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I. Introduction
The self-assembly of micron-sized particles has drawn considerable attention over the past decade
[1]. Their ability of forming phononic crystal has been a topic of debate and study [2]. Advances in
photolithographic techniques have lead to the development of the stop-flow lithography method, which
enables the fabrication of polyethylene glycol particles with a wide variety of shapes in microfluidic
devices [3–5].

Recent work by Uspal, Eral and Doyle has focused on the theoretical aspect of these particles’ self-
organization. These researchers investigated the hydrodynamic interactions and collective motion of
clusters of disks [6][7] and asymmetrical particles composed of disks held together by rigid shafts [8][7].
These particles, confined between the vertical walls of a microchannel, are set in motion when a pressure
drop is applied across the channel. The thin lubrication layers separating the faces of the particles
from the vertical walls increase the drag and the particles lag the surrounding fluid, thus introducing
a flow disturbance field. It is this disturbance which gives rise to hydrodynamic interactions between
the particles and causes their self-organisation. The system being ’approximately 2D’ is dubbed quasi
two-dimensional or q2D.

In their work, Uspal and Doyle obtain the fluid velocity field around a particle by numerically
integrating the equations of motion. An alternative is to ’build’ a system which contains a fluid and
the particles of interest and observe its time evolution – in other words, one can also simulate the
behaviour of the system.

Classical simulation techniques such as molecular dynamics, however, are not fitting for such a
system, where there is a separation of both length and time scales – one needs to incorporate both the
mesoscopic colloid, as well as the microscopic fluid particles. In such cases coarse-grained methods come
into play, managing to reconcile this disparity. In coarse-grained simulations the detailed properties
of one component, usually the fluid, are neglected and it is modelled in such a way that it still
recovers the relevant physical phenomena while maintaining a low computational price. In our case
this phenomenon is the fluid-mediated interaction between particles.

Two popular coarse-grained methods which recover hydrodynamics are Stochastical Rotational
Dynamics (SRD)[9] and the Lattice Boltzmann Method (LBM)[10]. Both schemes reduce the degrees
of freedom the fluid has by either confining groups of particles to a grid, like in LBM, or by significantly
reducing the number of fluid particles present (SRD). Their applicability to q2D systems has not been
compared, at least to our knowledge, and it is instructive to determine which of the two is the better-
fitting tool when studying hydrodynamic interactions in q2D.

Since we are interested in both LBM and SRD we turn our attention to multi-purpose simulation
packages, which support both. One such is the Large-scale Atomic/Molecular Massively Parallel
Simulator, commonly known as LAMMPS [11][12][13]. What makes LAMMPS particularly convenient
is its effective parallelization of both algorithms.

Having said this, we can outline the main goal of our work: to implement an asymmetric dumbbell
particle in a coarse-grained fluid, track its motion and try to verify the experimental observations
reported in [7]. To that end we use the SRD and LBM algorithms as implemented in the multi-
purpose simulator LAMMPS.

This rest of the report is structured as follows:

1. Chapter II. provides the theoretical background for understanding fluid mechanics. Starting
from the divergence theorem, mass and momentum conservation, we derive the Navier-Stokes
equations for an incompressible fluid. Since we are interested in the flow in a microfluidic channel,
we also derive the plane Poiseuille profile. This chapter draws inspiration from the works of H.
Bruus and his course in theoretical microfluidics [14].

2. In Chapter III. we introduce the two methods we use to simulate Q2D flow in LAMMPS – Lattice
Boltzmann and Stochastic Rotational Dynamics. We describe both algorithms in detail and, by
introducing important quantities like the Reynolds and Schmidt numbers, we justify our choice
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of simulation parameters. Our concise review of the two methods is based on reviews by Padding
and Louis [15] (SRD) Gompper et al. [16] (SRD) and Chen and Doolen [17](LBM).

3. Our simulation results are presented in Chapter IV. The fluid flow field around a dumbbell is
obtained with the Lattice Boltzmann package. We manage to observe rotation of the colloid but
due to computational limitation we cannot draw quantitative conclusions. We try to couple a
non-spherical colloid to the SRD fluid but this attempt is not successful.

4. In Chapter V. we discuss the results we obtain and identify the drawbacks of both packages,
while proposing possible remedies.

5. We conclude our report with Chapter VI.

II. Theory
A. Fluid Mechanics
Full description of any fluid flow requires the introduction of the Navier-Stokes equations (NSE). They
are a set of non-linear partial differential equations used to obtain the velocity field under some initial
and boundary conditions. For some simple cases (flow of pure incompressible fluid in a slit, flow
around a sphere in three-fold periodic boundary conditions, etc.) one is able to obtain an analytical
solution. This task, however, is overwhelmingly difficult for the system we are interested in and in
such cases one is forced to resort to numerical calculations. Simulating a simple system and comparing
the computational result to the analytical one is a common way of verifying a proposed algorithm. A
close match between the two results serves as basis for further augmentations of the system.

In this section we obtain the NSE by first deriving the continuity equation, i.e., how system
properties are conserved. Then we use this equation to enforce mass and momentum conservation of
our system. Finally, introduce the idea of the stress tensor and with its help derive the final form of
the NSE.

1. Continuity Equation
We will start by defining a volume Q enclosed by a surface ∂Q and we will consider a vector field Jv
within this volume. Here, J is an intensive property of the fluid and v is the fluid velocities. According
to the Gauss-Ostrogradsky (also known as divergence) theorem the net production/consumption of J
by all sources and all sinks (which can be deemed sources with a negative contribution to J) within
Q is equal to the net flow out of the region. Or, in mathematical terms, the divergence of the vector
field, which reflects the strength of the sources and sinks, adds up to the outward flow through the
surface: ∫

Q

∇ · (Jv) dV =

∮
∂Q

Jv · ndS, (1)

where n is the vector normal to the surface. We couple this equation to Reynolds’ Transport Theorem,
which defines the change in a given property with respect to time as the result of outward flow from
the region and the production/consumption by sources and sinks, h, within it:

d

dt

∫
Q

JdV = −
∮
∂Q

Jv · ndS −
∫
Q

hdV (2)

Using the divergence theorem we can convert the surface integral on the right hand side of Eq. 2
into a volume integral according to Eq. 1. Then, applying Leibniz’s rule we can change the order
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of differentiation and integration and bring the time derivative inside the integral. Rearranging the
equation and combining the three volume integral yields:∫

Q

(
∂J

∂t
+∇ · (Jv) + h

)
dV = 0 (3)

This equation must hold for any closed surface, which is only possible when the integrand itself equals
zero:

∂J

∂t
+∇ · (Jv) + h = 0, (4)

which is the generalized form of the continuity equation for any scalar fluid property.

2. Mass conservation
To impose mass conservation we use the fluid mass density as J and set h = 0, since there are no
sources or sinks of mass, which physically corresponds to a system where no chemical reactions take
place:

∂ρ

∂t
+∇ · (ρv) = 0 (5)

A (virtually) incompressible fluid like water does not change its density with time, nor are there any
pressure gradients. Hence, the first term in the last equation is equal to zero and if we divide by ρ, we
obtain the mass continuity equation:

∇ · v = 0 (6)

3. Momentum conservation
The continuity equation can be written not only for a scalar but also for a vector, such as the momen-
tum. We start by substituting J = ρv in Eq. 4:

∂ρv

∂t
+∇ · (ρvv) + h = 0 (7)

Here the source/sink term is a vector due to the tensor rank of the equation – all other terms in it are
vector quantities. We write the time derivative and the divergence of the velocity dyad explicitly:

ρ
∂v

∂t
+ v

∂ρ

∂t
+ vv · ∇ρ+ ρv · ∇v + ρv∇ · v + h = 0 (8)

The third and fifth term can be combined into ∇ · (ρv). Grouping these two terms with the time
derivative of the density yields:

v

(
∂ρ

∂t
+∇ · (ρv)

)
︸ ︷︷ ︸

=0

+ρ

(
∂v

∂t
+ v · ∇v

)
+ h = 0 (9)

We have already proven in the previous subsection the first term is zero for an incompressible fluid .
The second term is known as the material derivative D/Dt of v and is nothing more than the total
derivative of v (t, x, y, z) with respect to time:

D

Dt
v (t, x, y, z) =

d

dt
v (t, x, y, z)

=
∂v

∂t
+
∂v

∂x

dx
dt

+
∂v

∂y

dy
dt

+
∂v

∂z

dz
dt

=
∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z

=
∂v

∂t
+ v · ∇v

(10)
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We can now write Eq. 9 in a concise manner:

ρ
Dv

Dt
+ h = 0 (11)

Subtracting h from both sides of the equation yields the body force equivalent of Newton’s second law
mg = F :

ρ
Dv

Dt
= h (12)

We omit the negative sign because the definition of sources and sinks, hence, their sign, is arbitrary.

4. Cauchy Stress Tensor
It is generally accepted that the sources and sinks can be classified into two main groups: surface and
body forces. The former are given by the divergence of the Cauchy stress tensor, ∇ · σ, that is, the
stress flux through the surface of a given control volume. On the other hand, the most common body
force acting on the fluid particles is gravity. Others include electromagnetic, centrifugal or Coriolis
forces:

ρ
Dv

Dt
= ∇ · σ + f (13)

The stress tensor is usually split into two contributions: pressure forces which change the volume of the
system and stresses which change its shape and position. These two contributions are mathematically
represented by two tensors, the volumetric stress tensor, which is a 3-by-3 unity matrix multiplied by
the negative pressure −p, and the stress deviator tensor T :

σ =

 σxx τxy τxy
τyx σyy τyz
τzx τzy σzz

 =

 −p 0 0
0 −p 0
0 0 −p

+

 σxx + p τxy τxy
τyx σyy + p τyz
τzx τzy σzz + p

 = −pI +T (14)

Plugging this equation’s final result in Eq. 13, we obtain the most general form of the Navier-Stokes
equation:

ρ
Dv

Dt
= −∇p+∇ · T + f (15)

To write down the deviatoric stress tensor explicitly we first need to introduce the concept of dynamic
viscosity η which is the fluid’s ability to dissipate momentum and relates the sheer stress and strain
rate:

τij = η
dvi
dxj

, (16)

where vi is the ith component of the velocity vector and xj is a coordinate (in Cartesian coordinates i
and j are x, y and z). If the viscosity is constant regardless of the strain rate, that is, if the sheer stress
is linear in the strain rate, then we speak of a Newtonian fluid. For an incompressible Newtonian fluid
the components of T are given by:

T i,j = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(17)

We write down the second term on the right-hand side in Eq. 15 explicitly by making use of the
short-hand notation for a partial derivative ∂n/∂xn = ∂xn :

∇ · T = η∇ ·

 2∂xvx ∂yvx + ∂xvy ∂zvx + ∂xvz
∂xvy + ∂yvx 2∂yvy ∂zvy + ∂yvz
∂xvz + ∂zvx ∂yvz + ∂zvy 2∂zvz

 (18)
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For simplicity we focus on the Tx.j component of T :

∇ · Tx,j = η

 ∂x
∂y
∂z

 ·
 2∂xvx

∂yvx + ∂xvy
∂zvx + ∂xvz


= η (2∂xxvx + ∂yyvx + ∂xyvy + ∂zzvx + ∂xzvx)

= η∇2vx + η∂x∇ · v︸ ︷︷ ︸
=0

(19)

In the second step we group the second-order pure partial derivatives into the Laplacian of vx. The
remaining terms can be represented as the first derivative of the velocity’s divergence with respect to
x. From mass conservation we know div (v) is zero. Carrying out identical calculation for the other
two components of T results in a simple expression for div (T ):

∇ · T = η∇2v (20)

5. Dimensionless Form of NSE and Reynolds Number
We are now able to write down the final form of the NSE for an incompressible isotropic Newtonian
fluid:

Dv

Dt
= −1

ρ
∇p+ ν∇2v + g (21)

We have divided through by the density, thus introducing the kinematic viscosity ν = ηρ−1. In this
form the NSE depends on many different parameters of the system – density, viscosity, length and
time scales etc. To generalize even further we convert all external parameter (that is, those which can
be altered without changing the fluid itself) to their dimensionless counterparts (denoted by tildes)
via a characteristic length scale L and a characteristic velocity u:

v = uṽ t =
L

u
t̃

∂

∂x
=

1

L

∂

∂x̃
p = ρu2p̃ g =

u2

L
g̃ (22)

Making all substitutions and multiplying the resulting equation by Lu−2 results in the dimensionless
form of the NSE (for convenience we drop all tildes):

Dv

Dt
= −∇p+ 1

Re
∇2v + g (23)

The dimensionless number Re = uLν−1 is known the Reynolds number and is defined as the ratio
of the inertial forces to the viscous drag. This number characterizes the motion of a particle in the
fluid: if Re � 1 the flow is turbulent and inertial effects play a major role, while for Re � 1 viscous
drag is the dominating force acting on the suspended particle. The importance of Re is evident in
the context of the dynamic similarity principle, which states that two systems with similar geometry
(identical shape, different sizes) and identical Reynolds and Euler numbers behave identically. In other
words, if the parameter choice in a simulation yields Re and Eu which are close if not equal to those
for the experimental system, then the simulation can accurately predict the behaviour of the system
for a wide variety of parameters.

6. Flow Between Parallel Plates
In this subsection we will derive the steady-state velocity profile expected for a fluid flowing between
two parallel plates driven by a bodyforce, which is the system we will be simulating. Though the
experimental system uses a pressure drop to set the fluid in motion, it has been shown [18] that a
gravity-type force is an adequate substitute and has fewer pitfalls.

5



We start our derivation from Eq. 21 and we eliminate some of the terms. Since we are interested
in the steady-state regime of the flow, the velocity field does not change in time, i.e., the material
derivative of the velocity is zero. There is no pressure drop in our system, hence we also neglect
the first term on the right hand side. Furthermore, for z-walls and periodic BC in the x- and y-
directions, only the flow component of the velocity is non-zero and it depends solely on the z-coordinate:
vx (z) 6= 0, vy = vz = 0. Finally, at the boundaries z = 0 and z = Lz, the velocity is always zero:
vx (z = 0, t) = vx (z = Lz, t) = 0. By putting these arguments together we write the equation of motion
and the two boundary condition equations:

ν
∂2vx (z)

∂z2
+ gx = 0

vx (z = 0) = 0

vx (z = Lz) = 0

(24)

Separating variables in the first equation and integrating twice gives:

vx (z) = −
gx
ν

z2

2
+ zC1 + C2, (25)

where C1 and C2 are integration constant which we determine from the BCs. Setting z = 0 we deduce
C2 = 0. Using the second BC and solving for C1 yields in:

C1 =
gx
ν

Lz
2

(26)

Combining this result with the first line of Eq. 24 and rearranging, we obtain the final form of the
velocity profile:

vx =
gx
2ν
z (Lz − z) (27)

The resulting parabola is known as a Poiseuille profile and it is typical for flow in a slit and in a tube.
The maximum velocity is achieved in the mid-plane of the channel:

vmax =
gxL

2
z

8ν
(28)

and it is this velocity which is considered characteristic of the flow and is used to determine the
Reynolds number. The characteristic length scale, on the other hand, is the depth of the channel.
Then, the Reynolds number for a plane Poiseuille flow can be explicitly written:

RePois =
gxL

3
z

8ν2
(29)

The importance of the last three results becomes clear when we put them in the context of our
upcoming task. We will use Eq. 29 when choosing the magnitude of the body-force used in the
simulations and eq. 27 and 28 to validate the fluid flow generated by LAMMPS in a simple manner.

III. Methods
Lattice Boltzmann Method (LBM)

1. Algorithm
Stemming from Lattice Gas Automata [19], the Lattice Boltzmann method aims at solving the Boltz-
mann equation on a Cartesian grid. Each grid point represents a fluid pocket and is characterized by
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the one-particle distribution function f (x,v, t), which gives the probability of finding a particle with
velocity v at position x at time t. In LBM both space and time are discretized which leads to a finite
number of possible velocities. Depending on the dimensionality of the system and the model chosen the
total number of accessible velocities varies. A common implementation of LBM for three-dimensional
fluids is the D3Q19, where 19 is the total number of velocities. In this implementation a particle is
positioned in the center of a cube and may move to the center of one of the faces (6), the center of one
of the edges (12) or remain where it is. The probabilities for these movements are 1/18, 1/36 or 1/3,
respectively. A high symmetry in particle motion is a required to recover the proper hydrodynamic
behaviour, hence, the large number of possible movement directions.

The algorithm consists of two steps – streaming, during which particles positions are updated, and
collision, which ensures fluid relaxation to the local equilibrium distribution (for simplicity we assume
a time increment of 1):

f (x+ v,v, t+ 1)− f (x,v, t) + F (v) =
1

τ
(f eq (x,v, t)− f (x,v, t)) (30)

Here, F (v) is a forcing term, which adds a body-force to each particle, thus inducing flow. In the
BGK model [20], the relaxation to local equilibrium f eq (x,v, t) is a single-step process characterised
by the characteristic time τ = (1 + 6ν) /2, with ν being the the kinematic viscosity of the fluid.

2. Dimensionless Numbers and Parameter Choice
One of the crucial features of colloids in Q2D flow is the lubrication layers separating the colloid from
the walls. They mediate the friction between the colloid and the plates, thus, considerably reducing
its velocity with respect to the far field fluid. This ultimately leads to the dipolar shape of the flow
velocity profile in the xy-plane around the dumbbell. Acknowledging the importance of these layers,
start building a system in which the lubrication layers are fully resolved – their thickness δ in grid
edge lengths should be at least 4. Using the experimental system geometry [21], we set δ = 5 a and
write down the following ratios:

δ

Lz
=

lubrication layer thickness
channel depth

≈ 0.06 ⇒ Lz = 70 a (31)

R

Lz
=

disc radius of dumbbell
channel depth

≈ 0.80 ⇒ R = 55 a (32)

Ly
R

=
channel width

disc radius of dumbbell
= 12 ⇒ Ly = 660 a (33)

Lx
Ly

=
channel length
channel width

= 2 ⇒ Lx = 1320 a (34)

These parameters yield a system of Lx×Ly ×Lz = 1320× 660× 70, dimensions we employ for the
first few simulations we carry out. Later in our study we switch to a simulation box Lx × Ly × Lz =
800× 800× 70 because the velocity field distortion, caused by the dumbbell in the flow direction, does
not span more than 300 grid points upstream and downstream from the colloid. Therefore, we can
truncate the simulation box in the x-direction to reduce computational time.

In this implementation of LBM, the colloid is represented by a mesh of Nmesh point particles which
are held together by a rigid potential. The mesh is coupled to the fluid by a four-point interpolation
scheme based on the immersed boundary method proposed by Lai and Peskin [22], which approximates
the momentum transfer between the fluid and the colloid. Each dumbbell consists of two discs of
thickness h = H−2δ = 60, whose centers are separated by s = 3.3R grid points. The disks themselves
are connected by a shaft which is 4R/3 wide and has the same thickness as the discs. For a symmetric
dumbbell both discs have a radius of R = 55 a. To demonstrate how asymmetry affects the trajectory
of the dumbbell, we also investigate a system where one of the disc has a diameter of 121 grid points
(R̃ = 1.1R).
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A grid spacing of a = 4 µm and a timestep of tMD = 5 µs are chosen (LAMMPS’ LBM package
supports calculations with real units), because these parameters yield a numerically stable simulation
with a sufficiently large timestep – combinations of smaller a and different tMD have caused the
simulation to terminate. There is one exception: in our initial simulation, when we use a large box
(1320 by 660 by 70), we chose a = 3µm and tMD = 3µs. In all simulations the colloid mesh density,
given by the ratio of the surface area of the colloid to the number of mesh points forming it, is kept
smaller than the grid density, a2.

The last parameter we need to define is the driving acceleration, applied to every LBM fluid
particle. We can extract its value for a given Reynolds number via Eq. 29, as long as we know the
characteristic length of the flow and the fluid’s kinematic viscosity. We set the fluid mass density and
dynamic viscosity to their physical counterparts known for water(ρ = 1.0 pg µm−3 = 1000 kgm−3 and
η = 1.0 pg/(µm µs) = 1.0mPa s) and solve for the driving acceleration (we change Lz to aLz to take
into account the lattice spacing):

g (Re = 0.1) =
8ν2

a3L3
z

Re ≈ 36mms−2 (35)

We also carry out some simulations with a smaller grid spacing – in these cases we choose a driving
acceleration g (a = 3µm) = 250mms−2, which corresponds to Re ≈ 0.3.

B. Stochastic Rotational Dynamics (SRD)

1. Algorithm
An MPCD fluid consists of Nt point particles with mass mf placed in a simulation box with dimensions
Lx, Ly and Lz. The temperature of the system is T . Each particle is characterized by its position ri,
velocity vi, mass mf. The subscript i denotes the particle number and runs from 1 to Nt. The particle
mass is commonly set to unity. The MPCD algorithm consists of Ncoll consecutive streaming steps
and a collision step. During the former each particle undergoes a ballistic move over a timestep tMD
and its position is updated:

ri (t+ tMD) = ri (t) + tMDvi (t) (36)

The streaming step is repeated Ncoll times before a collision takes place, i.e particles collide with each
other every tc = NcolltMD timesteps. Then the simulation box is split into cubic collision cells with
edge length a. The resulting average number of particles per cell, γ = Nta

3L−1x L−1y L−1z , depends on
the fineness of the mesh. Usually, an edge length a = 1 is chosen, thus, γ matches the total particle
density. The collisions between particles within a given cell are performed via a stochastic process,
which resets their velocities while conserving the total momentum of the cell. The most commonly-
employed collision rule is the SRD rule, introduced by [9]. Its name stems from the stochastic rotation
of the relative velocities of the particles δvi (t) = vi (t) − vc.m. (t) with respect to the center-of-mass
velocity of the collision cell vc.m. (t) = N−1c.c.

∑Nc.c.
k=1 vk (t). Here Nc.c. is the number of particles in the

cell of interest. Implementation of the collision is achieved via the matrix R, representing the rotation
by a fixed angle α with respect to a randomly-chosen axis R̂, which is applied to δvi:

vi (t+ tMD) = vc.m. (t) + R · δvi (t) , (37)

Written out explicitly, Eq. 36 reads (Appendix of [18]):

vi (t+ tMD) = vc.m. (t) + δvi,⊥ (t) cosα+
(
δvi,⊥ (t)× R̂

)
sinα+ δvi,‖ (t) , (38)

where ⊥ and ‖ denote the components of δvi which are perpendicular and parallel to R̂. It has been
proven that an H -theorem exists for the algorithm, the single-particle velocity distributions follow a
Maxwell-Boltzmann distribution and the fluid itself obeys an ideal gas law [9][23].
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Although its equation of state is that of an ideal gas, the MPCD fluid can act as either a liquid or
a gas, depending on the system parameters chosen. To illustrate this, we introduce the dimensionless
mean free path λ as the ratio of intercollision distance traveled by the particles to the characteristic
length scale of our system, in this case the collision cell size:

λ = tc

√
kBT

mf

1

a
=
tc
t0
, (39)

where t0 = a
√
mf (kBT )

−1
is the characteristic timescale of the fluid. A short λ (short collision

times) corresponds to a highly-correlated system, which behaves like a liquid. In contrast, large mean
free paths are typical for gaseous systems in which particles rarely collide with each other. Another
parameter defining the SRD fluid as either a gas or a liquid is the rotation angle, which characterizes
the strength of the interparticle interaction – the bigger the angle, the stronger the interaction. The
importance of the rotation angle can be understood intuitively if we set it to zero: the particle velocities
are not reset during the collision step, hence, particles do not ’see’ each other, which is the ideal gas
case.

Simulating a highly-correlated fluid like water requires an additional step to the standard streaming
and collision ones. Since it takes t−1c collisions for a particle to travel a distance a, it participates in
several consecutive collisions with one and the same group of particles, which violates the Galilean
invariance principle. To restore invariance, the origin of the collision grid is randomly-shifted before
any rotation has been applied. The shifting parameter is taken from a uniform distribution with
bounds [−a/2; a/2]. Thus, the neighbors of each particle are randomized before every collision without
changing any particle positions.

Additionally to their thermal motion, fluid particles exhibit directed movement in alignment with
the flow. There are several ways one can achieve this forced advection, the most common of which are
applying either a pressure drop across the simulation box or a gravity-type body force F = mfg acting
on each particle. Given the pressure gradient used in the experimental system, the former method may
seem the natural choice. However, [18], who investigated forced flow of a liquid between two parallel
plates, have proven the method leads to fluctuations in particle density around the inlet and outlet,
rendering it impractical for our goals. In the same work the expected Poiseuille profile was obtained
by implementing the latter method. What makes the bodyforce method particularly appealing is the
straightforward manner of its implementation – one simply needs to modify the rule governing position
updates so it takes into account the driving acceleration:

ri (t+ tMD) = ri (t) + tMDvi (t) + g
t2MD
2

(40)

and add another rule which modifies the velocities of the particle each MD timestep:

vi (t+ tMD) = vi (t) + gtMD (41)

No alteration of the collision algorithm is needed, since it only randomizes the velocities of the particles,
without changing their positions or |v|.

The last problem one needs to consider when implementing an SRD algorithm is the fluid-wall
coupling in both its aspects – the collision rule and the filling of collision bins near a wall. The former
deals with how the particles ’see’ the walls and how they bounce off them, and is present in both fluid-
and gas-like systems. Conversely, the collision bin filling issue is particularly relevant to SRD fluids.
After a random grid shift both walls will be slicing through collision cells which they would otherwise
border, effectively leading to partial filling of these cells. Ameliorating this problem requires filling
these cells with virtual particles prior to the velocity randomization.

The wall collision issue has been studied extensively and it is commonly accepted that the simple
bounce-back rule is sufficient to recover no-slip boundary conditions [24][25]. When a particle enters the
wall, it is placed back at the point of collision with the wall ri,wall (t+ t?) and the time lapse between the
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beginning of the current streaming and the wall collision is calculated t? = tMD−ri,wall (t+ t?) /vi (t).
The velocity of the particle is updated by reversing the present one vi,new = −vi (t), the particle is
streamed for the remainder of the current step tMD − t? and its velocity is not updated until the
next collision step or the next wall impact. An alternative to the bounce-back rule is the stochastic
reflection, which has been suggested by Inoue et al.. A study by Bolintineanu and co-workers [26],
however, reported some residual slip.

These researchers also looked into the problem of partial bin filling and concluded that prior
knowledge about the nature of the flow is needed to fully remove slip at the wall – the virtual particles
should be assigned velocities which comply with the parabolic Poiseuille profile. Between the walls
the velocity is positive in the flow direction and within them it is negative. In order to recover no-
slip boundaries one needs to choose the velocity of the virtual particle from a Gaussian distribution
centered around the negative velocity which the parabola assigns to this particle position.

2. Dimensionless Numbers and Parameter Choice
Similarly to LBM, in SRD one also need to account for the finite thickness of the lubrication layers
separating the dumbbell from the upper and lower wall. However, in SRD a fully resolved lubrication
layer requires lower grid fineness - at least 2 a are required for two spheres in close proximity. Taking
this into account, we calculate the dimensions of the simulation box in a fashion similar to the one
described in the section about LBM and choose Lx × Ly × Lz = 350× 350× 35.

Since SRD fluid parameters cannot be directly mapped to fluid properties, we are unable to use
physical quantities as we did in the previous section. Instead, we try to match the dimensionless
numbers characterizing the fluid and the flow, namely, the Schmidt and Reynolds numbers, to the one
known for the experimental system.

The Schmidt number is the ratio of collision momentum transport to kinetic momentum transport:
Sc = νD−10 , with D0 being the self-diffusion coefficient of the fluid. Sc determines if our SRD fluid has
gas- or liquid-like properties – low values indicate momentum is transferred mainly through diffusion
(Sc . 1), while Sc� 1 points to collisional momentum transport, typical for liquids.

Ihle and Kroll [23] have derived an expression for D0 (γ, α, λ), a result confirmed by Ripoll et al.
[27]:

D0 = λ
a2

t0

(
3

2− 2 cosα

γ

γ − 1
− 1

2

)
= λ

a2

t0
D̃0. (42)

The rotation angle α is kept fixed and usually either π/2 or 3π/4 are used [15, 16, 28–30]. Inspecting
Eq. 41, one notices the governing variable is the mean free path, since the term in parentheses is on
the order of unity, regardless of what values are chosen for γ and α (Fig 1a). Therefore, it can be
concluded:

D0 ' λ
a2

t0
(43)

The analytical expression for the kinematic viscosity derived by Kikuchi et al.[31] recognizes two
terms contributing to ν, a kinetic part:

νkin =
a2

t0

λ

3

(
1

1− γ−1 + e−(γ+ln γ)

15

4− 2 cosα− 2 cos 2α
− 3

2

)
=
λ

3

a2

t0
fkin (44)

and a collisional one:

νcoll =
a2

t0

1

18λ
(1− cosα)

(
1− γ−1 + e−(γ+ln γ)

)
=

1

18λ

a2

t0
fcoll (45)

Both contributions are weakly dependent on the particle denisity and the rotation angle, as can be
seen from Fig. 1b, and we are again left with a strong dependence solely on λ:

νkin '
λ

3

a2

t0
and νcoll '

1

18λ

a2

t0
(46)
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For short mean free paths the collisional term dominates, in good agreement with our previous argu-
ment, i.e., in liquids momentum transport is carried out predominantly by collisions. If λ & 1, our
system behaves like a gas and the main contribution to ν is the kinetic one.

Since we are interested in simulating a liquid, we can neglect the kinetic contribution and write
down a fairly accurate estimate for the Schmidt number:

Sc ' νcoll
D0
' 1

3
+

1

18λ2
(47)
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Figure 1: Weak dependence of different transport coefficients on the collision angle α and the average
particles per cell γ. (a) The dimensionless self-diffusion coefficients D̃0 (Eq. 42) for two collision angles
hardly change for γ ≥ 5 and differ by roughly 0.5. (b) The kinetic fkin (44) and collision fcoll (45)
contributions to the kinematic viscosity for two collision angles are compared. Regardless of α all
contributions are roughly equal to unity for γ ≥ 5

The last step in our analysis is to calculate the proper value for λ using the Schmidt number for
water at standard conditions, Sc = 425. The value we obtain, however, is impractical for our purposes
because it is too small, λ ' 10−2. To understand why this is so, we need to calculate the Reynolds
number for such a system. We choose particle denisity of γ = 5 to reduce computation time, which
scales with the number of particles, while avoiding rarefaction effects (as visible from Fig 1, ν and
D0 hardly change for higher densities). We use the rotation angle α = π/2, which is hardwired into
LAMMPS’ SRD algorithm. With these parameters we calculate the kinematic viscosity of the fluid
ν ' 5 a2/t0. If we now plug this value into the expression for Re (Eq. 28) while keeping in mind that
Re can be 0.1 at most to eliminate inertial effects, we calculate the maximum possible velocity which
complies with all criteria: vmax ' 0.02.

Since the main goal of our study is to track the dumbbell for two box lengths, we can estimate the
total runtime trun in t0 units:

trun =
2Lx
vmax

= 34× 104 t0 (48)

Here we assume the dumbbell velocity does not differ considerably from that of the surrounding fluid,
but, as we will see, it is roughly half of the far field fluid velocity in LBM. Converting the runtime into
timesteps requires us to divide it by the integration scheme timestep tMD:

Nsteps =
trun
tMD

= Ncoll
trun
λt0
≈ 5× 106 Ncoll (49)

Even if the number of consecutive streaming steps is set to unity, a single simulation of a pure fluid
between two walls would take 1 to 2 days on 240 CPU cores clocked at 3 GHz (rough estimates based

11



on preliminary data). A number of authors have used Sc ranging from 5 to 50. In the light of these
studies we use Sc=20, but emphasize that trun (Sc) poses an interesting issue and will be part of our
future research.

Using Sc=20 and Eq. 47, we calculate λ = 4× 10−2 a and ν ≈ 1.2 a2/t0, correspond to a maximum
velocity of vmax ≈ 3× 10−3 a/t0. With these parameters we can easily compute the driving acceleration
according to Eq. 29 g ≈ 30× 10−6 a/t20.

IV.Results
In this chapter we present the results we obtain with the two computational algorithms described in
Chapter III - Lattice Boltzmann Method and Stochastic Rotational Dynamics. It is important to note
that they both have shortcomings in the way they are implemented in LAMMPS – neither algorithm
supports more than one set of walls, the SRD fluid cannot be coupled to a non-spherical object and
terminates when a rigid body composed of spheres is used, LBM is numerically unstable and relatively
slow, etc. All these issues prevent us from simulating a system similar to the experimental and will
be discussed, alongside possible remedies, in the following chapter. Bearing this in mind, we present
preliminary result, which, may not necessarily expanding our understanding of the system, but serve
as basis for future research on the topic.

LBM
We start our investigation with a large system (660 a × 1320 a × 70 a) with the following parameters
(a, tMD, gy) =

(
3 µm, 3 µs, 250mms−2

)
. The colloid mesh consists of 246087 point particles of mass

mc = 550 pg and is generated with Gmsh [32]. The resulting colloid mesh density is 3.19 µm−2. The
simulation is run for 1× 105 timesteps, the first 3× 104 of which being equilibration and the colloid is
tracked for another 7× 104 timesteps. Its shaft is perpendicular to the flow and it only moves in the
y-direction (data not shown).

Fig. 2 compares the velocity fields in the simulation box at three depths - at the bottom plate
(−105 µm), at the lower face of the dumbbell (−90 µm) and at the midplane (0 µm). The no-slip BC
is recovered quite well, as we see from the velocity profile at z = 0. The vector at roughly (50, 400)
is most probably a post-processing error. As we go up, the fluid velocity around the dumbbell slowly
increases (Supplementary video 1), in good agreement with the parabolic profile we expect. The fluid
underneath the dumbbell is dragged forward by the colloid itself – this resembles Coeuette flow between
parallel plates. As we move further up the velocity of the surrounding fluid increases and peaks in
the mid-plane of the channel, where we observe a hydrodynamic dipole: the fluid flows faster around
the dumbbell compared to the far field velocity. This effect is particularly visible for narrow (small
x) channels and can be explained by the continuity equation: the dumbbell acts as a obstacle and
effectively narrows the channel. Since the fluid is incompressible (at this Mach number) it needs to
flow faster around the colloid thus conserving momentum along the channel.

From the figure it is also evident that the distortion of the velocity field does not span more than
300 grid points away from the center of mass of the dumbbell in the direction perpendicular to the
shaft. In the parallel direction, however we notice a slow decay of the velocity to the far-field one.
These observations enable us to make the simulation box smaller in the flow direction (from 1320 to 800
grid points) and make it slightly larger in the vorticity direction: from 660 to 800. These dimensions
will be used in all following LBM simulations.

To make this dipolar nature of the flow even more evident we shift the frame of reference from
the fluid to the dumbbell by subtracting its center-of-mass velocity from the fluid velocity field and
again present several snapshots at different channel depths (Fig. 3). This shift is the reason why we
observe ’flow’ at the bottom plate Fig. (3a) – the stationary fluid in contact with the wall is ’seen’ as
a backflowing fluid by the colloid. This reasoning is valid even further up than the bottom face of the
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(a) Bottom plate (b) Bottom face of dumbbell (c) Mid-plane

Figure 2: Velocity field in a channel at three different heights with respect to the bottom wall. (a)
Bottom wall. (b) Bottom face of the dumbbell. (c) Mid-plane of the channel. The fluid velocity
gradually increases from 0 at the wall to vmax in the mid-plane. The dumbbell introduces a flow
distortion and moves with a lower velocity compared to the surrounding fluid.

dumbbell (Fig. 3b): around ten grid points from the bottom plate the fluid velocity near the dumbbell
becomes equal to that of the colloid (Fig. 3c). As we move further up we observe a gradual increase
in the fluid velocity surrounding the dumbbell (Fig 3d,e) which is most pronounced in the mid-plane
of the channel.

After this preliminary simulation we switch to a system with a different size, lattice spacing,
timestep and Re – Lx × Ly × Lz = 800 a × 800 a × 70 a and (a, tMD, gy) =

(
4 µm, 5 µs, 36mms−2

)
.

We again keep the shaft perpendicular to the flow direction but this time run the simulation only
for 2.5× 104 timesteps because we are interested in the time evolution of vx (z) and the shape of the
velocity profile after steady state flow has been achieved.

Fig. 4a presents the maximum velocity of the far field fluid as a function of time. As we can see,
the simulation yields vmax which is lower than the one following from Eq. 28. This discrepancy can be
attributed to the kinematic viscosity – the algorithm creates a fluid with ν, which is higher than the
input one. To verify this assumption we calculate the kinematic viscosity corresponding to the long
time plateau in vmax (t) and obtain νfit = 1.066 µm2 µs−1. The fitted kinematic viscosity also yields a
parabola vy (z) which perfectly fits the simulation result Fig. 4b. This issue has been reported by [13]
which calculate hydrodynamic radii for spheres which are slightly (on the order of 5 %) larger than the
actual. A validation of our assumption can by made via the non-equilibrium Müller-Plathe method
and will be done in a following work. Also, we should not rule out the increased channel resistance
caused by the microparticle.

Our next attempt at recovering the motion of the dumbbell known from experiments involves tilting
the dumbbell with respect to the x-axis, so it forms θ = π/4 angle with the shaft. We use the same set
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(a) Bottom plate (b) Bottom face of dumbbell (c) Around dumbbell

(d) Around dumbbell (e) Around dumbbell (f) Mid-plane

Figure 3: Velocity field in a channel at six different heights with respect to the bottom wall. The
frame of reference is shifted from the fluid to the dumbbell, all velocities are offset by the center-of-
mass velocity of the colloid.
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Figure 4: (a) Time evolution of maximum velocity of the flow. The LBM algorithm generates a fluid
with kinematic viscosity, higher than the one following from the input parameters. (b) Poiseuille profile
vx (z) of the fluid. The simulation result corresponds to a fluid with higher viscosity, which confirms
the result for vt.

of parameters as in the previous case but we now run the simulation for 5 × 105 timesteps and track
the dumbbell after the first 5 × 104. Introducing this asymmetry in the system induces a sideways
motion as we expect but the effect is barely noticeable. As shown Fig. 5a and 5b the dumbbell drifts
only slightly in the vorticity direction – this shift relative to the width of the simulation box is roughly
1 %. In contrast, over the same time, the dumbbell travels approximately 10 % of the box size in the
flow direction.

Finally we turn our attention to an asymmetric dumbbell, i.e., one in which the two discs differ in
their radii. We expect to observe rotation which should orient the dumbbell’s smaller disc downstream,
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(a) Initial position and COM velocity of the dumbbell (b) Final position and COM velocity of the dumbbell

Figure 5: Motion of a symmetric dumbbell with θ = π/4 simulated for trun = 2.5 s with a timestep of
tMD = 5µs. The dumbbell drifts only slightly to the left.

a phenomenon already observed experimentally. We choose to make one of the discs larger by 10 %,
thus, R1 = 220µm and R2 = 242µm. With all other system parameters, θ, a, tMD and gy, kept the
same, we run the simulation for 2 × 106 timesteps and track the colloid from t = 0 s onwards. The
slow movement in the vorticity direction is still present but there is seemingly no rotation (Fig. 6). To
check if the angular velocity ωz is indeed zero we calculate θ (t) for both the symmetric and asymmetric
dumbbell and present the results in Fig 7:

θ (t) = arccos

(
O (t) · ex
|O (t)|

)
, (50)

Here, O (t) is the vector starting from the center of one disc (in the asymmetric case this is the bigger
one) pointing to the other (inset of 7) and ex is the unit vector in the x-direction. O (t) is oriented in
such a way that its y-component is aligned with the flow.

The asymmetric dumbbell indeed rotates but with a small circular velocity on the order of 1mrad s−1.
Though slow, the rotation is in the correct and physically sensible direction – the dumbbell is gradually
orienting itself with its smaller disk downstream, as we expected. In contrast, the symmetric one does
not only rotate 30 times slower, but it does so with a negative angular velocity. This negligible rota-
tion is most probably due to small defects of the colloid mesh, which results in an uneven momentum
transfer from the fluid to the colloid.

As a final word to this section, we shall discuss the efficiency of the algorithm in LAMMPS. The
last system we described consisted of Ng.t. = 800 × 800 × 70 = 44.8 × 106 grid points and we ran
the simulation for 2 million timesteps. The calculation took approximately 5.5 × 105 seconds on 32
Intel Xeon R© X5670 octa-core CPUs (or 256 cores in total) clocked at 2.93GHz. In other words, the
algorithm is capable of 0.64 million site updates per second per CPU core, which is 3 to 5 times slower
than other algorithms written in C/C++ [33]. Keeping in mind that LAMMPS is an open-source
multi-purpose simulation tool, there is always room for improvements, improvements which we intend
to implement in future research.
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(a) (b)

(c) (d)

Figure 6: Motion of a symmetric dumbbell with θ = π/4 simulated for trun = 2.5 s with a timestep of
tMD = 5µs. The dumbbell drifts only slightly to the left.

SRD
We start of our investigation with the SRD algorithm using the knowledge we gained from our LBM
simulations – we use a simulation box with dimensions Lx × Ly × Lz = 350 a × 350 a × 35 a. The
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Figure 7: Tilt angle time evolution θ (t) for a symmetric and an asymmetric dumbbell. The latter
exhibits positive rotation, which orients the smaller disc upstream. The symmetric dumbbell’s rotation
can be attributed to mesh defects. The inset shows how θ is defined.

fluid particle mass, number density and rotation angle are set to mf = 1.00, γ = 5.03 and α = π/2,
respectively. A Verlet-integration timestep and a collision timestep are choosen so tMD = tcoll =
4× 10−2 t0, therefore the mean free path is λ = 4× 10−2 a. This value of λ should yield a kinematic
viscosity ν = 1.135 a2/t0. Setting Re = 0.1, we calculate gy = 24× 10−6 a/t20. We run the simulation
for 1.25× 106 timesteps - the fluid is thermalised during the first 2.5 × 105, and the fluid particle
coordinates and velocities are sampled every 1000 timesteps till the end of the simulation. A velocity
profile is obtained by binning the particle velocities with respect to their z-coordinate and averaging
within every bin. Since SRD is a stochastic method, we are supposed to run several simulations with
different random seeds and average over that, as well, but given the size of the system and our sole
interest in the steady-state profile, we simply average over time.

Due to limitations in the current implementation of SRD in LAMMPS we were only able to simulate
a pure fluid between parallel plates or spheres immersed in an SRD fluid. The main goal here is to
determine if SRD can outperform LBM. If this is indeed possible a series of improvements we intend
to implement will be discussed in the next chapter.

Below we compare the velocity profile obtained for the system under consideration (Fig. 8) to the
analytical one corresponding to the input parameters (red curve). The coincidence between theory
and simulation results is quite good. The velocity profile obtained from the simulation is identical to
the theoretical one safe for some minor thermal fluctuations inherent to the method. It is evident that
LAMMPS’ implementation of SRD recovers the correct behaviour of the system and does not suffer
from drawbacks we encountered in LBM. This gives us encourages us to further develop the algorithm
and make it capable of simulating dumbbells in a flow.

Finally, we compare the efficiency of the two methods. With LBM we managed to drive the
dumbbell forward by roughly Ly/2 and the calculation took 5.5× 105 s. We also ran a pure SRD fluid
for 1.25× 106 t0, which corresponds to an average displacement of most fluid particles by Ly/4. The
total wall time of the computation in this case was 6.33× 104 s. Although we cannot directly compare
the two methods’ performance (LBM is not well-optimized, while SRD does not support non-spherical
colloids for now), we can speculate that both methods are capable of simulating the experimental
system within a reasonable timeframe, provided some additions to both algorithms are made, a topic
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Figure 8: Poiseuille profile for an SRD fluid. The simulation result is almost identical to the analytical
parabola. The observed thermal fluctuations are inherent to the algorithm and can be mitigated by
seed averaging.

we will discuss in the next chapter.

V. Discussion & Outlook
As we have already seen in the previous chapter the SRD and LBM algorithms in LAMMPS are not
capable of recovering the oscillatory motion of a dumbbell confined to Q2D geometry, at least not in
their current implementation. While LBM supports non-spherical particles, it is quite inefficient. In
contrast, the SRD algorithm can be run within a reasonable time but only supports spherical colloids.
In this chapter we discuss the possible code changes, which will enable us to simulate a dumbbell in
Q2D without requiring expensive computational power and/or excruciatingly long runtimes.

Second set of walls
The most important feature that needs to be added to both implementation is a second set of walls.
While this will slow down the SRD algorithm it may reduce the number of timesteps needed to observe
rotational motion in both SRD and LBM. The reason for that lies in the reduced symmetry of the
flow when additional walls are added. When the fluid is confined between two plates only, the velocity
profile is constant in the vorticity direction (Fig. 9a). An additional set of walls in that direction
will result in two perpendicular superimposed Poiseuille profiles (Fig. 9b). In this case even a slight
asymmetry in the dumbbell position or orientation with respect to the flow will result in rapid motion
towards the wall. Furthermore, one will be able to observe the (damped) oscillatory movement of the
dumbbell center of mass only when walls are present.

Implementing additional plates in LBM is trivial [17] and should slow down the algorithm only
negligibly. This is not the case with SRD – proper coupling of the fluid to the walls requires the
generation of positions rVP,i and velocities vVP,i for the virtual particles in the vorticity walls. Given
the thickness of the system, these additional walls will not be large and thus not many rVP,i and vVP,i
need to be generated. A major hindrance here would be the computation of the average velocity for
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(a)
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(b)

Figure 9: Fluid velocity field in the plane normal to the flow direction. (a) Plane Poiseuille flow – the
system is periodic in the flow and vorticity directions. No symmetry breaking in the y-direction. (b)
Rectangular duct flow – any assymetry in the particle position and/or orientation causes rapid lateral
drift.

the given position of the virtual particle. Although an analytic expression for the steady state flow
with two sets of walls is known [14], its implementation is computationally demanding. Nevertheless
both editions hold promise to recover the motion of the colloid, known from experiments.

Fluid-colloid coupling in SRD
A major drawback of the current LAMMPS SRD algorithm is the lack of support for non-spherical
particles immersed in the fluid. In some preliminary tests we have tried constructing a dumbbell from
spheres held together by a rigid potential but the simulation proved unstable, fluid particles remained
stuck in the spheres and eventually the simulation terminated. It is evident that the colloid-fluid
coupling needs to be revised and improved.

Recently Poblete et al.[34] have suggested representing the colloid in a fashion similar to the one
in LBM – a set of mesh point particles placed on its surface. In their treatment of the problem,
momentum transfer between the fluid and the immersed body is carried out during the collision stage,
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when the mesh particles take part in the collision as if they are heavier fluid particles. Straightforward
as this solution may seem, it has one major drawback: it requires a complicated collision algorithm,
which differentiates between fluid and colloid mesh particles. Nevertheless, the reported diffusion
coefficients for spheres and the achieved no-slip boundaries make this work a natural starting point for
the incorporation of non-spherical colloids in the LAMMPS SRD algorithm.

VI. Conclusion
Understanding the forces driving particle self-organization in confined low Reynolds number flows
requires in-depth analysis of the flow disturbances induced by these colloids. Experimentally, this
information is not easily accessible – one needs to use fluorescent tracer particles and track their
motion. Apart from being challenging itself, these tracers may also change the dynamics in the system
under consideration.

In this work we propose an alternative – we use two coarse-grained simulation methods which
recover hydrodynamic interactions to obtain flow velocity fields around a dumbbell-shaped particle.
Both Stochastic Rotational Dynamics and the Lattice Boltzmann Method are used as implemented
in the multi-purpose simulation package LAMMPS. Though promising and well-optimized, the SRD-
algorithm is incapable of immersing a non-spherical particle in the fluid. In contrast, LBM supports
dumbbell-shaped particles, but is not well-optimized.

Despite these setbacks, we manage to obtain the velocity disturbance field a dumbbell introduces
and it closely matches the dipolar disturbance theory [7] predicts. We also recover the lateral drift and
rotation of the dumbbell, but due to computational limitations we are unable to draw any quantitative
conclusions. The current work only presents preliminary results and seemingly poses more questions
than it answers, but it also serves as a starting point for future investigation on the topic.
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