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Abstract

The aim of this thesis is to review the Black-Litterman model and some
of its predecessors. After reviewing the models, we will try to compare
the effectiveness of them by running a MATLAB simulation.
In the first part, we will reconstruct and comment on the Markowitz
model. These comments show that although the theoretical approach
is solid, the model does not survive empirical testing. The thesis then
continues to review the Capital Asset Pricing Model and its flaws. The
harsh assumptions simplify the model too much, lowering the quality of
the model. In the next part the thesis reviews the Black-Litterman model
and it flaws. There are some fundamental issues that are needed to sim-
plify the model, but that may make this model unfit for real world use.
These flaws however, have a more general source such that these flaws are
applicable to all models that are based on mean-variance analysis. We
then compare these derived models by using a MATLAB simulation for
19 stocks.
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1 Introduction

Portfolio diversification is not a concept of the last 50 years. In ’The Merchant
of Venice’ , written by William Shakespear, the merchant Antonio says:

My ventures are not in one bottom trusted, Nor to one place;
nor is my whole estate Upon the fortune of this present year;
Therefore, my merchandise makes me not sad.

Act 1, scene 1.

Apparently, Shakespear understood covariance at an intuitive level. [Markowitz, 1999]

Although there was no theoretical framework to support the approach of
diversification, investment companies held a wide variety of stocks in order to
reduce risks. Markowitz’ model filled this gap by developing ”a theory of invest-
ment that covered the effects of diversification when risks are correlated, dis-
tinguished between efficient and inefficient portfolios, and analyzed risk-return
trade-offs on the portfolio as a whole” [Markowitz, 1999]. Investment companies
did no longer need to have a very diversified portfolio in order to minimize risk,
but an efficient portfolio could be created by the using of the mean-variance
theory. Although it took some time for Markowitz’ ideas to be universally ac-
cepted, his ideas were further developed as well by universities as by banks like
Goldman Sachs where the Black-Litterman model was developed.

Robert Litterman and Fischer Black published their paper in 1991. There
has been quite some research discussing this model ever since. In 1998, other re-
searchers at Goldman Sachs provided a paper that focused on the application of
the Black-Litterman model in practice [Bevan and Winkelmann, 1998]. Satchell
and Scowcroft (2000) attempted to demystify the Black-Litterman model, but
instead introduced a new non-Bayesian expression of the model.

In this thesis we will conduct some quantitative research to see how the
model holds against the other models. In order to do this, we first reconstruct
the Markowitz model and the Capital Asset Pricing Model in order to get a
good understanding of the quality of this research.
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2 Markowitz’ model

The paper introducing the Markowitz Model was published in 1952 by Harry
Markowitz. It describes a model for selecting a portfolio for one time period (so
the investor buys all his assets at time t = 0 and sells at time t = 1). The key
concept is that investors should consider the risk and return of a security not
by itself, but as a part of the total portfolio.

2.1 Derivation of the model for 3 securities

Before we start deriving the model, we should discuss the main assumptions
made. The first main assumption is that the (rational) investor should maxi-
mize his discounted expected returns. The second main assumption is that an
investor thinks of expected returns as desirable and thinks of variance of return
as undesirable. Investors are risk-averse, this means that an investor prefers to
have as little risk as possible. Since a higher variance leads to a higher spread
of the possible returns, variance can be seen as risk. The first assumption is
pretty intuitive and won’t spark too much of a debate. The second one however,
does. It would imply that a diversified portfolio is never preferable over a non-
diversified portfolio. This interferes with the common sense that a diversified
portfolio is less risky and thus better.

Now to derive the model:
Assume we have a portfolio with N different assets. Let Ri denote the return on
the ith security. Let µi be E[Ri] which is the expected return on the ith asset.
Finally, let σij be the covariance between Ri and Rj and Xi the percentage of
the portfolio that is in security i. The total yield can now be given by:

R =

N∑
i=1

RiXi

Note that we assume Ri and thus R (which is a linear combination of Ri) to be

random variables and
N∑
i=1

Xi = 1 since Xi are percentages. Markowitz excluded

short sales (that is, selling borrowed securities hoping the price goes down. The
investor has to repay the number of securities at some given date), so Xi ≥ 0.
Since the total yield is a weighted sum of all the available securities we see that
the expected return E[R] from the portfolio is

E =

N∑
i=1

Xiµi

and the variance is given by

V =

N∑
i=1

N∑
j=1

σijXiXj
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We assume that the investors has some probability beliefs about the possible
states of the world in period t = 1. He therefore can now choose a combina-
tion of expected returns and variance according to his taste. Since one of our
assumptions was that investors like expected returns (E) and dislike variance
(V ), we introduce the so called E-V rule: An investor would want a portfolio
with minimum V for some constant E and maximum E for some constant V.
This can be explained graphically by the following figure:

Figure 1: Efficient E-V [Markowitz, 1952]

We consider the three security case, we can now write our model as:

E =

3∑
i=1

Xiµi (1)

V =

3∑
i=1

3∑
j=1

XiXjσij

1 =

3∑
i=1

Xi (2)

Xi ≥ 0 ∀i

Because of (2) we get
X3 = 1−X1 −X2

We can now write E and V as functions of X1, X2 so our system of equations
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can be rewritten as:

E = E(X1, X2)

V = V (X1, X2)

X1 ≥ 0, X2 ≥ 0, 1−X1 −X2 ≥ 0

We can now construct a two-dimensional figure to compare portfolio choices.
The isomean curve is defined to be the set of all portfolios for a constant mean,
so we keep expected returns constant and we vary variance. Likewise, the iso-
variance is defined to be the set of all portfolios for a constant variance, so we
keep the variance constant and vary the expected returns. The set of isomean
curves is a set of parallel linear lines. We can show this by writing (1) as

X2 =
E − µ3

µ2 − µ3
− µ1 − µ3

µ2 − µ3
X1

We do this by substituting X3 = 1−X1−X2 and solving for X2. The intercept
of this line will be E−µ3

µ2−µ3
and the slope µ1−µ3

µ2−µ3
. If E is changed only the intercept

of the line will change, not the slope, so we have a family of parallel lines. We can
show that the isovariances lines form a family of concentric ellipses in a similar,
but slightly more complicated way. The center of these concentric ellipses, is the
minimum for V. We will call this point X. Variance will increase if an ellipse
lies further away from this point X. This centric point X doesn’t necessarily
have to fall within the region for a feasible solution. We call X efficient if it is
in the feasible region. Let us label the related expected return and variance of
the point X as E and V. Since there is no other point in the feasible set with
a lower variance than X (with the same or greater E) and there is no portfolio
with greater E with the same or lower V this is the most desirable portfolio for
a fixed V or fixed E. If we now fix E (so we pick one of the isomean lines) we
can find the lowest V related to that line by finding the point at which the line
is tangent to the isovariance curve. We will call this point X̂. Doing this for all
isomean lines we can define a straight line as shown in the figure below.
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Figure 2: Isomean and isovariance curves with X inside the feasible area
[Markowitz, 1952]

We will now consider a situation where X lies outside the feasible set. We can
still construct the line that is most efficient though.

As soon as the most efficient line is in the feasible area it becomes part of
the solution.

7



Figure 3: Isomean and isovariance curves with X outside the feasible area
[Markowitz, 1952]

2.2 Derivation of the model for n securities

We now have considered a framework for 3 securities. We will now set up the
framework for n securities, so that we can use the model more generally. Since
we want to minimize the variance of our portfolio, depending on a fixed expected
return, we want to minimize:

V ar(C1) = V ar(C0 + return on portfolio) = V ar(rT θ) = θTΣθ

where C1 is the value of the portfolio at t = 1, C1 is equal to our initial
investment C0 plus the return we have on our portfolio. We can also write
this in vector notation by multiplying the returnvector r with the investment
vector θ which is the vector describing the investment for different assets in
our portfolio. The variance of the returnvector is given by Σ. Using the rule
V ar(ab) = a2var(b) we see that V ar(rT θ) = θTΣθ. We have to make the as-
sumption that Σ is positive definite (and thus invertible). This is usually the
case for real life data, so this assumption isn’t too harsh. There are two con-
straints though. First of all, since we are trying to minimize the variance for a
given expected return,we should fix expected returns. Second, we can only in-
vest current capital, so the sum of all assets in t = 0 equals our starting capital.
These constraints can be summarized as:

µT θ = µp and 1̄T θ = C0
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So we have fixed the expected returns to the expected returns for our portfolio
p, and we have put a constraint on what we can spend. To simplify the earlier
expression we can write:

Min
{
θTΣθ|AT θ = B

}
(3)

with

A =
(
µ 1

)
B =

(
µp
C0

)
We can solve this system using Lagrangian optimization. We find the following
first order conditions by differentiating with respect to θ and with respect to
the Lagrangian multiplier λ0.

first order conditions:


2Σθ +Aλ0 = 0 (4)

AT θ = B with λ0 =

(
λ1
λ2

)
(5)

Solving equation (4) for θ gives

θ = Σ−1Aλ

where λ = − 1
2λ0 so that the second equation of (4) becomes

ATΣ−1Aλ = B =⇒ λ = (ATΣ−1A)−1B = H−1B

Where H = (ATΣ−1A) and HT = (ATΣ−1A)T

Rewriting this leads to HT = AT (Σ−1)TA = ATΣ−1A = H thus H is a sym-
metric 2×2-matrix. Putting these values into our minimization problem we can
find the minimum variance under these conditions.

θTΣθ = θTΣΣ−1Aλ = θTAλ = (AT θ)TH−1B = BTH−1B

We have shown that H is a symmetric 2× 2-matrix, so lets write H as:

H ≡
(
a b
b c

)
=⇒ H−1 =

1

ac− b2

(
c −b
−b a

)
Let d ≡ det(H) = ac− b2. Since H = (ATΣ−1A) we can show that
a = µTΣ−1µ
b = µTΣ−11 = 1TΣ−1µ
c = 1TΣ−11
Since we have assumed that the covariance matrix is positive definite, the inverse
covariance matrix is also positive definite. This leads to θTΣ−1x > 0 for all non-
zero N × 1-vectors x. From this we can deduce that a > 0 , c > 0 and

(bµ− a1)T )Σ−1(bµ− a1) = bba− abb− abb+ aac = a(ac− b2) = ad > 0
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and since a > 0 it must be that d > 0. Using our definition for H we can rewrite
the variance as:

V ar(Rp) =
1

d

(
µp C0

)( c −b
−b a

)(
µp
C0

)
σ2
p =

1

d
(cµ2

p − 2bC0µp + aC0) (6)

In order to get this into the desired form, we need to take a few steps. First

notice that a = d−b2
c . Next, divide the left side by 1

c and the right side by c
c2

this leads to:

σ2
p =

cµ2
p − 2bC0µp + dC2

0/c+ b2C2
0/c

d
σ2
p

1/c
=
µ2
p − 2bC0µp/c+ dC2

0/c
2 + b2C2

0/c
2

d/c2

=
(µp − bC0/c)

2

d/c2
+ C2

0

Moving the first term from the right hand side to the left hand side, and dividing
the entire equation by C2

0 leads to the hyperbola:

σ2
p

C2
0/c
− (µp − bC0/c)

2

dC2
o/c

2
= 1

We can find the center of this hyperbola by asking ourselves: for what values of
σp, µp is the following equation equal to zero?

σp
C2

0/c
− (µp − bC0/c)

2

dC2
0/c

2

We find the center of the hyperbola to be (0, bcC0). We can find the slope of the
asymptotes by taking the square root of the denominator of the second term

divided by the denominator of the first term. So we find: ±
√

dC2
0/c

2

C2
0/c

= ±
√

d
c

Combining this with the center of the hyperbola, the formula for the asymptotes
are given by:

µp =
b

c
C0 ±

√
d

c
σp

Since we’ve already found the relation between the minimum variance and the
corresponding returns, we also want to know the right combination of assets,
namely θ. We have

θ = Σ−1Aλ = Σ−1AH−1B =
cµp − bC0

d
Σ−1µ+

aC0 − bµp
d

Σ−11̄

=
1

d
Σ−1((a1̄− bµ)C0 + (cµ− b1̄)µp) (7)
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So for any return, µp, we want, we can now find the minimum variance that
corresponds with this return by using (6) and the corresponding portfolio by
using (7).

2.3 Critique on the Markowitz’ model

Jobson and Korkie showed that in a majority of the cases equal weighting of
securities outperforms Markowitz optimization. This could be due to a num-
ber of factors. Firstly, Markowitz omits certain factors which make securities
preferable. One of these factors is liquidity. When the total value of a portfolio
is large, as for banks or investment companies, a 1 % change in the portfolio
could represent a substantial change in the total value of the firm. Since the
model assigns proportions of the total investment wealth to the assets, the pro-
portion is likely to change thus liquidity is a desirable feature. The following
figure describes the change of the mean-variance frontier (the line on which the
efficient portfolios are located) due to the addition of liquidity. Accounting for
liquidity has a negative effect on the Sharpe ratio, that is expected returns

variance . We
can see this by noticing that the Mean-variance frontier has shifted downwards,
implying more variance for fixed expected returns. This was to be expected
since less liquidity brings in more risk (variance).

Figure 4: Mean-variance frontier with liquidity factor [Michaud, 1989]

One of the main problems of the Markowitz model is its inability to cope
with erroneous predictions. A slight change in the predictions could lead to a
completely different portfolio because of the change in expected values, variance
and covariance of the securities.
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3 Capital asset pricing model

The Capital asset pricing model was developed by Sharpe and Lintner in the
sixties. It heavily relies on the mean-variance model of Markowitz which was
discussed earlier. The zero-beta CAPM, developed by Fischer Black in 1972, was
more robust against empirical testing and was thus important for the widespread
acknowledgement of the capital asset pricing model.

3.1 Derivation of the model

We assume that investors think in probabilistic terms, so the desirability of an
investment is dependent on two parameters, the expected value and the standard
deviation. Thus we can represent the investors utility by

U = f(Ew, σw)

Where Ew is the expected future wealth and σw is the standard deviation from
the expected wealth. We assume (just as in the Markowitz Model) that in-
vestors desire more expected future wealth, thus dU

dEw
> 0. Since most investors

are risk-averse they prefer less risk given the level of Ew, so dU
dσw

< 0. This
indicates an upward sloping indifference curve. (An indifference curve is a set of
combinations where the investor is equally well-off.) We can see this by consid-
ering the following: the investor dislikes variance, so if variance rises he must be
compensated by more expected returns, so we expect an upward sloping curve.
Since at high levels of risk the investor needs to be compensated with more ex-
pected return, this curve is convex. We define the total return on his investment
at time t, to be

R ≡ Wt −Wt−1

Wt−1

Rewriting this gives
Wt = RWt−1 +Wt−1

We can now relate his utility function to expected returns instead of expected
wealth

U = g(ER, σR)

An indifference curve more to the right is preferred over an indifference curve
to the left, since at equal variance levels, the expected return is higher for the
curve to the right. So III > II > I. The shaded area represents the possi-
ble combinations for securities assuming no security is without any risk (even
government bonds have some risk). The shape of this set is almost completely
arbitrary, but notice that there is no riskless security since for every point in
the set the variance is bigger than zero. The points on the right side of the
shaded area are efficient since there is no point with lower variance for that
given expected return. So the efficient set is, corresponding with Markowitz,
the curve AFBDCX.
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Figure 5: Indifference curves for a σR ER graph [Sharpe, 1964]

Let there now be two investments, a and b. The investor invests a proportion
α in a and the remainder in b, we call this portfolio c. The expected return will
be:

ERc = αERa + (1− α)ERb

The predicted variance will be

σRc =
√
α2σ2

Ra + (1− α)2σ2
Rb + 2rabα(1− α)σRaσRb

where rab is the correlation between a and b, usually this value is between 0 and
+1. We can elaborate graphically.
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Figure 6: A mixed portfolio in the σR, ER-plane [Sharpe, 1964]

If a and b are perfectly correlated (+1), their combination must be on the
straight line between A and B. The smaller the correlation, the more U-shaped
the curve will be. The curve Z represents zero correlation.

Let’s now include riskless securities, we will call this security P with σp =
0 and ERp ≡ pure rate of interest. We invest a proportion α in P and the
remainder in a risky security A. We obtain:

ERc = αERp + (1− α)ERa

And the standard deviation:

σRc =
√
α2σ2

Rp + (1− α)2σ2
Ra + 2rpaα(1− α)σRpσRa = (1− α)σRa

Since σRp = 0. This implies that there is a linear relation, and thus all combina-
tion must be on a straight line starting at (ERp,0). We can achieve investment
points A and B by lending money at the pure rate of interest and investing
that in respectively A and B. Points on the line that is tangent to the shaded
area (the set of possible portfolios) are dominant to those investments however.
Thus all the investments on the original curve, X to φ, are dominated by a com-
bination of investing in φ and lending at the pure rate of interest. If we allow
borrowing (thus a negative α) we can extend the lines PA, PB etc. since we
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can borrow money to invest more in A or B. The line PφC is now the optimal
investment curve.

Figure 7: Multiple investors [Sharpe, 1964]

We now need two new assumptions. Firstly, the homogeneity of investors
expectations, and secondly a common pure rate of interest. These are harsh
assumptions but they are needed for simplicity. If there are multiple investors,
with different preferences, we can see that they still all are in the market for φ.
In the figure above, investor A lends some money at the pure rate of interest
and invests the rest of his money in φ, investor B invests all his money in φ
and investor C borrows money at the pure rate of interest to invest more in φ.
It is intuitive that because of this preference for φ the price of the securities in
φ and thus the attractiveness (since returns are dependent on the old prices).
On the other hand, securities not in φ will become more attractive, since their
value falls. So when will we reach equilibrium? This occurs when prices have
shifted in such a way that there will be multiple efficient portfolios on the same
straight line, as illustrated in figure 8. This indicates that they are perfectly
correlated. Consider the line in figure 8. The point 1 is a single asset, where
g is an efficient portfolio. The bold line connecting 1, g and g′ shows all the
possible combinations of α1 + (1− α)g. Notice that at α = 0 there will still be
some of asset 1 in the portfolio since there is some of asset 1 in g. Since g is an
efficient portfolio, the continuous line connecting points 1andg′ through g must
be tangent to the efficient portfolio line PZ
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Figure 8: Equilibrium [Sharpe, 1964]

We will try to relate the expected return to elements of risk. We will consider
a regression between the return on an asset i and the return on the portfolio
g which could look like the figure 9. The scatter of the observations around
their mean is due to the total risk, but a part of the scatter, due to the slope
of the regression line, is due to a relationship with the return on g. Thus we
can formulate a relationship between RiandRg, the returns on the single asset i
and the portfolio g. We will call this factor β. This is the nondiversifiable part
of risk, also called systematic risk. The so-called capital market line, given by
r̄ = rf +

rg−rf
σg

σ, with slope
rg−rf
σg

is the line PZ .
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Figure 9: A possible regression between the return on asset i and portfolio g
[Sharpe, 1964]

Putting everything we have developed in this section together, we find a
relationship between the return on an asset i, the pure rate of interest, the β-
coefficient and the expected returns on other assets. We will now derive the
CAPM formula.
We form a portfolio of asset i and portfolio g by making it a weighted combi-
nation of i and g with weights (α, 1− α). We assume asset i is not efficient (as
most single assets are). We find:

r(α) = αri + (1− α)rg

= α(ri − rg) + rg (8)

σ(α) =
√
α2σ2

i + (1− α)2σ2
g + 2α(1− α)σg,i

=
√
α2(σ2

i + σ2
g − 2σg,i) + 2α(σg,i − σ2

g) + σ2
g (9)

Note that for α = 0, (σ(0), r(0)) = (σg, rg) and when α = 1 (σ(1), r(1)) =
(σi, ri). So the curves touch the capital market line, defined earlier, only at the
point (σg, rg). The other points are in the feasible region, including (σi, ri). This
means that the curve is tangent to the capital market line. In this common point,
the slope of the capital market line is equal to the derivative of the portfolio.
So we find :

dr(α)

dσ(α)
=
rg − rf
σg

(10)
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Rewriting dr(α)
dσ(α) as dr(α)/dα

dσ(α)/dα and differentiating (8) and (9) gives:

dr(α)/dα

dσ(α)/dα
=

ri − rg
(σg,i − σ2

g)/σg
(11)

Combining (11) with (10) we find:

ri − rg
(σg,i − σ2

g)/σg
=
rg − rf
σg

ri − rf = βi(rg − rf )

Where β = σg,i/σg. To generalize this result to a portfolio p notice that:

rp − rf = −rf +

n∑
i=1

αiri

=

n∑
i=1

αi(ri − rf )

=

n∑
i=1

αiβi(rg − rf ) (CAPM formula for a single asset i)

= (rg − rf )

n∑
i=1

αiβi

3.2 Critique on the Capital asset pricing model

This model is, of course, a simplified version of reality. Certain assumptions
are made to prevent the model from getting too complex. These assumptions
however, do lower the quality of the model. The main assumption, that here is
homogeneity for the expectations of the investors is the harshest assumption.
Besides assuming that every investor has the same expectations, the quality of
these expectations are ignored and assumed to be correct. Behavioural finance
could perhaps shed some light on the bias that these expectations have. An-
other big assumption is the rate of pure interest, which is constant. Besides
that, it is risk-free to lend or borrow money for this rate. Fischer Black (1972)
developed a version of the CAPM without risk-free borrowing/lending to tackle
this assumption. Empirical testing on the original CAPM wasn’t very succesful,
the model developed by Fischer Black however had some succes. Empirical data
suggests that the prediction the CAPM makes for the relation between beta and
average return has a positive bias. As a result, estimates for high beta stocks
are too high and estimates for low beta stocks are too low. The CAPM should
thus be used as a theoretical framework to introduce portfolio theory.
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4 The Black-Litterman model

The Black-Litterman model was developed by Fischer Black and Robert Litter-
man for Goldman Sachs in 1990 and published in 1992. The model is built on
the Capital asset pricing model and the Markowitz mean-variance model. The
portfolio is proportional to the market equilibrium portfolio plus a weighted
sum of portfolios reflecting the investor’s views.

4.1 Reconstructing the Black-Litterman model

The Black-Litterman model begins with a neutral equilibrium portfolio. Gen-
eral equilibrium theory states that if aggregate portfolio is at equilibrium, each
sub-portfolio must be at equilibrium as well. Any utility function can be used,
so we use the most common one, the quadratic utility function. We start deriv-
ing the model by optimizing the utility function of the investor:

U = wTmΠ− (
δ

2
)wTmΣwm (12)

where:

U is the investors utility function

wm is the vector of weights allocating the assets according to the market

Π is the vector of excess returns for assets (returns - risk free returns)

δ is the risk aversion parameter

Σ is the covariance matrix of the excess returns

Since U is convex, it will have one global maximum. If we maximize this
function with respect to the weights we get (note there are no constraints cur-
rently):

dU

dw
= Π− δΣw = 0⇒ Π = δΣw (13)

To deduce the value of δ we rewrite (13). We multiply both sides by wTm. Note
that wTmΠ is the total excess return for that portfolio, and wTmΣwm is the total
variance of the market portfolio.

wTmΠ = (r − rf ) = δwTmΣwm = δσ2

δ = (r − rf )/σ2

Where r is the return on the portfolio. Usually, r−rf > 0. If this was violated, it
would not make sense to invest in this portfolio since the investor’s expectations
state that the return for risk free assets would be higher.
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The expected returns, µ are centered at the equilibrium values, so they are
normally distributed with mean Π.

µ = Π + ε1

Where ε1 ∼ N(0, τΣ), where τ is a scalar indicating the uncertainty about the
CAPM prediction. The investor also has a number of views of his own, which
we can describe in relative or absolute ways. We can embed these views in a
matrix in the following way. Let there be 3 assets, asset A,B and C. Our first
view is that asset A will outperform asset B by 3%-point with confidence level
ω1. Our second view is that asset C will return 2 % with confidence level ω2.
We define our link matrix, P, to be a K ×N -matrix where K is the number of
views, and N is the number of assets. Our view matrix Q will be a K×1-matrix.
Since Q is an estimate, it will have an error term. We assume that ε2 ∼ N(0,Ω),
thus Ω is the covariance (uncertainty) of our views. In this example we have
the following matrices:

P =

(
1 −1 0
0 0 1

)
;Q =

(
3
2

)
; Ω =

(
ω11 0
0 ω21

)
So we can write

Pµ = Q+ ε2

Where µ is the vector of expected market returns. In statistics, the inverse of
variance is precision. We can thus give the precision of our prediction by Ω−1

and the precision of the market by (τΣ)−1.
We try to update our expected returns by taking a weighted average of what
the market expects and our own views. We will call this new optimized return
vector µ∗. We find the formula:

µ∗ = E(R) = [(τΣ)−1 + PTΩP ]−1[(τΣ)−1Π + PTΩQ] (14)

Notice that
(τΣ)−1Π + PTΩQ = (τΣ)−1Π + PTΩPµ

so the last part of the equation is the sum of precision times return for the
market and investor’s prediction. The first part of the equation, is the inverse
of the sum of the total variance. It is there to normalise the weights.

The new covariance matrix for E(R) takes the additional variance of the
investor’s view into account. The new covariance matrix can be given by:

Σp = Σ +M−1 whereM = [(τΣ)−1 + PTΩ−1P ]

Now that we have the new covariance matrix, we can calculate the new portfolio
weights,w∗, updating our maximization function and differentiating with respect
to w∗.
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First we want to rewrite µ∗ so that we can use it in a simpler form.
We follow the method of [Walters, 2014, Appendix D]

µ∗ = [(τΣ)−1 + PTΩ−1P ]−1[(τΣ)−1Π + PTΩ−1Q]

= [(τΣ)−1 + PTΩ−1O]−1(τΣ)−1(τΣ)[(τΣ)−1Π + PTΩ−1Q]

= [I + τΣPTΩ−1P ]−1[Π + τΣPΩ−1Q]

= [I + τΣPTΩ−1P ]−1[(I + τΣPTΩ−1P )Π + τΣPTΩ−1(Q− PΠ)]

= Π + (I + τΣPTΩP ]−1[τΣPTΩ−1](Q− PΠ)

= Π + (I + τΣPTΩP ]−1τΣPTΩ−1[(Ω + PT τΣP )(Ω + PT τΣP )−1](Q− PΠ)

= Π + (I + τΣPTΩP ]−1(τΣPT + τΣPTΩ−1PT τΣP )(Ω + PT τΣP )−1(Q− PΠ)

= Π + (I + τΣPTΩP ]−1(I + τσPTΩ−1P )τΣPT (Ω + PT + τΣP )−1(Q− PΠ)

= Π + τΣPT (Ω + τPΣPT )−1(Q− PΠ)

= Π + ΣPT (
Ω

τ
+ PΣPT )−1(Q− PΠ)

Now we can optimize our portfolio using this simplified version of µ∗

max (w∗)′µ∗ − δ

2
(w∗)′Σpw

∗

We find the first order condition by differentiating with respect to w∗:

µ∗ − δΣpw∗ = 0⇒ µ∗ = δΣpw
∗

Rewriting gives:

w∗ =
1

δ
Σ−1p µ∗

We can now plug in the formula for µ∗ and plug in Π = δΣwm we find:

w∗ = wm + PT (
Ω

τ
+ PΣPT )−1(

Q

δ
− PΣwm) (15)

4.2 Critique

The main issue of the Black-Litterman model is a problem of a general kind. As
for all mean-variance optimization models, the Black-Litterman model is heavily
reliant on a few simplifications and assumptions. First of all, there are the
simplifications. Factors such as liquidity, marketability, taxes and transactions
fees are excluded from the model. This is necessary in order to maintain a
workable model, but it is obviously a bad representation of the real world.
Second, there is another fundamental problem. One of the main assumptions
that is made, is that standard deviation is equal to risk. This assumption does
not take business risk, valuation risk, financing risk, modelling risk etc. into
consideration. Even if this was not such a strong assumption, risk, or variance,
is treated as a symmetrical factor in the Black-Litterman model, where variance
is asymmetrical in theory.
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5 Performance of the Black-Litterman model

In this section we will compare the Black-Litterman model and the Markowitz
model for different values of τ . We will compare the results for the period: 1
january 2000 - 1 january 2015 and the post crisis period 1 january 2010 - 1 jan-
uary 2015. The first period is displayed on the left side of the page, and the last
period is displayed on the right side of the page. Instead of the market weights
we have used Markowitz portfolios as a starting point for the Black-Litterman
model.

We use 5 views for this model. Our first view is that asset 3M-company (MMM)
will outperform Merck company (MRK) by 1 percent-point. Our second view
is that Alcoa inc. (AA) will outperform Hewlett Packard (HPQ) by 1 percent-
point. Our third view is that Caterpillar inc. (CAT) will return 2 percent. Our
fourth view is that Cisco inc. (CSCO) will return -1 percent. Our last view is
that E. I. du Pont de Nemours and Company will return 2 percent. These views
are based on the average returns for the last 5 months. Our views vector Q and
our confidence matrix Ω are given by:

Q =


1
1
2
−1
2

 Ω =


0.2 0 0 0 0
0 0.25 0 0 0
0 0 0.15 0 0
0 0 0 0.3 0
0 0 0 0 0.275


The linkmatrix P is constructed as described in section 4.1. To compute δ we

use a risk free rate of 1.35% per annum. This is the yearly interest paid for
a 5-year U.S. Treasury bill. Since our returns our on a monthly basis, we use
rf = 1.01351/12 − 1.

Our approach is as follows: We run the Markowitz script to generate 10 port-
folios for different risk levels. The initial expected returns are the mean returns
of the data. Once we have these portfolios we run the Black-Litterman script
to ”update” these portfolios to finally run our simulation script and plot the
returns. Note that these returns are on monthly basis and not on yearly basis.
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First we have calculated the efficient frontier and our 10 portfolios using the
Markowitz script provided by [Agrawal, ].

Figure 10: Efficient frontier
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Figure 11: Black-Litterman versus Markowitz returns for τ = 0.05

Figure 12: Black-Litterman versus Markowitz returns for τ = 0.05 post crisis
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Figure 13: Black-Litterman versus Markowitz returns for τ = 0.25

Figure 14: Black-Litterman versus Markowitz returns for τ = 0.25 post crisis
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Figure 15: Black-Litterman versus Markowitz returns for τ = 0.50

Figure 16: Black-Litterman versus Markowitz returns for τ = 0.50 post crisis
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Figure 17: Black-Litterman versus Markowitz returns for τ = 0.75

Figure 18: Black-Litterman versus Markowitz returns for τ = 0.75 post crisis
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Figure 19: Black-Litterman versus Markowitz returns for τ = 1

Figure 20: Black-Litterman versus Markowitz returns for τ = 1 post crisis
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So what should be the value of τ ? From the figures it seems that τ = 0.50
or τ = 0.75 looks like the best bet. This value of τ however, is very dependent
on the quality of our views though, so we have to be tedious when drawing
conclusions.

In overall, the Black-Litterman model gives slightly better returns than the
Markowitz model. We also notice that the returns in the post crisis period are
significantly lower. This could be due to ”missing” the golden years that were
prior to the crisis that were included in the other data. There is no significant
difference between the performance of the Black-Litterman model in the post
crisis period compared to the Markowitz model. There are however, a few notes
to this simulation.
First of all, we have used the normal distribution centered around the average
returns of the stock in the last 15 years. This evolution of stock prices doesn’t
necessarily have to be normal distributed. There are other models describing
the evolution of stock prices in a better way. Second, our views vector, Q, is not
based on financial expertise but solely on the returns in the last few months.
Third, the confidence in our views, Ω, is also not based on any empirical evi-
dence or knowledge about the specific sub market (for example: companies in
manufacturing have been doing pretty good lately because of the low oil prices).
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6 Appendix

This section includes the MATLAB files used for the simulation of section 5.
First the script to compute the Markowitz portfolio:

function pwvt = markowitz
global pwvt Returns sigma Pr i ce t i c k e r
c= yahoo ;
t i c k e r = { ’MMM’ ’AA’ ’AXP’ ’T ’ ’BAC’ ’BA’ ’CAT’ ’CVX’ ’CSCO ’ ’KO’ ’DD’ ’XOM’ ’GE’ ’HPQ’ ’HD’ ’INTC ’ ’IBM ’ ’JPM’ ’MRK’ } ;
for i =1:19

Pr i ce . ( t i c k e r { i })= f e t c h ( c , t i c k e r ( i ) , ’ c l o s e ’ , ’ Jan 1 00 ’ , ’ Jan 1 15 ’ , ’m’ ) ;
temp = Pr ice . ( t i c k e r { i } ) ;
C lo sePr i c e ( : , i ) = temp ( : , 2 ) ;

end
Returns = p r i c e 2 r e t ( C lo sePr i c e ) ;
sigma = cov ( Returns ) ;
p = P o r t f o l i o ( ’name ’ , ’ Markowitz ’ ) ;
p = p . s e t A s s e t L i s t ( t i c k e r ) ;
disp (p ) ;
p = p . estimateAssetMoments ( Returns ) ;
p = p . s e t D e f a u l t C o n s t r a i n t s ;
[ pr i sk , pre turns ] = p . p l o t F r o n t i e r ;
pwvt = p . e s t imat eFront i e r ;
hold on
plot ( pr i sk , preturns , ’ ored ’ ) ;
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Next we display the Black-Litterman and the simulation script

function [ w opt ]= BlackLitterman ( tau ,Q,P, Omega)
global pwvt Returns sigma w opt
w opt = zeros ( 1 9 , 1 0 ) ;
for i= 1 :10
mw = pwvt ( : , i ) ;
var = mw. ’ ∗ sigma ∗ mw;
r i s k f r e e = 1.0135ˆ(1/12)−1;
for k=1:19

r e tu rn s (1 , k ) = mean( Returns ( : , k ) ) ;
end
d e l t a = ( r e tu rn s ∗mw−r i s k f r e e )/ var ;
Pi=d e l t a ∗ sigma ∗ mw;
t s= tau ∗ sigma ;
er=inv ( inv ( t s )+ P. ’∗Omega∗P)∗ ( inv ( t s )∗Pi+P. ’∗Omega∗Q) ;

M = inv ( t s )+P. ’∗ inv (Omega)∗P;
sigma2=sigma+inv (M) ;
w opt ( : , i )=inv ( d e l t a ∗ sigma2 )∗ er ;
for j = 1 :19

i f w opt ( j , i ) < 0
w opt ( j , i )= 0

end
end

i f sum( w opt ( : , i ) ) < 1
k = randi ( 1 0 , 1 ) ;
w opt (k , i ) = w opt (k , i ) + (1−sum( w opt ( : , i ) ) ) ;

end
end
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function s imu la t i on
global Returns w opt pwvt Pr i ce t i c k e r
c= yahoo ;
t i c k e r = { ’MMM’ ’AA’ ’AXP’ ’T ’ ’BAC’ ’BA’ ’CAT’ ’CVX’ ’CSCO ’ ’KO’ ’DD’ ’XOM’ ’GE’ ’HPQ’ ’HD’ ’INTC ’ ’IBM ’ ’JPM’ ’MRK’ } ;
for i =1:19

Pr i ce . ( t i c k e r { i })= f e t c h ( c , t i c k e r ( i ) , ’ c l o s e ’ , ’ Jan 1 00 ’ , ’ Jan 1 15 ’ , ’m’ ) ;
temp = Pr ice . ( t i c k e r { i } ) ;
C lo sePr i c e ( : , i ) = temp ( : , 2 ) ;

end
for i =1:19

var iance ( i , 1 ) = var ( Returns ( : , i ) ) ;
average ( i , 1 ) = mean( Returns ( : , i ) ) ;

end
c u r r e n t s t o c k = zeros ( 1 9 , 1 ) ;
for i =1:19
c u r r e n t s t o c k ( i , 1 ) = Pr i ce . ( t i c k e r { i } ) ( 1 , 2 ) ;
end
s t o c k r e t u r n s = zeros ( 1 9 , 1 ) ;
for i = 1 :19
s t o c k r e t u r n s ( i , 1 ) = normrnd ( average ( i ) , va r i ance ( i , 1 ) ) ∗ 1 0 0 ;
end
for i =1:19

s td s tock (1 , i ) = std ( Returns ( : , i ) ) ;
end

for i =1:10
s td s tockb la ck (1 , i ) = s td s tock ∗ w opt ( : , i ) ;

end

for i =1:10
stdstockmarko (1 , i ) = s td s tock ∗ pwvt ( : , i ) ;

end

ho lde rb lack = s t o c k r e t u r n s . ’ ∗ w opt ;
holdermarko = s t o c k r e t u r n s . ’ ∗ pwvt ;
for i =1:10

p r o f i t b l a c k (1 , i )= mean( ho lde rb lack ( : , i ) ) ;
pro f i tmarko (1 , i )= mean( holdermarko ( : , i ) ) ;

end

plot ( s tds tockb lack , p r o f i t b l a c k , ’ r s ’ )
t i t l e ( ’ Black−Litterman re tu rn s vs . Markowitz r e tu rn s f o r tau=1 ’ )
xlabel ( ’ standard dev i a t i on o f the p o r t f o l i o ’ )
ylabel ( ’ Return in %’ )
hold on ;
plot ( stdstockmarko , prof i tmarko , ’ ks ’ )
legend ( ’ Black−Litterman ’ , ’ Markowitz ’ )
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