf (t)

Md(t)

Mf (t)
,

C2(t) =
1

Sdf (t)

Pd(t, T )

Mf (t)
.

Here C1(t) is the discounted value of the domestic money market account
in foreign currency and C2(t) is the domestic zero-coupon bond in foreign
currency. One has that

dMd(t) = Md(t)rd(t)dt,

dMf (t) = Mf (t)rf (t)dt,

d
1

Mf (t)
= − 1

Mf (t)
rf (t)dt,

dPd(t, T ) = rd(t)Pd(t, T )dt+ Pd(t, T )σdAd(t, T )dWQ
d (t),

(3.18)

where the last equation follows from the Hull and White dynamics for the
zero-coupon bond under the domestic spot risk-neutral measure (3.3). Ap-
plying Itô to (3.18) yields

d
Md(t)

Mf (t)
= (rd(t)− rf (t))

Md(t)

Mf (t)
dt, (3.19)

and thus, combining (3.17) and (3.19),

dC1(t) = σ2C1(t)dt− σC1(t)dWQ
Sdf

(t).

Now using Girsanov’s first fundamental theorem (Girsanov, 1960), one has
that the process

W Z
Sdf (t) := WQ

Sdf
(t)−

∫ t

0

σds (3.20)
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is a Brownian motion under the foreign spot risk-neutral measure Z, making
the process C1(t) a martingale under Z. Applying (3.20) to (3.17) yields the
Z-dynamics for the process 1

Sdf (t)
:

d
1

Sdf (t)
= (rf (t)− rd(t))

1

Sdf (t)
dt− σ 1

Sdf (t)
dW Z

Sdf (t). (3.21)

Applying Itô to (3.18) once more yields

d
Pd(t, T )

Mf (t)
= (rd(t)− rf (t))

Pd(t, T )

Mf (t)
dt+ σdAd(t, T )

Pd(t, T )

Mf (t)
dWQ

d (t). (3.22)

From (3.21) and (3.22) one has

dC2(t) = −ρSdf rdσσdAd(t, T )C2(t)dt− σC2(t)dW Z
Sdf (t)

+ σdAd(t, T )C2(t)dWQ
d (t).

Now using Girsanov’s first fundamental theorem (Girsanov, 1960), one has
that the process

W Z
d (t) := WQ

d (t)−
∫ t

0

ρSdf rdσds (3.23)

is a Brownian motion under the foreign spot risk-neutral measure Z, making
the process C2(t) a martingale under Z. Now using (3.21) and (3.23) one has
the following Z-dynamics:

d
1

Sdf (t)
= (rf (t)− rd(t))

1

Sdf (t)
dt− σ 1

Sdf (t)
dW Z

Sdf (t),

drd(t) = λd
(
θd(t)− rd(t)− σσdρSdf rd

)
dt+ σddW

Z
d (t),

drf (t) = λf (θf (t)− rf (t)) dt+ σfdW
Z
f (t).

(3.24)

These dynamics are equal to the BSHW model dynamics under the measure
Z5.

Theorem 2. The BSHW model (3.8) satisfies the triangle property under the

foreign risk neutral measure Z2, i.e. the rate Sd1(t)
Sd2(t)

has the BSHW dynamics
under the foreign risk neutral measure Z2. Here the measure Z2 corresponds
to taking the money market account Mf,2 as numéraire.

5Note that if the stochastic process W is a Brownian motion, −W is a Brownian motion
as well. This can be applied to the first equation in (3.24).
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Proof. Denote by σ1, rf,1 and σ2, rf,2 the volatility parameter and short rate
for the FX rates Sd1 and Sd2, respectively. Using Itô’s lemma, the process
Sd1(t)
Sd2(t)

has the Q-dynamics given by

d
Sd1(t)

Sd2(t)
=
(
rf,2(t)− rf,1(t) + σ2

2 − ρSd1Sd2σ1σ2

) Sd1(t)

Sd2(t)
dt

+
Sd1(t)

Sd2(t)

(
σ1dW

Q
Sd1

(t)− σ2dW
Q
Sd2

(t)
)
, (3.25)

with the Hull-White processes rf,1(t), rf,2(t) and rd(t). Consider now a
change of measure from the domestic spot risk-neutral measure Q to the
foreign spot risk-neutral measure Z2. From chapter 9 in Shreve (2004) we
know that the following processes should be martingales under the foreign
risk neutral measure Z2:

C1(t) =
Sd1(t)

Sd2(t)

Mf,1(t)

Mf,2(t)
,

C2(t) =
Sd1(t)

Sd2(t)

Pf,1(t, T )

Mf,2(t)
.

Similarly to (3.19) one has

d
Mf,1(t)

Mf,2(t)
= (rf,1(t)− rf,2(t))

Mf,1(t)

Mf,2(t)
dt. (3.26)

Applying Itô to (3.25) and (3.26) results in the following dynamics:

dC1(t) =
(
σ2

2 − ρSd1Sd2σ1σ2

)
C1(t)dt+ C1(t)

(
σ1dW

Q
Sd1

(t)− σ2dW
Q
Sd2

(t)
)
.

(3.27)

Now using Girsanov’s first fundamental theorem (Girsanov, 1960), one has
that the processes

W Z2

Sd1
(t) := WQ

Sd1
(t)−

∫ t

0

ρSd1Sd2σ2ds,

W Z2

Sd2
(t) := WQ

Sd2
(t)−

∫ t

0

σ2ds,

(3.28)

are Brownian motions under the foreign spot risk-neutral measure Z2, making
the process C1(t) a martingale under the foreign spot risk-neutral measure Z2.

From (3.25) and (3.28) it follows that the process Sd1(t)
Sd2(t)

has the Z2-dynamics
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given by

d
Sd1(t)

Sd2(t)
= (rf,2(t)− rf,1(t))

Sd1(t)

Sd2(t)
dt+

Sd1(t)

Sd2(t)

(
σ1dW

Z2

Sd1
(t)− σ2dW

Z2

Sd2
(t)
)
.

(3.29)

Using that the zero-coupon bond Pf,1(t, T ) has the following dynamics under
the foreign spot risk-neutral measure Z1,

dPf,1(t, T ) = rf,1(t)Pf,1(t, T )dt+ Pf,1(t, T )σf,1Af,1(t, T )dW Z1
f,1,

and that we have

d
1

Mf,2(t)
= − 1

Mf,2(t)
rf,2(t)dt,

one has, using Itô:

d
Pf,1(t, T )

Mf,2(t)
= (rf,1(t)− rf,2(t))

Pf,1(t, T )

Mf,2(t)
dt+ σf,1Af,1(t, T )

Pf,1(t, T )

Mf,2(t)
dW Z1

f,1.

(3.30)

And thus one has, using (3.29) and (3.30),

dC2(t)

= σf,1Af,1(t, T )
(
ρSd1rf,1σ1 − ρSd2rf,1σ2

)
C2(t)dt+ σ1C2(t)dW Z2

Sd1
(t)

− σ2C2(t)dW Z2

Sd2
(t) + σf,1Af,1(t, T )C2(t)dW Z1

f,1(t).

(3.31)

Now using Girsanov’s first fundamental theorem (Girsanov, 1960), one has
that the process

W Z2
f,1(t) := W Z1

f,1(t) +

∫ t

0

(
ρSd1rf,1σ1 − ρSd2rf,1σ2

)
ds (3.32)

is a Brownian motion under the foreign spot risk-neutral measure Z2, mak-
ing the process C2(t) a martingale under Z2. Using (3.29) and (3.32), the
resulting Z2-dynamics for the inferred cross rate and the interest rates are
given by

d
Sd1(t)

Sd2(t)
= (rf,2(t)− rf,1(t))

Sd1(t)

Sd2(t)
dt+

Sd1(t)

Sd2(t)

(
σ1dW

Z2

Sd1
(t)− σ2dW

Z2

Sd2
(t)
)
,

drf,2(t) = λf,2 (θf,2(t)− rf,2(t)) dt+ σf,2dW
Z2
f,2(t),

drf,1(t) = λf,1
(
θf,1(t)− rf,1(t)− ρSd1rf,1σ1σf,1(t) + ρSd2rf,1σ2σf,1(t)

)
dt

+ σf,1dW
Z2
f,1(t).

(3.33)
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The sum of two correlated, normally distributed random variables remains
normal with mean equal to the sum of the individual means and variance
equal to the sum of the cross-covariance terms. Therefore the Z2-dynamics

of the process Sd1(t)
Sd2(t)

in (3.33) can be represented as (e.g., Grzelak & Oosterlee,

2012, Remark 1)

d
Sd1(t)

Sd2(t)
= (rf,2(t)− rf,1(t))

Sd1(t)

Sd2(t)
dt

+
(
σ2

1 + σ2
2 − 2ρSd1Sd2σ1σ2

) 1
2
Sd1(t)

Sd2(t)
dW Z2(t),

(3.34)

with W Z2(t) a Brownian motion under Z2.

Remark 1. From result 3.34 a triangle relation in volatility, in order to en-
sure risk-neutrality, can be deducted. The volatility parameter of the inferred
cross FX rate depends on the volatilities of the original FX rates and their
correlation coefficient. Denoting by Sd1, Sd2 and S21 = Sd1

Sd2
the two original

FX rates with the same domestic currency and the inferred cross FX rate,
respectively, the triangle property for FX volatility under the BSHW model
is given by

σ2
21 = σ2

1 + σ2
2 − 2ρSd1Sd2σ1σ2.

Here σ21 denotes the volatility parameter for the cross rate S21.

The above theorems show that the BSHW model is consistent in the
modeling of multiple FX rates simultaneously. The extension to multiple FX
rates will be covered in the next chapter.

3.3.2 The multi-FX BSHW model under the Q-measure

Extending the BSHW model (3.8) to multiple FX rates with the same do-
mestic currency yields the multi-FX BSHW model (henceforth M-BSHW
model), given by the risk-neutral dynamics

dSdi(t) = (rd(t)− rf,i(t))Sdi(t)dt+ σiS
di(t)dWQ

Sdi
(t), i = 1, . . . , NFX ,

drd(t) = λd (θd(t)− rd(t)) dt+ σddW
Q
d (t),

drf,i(t) =
[
λf,i (θf,i(t)− rf,i(t))− ρSdirf,iσiσf,i

]
dt+ σf,idW

Q
f,i(t),

i = 1, . . . , NFX ,

(3.35)
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with NFX the number of FX rates. The M-BSHW model is (2NFX + 1)-
dimensional, as the domestic currency is equal for all FX rates. Consider the
FX basket option pricing problem 2.4 under the above M-BSHW model. In
section 3.2.4 it was shown that the European-style single FX option pricing
problem can be heavily simplified by changing the numéraire from the domes-
tic money market account to the domestic zero-coupon bond. The measure
corresponding to the new numéraire was denoted by QT , the T -forward mea-
sure. Secondly, the FX rate in the pricing problem was substituted by the
forward FX rate as both rates are equal at maturity T . As the forward FX
rate dynamics are one-dimensional and independent of the stochastic interest
rates, a huge computational advantage is attained. For the FX basket option
pricing problem (2.4) under the M-BSHW model (3.35), this approach can
be applied as well.

3.3.3 The multi-FX BSHW model under the QT-measure

Under the measure QT , all non-dividend paying traded assets (in domestic
currency) discounted by the domestic zero-coupon bond should be martin-
gales. For the M-BSHW model (3.35) therefore the following processes should
be martingales under QT :

ψi(t) = Sdi(t)
Mf,i(t)

Pd(t, T )
, i = 1, . . . , NFX ,

F di(t) = Sdi(t)
Pf,i(t, T )

Pd(t, T )
, i = 1, . . . , NFX .

Using the same calculations as in section 3.2.4, the model dynamics of the
i-th FX rate F di under the measure QT are given by

dF di(t) =

σiF
di(t)dWQT

Sdi
(t) + σf,iAf,i(t, T )F di(t)dWQT

f,i (t)− σdAd(t, T )F di(t)dWQT
d (t)

(3.36)

for i ≤ NFX . This can equivalently be represented as (e.g., Grzelak & Oost-
erlee, 2012)

dF di(t) =[
σ2
i + σ2

f,iA
2
f,i(t, T ) + σ2

dA
2
d(t, T ) + 2ρSdirf,iσiσf,iAf,i(t, T )

−2ρSdirdσiσdAd(t, T )− 2ρrdrf,iσdσf,iAd(t, T )Af,i(t, T )
] 1

2 F di(t)dWQT
i (t),

(3.37)
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withWQT
i , i ≤ NFX , Brownian motions under the QT -measure. For quadratic

covariation processes
[
F di, F dj

]
(t) all the specific covariation processes should

be taken into account. From (3.36) one has for i, j ≤ NFX

d
[
log
(
F di
)
, log

(
F dj
)]

(t)

=
[
σiσjρSdiSdj + σiσf,jAf,j(t, T )ρSdirf,j − σiσdAd(t, T )ρSdird

+σf,iAf,i(t, T )σjρSdjrf,i + σf,iσf,jAf,i(t, T )Af,j(t, T )ρrf,irf,j

−σf,iAf,i(t, T )σdAd(t, T )ρrf,ird − σdAd(t, T )σjρSdjrd
−σdAd(t, T )σf,jAf,j(t, T )ρrdrf,j + σ2

dA
2
d(t, T )

]
dt

:= ωij(t, T )dt.

(3.38)

Combining (3.37) and (3.38) and applying Itô yields

d log
(
F di(t)

)
= −1

2
ωii(t, T )dt+

√
ωii(t, T )dWQT

i (t), i ≤ NFX . (3.39)

Using that F di(T ) = Sdi(T ) for i ≤ NFX and changing the numéraire to the
domestic zero-coupon bond in the pricing problem (2.4) yields the following
time-t price of the European-style FX basket option under the M-BSHW
model:

ΠNFX
k (t) = Pd(t, T )EQT

[
fk

((
F di(T )

)
i≤NFX

) ∣∣F(t)
]
, k = 1, 2. (3.40)

From the above pricing formula it is clear that an analytical expression is
available for the time-t price of a FX basket forward option. From (3.36)
it is clear that the forward FX rate F di(t) is a martingale, therefore this
particular price becomes:

ΠNFX
1 (t) = Pd(t, T )EQT

[ ∑
i≤NFX

φiS
di(T )−K

∣∣F(t)

]

= Pd(t, T )EQT

[ ∑
i≤NFX

φiF
di(T )−K

∣∣F(t)

]

= Pd(t, T )

[ ∑
i≤NFX

φiEQT

[
F di(T )

∣∣F(t)
]
−K

]
= Pd(t, T )

∑
i≤NFX

φiF
di(t)− Pd(t, T )K

= Pd(t, T )
∑

i≤NFX

φiS
di(t)

Pf,i(t, T )

Pd(t, T )
− Pd(t, T )K

=
∑

i≤NFX

φiS
di(t)Pf,i(t, T )− Pd(t, T )K. (3.41)
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In case the strike K equals the forward basket rate,

K =
∑

i≤NFX

φiS
di(0)

Pf,i(0, T )

Pd(0, T )
,

the time-zero price of the FX basket forward equals 0. Using (3.41) one has

ΠNFX
1 (0) =

∑
i≤NFX

φiS
di(0)Pf,i(0, T )− Pd(0, T )K

=
∑

i≤NFX

φiS
di(0)Pf,i(0, T )− Pd(0, T )

∑
i≤NFX

φiS
di(0)

Pf,i(0, T )

Pd(0, T )

=
∑

i≤NFX

φiS
di(0)Pf,i(0, T )−

∑
i≤NFX

φiS
di(0)Pf,i(0, T )

= 0. (3.42)
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Chapter 4

Dimension reduction for the
M-BSHW model

4.1 Principal component analysis

A possible dimension reduction method for a certain dataset can be found in
principal component analysis (PCA). The aim of principal component analy-
sis is to ”reduce the dimensionality of a data set consisting of a large number
of interrelated variables, while retaining as much as possible of the variation
present in the data set.” (Jolliffe, 2002, p.1). This is done by transforming
the original set of u ≥ 1 possibly correlated variables X = (X1, . . . , Xu)

> to
a new set of uncorrelated principal components Z = (Z1, . . . , Zu)

>1. The Zi,
i ∈ {1, . . . , u}, are ordered such that Z1 exhibits the most variation present
in all the original variables and such that Zu exhibits the least variation.

Principal component analysis applies linear transformations to the original
variables X. The aim is to find vectors βi = (βi1, . . . , βiu)

> (i ≤ u) such that
the transformed variable Z1 := β>1 X has maximum variance, and such that
the transformed variable Zi := β>i X has maximum variance subject to being
uncorrelated with Zj := β>j X for j < i. The u derived variables Z1, . . . , Zu
are the so-called principal components: linear transformations of the original
set of variables that are uncorrelated and have decreasing variance.

To derive the first principal component, Z1, the vector β1 that maximizes
var
[
β>1 X

]
= β>1 Σβ1 has to be derived. Here Σ is the covariance matrix of

the original set of variables X. A widely imposed normalization constant
is β>1 β1 = 1 (see e.g., Jolliffe, 2012). The method of Lagrange multipliers

1The symbol > denotes the transpose of a vector or matrix.
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yields that β1 is the eigenvector corresponding to the largest eigenvalue of
Σ, and var

[
β>1 X

]
= β>1 Σβ1 = λ1, the largest eigenvalue. Furthermore for

i ≤ u, var
[
β>i X

]
= β>i Σβi = λi with λi the i-th largest eigenvalue of Σ

and βi the corresponding eigenvector. Now let Q denote the matrix with the
eigenvectors of the covariance matrix Σ as columns, i.e. Q = (β1, . . . ,βu).
The vector with principal components Z is then given by

Z = Q>X. (4.1)

As variance maximization is preserved under time translation, one can add
a time-component B(t) to the PCA transformation (4.1):

Z = Q> [X + B(t)] . (4.2)

This transformation will appear to be very useful for derivative pricing as
the time-component can be used to eliminate the drift term from the partial
differential equation. This will be discussed in more detail in subsequent
sections.

4.2 Time-dependent principal components-based

dimension reduction for the M-BSHW model

In this section, a principal components-based transformation is applied to the
M-BSHW model for log forward FX rates (3.39) in order to reduce the com-
plexity of the pricing of European-style FX basket options (see the pricing
problem formulation (2.4)). As the covariance matrix of the M-BSHW model
is time-dependent, the main challenge is to incorporate the time-dependent
transformation into the FX basket option pricing problem.

One can use the Feynman-Kac formula2 to derive the PDE for the time-t
value ΠNFX

k (t) of the European-style FX basket option of type k ∈ {1, 2} (see
(2.4)). Using the dynamics (3.39) and covariances (3.38) for the M-BSHW
model for log forward FX rates, the pricing PDE is given by

∂ΠNFX
k

∂t
−

NFX∑
i=1

1

2
ωii(t, T )

∂ΠNFX
k

∂Y di
+

1

2

NFX∑
i=1

NFX∑
j=1

ωij(t, T )
∂2ΠNFX

k

∂Y di∂Y dj
= 0, (4.3)

with terminal condition

ΠNFX
k (T ) = fk

((
eY

di(T )
)
i≤NFX

)
. (4.4)

2See e.g., Björk, 2009, Proposition 5.8.
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Here Y di = log
(
F di
)
, i ≤ NFX . From (3.38) it is clear that the covariance

matrix for the NFX log FX rates
(
Y di
)
i≤NFX

is given by

Σ(t) := (ωij(t, T ))i,j∈{1,...,N} . (4.5)

The matrix Q(t) with the eigenvectors of the covariance matrix and the
vector Λ(t) with corresponding eigenvalues are therefore time-dependent as
well. The principal components Z(t) = (Z1(t), . . . , ZNFX (t))> of the NFX log
FX rates under the M-BSHW model (3.39) are given by

Z(t) = Q>(t)Y(t), (4.6)

with Y(t) =
(
log
(
F d1(t)

)
, . . . , log

(
F dNFX (t)

))>
.

Q(t) := (q1(t), . . . ,qNFX (t))

:= (qij(t))i,j≤NFX

is the matrix with the eigenvectors of Σ(t) as columns, ordered by the corre-
sponding eigenvalues. Adding a time-translation term in order to remove the
drift term from 4.3 yields the principal-components based transformation for
the log FX rates:

Z(t) = Q>(t) [Y(t)−B(t)] . (4.7)

The vector B(t) = (B1(t), . . . , BNFX (t))> is given by

Bi(t) = −
∫ t

0

1

2
ωii(u, T )du, i ≤ NFX . (4.8)

The variance of principal component i (i ≤ NFX) at time t is given by

Var [Zi(t)] = q>i Σ(t)qi = λi(t). (4.9)

By definition, one has λ1(t) ≥ λ2(t) ≥ · · · ≥ λNFX (t) for all t ∈ [0, T ]. Using
the variable transformation 4.7, the FX basket option pricing problem under
the M-BSHW model is transformed as follows.

Theorem 3. Under the time-dependent principal components-based trans-
formation 4.7 the FX basket option pricing problem 2.4 under the M-BSHW
model transforms to

∂V NFX
k

∂τ
=

1

2

NFX∑
i=1

λi(T − τ)
∂2V NFX

k

∂ (Zi)
2 −

NFX∑
l=1

∂V NFX
k

∂Zl

NFX∑
m=1

∂qml(T − τ)

∂τ

×

[
NFX∑
j=1

qmj(T − τ)Zj(T − τ)

]
,

(4.10)

33



with terminal condition (4.4) transforming to the initial condition

V NFX

k (Z, 0) = fk

((
e
∑NFX
j=1 qij(T )Zj(T )+Bi(T )

)
i≤NFX

)
, k = 1, 2. (4.11)

Here V NFX
k (Z, τ) is the value process corresponding to the transformed vari-

ables (4.7), and λi(t) according to 4.9.

Proof. From ΠNFX
k (Y, t) = ΦNFX

k (Z, t) = ΦNFX
k

(
Q> [Y −B] , t

)
one has,

using the well-known chain rule:

∂ΠNFX
k

∂Y di(t)
=

NFX∑
l=1

∂ΦNFX
k

∂Zl(t)
qil(t), i ≤ NFX ,

∂2ΠNFX
k

∂Y di(t)∂Y dj(t)
=

NFX∑
l=1

∂2ΦNFX
k

∂Z2
l (t)

qil(t)qjl(t), i, j ≤ NFX ,

∂ΠNFX
k

∂t
=

NFX∑
l=1

NFX∑
m=1

∂ΦNFX
k

∂Zl
qml(t)

1

2
ωmm(t, T )

+

NFX∑
l=1

∂ΦNFX
k

∂Zl

NFX∑
m=1

∂qml(t)

∂t
[Ym(t)−Bmm(t)] +

∂ΦNFX
k

∂t

=

NFX∑
l=1

NFX∑
m=1

∂ΦNFX
k

∂Zl
qml(t)

1

2
ωmm(t, T )

+

NFX∑
l=1

∂ΦNFX
k

∂Zl

NFX∑
m=1

∂qml(t)

∂t

[
NFX∑
j=1

qmj(t)Zj(t)

]
+
∂ΦNFX

k

∂t
.

(4.12)

Substituting 4.12 into the original FX basket option pricing problem 4.3
yields

∂ΦNFX
k

∂t
+

1

2

NFX∑
l=1

NFX∑
i=1

NFX∑
j=1

∂2ΦNFX
k

∂Z2
l

qil(t)qjl(t)ωij(t, T )

+

NFX∑
l=1

∂ΦNFX
k

∂Zl

NFX∑
m=1

∂qml(t)

∂t

[
NFX∑
j=1

qmj(t)Zj(t)

]
= 0.

(4.13)

Reversing time and substituting ΦNFX
k (Z, t) = V NFX

k (Z, τ) with
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τ = T − t in (4.13) yields

−∂V
NFX
k

∂τ
+

1

2

NFX∑
l=1

NFX∑
i=1

NFX∑
j=1

∂2V NFX
k

∂Z2
l

qil(T − τ)qjl(T − τ)ωij(T − τ, T )

−
NFX∑
l=1

∂V NFX
k

∂Zl

NFX∑
m=1

∂qml(T − τ)

∂τ

[
NFX∑
j=1

qmj(T − τ)Zj(T − τ)

]
= 0.

(4.14)

From q>i (t)Σ(t)qi(t) = λi(t) for all t ∈ [0, T ] one has

λl(t) =

NFX∑
i=1

NFX∑
j=1

qil(t)qjl(t)ωij(t, T ), t ∈ [0, T ]. (4.15)

Using (4.15) the PDE (4.14) transforms into

∂V NFX
k

∂τ
=

1

2

NFX∑
l=1

λl(T − τ)
∂2V NFX

k

∂Z2
l

−
NFX∑
l=1

∂V NFX
k

∂Zl

NFX∑
m=1

∂qml(T − τ)

∂τ

×

[
NFX∑
j=1

qmj(T − τ)Zj(T − τ)

]
.

(4.16)

The initial condition (4.11) follows straightforward by applying the transfor-
mation 4.7 to the terminal condition 4.4.

4.2.1 Dimension reduction in the M-BSHW model

By definition, the principal components (4.7) have descending variance for
all t ∈ [0, T ]:

λ1(t) ≥ λ2(t) ≥ · · · ≥ λNFX (t). (4.17)

Moreover the variance λi(t) of principal component i ≤ NFX approaches zero
for larger i. The degree in which the variances descend to zero depends on
the volatilities of the FX rates and the Hull-White interest rate components.
Furthermore it depends on the correlations between the FX rates, between
the FX rates and the Hull-White interest rates and between the Hull-White
interest rates. For high correlations and similar volatilities for the original
variables, the variances of the principal components will rapidly descend to
zero. For low correlations and nonsimilar volatilities more principal compo-
nents will have significant variance.
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The dimension of the transformed FX basket option pricing problem (4.10)
with initial condition (4.11) under the M-BSHW model can be reduced as
follows. The sum in (4.10) and (4.11) can be truncated to a certain ordered
index set α ⊂ {1, . . . , NFX} of principal components. The principal com-
ponents belonging to the set {1, . . . , NFX} \α are then substituted by their
time-zero expectation3. Then the reduced version of the pricing problem
(4.10) with initial condition (4.11) is4

∂V NFX
k

∂τ
=

1

2

∑
i∈α

λi(T − τ)
∂2V NFX

k

∂ (Zi)
2 −

∑
l∈α

∂V NFX
k

∂Zl

NFX∑
m=1

∂qml(T − τ)

∂τ

×

∑
j∈α

qmj(T − τ)Zj(T − τ) +
∑
j /∈α

qmj(T − τ)E [Zj(T − τ)]

 ,
V NFX
k (Zα, 0) = fk

((
e
∑
j∈α qij(T )Zj(T )+

∑
j /∈α qij(T )E[Zj(T )]+Bi(T )

)
i≤NFX

)
,

k = 1, 2.

(4.18)

Here Zα = (Zi)
>
i∈α and V NFX

k (Zα, τ) is the associated value process. From
(3.39) and (4.8) it is immediate that the stochastic process Yj(t)−Bj(t) for
j ≤ NFX is a martingale, and therefore

E [Yj(T )−Bj(T )|F(0)] = Yj(0)−Bj(0)

= log
(
Sdj(0)

)
+ log (Pj(0, T ))− log (Pd(0, T ))

(4.19)

for j ≤ NFX .

In the remaining of this thesis the solution to the reduced FX basket option
pricing problem (4.18) will in general be referred to as the PCA1 solution, in
case α = {1}, or the PCA2(i,j) solution, in case α = {i, j} for i < j ≤ NFX .
These solutions correspond to solving the FX basket option pricing prob-
lem reduced to the first principal component or the i-th and j-th principal
component, respectively, according to (4.18).

3The expectation with respect to the natural filtration F is taken.
4The problem arising with the PDE in (4.18) is that when applying finite differences

(see section 5.2), a large grid is needed. This is because one has to deal with the time-
dependence of the expectation of the principal components. It is therefore much more
efficient to consider an adapted version of the principal components Z (4.7): Z′ = Z−E [Z].
As E [Z] = Q>E [Y], the change from Z to Z′ implies a change of the function B.
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Principal component selection

The choice which approximative principal components to include in the index
set α in (4.18) and which ones to substitute by their expectation is not
trivial. The percentage of total variation explained by the first n principal
components, ordered in descending variance, is often defined as (e.g., Jolliffe,
2002) ∑

i≤n λi(t)∑
j λj(t)

, t ∈ [0, T ]. (4.20)

For high correlations and similar volatilities for the original variables, often
the first two principal components already explain a large percentage of total
variation. Using Taylor expansions and finite differences, Reisinger (2004)
formulates an asymptotic expansion for the value process V NFX

k (Z, τ), for
k = 1, 2 and τ ∈ [0, T ]:

V NFX
k (Z, τ)

= V NFX
k

(
Z{1}, τ

)
+

d∑
j=2

(
V NFX
k

(
Z{1,j}, τ

)
− V NFX

k

(
Z{1}, τ

))
+O (j) .

(4.21)

The intuitive explanation behind formula (4.21) is that the PCA1 solution
V NFX
k

(
Z{1}, τ

)
is corrected for additional variance seperately captured by

the other principal components.
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Chapter 5

Numerical valuation techniques

5.1 Monte Carlo simulation

5.1.1 Monte Carlo for the BSHW model under the Q-
measure

Under the model (3.8) the time-zero price of European-style single FX options
(2.3) can be approximated using Monte Carlo. The Euler scheme for the
BSHW model under the domestic risk-neutral measure Q equals

Y df (t+ ∆t) = Y df (t) +

[
rd(t)− rf (t)−

1

2
σ2

]
∆t+ σ

√
∆tZ1,

rd(t+ ∆t) = rd(t) + λd (θd(t)− rd(t)) ∆t+ σd
√

∆tZ2,

rf (t+ ∆t) = rf (t) +
(
λf (θf (t)− rf (t))− ρSdf rfσσf

)
∆t+ σf

√
∆tZ3,

(5.1)

with Z1, Z2, Z3 correlated standard normal distributed sample values and
Y df (t) = log

(
Sdf (t)

)
. The step size for the time interval [0, T ] equals ∆t = T

N
.

The Monte Carlo scheme (5.1) can be written in the following form: Y df (t+ ∆t)
rd(t+ ∆t)
rf (t+ ∆t)

 =

 1 ∆t −∆t
0 1− λd∆t 0
0 0 1− λf∆t

 Y df (t)
rd(t)
rf (t)


+ ∆t

 −1
2
σ2

λdθd(t)
λfθf (t)− ρSdf rfσσf

+
√

∆t

 σ 0 0
0 σd 0
0 0 σf

 Z1

Z2

Z3

 .

(5.2)

The Monte Carlo approximation of the time-zero price of the European-style
FX option of type k = 1, 2, 3 (2.3) with a single underlying FX rate is given
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by

ΠMC
k (0) =

1

M

M∑
i=1

e−∆t
∑N−1
j=0 rid(j∆t)fk

(
eY

df,i(T )
)
. (5.3)

Here M denotes the number of Monte Carlo estimates and rid(t) and Y df,i(t)
denote the i-th Monte Carlo estimate of the domestic interest rate and log FX
rate at time t, respectively. Note that the Euler scheme could also have been
applied to the one-dimensional BSHW model (3.39) under the QT -measure.
In chapter 6 the consistency of the analytical expressions for European-style
single FX options under the QT -measure will be checked. This is done by
comparing to numerical results obtained using the above Euler scheme for
the BSHW model under the Q-measure.

5.1.2 Monte Carlo for the M-BSHW model under the
QT -measure

The European-style FX basket option price (2.4) can be approximated by
the Monte Carlo method applied to the BSHW model for log forward FX
rates (3.36). Applying the Euler scheme to (3.39), while incorporating the
specific Brownian motions as in (3.36) yields log

(
F d1(t+ ∆t)

)
...

log
(
F dNFX (t+ ∆t)

)
 = −1

2
∆t

 ω11(t, T )
...

ωNFXNFX (t, T )

+
√

∆t

×

 σ1 0 −σdAd(t, T ) σf,1Af,1(t, T ) 0
. . .

...
. . .

0 σNFX −σdAd(t, T ) 0 σf,NFXAf,NFX (t, T )



×



ZSd1
...

ZSdNFX
Zrd
Zrf,1

...
Zrf,NFX


,

(5.4)

with ZSd1 , . . . , ZSdNFX , Zrd , Zrf,1 , . . . , Zrf,NFX correlated standard normal dis-
tributed sample values. The Monte Carlo approximation of the time-zero
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price (2.4) of the FX basket option of type k = 1, 2 (2.2) equals

ΠMC
k (0) = Pd(0, T )

1

M

M∑
j=1

fk

((
F di,j(T )

)
i≤NFX

)
,

with M denoting the number of Monte Carlo estimates and F di,j(T ) denoting
the j-th Monte Carlo estimate of the i-th forward FX rate at time T .

5.2 Finite differences

The principal components-based reduced European-style FX basket option
pricing problem (4.18) can be solved by finite differences. The finite difference

grid is taken as [0, T ] ×
[
zmin
α(1), z

max
α(1)

]
for 1 spatial dimension and [0, T ] ×[

zmin
α(1), z

max
α(1)

]
×
[
zmin
α(2), z

max
α(2)

]
for 2 spatial dimensions. Furthermore

T

N
= ∆t,

zmax
α(1) − zmin

α(1)

Mα(1)

= ∆zα(1),

zmax
α(2) − zmin

α(2)

Mα(2)

= ∆zα(2).

The grid boundaries are chosen as[
zmin
α(i), z

max
α(i)

]
=
[
zα(i) − κσzα(i) , zα(i) + κσzα(i)

]
, i ≤ NFX ,

with the bar in zα(i) indicating the average value1. Furthermore from (4.9)
one has σzα(i) =

√
λi. In this research I use κ = 10 in order to ensure conver-

gence of the PCA method. As λi is time-dependent, the maximum over the
interval [0, T ] is chosen.

In order to discretize (4.18) for 1 and 2 spatial dimensions the derivatives of

the eigenvector coefficients of the covariance matrix, ∂qml(T−τ)
∂τ

for m, l ≤ NFX

1The problem is that one has to deal with the time-dependence of the expectation of
the principal components. Therefore I use a more efficient and adapted version of the
principal components Z (4.7): Z′ = Z−E [Z]. As E [Z] = Q>E [Y], the change from Z to
Z′ implies a change of the function B.
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and τ ∈ [0, T ], have to be discretized. This is done as follows:(
∂qij(T − τ)

∂τ

)n
=
qij(T − n∆t)− qij(T − (n− 1)∆t)

∆t
, i, j ≤ NFX ,

(5.5)

with the superscript at the left hand side of (5.5) denoting the discretization
at time T − n∆t, 1 ≤ n ≤ N . Using (5.5), the following discretizations of
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(4.18) for 1 and 2 spatial dimensions2 are used:

vni − vn−1
i

∆t

=
1

2
λα(1)(T − n∆t)

vni+1 − 2vni + vni−1(
∆zα(1)

)2 +
vni+1 − vni

∆zα(1)

×
NFX∑
m=1

qmα(1)(T − (n− 1)∆t)− qmα(1)(T − n∆t)

∆t

×

∑
j∈α

qmj(T − n∆t)zj,i +
∑
j /∈α

qmj(T − n∆t)E [Zj(T − n∆t)]

 ,
vni,j − vn−1

i,j

∆t

=
1

2
λα(1)(T − n∆t)

vn(j−1)(Mα(1)+1)+i+1 − 2vn(j−1)(Mα(1)+1)+i + vn(j−1)(Mα(1)+1)+i−1(
∆zα(1)

)2

+
vn(j−1)(Mα(1)+1)+i+1 − vn(j−1)(Mα(1)+1)+i

∆zα(1)

×
NFX∑
m=1

qmα(1)(T − (n− 1)∆t)− qmα(1)(T − n∆t)

∆t

×

[∑
k∈α

qmk(T − n∆t)zk,(j−1)(Mα(1)+1)+i +
∑
k/∈α

qmk(T − n∆t)E [Zk(T − n∆t)]

]

+
1

2
λα(2)(T − n∆t)

vnj(Mα(1)+1)+i − 2vn(j−1)(Mα(1)+1)+i + vn(j−2)(Mα(1)+1)+i(
∆zα(2)

)2

+
vnj(Mα(1)+1)+i − vn(j−1)(Mα(1)+1)+i

∆zα(2)

×
NFX∑
m=1

qmα(2)(T − (n− 1)∆t)− qmα(2)(T − n∆t)

∆t

×

[∑
k∈α

qmk(T − n∆t)zk,(j−1)(Mα(1)+1)+i +
∑
k/∈α

qmk(T − n∆t)E [Zk(T − n∆t)]

]
.

(5.6)

2In order to accomplish efficiency in the finite difference method, I consider an adapted
version of the principal components Z (4.7): Z′ = Z − E [Z]. As E [Z] = QTE [Y], the
change from Z to Z′ implies a change of the function B.
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These discretizations are backward in time and centered in space, and n =
1, . . . , N , i = 1, . . . ,Mα(1) + 1 and j = 1, . . . ,Mα(2) + 1. For the case of 2
spatial dimensions a lexicographic ordering is used3. As a boundary condi-
tion, the second derivatives in spatial direction are set equal to zero on the
grid boundaries. Three implemented finite difference schemes are discussed
below.

5.2.1 The BTCS scheme

Writing (5.6) in matrix form, the backward time centered space (BTCS)
scheme becomes

vn − vn−1

∆t
= F (tn,v

n) = B(tn)vn. (5.7)

In the case of 2 spatial dimensions, F = F1 + F2 with correspondingly B =
B1 + B2. Here the subscripts indicate the dimension.

5.2.2 The Crank-Nicolson scheme

The Crank-Nicolson scheme is given by

vn − vn−1

∆t
=

1

2
F (tn,v

n) +
1

2
F
(
tn−1,v

n−1
)
. (5.8)

5.2.3 The Hundsdorfer-Verwer scheme

The BTCS and Crank-Nicolson schemes are unconditionally stable for several
PDEs. The disadvantage of the BTCS and Crank-Nicolson schemes is that
it requires the calculation of an inverse matrix every time step, which can
be very time costly. Therefore in this thesis I use the so-called Hundsdorfer-
Verwer (HV) scheme, which is a splitting scheme of the alternating direction
implicit (ADI) type. With the HV method, the splitting of the operator
F into operators for each spatial dimension (see (5.7) and (5.8) for 2 spatial
dimensions) is used to reduce the complexity of the calculation of the inverse.
For extensive information on the HV scheme the reader is referred to e.g., In
’t Hout and Foulon (2010).

3Lakoba (2016) was used as main source for the implementation of the 2-dimensional
finite difference method.
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Chapter 6

Numerical results

This chapter gives numerical results for the application of the PCA dimension
reduction method for the M-BSHW model, as described in chapter 4, to FX
basket option pricing. Three case studies are considered, with low correlation,
moderate correlation and high correlation amongst the underlying currencies,
respectively. Using market data from 31 August 2016, the BSHW model is
calibrated for 27 currencies, including emerging market currencies1, non-
emerging market currencies and Asian and Middle Eastern currencies. The
currency EUR is taken as the domestic currency. The foreign currencies for
the three case studies are determined as follows:

� Case study 1: 5- and 10-dimensional FX basket option on the 5 and 10
most traded2 currencies against the euro, respectively. The foreign cur-
rencies for the 5-dimensional FX basket option are CHF (Switzerland
Franc), GBP (British Pound), JPY (Japan Yen), SEK (Sweden Krona)
and USD (United States Dollar). For the 10-dimensional FX basket,
additionally the currencies AUD (Australian Dollar), CAD (Canadian
Dollar), DKK (Danisk Krone), NOK (Norwegian Krone) and PLN (Pol-
ish Zloty) are considered. The 10 currencies have a low correlation, with
an average (absolute) correlation coefficient equal to 26.23% (see table
6.1.

� Case study 2: 5- and 10-dimensional FX basket option on emerging
market currencies and Asian and Middle Eastern currencies. For the
5-dimensional FX basket option pricing, the foreign currencies IDR
(Indonesia Rupiah), INR (Indian Rupee), KRW (South Korean Won),

1Emerging market currencies are currencies in emerging markets, developing countries
that have some characteristics of a developed market, but where transitions in several
dimensions take place. Examples of emerging markets are Brazil, Mexico and Turkey.

2Based on April 2016 turnover, see [1]
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MYR (Malaysian Ringgit) and PHP (Philippine Peso) are included.
For the 10-dimensional FX basket option pricing, additionally the cur-
rencies CNH (Chinese offshore Yuan), ILS (Israeli Shekel), MXN (Mex-
ican Peso), TRY (Turkish Lira) and ZAR (South African Rand) are
considered. The 10 currencies are moderately correlated, with an av-
erage (absolute) correlation coefficient equal to 60.63%, see table 6.1.

� Case study 3: 5- and 10-dimensional FX basket option on Asian and
Middle Eastern currencies (both emerging and non-emerging market
currencies). For the 5-dimensional FX basket, the foreign currencies
AED (United Arab Emirates Dirham), CNH (Chinese offshore Yuan),
CNY (Chinese Yuan), HKD (Hong Kong Dollar) and SAR (Saudi Ara-
bian Riyal) are considered. For the 10-dimensional FX basket, ad-
ditionally the currencies INR (India Rupee), PHP (Philippine Peso),
SGD (Singapore Dollar), THB (Thai Baht) and TWD (Taiwan Dol-
lar) are considered. The 10 currencies are highly correlated, with an
average (absolute) correlation coefficient equal to 87.98%, see table 6.1.

Case study 1 Case study 2 Case study 3

log FX rates 26.23% 60.63% 87.98%
log FX rate - short rate 14.46% 9.93% 11.42%

short rates 45.72% 17.81% 20.52%

Table 6.1: Average (absolute) correlation coefficient values for the 10-dimensional
M-BSHW model components, for each of the three case studies.

In the sections below, the calibration scheme and calibration results are dis-
cussed, before numerical results for single FX option prices are briefly ad-
dressed. Furthermore the convergence of the PCA1 and PCA2 method is
assessed on a 1- and 2-dimensional FX basket option, respectively. Finally
the last sections are devoted to the performance and accuracy of the PCA1
and PCA2 method in 5- and 10-dimensional FX basket option pricing, for
the three case studies introduced above.

6.1 Calibration of the M-BSHW model

6.1.1 Calibration scheme

Theoretically, all the parameters of the M-BSHW model could be calibrated
to basket option market data at once. In this research however, I calibrate
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each BSHW model separately and estimate the correlations between the risk
factors, using real market data. A four-step procedure is used:

� Fit the widely-used Nelson-Siegel-Svensson model (see e.g., Gilli, Große
& Schuman, 2010) to the yield curves of each of the currencies (includ-
ing the domestic currency EUR). Analytical expressions can now be
derived for the initial term-structure of interest rates and the mean-
reversion function θ(t). The Nelson-Siegel-Svensson model for the yield
curve is characterized by the parameters β1, β2, β3, β4, λ1 and λ2 and
is a function of maturity. The model, with R(0, T ) the zero rate and T
the time to maturity, is given by

R(0, T ) =

β1 + β2

[
1− e−

T
λ1

T
λ1

]
+ β3

[
1− e−

T
λ1

T
λ1

− e−
T
λ1

]
+ β4

[
1− e−

T
λ2

T
λ2

− e−
T
λ2

]
.

(6.1)

Often the constraints λ1, λ2 > 0 and β1 > 0 and β1+β2 > 0 are imposed
for the parameter estimation procedure [18]. Because the data does not
support these constraints, they will not be included in the calibration
scheme used in this research.

� Calibrate the Hull-White interest rate models using market swaption
prices. ATM market quotes on implied volatility of swaptions can be
converted to swaption prices using the Black’76 model, see for example
Brigo and Mercurio (2006). For each Hull-White model, the volatil-
ity parameter (σ) and mean reversion parameter (λ) can be fitted to
market prices by minimizing the sum of squared residuals (SSE):

SSE = min
σ,λ

∑
i

[SwaptionMarket(Ti)− SwaptionHW(Ti, σ, λ)]2 .

Here SwaptionMarket and SwaptionHW are the market-quoted swaption
price and the Hull-White theoretical swaption price, respectively.

� Use historial time series data to estimate the correlation between the
FX rates, the correlation between the FX rates and the interest rates,
and the correlation between the interest rates.

� For each of the FX rates of the M-BSHW model, fit the volatility
parameter of the BSHW model to European call option market prices.
Use the ordinary Black-Scholes model with deterministic interest rates
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(3.2) to convert the ATM market quotes on implied volatility to market
prices. The volatility parameters are fitted by minimizing the SSE:

SSE = min
σ

∑
i

[CallMarket(Ti)− CallBSHW(Ti, σ)]2 .

Here CallMarket and CallBSHW are the market-quoted call option price
and the BSHW theoretical call option price, respectively. The expres-
sion 3.15 can be used to calculate CallBSHW(Ti, σ), using the estimates
of the other model parameters obtained at previous calibration steps.

6.1.2 M-BSHW calibration results for 27 currencies

Front office quants at ING Financial Markets delivered yield curve data,
historical correlations, estimated Hull-White parameters and spot FX rates.
Furthermore ATM-forward volatility quotes on European call options with a
single FX rate underlying34 were delivered. The reference date is 31 August
20165. In line with the ATM-forward quotation convention, the strike equals

the forward FX rate: K(T ) = Sdf (0)
Pf (0,T )

Pd(0,T )
. The historical correlations are

based on 3 years of weekly history6, and the Hull-White model parameters
are calibrated to the leading diagonal of the ATM swaption matrix78.

Appendix C shows the calibration results for each of the 27 currencies,
separately shown for each of the three case studies. The three correlation
tables, each shown in two separate sub-tables, are positive semi-definite9,

3For several currencies, ATM-forward volatility quotes on European call options were
delivered for the reverse currency pairs. However, from (3.24) it is clear that within the
M-BSHW model framework, the volatility parameter values of the original currency pair
and the reverse currency pair are equal.

4Note that ATM-forward volatility quotes are sufficient for the purpose of calibrating
the M-BSHW model. Other quotes, such as RR or STR quotes would be needed for
incorporation of the volatility smile.

5Most quotes at ING Financial Markets are sourced in through Bloomberg.
6The quotes from Friday end-of-day are picked. In case Friday is a holiday then the

last working day of the week is picked.
7The ATM swaption matrix is a matrix with swaption price quotes for different expiries

and maturities. The strike equals the ATM strike.
8Note that the Hull-White parameter estimates are derived using the yield curve as

input. The yield curve used by ING in their parameter estimation procedure might be
slightly different from the yield curves I use in this research. The impact of this deviation,
however, can be assumed to be negligible.

9A symmetric and realm×m-matrixM is positive semi-definite if and only if xTMx ≥ 0
for every non-zero column vector x ∈ Rn.
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which excludes the possibility of negative variances. Furthermore, the av-
erage of the absolute value of the correlation coefficients between the FX
rates increases per case study, as shwon in table 6.1. The Hull-White mean
reversion level λ is between 0.01 and 0.08 for all FX rates, and the Hull-
White volatility parameters vary between 0.366% and 4.274%, with most
parameter values around 1%. For most FX rates, the BSHW volatility pa-
rameters are around 10%, with 3 outliers for the emerging market curren-
cies MYR (13.527%), MXN (13.993%) and ZAR (18.922%). Concerning
the Nelson-Siegel-Svensson model for the yield curves10, using the relation
f(0, t) = −∂ logP (0,t)

∂t
the expression for the forward rate yields:

f(0, T ) = β1 + β2e
− T
λ1 + β3

T

λ1

e
− T
λ1 + β4

T

λ2

e
− T
λ2 . (6.2)

From r(0) = f(0, 0) = β1 + β2 one can conclude that the initial short rate
value is equal to the sum of the first two coefficients of the Nelson-Siegel-
Svensson model. To prevent negative short rates, the conditions β1 > 0
and β1 + β2 > 0 are often imposed for the estimation of the Nelson-Siegel-
Svensson model. However, from the market data it is not trivial that there
are non-negative short rates, therefore the above conditions are not taken into
account in the estimation procedure. Indeed, from Appendix C it is clear
that for CHF, DKK, EUR and SEK the time-zero short rates are slightly
negative (all above −0.8%).

Figure 6.1 shows the yield curves and the fitted yield curves using the Nelson-
Siegel-Svensson model11, for the currencies in each of the three cases studies.
Note that, except for the Chinese Yuan, yields are available up to 50 years,
while single FX options are typically liquid for maturities up to 5 years. Al-
though the fit of the Nelson-Siegel-Svensson model is not perfect, the stylized
facts are well-captured, which is sufficient for the research purposes of this
thesis.
Figure 6.1 also shows the calibrated probability density functions of the log-
normal distributed forward FX rates, for each of the three case studies. The
forward FX rates are normalized with respect to their initial value, so they
are all centered around 1.

10The Nelson-Siegel-Svensson model for the yield curves was fitted using the R-function
Svensson.

11For the Saudi Arabian Riyal (SAR) no yields were available, therefore the yields and
corresponding Nelson-Siegel-Svensson model parameters for the United Arab Emirates
Dirham (AED) were used.
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Figure 6.1: Calibrated market yield curves (left figures, dotted) and NSS model
estimates (left figures, lines) and probability density functions of the forward FX
rates (right figures) for the three case studies. In the right figures, the forward FX
rates have been normalized with respect to their spot rate. Maturity is equal to 5
year. The reference date is August 31, 2016.
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6.2 Numerical results for single FX options

In section 3.2.4 analytical formulas were derived for time-zero prices of call
options and digital call options with a single FX rate underlying, under the
BSHW model. These formulas were obtained by switching from the Q- to
the QT -measure in the BSHW model. In this section the consistency of the
analytical formulas (3.15) and (3.16) for the time-zero prices of single FX
rate call and digital call options, respectively, under the BSHW model is
investigated. Analytical values are compared to the prices calculated using
formula (5.3) which uses the Monte Carlo scheme (5.2) for the BSHW model
under the Q-measure.

Table 6.2 shows time-zero prices for single FX rate call and digital call options
approximated by the Monte Carlo scheme (5.2). These prices are compared
to the prices derived using the analytical formulas (3.15) and (3.16). The cal-
ibrated parameter values are taken as input. The 10 most traded currencies
against the euro are taken as foreign currency, and the strike is taken equal
to the forward FX rate. Prices are shown for maturities equal to 6 months
and 1, 3 and 5 years. For the Monte Carlo approach, 1.000.000 simulations
and 100 · T time steps were used.

Table 6.2 shows that the time-zero prices of the call options increase with
maturity and that the time-zero prices of the digital call options decrease
with maturity. The call option price increases with maturity as the FX rate
value is more volatile for longer maturities. The digital call option price de-
creases with maturity as the forward FX rate has a (slightly) negative drift
component (see (3.13)) and the option payoff is binary. The only exception is
the digital call option on the DKKEUR rate, here the option price increases
with maturity. This is because the discounting factor Pd(0, T ) is larger than
1 and increases with maturity, as the euro short rates can be negative. The
fact that the discount factor increases with maturity outweighs the slightly
negative drift component for the forward DKKEUR rate.

As to the Monte Carlo prices, for both the call and digital call option, and
for all maturities and FX rates, the Monte Carlo prices are around the ana-
lytical price. For all cases, the analytical price is within a couple of standard
deviations away from the Monte Carlo estimate. The standard error of the
Monte Carlo estimate increases with maturity, especially for the call option
prices. The call option prices, however, also increase with maturity, which
largely offsets the increase in the Monte Carlo standard error. Obviously,
more accurate and converging Monte Carlo estimates can be obtained by in-
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creasing the number of time grid points in the Euler method and increasing
the number of simulations.
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6.3 Convergence of the PCA method

The convergence of the PCA1 and PCA2 method is assessed on a 5Y US-
DEUR call option and a 5Y basket option on the currencies USD and GBP12,
each with weight 1

2
13, respectively14. For both options the strike equals the

forward FX (basket) rate. For the two options no truncation of the equation
(4.18) is involved, the PCA method only involves a transformation of vari-
ables. To investigate convergence for the PCA1 method, the initial number
of finite difference points in time- and space direction was set equal to 75 and
25, respectively. The absolute value of the relative error of the PCA1 method
was calculated for 9 different step sizes for both time- and space direction,
with a difference factor 2.

For the PCA2 method two spatial dimensions have to be discretized for
finite differences, therefore compution time increases fastly with the number
of finite difference points in spatial directions. Because the running time
of the PCA2 method is much higher than the running time of the PCA1
method, less finite difference points were used to assess convergence of the
PCA2 method. The following number of finite difference points in time- and
space directions were used:

� for time direction: 20, 28, 40, 54, 76, 108, 150 (approximate difference
factor: 1.4)15.

� For space direction: 20, 26, 34, 44, 58, 74, 96 (approximate difference
factor: 1.3)15.

For the 5Y USD call option an analytical reference price (3.15) is available,
which equals 0.070948. For the 5Y GBP USD basket call option the Monte
Carlo method (5.4) is used to obtain a reference price. Using 10.000.000
simulations and 500 grid points in time direction, the Monte Carlo esti-
mate equals 0.070758, with a standard error equal to 3.5983E − 5. The
99.7% confidence interval for the 5Y GBP USD basket option therefore equals
[0.070650, 0.070866].

12USD and GBP are the two most traded currencies against the euro, based on April
2016 turnover. See [1].

13Both FX rates are also normalized with respect to their spot rate.
14Most of the methods used to assess the convergence of the PCA1 and PCA2 method

are based on methods used in Runborg (2012)
15Rounded to the nearest even number. Odd numbers are avoided because of interpo-

lation errors in determining the time-zero price.
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6.3.1 PCA1 convergence

Table 6.3 shows the absolute value of the relative errors of the PCA1 method
for the 5Y USDEUR call option price, in percentages. The relative error
is defined as the difference between the PCA1 solution and the analytical
solution, divided by the analytical solution. From the results it is immediate
that, compared to the time direction, much less finite difference grid points
for the space direction are needed to ensure convergence at 1E-5 relative
error margin. The tables in appendix D show that the PCA1 method has
a rate of convergence 2 in time direction. Convergence rates are calculated

using the formula
∣∣∣ v̂2n−v̂nv̂4n−v̂2n

∣∣∣, with v̂ the PCA1 solution and n the number

of grid points in either the time or space direction. The convergence rate
in space direction is less trivial to derive due to the oscillating behavior.
This is very likely because of the presence of the derivative with respect
to time of the eigenvectors of the covariance matrix in the PDE equation
(4.18). This derivative is approximated by a discrete derivative using the
eigenvector coefficients at the finite difference time grid, which causes the
oscillating convergence behavior. The oscillating behavior is almost identical
for all grid step sizes for the time direction.

nt = 19200 1.875466% 0.007047% 0.064626% 0.008106% 0.000825% 0.002417% 0.001298% 0.001066% 0.001032%
nt = 9600 1.874471% 0.006023% 0.065652% 0.009131% 0.001849% 0.003441% 0.002322% 0.002090% 0.002056%
nt = 4800 1.872482% 0.003975% 0.067702% 0.011179% 0.003897% 0.005489% 0.004370% 0.004138% 0.004104%
nt = 2400 1.868503% 0.000120% 0.071804% 0.015275% 0.007993% 0.009584% 0.008466% 0.008234% 0.008200%
nt = 1200 1.860547% 0.008310% 0.080007% 0.023467% 0.016183% 0.017775% 0.016657% 0.016424% 0.016390%
nt = 600 1.844638% 0.024687% 0.096408% 0.039848% 0.032561% 0.034153% 0.033034% 0.032802% 0.032768%
nt = 300 1.812835% 0.057427% 0.129198% 0.072595% 0.065303% 0.066897% 0.065777% 0.065544% 0.065510%
nt = 150 1.749287% 0.122855% 0.194726% 0.138038% 0.130735% 0.132331% 0.131209% 0.130976% 0.130942%
nt = 75 1.622424% 0.253499% 0.325572% 0.268713% 0.261387% 0.262988% 0.261863% 0.261629% 0.261595%

nz = 25 nz = 50 nz = 100 nz = 200 nz = 400 nz = 800 nz = 1600 nz = 3200 nz = 6400

Table 6.3: Absolute value of the relative error of the PCA1 method for a 5Y
USDEUR call price, in percentages. The strike of the option equals the forward
FX rate. The relative errors are calculated for different number of grid points in
time and space direction for finite differences. The analytical solution is calculated
using formula (3.15) and equals 0.070948.

6.3.2 PCA2 convergence

Table 6.4 shows the 5Y GBP USD basket call option prices estimated by
the PCA2 method. Different number of grid points for the finite difference
method are taken in time and spatial directions. Green-marked values are
within the 99.7% confidence interval16 of the option price. Except for the

16This corresponds to three standard deviations from the mean.
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cases where the number of finite difference grid points is very small, many
option prices estimated with the PCA2 method are within the 99.7% confi-
dence interval. Note however that, although 10.000.000 Monte Carlo simu-
lations were used, the confidence interval is still quite wide.

The results in table 6.4a and 6.4b show that the number of grid points for the
first principal component (nz1) is very dominant in the convergence behavior
of the PCA2 solution. From table 6.4a it is clear that only for nz1 = 74 and
nz1 = 96 the PCA2 solution is within the 99.7% confidence interval generated
by Monte Carlo simulations, independent of the choice for nt. Furthermore
table 6.4b shows that for nz1 fixed and equal to 100, all PCA2 solutions are
within the 99.7% confidence interval, for any choice of nt and nz2 . The only
outliers are the solutions where nz2 = 74. Finally, table 6.4c shows that only
for values of nz1 that are greater than or equal to 34, PCA2 solutions are
within the 99.7% confidence interval. Although the value of nz2 has impact
on the PCA2 solution, for all values of nz2 there are PCA2 solutions that are
within the 99.7% confidence interval.

Tables E.1a to E.3b show the convergence rates for the PCA2 solution in
time and space directions. Convergence rates are calculated using the for-
mula v̂2n−v̂n

v̂4n−v̂2n , with v̂ the PCA2 solution and n the number of grid points in
either the time or one of the spatial directions. Table E.1 shows that, apart
from some (very large) outliers for certain numbers of grid points, the con-
vergence rate is around or slightly above 2. Tables E.2a to E.3b show very
oscillating convergence rates in the direction of both principal components.
Tables E.2a and E.3a show that the convergence rates in the direction of
both principal components is almost insensitive to the number of grid points
for time.

The observation that the number of grid points for the first principal com-
ponent is very dominant in the convergence behavior of the PCA2 solution
can be explained by the fact that the first principal component captures rela-
tively a larger part of the total variable variance. The oscillating convergence
behavior in the directions of both principal components is presumably caused
by the presence of the derivative with respect to time of the eigenvectors of
the covariance matrix in the PDE equation (4.18). This derivative is approx-
imated by a discrete derivative using the eigenvector coefficients at the finite
difference time grid, which causes the oscillating convergence behavior.
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nt = 150 0.069974 0.070411 0.070311 0.069256 0.069821 0.070676 0.070741
nt = 108 0.069974 0.070411 0.070311 0.069256 0.069821 0.070676 0.070741
nt = 76 0.069974 0.070411 0.070311 0.069257 0.069821 0.070676 0.070741
nt = 54 0.069975 0.070412 0.070312 0.069258 0.069822 0.070676 0.070741
nt = 40 0.069976 0.070412 0.070312 0.069260 0.069823 0.070677 0.070742
nt = 28 0.069978 0.070415 0.070315 0.069264 0.069825 0.070680 0.070745
nt = 20 0.069984 0.070420 0.070320 0.069270 0.069831 0.070685 0.070750

nz1 = 20 nz1 = 26 nz1 = 34 nz1 = 44 nz1 = 58 nz1 = 74 nz1 = 96

(a) nz2 = 100.

nt = 150 0.070777 0.070751 0.070763 0.070719 0.070684 0.070375 0.070749
nt = 108 0.070777 0.070751 0.070763 0.070719 0.070684 0.070374 0.070749
nt = 76 0.070777 0.070752 0.070763 0.070719 0.070684 0.070375 0.070749
nt = 54 0.070777 0.070752 0.070764 0.070719 0.070684 0.070375 0.070749
nt = 40 0.070778 0.070753 0.070765 0.070720 0.070685 0.070376 0.070750
nt = 28 0.070781 0.070755 0.070767 0.070722 0.070688 0.070378 0.070753
nt = 20 0.070786 0.070760 0.070773 0.070728 0.070693 0.070383 0.070758

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58 nz2 = 74 nz2 = 96

(b) nz1 = 100.

nz1 = 96 0.070517 0.070238 0.070744 0.070747 0.070435 0.070617 0.070741
nz1 = 74 0.070124 0.070727 0.070725 0.070541 0.070641 0.070715 0.070697
nz1 = 58 0.070774 0.070758 0.070652 0.070558 0.070749 0.070737 0.070100
nz1 = 44 0.070777 0.070632 0.070648 0.070759 0.070736 0.070041 0.069027
nz1 = 34 0.070604 0.070558 0.070703 0.070687 0.069931 0.068919 0.070201
nz1 = 26 0.070387 0.070506 0.070483 0.069842 0.068798 0.069994 0.070390
nz1 = 20 0.070029 0.070008 0.069400 0.068182 0.069528 0.069895 0.069970

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58 nz2 = 74 nz2 = 96

(c) nt = 100.

Table 6.4: 5Y GBP USD basket call option prices, for different number of grid
points for time and space directions for finite differences, calculated using the
PCA2 method. The strike equals the basket forward rate. The reference solution
is calculated using 10.000.000 Monte Carlo simulations and 500 grid points in
time direction. The 99.7% confidence interval for the 5Y GBP USD basket option
equals [0.070650, 0.070866]. Green-marked values are within this 99.7% confidence
interval.
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6.4 5-dimensional FX basket call option

Figure 6.2 shows the percentage of total variance captured by each of the
principal components under the calibrated 5-dimensional M-BSHW model
for log forward rates, for each of the three case studies. The results are very
similar in case of T = 1 and T = 3 and therefore only results for T = 5
are included. Additionally, table 6.5 gives an overview of the cumulative
percentage of variance captured by the principal components specifically at
t = 0, 2.5, 5 for the T = 5 European-style FX basket option.

The figures show that the part of total variance captured by the princi-
pal components significantly depends on the correlation structure between
the log FX rates. For case study 1, the first principal component captures
slightly below 48% of total variance, while the first two principal compo-
nents together capture around 70% of total variance. For case study 3 the
first principal component captures approximately 80% (t = 0) to more than
95% (t = 5) of total variance. The four remaining principal components all
capture less than 10% of total variance.

The large difference in variance captured by the first or first two princi-
pal components between the case studies is the direct consequence of the
different correlation structure. Average correlation between the log FX rates
equals 26.23%, 60.63% and 87.98% for case study 1, 2 and 3, respectively,
see table 6.1. The correlations between the FX rates and Hull-White interest
rates, and the correlations between the interest rates have a much smaller
impact on the variance captured by the principal components. This is be-
cause the Hull-White volatility parameter values are very small compared to
the BSHW volatility paramter values, see tables C.3, C.6 and C.9.

t = 0 t = 2.5 t = 5

#
PC

Case
study 1

Case
study 2

Case
study 3

Case
study 1

Case
study 2

Case
study 3

Case
study 1

Case
study 2

Case
study 3

1 47.28 % 71.94 % 80.46 % 47.24 % 75.09 % 91.67 % 47.92 % 76.89 % 97.07 %

2 67.78 % 81.45 % 87.82 % 68.41 % 83.73 % 95.62 % 70.99 % 86.33 % 99.55 %

3 85.00 % 89.45 % 94.25 % 84.14 % 92.16 % 97.73 % 83.57 % 93.79 % 99.96 %

4 93.07 % 95.92 % 97.48 % 92.58 % 97.74 % 99.01 % 92.18 % 98.76 % 100.00 %

5 100.00 % 100.00 % 100.00 % 10.000 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Table 6.5: Cumulative percentage of variance captured by principal components,
for the 5-dimensional FX basket option pricing problem, T = 5.

Figure 6.3 depicts the coefficient values of the five log forward rates for
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the first two principal components, for each of the three case studies. The
ordering in absolute coefficient size for the first principal component is, with
one or two exceptions, in line with the ordering in BSHW volatility, see tables
C.3, C.6 and C.9. FX rates with a higher BSHW volatility parameter value
have a higher (absolute value of the) coefficient value. The coefficient values
of the second principal components have not a direct relation with the BSHW
model parameter values, but in general the coefficient values fluctuate more
over time. This behaviour can be generalized: the coefficient values of higher
principal components (i.e. principal components with a small variance com-
pared to other principal components) fluctuate more over time. For some
principal components there are even significant jumps in coefficient value,
for a certain point in time. This makes it difficult to ensure convergence for
PCA2 solutions based on these principal components. A large number of
time points are needed to approximate the discretization (5.5) accurately for
these particular points in time.

Table 6.6 shows the option price estimates obtained by the PCA1 method,
the PCA2(1,2) method and the asymptotic expansion method for case stud-
ies 1,2 and 3, respectively. For the PCA1 method, 5.000 grid points for
time direction and 5.000 grid points for space direction are taken. For the
PCA2(1,2) method, 300 grid points for time direction and 75 grid points for
space directions are taken17. An exception is case study 1, here 100 grid
points are used for both time and space directions. This is chosen because
the coefficients values of the principal components fluctuate much more over
time for case studies 2 and 3. More grid points in time direction will ensure
better approximations of the derivative of the coefficient values of the prin-
cipal components in (4.18).

The reference solution is given by the Monte Carlo method (5.4), with
10.000.000 simulations and 100 · T time points. The relative error of the
PCA methods with respect to the reference solution is given in parantheses.
For case study 3, the coefficient values of a few higher-order principal com-
ponents are oscillating over time. Therefore many time points in the finite
difference method for the scheme (5.6) are needed in order to approximate
the derivative of the principal component coefficient value with respect to
time. For the number of time points I used, the finite difference method
yields inaccurate results, therefore the asymptotic expansion values for case
study 3 are not included in the overview.

17For case study 3, 76 grid points for space directions were taken because it was discov-
ered that for an even number of grid points interpolation errors could occur.
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Table 6.6 shows that for the three case studies, FX basket call option prices
are higher for higher correlations and higher volatility parameters. The FX
basket call option prices shown in table 6.6 are lowest for case study 1 and
highest for case study 2. This can be explained as, although average cor-
relation is lowest for case study 1 and highest for case study 3, the average
BSHW volatility parameter value is highest for case study 2 and lowest for
case study 1.
Furthermore the results show that the option prices increase with maturity.
This is because the underlying is more volatile for longer maturities.

The results in table 6.6 show three clear trends. The first is that the rel-
ative error of the PCA1 and PCA2(1,2) solution is largest for case study 1
and smallest for case study 3. This is directly attributable to the average
correlation value between the FX rates, which is lowest for case study 1 and
highest for case study 3, see table 6.1. The relative errors are larger for higher
maturities, this is because the FX basket option underlying is more volatile
for higher maturities.

The second trend is that the relative error of the PCA2(1,2) solution is almost
always lower than the relative error of the PCA1 solution. This is in line with
expectations as the PCA2(1,2) method includes the second principal com-
ponent in the FX basket option pricing problem. By including the second
principal component in the FX basket option pricing problem, a larger part of
the total variance captured by all variables is included in the pricing problem.

The third trend is that the asymptotic solution does not always give more ac-
curate results than the PCA2(1,2) solution. For case study 1, the asymptotic
solution yields very accurate results. For all maturities, the relative error is
below or slightly above 1%, and increases with maturity, as expected. For the
other two case studies, the asymptotic solution yields less accurate results.
For case study 2, the relative error of the asymptotic expansion solution is
largest for the short maturity (T = 1), which is not in line with expectations.
For case study 3, for the number of grid points I used, no converging results
were obtained. The less accurate results for the asymptotic expansion for case
studies 2 and 3 is due to the oscillating behavior and/or the sudden jumps of
the coefficient values of the principal components. As a consequence, many
time points in the finite difference method for the scheme (5.6) are needed
in order to accurately approximate the derivative of the principal compo-
nent coefficient value with respect to the time. Recommendations for future
research concerning this finding are reported in chapter 7.
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Case study

MC price
(standard
deviation)

PCA1 (relative
error)

PCA2(1,2)
(relative error)

Asymptotic
expansion

(relative error)

T
=

1

Case study 1 0.025244 (1.212308E-5) 0.023338 (-7.5514%) 0.023921 (-5.2439%) 0.025104 (-0.5565%)

Case study 2 0.038409 (1.883081E-5) 0.037615 (-2.0656%) 0.038247 (-0.4201%) 0.039667 (3.2769%)

Case study 3 0.037181 (1.812875E-5) 0.037083 (-0.2640%) 0.037013 (-0.4520%) - (-%)

T
=

3

Case study 1 0.043124 (2.110405E-5) 0.038056 (-11.7513%) 0.039547 (-8.2946%) 0.042855 (-0.6232%)

Case study 2 0.062234 (3.168524E-5) 0.059704 (-4.0652%) 0.060359 (-3.0123%) 0.062147 (-0.1409%)

Case study 3 0.059390 (2.985934E-5) 0.058991 (-0.6722%) 0.059204 (-0.3135%) - (-%)

T
=

5

Case study 1 0.054898 (2.730942E-5) 0.046873 (-14.6179%) 0.049032 (-10.6851%) 0.054327 (-1.0397%)

Case study 2 0.075515 (3.971716E-5) 0.071331 (-5.5408%) 0.071992 (-4.6652%) 0.074509 (-1.3317%)

Case study 3 0.071508 (3.673465E-5) 0.070456 (-1.4708%) 0.070785 (-1.0112%) - (-%)

Table 6.6: 5-dimensional FX basket call option price estimates for case studies
1, 2 and 3. The absolute values of the relative error of the PCA1 and PCA2(1,2)
method are given. The basket weights are equal to 1

5 and, furthermore, the FX
rates have been normalized with respect to their spot rate. The strike equals the
forward FX basket rate. Computation time equals approximately 20, 60 and 90
minutes for the Monte Carlo estimate, for T = 1, T = 3 and T = 5, respectively.
Computation time equals approximately 20 minutes for the PCA1 and approxi-
mately 20 minutes for the PCA2 estimate.
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(a) Case study 1.
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(b) Case study 2.
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(c) Case study 3.

Figure 6.2: Part of total variable variance explained by each of the principle
components of the 5-dimensional M-BSHW model, for each of the three case stud-
ies. The foreign currencies are CHF, GBP, JPY, SEK and USD for case study 1,
IDR, INR, KRW, MYR and PHP for case study 2 and AED, CNH, CNY, HKD
and SAR for case study 3. Maturity equals T = 5.
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Figure 6.3: Coefficient values of the first (left figures) and second principal com-
ponents (right figures) of the 5-dimensional M-BSHW model. Case study 1 figures
are shown at the top, case study 2 figures on the middle and case study 3 figures on
the bottom. The FX rates for each case study are shown in the legends. Maturity
equals T = 5.
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6.5 10-dimensional FX basket call option

Figure 6.4 shows the percentage of total variance captured by each of the
principal components under the calibrated 10-dimensional M-BSHW model
for log forward rates, for each of the three case studies. The results are very
similar in case of T = 1 and T = 3 and are therefore not included. Addi-
tionally, table 6.7 gives an overview of the cumulative percentage of variance
captured by the principal components at t = 0, 2.5, 5 for the T = 5 European-
style FX basket option.

Similar to the case of the 5-dimensional FX basket call option, the part of to-
tal variance captured by the principal components depends on the correlation
values between the log FX rates. For case study 1, the first principal compo-
nent captures around 40% of total variance, depending on time t. The first
two principal components together capture around 60% of total variance. For
case study 3 the first principal component captures between approximately
70% (t = 0) and 90% (t = 5) of total variance. The four remaining principal
components all capture less than 10% of total variance. The large difference
in variance captured by the first or first two principal components between
the case studies is, similarly to previous section, the direct consequence of the
different correlation structure. Average correlation between the log FX rates
equals 26.23%, 60.63% and 87.98% for case study 1, 2 and 3, respectively,
see table 6.1. The correlations between the FX rates and Hull-White interest
rates, and the correlations between the interest rates have a much smaller
impact on the variance captured by the principal components.

t = 0 t = 2.5 t = 5

#
PC

Case
study 1

Case
study 2

Case
study 3

Case
study 1

Case
study 2

Case
study 3

Case
study 1

Case
study 2

Case
study 3

1 38.98 % 56.4 % 72.55 % 41.38 % 59.47 % 82.9 % 44.12 % 64.29 % 89.82 %

2 57.02 % 72.75 % 80.38 % 58.67 % 74.74 % 88.58 % 60.66 % 78.25 % 93.47 %

3 68.00 % 83.63 % 85.19 % 68.38 % 83.57 % 91.67 % 70.32 % 83.44 % 95.60 %

4 78.47 % 88.66 % 88.93 % 77.67 % 88.31 % 94.08 % 77.94 % 87.42 % 97.29 %

5 85.64 % 91.96 % 92.27 % 84.71 % 91.81 % 95.86 % 84.24 % 91.06 % 98.31 %

6 90.16 % 94.30 % 95.14 % 89.56 % 94.73 % 97.17 % 89.21 % 94.44 % 99.07 %

7 94.04 % 96.42 % 96.76 % 93.66 % 96.84 % 98.18 % 93.34 % 96.85 % 99.77 %

8 97.35 % 97.87 % 98.14 % 97.32 % 98.1 % 99.03 % 97.18 % 98.55 % 99.98 %

9 99.57 % 98.96 % 99.11 % 99.81 % 99.18 % 99.61 % 99.92 % 99.54 % 100.00 %

10 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Table 6.7: Cumulative percentage of variance captured by the principal compo-
nents for the 10-dimensional FX basket option pricing problem, T = 5.
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Figure 6.5 depicts the coefficient values of the ten log forward rates for
the first two principal components, for each of the three case studies. The
ordering in absolute coefficient size for the first principal component is, with
a few exceptions, in line with the ordering in variance, see appendix C. In
general, the coefficient values of higher principal components (i.e. principal
components with a small variance compared to other principal components)
fluctuate more over time. For some principal components there are even sig-
nificant jumps in coefficient value, for a certain point in time. This makes it
difficult to ensure convergence for PCA2 solutions based on these principal
components. A large number of time points are needed to approximate the
discretization (5.5) accurately for these particular points in time.

Table 6.8 shows the option price estimates obtained by the PCA1 method,
the PCA2(1,2) method and the asymptotic expansion method for case stud-
ies 1,2 and 3, respectively. For the PCA1 method, PCA2 method and the
Monte Carlo method, the same number of grid points and the same settings
were used as with the 5-dimensional FX basket call option (see section 6.4).
For case study 3, the coefficient values of a few higher-order principal compo-
nents are oscillating over time. Because of this many time points in the finite
difference method for the scheme (5.6) are needed in order to approximate
the derivative of the principal component coefficient value with respect to
the time. For the number of time points I used, the finite difference method
yields inaccurate results, therefore the asymptotic expansion values for case
study 3 are not included in the overview.

Similarly to the results for the 5-dimensional FX basket call option, FX
basket call option prices are higher for higher correlations and higher volatil-
ity parameters. The 10-dimensional FX basket call option prices shown in
table 6.8 are lowest for case study 1 and highest for case study 2. This can
be explained as, although average correlation is lowest for case study 1 and
highest for case study 3, the average BSHW volatility parameter value is
highest for case study 2 and lowest for case study 1.
Furthermore the results show that the call option prices increase with ma-
turity, this is again because the FX basket underlying is more volatile for
higher maturities.

The results for the 10-dimensional FX basket call option price in table 6.8
show the same trends as for the 5-dimensional FX basket call option. First,
the relative error of the PCA1 and PCA2(1,2) solution is largest for case
study 1 and smallest for case study 3. Second, the relative error of the
PCA2(1,2) solution is almost always smaller than the relative error of the
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PCA1 solution. Third, the asymptotic solution does not always give more
accurate results than the PCA2(1,2) solution. The difference with the 5-
dimensional FX basket call option is that the PCA1 and PCA2 method are
less accurate for the 10-dimensional FX basket call option, i.e. the relative
errors are larger. This is because the part of total variance captured by the
first or first two principal components is smaller for the 10-dimensional FX
basket call option.

For case study 1, the asymptotic solution yields results that are in line with
expectations. The relative error of the asymptotic expansion is smaller than
the relative error of the PCA1 and PCA2(1,2) solutions, and it increases
for higher maturities. For the other two case studies, similarly to the case
of the 5-dimensional FX basket call option, the asymptotic solution yields
less accurate results. For case study 2, the relative error of the asymptotic
expansion solution is smallest for maturity equal to 3 years, which is not
in line with expectations. For case study 3, for the number of grid points
I used, no converging results were obtained. The less accurate results for
the asymptotic expansion for case studies 2 and 3 is due to the oscillating
behavior and/or the sudden jumps of the coefficient values of the principal
components. As a consequence, many time points in the finite difference
method for the scheme (5.6) are needed in order to accurately approximate
the derivative of the principal component coefficient value with respect to
the time. Recommendations for future research concerning this finding are
reported in chapter 7.
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Case study

MC price
(standard
deviation)

PCA1 (relative
error)

PCA2(1,2)
(relative error)

Asymptotic
expansion

(relative error)

T
=

1

Case study 1 0.021449 (1.029481E-5) 0.019847 (-7.4683%) 0.020200 (-5.8258%) 0.021243 (-0.9607%)

Case study 2 0.036204 (1.773062E-5) 0.034689 (-4.1852%) 0.035563 (-1.7723%) 0.038187 (5.4747%)

Case study 3 0.034227 (1.663634E-5) 0.033983 (-0.7135%) 0.034396 (0.4943%) - (-%)

T
=

3

Case study 1 0.035872 (1.751071E-5) 0.031320 (-12.6900%) 0.032379 (-9.7369%) 0.035069 (-2.2367%)

Case study 2 0.057870 (2.947712E-5) 0.053997 (-6.6916%) 0.055112 (-4.7658%) 0.057787 (-0.1427%)

Case study 3 0.055169 (2.755008E-5) 0.054208 (-1.7416%) 0.054654 (-0.9328%) - (-%)

T
=

5

Case study 1 0.044863 (2.218491E-5) 0.037279 (-16.9042%) 0.039038 (-12.9837%) 0.042896 (-4.3839%)

Case study 2 0.069518 (3.664816E-5) 0.063892 (-8.0929%) 0.064706 (-6.9216%) 0.063371 (-8.8415%)

Case study 3 0.066813 (3.409622E-5) 0.064921 (-2.8329%) 0.065739 (-1.6087%) - (-%)

Table 6.8: 10-dimensional FX basket call option price estimates for case studies
1, 2 and 3. The absolute values of the relative error of the PCA1 and PCA2
method are given. The basket weights are equal to 1

10 and, furthermore, the FX
rates have been normalized with respect to their spot rate. The strike equals the
forward FX basket rate. Computation time equals approximately 30, 100 and 160
minutes for the Monte Carlo estimate, for T = 1, T = 3 and T = 5, respectively.
Computation time equals approximately 20 minutes for the PCA1 estimate and
approximately 20 minutes for the PCA2 estimate.
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(a) Case study 1.
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(b) Case study 2.
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(c) Case study 3.

Figure 6.4: Part of total variable variance explained by each of the principle
components of the 10-dimensional M-BSHW model, for each of the three case
studies. Maturity equals T = 5.
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Figure 6.5: Coefficient values of the first (left figures) and second principal com-
ponents (right figures) of the 10-dimensional M-BSHW model. Case study 1 figures
are shown at the top, case study 2 figures on the middle and case study 3 figures on
the bottom. The FX rates for each case study are shown in the legends. Maturity
equals T = 5.
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Chapter 7

Conclusion

Because of the large demand for financial derivatives to hedge the risks of
multiple assets simultaneously, dimension reduction for high-dimensional op-
tion pricing is extensively studied in literature. Most of the academic lit-
erature addresses dimension reduction for Quasi-Monte Carlo methods by
approximating low effective dimensions by their low-order ANOVA terms.
Reisinger (2004) introduced a principal components-based dimension reduc-
tion to option pricing under the multi-dimensional Black-Scholes model with
constant volatilities. By transforming the original variables to the principal
components of the model, the pricing PDE is transformed to the heat equa-
tion. The dimension of the pricing problem is then reduced by truncating
the heat equation to a couple of principal components that have relatively
high variance.

The research conducted in this master thesis applies a time-dependent princi-
pal components-based dimension reduction to European-style FX basket op-
tion pricing. The underlying FX rates are modeled by the multi-dimensional
Black-Scholes-Hull-White model with stochastic interest rates. The coeffi-
cients of the principal components are time-dependent as the coefficients of
the eigenvectors of the covariance matrix are time-dependent as well. This
thesis therefore directly contributes to the literature on dimension reduction
in high dimensional derivative pricing.

By switching from the domestic spot risk-neutral measure to the domes-
tic forward risk-neutral measure, the (2NFX + 1)-dimensional Black-Scholes-
Hull-White model can be reduced to a NFX-dimensional Black-Scholes model
with time-dependent volatility. The FX basket option pricing problem is
then transformed in terms of the principal components. The coefficients
of the principal components are time-dependent as the coefficients of the
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eigenvectors of the covariance matrix are time-dependent. The relative vari-
ances of the principal components depend on the covariations between the
FX rates and interest rates. For high correlations and similar variances one
or two principal components usually capture a large part of total variance.
The dimension of the FX basket option pricing problem is then reduced by
substituting all time-dependent principal components, except for the first or
first two principal components with largest variance, by their time-zero ex-
pectation.

The performance and accuracy of this dimension reduction method was as-
sessed based on three case studies. In these case studies, 5 and 10 low,
moderately and highly correlated currencies were considered as underlyings
for the FX basket option, respectively. The low correlated currencies are the
most traded currencies against the domestic currency euro, the moderately
and highly correlated currencies are both emerging and non-emerging mar-
ket currencies, and Asian and Middle Eastern currencies. The clear overall
trend is that the accuracy of the PCA1 and PCA2(1,2) method increases
when either the average correlation between the FX rates increases or ma-
turity decreases. Furtermore, the relative error of the PCA2(1,2) solution is,
except for one case, always smaller than the relative error of the PCA1 so-
lution. This is because the PCA2(1,2) method includes the second principal
component in the FX basket call option pricing problem. Finally, the PCA1
and PCA2(1,2) method are trivially more accurate for the 5-dimensional FX
basket call option compared to the 10-dimensional FX basket call option.
This is because for the 10-dimensional FX basket call option more principal
components are substituted by their time-zero expected value.

The accuracy of the PCA1 and PCA2(1,2) methods is one-to-one related
with the part of total variance captured by the first and first two principal
components, respectively. For the 5Y 5-dimensional FX basket call option
price, the first principal component captures at least 47%, 71% and 80% of
total variance for the low, moderately and highly correlated currencies, re-
spectively. For the first two principal components, these percentages equal
67%, 81% and 87%. The accuracy of the PCA1 and PCA2(1,2) methods
increases significantly: the relative error equals 14.62%, 5.54% and 1.47% for
the PCA1 solution. For the PCA2(1,2) solution, these errors are equal to
10.69%, 4.67% and 1.01%, respectively.

For the 5Y 10-dimensional FX basket call option price, the first principal
component captures at least 38%, 56% and 72% of total variance for the
low, moderately and highly correlated currencies, respectively. For the first
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two principal components, these percentages equal 57%, 72% and 80%. The
accuracy of the PCA1 and PCA2(1,2) methods increases significantly: the
relative error equals 16.90%, 8.09% and 2.83% for PCA1, and 12.98%, 6.92%
and 1.61% for PCA2(1,2), respectively.

The research results showed that the asymptotic solution does not always
give more accurate results than the PCA2(1,2) solution, which is not in line
with expectations. The less accurate results for the asymptotic expansion
are due to the oscillating behavior and/or the sudden jumps of the coeffi-
cient values of the principal components. Therefore many time points in the
finite difference scheme are needed to get converging results.

Recommendations for future research concern both the enhancement of the
calculation of the asymptotic expansion solution and applications to other
stochastic multi-dimensional models. Especially for highly correlated FX
rates, coefficients of the higher-order principal component can show oscillat-
ing behavior, making the finite difference solutions significantly less stable.
Future work can address this problem by implementing time-dependent grid
distances. Here one could use smaller grid distances for the time direction in
areas where principal component coefficients show oscillating behavior.

As an extension to the research in this master thesis, the performance and
accuracy of the time-dependent principle components-based dimension re-
duction method can be assessed in the calculation of the Greeks for the FX
basket option price. The Greeks measure the sensitivity of derivative prices
to several underlying parameter values. It is expected that the accuracy of
the dimension reduction technique of this thesis applied to the calculation of
Greeks is similar to the accuracy reported in this thesis.

Finally, future research could be devoted to apply the time-dependent princi-
pal component-based dimension reduction to local volatility and/or stochas-
tic volatility models. The general principle used in this master thesis research
was the application of a principle components transformation to the multi-
dimensional Black-Scholes-Hull-White model. Subsequently, in the FX bas-
ket option pricing the low-variance principal components were substituted
by their expectation. This principle can be adapted and applied to models
that are able to capture the volatility smile.
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Appendix A

Derivation of the BSHW model
dynamics under the
QT -measure

Under the domestic risk neutral measure Q one has from (3.3) and (3.8),
using definition (3.11),

dSdf (t) = (rd(t)− rf (t))Sdf (t)dt+ σSdf (t)dWQ
Sdf

(t),

dPd(t, T ) = rd(t)Pd(t, T )dt+ Pd(t, T )σdAd(t, T )dWQ
d (t),

dPf (t, T ) =
[
rf (t)− ρSdf rfσσfAf (t, T )Pf (t, T )

]
dt

+ Pf (t, T )σfAf (t, T )dWQ
f (t).

Then by Itô one has

d
PF (t, T )

PD(t, T )

=
1

Pd(t, t)
dPf (t, T )− Pf (t, tT )

Pd(t, T )2
dPd(t, T ) +

Pf (t, T )

Pd(t, T )3
Pd(t, T )2

× σ2
dA

2
d(t, T )dt− 1

Pd(t, T )2
ρrf rdPf (t, T )Pd(t, T )σfσdAf (t, T )Ad(t, T )dt

=
[
rf (t)− rd(t)− ρSdf rfσσfAf (t, T ) + σ2

dA
2
d(t, T )

−ρrf rdσfσdAf (t, T )Ad(t, T )
] Pf (t, T )

Pd(t, T )
dt− σdAd(t, T )

Pf (t, T )

Pd(t, T )
dWQ

d (t)

+ σfAf (t, T )
Pf (t, T )

Pd(t, T )
dWQ

f (t).
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Again by using Itô one has

dF df (t) := dSdf (t)
Pf (t, T )

Pd(t, T )

= (rd(t)− rf (t))Sdf (t)
Pf (t, T )

Pd(t, T )
dt+ σSdf (t)

Pf (t, T )

Pd(t, T )
dWQ

Sdf
(t)

+ Sdf (t)d
Pf (t, T )

Pd(t, T )
− ρSdf rdσS

df (t)σdAd(t, T )
Pf (t, T )

Pd(t, T )
dt

+ ρSdf rfσS
df (t)σfAf (t, T )

Pf (t, T )

Pd(t, T )
dt

=
[
σ2
dA

2
d(t, T )− ρrf rdσfσdAf (t, T )Ad(t, T )− ρSdf rdσσdAd(t, T )

]
× Sdf (t)Pf (t, T )

Pd(t, T )
dt+ σSdf (t)

Pf (t, T )

Pd(t, T )
dWQ

Sdf
(t)

− σdAd(t, T )Sdf (t)
Pf (t, T )

Pd(t, T )
dWQ

d (t) + σfAf (t, T )Sdf (t)
Pf (t, T )

Pd(t, T )
dWQ

f (t)

:=
[
σ2
dA

2
d(t, T )− ρrf rdσfσdAf (t, T )Ad(t, T )− ρSdf rdσσdAd(t, T )

]
F df (t)dt

+ σF df (t)dWQ
Sdf

(t)− σdAd(t, T )F df (t)dWQ
d (t) + σfAf (t, T )F df (t)dWQ

f (t).

Now using Girsanov’s first fundamental theorem (Girsanov, 1960), one has
that the processes

WQT
Sdf

(t) := WQ
Sdf

(t) +

∫ t

0

θ1(s)ds,

WQT
d (t) := WQ

d (t) +

∫ t

0

θ2(s)ds,

WQT
f (t) := WQ

f (t) +

∫ t

0

θ3(s)ds,

are Brownian motions under the domestic forward risk-neutral measure QT .
The choices

θ1(t) = −ρSdf rdσdAd(t, T ),

θ2(t) = −σdAd(t, T ),

θ3(t) = −ρrf rdσdAd(t, T ),

make the process F df (t) a martingale under the domestic forward risk-neutral
measure QT . Then the process F df (t) has the QT -dynamics given by

dF df (t)

= σF df (t)dWQT
Sdf

(t) + σfAf (t, T )F df (t)dWQT
f (t)− σdAd(t, T )F df (t)dWQT

d (t).
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Appendix B

Principal components-based
dimension reduction for the
multi-dimensional
Black-Scholes model

Under the real-world measure P, the N -dimensional Black-Scholes model
with µi and σi the drift- and volatility parameters (i ∈ {1, . . . , N}), respec-
tively, is given by:

dSi(t) = µiSi(t)dt+ σiSi(t)dW
P
i (t), i = 1, . . . , N,

with stochastic covariation process given by d
[
W P
i ,W

P
j

]
(t) = ρijdt for i, j ≤

N . Consider the problem of pricing a derivative with underlying the stochas-
tic processes S(t) = (S1(t), . . . , SN(t))> for t ≥ 0. Let u(S, t) denote the
derivative price at time t. Using the Feynman-Kac theorem the Black-Scholes
PDE for u equals

∂u

∂t
+

N∑
i=1

µiSi
∂u

∂Si
+

1

2

N∑
i=1

N∑
j=1

σiσjρijSiSj
∂2u

∂Si∂Sj
− ru = 0, (B.1)

with u = u(S, t) the option price at time t, depending on the underlying at
time t. The initial condition is given by u(S, T ) = f(S).

Now let Σ denote the covariance matrix of the stochastic variables S, then
one has Σij = σiσjρij. Let Q := (qij)i,j∈{1,...,N} denote the matrix with the

eigenvectors of the covariance matrix as columns. Here Q = (q1,q2, . . . ,qN)
with q1,q2, . . . ,qN the eigenvectors corresponding to the largest to small-
est eigenvalues. Let {λi}i∈{1,...,N} denote the eigenvalues, and define λ =
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(λ1, . . . , λN)>.

Applying the principal component transformation Z := Q>S to the multi-
dimensional Black-Scholes PDE (B.1) yields an inefficient equation. Instead
one can apply the transformation

Z := Q> ln S. (B.2)

Here Z = (Z1, . . . , ZN)>. Let v denote the derivative value process cor-
responding to the principal components Z, then one has, using u (S, t) =
v (Z, t) :

∂u

∂Si
=

N∑
k=1

∂v

∂Zk

1

Si
qik,

∂2u

∂Si∂Sj
=

N∑
k=1

∂2v

∂Z2
k

1

Si

1

Sj
qikqjk −

N∑
k=1

∂v

∂Zk

1

S2
i

qik1{i=j}.

(B.3)

From q>i Σqi = λi we get λi =
∑N

k=1

∑N
j=1 qkiqjiσkσjρjk, for i ≤ N . Applying

(B.3) to the Black-Scholes PDE (B.1) then yields

∂v

∂t
+

N∑
i=1

N∑
k=1

qik
∂v

∂Zk

[
µi −

1

2
σ2
i

]
+

1

2

N∑
k=1

λk
∂2v

∂Z2
k

− rv = 0, (B.4)

with v(Z, T ) = f

((
e
∑N
j=1 qijZj(T )

)
i≤N

, T

)
.

One can add a time translation to (B.2) to remove the first-order term from
(B.4). Transformation (B.2) then becomes

Z = Q> [ln S−B(t)] , (B.5)

with Bi(t) = µi − 1
2
σ2
i . Using that

∂Zk
∂t

= −
N∑
j=1

qjk

(
µj −

1

2
σ2
j

)
, k = 1, . . . , N,

the PDE (B.4) transforms into

∂v

∂t
+

1

2

N∑
k=1

λk
∂2v

∂Z2
k

− rv = 0, (B.6)
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with v(Z, T ) = f

((
e
∑N
j=1 qijZj(T )+Bi(T )

)
i≤N

, T

)
. Optionally, the rV -term

in the PDE above can be eliminated by the substitution Y (t) = ertZ(t),
yielding the heat equation [35]. Reversing time using τ = T − t yields for the
associated value process w (Z, τ) = v (Z, T − τ):

∂w

∂τ
=

1

2

N∑
k=1

λk
∂2w

∂Z2
k

− rv, (B.7)

with initial condition w(Z, 0) = f

((
e
∑N
j=1 qijZj(T )+Bi(T )

)
i≤N

, 0

)
.
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Appendix C

Calibration results

81



AUDEUR CADEUR CHFEUR DKKEUR GBPEUR JPYEUR NOKEUR PLNEUR SEKEUR USDEUR
AUDEUR 1 0,70998 0,21425 0,09220 0,42902 0,22618 0,51225 0.28270 0,34357 0,50564
CADEUR 0,70998 1 0,22067 0,21423 0,51868 0,25187 0,56067 0,15199 0,33063 0,61109
CHFEUR 0,21425 0,22067 1 0,15852 0,21162 0,29807 0,23606 -0,09269 0,17665 0,22626
DKKEUR 0,09220 0,21423 0,15852 1 0,09516 0,02698 0,13059 -0,14679 0,05202 0,12634
GBPEUR 0,42902 0,51868 0,21162 0,09516 1 0,14691 0,28786 0,11387 0,28008 0,52649
JPYEUR 0,22618 0,25187 0,29807 0,02698 0,14691 1 0,09373 -0,03290 0,12973 0,49604
NOKEUR 0,51225 0,56067 0,23606 0,13059 0,28786 0,093736 1 0,30297 0,42093 0,24012
PLNEUR 0,28270 0,15199 -0,09269 -0,14679 0,11387 -0,03290 0,30297 1 0,21987 0,09395
SEKEUR 0,34357 0,33063 0,17665 0,05202 0,28008 0,12973 0,42093 0,21987 1 0,26402
USDEUR 0,50564 0,61109 0,22626 0,12634 0,52649 0,49604 0,24012 0,09395 0,26402 1
rAUD 0,36823 0,18858 -0,05218 0,01802 0,17602 -0,23181 0,17581 0,10432 0,16216 0,12147
rCAD 0,29168 0,44867 -0,10163 0,27408 0,17482 -0,28677 0,19545 -0,00269 0,1117 0,14944
rCHF -0,10996 -0,10824 -0,56621 0,21752 -0,13643 -0,38434 -0,13346 0,06547 -0,02536 -0,25356
rDKK -0,03896 -0,07888 -0,12723 -0,01280 -0,09943 -0,31591 -0,06199 0,00604 0,12240 -0,19140
rEUR -0,05858 -0,10148 -0,13692 0,01537 -0,08734 -0,35615 -0,03700 0,05609 0,09369 -0,18862
rGBP 0,20581 0,26149 -0,06254 0,09915 0,40359 -0,30421 0,15338 0,09192 0,14075 0,12821
rJPY 0,03697 0,01095 -0,04614 0,06364 0,08017 -0,04189 0,00554 -0,07516 0,09318 0,02658
rNOK 0,14910 0,18523 -0,13733 0,07467 0,06494 -0,27831 0,44767 0,07157 0,21012 -0,05184
rPLN -0,05304 0,00154 -0,06459 0,17042 0,06348 -0,03182 -0,16298 -0,26333 -0,07840 0,05659
rSEK 0,10736 0,05196 -0,11944 -0,00334 0,10066 -0,2043 0,07790 0,09275 0,3875 0,01569
rUSD 0,23185 0,28669 -0,14296 0,03944 0,31281 -0,31959 0,15943 0,10266 0,102 0,27683

Table C.1: Historical correlations for case study 1 currencies and associated
interest rates, part 1.

rAUD rCAD rCHF rDKK rEUR rGBP rJPY rNOK rPLN rSEK rUSD
AUDEUR 0,36823 0,29168 -0,10996 -0,03896 -0,05858 0,20581 0,03697 0,14910 -0,05304 0,10736 0,23185
CADEUR 0,18858 0,44867 -0,10824 -0,07888 -0,10148 0,26149 0,01095 0,18523 0,00154 0,05196 0,28669
CHFEUR -0,05218 -0,10163 -0,56621 -0,12723 -0,13692 -0,06254 -0,04614 -0,13733 -0,06459 -0,11944 -0,14296
DKKEUR 0,01802 0,27408 0,21752 -0,01280 0,01537 0,09915 0,06364 0,07467 0,17042 -0,00334 0,03944
GBPEUR 0,17602 0,17482 -0,13643 -0,09943 -0,08734 0,40359 0,08017 0,06494 0,06348 0,10066 0,31281

JPYEUR -0,23181 -0,28677 -0,38434 -0,31591 -0,35615 -0,30421 -0,04189 -0,27831 -0,03182 -0,2043 -0,31959
NOKEUR 0,17581 0,19545 -0,13346 -0,06199 -0,03700 0,15338 0,00554 0,44767 -0,16298 0,07790 0,15943
PLNEUR 0,10432 -0,00269 0,06547 0,00604 -0,05609 0,09192 -0,07516 0,07157 -0,26333 0,09275 0,10266
SEKEUR 0,16216 0,1117 -0,02536 0,12240 0,09369 0,14075 0,09318 0,21012 -0,07840 0,3875 0,102
USDEUR 0,12147 0,14944 -0,25356 -0,19140 -0,18862 0,12821 0,02658 -0,05184 0,05659 0,01569 0,27683
rAUD 1 0,53915 0,21261 0,34027 0,41902 0,5049 0,27895 0,44894 0,23143 0,45044 0,57465
rCAD 0,53915 1 0,47925 0,51021 0,54418 0,73243 0,26705 0,62061 0,33968 0,55349 0,77883
rCHF 0,21261 0,47925 1 0,58014 0,521 0,42558 0,23139 0,48958 0,24339 0,46768 0,37741
rDKK 0,34027 0,51021 0,58014 1 0,86870 0,51493 0,25171 0,57218 0,24869 0,66560 0,44523
rEUR 0,41902 0,54418 0,521 0,86870 1 0,61096 0,30404 0,60802 0,29969 0,6956 0,55418
rGBP 0,5049 0,73243 0,42558 0,51493 0,61096 1 0,23619 0,60398 0,34617 0,60269 0,81015
rJPY 0,27895 0,26705 0,23139 0,25171 0,30404 0,23619 1 0,30019 0,20340 0,3087 0,28308
rNOK 0,44894 0,62061 0,48958 0,57218 0,60802 0,60398 0,30019 1 0,24670 0,61860 0,57678
rPLN 0,23143 0,33968 0,24339 0,24869 0,29969 0,34617 0,20340 0,24670 1 0,31867 0,34140
rSEK 0,45044 0,55349 0,46768 0,66560 0,6956 0,60269 0,3087 0,61860 0,31867 1 0,54512
rUSD 0,57465 0,77883 0,37741 0,44523 0,55418 0,81015 0,28308 0,57678 0,34140 0,54512 1

Table C.2: Historical correlations for case study 1 currencies and associated
interest rates, part 2.

Nelson-Siegel-Svensson parameters Hull-White parameters BSHW parameters (EUR as domestic CCY)
CCY β1 β2 β3 β4 λ1 λ2 max. maturity (years) λ σ Spot rate σBSHW max. maturity (years)
AUD 0.08526 -0.06458 -0.04825 -0.17839 3.34737 27.33338 50.03836 0.01187 0.00795 0.67512 0.11537 5.00274
CAD 0.08176 -0.07191 -0.04758 -0.16869 3.90499 27.33032 50.03288 0.01399 0.00735 0.68542 0.11119 5.00274
CHF 0.06118 -0.06844 -0.05327 -0.16395 3.34737 17.29590 50.03836 0.04318 0.00740 0.91284 0.08340 5.00274
DKK 0.08268 -0.08573 -0.07376 -0.18737 3.90499 23.98754 50.03836 0.01 0.00653 0.13434 0.00881 10.00548
EUR 0.00316 -0.00591 -0.03503 0.03292 3.90499 8.93135 50.03836 0.04138 0.00740 - - -
GBP 0.10640 -0.10118 -0.06487 -0.26433 4.46263 26.49386 50.03288 0.08 0.01030 1.17961 0.10679 5.00274
JPY 0.01562 -0.01545 -0.03659 -0.03595 1.67444 10.60274 50.03562 0.04138 0.00740 0.00869 0.12111 5.00274
NOK 0.05622 -0.04497 -0.03596 -0.10571 3.34737 23.15109 50.03836 0.01 0.00725 0.10781 0.09161 2
PLN 0.02056 -0.00110 -0.03286 0.03727 2.78972 8.93135 50.03836 0.01 0.01022 0.22943 0.07441 2
SEK 0.02177 -0.02668 -0.04032 0.02104 2.78972 8.93135 50.03836 0.01 0.00643 0.10513 0.06977 2
USD 0.04662 -0.03499 0.00967 -0.06863 8.92370 27.33338 50.03836 0.02049 0.00895 0.89783 0.10348 5.00274

Table C.3: Estimates on Hull-White model parameters and BSHW model pa-
rameters for case study 1 currencies.
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CNHEUR IDREUR ILSEUR INREUR KRWEUR MXNEUR MYREUR PHPEUR TRYEUR ZAREUR
CNHEUR 1 0.67624 0.62106 0.83315 0.69245 0.60219 0.63872 0.85299 0.49079 0.41016
IDREUR 0.67624 1 0.50964 0.67948 0.61949 0.52737 0.70272 0.71473 0.49593 0.44912
ILSEUR 0.62106 0.50964 1 0.62394 0.55165 0.5191 0.57285 0.6591 0.36836 0.27575
INREUR 0.83315 0.67948 0.62394 1 0.74061 0.66158 0.67253 0.87616 0.57648 0.45855
KRWEUR 0.69245 0.61949 0.55165 0.74061 1 0.62992 0.717 0.741 0.55517 0.53131
MXNEUR 0.60219 0.52737 0.5191 0.66158 0.62992 1 0.63079 0.59675 0.67678 0.68828
MYREUR 0.63872 0.70272 0.57285 0.67253 0.717 0.63079 1 0.74667 0.57143 0.53865
PHPEUR 0.85299 0.71473 0.6591 0.87616 0.741 0.59675 0.74667 1 0.53882 0.40842
TRYEUR 0.49079 0.49593 0.36836 0.57648 0.55517 0.67678 0.57143 0.53882 1 0.64049
ZAREUR 0.41016 0.44912 0.27575 0.45855 0.53131 0.68828 0.53865 0.40842 0.64049 1
rEUR -0.1429 -0.08957 -0.0797 -0.16283 -0.10019 -0.07037 -0.07725 -0.17561 -0.05432 -0.01136
rCNH 0.05209 0.02704 0.08582 0.00888 0.01444 -0.08538 0.02609 0.03244 0.03469 -0.1193
rIDR 0.00381 -0.02478 0.00199 -0.08224 -0.12211 -0.06944 -0.1093 -0.10008 -0.03813 -0.03138
rILS 0.08215 -0.00184 0.20446 -0.00434 0.01672 -0.04101 -0.06492 0.0367 0.0194 -0.11865
rINR -0.0292 -0.17128 -0.03831 -0.15117 -0.00735 0.04942 -0.14657 -0.14915 -0.05918 -0.08178
rKRW 0.073 -0.01337 0.04357 0.06327 0.09135 0.03966 0.05731 0.06182 0.08091 -0.01497
rMXN 0.15173 0.03629 0.03341 -0.03045 -0.03122 -0.13167 -0.07358 0.0416 -0.11516 -0.17867
rMYR 0.03262 -0.23811 0.01051 -0.02601 -0.15517 -0.13953 -0.33382 -0.02418 -0.16701 -0.30125
rPHP 0.01036 -0.09502 -0.0731 -0.08672 -0.07494 -0.12424 -0.13554 -0.12014 -0.1166 -0.09933
rTRY 0.08634 -0.14704 0.0975 -0.05024 -0.13802 -0.23514 -0.14848 -0.00674 -0.53278 -0.33074
rZAR 0.01993 -0.13759 0.04263 -0.09234 -0.12044 -0.31461 -0.16401 -0.01747 -0.33693 -0.66813

Table C.4: Historical correlations for case study 2 currencies and associated
interest rates, part 1.

rEUR rCNH rIDR rILS rINR rKRW rMXN rMYR rPHP rTRY rZAR
CNHEUR -0.1429 0.05209 0.00381 0.08215 -0.0292 0.073 0.15173 0.03262 0.01036 0.08634 0.01993
IDREUR -0.08957 0.02704 -0.02478 -0.00184 -0.17128 -0.01337 0.03629 -0.23811 -0.09502 -0.14704 -0.13759
ILSEUR -0.0797 0.08582 0.00199 0.20446 -0.03831 0.04357 0.03341 0.01051 -0.0731 0.0975 0.04263
INREUR -0.16283 0.00888 -0.08224 -0.00434 -0.15117 0.06327 -0.03045 -0.02601 -0.08672 -0.05024 -0.09234
KRWEUR -0.10019 0.01444 -0.12211 0.01672 -0.00735 0.09135 -0.03122 -0.15517 -0.07494 -0.13802 -0.12044
MXNEUR -0.07037 -0.08538 -0.06944 -0.04101 0.04942 0.03966 -0.13167 -0.13953 -0.12424 -0.23514 -0.31461
MYREUR -0.07725 0.02609 -0.1093 -0.06492 -0.14657 0.05731 -0.07358 -0.33382 -0.13554 -0.14848 -0.16401
PHPEUR -0.17561 0.03244 -0.10008 0.0367 -0.14915 0.06182 0.0416 -0.02418 -0.12014 -0.00674 -0.01747
TRYEUR -0.05432 0.03469 -0.03813 0.0194 -0.05918 0.08091 -0.11516 -0.16701 -0.1166 -0.53278 -0.33693
ZAREUR -0.01136 -0.1193 -0.03138 -0.11865 -0.08178 -0.01497 -0.17867 -0.30125 -0.09933 -0.33074 -0.66813
rEUR 1 0.02801 -0.06617 0.3933 0.08045 0.24297 0.06035 -0.02777 -0.02111 0.08322 -0.02659
rCNH 0.02801 1 0.15302 0.02535 -0.00598 -0.05334 0.04523 -0.09211 -0.01149 0.0017 0.05884
rIDR -0.06617 0.15302 1 -0.02941 -0.0722 -0.06216 -0.04709 0.02284 0.09961 0.00843 -0.07548
rILS 0.3933 0.02535 -0.02941 1 0.20579 0.49093 0.45258 0.36717 0.23638 0.24983 0.34366
rINR 0.08045 -0.00598 -0.0722 0.20579 1 0.18097 0.18003 0.32214 0.29857 0.14134 0.17875
rKRW 0.24297 -0.05334 -0.06216 0.49093 0.18097 1 0.32377 0.35757 0.18941 0.20565 0.21571
rMXN 0.06035 0.04523 -0.04709 0.45258 0.18003 0.32377 1 0.38701 0.23791 0.30041 0.39389
rMYR -0.02777 -0.09211 0.02284 0.36717 0.32214 0.35757 0.38701 1 0.17918 0.34026 0.37294
rPHP -0.02111 -0.01149 0.09961 0.23638 0.29857 0.18941 0.23791 0.17918 1 0.18461 0.09475
rTRY 0.08322 0.0017 0.00843 0.24983 0.14134 0.20565 0.30041 0.34026 0.18461 1 0.46962
rZAR -0.02659 0.05884 -0.07548 0.34366 0.17875 0.21571 0.39389 0.37294 0.09475 0.46962 1

Table C.5: Historical correlations for case study 2 currencies and associated
interest rates, part 2.

Nelson-Siegel-Svensson parameters Hull-White parameters BSHW parameters (EUR as domestic CCY)
CCY β1 β2 β3 β4 λ1 λ2 max. maturity (years) λ σ Spot rate σBSHW max. maturity (years)
EUR 0.00316 -0.00591 -0.03503 0.03292 3.90499 8.93135 50.03836 0.04138 0.0074 - - -
CNH 0.03667 -0.01743 0.01662 -0.04302 0.55915 27.60912 50.03562 0.08 0.00846 0.1342 0.0931 2
IDR 0.04115 0.0253 134.8589 -134.8401 8.36606 8.37221 50.03836 0.08 0.00997 0.00007 0.12923 2
ILS 0.01972 -0.01866 -0.03319 0.02685 3.34736 8.37221 50.03836 0.01 0.00933 0.23686 0.0754 1
INR 0.13835 -0.06467 -0.06918 -0.33849 1.67442 25.10129 50.03836 0.08 0.00997 0.0134 0.10118 2
KRW 0.02495 -0.01141 -0.01287 -0.03157 1.67442 8.37221 50.03836 0.08 0.00668 0.00081 0.12757 2
MXN -0.00599 0.05018 0.0573 0.19854 1.67442 13.39092 50.03836 0.01 0.01712 0.04776 0.13993 2
MYR 0.01166 0.01961 0.01813 0.03021 0.55915 20.919 50.03836 0.08 0.01059 0.22166 0.13527 10.00548
PHP 0.03959 -0.01501 0.19381 -0.19707 8.36606 11.71646 50.03562 0.01 0.01314 0.01927 0.07745 5.00274
TRY 0.18114 -0.09292 -0.065 -0.46032 1.67442 2593775 50.03836 0.08 0.04274 0.30349 0.11582 2
ZAR -0.00368 0.08495 0.04358 0.2067 3.90499 12.55447 50.03836 0.01 0.01702 0.06183 0.18922 2

Table C.6: Estimates on Hull-White model parameters and BSHW model pa-
rameters for case study 2 currencies.
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AEDEUR CNHEUR CNYEUR HKDEUR INREUR PHPEUR SAREUR SGDEUR THBEUR TWDEUR
AEDEUR 1 0.92885 0.95011 0.999 0.84212 0.88852 0.9997 0.79412 0.85089 0.90585
CNHEUR 0.92885 1 0.97524 0.92977 0.83315 0.85299 0.93047 0.83519 0.82575 0.89851
CNYEUR 0.95011 0.97524 1 0.95318 0.84244 0.87332 0.95108 0.82643 0.83856 0.91175
HKDEUR 0.999 0.92977 0.95318 1 0.84856 0.89334 0.99834 0.80042 0.85475 0.91234
INREUR 0.84212 0.83315 0.84244 0.84856 1 0.87616 0.84159 0.79085 0.8285 0.86174
PHPEUR 0.88852 0.85299 0.87332 0.89334 0.87616 1 0.88711 0.82698 0.87661 0.90009
SAREUR 0.9997 0.93047 0.95108 0.99834 0.84159 0.88711 1 0.79486 0.851 0.9055
SGDEUR 0.79412 0.83519 0.82643 0.80042 0.79085 0.82698 0.79486 1 0.85767 0.8719
THBEUR 0.85089 0.82575 0.83856 0.85475 0.8285 0.87661 0.851 0.85767 1 0.87616
TWDEUR 0.90585 0.89851 0.91175 0.91234 0.86174 0.90009 0.9055 0.8719 0.87616 1
rEUR -0.18849 -0.1429 -0.17776 -0.18672 -0.16283 -0.17561 -0.1881 -0.16878 -0.17897 -0.1688
rAED 0.23285 0.20619 0.21853 0.23546 0.19517 0.19896 0.22493 0.23007 0.1577 0.2232
rCNH 0.11595 0.05209 0.05643 0.11214 0.00888 0.03244 0.11369 -0.02691 0.0652 -0.00243
rCNY 0.16601 0.16119 0.17478 0.16914 0.16787 0.17976 0.16451 0.1401 0.12921 0.14211
rHKD 0.18482 0.10661 0.12737 0.18064 0.02694 0.03735 0.18223 -0.02054 0.00989 0.06908
rINR -0.01116 -0.0292 -0.02222 -0.01415 -0.15117 -0.14915 -0.00949 -0.06529 -0.15041 -0.03969
rPHP 0.02112 0.01036 0.01902 0.01659 -0.08672 -0.12014 0.02232 -0.05065 -0.07808 -0.03422
rSAR 0.16037 0.08544 0.09251 0.15599 0.09485 0.12648 0.15583 0.04901 0.12054 0.13175
rSGD 0.18233 0.12051 0.15821 0.18092 -0.00025 -0.00282 0.1822 -0.07729 -0.06172 0.03874
rTHB 0.18246 0.14763 0.14427 0.17968 0.04959 0.02694 0.18323 -0.01009 0.00378 0.08758
rTWD 0.16203 0.18732 0.18016 0.15916 0.05832 0.11499 0.16236 0.06219 0.03722 0.15764

Table C.7: Historical correlations for case study 3 currencies and associated
interest rates, part 1.

rEUR rAED rCNH rCNY rHKD rINR rPHP rSAR rSGD rTHB rTWD

AEDEUR -0.18849 0.23285 0.11595 0.16601 0.18482 -0.01116 0.02112 0.16037 0.18233 0.18246 0.16203
CNHEUR -0.1429 0.20619 0.05209 0.16119 0.10661 -0.0292 0.01036 0.08544 0.12051 0.14763 0.18732
CNYEUR -0.17776 0.21853 0.05643 0.17478 0.12737 -0.02222 0.01902 0.09251 0.15821 0.14427 0.18016
HKDEUR -0.18672 0.23546 0.11214 0.16914 0.18064 -0.01415 0.01659 0.15599 0.18092 0.17968 0.15916
INREUR -0.16283 0.19517 0.00888 0.16787 0.02694 -0.15117 -0.08672 0.09485 -0.00025 0.04959 0.05832
PHPEUR -0.17561 0.19896 0.03244 0.17976 0.03735 -0.14915 -0.12014 0.12648 -0.00282 0.02694 0.11499
SAREUR -0.1881 0.22493 0.11369 0.16451 0.18223 -0.00949 0.02232 0.15583 0.1822 0.18323 0.16236
SGDEUR -0.16878 0.23007 -0.02691 0.1401 -0.02054 -0.06529 -0.05065 0.04901 -0.07729 -0.01009 0.06219
THBEUR -0.17897 0.1577 0.0652 0.12921 0.00989 -0.15041 -0.07808 0.12054 -0.06172 0.00378 0.03722
TWDEUR -0.1688 0.2232 -0.00243 0.14211 0.06908 -0.03969 -0.03422 0.13175 0.03874 0.08758 0.15764
rEUR 1 0.22188 0.02801 0.04649 0.26997 0.08045 -0.02111 0.33684 0.25192 0.13693 0.17674
rAED 0.22188 1 -0.03478 0.07356 0.14489 -0.0144 0.09878 0.2404 0.14582 0.18077 0.07537
rCNH 0.02801 -0.03478 1 -0.02558 0.20036 -0.00598 -0.01149 0.13809 0.10099 0.14981 0.10886
rCNY 0.04649 0.07356 -0.02558 1 0.22442 0.05841 0.03402 0.05488 0.1763 0.2099 0.20784
rHKD 0.26997 0.14489 0.20036 0.22442 1 0.2735 0.28879 0.46373 0.73827 0.50786 0.51716
rINR 0.08045 -0.0144 -0.00598 0.05841 0.2735 1 0.29857 0.00764 0.31644 0.28208 0.25776
rPHP -0.02111 0.09878 -0.01149 0.03402 0.28879 0.29857 1 0.14361 0.21145 0.21372 0.20191
rSAR 0.33684 0.2404 0.13809 0.05488 0.46373 0.00764 0.14361 1 0.27546 0.25238 0.25891
rTHB 0.25192 0.14582 0.10099 0.1763 0.73827 0.31644 0.21145 0.27546 1 0.61801 0.46628
rTWD 0.13693 0.18077 0.14981 0.2099 0.50786 0.28208 0.21372 0.25238 0.61801 1 0.40693
rSGD 0.17674 0.07537 0.10886 0.20784 0.51716 0.25776 0.20191 0.25891 0.46628 0.40693 1

Table C.8: Historical correlations for case study 3 currencies and associated
interest rates, part 2.

Nelson-Siegel-Svensson parameters Hull-White parameters BSHW parameters (EUR as domestic CCY)
CCY β1 β2 β3 β4 λ1 λ2 max. maturity (years) λ σ Spot rate σBSHW max. maturity (years)
EUR 0.00316 -0.00591 -0.03503 0.03292 3.90499 8.93135 50.03836 0.04138 0.0074 - - -
AED 0.02684 -0.01438 0.11474 -0.09509 6.13553 8.37221 50.03836 0.08 0.01503 0.24443 0.10162 5.00274
CNH 0.03667 -0.01743 0.01662 -0.04302 0.55915 27.60912 50.03562 0.08 0.00846 0.1342 0.0931 2
CNY 0.01239 0.2176 -0.55466 0.0943 0.00153 1.25888 10.01096 0.08 0.00846 0.13443 0.0947 2
HKD 0.01866 -0.01131 0.00024 0.00936 1.67442 27.61065 50.03836 0.01 0.00952 0.11574 0.10067 5.00274
INR 0.13835 -0.06467 -0.06918 -0.33849 1.67442 25.10129 50.03836 0.08 0.00997 0.0134 0.10118 2
PHP 0.03959 -0.01501 0.19381 -0.19707 8.36606 11.71646 50.03562 0.01 0.01314 0.01927 0.07745 5.00274
SAR 0.02684 -0.01438 0.11474 -0.09509 6.13553 8.37221 50.03836 0.08 0.01629 0.23939 0.10096 5.00274
SGD 0.0232 -0.01371 -0.00126 -0.01471 1.1168 10.0451 50.03836 0.08 0.01059 0.6584 0.07618 2
THB 0.02428 -0.00467 -0.01813 -0.01697 1.1168 9.20863 50.03836 0.08 0.01059 0.02592 0.09808 10.00548
TWD 0.02777 -0.02519 -0.00931 -0.05658 1.67442 8.37221 50.03836 0.08 0.00366 0.0283 0.09689 2

Table C.9: Estimates on Hull-White model parameters and BSHW model pa-
rameters for case study 3 currencies.

84



Appendix D

Convergence rates for the
PCA1 method

nt = 4800 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 2400 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 1200 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 600 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 300 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 150 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
nt = 75 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

nz = 25 nz = 50 nz = 100 nz = 200 nz = 400 nz = 800 nz = 1600 nz = 3200 nz = 6400

(a) Convergence rates in time direction.
nt = 19200 26.07 1.27 7.76 4.58 1.42 4.82 6.76
nt = 9600 26.07 1.27 7.76 4.58 1.42 4.82 6.76
nt = 4800 26.07 1.27 7.76 4.58 1.42 4.82 6.76
nt = 2400 26.07 1.27 7.76 4.58 1.42 4.82 6.76
nt = 1200 26.07 1.27 7.76 4.58 1.42 4.82 6.76
nt = 600 26.06 1.27 7.76 4.58 1.42 4.82 6.76
nt = 300 26.06 1.27 7.76 4.58 1.42 4.82 6.76
nt = 150 26.05 1.27 7.76 4.58 1.42 4.82 6.76
nt = 75 26.03 1.27 7.76 4.58 1.42 4.82 6.76

nz = 25 nz = 50 nz = 100 nz = 200 nz = 400 nz = 800 nz = 1600

(b) Convergence rates in space direction.

Table D.1: Convergence rates for the PCA1 method, in time and space direc-
tion. Assessed on 5Y USDEUR call option price, with strike equal to the forward
FX rate. The analytical solution is calculated using formula (3.15) and equals

0.070948. Convergence rates are calculated by
∣∣∣ v̂2n−v̂nv̂4n−v̂2n

∣∣∣, with v̂n the price calcu-

lated using the PCA1 method with n grid points in the concerning direction.
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Appendix E

Convergence rates for the
PCA2 method

nt = 76 4.9 38.17 1.08 1.93 15.88 11.2 81.85
nt = 54 2.73 3.26 6.07 1.81 3.15 3.6 3.3
nt = 40 1.98 2.1 2.4 1.58 2.08 2.16 2.11
nt = 28 2.58 2.67 2.84 2.22 2.66 2.71 2.68
nt = 20 2.03 2.07 2.14 1.83 2.06 2.09 2.13

nz1 = 20 nz1 = 26 nz1 = 34 nz1 = 44 nz1 = 58 nz1 = 74 nz1 = 96

(a) Convergence rates in time direction, nz2 = 100.

nt = 76 160.34 14.63 82.95 6.79 3.74 0.41 134.95
nt = 54 3.32 3.54 3.3 3.77 4.12 10.53 3.31
nt = 40 2.11 2.15 2.11 2.19 2.24 2.55 2.11
nt = 28 2.68 2.7 2.68 2.73 2.76 2.91 2.68
nt = 20 2.17 2.18 2.17 2.19 2.2 2.27 2.17

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58 nz2 = 74 nz2 = 96

(b) Convergence rates in time direction, nz1 = 100.

Table E.1: Convergence rates for the PCA2 method, in time direction. Assessed
on a 5Y GBP USD basket call option price, with strike equal to the forward basket
rate. The basket weights are equal to 1

2 and, furthermore, the FX rates have been
normalized with respect to their spot rate. Convergence rates are calculated by∣∣∣ v̂2n−v̂nv̂4n−v̂2n

∣∣∣, with v̂n the price calculated using the PCA2 method with n grid points

in the time direction.
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nt = 150 4.38 0.09 1.87 0.66 13.18
nt = 108 4.38 0.09 1.87 0.66 13.17
nt = 76 4.38 0.09 1.87 0.66 13.17
nt = 54 4.37 0.09 1.87 0.66 13.16
nt = 40 4.37 0.1 1.87 0.66 13.16
nt = 28 4.36 0.1 1.87 0.66 13.15
nt = 20 4.35 0.1 1.87 0.66 13.11

nz1 = 20 nz1 = 26 nz1 = 34 nz1 = 44 nz1 = 58

(a) Convergence rates in z1 direction, nz2 = 100.

nz1 = 58 1.65 0.06 3.77 0.08 0.53 0.23 13.68
nz1 = 44 0 4.02 0.06 11.84 0.12 31.5 1.79
nz1 = 34 67.94 0.58 12.03 0.36 61.68 1.61 1.1
nz1 = 26 1.26 0.71 3.99 11.66 1.41 0.96 0.16
nz1 = 20 1.64 9.53 4.94 1.96 0.64 0.09 2.23

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58 nz2 = 74 nz2 = 96

(b) Convergence rates in z1 direction, nt = 100.

Table E.2: Convergence rates for the PCA2 method, in z1 direction. Assessed on
a 5Y GBP USD basket call option price, with strike equal to the forward basket
rate. The basket weights are equal to 1

2 and, furthermore, the FX rates have been
normalized with respect to their spot rate. Convergence rates are calculated by∣∣∣ v̂2n−v̂nv̂4n−v̂2n

∣∣∣, with v̂n the price calculated using the PCA2 method with n grid points

in the z1 direction.
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nt = 150 2.14 0.27 1.28 0.11 0.83
nt = 108 2.14 0.27 1.28 0.11 0.83
nt = 76 2.13 0.27 1.28 0.11 0.83
nt = 54 2.13 0.27 1.28 0.11 0.83
nt = 40 2.13 0.27 1.28 0.11 0.83
nt = 28 2.12 0.27 1.28 0.11 0.83
nt = 20 2.12 0.27 1.29 0.11 0.83

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58

(a) Convergence rates in z2 direction, nz1 = 100.

nz1 = 96 0.55 156.64 0.01 1.72 1.46
nz1 = 74 263.92 0.01 1.84 1.34 4.22
nz1 = 58 0.15 1.12 0.49 15.44 0.02
nz1 = 44 9.13 0.14 4.89 0.03 0.69
nz1 = 34 0.32 8.92 0.02 0.75 0.79
nz1 = 26 5.27 0.04 0.61 0.87 3.02
nz1 = 20 0.03 0.5 0.91 3.66 4.88

nz2 = 20 nz2 = 26 nz2 = 34 nz2 = 44 nz2 = 58

(b) Convergence rates in z2 direction, nt = 100.

Table E.3: Convergence rates for the PCA2 method, in z2 direction. Assessed on
a 5Y GBP USD basket call option price, with strike equal to the forward basket
rate. The basket weights are equal to 1

2 and, furthermore, the FX rates have been
normalized with respect to their spot rate. Convergence rates are calculated by∣∣∣ v̂2n−v̂nv̂4n−v̂2n

∣∣∣, with v̂n the price calculated using the PCA2 method with n grid points

in the z2 direction.
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