
MASTER’S THESIS
ICA-5534941

Machine Learning for Classifying
Certificate of Competency

Applications

Author:
ing. G. de Vreugd

Internal Supervisors:
dr. A.J. Feelders

prof. dr. A.P.J.M. Siebes

External Supervisors:
Nicole Holla, MSc

Boaz Pat-El, MSc

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in

Computing Science
Department of Information and Computing Sciences

December 14, 2016

http://www.uu.nl
http://www.avanade.com
https://www.linkedin.com/in/bertdevreugd
http://www.cs.uu.nl/staff/ad.html
http://www.cs.uu.nl/staff/siebes.html
https://www.linkedin.com/in/nicole-holla-5151aa26
https://www.linkedin.com/in/boazpatel
http://www.cs.uu.nl/info/studie/master/cs.php
http://www.cs.uu.nl

i

“To find signals in data, we must learn to reduce the noise - not just the noise that
resides in the data, but also the noise that resides in us. It is nearly impossible for
noisy minds to perceive anything but noise in data.”

Stephen Few

ii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department of Information and Computing Sciences

Master of Science

Machine Learning for Classifying Certificate of Competency
Applications

by ing. G. de Vreugd

In this thesis we research the possibility of classifying Certificates of
Competency. An application for such a certificate consists of selecting which
competencies you want, providing various seagoing claims and providing
various diplomas. We try to create a machine learning model that, based
on all these knowledge, is able to correctly classify whether the application
should be accepted or denied. Our main conclusion is that it is possible,
as long as the labels are updated. There are multiple binary classifiers that
can be used but only the boosted decision tree worked consistently on each
problem we tested.

http://www.uu.nl
http://www.uu.nl/en/organisation/faculty-of-science
http://www.cs.uu.nl

iii

Acknowledgements
I would like to express my special thanks of gratitude to my supervisors
dr. A.J. Feelders, and Boaz Pat-El for helping me throughout the project,
and for providing useful feedback whenever I needed it. I would also like
to thank Nicole Holla for the interesting internship meetings, and presen-
tations. Lastly, I would like to thank Avanade at whom I was allowed to
perform my graduation project.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Background . 1
1.2 Application process . 1
1.3 Handling process . 2
1.4 Scientific and social relevance 2
1.5 Methodology . 3

1.5.1 IBM Foundational Data Science Methodology 3
1.6 Research questions . 5

2 Data 6
2.1 Data requirements . 6
2.2 Data collection . 6
2.3 Data preparation . 7

2.3.1 Parser . 7
2.3.2 Cleaner . 8
2.3.3 Flattener . 9
2.3.4 Writer . 10

2.4 Feature engineering . 11
2.5 Relabeling the data . 12

3 ML techniques 13
3.1 Decision trees, forests, and jungles 13

3.1.1 Boosted decision tree 14
3.1.2 Decision forest . 14
3.1.3 Decision jungle . 14

3.2 Neural networks and perceptrons 14
3.2.1 Averaged perceptron 14
3.2.2 Neural network . 15

3.3 Support vector machines . 15
3.3.1 SVM (linear kernel) . 15
3.3.2 Locally deep SVM . 16

3.4 Logistic regression . 17
3.5 Bayes point machine . 17

4 Evaluation 18
4.1 Experiment setup . 18
4.2 Results . 18

4.2.1 Initial learning . 18
4.2.2 Rating forming part of a navigational watch (code 301) 19
4.2.3 Officer in charge of a navigational watch (code 171) . 19

v

4.2.4 Multiple mate competencies 20
4.2.5 All relabeled competencies 20
4.2.6 All relabeled competencies with optimized classifiers 21

5 Conclusion 22
5.1 Discussion and future work 22

A Overview of Competencies 24
A.1 Merchant navy / Sailing - Officer 24
A.2 Merchant navy / Sailing - Mate 25
A.3 Fishing . 25

B Overview of Sailing Time 27
B.1 Positions . 27
B.2 Type of vessels . 28

C Overview of Education 29
C.1 Institutions . 29
C.2 Educations . 30

D Database Queries 33
D.1 Applications . 33
D.2 Product . 34
D.3 Competencies . 34
D.4 Medical claims . 34
D.5 Seagoing time claims . 35
D.6 Education claims . 35
D.7 Attachments . 36

E Azure Machine Learning Setup 37
E.1 Default settings . 37
E.2 Settings used for grid search 39
E.3 Experiment setup . 41

F ML Results 42
F.1 Complete dataset . 42
F.2 Competency 301 . 43
F.3 Competency 171 . 44
F.4 Competency 301, 302, 303, 304, and 305 45
F.5 Competency 301, 302, 303, 304, 305, and 171 46

F.5.1 With optimized classifiers 47

Bibliography 48

vi

List of Figures

1.1 Foundational Methodology for Data Science 3

2.1 Simplified Database Layout 6
2.2 Helper Application Layout 7
2.3 Flattened Data Structure . 9

3.1 An example of a decision tree. 14
3.2 An example of hyperplanes 16
3.3 An example of the kernel trick 16

vii

List of Tables

2.1 Data issue for cells containing multi-line strings. 8
2.2 Lookup tables constructed during flattening. 9

3.1 Two-class algorithms supported bij Azure ML. 13

4.1 Classification results for initial learning. 18
4.2 Classification results for competency: 301. 19
4.3 Classification results for competency: 171. 19
4.4 Classification results for multiple mate competencies. 20
4.5 Classification results for all relabeled competencies. 20
4.6 Optimal classification results for all relabeled competencies. 21
4.7 Decision Forest optimization results for all relabeled compe-

tencies. 21

viii

List of Abbreviations

IT Information Technology
ML Machine Learning
CoC Certificate of Competency
AUC Area Under the Curve
TP True Positive
FN False Negative
FP False Positive
TN True Negative

1

Chapter 1

Introduction

Data are becoming the new raw material of business

Craig Mundie (Microsoft)

Crafting this raw material (quote above) into something useful is, how-
ever, still something that companies struggle with. Doing so successfully
could reduce costs and improve the value of customer relationships (Thear-
ling, 2016). The research proposed will aid yet another company in reaching
this goal.

1.1 Background

Avanade is a global IT service provider, which introduces itself as “the lead-
ing provider of innovative digital services, business solutions and design-
led experiences, delivered through the power of people and the Microsoft
ecosystem” (Avanade, 2016). One of their Dutch clients is a company called
Kiwa, which is "an independent highly qualified organization having certi-
fication as its core activity" (Kiwa, 2016).

One of Kiwa’s activities is providing Certificates of Competency (CoC).
In order to approve an application, a Kiwa employee has to verify if the
applicant has provided enough evidence in the form of experience and/or
education. This process is done manually, because the number of different
experience types and educations is too large to program in the system it-
self. The actual system, from applying to validating an application, is being
developed by Avanade.

Every application that is approved or denied is stored, therefore Kiwa
wonders if it is possible to predict the outcome of an application based
on the history of handled applications, using machine learning. This, in
essence, is the goal of this research project.

1.2 Application process

When applicants apply for a CoC, they have to choose between the follow-
ing categories:

• Merchant navy / Sailing - Officer
• Merchant navy / Sailing - Mate
• Fishing

Secondly the applicants have to choose the nature of the request:

Chapter 1. Introduction 2

• First request
• Renewal, in case it is (about to be) expired
• Increment, in case they want more competencies
• Duplicate, in case the CoC was lost

After this, the applicants have to choose the competencies that they wish
to have added on their CoC (see Appendix A). There are at most thirty-six
different competencies to choose from in a single category and an applicant
can select a combination of them. It is possible to select unusual combi-
nations, for example selecting both Master - No limitations and Master - All
ships less than 3000 GT. This, however, will not occur often and is easily cor-
rected by the person that handles the request. It is also possible to select
illegal combinations, for example choosing a master competency as a first
request. If an applicant chooses an illegal combination, the application is
denied and they will have to apply again. The costs will not be reimbursed.

The fourth step is to provide a medical claim. This can be either with or
without vision and hearing. It depends on the competencies chosen, which
of the medical claims should be provided. This is not checked automatically
and providing the wrong claim will result in a request for more information.

Now, the applicant has to provide their sailing time. They have to pro-
vide the period the sailing time occurred in including duration in days.
They also have to provide the position they had and the type of vessel (see
Appendix B). With this sailing time they prove that they have the required
experience for the requested CoC. Here they can also provide illegal combi-
nations, for example by entering a duration longer than the selected period
or by entering positions on the wrong type of vessel. However, the appli-
cant has to provide proof for the experience as well and if that does not
match the entered sailing time, the application will be denied or it will re-
sult in a request for more information.

Lastly, they have to provide their education. Here they have to select the
institution and the education (see Appendix C), they also have to upload a
certificate that proves it.

1.3 Handling process

Once an application is fully finished and paid for, it will be ready to be han-
dled. The person that handles the application will first verify the requested
competences and whether the nature of the request is correct. After this
they will verify the medical claim and check if this claim is sufficient for the
requested competences. Following up they will verify the sailing time and
also check if the provided sailing time is sufficient. Lastly they will do the
same for the education claims. When certain documents are unreadable, or
if those documents do not meet the requirements, they will ask for more
information. Once everything is correct, they will approve the application.

1.4 Scientific and social relevance

Automating parts of this process could potentially help Kiwa to speed up
the handling times. This is beneficial to both Kiwa and the customers. For
Kiwa it can reduce costs as it would require less man-hours to process the

Chapter 1. Introduction 3

applications while the customers receive their CoC faster. The model ex-
plained above can also be applied to other fields Kiwa is active in, for ex-
ample to flight licenses. Therefor a positive result can help Kiwa and their
customers in a much broader sense than CoCs alone.

For Avanade it is relevant, as when this research is successful it can be
used as a showcase for other clients. This helps Avanade in their goal to
develop more machine learning related projects for their clients.

From a scientific perspective it is relevant because this is yet another
case that could show how computers could help us in our daily lives. More
specifically this research could provide yet another way where machine
learning can be effective. Also this research gives insight how the different
machine learning techniques compare to each other for this specific prob-
lem.

1.5 Methodology

A much used methodology for data science is CRISP-DM , which was intro-
duced in the late nineties, however, their official website is no longer online
(Piatetsky, 2014). IBM introduced a follow-up for this methodology, called
Foundational Methodology for Data Science (IBM Analytics, 2015).

We will only explain the IBM methodology; for more information about
CRISP-DM see Wirth and Hipp, 2000.

1.5.1 IBM Foundational Data Science Methodology

FIGURE 1.1: Process diagram showing the relationship be-
tween the different phases (Rollins, 2015).

This methodology is now taught by the Big Data University1. An overview
of the phases is shown in Figure 1.1. The different phases are (IBM Analyt-
ics, 2015):

1http://bigdatauniversity.com/courses/data-science-methodology/

http://bigdatauniversity.com/courses/data-science-methodology/

Chapter 1. Introduction 4

Business understanding

The initial phase is business understanding. This phase is all about under-
standing the actual problem. The problem must be defined, project objec-
tives and solution requirements have to be stated.

Analytics Approach

After the problem is understood, it has to be converted into a data mining
problem by selecting the proper (ML) techniques.

Data requirements

Before the actual data collection can start, its requirements have to be stated.
These depend on the domain knowledge and the chosen techniques.

Data collection

Now we can start collecting all the data that is relevant to the problem, if
we encounter gaps we might need to update the requirements and collect
more data.

Data understanding

Phase five is about understanding the data. If we have gaps in understand-
ing the data, we either need to get more domain knowledge or it might be
necessary to collect more data (for example, to get more data points so it fits
a normal distribution).

Data preparation

The data preparation phase is all about transforming the data into what
we are going to feed the model. Here we do data cleaning and feature
engineering.

Modeling

Here we select and apply ML techniques to the dataset we prepared so far.

Evaluation

Here the model is evaluated and checked against the business problem. If
the result is insufficient we have to go back to the modeling phase.

Deployment

After a satisfactory model has been created, it has to be deployed.

Chapter 1. Introduction 5

Feedback

The last phase is the feedback phase. In this phase the deployed model is
monitored and feedback about its performance and accuracy is provided to
the data scientist. This feedback can be used to improve the model and to
deploy a new version of it.

The methodology of IBM looks a lot like CRISP-DM, however it has
a few important improvements. First of all, the business understanding
and data related phases have been extended which makes it more clear.
Secondly, the deployment phase is no longer an endpoint but it is part of
the iterative cycle. This is important, as a data mining process is an on-
going task and after deployment it should not be ignored. Lastly, the new
methodology makes it more clear that without understanding the business,
there is no point in continuing and creating a model anyway. You have to
know exactly what the problem is, instead of learning what the problem is,
in an iterative way.

We will conduct this research according to the IBM methodology, with
the exception of the Deployment and Feedback phases. This research will
only focus on developing the model itself. Even though we will not struc-
ture this thesis explicitly to the phases of this methodology, you should be
able to discover the different phases along the way.

1.6 Research questions

In this thesis we address the following research questions:
How could machine learning be used to successfully classify certificate of
competence applications?

(a) Which ML techniques can be used to classify those applications?

(b) Which features should be engineered from the data?

(c) How do the different ML techniques compare to each other, in terms
of classification performance?

The remainder of this thesis is structured as follows. Chapter 2 discusses
the data. The applicable machine learning techniques are stated in Chap-
ter 3, followed by the evaluation in Chapter 4. Lastly, Chapter 5 presents
the conclusion of the research and also gives a brief discussion.

6

Chapter 2

Data

2.1 Data requirements

In order to properly classify the cases, we need to get the data of all pre-
viously handled applications. This data should include all the requested
competencies, all the claims that were provided and some basic informa-
tion like the outcome of the case. Kiwa disallowed the data to contain any
sensitive information, including, but not limited to, names, addresses, and
emails.

2.2 Data collection

These cases are currently stored in a database. Fig-
ure 2.1 shows a simplified ER diagram containing the tables and columns
involved.

FIGURE 2.1: A simplified diagram that shows the different
tables as represented inside the database.

Chapter 2. Data 7

FIGURE 2.2: A simplified flow diagram that shows the
structure of the console application.

To retrieve this information we have written seven queries (see Ap-
pendix D). Those queries were executed on a recent backup of the produc-
tion database and exported to Excel Workbook (.xlsx) files, after which they
were handed to us for future analysis.

2.3 Data preparation

The next step is to prepare this data for usage inside Azure Machine Learn-
ing, which means we have to flatten the relational data and we have to
make sure to correct any issues in the data. To aid us in this process we
have created a console application using C#. We will explain the basic ele-
ments of this program (as shown in Figure 2.2) one by one.

2.3.1 Parser

The first part of our program is a parser that parses the provided Excel
Workbooks into an object oriented structure that closely represents the ta-
bles in the database. Most of this is pretty straightforward, except for two
things:

Multiple Workbooks

We were provided with two Excel Workbooks because we did not get all
the data needed the first time we requested it. This was our fault, since we
forgot to include some queries. Therefore we had to support parsing multi-
ple files and we had to make it configurable to select which sheet contains
which data. The upside to this is, that if in the future an updated version of
the data is given, it can be imported easily by simply updating this config-
uration.

Chapter 2. Data 8

TABLE 2.1: Data issue for cells containing multi-line strings.

ID Accepted Reason Year
1 TRUE This is fine 2010
2 TRUE Some nice colors:
a. Blue
b. Red 2011
3 FALSE Fine again 2012

Multi-line strings

The largest issue we had, was the fact that multi-line strings were not stored
inside a single cell but actually span multiple rows. This also caused the
next columns of that particular row to be shifted. To complicate this issue
even more: strings that contained lists had their bullets converted into sin-
gle cells as well (see Table 2.1). To solve this issue, we detect whether the
next cell is a null or not, since multi-line strings do not occur in the last col-
umn we know a line break occurred and we continue parsing on the next
line. We also detect whether the cell is one of the known bulletins, if so, we
move to the next cell.

2.3.2 Cleaner

The next part is where the cleaning happens. This actually happens in two
phases: phase one is right after parsing and phase two is after flattening the
data.

Phase one

The first phase is responsible for very basic cleaning that removes or fixes
any data that could cause the flattening to fail. The operations that it per-
forms are as follows:

• Remove all applications that do not point to a valid product.
• Remove all applications with seagoing claims that do not have a valid

period start or period end.
• Remove all claims that do not have an attachment.
• Remove all claims that are not referenced by any of the applications.
• Fix all seagoing claims which have a reversed period start and end.

Phase two

The second phase is responsible for more advanced cleaning that removes
or fixes any flattened data that cannot be used for classification as is. The
operations that it performs are:

• Remove all applications that request a duplicate CoC.
Duplicates cannot be classified properly as they are granted if you already
own the same one, therefore it does not depend on provided claims.

• Calculate an estimated duration for seagoing claims that contain a
duration of zero or one day(s).
There are many people that do not bother filling in the correct duration when
the time served spans a long period.

Chapter 2. Data 9

FIGURE 2.3: A class diagram that shows the flattened data
structure.

2.3.3 Flattener

The flattener converts the relational data into a new data structure. As you
can see in Figure 2.3; the data is still not flat. However, the current structure
gives the writer everything it needs to print flat files. This flattening process
is structured as follows:

Lookup tables

For each application, the flattener has to retrieve data from various tables.
Since looping all of them to find the correct entries is a tedious process, we
convert them to lookup tables first. The lookup tables are simple hash maps
which allow for constant lookup times.

TABLE 2.2: Lookup tables constructed during flattening.

Table Key Value

MedicalClaims ClaimSetId MedicalClaim[]
SeagoingClaims ClaimSetId SeagoingTimeClaim[]
EducationClaims ClaimSetId EducationClaim[]
EducationDocs EducationClaimId Attachment[]
Competencies ProductId Competency[]

Chapter 2. Data 10

General information

While going through the applications, we can set most of the general infor-
mation right away as this information is already present in the application
table. The fields STCW20101, Category, and Nature are parsed from the
product name.

Competencies

The selected competencies are retrieved using their lookup table, after which
all competency names are added to the FlatDataLine. For future refer-
ence all competency names are also stored inside AllCompetencies.

Medical claims

The fields MedicalClaim and VisionClaim are set by retrieving the med-
ical claims and checking each to see if either field is set. Multiple claims are
possible if one claim contains the general medical information and the sec-
ond one contains the vision/hearing information.

Education claims

The provided education claims are slightly harder to retrieve. First we re-
trieve the EducationClaim rows using the lookup table. This gives us
the information for School and IssueDate directly. In order to retrieve
the Diploma field, we lookup the attachments and retrieve the document
name from the first one. For future reference the document names are also
stored inside AllEducations.

Seagoing time claims

The seagoing time claims are also retrieved using the lookup table. For
future reference all function names are stored inside AllFunctions.

2.3.4 Writer

The final component of our program is the writer. This component is able
to generate the flattened data in two separate ways.

CSV File

The most important feature of the writer is the ability to generate a CSV
file which can be used with Azure ML (or any other ML suite). In order to
print the competencies it will create a feature for each possible competency
as found in AllCompetencies. For each individual application it will
check which competencies are set, and print these as True while keeping
the remaining on False. In Chapter 2.4 we discuss how the seagoing time
and education claims are printed.

1STCW2010 indicates that the application is subject to the updated legislation.

Chapter 2. Data 11

Simple text files

The second output method creates a single file for each application. To be
more specific it creates files with the path:

[Competency]/[Accepted]/[ID].txt

In this file all the related data is printed vertically, which makes it easy to
see all information of the application. This allows us to view all cases for a
single competency and accept state in a very quick way. Chapter 2.5 goes
deeper into this output method.

2.4 Feature engineering

In order to print the education claims and seagoing periods, we had to think
about which information is actually useful from a ML perspective. Accord-
ing to STCW 95, the Dutch seafarers law: Wet Zeevarenden, and Kiwa2 the
following information can be used for determining whether an application
is correct or not:

• Having a certain degree.
• How long ago a certain degree has been issued.
• Total seagoing time (for certain functions).
• Total seagoing time (for certain functions) in the last six months.
• Total seagoing time (for certain functions) in the last five years.

Using this information we decided to generate the following features:

Education claims

For each diploma we print the number of days since the issue date. For
diplomas the applicant does not possess, we print int.MaxValue. The
name of the school is discarded as it is irrelevant for the application.

Seagoing time claims

For seagoing claims we print the total seagoing time and also the total
seagoing time for each function as found in AllFunctions. This informa-
tion is also printed for the last 200 days and the last 1850 days. The feature
names in those two are suffixed with _200 and _1850 to distinguish them
from the regular ones. These features are used to cover the seagoing time
in the last six months and the last five years.

We added a bit more days to these periods because we saw that many
accepted applications provided their seagoing time up to a period of one or
two weeks before the application. For example, if they create their appli-
cation on July 24th they would enter a seagoing time of the period January
10th till July 10th. We did not see applications that were denied for this
reason.

We also need to support periods that are entered over a period longer
than the last 200 / 1850 days. We did so by assuming that the duration
entered is distributed evenly over the whole period. For example, if they

2https://www.kiwaregister.nl/aanleverinformatie.aspx

Chapter 2. Data 12

enter a duration of 1000 days over the last ten years, we assume that each
year contains 100 seagoing time days. The formula we use to calculate the
proper duration is:
div = wholePeriod.TotalDays / matchingPeriod.TotalDays;
actualDuration = duration / div;
It first calculations the fraction of the period we are interested in after which
it uses that fraction to calculate the actual duration value.

2.5 Relabeling the data

While classifying the data we noticed that the performance was lower than
we expected (see Chapter 4). To see whether the issue was related to the
data or to our features, we started to inspect each application for the com-
petency: Rating forming part of a navigational watch (code 301). We used
the newly created output method that allows us to view all cases belong-
ing to a single competency. During this inspection we stumbled upon the
following issues:

• Many applications were accepted without any seagoing time and ed-
ucation claims, even though such were required.
We were aware that the data contained test data, which we tried to filter al-
ready. When tracing some of these invalidly accepted applications they seem
to be created by accounts that did testing before, however, many other ap-
plications entered by those accounts were valid. This made it impossible to
automatically filter them.

• Some applications were accepted with claims that did not get close to
the required information as stated in applicable law.
Some of those applications had the same issue as the one above, others filled
in incorrect data but the uploaded proof did contain proper data, and others
provided additional data afterwards.

• Some applications were denied with claims that seems to be perfectly
fine.
Applications can be denied when, for example, the uploaded proof is invalid.
This means that the entered data itself could be fine after all.

All those issues made us realize that we cannot trust the current acceptance
labels. In order to test this hypothesis we manually checked all applications
of this specific competency, and deleted everything that was obviously in-
correct. When in doubt, we kept the application. After classifying this com-
petency again we saw that the performance improved. To be completely
sure we did the same for four other mate competencies and for one officer
competency. All the results are discussed in depth in Chapter 4.

13

Chapter 3

ML techniques

We will be using the Azure Machine Learning Studio1 to create the models.
Azure ML is the machine learning suite developed by Microsoft that runs
in their own cloud. We use this suite because Avanade is Microsoft oriented
and they want to use the gained information in future projects.

The problem seems to be a perfect example of binary classification: the
application is either approved or denied. According to Rohrer, 2016 this
leaves us with nine algorithms of which four of them train linear models
(see Table 3.1).

TABLE 3.1: Two-class algorithms supported bij Azure ML.

Algorithm When to use

Averaged perceptron Fast training, linear model
Bayes point machine Fast training, linear model
Boosted decision tree Accuracy, fast training, large memory footprint
Decision forest Accuracy, fast training
Decision jungle Accuracy, small memory footprint
Locally deep SVM >100 features
Logistic regression Fast training, linear model
Neural network Accuracy, long training times
SVM >100 features, linear model

In the coming sections we will explain all these algorithms, and we will
point out their up- and downsides. We will not go too deep into the mat-
ter but at the end of this chapter people within the IT sector but without
prior ML knowledge should be able to understand the principles of these
algorithms.

3.1 Decision trees, forests, and jungles

Decision trees are intuitive models that resemble real life thinking closely.
For example, we take the model of Figure 3.1. We can easily deduce: if A
<= 5 or (A <= 10 and B >= 6) then Y else X. This makes these
kind of models easy to work with, as you can visualize what it is doing and
therefore you are able to spot errors as well.

1https://studio.azureml.net

https://studio.azureml.net

Chapter 3. ML techniques 14

A
Y

A
B

X

Y
X

<= 5

> 5

<= 10

< 6

>= 6
> 10

FIGURE 3.1: An example of a decision tree.

3.1.1 Boosted decision tree

The boosted decision tree classifier builds on this principle. Instead of learn-
ing one decision tree, it will learn multiple whereby each added tree cor-
rects for the errors in the previous trees (Microsoft, 2016).

The main advantages of this classifier are: good accuracy and the learned
trees can be inspected. The main disadvantages are: it is memory-intensive.

3.1.2 Decision forest

The decision forest classifier also learns multiple decision trees. Its predic-
tions are combined into a final prediction (Rokach, 2016). By building such
a forest, the mistakes of a single tree are compensated for by the other trees.

The main advantages and disadvantages are the same as boosted deci-
sion trees.

3.1.3 Decision jungle

The decision jungle classifier is an extension of decision forests which uses
rooted decision directed acyclic graphs as a means to obtain compact and
still accurate classifiers (Shotton et al., 2013).

The main advantage over decision forests is the advantage that tree
branches are allowed to merge therefore reducing memory usage.

3.2 Neural networks and perceptrons

Neurons are cells that can have multiple inputs and a single output. The
inputs fire signals at various rates and the neuron decides, based on these
signals, what it should fire on its output. This is a simplified analogy for
how our brain works.

3.2.1 Averaged perceptron

According to Clabaugh, Myszewski, and Pang, 2000 perceptrons are in-
spired by this biological phenomenon. More precisely, a perceptron is a
single neuron which will receive the input features, process them and out-
put a single value. The processing part applies a vector of learned weights
to the input features, calculates the sum and then compares this to a certain
threshold.

The weights have to be learned, this is done by an algorithm that loops
through the dataset. The algorithm will test each entry against its current
weights, if it classifies it incorrectly it will update the weights and continue.

Chapter 3. ML techniques 15

It will keep doing so, until either the weights reach a fixed point or the
maximum iteration count is reached.

The averaged perceptron is an improved version of this algorithm (Daumé
III, 2012). This improved version will take the age of weights into account,
so that weights that worked well for a long time are not easily changed by
new events. For example, if your weights classified a thousand examples
well, then the next one it fails, you do not want the weights to be changed
so drastically that it will no longer be able to classify the previous examples.

The main advantages of this classifier are: it is very easy to implement,
it learns very quickly, and it supports online learning meaning it can keep
learning while new samples are added. The main disadvantages are: only
capable of learning linearly separable patterns therefore unable to learn
complex class boundaries and it prefers the data to be normalized which
adds another preprocessing task.

3.2.2 Neural network

Neural networks are an extension of the previously explained principle
where, instead of modeling one neuron, it models a network of neurons
(Nielsen, 2016). A single neuron in such a network looks like a percep-
tron as described, however instead of outputting a 1 or 0 it outputs a value
between 1 and 0. Usually this value is calculated by a sigmoid function, al-
though other activation functions can be used as well. This new activation
function is chosen to make sure that learning new samples can only adjust
the output in a small way, therefore the neurons that depend on this value
do not have to adjust their weights drastically either.

The network consists of an input layer, one or more hidden layers, and
an output layer. A hidden layer is nothing more than a layer that is not
an input or an output layer. There are no limits on the number of hidden
layers, although adding more layers will increase the learning time. Net-
works with many hidden layers are often called deep neural networks and
can be effective in image or speech recognition (Krizhevsky, Sutskever, and
Hinton, 2012; Hinton et al., 2012).

The main advantages of this classifier are: it can learn complex class
boundaries and it usually has a good accuracy. The main disadvantages of
this classifier are: it can take a long time to learn, the knowledge learned by
the model is hard to understand (but not impossible, e.g. Castro, Mantas,
and Benítez, 2002) and it is prone to overfitting (Tu, 1996).

3.3 Support vector machines

3.3.1 SVM (linear kernel)

Support vector machines (SVMs) are classifiers that represent the examples
as points in space (Burges, 1998). The classifier will try to separate the in-
stances of either class with a hyperplane (e.g. a line in two-dimensional
space). When testing a new sample, it should fall on either side of the hy-
perplane, which allows the classifier to predict the class it belongs to. In
order to minimize error the hyperplane should be in the center of the gap
between classes. For example, in Figure 3.2 the lines H2 and H3 separate
the classes, but only H3 keeps most margin between the two.

Chapter 3. ML techniques 16

FIGURE 3.2: An example of hyperplanes (Wikipedia, 2016).

The main advantages of this classifier are: it is fast, and works well
on linear separable problems. The main disadvantages of this classifier
are: this variant is a linear classifier therefore unable to learn complex class
boundaries, also the knowledge learned is, just like neural networks, very
hard to understand (but not impossible, e.g. Fung, Sandilya, and Rao,
2005).

3.3.2 Locally deep SVM

Using a so called kernel trick, SVMs are able to do nonlinear classification.
The kernel trick transforms the input space, therefore a hyperplane learned
in the transformed space may be nonlinear in the original input space (see
Figure 3.3). The main problem is that nonlinear SVMs are computationally
expensive, especially when the training sample size is large (Ma and Guo,
2014). To solve this issue, Microsoft Research developed a method to reduce

FIGURE 3.3: An example of the kernel trick (Thornton,
2016).

Chapter 3. ML techniques 17

computation time with a moderate sacrifice in accuracy (Jose et al., 2013).
We will not explain the details of this method, however, it is important to
remember that in the results SVM will be the default linear variant while
locally deep SVM is the nonlinear one.

The main advantages of this classifier are: it can learn complex class
boundaries, and it works much faster than traditional nonlinear SVM mod-
els. The main disadvantage of this classifier is that it loses some accuracy
compared to the traditional models.

3.4 Logistic regression

Logistic regression is a classifier that predicts the probability that a certain
event occurs (Simonof, 2016). It tries to do so, by fitting the data to a logistic
function. The paper by Andrew and Gao, 2007 explains the implementation
of this algorithm as used in Azure.

The main advantages of this classifier are: it is very fast, and it works
well if the optimal decision boundary is (approximately) linear. The main
disadvantage are: it cannot learn complex class boundaries as it is a linear
classifier, and it assumes a logistic distribution of the data.

3.5 Bayes point machine

The last classifier we will discuss is the Bayes point machine. The Bayes
point machine is based on the concept of Bayes’ theorem, while the im-
plementation is actually very close to support vector machines (Herbrich,
Graepel, and Campbell, 2001).

The main advantages are: it does not require parameter sweeping to
find the best parameters, and it is not prone to overfitting. The main disad-
vantages are the same as other linear classifiers.

18

Chapter 4

Evaluation

4.1 Experiment setup

We are using Azure ML to classify the data. For each classifier we initially
use the default settings (Appendix E.1) and we always keep the threshold
at 0.5. The data is split into two groups: the training sample contains 75%,
and the remaining 25% is used for scoring. An overview of this setup is
shown on Appendix E.3. Subsequently, we will also try to find the best
settings for the classifiers and provide the scores for them. This allows us
to compare the classifiers to each other properly.

4.2 Results

We will first show the results of the initial classification that contains the
original acceptance labels. After that we will show the results of classifying
two individual competencies, followed by the results of classifying multiple
mate competencies at once. Lastly we show the results of classifying all
the relabeled competencies. The datasets are rather imbalanced, therefore
we select the best model(s) based on total errors (accuracy), AUC and the
ability to classify most samples from the negative set. Models which classify
all samples as positive are ignored. The detailed results can be found in
Appendix F.

4.2.1 Initial learning

The dataset used for scoring contains 3369 positive and 269 negative sam-
ples. As shown in Table 4.1 the algorithm Boosted Decision Tree was able
to correctly classify the most negative samples, but still only 23% of the to-
tal negative set. Also, it classified the positive class worse than the other
algorithms.

TABLE 4.1: Classification results for initial learning.

Algorithm Total Errors True Negative AUC

Averaged Perceptron 263 (7%) 47 (17%) 0.759
Boosted Decision Tree 290 (8%) 62 (23%) 0.776
Locally-Deep SVM 248 (7%) 50 (19%) 0.729

Chapter 4. Evaluation 19

4.2.2 Rating forming part of a navigational watch (code 301)

This is one of the mate competencies which we tried to relabel. We chose
this competency because the majority of the applicants for this competency
did not apply for an other competency at the same time. After relabeling
we scored the dataset in two different ways. The first way is to remove
everything we deemed invalid, the second way is to fix the label instead.
The latter is to verify that de relabeled applications can be classified as well.

TABLE 4.2: Classification results for competency: 301.

Mode Algorithm Total Errors True Negative AUC

Original Boosted Decision Tree 35 (8%) 5 (16%) 0.616
Original Decision Forest 30 (7%) 1 (3%) 0.750
Remove Boosted Decision Tree 14 (4%) 13 (62%) 0.945
Remove Decision Forest 11 (3%) 10 (48%) 0.941
Fix Boosted Decision Tree 18 (4%) 81 (88%) 0.972
Fix Decision Forest 35 (8%) 69 (75%) 0.960

As shown in Table 4.2, the results improved significantly for both methods.
It improved not only when compared to the results of classifying 301 with
the original data, but also compared to classifying the whole dataset.

4.2.3 Officer in charge of a navigational watch (code 171)

The results of relabeling a mate competency were promising, so we de-
cided to do the same for an officer competency. Officer competencies are
much more complex as officers usually apply for many competencies and
there are a lot of seagoing time / education combinations that can be used
to apply for them. We chose this competency as it is an entry level officer
competency for which we could still judge its validity (to a certain degree)
and it also has a good number of applicants that only applied for this com-
petency.

TABLE 4.3: Classification results for competency: 171.

Mode Algorithm Total Errors True Negative AUC

Original Boosted Decision Tree 24 (9%) 9 (31%) 0.796
Original Locally-Deep SVM 30 (11%) 8 (28%) 0.771
Original Neural Network 34 (12%) 14 (48%) 0.713
Remove Boosted Decision Tree 9 (4%) 10 (56%) 0.908
Remove Locally-Deep SVM 11 (4%) 8 (44%) 0.903
Remove Neural Network 16 (6%) 11 (61%) 0.865
Fix Boosted Decision Tree 21 (7%) 27 (63%) 0.930
Fix Locally-Deep SVM 33 (12%) 28 (65%) 0.871
Fix Neural Network 27 (10%) 26 (60%) 0.847

Table 4.3 shows that the results improve here as well, although slightly less

Chapter 4. Evaluation 20

than on competency 301. However, this competency is much harder to clas-
sify on its own as a large group of its members applied for multiple compe-
tencies. Also it was harder for us to determine the correct label, increasing
the chance of errors.

4.2.4 Multiple mate competencies

After proving that classifying individual competencies improved after rela-
beling, we wanted to do the same while classifying multiple mate compe-
tencies at once. This should also give insight whether it is possible to create
a classifier for combined competencies. To be exact: we ran the classifier on
five competencies (code 301 to 305).

TABLE 4.4: Classification results for multiple mate compe-
tencies.

Mode Algorithm Total Errors True Negative AUC

Remove Boosted Decision Tree 19 (4%) 13 (50%) 0.832
Remove Decision Forest 18 (4%) 10 (38%) 0.824
Remove Decision Jungle 19 (4%) 7 (27%) 0.866
Fix Boosted Decision Tree 26 (5%) 98 (84%) 0.977
Fix Decision Forest 51 (9%) 70 (60%) 0.951
Fix Decision Jungle 65 (12%) 56 (48%) 0.952

The results (see Table 4.4) are rather interesting. For the case where we re-
moved data, the classifiers are struggling. However, for the case where we
fixed the data the Boosted Decision Tree performs well. We believe the is-
sue is caused by the small number of negative samples on the additional
competencies.

4.2.5 All relabeled competencies

We also wanted to see whether classifying all competencies at once is feasi-
ble. Especially since the mate and officer competencies are separate choices,
therefore there are no applications that have both mate and officer compe-
tences.

TABLE 4.5: Classification results for all relabeled competen-
cies.

Mode Algorithm Total Errors True Negative AUC

Remove Boosted Decision Tree 28 (4%) 25 (57%) 0.930
Remove Locally-Deep SVM 41 (6%) 20 (45%) 0.858
Fix Boosted Decision Tree 57 (7%) 126 (79%) 0.930
Fix Locally-Deep SVM 103 (13%) 101 (64%) 0.878

According to Table 4.5 the results for Boosted Decision Tree are fairly close
to what they were when classified separately, although slightly worse on
the total errors for the fix mode.

Chapter 4. Evaluation 21

4.2.6 All relabeled competencies with optimized classifiers

Lastly, we wanted to see if we could improve the previously found results
by optimizing the classifier parameters. In order to find the best settings we
did a grid search over a combination of parameters (see Appendix E.2). For
each combination we perform 10-fold cross validation with a random split
(on the training data) after which the best model is selected and scored on
the validation dataset.

TABLE 4.6: Optimal classification results for all relabeled
competencies.

Mode Algorithm Total Errors True Negative AUC

Remove Boosted Decision Tree 21 (3%) 26 (59%) 0.919
Remove Locally-Deep SVM 35 (5%) 20 (45%) 0.858
Fix Boosted Decision Tree 53 (6%) 123 (77%) 0.941
Fix Locally-Deep SVM 84 (10%) 104 (65%) 0.873

As you can see in Table 4.6 the accuracy did slightly increase, however it
did not change the best performing classifier. The classifier that benefited
the most is the Decision Forest (Table 4.7) with: 32 trees, depth of 64, and
1024 random splits per node. Other notable improvements were: Decision
Jungle on the fix mode, and SVM on the remove mode. Most classifiers had
various settings that performed well on either the fix mode or the remove
mode.

TABLE 4.7: Decision Forest optimization results for all rela-
beled competencies.

Mode Optimized Total Errors True Negative AUC

Remove No 43 (6%) 1 (2%) 0.869
Remove Yes 29 (4%) 17 (38%) 0.897
Fix No 101 (12%) 67 (42%) 0.904
Fix Yes 58 (7%) 118 (74%) 0.945

22

Chapter 5

Conclusion

Machine learning can be used to successfully classify certificate of com-
petence applications. It will, however, take time, and money to relabel
the data. We saw that the classification performance improved drastically
when we corrected the labels, not only when we removed the applications
with incorrect labels but also when we fixed those labels.

To answer our other research questions: in Chapter 2.4 we saw that the
engineered features are easily extracted from the available data, therefore it
should not take much effort to generate them for future applications. Clas-
sification results show that those features provide enough information to
give a solid prediction. There are multiple binary classifiers that can be
used (Chapter 3), although Chapter 4 showed that only the Boosted Deci-
sion Tree performed consistently on all the problems we tested. Optimiza-
tion results show that most classifiers benefit from finding the best parame-
ter values, however, only the Decision Forest showed a major improvement
on both the remove mode and the fix mode. The Decision Jungle only im-
proved on the fix mode, while SVM (linear kernel) improved most on the
remove mode. The Boosted Decision Tree remains the best classifier after
optimization.

5.1 Discussion and future work

The classification only works properly when we fix the labels. Although it
was easy to spot the obvious errors, more complicated applications were
much harder to judge. If we did not know for sure, we kept the current
label. It is likely that a more experienced Kiwa employee could correct
more issues, resulting in even better performance.

Manually fixing all applications will take so much time that the question
arises whether the benefits outweigh the costs. Every application will still
need manual checking to verify that the uploaded documents match the
entered data, therefore the process cannot be fully automated. This makes
it unlikely that the time it takes to correct all applications will be compen-
sated by the improved handling process. The classification results could
also be shown during the application process, to the applicant. This could
reduce the number of invalid applications which makes it more likely that
the investment can pay itself back in the long run.

An alternative to fixing existing data, is to adjust the handling process
to add a step that indicates whether the application is correct or not based
on the entered data. This data can be used to create a new classifier to clas-
sify future applications. The upside to this alternative is that it should be
cheap to implement, the downside is that your current application history

Chapter 5. Conclusion 23

is useless and that it adds another step (although small) to the handling
process.

24

Appendix A

Overview of Competencies

A.1 Merchant navy / Sailing - Officer

• Master

– No limitation
– All ships less than 3000 GT1

• Master near coastal voyages (ships less than 500 GT)

– Dutch territorial waters and the adjacent zone of the Kingdom2

– Dutch territorial waters and Dutch exclusive economical zone
– International coast

• Chief mate

– No limitations
– All ships less than 3000 GT1

• Chief mate near coastal voyages (ships less than 500 GT)2

– Dutch territorial waters and the adjacent zone of the Kingdom
– Dutch territorial waters and Dutch exclusive economical zone
– International coast

• First maritime officer

– No limitations
– All ships less than 3000 GT and a propulsion power less than

3000 kW1

• Maritime officer
• Officer in charge of a navigational watch (all ships)
• Chief engineer

– No limitations
– All ships with a propulsion power less than 3000 kW1

• Chief engineer near coastal voyages (ships less than 3000 kW)

– Dutch territorial waters and the adjacent zone of the Kingdom
– Dutch territorial waters and Dutch exclusive economical zone
– International coast

• Second engineer

– No limitations
– All ships with a propulsion power less than 3000 kW1

• Second engineer near coastal voyages (ships less than 3000 kW)

1Has the option to include all contractor material, supply vessels and tugs.
2Has the option to be exempted from the Advanced Fire Fighting training.

Appendix A. Overview of Competencies 25

– Dutch territorial waters and the adjacent zone of the Kingdom
– Dutch territorial waters and Dutch exclusive economical zone
– International coast

• Officer in charge of an engineering watch (all ships)
• Electro-technical officer (all ships)
• Master sailing ships

– No limitations
– Less than 500 GT in the trading area I and II
– Less than 500 GT in the trading area I, II and IIIA
– Less than 500 GT in the trading area unlimited

• Chief mate sailing ships
• Officer in charge of a navigational watch sailing ships
• Officer in charge of a navigational watch sailing ships less then 500 GT

– Less than 500 GT in the trading area I, II and IIIA
– Less than 500 GT in the trading area unlimited

• GMDSS

– General Radio Operator
– Restricted Radio Operator

A.2 Merchant navy / Sailing - Mate

• Rating forming part of a navigational watch
• Rating forming part of a navigational watch Sailing Ships less than

500 GT
• Rating forming part of an engineering watch
• Rating forming part of a navigational and engineering watch
• Able seafarer deck
• Able seafarer engine
• Able seafarer deck and engine
• Electro-technical rating

A.3 Fishing

• Skipper Fishing Vessel

– No limitations
– Less than 60 meter and a propulsion power less than 3000 kW
– Less than 45 meter and a propulsion power less than 1125 kW in

the trading area I
– Less than 24 meter and a propulsion power less than 750 kW
– Less than 24 meter and a propulsion power less than 750 kW in

the trading area I
– Less than 45 meter in the trading area II
– Less than 24 meter in the trading area II

• Skipper Mussel Vessels

– Within the trading area 1a between the West Frisian Islands (Wad-
den) and the Eastern Schelde

• Substitute Skipper Fishing Vessel

Appendix A. Overview of Competencies 26

– No limitations
– Less than 60 meter and a propulsion power less than 3000 kW
– Less than 45 meter and a propulsion power less than 1125 kW in

the trading area I
– Less than 45 meter and a propulsion power less than 1500 kW

• Mate Fishing Vessel

– Less than 45 meters

• Mate / Engineer Fishing Vessel

– No limitations
– With a propulsion power less than 3000 kW

• Engineer Fishing Vessels

– No limitations
– Less than 45 meter and a propulsion power in the trading area II
– Less than 24 meter and a propulsion power less than 750 kW in

the trading area II

• GMDSS

– General Radio Operator
– Restricted Radio Operator

27

Appendix B

Overview of Sailing Time

There are a total of thirty-four positions on nine vessels.

B.1 Positions

• Able seafarer deck
• Able seafarer engine
• Chief Engineer (no limitations)
• Chief Engineer < 3000 kW
• Chief Mate (no limitations)
• Chief Mate < 3000 GT
• Chief Mate near coastal voyage
• Chief Mate sailing ships
• Cook
• Electro-technical officer
• Electro-technical rating
• Engineer fishing vessel
• First Maritime Officer (no limitations)
• First Maritime Officer < 3000 GT & < 3000 kW
• Maritime Officer (no limitation)
• Maritime Officer < 3000 GT & < 3000 kW
• Master (no limitations)
• Master < 3000 GT
• Master near coastal voyage
• Master sailing ships
• Mate fishing vessel
• Mate/engineer fishing vessel
• Officer in charge of a navigational watch
• Officer in charge of a engineering watch
• Rating apprentice
• Rating deck
• Rating engine room
• Rating engineer
• Rating sailing ships
• Second Engineer (no limitations)
• Second Engineer < 3000 kW
• Skipper fishing vessel
• Skipper mussel vessels
• Substitute Skipper fishing vessel

Appendix B. Overview of Sailing Time 28

B.2 Type of vessels

• Chemical tanker
• Fishing vessel
• High-speed craft
• Liquefied gas tanker
• Merchant ship
• Oil tanker
• Other
• Passenger ship
• Sailing vessel

29

Appendix C

Overview of Education

There are a total of thirty-six institutions and 113 educations.

C.1 Institutions

• ABB Marine Academy
• Alphatron Marine B.V.
• Arbode Maritiem
• Berechja College
• Cooks Education
• CSMART
• De Ruyter Training & Consultancy
• Deltion College
• DHTC
• Emergency Control Maritime Training BV
• Enkhuizer Zeevaartschool
• Falck Nutec b.v.
• FMTC
• Foreign trainer
• ForestWave Navigation B.V.
• G4S Training & Safety Solutions
• Hogeschool van Amsterdam
• Hogeschool Zeeland
• Holland America Line N.V.
• Kon.Marine - Defensie Vaarschool
• Maritiem Instituut Willem Barentsz
• Maritieme Academie
• Nova College
• Nova Contract Maritieme Academie
• NTTA
• Quercus Technical Services B.V.
• ROC Frisian Port, Location Urk
• ROC Kop van N-Holland
• ROC Kop van Noord Holland
• ROC Zeeland
• RoodBovenGroen
• SAIO On-& Offshore Safety Training BV
• STC B.V.
• STC-KNRM Offshore Safety
• Telecom Agency
• TvK Instructie BV

Appendix C. Overview of Education 30

• Zeevaartschool Abel Tasman

C.2 Educations

• Advanced Fire Fighting Certificate
• Basic Safety Training Certificate
• Certificate Able seafarer deck
• Certificate Able seafarer deck and engine
• Certificate Able seafarer engine
• Certificate Advanced training for oil tanker
• Certificate Advanced training for chemical tanker
• Certificate Advanced training for gas tanker
• Certificate Basic training for gas tanker
• Certificate Basic training for oil and chemical tanker
• Certificate captain limited area unlimited propulsion
• Certificate Cook
• Certificate Electro-technical officer
• Certificate Electro-technical rating
• Certificate Gasturbine propulsion
• Certificate medical care
• Certificate medical first aid
• Certificate of Radar Detection
• Certificate of Radar Navigation
• Certificate Rating in charge of a navigational and engineering watch

all ships
• Certificate Rating in charge of a navigational watch all ships
• Certificate Rating in charge of a engineering watch all ships
• Certificate Ship Management Engineer Near-coastal voyages
• Certificate Ship Management Nautical Near-coastal voyages
• Certificate Steam propulsion
• Certificate Type Rating HSC
• Chemicals Tanker Certificate
• Deck Off. < 3000
• Deck Officer 200 Mile
• Deck Officer All Fishing
• Deck Officer all vessels
• Deck Officer/Engineer Small Fishing Vessels Certificate of Compe-

tency
• Diploma Engineer small ships
• Diploma Engineer all ships
• Diploma Engineer all ships
• Diploma Koopvaardij officier: Stuurman Werktuigkundige Kleine Schepen
• Diploma Large Sail
• Diploma Maritime Waterbuilder
• Diploma Mate all ships
• Diploma Mate small ships
• Diploma S4
• Diploma Small Sail
• Diploma W4
• Dredger Deck Officer

Appendix C. Overview of Education 31

• Dredging Engineer
• ECDIS Certificate
• Engineer < 3000 KW
• Engineer all vessels
• Engineer Service Certificate
• Gas Tanker Certificate
• GMDSS General
• GMDSS Restricted Operator Certificate
• High-voltage Certificate
• K200 Certificate of Competency
• Maritime Officer
• Maritime Officer Certificate of Competency (senior secondary voca-

tional education)
• Maritime Officer Certificate of Competency (university of applied sci-

ences)
• Master Near Coastal Voyages Certificate of Competency
• Mate Waterbuilder
• Motorman (MM) Certificate (merchant navy certificate)
• Motorman (MM) Certificate of Competency
• Officer . S IV-v Certificate
• Officer. S IV-v Certificate
• Officer/Engineer Sea Fish
• Oil Tanker Certificate
• Proficiency Survival Craft
• Refresh course watch deck/engineer
• Refresher training advanced chemical tanker
• Refresher training Advanced Fire Fighting
• Refresher training advanced gas tanker
• Refresher training advanced oil tanker
• Refresher training basic gas tanker
• Refresher training basic oil and chemical tanker
• Refresher training Basic Safety
• Refresher training Proficiency in survival craft
• Replenishment Diploma Large Sail
• S VII Declaration
• S200 Certificate of Competency
• Sea Fishing Motorman (MvM) Certificate
• Sea Fishing Motorman (MVM) Certificate of Competency
• Ship Management
• Ship Management Engineer
• Ship Management Nautical
• Ship Management Nautical/Engineer
• Ship Management < 3000 GT
• Skipper/Engineer Restricted Working Area Certificate of Competency
• State degree A
• State degree B
• State degree C
• State Degree S1
• State Degree S2
• State Degree S3
• State degree SK

Appendix C. Overview of Education 32

• State degree SKA
• State Degree SW5
• State Degree SWK
• Statement recordbook rating deck
• Statement recordbook rating engine
• Statement recordbook upcoming electro-technical rating
• Statement upcoming rating deck
• Statement upcoming rating engine
• SVB Declaration
• SW 5
• SW V < 24m
• SW V < 45m
• SW V Certificate
• SW VI Certificate
• SW4
• SW5
• SW6
• W IV-v
• W IV-v Certificate
• Written Declaration Master

33

Appendix D

Database Queries

D.1 Applications

This query retrieves the CoC applications:

Appendix D. Database Queries 34

D.2 Product

This query retrieves the selected product:

D.3 Competencies

This query retrieves the selected competencies:

D.4 Medical claims

This query retrieves the medical claims:

Appendix D. Database Queries 35

D.5 Seagoing time claims

This query retrieves the seagoing time claims.

D.6 Education claims

This query retrieves the education claims:

Appendix D. Database Queries 36

D.7 Attachments

This query retrieves some information about the uploaded attachments:

37

Appendix E

Azure Machine Learning Setup

E.1 Default settings

Averaged perceptron

Setting Value

Learning rate 1
Maximum number of iterations 10

Bayes point machine

Setting Value

Number of training iterations 30
Include bias Yes
Allow unknown categorical levels Yes

Boosted decision tree

Setting Value

Maximum number of leaves per tree 20
Minimum number of samples per leaf node 10
Learning rate 0.2
Number of trees constructed 100
Allow unknown categorical levels Yes

Decision forest

Setting Value

Resampling method Bagging
Number of decision trees 8
Maximum depth of the decision trees 32
Number of random splits per node 128
Minimum number of samples per leaf node 1
Allow unknown categorical levels Yes

Appendix E. Azure Machine Learning Setup 38

Decision jungle

Setting Value

Resampling method Bagging
Number of decision DAGs 8
Maximum depth of the decision DAGs 32
Maximum width of the decision DAGs 128
Number of optimization steps per decision DAG layer 2048
Allow unknown categorical levels Yes

Locally-deep SVM

Setting Value

Depth of the tree 3
Lambda W 0.1
Lambda Theta 0.01
Lambda Theta Prime 0.01
Sigmoid sharpness 1
Number of iterations 15000
Feature normalizer Min-Max normalizer
Allow unknown categorical levels Yes

Logistic regression

Setting Value

Optimization tolerance 1E-07
L1 regularization weight 1
L2 regularization weight 1
Memory size for L-BFGS 20
Allow unknown categorical levels Yes

Neural network

Setting Value

Hidden layer specification Fully-connected case
Number of hidden nodes 100
Learning rate 0.1
Number of learning iterations 100
The initial learning weights diameter 0.1
The momentum 0
The type of normalizer Min-max normalizer
Shuffle examples Yes
Allow unknown categorical levels Yes

Appendix E. Azure Machine Learning Setup 39

SVM

Setting Value

Number of iterations 1
Lambda 0.001
Normalize features Yes
Project to the unit-sphere No
Allow unknown categorical levels Yes

E.2 Settings used for grid search

Averaged perceptron

Setting Value

Learning rate 0.1, 0.5, 1.0
Maximum number of iterations 1, 10, 20

Boosted decision tree

Setting Value

Maximum number of leaves per tree 2, 8, 32, 128
Minimum number of samples per leaf node 1, 10, 50
Learning rate 0.025, 0.05, 0.1, 0.2, 0.4
Number of trees constructed 20, 100, 500

Decision forest

Setting Value

Number of decision trees 1, 8, 32
Maximum depth of the decision trees 1, 16, 64
Number of random splits per node 1, 128, 1024
Minimum number of samples per leaf node 1, 4, 16

Decision jungle

Setting Value

Number of decision DAGs 1, 8, 32
Maximum depth of the decision DAGs 1, 16, 64
Maximum width of the decision DAGs 1, 128, 1024
Number of optimization steps per decision DAG layer 1024, 4096, 16384

Appendix E. Azure Machine Learning Setup 40

Locally-deep SVM

Setting Value

Depth of the tree 1, 3
Lambda W 0.1, 0.01, 0.001
Lambda Theta 0.1, 0.01, 0.001
Lambda Theta Prime 0.1, 0.01, 0.001
Sigmoid sharpness 1.0, 0.1, 0.01
Number of iterations 10000, 15000, 20000

Logistic regression

Setting Value

Optimization tolerance 1E-04, 1E-07
L1 regularization weight 0.0, 0.01, 0.1, 1.0
L2 regularization weight 0.01, 0.1, 1.0
Memory size for L-BFGS 5, 20, 50

Neural network

Setting Value

Learning rate 0.01, 0.02, 0.04
Number of learning iterations 20, 40, 80, 160

SVM

Setting Value

Number of iterations 1, 10, 100
Lambda 1E-05, 1E-04, 0.001, 0.01, 0.1
Normalize features Yes
Project to the unit-sphere No
Allow unknown categorical levels Yes

Appendix E. Azure Machine Learning Setup 41

E.3 Experiment setup

We use two Score Models to quickly run to classifiers in parallel. The SQL
transformation is used to select single or multiple competencies.

42

Appendix F

ML Results

F.1 Complete dataset

Dataset with original entries

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 3328 41 222 47 0.962 0.759
Bayes Point Machine 3369 0 269 0 0.962 0.490
Boosted Decision Tree 3286 83 207 62 0.958 0.776
Decision Forest 3369 0 269 0 0.962 0.653
Decision Jungle 3369 0 269 0 0.962 0.621
Locally-Deep SVM 3340 29 219 50 0.964 0.745
Logistic Regression 3361 8 250 19 0.963 0.754
Neural Network 3366 3 264 5 0.962 0.700
SVM 3361 8 254 15 0.962 0.729

Appendix F. ML Results 43

F.2 Competency 301

Dataset with original entries

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 387 3 30 1 0.959 0.650
Bayes Point Machine 390 0 30 1 0.963 0.440
Boosted Decision Tree 381 9 26 5 0.956 0.616
Decision Forest 390 0 30 1 0.963 0.750
Decision Jungle 390 0 30 1 0.963 0.713
Locally-Deep SVM 379 11 29 2 0.950 0.641
Logistic Regression 390 0 30 1 0.963 0.654
Neural Network 386 4 29 2 0.959 0.661
SVM 390 0 31 0 0.962 0.625

Dataset with invalid entries removed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 314 5 10 11 0.977 0.858
Bayes Point Machine 319 0 17 4 0.974 0.452
Boosted Decision Tree 313 6 8 13 0.978 0.945
Decision Forest 319 0 11 10 0.983 0.941
Decision Jungle 319 0 21 0 0.968 0.927
Locally-Deep SVM 316 3 9 12 0.981 0.818
Logistic Regression 318 1 19 2 0.970 0.902
Neural Network 316 3 9 12 0.981 0.752
SVM 315 4 18 3 0.966 0.822

Dataset with invalid entries fixed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 313 15 29 63 0.934 0.920
Bayes Point Machine 316 12 39 53 0.925 0.768
Boosted Decision Tree 321 7 11 81 0.973 0.972
Decision Forest 316 12 23 69 0.948 0.960
Decision Jungle 327 1 35 57 0.948 0.952
Locally-Deep SVM 313 15 24 68 0.941 0.902
Logistic Regression 316 12 32 60 0.935 0.909
Neural Network 319 9 28 64 0.945 0.927
SVM 315 13 30 62 0.936 0.893

Appendix F. ML Results 44

F.3 Competency 171

Dataset with original entries

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 244 5 21 8 0.949 0.852
Bayes Point Machine 248 1 29 0 0.943 0.433
Boosted Decision Tree 245 4 20 9 0.953 0.796
Decision Forest 248 1 25 4 0.950 0.775
Decision Jungle 249 0 29 0 0.945 0.708
Locally-Deep SVM 240 9 21 8 0.941 0.771
Logistic Regression 248 1 23 6 0.954 0.860
Neural Network 230 19 15 14 0.931 0.713
SVM 246 3 25 4 0.946 0.856

Dataset with invalid entries removed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 230 1 10 8 0.977 0.943
Bayes Point Machine 230 1 18 0 0.960 0.193
Boosted Decision Tree 230 1 8 10 0.981 0.908
Decision Forest 231 0 13 5 0.973 0.918
Decision Jungle 231 0 18 0 0.963 0.909
Locally-Deep SVM 230 1 10 8 0.977 0.903
Logistic Regression 231 0 17 1 0.965 0.965
Neural Network 222 9 7 11 0.965 0.865
SVM 231 0 18 0 0.963 0.942

Dataset with invalid entries fixed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 223 15 21 22 0.925 0.854
Bayes Point Machine 238 0 42 1 0.919 0.318
Boosted Decision Tree 233 5 16 27 0.957 0.930
Decision Forest 233 5 21 22 0.947 0.863
Decision Jungle 238 0 43 0 0.917 0.855
Locally-Deep SVM 220 18 15 28 0.930 0.871
Logistic Regression 229 9 31 12 0.920 0.882
Neural Network 228 10 17 26 0.944 0.847
SVM 223 15 32 11 0.905 0.837

Appendix F. ML Results 45

F.4 Competency 301, 302, 303, 304, and 305

Dataset with original entries

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 490 11 35 5 0.955 0.661
Bayes Point Machine 500 1 39 1 0.962 0.416
Boosted Decision Tree 480 21 33 7 0.947 0.726
Decision Forest 500 1 39 1 0.962 0.774
Decision Jungle 501 0 40 0 0.962 0.736
Locally-Deep SVM 490 11 31 9 0.959 0.718
Logistic Regression 500 1 39 1 0.962 0.617
Neural Network 499 2 39 1 0.961 0.735
SVM 499 2 40 0 0.960 0.628

Dataset with invalid entries removed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 398 13 14 12 0.967 0.774
Bayes Point Machine 411 0 24 2 0.972 0.346
Boosted Decision Tree 405 6 13 13 0.977 0.832
Decision Forest 409 2 16 10 0.978 0.824
Decision Jungle 411 0 19 7 0.977 0.866
Locally-Deep SVM 403 8 13 13 0.975 0.771
Logistic Regression 410 1 18 8 0.977 0.766
Neural Network 400 11 12 14 0.972 0.761
SVM 410 1 26 0 0.968 0.738

Dataset with invalid entries fixed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 416 8 44 73 0.941 0.907
Bayes Point Machine 415 9 51 66 0.933 0.752
Boosted Decision Tree 417 7 19 98 0.970 0.977
Decision Forest 420 4 47 70 0.943 0.951
Decision Jungle 420 4 61 56 0.928 0.952
Locally-Deep SVM 416 8 40 77 0.945 0.906
Logistic Regression 419 5 46 71 0.943 0.908
Neural Network 418 6 44 73 0.944 0.910
SVM 407 17 45 72 0.929 0.883

Appendix F. ML Results 46

F.5 Competency 301, 302, 303, 304, 305, and 171

Dataset with original entries

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 737 13 58 11 0.954 0.699
Bayes Point Machine 749 1 69 0 0.955 0.416
Boosted Decision Tree 720 30 46 23 0.950 0.715
Decision Forest 750 0 69 0 0.956 0.688
Decision Jungle 750 0 69 0 0.956 0.646
Locally-Deep SVM 722 28 43 26 0.953 0.734
Logistic Regression 747 3 61 8 0.959 0.743
Neural Network 750 0 60 9 0.962 0.626
SVM 738 12 62 7 0.952 0.701

Dataset with invalid entries removed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 629 13 28 16 0.968 0.845
Bayes Point Machine 641 1 44 0 0.966 0.297
Boosted Decision Tree 633 9 19 25 0.978 0.930
Decision Forest 642 0 43 1 0.968 0.869
Decision Jungle 642 0 44 0 0.967 0.837
Locally-Deep SVM 625 17 24 20 0.968 0.858
Logistic Regression 638 4 40 4 0.967 0.821
Neural Network 636 6 25 19 0.976 0.691
SVM 640 2 43 1 0.966 0.840

Dataset with invalid entries fixed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 618 45 67 92 0.917 0.851
Bayes Point Machine 647 16 96 63 0.920 0.623
Boosted Decision Tree 639 24 33 126 0.957 0.930
Decision Forest 654 9 92 67 0.928 0.904
Decision Jungle 663 0 125 34 0.914 0.831
Locally-Deep SVM 618 45 58 101 0.923 0.878
Logistic Regression 635 28 70 89 0.928 0.867
Neural Network 631 32 79 80 0.919 0.862
SVM 598 65 69 90 0.899 0.828

Appendix F. ML Results 47

F.5.1 With optimized classifiers

Dataset with invalid entries removed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 626 16 23 21 0.970 0.853
Boosted Decision Tree 639 3 18 26 0.984 0.919
Decision Forest 640 2 27 17 0.978 0.897
Decision Jungle 641 1 44 0 0.966 0.894
Locally-Deep SVM 631 11 24 20 0.973 0.823
Logistic Regression 634 8 22 22 0.977 0.771
Neural Network 638 4 28 16 0.976 0.693
SVM 621 21 20 24 0.968 0.818

Dataset with invalid entries fixed

Algorithm TP FN FP TN F1 AUC

Averaged Perceptron 622 41 67 92 0.920 0.851
Boosted Decision Tree 646 17 36 123 0.961 0.941
Decision Forest 646 17 41 118 0.957 0.945
Decision Jungle 629 34 50 109 0.937 0.918
Locally-Deep SVM 634 29 55 104 0.938 0.873
Logistic Regression 635 28 70 89 0.928 0.867
Neural Network 627 36 52 107 0.934 0.887
SVM 624 39 66 93 0.922 0.865

48

Bibliography

Andrew, Galen and Jianfeng Gao (2007). “Scalable training of L 1-regularized
log-linear models”. In: Proceedings of the 24th international conference on
Machine learning. ACM, pp. 33–40.

Avanade (2016). Avanade Fast Facts - About Avanade. URL: http://www.
avanade.com/en/about- avanade/about- us/fast- facts
(visited on 04/12/2016).

Burges, Christopher JC (1998). “A tutorial on support vector machines for
pattern recognition”. In: Data mining and knowledge discovery 2.2, pp. 121–
167.

Castro, Juan L, Carlos J Mantas, and José Manuel Benítez (2002). “Interpre-
tation of artificial neural networks by means of fuzzy rules”. In: IEEE
Transactions on Neural Networks 13.1, pp. 101–116. DOI: 10.1109/72.
977279.

Clabaugh, Caroline, Dave Myszewski, and Jimmy Pang (2000). The artificial
neuron. URL: https://cs.stanford.edu/people/eroberts/
courses/soco/projects/neural-networks/Neuron/index.
html (visited on 07/14/2016).

Daumé III, Hal (2012). “The Perceptron”. In: A Course in Machine Learning.
Chap. 3, pp. 39–52.

Fung, Glenn, Sathyakama Sandilya, and R Bharat Rao (2005). “Rule extrac-
tion from linear support vector machines”. In: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data min-
ing. ACM, pp. 32–40.

Herbrich, Ralf, Thore Graepel, and Colin Campbell (2001). “Bayes point ma-
chines”. In: Journal of Machine Learning Research 1.Aug, pp. 245–279.

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups”. In:
IEEE Signal Processing Magazine 29.6, pp. 82–97. DOI: 10.1109/MSP.
2012.2205597.

IBM Analytics (2015). “Foundational Methodology for Data Science”. In:
URL: http://public.dhe.ibm.com/common/ssi/ecm/im/en/
imw14824usen/IMW14824USEN.PDF.

Jose, Cijo et al. (2013). “Local deep kernel learning for efficient non-linear
svm prediction”. In: Proceedings of the 30th international conference on ma-
chine learning (ICML-13), pp. 486–494.

Kiwa (2016). About Kiwa. URL: http://www.1kiwa.com/about_Kiwa/
(visited on 04/12/2016).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems, pp. 1097–1105.

Ma, Yunqian and Guodong Guo (2014). Support vector machines applications.
Springer, p. 166.

http://www.avanade.com/en/about-avanade/about-us/fast-facts
http://www.avanade.com/en/about-avanade/about-us/fast-facts
https://doi.org/10.1109/72.977279
https://doi.org/10.1109/72.977279
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
http://public.dhe.ibm.com/common/ssi/ecm/im/en/imw14824usen/IMW14824USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/im/en/imw14824usen/IMW14824USEN.PDF
http://www.1kiwa.com/about_Kiwa/

BIBLIOGRAPHY 49

Microsoft (2016). Two-Class Boosted Decision Tree. URL: https://msdn.
microsoft.com/en-us/library/azure/dn906025.aspx (vis-
ited on 08/01/2016).

Nielsen, Michael (2016). “Using neural nets to recognize handwritten dig-
its”. In: Neural Networks and Deep Learning. Chap. 1. URL: http://
neuralnetworksanddeeplearning.com/chap1.html (visited on
07/14/2016).

Piatetsky, Gregory (2014). CRISP-DM, still the top methodology for analytics,
data mining, or data science projects. URL: http://www.kdnuggets.
com / 2014 / 10 / crisp - dm - top - methodology - analytics -
data-mining-data-science-projects.html (visited on 05/24/2016).

Rohrer, Brandon (2016). Microsoft Azure Machine Learning Algorithm Cheat
Sheet. URL: https://azure.microsoft.com/en-us/documentation/
articles/machine-learning-algorithm-cheat-sheet/ (vis-
ited on 04/28/2016).

Rokach, Lior (2016). “Decision forest: Twenty years of research”. In: Infor-
mation Fusion 27, pp. 111–125.

Rollins, John (2015). Why we need a methodology for data science. URL: http:
//www.ibmbigdatahub.com/blog/why-we-need-methodology-
data-science (visited on 05/24/2016).

Shotton, Jamie et al. (2013). “Decision jungles: Compact and rich models
for classification”. In: Advances in Neural Information Processing Systems,
pp. 234–242.

Simonof, Jeffrey S. (2016). Logistic regression — modeling the probability of suc-
cess. URL: http://people.stern.nyu.edu/jsimonof/classes/
2301/pdf/logistic.pdf (visited on 10/28/2016).

Thearling, Kurt (2016). “An Introduction to Data Mining: Discovering hid-
den value in your data warehouse”. In: URL: http://www.thearling.
com/text/dmwhite/dmwhite.htm (visited on 04/13/2016).

Thornton, Chris (2016). Machine Learning - Lecture 15 Support Vector Ma-
chines. URL: http://users.sussex.ac.uk/~christ/crs/ml/
lec08a.html (visited on 10/28/2016).

Tu, Jack V. (1996). “Advantages and disadvantages of using artificial neural
networks versus logistic regression for predicting medical outcomes”.
In: Journal of Clinical Epidemiology 49.11, pp. 1225 –1231. ISSN: 0895-4356.
DOI: 10.1016/S0895-4356(96)00002-9.

Wikipedia (2016). Svm seperating hyperplanes. URL: https://commons.
wikimedia.org/wiki/File:Svm_separating_hyperplanes_
(SVG).svg (visited on 10/28/2016).

Wirth, Rüdiger and Jochen Hipp (2000). “CRISP-DM: Towards a standard
process model for data mining”. In: Proceedings of the 4th international
conference on the practical applications of knowledge discovery and data min-
ing, pp. 29–39.

https://msdn.microsoft.com/en-us/library/azure/dn906025.aspx
https://msdn.microsoft.com/en-us/library/azure/dn906025.aspx
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html
http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html
http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/
http://www.ibmbigdatahub.com/blog/why-we-need-methodology-data-science
http://www.ibmbigdatahub.com/blog/why-we-need-methodology-data-science
http://www.ibmbigdatahub.com/blog/why-we-need-methodology-data-science
http://people.stern.nyu.edu/jsimonof/classes/2301/pdf/logistic.pdf
http://people.stern.nyu.edu/jsimonof/classes/2301/pdf/logistic.pdf
http://www.thearling.com/text/dmwhite/dmwhite.htm
http://www.thearling.com/text/dmwhite/dmwhite.htm
http://users.sussex.ac.uk/~christ/crs/ml/lec08a.html
http://users.sussex.ac.uk/~christ/crs/ml/lec08a.html
https://doi.org/10.1016/S0895-4356(96)00002-9
https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg
https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg
https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg

	Abstract
	Acknowledgements
	Introduction
	Background
	Application process
	Handling process
	Scientific and social relevance
	Methodology
	IBM Foundational Data Science Methodology

	Research questions

	Data
	Data requirements
	Data collection
	Data preparation
	Parser
	Cleaner
	Flattener
	Writer

	Feature engineering
	Relabeling the data

	ML techniques
	Decision trees, forests, and jungles
	Boosted decision tree
	Decision forest
	Decision jungle

	Neural networks and perceptrons
	Averaged perceptron
	Neural network

	Support vector machines
	SVM (linear kernel)
	Locally deep SVM

	Logistic regression
	Bayes point machine

	Evaluation
	Experiment setup
	Results
	Initial learning
	Rating forming part of a navigational watch (code 301)
	Officer in charge of a navigational watch (code 171)
	Multiple mate competencies
	All relabeled competencies
	All relabeled competencies with optimized classifiers

	Conclusion
	Discussion and future work

	Overview of Competencies
	Merchant navy / Sailing - Officer
	Merchant navy / Sailing - Mate
	Fishing

	Overview of Sailing Time
	Positions
	Type of vessels

	Overview of Education
	Institutions
	Educations

	Database Queries
	Applications
	Product
	Competencies
	Medical claims
	Seagoing time claims
	Education claims
	Attachments

	Azure Machine Learning Setup
	Default settings
	Settings used for grid search
	Experiment setup

	ML Results
	Complete dataset
	Competency 301
	Competency 171
	Competency 301, 302, 303, 304, and 305
	Competency 301, 302, 303, 304, 305, and 171
	With optimized classifiers

	Bibliography

