
Extensions on the Continuous
Voronoi game on Graphs

Cuts & Ropes

Bas te Kolste
Supervisors: Marc van Kreveld, Maarten Löffler

A thesis presented for the master of
Computing Science

Computing Science
Utrecht University
The Netherlands
December 2016

Contents

1 Abstract 2

2 Introduction 2
2.1 Lines - Gamious . 2

3 Problem definition 3
3.1 The graph . 3
3.2 Making a cut - Problem definition . 5
3.3 Adding a rope - Problem definition . 6

3.3.1 Types of ropes . 7
3.4 Win condition . 8
3.5 Extended Shortest Path Tree representation . 8

4 Making a cut 9
4.1 Simple solution . 9
4.2 A cut on a tree with two sites . 10
4.3 A cut on a tree with multiple opposing sites . 11

4.3.1 Candidate cuts . 11
4.3.2 The algorithm . 16

4.4 A cut on a tree with multiple sites . 18
4.4.1 Payoff change in ESPT . 20
4.4.2 Payoff change on entire tree . 23
4.4.3 Data structure . 25
4.4.4 Graph simplification . 25
4.4.5 The algorithm . 25

5 Placing a rope 30
5.1 A rope on a tree with two sites . 31

5.1.1 Candidate ropes . 36
5.1.2 The algorithm . 38

6 Extensions 39
6.1 Cuts on arbitrary graphs . 39
6.2 Percentage of winning cuts . 40
6.3 Ropes . 40
6.4 Percentage of winning ropes . 41

7 Discussion 41

1

1 Abstract

We study a puzzle game called Lines developed by Gamious. The game is a variant of the Continuous
Voronoi game on graphs. The player is presented a graph containing sites and is tasked to alter the graph
either by cutting an edge or adding an edge (Rope). The graph is then subdivided according to the closest
sites, and the player who controls the most area on the graph wins.

We present an algorithm to find the best cut for arbitrary graphs in O(|E| · (|V | + |E|)) time, where |E|
is the number of edges and |V | is the number of vertices. For trees we present two algorithms; one runs
in O(|V ||S| log ∆(G)) time and one runs in O(d · |V | log |S| log ∆(G)) time, where d is the diameter of the
graph, |S| is the number of sites in the graph and ∆(G) is the maximum degree in the graph.

Finally, we made a start for ropes and laid out future research.

2 Introduction

Games and puzzles have consistently and perpetually interested mathematicians and computer scientists.
Games do not only serve as models for certain problems but also serve an entertainment purpose. We will
distinguish games from puzzles by saying that a puzzle has one solution, e.g. a Sudoku or a Rubik’s cube.
A game can have multiple solutions and the goal is to find a winning solution, e.g. chess. We will look at a
commercial game called Lines developed by Gamious. This is a variant of the Voronoi game on graphs. For
his thesis, Tom Rijnbeek [23] studied the game Lines for placing sites. This report will continue his study
and extend it to other interactions.

2.1 Lines - Gamious

Figure 1: The game Lines.

2

A variant of the one-round Voronoi game on graphs can be played in the commercial game called Lines
developed by Gamious. The player is tasked to have his facilities own more of the graph than any of his
opponents. Each player is represented by a different colour in the graph. The game consists of two phases:
the modification phase and the simulation phase. The interaction occurs only in the modification phase,
after which the simulation phase happens in a deterministic manner. Upon starting the simulation phase, all
sites start expanding at constant speed in all directions along the network, covering the edges in their colour.
The sites only expand over the area of the graph that is not yet covered by any colour. The simulation phase
ends when no expansion can occur anymore. Figure 1 shows a game state in which the simulation is still
ongoing.

In the modification phase, given a graph, there are four operations that the player can do:

i Add a player-coloured site anywhere on the graph

ii Remove any existing site from the graph

iii Make a cut in one of the edges of the graph

iv Add a new line segment connecting two points in the graph

Rijnbeek [23] studied the mathematics behind the Voronoi game on graphs, and only focused on the placement
of player-coloured sites anywhere on the graph. During his study he found a O(|V ||E||S| · (|V | log |V |+ |E|))
time algorithm for computing all winning placements of one site on the graph G = (V,E), where S
is the set of existing sites. Then he considered an extension of placing k > 1 sites and presented an
O(|V |k|E|2kk2k · (|C|+ k2)2) time algorithm where |C| is the number of different colours of the sites.

Note that since Gamious presents a puzzle game, it is important to find out whether a given graph G
is solvable and whether it is easily solvable. For this reason Rijnbeek has not just looked at an optimal
strategy for the player but at the solution space; the space where a site can be placed giving the player a
winning configuration. Van Dieren [24] looked at the difficulty of a given game by statistical analysis; doing
a random move a number of times to see how many times it is a winning move.

3 Problem definition

I will focus on two moves: making a cut in one of the edges and adding a new line segment connecting two
points in the graph. First I will show how the graph and the Voronoi cells are defined.

3.1 The graph

Let G = (V,E) be an undirected graph, where V is a set of vertices and E a set of edges. Each edge e ∈ E
has a weight w(e) > 0, usually the length of the edge connecting the corresponding two vertices. We define
a point p on e by a parameter 0 ≤ λ ≤ 1. Given some arbitrary order on V , a point eλ (with e = (v1, v2)
such that v1 is before v2 in the arbitrary order) is defined as the point on e with distance λw(e) from vertex
v1 and automatically with distance (1 − λ)w(e) from v2. Note that e0 coincides with v1 and e1 coincides
with v2.
The Voronoi cell of a site will be defined as in Tom Rijnbeek’s paper [23]. To recapitulate we will denote
the set of all points on the edges of the graph with E . In other words,

E =
⋃
e∈E
{eλ | λ ∈ [0, 1]}

Further let S = {s1, . . . , sl} ⊆ E be a non-empty finite set of disjoint points. The points in S represent the
sites. We assume that the sites lie on the vertices of G. In other words, S ⊆ V . Note, if we have sites that
lie on the edges we can trivially construct a new graph where the sites all lie on vertices.

3

Definition 3.1. For any pair of points p, q ∈ E on a graph G we define dG(p, q) (or d(p, q) for short if G is
clear from the context) to be the shortest path distance between p and q on G.

Definition 3.2. The Voronoi cell of a point s VorG,S(s) (or Vor(s) if G and S are clear from the context)
on G is defined as

VorG,S(s) := {p ∈ E | ∀s′ ∈ S : dG(p, s) ≤ dG(p, s′)}.

The Voronoi region of a set of sites S′ is the union of the Voronoi cells:

VorG,S(S′) := {p ∈ E | s′ ∈ S′ : p ∈ VorG,S(s′)}.

The Voronoi diagram VG(S) of S on G is then defined as

VG(S) := {VorG,S(s) | s ∈ S}.

Definition 3.3. Given are a set of l sites S = {s1, . . . , sl} and a group of k players P1, . . . Pk. Each site
belongs to one player and we call SPi ⊆ S the set of all sites belonging to player Pi; with ∪1≤i≤kSPi = S.
Since each site belongs to only one player we have SPi ∩ SPj = ∅ for i 6= j. In other words, the sets SPi ,
1 ≤ i ≤ l are a partition of S. For any given site s, we say that P (s) is a player such that s ∈ SP (s).

A graph does not have to be connected. Therefore, it is possible to have a component that does not contain
any sites. We have the following definition.

Definition 3.4. Given are a graph G and a set of Sites S = {s1, . . . , sl}. If there exists a point p for which
there exists no path to any site in S, then p is not contained in any Voronoi Cell. We say that p belongs to
neutral space.

The payoff for a player is the volume of the captured area. In other words,

Definition 3.5. Given are a set SP ⊆ S of sites belonging to a player P , the payoff for player P will be
vol(Vor(SP)), where vol(·) is the Lebesgue measure.

From Definition 3.2 we can see that it is possible for a point to belong to multiple Voronoi Cells. We call
such a point a boundary point. It is possible to have an infinite number of boundary points, as displayed
in Figure 2. To avoid a situation with infinite boundary points, we assume d(s, v) 6= d(s′, v) for each vertex
v ∈ V and each pair of sites s, s′ ∈ S, as this is sufficient to guarantee a finite number of boundary points
on the graph. It is also convenient to assume that a site s ∈ S coincides with a vertex on G. Therefore,
we will assume S ⊆ V . If this is not the case, we can trivially construct a new graph G′ = (V ′, E′) where
|V ′| = |V | + |S|. Note that in Lines, the sites are placed on edges. This means that a graph in which we
consider sites to be vertices, these vertices have a degree of 2 and the two edges are at an angle of 180◦

degrees. In this thesis we do not limit vertices to a certain degree.

Figure 2: An example of a graph with an infinite number of boundary points. P1 owns the red part of the graph,
P2 owns the blue part of the graph. The boundary points are colored purple.

Definition 3.6. Given are a graph G = (V,E), a set of sites S = {s1, . . . , sl} and a group of players
P1, . . . , Pk; for any point p on the graph we define dG(SPi , p) = mins∈SPi dG(s, p) the minimum shortest path
distance from all sites in SPi to p.

4

Definition 3.7. Given are a graph G = (V,E), a set of sites S = {s1, . . . , sl} and a group of players
P1, . . . , Pk, we say a vertex v ∈ V is owned (or controlled) by a player Pi if d(SPi , v) < d(SPj , v) for each
other player Pj, j 6= i.

When we are working on trees, it is useful to be able to quickly define certain subtrees. Therefore we have
the following definition.

Definition 3.8. Given are a tree G = (V,E), and a set of sites S = {s1, . . . , sl}. We define a subtree
Rsi,G(y) as the set of all points p on G, such that the shortest path from si to p goes through y.

Rsi,G(y) = {p | p ∈ E s.t. shortest path from si to p goes through y}

Definition 3.9. Given are a tree G = (V,E), and a set of sites S = {s1, . . . , sl}. We define a subtree
Ssi,G(y) as the set of all points p on G in the Voronoi Cell of si such that the shortest path from si to p goes
through y.

Ssi,G(y) = Rsi,G ∩VorG,S(si)

3.2 Making a cut - Problem definition

In the game Lines by Gamious the player is allowed to make a cut on the graph. A Voronoi cell is unable
to expand past such a cut. In the following paragraph I will describe how such a cut is made and how it
affects the graph.

Given a graph G = (V,E) and a set S = {s1, . . . , sl} of sites, a cut can be placed on any point x ∈ E
on any edge e = (v, w) ∈ E with v, w ∈ V . The point x can be described as x = eλ. A cut can only be made
on an edge and not on a vertex, meaning we can only cut at 0 < λ < 1. But for practical purposes, when we
desire to cut as close to the vertex as possible, we will also define a cut for either λ = 0 or λ = 1. Note that
a cut on a vertex should not be possible and that graph G′ in Figure 3 does not represent a correct cut.

Figure 3: An example of how a cut with parameter λ = 0 should and should not behave. The resulting graph after
the graph transformation should look like G′′. It should not look like G′.

Definition 3.10. Given are a graph G = (V,E) and a set S = {s1, . . . , sl} ⊆ V of sites. In a graph G, a cut
on an edge e = (v, w) with parameter 0 < λ < 1 is a graph transformation where the resulting graph G′ is the
same as G, except edge e is gone and there are two new vertices v′ and w′ and two new edges ē1

′ = (v, w′) and
ē2
′ = (v′, w). The weights (or lengths) of the edges ē1

′ and ē2
′ are set to λw(e) and (1−λ)w(e) respectively.

A cut with parameter λ = 0 creates a graph G′, with edge e omitted, one new vertex v′ and one new edge
ē′ = (v′, w) such that w(ē′) = w(e). A cut with parameter λ = 1 is defined analogously.

Note that w(ē1
′) +w(ē2

′) = w(e). The Voronoi regions are updated accordingly to the new graph structure.

Definition 3.11. Given are a parameter λ either 0 or 1, an edge e and a vertex v = eλ. A cut on edge e
with parameter λ is called to snap off edge e from v.

Given are a graph G = (V,E) and a set of sites S = {s1, . . . , sl}. Let G′ be the graph transformation after
cutting on edge e at point q = eλ, with 0 ≤ λ ≤ 1. In the rest of this paper, for any arbitrary point p on G,

5

we implicitly define p′ as the same point on G′. If the point p lies on e with parameter µ then we get three
cases. If µ < λ, then p′ = ē1 µ

λ
. If µ > λ, then p′ = ē2 µ−λ

1−µ
. If µ = λ then we have p = q, we get that q′ can

be either of the new vertices, we therefore do not implicitly define q′.

e e’

q t t’

v’v

G G’

Figure 4: An example of a graph G and its transformed graph G′ after cutting on point q. The cut in G′ is only
graphically separated as the new vertices in G′ have the same position.

3.3 Adding a rope - Problem definition

Another move in the game Lines is that a player can be allowed to create a new edge on the graph. The edge
does not have to be inserted between two vertices; any two points on the graph can be used. Everything until
now works on abstract graphs where vertices need not have coordinates and the triangle inequality need not
hold. From this point on, due to the nature of the rope operation, we need an embedding, so we assume
that all vertices of the graph have coordinates, edges are straight-line connections between two vertices, and
the weight of each edge is its Euclidean length. By inserting a line segment the player can drastically change
how the Voronoi cells expand. In the following paragraphs I will describe how such a line segment is made
and how it affects the graph.

Given are a graph G = (V,E) and a set S = {s1, . . . , sl} of sites. Two points x, y ∈ E are chosen (re-
strictions on x and y will be discussed later). Let the edge containing x be ei and let the edge containing y
be ej ; now the points x and y can be described as eiλx and ejλy respectively.

Definition 3.12. Given are a graph G = (V,E) and a set S = {s1, . . . , sl} of sites. In a graph G, splitting
an edge e = (v, w) at parameter 0 ≤ λ ≤ 1 is a graph transformation where the resulting graph G′ is
the same as G, except edge e is gone and there is one new vertex x′ and two new edges e′ = (v, x′) and
e′′ = (x′, w). The location of x′ is that of point eλ and the weights of e′ and e′′ are λxw(e) and (1−λx)w(e)
respectively.

Definition 3.13. Given is a graph G = (V,E). In a graph G, a rope between two points x and y is a
graph transformation where the resulting graph G′ is obtained after splitting edges on both x and y and where
there is a new edge e′ = (x′, y′). The weight of the new edge is the euclidean distance between x and y. The
inserted line segment is called a rope. The Voronoi regions are updated according to the new graph structure.

6

3.3.1 Types of ropes

x

y

Figure 5: x and y are directly connected; when
edges cross they do not connect.

x

y

y’

Figure 6: x and y are directly connected; x and y′

may not be connected because the new edge would
cross an existing edge. When the player tries to con-
nect x with y′ in Lines the line segment (x, y) will be
connected instead.

There are multiple types of restrictions possible for x and y. The first option is to have no restrictions and
when edges cross they do not connect as illustrated in Figure 5. A straight line segment is drawn from x
to y and the graph is not guaranteed to be a planar graph. When two edges cross (in their R2-embedding)
they might not actually cross in the network. The second option is that x and y may be connected only
if the line segment between them in the planar representation does not cross any other line segment as
in Figure 6. It is then guaranteed that the graph is always planar. Another option to guarantee graph
planarity is to turn all crossing points into vertices as can be seen in Figure 7. So, when drawing a line
segment from x to y, all points on (x, y) that also lie on another edge will be transformed into vertices
and the two crossing edges are split at this point. It is now as if multiple edges have been drawn in the
graph. The last restriction we can look at is that the new line segment must have a certain angle with the
edges it is connected to. The angle must be bigger than some threshold α as happens in the game of Gamious.

x

y

Figure 7: All points on the edges that cross the
edge between x and y become a new vertex.

x

y

Figure 8: When connecting x with y we might get
overlapping edges. To avoid this we impose a thresh-
old α to give a minimum angle to the inserted line
segment.

7

3.4 Win condition

There are two ways in which we describe a move to be the optimal move for a player P . The first way is
to only look at the payoff for player P and try to maximize it. The second way is to maximize the rank of
player P . The player with the highest payoff has the highest rank. We speak of a winning move when player
P has the highest payoff in proportion to the other players.

In this paper, when there are only two players P1 and P2, we will always try to optimize the best rela-
tive payoff for P1. In other words, we will try to maximize vol(SP1

)− vol(SP2
), where SP is the set of sites

belonging to P .

3.5 Extended Shortest Path Tree representation

Okabe et al. [22] described a method to calculate Voronoi Diagrams on arbitrary graphs. Let G = (V,E)
be a graph and let S = {s1, . . . , sl} be the set of sites. A new vertex dummy v0 is added and connected to
all sites in S by edges with weight 0. Now we calculate the Shortest Path Tree from the dummy vertex v0.
Note that each child of v0 is the root of a subtree that represents the Voronoi Cell of that site. Figure 9
shows how the Voronoi Cells are calculated using this method. Figure 10 shows the same tree but then in
the Shortest Path Tree representation. We call such a tree an Extended Shortest Path Tree (or ESPT for
short).

v0

Figure 9: An example of a graph G where the Voronoi Cells are calculated by creating a Shortest Path Tree on v0.

v0

Figure 10: The graph given in Figure 9, but now in the ESPT representation. Note that a cross marks a boundary
point, and that the color of the cross corresponds with the color of the opponent with which the boundary point is
made. Note that the dashed line is not a tree edge.

The dashed line in Figure 10 represents that there is a connection between the two vertices, but that the
edge itself is not in the ESPT. We call such an edge a cross edge. A cross edge is never between two vertices
owned by different players, since then it would create a boundary point. A cross edge only exists between
two subtrees of two different sites owned by the same player, or within one subtree of a site. Note that a

8

cross edge actually represents a boundary point between a player and himself, we call such a boundary point
an inner boundary point.

The ESPT has two different kinds of leaf nodes. As illustrated in Figure 10, some leaf nodes are represented
by a cross and others by a black disk. We first discuss the leaf nodes illustrated by a cross. A cross represents
a boundary point p with the property that there exist two sites s1 and s2, such that d(s1, v) = d(s2, v). Note
that a boundary point p is represented twice in the ESPT ; once in the subtree of s1 and once in the subtree of
s2. Let p1 and p2 be these points in the ESPT respectively. We say that P (p1) = P (s2) and P (p2) = P (s1).
We will now discuss the leaf node represented by a black disk. Such a leaf node is called an endpoint and
represents a vertex in the graph with a degree of 1.

4 Making a cut

We will now consider the move of making a cut in one of the edges of the graph. First, we will give a simple
solution that works on arbitrary graphs. Later, we will give more efficient solutions for specific problems on
trees.

4.1 Simple solution

In this solution, we assume that we want to maximize the payoff of P1.

Lemma 4.1. Given a graph G = (V,E). Only a cut on edge e = (v, w) ∈ E will be considered. Snapping
off v from e or snapping off w from e is optimal.

Proof. We will consider the situations we can encounter when making a cut on the edge e = (v, w); and
optimizing the payoff for P1. Note, that S ⊆ V , so the following cases are sufficient.

1. Both v and w are owned by P1.

2. v is owned by P1 and w is owned by P2.

3. Both v and w are owned by P2.

Case 1 and 3: Both v and w are owned by the same player

Let P1 own both v and w. We first consider the case where the shortest path from SP1
to v and the shortest

path from SP1
to w to not go through e. This implies that e is a cross edge in the ESPT. Let G′ be the

resulting graph after cutting at point eλ for some 0 ≤ λ ≤ 1. The vertices v′ and w′ are still owned by P1

since the shortest path did not go through e. The values d(S, v) and d(S,w) remain unchanged and therefore
we can conclude the cut to have no effect on the payoff for P1. Therefore the cut eλ with λ ∈ {0, 1} is one
of the optimal cuts on the edge. The same reasoning holds for when P2 owns both v and w.

Now consider the case where the shortest path from SP1
to w goes through e (Note that in this case it

is impossible for the shortest path SP1 to v to go through e). Again let G′ be the resulting graph after
cutting at point eλ. There are again two cases; either P1 still owns w′ or P2 now owns w′. Note that the
location of the cut on e does not influence which player owns the vertex w′. This means that only the payoff
on the edge e is influenced by the location of the cut. When w′ is still owned by P1, then the entire edge
is still owned by P1, thus the payoff remains unchanged for each value of λ. When w′ is owned by P2 then
part of the edge e will count towards the payoff for P1 and part of e counts towards the payoff for P2. It is
now optimal to make the cut as close as possible to w so that P2 does not get the payoff of e. This implies
that if we want to make the cut on eλ it is optimal to have λ = 1. We prove it analogously if P2 owns both
v and w. Except that we want to place the cut nearest to v, which implies λ = 0.

9

Case 2: v is owned by P1 and w is owned by P2.

The shortest path from SP1
to v does not run through e and the shortest path from SP2

to w does not run
through e. So after the cut is made the vertices are still owned by the same player. It is therefore optimal
to place the cut as close to the vertex owned by P2 so that the volume of the edge counts towards the payoff
of P1. This means either λ = 0 or λ = 1.

For a cut on an arbitrary edge e with parameter λ, we have shown in each case that there exists an optimal
cut on eλ such that λ = 0 or λ = 1. This is sufficient to prove the lemma.

We will now use properties of the ESPT as described in Section 3.5 to get to the following lemmas.

Lemma 4.2. The optimal cut in a graph G always lies on the tree edge of an opponent.

Proof. Given an edge e = (v, w). As seen in the proof for Lemma 4.1; when the same player owns both
vertices v and w a cut on e only affects the payoff of the players when either d(S, v) or d(S,w) goes through
e. When this happens we know, by definition, that e is an edge in the Extended Shortest Path Tree. When
the shortest tree paths from both v to S and w to S do not go through e we know, by definition, that e is
not a tree edge.

When the vertices v and w are owned by a different player then there exists a boundary point p on the
edge e. By definition such a boundary point p forms a leaf child node for both the vertices v and w. Both
the edges (v, p) and (w, p) form a tree edge. Since it is trivial that a cut must always be made on a point
owned by the opponent, the lemma holds.

Lemma 4.3. The optimal cut in a graph G always lies on the tree edge of an opponent closest to the root
v0 in the Extended Shortest Path Tree representation.

Proof. Given a tree edge e = (v, w) with d(S, v) < d(S,w). This means that v is the vertex closer to the
root v0 than w is to v0. Lemma 4.2 already states that the optimal cut is on the tree edge of an opponent
and Lemma 4.1 already states that there exists an optimal cut closest to the vertex. What is left to prove is
that to snap off edge e from vertex v is a better (or equal) cut than to snap off e from vertex w. We already
know that it does not matter where on the edge the cut is located to influence which player owns vertex v
and w. We also know that vertex v will always be owned by the opponent after the cut, as the shortest path
d(S, v) does not go through e. If the cut is made at vertex w then we know the entire edge is owned by the
opponent player so to cut at vertex v is never worse; therefore the lemma holds.

We now know that an optimal cut exists on a tree edge of the opponent closest to the root v0. So for each
tree edge owned by P2, we have exactly one candidate cut. Note that the ESPT does not have O(|V |) tree
edges as opposed to other shortest path trees, because an edge containing a boundary point is also considered
a tree edge. Since there can be O(|E|) boundary points, there are also O(|E|) tree edges in the ESPT. This
implies that there are O(|E|) candidate cuts that we could test to find the optimal cut. For each such a
candidate point we can do a cut and with Breadth-First Search we can find the payoff of each player. Since
Breadth-First Search is an O(|V |+ |E|) algorithm, the entire algorithm takes O(|E| · (|V |+ |E|)) time.

4.2 A cut on a tree with two sites

Given are a tree G = (V,E) and two players P1 and P2, both controlling one site (s1 and s2 respectively) on
the tree G. For any two points on G we know that there exists exactly one path between these two points.
Since there is exactly one path between s1 and s2 we know that there exists exactly one boundary point
between P1 and P2. Due to the same property we know that there are no inner boundary points.

The candidate cuts for this problem are easy to spot. We try to minimize the Voronoi Cell of P2, so
we will have to cut as close to s2 as possible. Let Es2 be the set of edges connected to s2. For each edge

10

e ∈ Es2 , snapping off e from s2 is a candidate cut. In the game Lines, a site only has a degree of 2 (since
they are placed on edges), meaning we have 2 candidate cuts. In the general case we get |Es2 | candidate
cuts. For each subtree spanned by s2 and e for all e ∈ Es2 , we can easily calculate the effect it has on the
payoff. Let A be the subtree spanned by s2 and e, and let G′ be the transformed graph after snapping off e
from s2. If A does not contain the site s1, then A will be neutral space in the transformed graph G′. This
implies that the payoff of P2 is decreased by vol(A). When A does contain the site s1, then the payoff for
P2 is decreased by vol(Vor(s2) ∩ A). The payoff for P1 is increased by this amount. These candidate cuts
can be calculated with a Breadth-First Search on each subtree. Which adds up to take O(|V |+ |E|) time.

4.3 A cut on a tree with multiple opposing sites

Given are a graph G = (V,E) a tree and two players P1 and P2. P1 controls one site s0 and P2 controls
k sites SP2

= {s1, s2, . . . , sk}. Since G is a connected tree there exists exactly one path between any two
points. We call pi the point between s0 and si, such that dG(s0, p) = dG(si, p). We say that the first r sites
have a direct path to s0, meaning that there is no other site on the path from s0 to si, with 1 ≤ i ≤ r. Let
P be the set of all points pi, 1 ≤ i ≤ k and let Pr = {p1, . . . , pr} be the set containing all boundary points
between P1 and P2.

4.3.1 Candidate cuts

We define σ∗(p) = {pj | pj ∈ Rs0,G(p) ∩ P, path from pj to p does not contain any point in P}, where p
could be any point on the graph. In other words, σ∗(p) is the set of all points in P that can be directly
reached from p in the subtree Rs0,G(p), Figure 11 shows an example. We say ∆vol(si) is the volume of all
points solely owned by si. We get

∆vol(si) = vol(Rs0,G(pi))−
∑

x∈σ∗(pi)

vol(Rs0,G(x))

s0

s1

s2

s3

p̄1

p̄2

p

Figure 11: An example of a tree, where the red area is owned by P1 and the blue area by P2. We have σ∗(p) =
{p̄1, p̄2}. This set basically consists of all new boundary points if site s2 was removed from the graph.

Say we have a point pj ∈ Pr. If we were to snap off edge e from the corresponding site sj such that the
shortest path from sj to pj goes through e, the payoff for P1 would increase with ∆vol(sj). Since the area
was previously owned by P2 the payoff for P2 would decrease by that same amount. Therefore the relative
payoff increase for P1 is 2∆vol(sj). We call such a cut a Type I candidate cut. An example is shown in
Figure 12, where the optimal cut is the candidate cut on the left.

11

s0

s1

s2

s3

Figure 12: An example of a tree, where the red area is owned by P1 and the blue area by P2. The Type I candidate
cuts are displayed by orange arcs. Note that there is no candidate cut at site s3, because it does not have a direct
boundary point with the area owned by P1.

We define T ′ as a subset of vertices of V , such that for each element ti ∈ T ′ has the following properties.

• The closest site to ti is a site sj owned by P2. Let e be the edge connected to ti, such that the shortest
path from ti to sj goes through e.

• The closest site to ti, of which the path does not go through e, is s0 (owned by P1).

Let T = T ′ ∪ {p} be the union of T ′ and the boundary point p. Examples of T are given in Figure 13 and
Figure 14; note that the boundary point indicated by a cross is also in T .

s0

s1

s2

ep

Figure 13: An example of a tree, where the red area is owned by P1 and the blue area by P2. The vertices in T are
colored in light blue. The Type II candidate cut is given with an orange arc.

ps0 s1

s2

s3

s4

v1

Figure 14: An example of a tree, where the red area is owned by P1 and the blue area by P2. The vertices in T are
colored light blue. The Type II candidate cut is given with an orange arc. At v1, both the site s4 and the site s1 are
closer than the site s0, therefore v1 /∈ T .

Let T̄ be the set of points in T , such that for each ti in T̄ , there does not exist another tj ∈ T such that
the shortest path from tj to the closest boundary point p goes through ti. For each point t ∈ T̄ , we know
the closest site s owned by P2 and we know the edge e = (v, w) such that the shortest path from t to s goes

12

through e. Note, there is only one such edge e, because we assumed there are no two different vertices v̄ and
w̄ such that dG(t, v̄) 6= dG(t, w̄), and because there only exists one possible path between any two points on
a tree. Let p be the closest boundary point (the one between s and s0). If we were to snap off e from w, we
know that the vertices between p and w are now owned by P1. We call such a cut a Type II candidate
cut. Note that a Type II candidate cut could also be a Type I candidate cut, but we make the distinction
for practical purposes.

Lemma 4.4. Given are a graph G = (V,E) and a tree and two players P1 and P2. Let P1 control one site
s0 and let P2 control k sites SP2

= {s1, s2, . . . , sk}. There is only one Type II candidate cut per boundary
point p and all vertices between p and the location of the candidate cut are in T .

Proof. Let v be a vertex in T ′. Let si be its closest site and let e = (v, w) be the edge connected to v such
that the shortest path from v to si goes through e. Since v is in T ′ we have the property that s0 is the
closest site for which the path does not go through e. Let e′ = (v, w′) be the edge on the path from v to s0.
We know that dG(v, si) < dG(v, s0). Let p be the boundary point, which exists along the path from v to s0.

Let us consider the closest site to the vertex w′. Note that w′ is a neighbour of v along the path e′.
The path of w′ to the closest site sj goes either through e′ or through another edge ej ∈ Ew′ . If the path to
sj goes through e′, then sj = si, because si is the closest site of v. If the shortest path does not go through
e′, then sj = s0, since s0 is the closest site of v along the path e′. We therefore have two cases, w′ is owned
by P1 or w′ is owned by P2, or more specifically, w′ is in the Voronoi Cell of si. If w′ is owned by P1, then
the boundary point exists somewhere along e′. In this case, we know that there exists a point in T along
edge e′, namely p ∈ T itself. If w′ is owned by P2 then it must be in the Voronoi Cell of si. This means that
its closest site is si. The closest site of w′ for which the path does not go through e′ must be s0. So w′ is
also in T . We now know that for each v ∈ T ′, there exists a path of vertices in T towards the boundary point p.

We will now prove that for each vertex v in T ′, there exists at most one vertex x that is in T ′ connected
to an edge ex ∈ Ev \ {e′}. Given any edge ex = (v, x) ∈ Ev \ {e′, e}, let the closest site of x be sj . If sj
equals si, then the corresponding path will go through ex. The closest site for which the path does not go
through ex can never be s0, since the path from s0 to x goes through ex. Now, let sj 6= si. Again, s0 can
never be the closest site to x along path ex, since sj will be the closest site along path ex. So x is not in
T . Therefore, there does not exist a vertex x connected to an edge in Ev \ {e′, e}, for which x is in T . The
vertex w connected to edge e = (v, w) can still be in T . Since the boundary point p is connected to only one
site owned by P2, there only exists one possible vertex connected to p that can be in T . Therefore, there
exists exactly one possible path from p to a Type II candidate cut, which means there exists one Type II
candidate cut per boundary point p.

Some edges in the graph are only reached by a site from one direction. Such an edge divides the graph into
two subtrees A and B such that the subtree A contains no sites and subtree B contains all the sites. Let e
be such an edge owned by P2 and let v be the vertex connected to e in B. Let κ be the volume of the entire
subtree A plus the volume of edge e. If we were to snap off edge e from v, the payoff for P2 would decrease
by κ. The payoff for P1 would remain unchanged since this part of the graph cannot be reached by other
sites. Therefore the relative payoff increase for P1 is κ. We call such a cut with subtree A and B a Type
III candidate cut, if there does not exist another such cut with subtree A′ and B′ such that A ⊂ A′. In
Figure 15 all type III candidate cuts are displayed. Note that cutting off the subtree on the right is the
optimal solution.

13

s0

s1

s2

s3

s4s5

p

Figure 15: An example of a tree, where the red area is owned by P1 and the blue area by P2. The Type III candidate
cuts are displayed by orange arcs.

Lemma 4.5. Given a tree G = (V,E) and two players P1 and P2. Player P1 has one site s0 and player
P2 has k sites SP2 = {s1, . . . , sk}. There exists an optimal cut which is either a Type I, Type II or Type III
candidate cut.

Proof. We will prove this lemma by showing that for an arbitrary cut, there exists a Type I, Type II or
Type III cut which is at least as good. Consider any arbitrary cut on some edge e at point eλ, such that eλ
is owned by P2 before the cut, and such that the cut improve the relative payoff for P1. Let st be the site
owned by P2 that is closest to eλ. Let v′ and w′ be the vertices in the transformed graph G′ at the location
of the cut. Let w′ be the vertex for which the shortest path from st to w′ remains unchanged. This implies
that dG(st, w) = dG′(st, w

′). (Note that since we are on a tree, there does not exist a path from v′ to st.)
We have three cases for v′:

i v′ is owned by P1

ii v′ is owned by P2

iii v′ is in neutral space

Case i

In this case vertex v′ is owned by P1. Let Ev′ be the set of edges connected to v′. On the original graph,
if Ev contains an edge ē = (v, w̄) such that v would be owned by P1 after a cut on ē, then it would be a
better to snap off ē from w̄. Note, this edge must exist because the original arbitrary cut also got v′ to be
owned by P1. We could do this recursively on the edges Ew̄ \ {ē}, giving us a Type II candidate cut (and
sometimes a Type I candidate cut). In conclusion, for an arbitrary cut such that v′ is owned by P1, there is
a Type II candidate cut that is at least as good.

Case ii

In this case the vertex v′ is still owned by P2. The closest vertex to v′ cannot be st and must be some
other site sj owned by P2. Note that the relative payoff for P1 has still increased, so either we gained some
neutral space or P1 must have taken some part of the graph. Since P2 still owns v′ and w′, there is no added
neutral space, therefore P1 must have taken part of the graph. This implies that the Voronoi Cell of P1 has
expanded past a boundary point p in G. The shortest path from a site owned by P2 to p must have been
through eλ. Which implies, st is the associated site of the boundary point p. An example of this situation
is shown in Figure 16.

14

eλ
G G’

Figure 16: An example of a tree, where the red area is owned by P1 and the blue area by P2. A cut is made at eλ
and the Voronoi Cells before and after the cut are displayed.

Since the entire edge e is still owned by P2, it does not matter if the cut is made elsewhere on the edge. If
the edge e was connected to st, snapping off edge e from st would therefore have the same relative payoff
increase for P1 compared to the original arbitrary cut. Note that this would be a Type I candidate cut with
the same relative payoff change for P1.

We have two cases for what happens with the boundary point p. Either it got replaced by one different
boundary point, or it got replaced by multiple different boundary points. An example of this is shown in
Figure 17. Let p̄′ be the boundary point closest to s′t in the transformed graph G′. Since all area owned by
P1 is the Voronoi Cell of s0, a cut at p̄ in the original graph G would give the same relative payoff change
as the arbitrary cut at eλ. The Voronoi Cell of s0 is the same after both cuts. Let ē = (v̄, w̄) be the edge
containing p̄ and let d(s0, v̄) < d(s0, w̄) (this means that the shortest path from s0 to p̄ goes through v̄). If
we were to snap off edge ē from w̄, P1 would gain every point between p and p̄ and every point between p̄
and w̄. In the original arbitrary cut, P2 would still own all points between p̄ and w̄. Therefore, this new
cut is better than the original arbitrary cut. Let Ew̄ be the set of edges connected to w̄. If there exists an
edge ej = (w̄, z) in Ew̄ \ {ē} such that P1 owns w̄ after a cut on ej on the original graph G, then it would
always be a better to snap off ej from z. We can do this recursively on Ez, giving us a Type II candidate cut.

This implies that for an arbitrary cut such that v′ is owned by P2, there is a Type I candidate cut or
a Type II candidate cut that is at least as good.

G G′ G′′

Figure 17: An example of a tree, where the red area is owned by P1 and the blue area by P2. Note that not the
entire graph is drawn. In this example we can see how a boundary point can be split into multiple boundary points
after a cut. Graph G shows the initial situation, the transformed graphs G′ and G′′ show how the graph might look
after a cut.

Case iii

In this case vertex v′ is neutral space. This implies that G′ consists of two trees A′ and B′ such that A′

contains all the sites and B′ does not contain any site. We know that the subtree B in the original graph G
was owned by P2. If Ev′ contains an edge ē′ = (v′, w̄′) such that v′ would become neutral space after a cut
on ē, then it would be better to snap off ē from w̄′ in the original graph G. We could do this recursively on
the edges Ew′ \ {ē}, giving us a Type III candidate cut. In conclusion, for an arbitrary cut such that v′ is
neutral space, there is a Type III candidate cut that is at least as good.

15

4.3.2 The algorithm

First we look at calculating Type I candidate cuts. We will need to know the boundary points in the
graph and the corresponding sites. This is done by simply calculating the Extended Shortest Path Tree in
O(|V |+ |E|) time. Let S̄ be the set of sites that have a boundary point with s0. We also need to know all
points in σ∗(p) where p is a boundary point. This can be done by calculating the Extended Shortest Path
Tree after removing the sites in S̄; note that Voronoi Cells must still be unable to expand past the sites in
S̄, therefore if we remove a site s ∈ S̄ we snap off both of its edges. We now need to calculate ∆vol(p), for
each boundary point p. Calculating all values of vol(Ss0,G(p)) for each p adds up to be linear in |V | and |E|.
Calculating all values of vol(Ss0,G(x)) for all x ∈ σ∗(p) for all p also adds up to be linear in |V | and |E|.
This gives us the best relative payoff increase for P1 for all Type I candidate cuts in O(|V |+ |E|) time. The
algorithm can be seen in Algorithm 2.

We will now look at calculating Type II candidate cuts. First we need the boundary points in the graph,
which can be found by calculating the Extended Shortest Path tree. Note that this was already calculated
for Type I candidate cuts. Then the set of vertices T is calculated. A breadth-first search from all the sites
can be done to calculate the closest site to each vertex; in each vertex v we store the closest site sv and
through which edge ev the closest site is found. Let Ev be the set of edges connected to v. For each vertex
v, we can determine the closest site s̄v such that the shortest path from sv to v does not go through ev,
by looking at the neighbours in Ev. If s̄v is s0, then the vertex is in T . The set T can be calculated in
O(|V |+ |E|) time. Now we start at the boundary point p and navigate past all vertices in T , giving us the
Type II candidate cut. This also takes O(|V |+ |E|) time. The payoff for this candidate cut can be calculated
looking at the Extended Shortest Path Tree on the graph G′, where G′ is the transformed graph after the
Type II candidate cut is done.

Type III candidate cuts can be calculated by doing a Depth-First Search in the Shortest Extended Path
Tree. Note that the candidate points are points owned by P2, so we can omit the part owned by P1. For
each vertex, we can easily find if there exists a leaf node that is either a boundary point or an inner bound-
ary point. Let Z be the set of vertices whose subtree does not contain any kind of boundary point. The
candidate cuts are at the vertices in Z for which the subtree does not have another vertex in Z. This can
also be calculated with a Depth-First Search. Which gives us all Type III candidate cuts in O(|V | + |E|)
time. The algorithm can be seen in Algorithm 4.

Note that we treat all sites S to be a subset of V . If we would treat V and S separately, we would
get a O(|V | + |E| + |S|) algorithm. Given three sites on an edge e, the middle site would not contribute
anything. These sites can easily be removed from the graph before the algorithm, which gives |S| ≤ 2|E|.
The algorithm for the best cut can be seen in Algorithm 1 in linear time. This algorithm calculates the best
Type I, Type II and Type III candidate cut. Then returns the candidate cut that is the best. We formulate
the following theorem.

Theorem 1. Given a tree G = (V,E) and two players P1 and P2. Player P1 has one site s0 and player P2

has k sites SP2 = {s1, . . . , sk}. Finding the optimal cut takes O(|V |) time.

16

Algorithm 1 Best cut on tree with multiple opposing sites

function BestCut(Tree T = (V,E), Sites S = (s0, s1, . . . , sk))
ESPT ← Extended Shortest Path Tree of T
c1 = (v1, e1, w1)← TypeICandidateCut(T,ESPT, S)
c2 = (v2, e2, w2)← TypeIICandidateCut(T,ESPT, S)
c3 = (v3, e3, w3)← TypeIIICandidateCut(T,ESPT, S)

x← argmax{w1, w2, w3}
Return cx . ci is of the form (Vertex v, Edge e, Relative Payoff increase w)

end function

Algorithm 2 Best cut on tree with multiple opposing sites - Type I

function TypeICandidateCut(Tree T = (V,E), Extended Shortest Path Tree ESPT , Sites S =
(s0, s1, . . . , sk))

P̄ ← the boundary points between P1 and P2 in ESPT
S̄ ← the corresponding sites of P̄

T ′ ← T = (V \ S̄, E) . Remove the sites in S̄ from the tree by snapping off their edges
ESPT’ ← Extended Shortest Path Tree of T ′

σ∗ ← the boundary points between P1 and P2 in ESPT’

for all p̄ ∈ P̄ ∪ σ∗ do
Calculate corresponding vol(Ss0,G(p̄))

end for
for all pi ∈ P̄ do . pi is indexed to its corresponding site si

wi ← ∆vol(pi) = vol(Ss0,G(pi))−
∑
x∈σ∗(p) vol(Ss0,G(x))

end for

x← argmaxwi
ex ← corresponding edge between px and sx
Return candidate cut (sx, ex, 2wx).

end function

17

Algorithm 3 Best cut on tree with multiple opposing sites - Type II

function TypeIICandidateCut(Tree T = (V,E), Extended Shortest Path Tree ESPT , Sites S =
(s0, s1, . . . , sk))

P̄ ← the boundary points between P1 and P2 in ESPT
S̄ ← the corresponding sites of P̄

Calculate T using a Breadth-First Search starting from all sites.
for all pi ∈ P̄ do

ti ← Furthest vertex in T encountered below p . Using Breadth-First Search along vertices in T
wi ← Volume of area between ti and vi.

end for

x← argmaxwi
ex ← corresponding edge between px and tx
Return candidate cut (tx, ex, 2wx)

end function

Algorithm 4 Best cut on tree with multiple opposing sites - Type III

function TypeIIICandidateCut(Tree T = (V,E), Extended Shortest Path Tree ESPT , Sites S =
(s0, s1, . . . , sk))

Do a DFS in ESPT, ignoring the area owned by P1.
Z ← set of vertices whose subtree in DFS does not contain any boundary point
Z ′ ← set of vertices in Z directly reached by BFS in ESPT

for all zi ∈ Z ′ do
wi ← Volume of area in its subtree

end for

x← argmaxwi
ex ← corresponding edge between zi and root in ESPT
Return candidate cut (zx, ex, wx)

end function

4.4 A cut on a tree with multiple sites

Given are tree G = (V,E) and two players P1 and P2. There are n sites controlled by P1 and k sites by
P2. We have multiple boundary points on the graph. The Type I, Type II and Type III candidate cuts are
not sufficient to solve this problem. Figure 18 shows a graph with the Type II candidate cuts and Figure 19
shows the resulting graph after a Type II candidate cut. An optimal cut is shown in Figure 20, there the
optimal cut is not a Type I, Type II or Type III candidate cut.

18

Figure 18: Example of a graph G, where the red
area is owned by P1 and the blue area by P2. The
orange arcs indicate a Type II candidate cut.

Figure 19: Example of the resulting graph G′ after
cutting at the orange arc in the graph in Figure 18.

Figure 20: Example of an optimal cut (at the orange line) on the graph G in figure 18. Note, that this is the
transformed graph of G after the cut. The optimal cut is not a Type I, Type II or Type III candidate cut. Note that
it does not matter where on the edge the cut is made.

An example graph G in Figure 21 indicates that there can be |E| candidate cuts (Note, a site always coincides
with a vertex, therefore there can only be one boundary point per edge). For each candidate cut the subtrees
can be formed in such a way, that the candidate cut is the optimal cut. Note that the combination of distances

19

from SP2 to the subtrees is different for each candidate cut shown in Figure 21. For half of the candidate
cuts, the distance from SP2 to the right subtree is different. We therefore would like to define some function
fv,e(x) for some v ∈ V and some e ∈ E connected to v, such that fv,e,P2

(x) indicates the payoff for P1 on
the subtree spanned by v and e, where a Voronoi Cell owned by P2 reaches v with distance x and it will
continue to expand down edge e.

Figure 21: Example of a graph G that shows the possibility for |E| candidate cuts. The triangles indicate a subtree,
which may contain several sites by P1 or P2.

4.4.1 Payoff change in ESPT

In this subtree we will look at how the payoff for each player changes using the ESPT, we will use insights in
this subsection to find a function f that calculates the payoff for a player on arbitrary trees. In the ESPT,
inner boundary points, are displayed as normal boundary points. Given a tree G = (V,E) and a set of sites
S, we will look at a subtree of the ESPT of G such that the root v1 of the subtree only has children which
are boundary nodes or end nodes. We say v1 has m children which are named b1 to bm; the first m′ children
are the boundary nodes and the remaining children are the endpoints. In other words, they are ordered in
such a way that b1, . . . , bm′ are boundary nodes and bm′+1, . . . , bm are endpoints. The set of boundary nodes
of the root is called Bv1 = {si | si boundary node and child of v1}. Let s0, owned by P2, be the site that
owns v1 and let si be the site for which dG(s0, bi) = dG(si, bi) for all 1 ≤ i ≤ m′. In other words, sites si
and s0 share boundary point bi. Let S(Bv1) = {si | 1 ≤ i ≤ m′}. Let ei be the edge connected to v and bi
for all 1 ≤ i ≤ m. An example of such a subtree is given in Figure 22. We say P (si) = P1 if the point si is
a boundary point with a Voronoi Cell owned by P1. If si is a boundary point with a Voronoi Cell owned by
P2, we say P (si) = P2. Note that the subtree is owned by P2. In this subsection we will only calculate the
change in payoff for the edges in the subtree.

v1

b1 b2 b3 b4

Figure 22: Subtree in the ESPT of which the root only has boundary nodes or endpoints as children. The blue area
is owned by P2 and the crosses indicate the boundary nodes.

If we were to snap off edge ei = (v1, si) from v1, where v1 is the root of the subtree and where 1 ≤ i ≤ m,
we can easily calculate what will happen to the payoff for each player. If 0 ≤ i ≤ m′ and si is a boundary

20

node with P (si) = P2 then the payoff of each player will not change, since the ownership of edge ei remains
unchanged. However, if P (si) = P1, then ei will now be owned by P1. This means that the payoff of P2

decreases by w(ei) and the payoff of P1 increases by w(ei). Lastly, if m′ + 1 ≤ i ≤ m then si is an endpoint
and the edge becomes neutral space. Meaning that only the payoff of P2 is decreased by w(e).

v1

b1 b2 b3 b4

Figure 23: Example of how the Voronoi Cells expand after cutting above the root.

If we cut on the parent edge of the root v1, then v1 will be owned by a different site on the graph. As
illustrated in Figure 23, the Voronoi cells now start expanding beyond the boundary points. The first
Voronoi cell to reach v1 will continue to expand upwards along the parent edge of v1 and downward along
the edges ei. We have the following lemma to see which player will own v1 after the cut. Note that since G
is a tree, the cut will never be on the path between any site in S(Bv1) and its corresponding boundary point
in Bv1 .

Lemma 4.6. Given a subtree consisting of a root v1 (owned by Px) only consisting of children that are
boundary nodes or endpoints. Let the children be ordered in such a way that s1, . . . , sm′ are boundary nodes
and sm′+1, . . . , sm are endpoints. If a cut is made on the parent edge of v1 then v1 will be controlled by P (sλ)
where λ = arg min1≤i≤m′ w(ei). This implies that the player that controls the boundary node closest to v1 will
gain control of v1. The shortest distance dG′(P (sλ), v′1) in its transformed graph G′ will be dG(P2, v1)+2w(ei).

Proof. Let G′ be the resulting tree after a cut on the parent edge of v1 in the ESPT. The site that will own v′1
must be one of the sites in S(Bv1). For 1 ≤ i ≤ m′, we know that dG(Px, si) = dG(Px, v1)+w(ei), which is the
sum of the length of the path from Px to v1 and the length of the path from v1 to si. Since si is a boundary
node we also know that dG(P (si), si) = dG(Px, s). We also have dG(P (si), si) = dG′(P (s′i), s

′
i), meaning that

the shortest path remains unchanged inG′. After the cut above v1, which cuts the shortest path from Px to v1,
the new shortest path to v′1 will be min1≤i≤m′ dG′(P (s′i), s

′
i) +w(e′i). After the substitution dG′(P (s′i), s

′
i) =

dG(P (si), si) = dG(Px, v1) +w(ei) we get that the new shortest path will be min1≤i≤m′ dG(Px, v1) + 2w(ei).
Since dG(Px, v1) is constant for all i the newest shortest path is only dependent on min1≤i≤m′ w(ei), which
implies that the boundary node with the lowest weighted edge will take ownership of v1.

We say λ = arg min1≤i≤m′ w(ei), meaning that P (sλ) will be the new owner of v1. We will now show how
the payoff for each player is affected when cutting in a parent edge of v1. We know that player P (sλ) will
own v′1. Note that all the boundary points s′i have now moved along the edge towards v′1 by w(eλ). We have
two cases; either P (sλ) = P1 or P (sλ) = P2. We will first look at the case where P (sλ) = P2. Let ei, i 6= λ,
be an arbitrary edge. If P (si) = P2, then both endpoints of ei are controlled by P2 before and after the cut.
In this case the payoff attributed by edge ei is the same. The same holds for the edges with an endpoint
(m′ + 1 ≤ i ≤ m). They will be owned by P2 before and after the cut so they do not affect the payoff. The
other edges however, where P (si) = P1, will be affected. We can then use Lemma 4.7 to see how the payoff
changes.

Lemma 4.7. Given an edge e = (v, s) between some vertex v and a boundary node s. Let there be a cut on
G resulting in a transformed graph G′ such that dG′(P (v), v′) > dG(P (v), v) and such that P (v′) 6= P (s′),
where P (v′) is the owner of v′ in the transformed graph G′. The payoff on e for P (s′) is increased by
f = 1

2 (dG′(P (v′), v′)− d(P (v), v)) = 1
2∆d and decreased by f for player P (v′).

21

Proof. We know that P (v′) 6= P (s′), meaning that the newest shortest path dG′(P (v′), v) does not go
through s; this means that dG(P (v), v) + w(e) > dG′(P (v), v′) > dG(P (v), v). The new shortest path from
P (s′) to s′ stays unaffected, in other words dG′(P (s′), s′) = d(P (v), v) + w(e). We assume that the newest
shortest distance from a site of P (v′) to v′ is ∆d bigger than the old distance dG(P (v), v) in G. We have
dG′(P (v′), v′) = d(P (v), v) + ∆d. We now calculate the distance to the new boundary point p′ on e, which
is:

dG′(P (s′), p′) =
dG′(P (v′), v′) + dG′(P (s′), s′) + w(e)

2

=
1

2
(dG(P (v), v) + ∆d+ dG(P (s), s) + w(e))

=
1

2
∆d+ dG(P (v), v) + w(e)

Note that dG′(P (v′), p′) = dG′(P (s′), p′). The payoff gained by P (s) along edge e then equals dG′(P (v′), p′)−
dG′(P (s′), s′). We get:

dG′(P (v′), p′)− dG′(P (s′), s′) =
1

2
∆d+ dG(P (v), v) + w(e)− dG(P (v), v)− w(e)

=
1

2
∆d

This means that the payoff for P (s′) increases by 1
2∆d and the payoff of P (v′) decreases by 1

2∆d.

Due to Lemma 4.6 we know that ∆d = 2w(eλ). So overall, the payoff for player P1 will be increased by the
function F̄v1:=P2

, where v1 := P2 means that v1 will be owned by P2 after cutting above v1. The function
F̄v1:=P2 is defined as:

F̄v1:=P2
=

∑
0≤i≤m

f̄v1:=P2
(si)

where

f̄v1:=P2
(si) =

{
w(eλ), if P (si) = P1

0, otherwise.

Note that in this case if the payoff of player P1 increases by F̄ that the payoff of player P2 gets decreased by F̄ .

We will now look at the case where P (sλ) = P1. Once v1 is owned by P1 we get that all edges ei with
endpoints are now owned by P1. This implies that the payoff for P1 is increased by w(ei) and the payoff for
P2 is decreased by w(ei). The edges ei, of which P (si) = P1 will now be entirely owned by P1. Meaning
that the payoff for P1 is increased by w(ei) and the payoff for P2 is decreased by w(ei). If the edge ei has
a boundary point si for which P (si) = P2, the payoff for P1 is increased by w(eλ) and for P2 decreased by
w(eλ). Overall the payoff for player P1 will be increased by:

F̄v1:=P1
=

∑
0≤i≤m

f̄v1:=P1
(si)

where

f̄v1:=P1
(si) =


w(ei), if si is an endpoint.

w(ei), if P (si) = P1.

w(eλ), if P (si) = P2.

22

4.4.2 Payoff change on entire tree

Given a graph G and two players P1 and P2. Let P1 have n sites and P2 have k sites. We define a function
fv,e,Pi(x) such that v ∈ V and e ∈ E connected to v. The function fv,e,Pi(x) gives the payoff for P1 on
the subtree spanned by v and e when v is owned by Pi and the shortest path from S(Pi) to v does not
go through e, with dG(S(Pi), v) = x. In other words, a Voronoi Cell owned by Pi reaches v with distance
x and continues to expand along e, we say the Voronoi Cell pushes from v onto e with a force of x.
The payoff for P2 will then be vol(Tv,e) − fv,e,Pi , where Tv,e is the subtree spanned by v and e. We say
gv,e,Pi(x) = vol(Tv,e)− fv,e,Pi(x).

fv,e,Pi

e
A

Figure 24: An example of a graph G. An arrow is drawn indicating the function f to push onto the edge.

Let v be a vertex and let e be an edge connected to v and a site s, such as in the graph in Figure 24. The
function fv,e,Pi can easily be calculated. Note that the Voronoi Cell can never expand past a site, so the
subtree A behind the site s (as shown in Figure 24) does not influence the value for f . If Pi = P (s), then edge
e is entirely owned by P (s). Therefore, we have fv,e,Pi(x) = w(e) for each value of x. If Pi 6= P (s), then part
of the edge can be owned by Pi. We can use Lemma 4.7 to find fv,e,Pi(x) = 1

2∆dx = 1
2 (w(e)−x). Note that

if x ≥ w(e), the Voronoi Cell pushes onto e with a force x such that the Voronoi Cell of s already reached
v. Since this cannot happen we get fv,e,Pi(x) = max{ 1

2 (w(e)− x), 0}. Finally, for an edge e connected to a
site s we get:

fv,e,P1
(x) =

{
w(e), if P (s) = P1

max{ 1
2 (w(e)− x), 0}, if P (s) = P2

gv,e,P2
(x) =

{
w(e), if P (s) = P2

max{ 1
2 (w(e)− x), 0}, if P (s) = P2

(1)

The property gv,e,Pi = vol(Tv,e)− fv,e,Pi(x) implies:

fv,e,P2(x) =

{
0, if P (s) = P1

min{ 1
2 (w(e) + x), w(e)}, if P (s) = P2

gv,e,P1(x) =

{
0, if P (s) = P2

min{ 1
2 (w(e) + x), w(e)}, if P (s) = P2

(1)

Now consider the case that the edge e is connected to vertices v and w, for which the degree of w is 1. In
other words, w is an endpoint in the graph. It is easy to see that the Voronoi Cell will completely expand
upon edge e. We therefore get:

fv,e,Pi(x) =

{
w(e), if Pi = P1

0, if Pi = P2

(2)

And transversely:

gv,e,Pi(x) =

{
0, if Pi = P1

w(e), if Pi = P2

(2)

23

fv,e,Pi

w

Figure 25: An example of a graph G. A gray arrow is drawn indicating the function f to push onto the edge. The
purple edges indicate the functions that are already known.

Now consider the case that the edge e is connected to some arbitrary vertex w. Let Ew be all edges connected
to w. Say for all edges ē ∈ Ew \{e}, we know the function fw,ē,P for both players P ∈ {P1, P2}. An example
can be seen in Figure 25. The Voronoi Cell at v pushes down e with a force of x, so this same Cell pushes
down the edge ē with a force of x + w(e) for all ē ∈ Ew \ {e}. Let µ be the shortest distance from vertex
w to any site in the subtree spanned by v and e, note that µ is the shortest distance to any site in graph
G, for which the path does not go through e. If we have x + w(e) < µ, then the Voronoi Cell at v is the
first to reach vertex w. We obviously get fv,e,Pi(x) = w(e) +

∑
ē∈Ev\{ē} fw,ē,Pi(x + w(e)). But as soon as

x + w(e) ≥ µ, it means that a different Voronoi Cell has already reached vertex w. If the other Voronoi
Cell that reached v first is also owned by Pi, then the area of player Pi is still expanding down the other
edges, but the force does not depend on x anymore. The edge e will also be entirely owned by Pi. If the
new Voronoi Cell is owned by the opponent Pj however, then vertex w is not owned by Pi anymore. Let
x̄ be the value of x such that x + w(e) = µ and let ē ∈ Ew be the edge containing the shortest path from
w to the closest site in the subtree. Now we assume that the vertex w is owned by the opposing player.
We get fv,e,Pi(x̄) = w(e) +

∑
ē∈Ew\{e,ē′} fv,e,Pj (x̄ + w(e)). Note, that in the summation the function f is

parametrized with Pj . Now that w is owned by Pj , we can consider this just as a site, so like before we get
fv,e,Pi(x̄+ x) to equal the function in (1) plus the constant

∑
ē∈Ew\{e,ē′} fv,e,Pj (x̄+ w(e)). We get:

fv,e,P1
(x) =


w(e) +

∑
ē∈Ev\{ē} fw,ē,P1

(x+ w(e)), if x < x̄

(w(e)− 1
2x) +

∑
ē∈Ew\{e,ē′} fv,e,P2(x̄+ w(e)), if x ≥ x̄ and P2 owns w

w(e) +
∑
ē∈Ew\{e,ē′} fv,e,P1

(x̄+ w(e)), if x ≥ x̄ and P1 owns w

(3)

gv,e,P2(x) =


w(e) +

∑
ē∈Ev\{ē} fw,ē,P2(x+ w(e)), if x < x̄

(w(e)− 1
2x) +

∑
ē∈Ew\{e,ē′} fv,e,P1

(x̄+ w(e)), if x ≥ x̄ and P1 owns w

w(e) +
∑
ē∈Ew\{e,ē′} fv,e,P2(x̄+ w(e)), if x ≥ x̄ and P2 owns w

(3)

The values for fv,e,P2
(x) and for gv,e,P1

can easily be found due to the property gv,e,Pi(x) = vol(Tv,e) −
fv,e,Pi(x). Note that if the subtree does not have any sites, the value for x̄ is not defined. In this case we
have x̄ =∞.

Lemma 4.8. The function fv,e,Pi is a non-continuous piecewise linear function.

Proof. As we can see in (3), the function is clearly not continuous in point x̄. We also know that the sum of
piecewise linear functions is a piecewise linear function. Since the functions (1) and (2) are piecewise linear,
we know that the function (3) is also piecewise linear.

24

4.4.3 Data structure

A piecewise linear function is composed of linear segments. Each segment of f can therefore be defined
by an interval [a, b), a slope ∆y

∆x and a value f(a). Note that if the segment is [−∞, b), the value f(a) is
ill-defined. But since a negative input for fv,e,Pi does not mean anything, we only need to store segments
that have non-negative boundaries. These segments are then stored in order of a, i.e. the breakpoints are
stored as a sorted array {a1, a2, . . . , ak}. Note that each segment can be described as [ai, ai+1), 1 ≤ i ≤ k,
with ak+1 = ∞. Each segment, indicated by its breakpoint ai, has a corresponding slope mi and its value
f(ai) = vi. The value of f(x), with x ≥ 0, can then be calculated by first finding the segment [aj , aj+1) which
contains x, which can be done with a binary search over the values ai. Then we get f(x) = vi+mj · (x−aj).
So calculating a value of f takes O(log n) time.

Let fw,e,Pi be known functions, stored as a data structure, for all e ∈ Ew. If we want to calculate∑
e∈E fw,e,Pi , we will need to merge all the segments in fw,e,Pi . A k-way merge sort is done on all breakpoints,

which takes O(n log |Ew| + |Ew|) time, where n is the total number of breakpoints. For each new segment
ai the corresponding slope mi is calculated by taking the sum of all slopes of all overlapping segments, of
which there are at most |E| many. The value vi is calculated by taking the sum of all values f(ai) of all
overlapping segments, of which there are |E| many. Calculating

∑
e∈E fw,e,Pi therefore takes O(n + |E|),

where n is the number of breakpoints, which is bounded by the number of leaves in the subtree spanned by
w and e. Note that in the function (3), the sum is taken over the function fw,e,Pi with parameter x+w(e).
Since x ≥ 0, the definition of the function fw,e,Pi(x

′) with x′ < 0 does not need to be known. A segment
[ai, ai+1) such that ai+1 < w(e) is therefore ignored. A segment [ai, ai+1) with ai < w(e) and ai+1 > w(e),
is trivially converted to a segment [we, ai+1) with value vi = f(w(e)).
If we have some function fv,e,Pi , the value of fv,e,Pi can be calculated in O(log n) time, where n is the number
of segments of the function, i.e. the number of sites in the subtree.

4.4.4 Graph simplification

In a tree G = (V,E), the Type III candidate cuts can still be optimal cuts. If a Type III candidate cut is
made next to a site, the graph transformation contains a subtree T ′ which is neutral space. A different cut
on T would then generate a smaller subtree, hence the optimal cut is never on any part of T . This implies
that if a Type III candidate cut next to a site of Pi is not optimal, the subtree T ′ will always be owned
by Pi afterwards, i.e. it stays unaffected. So the corresponding subtree T can be removed from G, without
changing the location of the optimal cut.

The algorithm first searches for the best Type III candidate cut and the corresponding subtrees connected
to a site can be removed from the graph. At this point, there is no need to check for candidate cuts that
generate neutral space.

4.4.5 The algorithm

As discussed before, calculating a function fv,e,Pi takes O(n log(∆(G) + ∆(G)) where ∆(G) is the maximum
degree in G and where n is the number of breakpoints, i.e. the number of sites in its subtree. But, as
indicated in function (3), we need to know which player will own w. We therefore need to know the closest
site s to each vertex v and its corresponding edge e which is contained in the shortest path from s to v. The
closest site of each vertex is easily calculated in the ESPT, which takes O(|V |+ |E|) time. The closest site
to v for which the shortest path does not go through e also needs to be known. Which can also be found in
O(|V |+ |E|) time. Lastly, a function fv,e,Pi gives the payoff for P1, and transversely the payoff for P2. But
what we need is the difference in payoff for each player. We therefore have to calculate the total volume of
each subtree and the payoff for each player for each subtree spanned by v and e. This can be calculated in
O(|V |+ |E|) time.

We will discuss two methods, which both give a different running time. The first method will calculate

25

fw,e1,P1(x) fw,e2,P1(x)

fv,e,P1(x)

x x

x0

0 0

Figure 26: Example of a function that consists of a sum of other functions according to the graph in Figure 25. The
purple line indicates x̄, i.e. the first point at which one of the functions in the sum reaches zero. Everything right of
the purple line is (w(e) + x) + c, with c some constant. Note that the functions are also shifted w(e) to the left.

all the functions of fv,e,Pi and gv,e,Pi . The second method will artificially transform the tree G into a rooted
(directed) tree.

26

Method 1

First, we will calculate all functions. For each edge e = (v′, w′) ∈ E, a function fv,e,Pi has to be calculated
four times. Since Pi can have the values P1 and P2 and v can be either v′ or w′. Therefore we have to
calculate 4|E| functions. Note that the functions gv,e,Pi can be trivially found in O(1) by the property:
gv,e,Pi(x) = vol(Tv,e) − fv,e,Pi(x). Calculating all functions fv,e,Pi for all v ∈ V and all e ∈ Ev for both
P1 and P2 takes O(|E| · |S| log ∆(G) + |V |). After the initialization of the function, any query would take
O(logS) time.

Method 2

We will now discuss the second method, where we have an artificially rooted tree G. Let d be the diameter
of the graph G. The rooted tree will have depth O(d). Calculating all the functions going downwards, i.e.
the functions fv,e,Pi such that e is connected to a child of v, takes O(d · |S| log ∆(G) + |E|). Note that if G
is a balanced binary tree, d = log |V | and ∆(G) = 2, we would get a running time of O(|S| log |V | + |E|).
A query on a function fv,e,Pi has two cases. If e is connected to a child of v, the query takes O(log |S|)
time, since the function is already precomputed. But if the edge e is connected to the parent of v, extra
calculation is needed. An example graph is drawn in Figure 27, where the query fv,e,Pi(x) is indicated. Let
v be a vertex and let e = (v, w) be an edge. Say we know the functions fw,e′,Pi for all e′ ∈ Ew \ {e}. The
value fv,e,Pi(x) can be calculated by calculating the correct sum

∑
e′∈Ew\{e} fw,e′,Pt(x+ w(e)) as described

in function (3). This takes O(log |Ew|) time. This has to be done O(d) times, as the length from the path
from v to the root is O(d). Therefore a query takes O(d · log |S| · log ∆(G)) time. If G was a balanced binary
tree, a query takes O(log |V | log |S|) time.

fv,e,Pi

v0

Figure 27: Example of a graph G, rooted at some vertex v0. The functions needed for the query fv,e,Pi are indicated
by an arrow. The purple arrows initialized and takes O(1), the gray ones need to be calculated for the query.

After initializing the tree we can calculate any value fv,e,Pi(x) in O(Q) time, where Q is the query time.
We will now show how the best cut is found. Given any vertex v in V , let s be the closest site to v and let
e = (v, w) ∈ Ev be the edge contained in the shortest path from v to s. We know that e is a tree edge in
the ESPT. Let s̄ be the closest site of v for which the shortest path does not go through e. Let ē 6= e be
the edge contained in the shortest path from s̄ to v. If we cut on edge e, we know that s̄ will be the newest
closest site to v. We can now calculate the payoff for P1 easily by calculating fv,e′,Pi for each e′ ∈ Ev \ {e, ē}
with Pi the owner of s̄. Note that if P (s̄) is P1, we would snap off e from w, since then e will also be owned
by P1, otherwise we would snap off e from v. We already know the payoff for P1 for each subtree, and since
we know that there is no neutral space, we can easily calculate the relative payoff change for P1 which takes
O(|Ev| ·Q) time, where Q is the time it takes to query a function. According to Lemma 4.2 and Lemma 4.1,

27

it would be sufficient to check such a cut for all v ∈ |V | that are owned by P2. So calculating all these cuts
would take O(|E| ·Q). The algorithm can be seen in Algorithm 5.

Analysis of the two methods

We have described two methods, the first method where we initialize all the functions gave an initialization
time of O(|E| · |S| log ∆(G) + |V |) and a query time of O(log |S|). Therefore, the entire algorithm takes
O(|E| · |S| log ∆(G) + |E| log |S|+ |V |) which simplifies to O(|E| · |S| log ∆(G) + |V |). The second method,
that initializes functions on an artificial rooted tree, has an initialization time ofO(d·|S| log ∆(G)) and a query
time of O(d log |S| log ∆(G)). The entire algorithm therefore takes O(d · |S| log ∆(G) + |E|d log |S| log ∆(G)).
We formalize the following theorem.

Theorem 2. Given a graph G and two players P1 and P2, where P1 has n sites and P2 has k sites. There
exists an algorithm to find the best cut with a running time as presented in Table 1.

Best case Worst case
Method 1 O(n · |S|) O(n · |S| log ∆(G))
Method 2 O(n log n log |S|) O(nd log |S| log ∆(G))

Table 1: The best case and worst case running times of the algorithm, we say that |V | = n and because G is a
connected tree we get |E| = n− 1. We have d the diameter of the graph, S is the set of sites and ∆(G) is the degree
of the graph.

Note that S is a subset of V and that in the worst case we have |S| = O(|V |). But |S| = O(|V |) is not
a realistic scenario, therefore we can assume only the practical cases and say that |S| is a constant. Table
2 shows the running times when we consider |S| constant and Table 3 shows the running times when we
consider |S| = |V |.

Best case Worst case
Method 1 O(n) O(n log ∆(G))
Method 2 O(n log n) O(nd log n log ∆(G))

Table 2: The best case and worst case running times of the algorithm, we say that |V | = n and because G is a
connected tree we get |E| = n− 1. In this table the running times are displayed assuming |S| is constant.

Best case Worst case
Method 1 O(n2) O(n2 log ∆(G))

Method 2 O(n log2 n) O(nd log n log ∆(G))

Table 3: The best case and worst case running times of the algorithm, we say that |V | = n and because G is a
connected tree we get |E| = n− 1. In this table the running times are displayed assuming |S| = O(|V |).

28

Algorithm 5 Best cut on a tree with 2 players

function TypeIICandidateCut(Tree T = (V,E), Sites S = (s1, s1, . . . , sr))
ESPT← calculate Extended Shortest Path Tree
c0 = (v0, e0, t0)← TypeIIICandidateCut(T,ESPT, S)
for each vi ∈ V do

si ← closest site of vi
ei ← edge connected to vi contained in shortest path from si to vi
s̄i ← edge closest to vi of which the path does not go through ei
ēi ← edge connected to vi contained in shortest path from s̄i to vi
for each e ∈ Evi do
Tvi,e ← subtree spanned by vi and e
Vvi,e ← volTvi,e
Fvi,e ← Payoff for P1 on Tvi,e
Gvi,e ← Vvi,e − Fvi,e . Payoff for P2 on the subtree.

end for
end for
InitializeFunctions(T,S)
for each vi ∈ V owned by P2 do . This loop tries a cut for each vertex owned by P2.

wi ← vertex connected to ei s.t. vi 6= wi
f ← 0
for each e ∈ Evi s.t. e 6= ei do

f ′ ← Query(v, e, P (s̄i), d(s̄i, vi)) . Queries payoff for P1 fv,e,P (s̄i) with force d(s̄i, vi).
f ′ ← f ′ − Fvi,e . Calculates payoff gained for P1 on subtree Tvi,e.
f ← f + f ′

end for
if S(s̄i = P2 then

ci ← (vi, ei, 2 · f)
else

ci ← (wi, ei, 2 · f + 2w(ei))
end if

end for
C ← {c0, c1, . . . , cn}
Return best cut in C

end function

Algorithm 6 Initializes all the functions fv,e,Pi for a Tree

function InitializeFunctionsAll(Tree T = (V,E), Sites S = (s1, s2, . . . , sr))
for each v ∈ V do

for each e ∈ Ev do
for P ∈ {P1, P2} do

v.functione,P = fv,e,P
end for

end for
end for

end function

29

Algorithm 7 Initializes the functions fv,e,Pi for a Tree T as if T is a directed rooted tree

function InitializeFunctionsRootedTree(Tree T = (V,E), Sites S = (s1, s2, . . . , sr))
v0 ← vertex in V . Will be the root
for each v ∈ V do

ē← parent edge of v . Is empty for v0

for each e ∈ Ev \ {ē} do
v.functione,P = fv,e,P

end for
end for

end function

Algorithm 8 Queries a function fv,e,Pi after the initialization InitializeFunctionsAll, Algorithm 6

function QueryFunctionsAll(Vertex v, Edge e, Player P , Force x)
Segment R = (a, ∆y

∆x , f(a))← segment in v.functione,P containing x . Using binary search

Return f(a) + ∆y
∆x · (x− a)

end function

Algorithm 9 Queries a function fv,e,Pi after the initialization InitializeFunctionsRootedTree, Algorithm 7

function QueryFunctionsRootedTree(Vertex v, Edge e, Player P , Force x)
v0 ← root node
if e is child edge of v then

Segment R = (a, ∆y
∆x , f(a))← segment in v.functione,P containing x . Using binary search

Return f(a) + ∆y
∆x · (x− a)

else
v̄ ← v
ē← e
ē′ ← empty
f ← 0
while true do

for each e ∈ Ev̄ \ {ē, ē′} do
Segment R = (a, ∆y

∆x , f(a))← segment in v.functione,P containing x . Using binary search

f ← f + f(a) + ∆y
∆x · (x− a)

end for
if v̄ = v0 then

Return f . Breaks the while loop
end if
v̄ ← parent of v̄
ē′ ← ē
ē← parent edge of v̄

end while
end if

end function

5 Placing a rope

In this section we assume that each graph has an associated planar embedding. When adding a rope
between the points p1 and p2, the weight of the rope is the Euclidean length of these two points in its planar

30

embedding. In the game Lines the player is given a planar graph and is not allowed to place a rope between
points p1 and p2, such that the new rope crosses other edges. In other words, the transformed graph G′

must stay planar after inserting a straight line segment. However, in this section we will look at a rope that
can be placed between any two points; if the rope crosses a different line segment they do not connect, as
discussed in Section 3.3.1 and as illustrated in Figure 5. Both the initial graph G and the transformed graph
G′ need not be planar.

5.1 A rope on a tree with two sites

Given are a connected tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively.
When placing a rope between points p1 and p2 there are three cases. Either both points in G are owned by
P1, both points in G are owned by P2, or each point is owned by a different player. It is obvious that a rope
is never placed between points p1 and p2, if these points are owned by P2. When p1 is owned by P1 and p2

by P2, then the rope will be connected to s1. When both points p1 and p2 are owned by P1, the length of
the rope can yield more influence. In this case an optimal rope can be the two points owned by P1 such that
the euclidean distance between these points are the largest.

Lemma 5.1. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively.
If there exists an optimal rope placement, such that one endpoint gets connected to a point on G owned by
P1 and the other endpoint gets connected to a point on G owned by P2. Then there exists an optimal rope
placement where one endpoint is connected to s1.

Proof. Let x be any point owned by P1 on the tree G = (V,E) and let y be any point owned by P2 on the
tree G. Let G′ be the resulting graph after the graph transformation when adding a rope between the points
x and y. Let x′ and y′ be the new vertices on the resulting graph G′ and let e′ = (x′, y′) be the new edge.
There are three cases to consider:

i x′ and y′ are both owned by P1.

ii x′ is owned by P1 and y′ is owned by P2.

iii x′ and y′ are both owned by P2.

For each case, it is sufficient to prove that there is an equal or better solution where x coincides with s1 for
any y. In other words, for every arbitrary rope with endpoints x and y, we can find a rope at least as good
where one endpoint is connected to s1.

Case i

We now consider another rope from s1 to y. Let G′′ be the resulting tree after the graph transforma-
tion. Figure 28 shows an example. Let x′′ = s′′1 and y′′ be the new vertices and let e′′ = (x′′, y′′) be the
new edge. By using the triangle inequality: dG′′(s1, y

′′) = deucl(s1, y
′′) ≤ dG′(s1, x

′) + dG′(x
′, y′) we can

show dG′′(s1, y
′′) ≤ dG′(s1, y

′). We know y′ is owned by P1, therefore y′′ must also be owned by P1. Let
ey = (v1, v2) be the edge containing point y. We assume that v1 is closer to s2 than v2 is to s2. This implies
that the shortest path from s2 to v2 goes through v1 and ey. We will now look at the set Ss2,G(y). Since
point y′ and y′′ are now owned by P1 in the transformed graphs G′ and G′′ respectively, we have that P2 is
cut off from all points in Ss2,G(y) in the corresponding graph transformation. We call vol(Ss2,G(y)) = κ, in
both graph transformations the payoff for P1 is increased by κ and for P2 decreased by κ.

Now let ∆d′ = dG′(s
′
2, y
′)−dG′(s′1, y′) and ∆d′′ = dG′′(s

′′
2 , y
′′)−dG′′(s′′1 , y′′). Note that the shortest path from

s2 to y remains unchanged in the graph transformations, so we have dG(s2, y) = dG′(s
′
2, y
′) = dG′′(s

′′
2 , y
′′).

The increase in payoff for P1 in G′ among the path s′2 to y′ will be 1
2∆d′. Similarly, the increase in payoff

for P1 in G′′ among the path s′′2 to y′′ will be 1
2∆d′′. Note that the decrease in payoff for P2 is also equal

to 1
2∆d′ and 1

2∆d′′ on G′ and G′′ respectively. The relative payoff between P1 and P2 is therefore changed

31

x

yv2

s1

v1 s2

G

x′

y′′v′′2

s′′1

v′′1 s′′2

G′′

x′

y′v′2

s′1

v′1 s′2

G′

κ

Figure 28: Example of a graph transformations G′ and G′′, where P1 is the red color and P2 is the blue color. Note
that κ is given in G and that this area is owned by P1 in both G′ and G′′.

in favor of P1 by ∆d′ and ∆d′′ on G′ and G′′ respectively. The relative payoff increase for P1 in G′ among
the new shortest path s′1 to s′2 equals w(e′) + ∆d′. For G′′ the relative payoff for P1 among the path s′′1 to
s′′2 is increased by w(e′′) + ∆d′′. Now we calculate the difference in payoff among the path s1 to s2 in both
transformed graphs G′ and G′′. We get (w(e′) + ∆d′)− (w(e′′) + ∆d′′) = w(e′)−w(e′′) + ∆d′ −∆d′′. First

32

we calculate the value of ∆d′ −∆d′′:

∆d′ −∆d′′ = dG′(s
′
2, y
′)− dG′(s′1, y′)−

(dG′′(s
′′
2 , y
′′)− dG′′(s′′1 , y′′))

= dG′′(s
′′
1 , y
′′)− dG′(s′1, y′)

= w(e′′)− dG′(s′1, y′)
→ ∆d′ −∆d′′ = w(e′′)− w(e′)− dG′(s1, x)

We can now substitute this value:

w(e′)− w(e′′) + ∆d′ −∆d′′ = w(e′)− w(e′′) + w(e′′)− w(e′)− dG′(s1, x)

= −dG′(s1, x) ≤ 0

From this we can conclude that the relative payoff for P1 in G′′ is equal or better than in G′ among path s1

to s2. Note that the equation only looks at the relative payoff among the edges on the path s1 to s2 on G
and on the newly placed rope. When P1 owns a vertex along the path y′ to s′2 while it was owned by P2 in
G, then P1 will cut off P2 from a potential subgraph. Also since dG′′(s1, y

′′) ≤ dG′(s1, y
′), we have that the

vertices owned by P1 among path y′ to s′2 are also owned by P1 in G′′. Therefore, the rope from s1 to y, in
this case, is at least as good as any arbitrary rope from x to y, where x is owned by P1 and y is owned by
P2.

Case ii

Since x′ is owned by P1 and y′ is owned by P2, we know that dG′(s
′
2, y
′) ≤ dG′(s′1, x′) +w(e′). Analogously,

we know dG′(s
′
1, x
′) ≤ dG′(s

′
2, y
′) + w(e′). The increase in payoff for P1 (between G and G′) is equal to

1
2 (dG′(s

′
2, y
′)−dG′(s′1, x′)+w(e′)), the increase in payoff for P2 is equal to 1

2 (dG′(s
′
1, x
′)−dG′(s′2, y′)+w(e′)).

So the relative increase in payoff for P1 becomes: 1
2 (dG′(s

′
2, y
′) − dG′(s

′
1, x
′) + w(e′)) − 1

2 (dG′(s
′
1, x
′) −

dG′(s
′
2, y
′) + w(e′)) = dG′(s

′
2, y
′)− dG′(s′1, x′).

We now consider another rope from s1 to y. Let G′′ be the resulting tree after the graph transforma-
tion. Let x′′ = s′′1 and y′′ be the new vertices and let e′′ = (x′′, y′′) be the new edge. If y′′ is owned by
P2 (and we know s′′1 = x′′ is owned by P1), then the relative increase in payoff (between G and G′′) for P1

equals dG′′(s
′′
2 , y
′′) − dG′′(s′′1 , x′′). We know that dG′′(s

′′
1 , x
′′) = 0. So the relative increase in payoff for P1

equals dG′′(s
′′
2 , y
′′) = dG′(s

′
2, y
′). Clearly dG′(s

′
2, y
′)− dG′(s′1, x′) ≤ dG′′(s

′′
2 , y
′′) so the rope in G′′ is at least

as good as any other arbitrary rope.

If y′′ is owned by P1 then the relative increase in payoff for P1 among the path s′′1 to s′′2 equals w(e′′) + ∆d′′,
where ∆d′′ = dG′′(s

′′
2 , y
′′) − dG′′(s′′1 , y′′). Note, that dG′′(s

′′
1 , y
′′) = w(e′′) because the shortest path from

s1 to y is obviously via the new edge e′′. The relative increase in payoff for P1 will be at least w(e′′) +
dG′′(s

′′
2 , y
′′)− w(e′′) = dG′′(s

′′
2 , y
′′). We obviously have dG′(s

′
2, y
′)− dG′(s′1, x′) ≤ dG′′(s

′′
2 , y
′′) so the rope in

G′′ is, in this case, at least as good as any other arbitrary rope from x to y, where x is owned by P1 and y
is owned by P2.

Case iii

If x′ is owned by P2 in the transformed graph G′, then the payoff for P1 has obviously not increased.
Furthermore, the payoff for P2 has increased at least by w(e′) = deucl(x, y) ≥ 0. We now consider another
rope from s1 to s1. Let G′′ be the resulting tree after the graph transformation. We now obviously have
that the payoff for both P1 and P2 remains unchanged in G′′. Therefore, the rope from s1 to s1 is equal or
better than the original rope.

33

G

y1

s1 s2

G’

y′1

s′1 s′2

y′2

G”

s′′1 s′′2

y′′2

z′1

z′′2

Figure 29: An example of a tree, where the rope is iteratively placed closer to a balance point.

Lemma 5.2. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively. If
the best rope placement has one endpoint x connected to a point on G owned by P1 and the other endpoint
y is connected to a point on G owned by P2, and such that y′ is owned by P1 in the graph transformation,
then there exists a rope placement such that there does not exist another rope placement that is ε better. This
rope has endpoint y such that dG′(s

′
1, y
′) + ε = dG′(s

′
2, y
′) with ε > 0 arbitrarily small. Where dG′(s

′, p′) is
the new shortest distance from s to p after the rope placement on the transformed graph G′.

Proof. Let y1 be any point owned by P2 on the tree G = (V,E). We consider the rope from s1 to y1 and let G′

be the resulting graph after the graph transformation, where s′1 and y′1 are the new vertices and e′ = (s′1, y
′
1)

the new edge. We choose y1 such that y′1 is owned by P1 after the graph transformation. Since y′1 is owned
by P1 we have that dG′(s

′
1, y
′
1) = w(e′). We call z′1 the new boundary point between s′1 and s′2. We have

that dG′(s
′
1, z
′
1) = w(e′) + 1

2∆d′, where ∆d′ = dG′(s
′
1, y
′
1)− dG(s2, y1). We define y2 as a point on the path

from y1 to z1 (with y′2 the same point but on the graph G′), such that dG′(y
′
2, z
′
1) = ε1 arbitrary small. We

know that the point y2 is owned by P2 and the point y′2 is owned by P1. An example can be seen in Figure 29.

Now consider another rope from s1 to y2 and let G′′ be the resulting graph after the graph transfor-
mation, where s′′1 and y′′2 are the new vertices and e′′ = (s′′1 , y

′′
2) the new edge. By triangle inequality

34

dG′′(s
′′
1 , y
′′
2) = w(e′′) ≤ dG′(s

′
1, y
′
1) + dG′(y

′
1, y
′
2) = dG′(s

′
2, y
′
2) + ε1, we can see that the point y′′2 is owned

by P1. We call z′′2 the boundary point between s′′1 and s′′2 on G′′. Note that the path from y′′2 to z′′2 will
pass the point z′′1 , unless dG′′(s

′′
1 , y
′′
2) = w(e′′) = dG′(s

′
1, y
′
1) + dG′(y

′
1, y
′
2) then we have z′′2 = z′′1 are the same

points. Now we will calculate the difference in payoff for both these graph transformations. The relative
increase in payoff for P1 in G′ equals w(e′)+2w(Ss2,G(z1)). The relative increase in payoff for P1 in G′′ equals
w(e′′)+2w(Ss2,G(z2)). We know that all points in Ss2,G(z1) are owned by P1 in both graph transformationsG′

and G′′, which implies, Ss2,G(z1) ⊆ Ss2,G(z2). We also know that all points κ in the path from z1 to z2 are in
the set Ss2,G(z2). Since w(κ) = 1

2 (w(e′′)−w(e′)) we know that w(Ss2,G(z2) ≥ 1
2 (w(e′′)−w(e′))+w(Ss2,G(z1)).

Therefore w(e′) + 2w(Ss2,G(z1)) ≤ w(e′′) + 2w(Ss2,G(z2)). The rope from s1 to y2 is at least as good as the
rope from s1 to y1.

We can now use induction to prove that for any rope from s1 to y1, we can find a better rope s1 to y2,
where y2 lies closer to the boundary point between s1 and s2. Note, we need the iterative method because
we assume that each vertex v must have a different distance to each site. If the rope was directly connected
to a point p1, such that p′1 becomes a boundary points in the transformed graph, then we can get an infinite
number of boundary points. If we assume that the endpoint of the rope, in case of a tie, will be owned by P1,
then the optimal rope placement will be from s1 to the boundary point. Otherwise we must avoid vertices
being boundary points. In this case an optimal rope does not exist and we can approximate the optimal
rope with a rope from s1 to the point yi where yi is arbitrarily close to the boundary point.

Lemma 5.2 uses points with the property dG′(s
′
1, y
′) = dG′(s

′
2, y
′). Since the endpoints of the rope are s1

and y′ we have the property deucl(s1, y) = dG(s2, y), for which we have the following definition.

Definition 5.1. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively.
A balance point y is a point on the graph G such that the euclidean distance from s1 to y equals the shortest
distance from s2 to y on the graph. In other words, deucl(s1, y) = dG(s2, y).

Lemma 5.3. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively.
There always exists at least one balance point p on the graph G such that P1 does not own p.

Proof. The tree is connected so we know there is exactly one path from s1 to s2. Along this path there is
exactly one boundary point p. We have that deucl(s1, s2) > dG(s2, s2) = 0 (if deucl(s1, s2) = 0 then s1 and s2

have the same location, but we omit this case). We know, by triangle inequality that deucl(s1, p) ≤ dG(s1, p) =
dG(s2, p). If deucl(s1, p) = dG(s2, p) then we found a balance point. Now assume deucl(s1, p) < dG(s2, p).
Since the distance function on G and in the euclidean metric is continuous along the path from p to s2, we
can use the intermediate value theorem. We have deucl(s1, s2) > dG(s2, s2) and deucl(s1, p) < dG(s2, p) so
there must be a point p′ along this path such that deucl(s1, p

′) = dG(s2, p
′).

In Lemma 5.2 the endpoints x and y of the rope are chosen in such a way that x equals the site s1 owned
by P1 and that y is a point on G such that y is owned by P2 and y′ is owned by P1. We now consider the
case where y′ is still owned by P2.

Lemma 5.4. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively. If
there exists an optimal rope placement to maximize for P1, such that one endpoint is x = s1 and the other
endpoint y is owned by P2 in G and after the rope in the transformed graph G′. Then there exists an optimal
rope placement such that y is the point owned by P2 for which the distance dG(s2, y) is maximal.

Proof. As shown in case ii of the proof for Lemma 5.1, the relative increase in payoff for P1 equals dG′(s
′
2, y
′)−

dG′(s
′
1, x
′). Because one endpoint of the rope x equals the site s1, we get dG′(s

′
1, x
′) = 0. Therefore, the

relative increase in payoff becomes dG′(s
′
2, y
′) = dG(s2, y). So, the rope from s1 to a point y for which

dG(s2, y) is maximal is obviously an optimal rope.

Both Lemmas 5.2 and 5.4 look at ropes with endpoints x and y where x is owned by P1 and y is owned by
P2. We will now look at ropes where both endpoints are owned by P1.

35

Lemma 5.5. Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively. If
there exists an optimal rope placement to maximize for P1, such that both endpoints get connected to points
on G owned by P1, then there exists an optimal rope placement between two points x and y on the graph,
such that x and y are the two furthest away points, using the Euclidean metric, owned by P1.

Proof. Say we have two points x and y on the tree G = (V,E). Both points x and y are owned by P1.
After the rope placement we obtain the transformed graph G′, such that the points x′ and y′ have the same
location as x and y but are now vertices that share the added edge e′. Both x′ and y′ are owned by P1. We
have two cases:

i dG′(s1, x
′) = dG(s1, x) and dG′(s1, y

′) = dG(s1, y)

ii dG′(s1, x
′) < dG(s1, x)

Case i

In this case, the shortest path from s1 to either endpoint remains unchanged. This means that there is an
inner boundary point on the edge e′. This implies that there exists a point e′λ such that the path from s1

to e′λ via x′ has the same distance as the path from s1 to e′λ via y′. Since the distances to x′ and y′ remain
unchanged, the payoff of P1 is only increased by w(e′) = deucl(x, y). Let x̄ and ȳ be any two points owned by
P1. A rope from x̄ to ȳ increases the payoff of P1 by at least deucl(x̄, ȳ). Therefore, if deucl(x, y) ≤ deucl(x̄, ȳ)
then we have that the rope from x̄ to ȳ is at least as good as the rope from x to y.

Case ii

In this case we have dG′(s1, x
′) < dG(s1, x), which implies that the new shortest path from s1 to x′ runs

through the rope e′. Now let the boundary point between P1 and P2 be the point p (with p′ the same point
on G′, note that p′ is not necessarily a boundary point). Again we have two cases, either the shortest path
on G from s1 to p goes through x, or it does not go through x.

We first discuss the case in which the shortest path on G from s1 to p goes through x. We now know
that dG(s1, p) = dG(s1, x) + dG(x, p). We also know that dG′(s1, p

′) = dG′(s1, x
′) + dG(x′, p′). Since

dG(x, p) = dG(x′, p′) we get that dG′(s1, p
′) < dG(s1, p). The shortest distance from s2 to p′ remains un-

changed so p′ is not a boundary point. This implies that the point p′ is now owned by P1. We can now use
the same method used to proof Lemma 5.1, that the rope from s1 to p′ is a better rope than the rope from
x to y. This implies that x and y is not an optimal rope if the shortest path on G from s1 to p goes through x.

We will now discuss the case in which the shortest path on G from s1 to p does not go through x. Since G
is a tree, there is no path from x to p. Therefore the payoff is only increased by the weight of e′ which is
equal to the euclidean distance deucl(x, y) of the two points x and y. For any two points x̄ and ȳ owned by
P1 such that deucl(x, y) ≤ deucl(x̄, ȳ) we get that the rope from x̄ to ȳ is at least as good as the rope from x
to y.

In both the cases i and ii, we have that there exists a rope at least as good if deucl(x, y) is maximized.
Thus the lemma holds.

5.1.1 Candidate ropes

In Lemma 5.1 and 5.2 we can conclude that a rope between two points p1 and p2, such that both points in G
are owned by a different player but will both be owned by P1 in the transformed graph G′, is optimal when
one point is s1 and the other point is as close to a balance point as possible. A rope can sometimes not be
placed on a balance point p itself because if p coincides with a vertex then both P1 and P2 has the same
distance to the vertex in the transformed graph, which can result in an infinite number of boundary points.
For practical purposes we say that a rope to a balance point can be placed and that P1 will win the ’tie’.

36

This means that to avoid an infinite number of boundary points, that the Voronoi Cell of P1 will expand
beyond the vertex coinciding with p′ while the Voronoi Cell of P2 will stop expanding beyond this vertex.
Note that the payoff will be limε↓0 f(p− ε), where f(x) is the payoff when the rope is placed between s1 and
x, and where ε ↓ 0 means that ε approaches 0 such that dG′(s

′
1, p− ε) < dG′(s

′
2, p− ε). We call such a rope

a Type I candidate rope. An example can be seen in Figure 30.

p1

p2

p3

s1

s2

Figure 30: An example of a tree, where the red area is owned by P1 and the blue area by P2. The orange circles
indicate the balance points. The optimal rope in this example is from s0 to p2.

From Lemma 5.5 we can conclude that a rope between two points p1 and p2, such that both points are owned
by P1, is optimal when p1 and p2 are the two furthest points owned by P1. We call such a rope a Type II
candidate rope. An example of an optimal Type II candidate rope can be seen in Figure 31.

s1

s2

Figure 31: An example of a tree, where the red area is owned by P1 and the blue area by P2. The dashed orange
line indicates a Type II candidate rope, which is also an optimal rope.

From Lemma 5.4, we see that a rope between two points p1 and p2, such that both points in G and the
transformed graph G′ are owned by a different player, is optimal when one endpoint is p1 and the other
endpoint is the point owned by P2 furthest from s2. We call such a rope a Type III candidate rope. An
example of an optimal type III candidate rope can be seen in Figure 32. Obviously, the optimal rope on a
tree G is either a Type I, Type II or a Type III candidate rope.

37

G

G′

s1

s′2

s2

s′1

Figure 32: An example of a tree, where the red area is owned by P1 and the blue area by P2. The dashed orange
line indicates a Type III candidate rope, which is also an optimal rope. The transformed graph G′ is also shown after
inserting the Type III candidate rope.

5.1.2 The algorithm

Given a tree G = (V,E) and two sites s1 and s2 belonging to player P1 and P2 respectively. We say s1 has
coordinates (x0, y0).

First we will try to find the type I candidate ropes. Given any edge segment e owned by P2 spanned
between two points p1 = (x1, y2) and p2 = (x2, y2), where xi and yi are the coordinates in the planar embed-
ding and such that the edge segment e does not contain any boundary point. Note, we use edge segments
here because some edges contain a boundary point and we only want to look at the part of the edge owned
by P2. We say that an edge segment is spanned between two vertices or a boundary point and a vertex. We
will denote a distance function from s1 to eλ in the euclidean metric and from s2 to eλ along the graph G.
If λ = 0 we get eλ = p1 and if λ = 1 we get eλ = p2. The function f(λ) denotes the distance from s2 to eλ
via the graph, in other words f(λ) = λdG(s2, p2) + (1 − λ)dG(s2, p1). We denote the function g(λx) as the
euclidean distance from s1 to eλ, which is g(λ) =

√
(x0 − (λx1 + (1− λ)x2))2 + (y0 − (λy1 + (1− λ)y2))2.

A Type I candidate cut will be at eλ for which f(λ) = g(λ). This point can be calculated in O(1) time.
For each edge-segment, of which we have O(|E|) many, we have to calculate the balance point. Finding all
balance points therefore takes O(|E|) time. For each balance point, we have to calculate how the payoff is
affected. Recalculating the Voronoi Cells takes O(|V |+ |E|), so finding the best Type I candidate rope takes
O(|E| · (|V |+ |E|)) time. Since the graph is a tree the algorithm takes O(|V |2) time.

We will now try to find the type II candidate rope. There is only one type II candidate rope needed to
be found. Since the Voronoi Cell is one connected component, all we need to do is find the diameter of
the points owned by P1. When we found the two points owned by P1 which are furthest apart using the
Euclidean metric, then the payoff for P1 is increased by the length of this rope. Finding the (best) Type II
candidate rope therefore takes O(|V | log |V |) time.

Lastly, we will find the Type III candidate rope. We can simply do a Breadth-First Search from s2 to
find the furthest point p from s2 owned by P2. If the Euclidean distance deucl(s1, p) is smaller than distance

38

along the graph dG(s2, p), then point p will be owned by P1 after inserting the rope. In this case, there
does not exist a Type III candidate rope. Otherwise the relative payoff increase for P1 will be dG(s2, p).
Calculating this candidate rope takes O(|V |+ |E|) time.

6 Extensions

6.1 Cuts on arbitrary graphs

We presented an algorithm that works on balanced trees in O(n log2 n) and a simple algorithm that works on
arbitrary graphs in O(n2). I expect there exists an algorithm that works on arbitrary graphs in sub-quadratic
time. Let G be an arbitrary graph and let the graph in Figure 33 be its ESPT. If we know how the payoff
changed after applying cut c1 or cut c2 on the graph G, then we can calculate what will happen if we apply
cut c3 on the graph G.

v0

c1 c2
v1

c3

Figure 33: An example of a tree, where the red area is owned by P1 and the blue area by P2. Two example cuts
are presented in the ESPT representation.

We consider the cut c3. Let e1 and e2 be the child edges of v1. The Voronoi Cell corresponding to the
closest boundary point in the subtree of v1 will take control of v1. The Voronoi Cell then proceeds to flow
downwards. We need some function f ′v,e,Pi initialized on the ESPT. The function f ′v,e,Pi gives the payoff of
P1 solely on the subtree in the ESPT spanned by v and e. Let v be a vertex with a child edge e connected
to a boundary node p in the ESPT. If we cut somewhere in a subtree containing v, a new Voronoi Cell never
reaches v with a smaller distance then before the cut. Let d(p) be the distance of the boundary point p to the
closest site. If we want to evaluate a function f ′v,e,Pi(x), we get that x can never be smaller then d(p)−w(e).

Given that the boundary point is with an opposing player, we get f ′v,e,P1
(x) = w(e)− 1

2 (x− (d(p)− w(e))).
So in the example given in Figure 33, cut c3 can be calculated by finding out the closest boundary point to
v1. Then we can use a function query to find out how the payoff of each player is affected.

However, this does not work with cross edges. An example ESPT is drawn in Figure 34. Note, that in
this Figure, the boundary nodes b1 and b2 actually represent an inner boundary point and that the parent
edges of b1 and b2 actually represents a cross edge. Let v1 be the lowest common ancestor of b1 and b2. If
we cut in e2, the Voronoi Cell at b1 starts to expand upwards. In other words, the boundary node b1 is
active. The same holds for a cut in e3; the boundary node b2 would be active. But once we cut in the edge
e1, the Voronoi Cell to both b1 and b2 is cut off. In other words, b1 and b2 become inactive boundary nodes.
This implies that the set of functions f ′v,e,Pi(x) are different with respect to cutting below or above the node
v1. Let B be the set of the lowest common ancestors of the endpoints of all cross edges. In other words,
B = {v | v = LCA(a, b) : (a, b) ∈ E a cross-edge }. We have |B| ≤ |V |. I suspect that there is an algorithm
to find the optimal cut on arbitrary graphs in O(|B| · |S| · (|V |+ |E|)) time.

39

v0

b1 b2

v1

e1

e2 e3

Figure 34: An example of an ESPT, where the red area is owned by P1 and the blue area by P2. The boundary
nodes are connected with a dashed line to illustrate the connections on the actual graph.

6.2 Percentage of winning cuts

A winning cut is a cut, such that the payoff of P1 is greater then the payoff of P2 in the transformed graph.
More generally, the payoff of P1 is greater than the payoff of any other player. This paper presents an
algorithm that finds the optimal cut in O(|E| · (|V | + |E|)) time. It does so by simulating a cut on each
Tree Edge following Lemma 4.3. The algorithm can be slightly adapted to find the percentage of winning
cuts. Let e = (v, w) be an edge in the graph G. Let G′ be the transformed graph after cutting at point
eλ. Note that the location of the cut does not influence which player owns v′ and w′ after the cut. The
location of the cut only affects the payoff gained on edge e′. Whereas P (v′) would gain λw(e) and P (w′)
would gain (1− λ)w(e). We can design an algorithm that simulates a cut at each edge e ∈ E and calculates
the payoff for each player. The percentage of winning moves on e can then be calculated in O(1), so the
entire algorithm would take O(|E| · (|V |+ |E|)).

This implies that if the algorithm works in such a way that it calculates the payoff for a cut on each
edge in the graph, it does not take any extra time complexity to check for the percentage of winning moves.
The algorithms presented to solve arbitrary trees with 2 players therefore have the same time complexity as
the algorithm for getting the percentage of winning moves.

6.3 Ropes

In this thesis, a small start was made on Ropes in the Continuous Voronoi game on graphs. The next step
would be to look at multiple opposing sites. But when the opponent has multiple sites, it is not always
guaranteed that the rope is a Type I, Type II or Type III candidate rope. An example is shown in Figure
35, where a tree is drawn with two opposing sites. The balance points are indicated by the orange circles.
The optimal rope here is from the site s0 to the vertex v1.

40

s0

s1

s2

v1

Figure 35: An example of a tree, where the red area is owned by P1 and the blue area by P2. The vertices in T are
colored in light blue. The balance points are indicated by orange circles.

It is still unclear that adding the candidate cut from s0 to any inner boundary point of P2 would always
be sufficient to encapsulate the optimal solution. However, it does seem that when there is no Type II or
Type III candidate rope that is optimal, a rope should always be drawn from s0. For general graphs, a rope
should probably always be connected to a site owned by P1. Such a claim greatly reduces the search space
and the candidate ropes needed to be checked, but it still needs proof. Due to this property, this kind of
rope, where any two arbitrary points x and y can be connected and where crossing edges are not connected
(Figure 5), seems to be the least interesting. A type of rope, which can only connect x and y such that the
graph remains planar (Figure 6), therefore seems to be a harder and more interesting problem. Since now,
one of the end points of the rope is not necessarily fixated to a site owned by P1.

6.4 Percentage of winning ropes

Finding the percentage of winning ropes is still an open problem. The problem of finding a rope is a two-
dimensional problem, where the placement of both endpoints must be found. The algorithm presented in this
paper for ropes indicates that the problem can be reduced to a one-dimensional problem since one endpoint
is always connected to a site owned by P1. In other words, the search space is reduced significantly for finding
the optimal rope. Finding the percentage of winning ropes is therefore a different, more computationally
expensive task.

7 Discussion

In this paper we extended Tom Rijnbeek’s study on the game Lines. We showed that the problem of finding
the best cut on a graph can be done in polynomial time.

For ropes we mainly focused on developing a framework for the set of problem. A start was made on
the problem where there are no restrictions on the endpoints of the rope, and showed that this variant is
probably the least interesting. However, the problem was not studied extensively and needs further research.

Further research is required to find an efficient algorithm for solving ropes and to find a sub-quadratic
algorithm for cuts on arbitrary graphs. Section 6 outlines the set of problems for future research.

41

References

On graph games

[1] H.L. Bodlaender and D. Kratsch, ”Kayles and Nimbers”, Journal of Algorithms 43, pages 106-119,
2002.

[2] H.L. Bodlaender, ”On the complexity of some colouring games”, R. Möhring, (Ed.), Graph The-
oretical Concepts in Computer Science, vol. 484, Lecture Notes in Computer Science, Springer,
Berlin, pp. 30–40, 1991.

[3] A. Lee and I. Streinu, ”Pebble game algorithms and sparse graphs”, Discrete Mathematics 308,
pages 1425-1437, 2008.

[4] J.-W. Hong and H.T. Kung, ”I/O Complexity: The red-blue Pebble game”, Proc. ACM Sympo-
sium on Theory of Computing, pages 326-333, 1981.

[5] J.F. Hopcroft, P. Wolfgang and L.G. Valiant, ”On Time versus Space”, Journal of the ACM 24,
pages 332-337, 1977.

[6] H.A. kierstead and W.T. Trotter, ”Planar Graph colouring with an Uncooperative Partner”,
Journal of Graph Theory 18, no. 6, pages 569 - 584, 1994.

[7] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Rucński and P. Tetali, ”Ramsey games against a one-
armed bandit”, Combinatorics, Probability and Computing 12, pages 515-545, 2003.

[8] J. Beck, ”Ramsey games”, Discrete Mathmatics 249, pages 3-30, 2002.

[9] G.D. Prichett, ”The Game of Sprouts”, The Two-Year College Mathematics Journal 7 no 4, pages
21-25, 1976.

[10] G. Cairns and K. Chartarrayawadee, ”Brussels Sprouts and Cloves”, Mathematics Magazine 80,
no 1, pages 46-58, 2007.

[11] R. Nowakowski and P. Winkler, ”Vertex to Vertex pursuit in a graph”, Discrete Mathematics 43,
pages 235-239, 1983.

[12] R.M. Wilsox, ”Graph Puzzles, Homotopy, and the Alternating Group”, Journal of Combinatorial
Theory 16, pages 86-96, 1974.

On Voronoi games

[13] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, R. van Oostrum, ”Competitive facility location:
the Voronoi game”, Theoretical Computer Science 310 pages 457-467, 2004.

[14] R. Hosseini, M. Khosravian, M. Davoodi and B.S. Bigham, ”One Round Voronoi Game on Grid”,
EuroCG, 2016.

[15] O. Cheong, S. Har-Peled, N. Linial and J. Matousek, ”The One-Round Voronoi Game”, Discrete
and Computational Geometry 31, no 1, pages 125-138, 2014.

[16] S. Bandyapadhyay, A. Banik, S. Das and H. Sarkar, ”Voronoi Game on Graphs”, Theoretical
Computer Science 562, pages 270-282, 2015.

[17] A. Banik, B.B. Bhattacharya and S. Das, ”Optimal Strategies for the One-Round Discrete Voronoi
Game on a Line”, Journal of Combinatorial Optimization 26, no 4, pages 655-669, 2013.

42

On graphs / polygons

[18] J. Luo, and C. Wulff-Nilsen, ”Computing Best and Worst Shortcuts of Graphs Embedded in
Metric Spaces”, Algorithms and Computation, pages 764-775, 2008.

[19] O. Cheong, A. Efrat and S. Har-Peled, ”Finding a Guard that Sees Most and a Shop that Sells
Most”, Discrete and Computational Geometry 37, pages 545-563, 2007.

[20] M. Farshi, P. Giannopoulos and J. Gudmundsson, ”Finding the Best Shortcut in a Geometric
Network”, Proc. 21th Symposium on Computational Geometry, pages 327-335, 2005.

[21] C. Gutwenger, P. Mutzel, and R. Weiskircher, ”Inserting an Edge into a Planar Graph”, Algo-
rithmica 41, pages 289-308, 2005.

[22] A. Okabe, T. Satoh, T. Furuta, A. Suzuki and K. Okano, ”Generalized network Voronoi diagrams:
Concepts, computational methods, and applications. International Journal of Geographical Infor-
mation Science, 22(9), pages 965-994, 2008.

On Lines - gamious

[23] T. Rijnbeek, ”Continuous Voronoi Games on Graphs with Multiple Opponents”, Department of
Information and Computing Science, Utrecht University, 2015.

[24] J. van Dieren, ”Small project”, Department of Information and Computing Science, Utrecht Uni-
versity 2015.

43

	Abstract
	Introduction
	Lines - Gamious

	Problem definition
	The graph
	Making a cut - Problem definition
	Adding a rope - Problem definition
	Types of ropes

	Win condition
	Extended Shortest Path Tree representation

	Making a cut
	Simple solution
	A cut on a tree with two sites
	A cut on a tree with multiple opposing sites
	Candidate cuts
	The algorithm

	A cut on a tree with multiple sites
	Payoff change in ESPT
	Payoff change on entire tree
	Data structure
	Graph simplification
	The algorithm

	Placing a rope
	A rope on a tree with two sites
	Candidate ropes
	The algorithm

	Extensions
	Cuts on arbitrary graphs
	Percentage of winning cuts
	Ropes
	Percentage of winning ropes

	Discussion

