


Cover design: Rumen Georgiev

Images used:

Jensen, Christian Albrecht.
Carl Friedrich Gauß. 1840.
Oil on canvas.
Archiv der Berlin-Brandenburgische
Akademie der Wissenschaften

Pringle, Jimmy.
”DNA.” 2013.
L0kust’s deviantART gallery.
deviantART. 2016. Web.
March 22, 2016



Universiteit Utrecht

Department of Chemistry

van’t Hoff Laboratorium

The Gaussian Genome

Author:
Rumen Georgiev

Supervisors:
Jasper Landman

prof. Willem Kegel

May 16, 2016





Abstract

Recent studies in biophysics suggest transcription factor interactions with non-regulatory
DNA are sequence-dependent and vary along the DNA strand. This makes numerical
calculation of the grand canonical partition function cumbersome and renders predictions of
genetic activity a seemingly insurmountable task. Using the cumulant-generating function
of the normal distribution, we derive the partition function and define an effective binding
energy, a single quantity which accounts for the contributions from the whole spectrum of
binding energies. Applying our approach to LacI and RNAP, two prominent lac operon
transcription factors, we obtain theoretical results which are in good accord with the actual
biophysical picture, namely, the standard deviations of their binding energy distributions,
on one hand, and binding mode differentiation on the other.
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Chapter 1

Introduction

Since its discovery in 1959 by Jacob and Monod [1], the lac operon, responsible for the the
lactose metabolism in the cell, has been subjected to extensive studies due to the variety of
possible regulatory scenarios which can take place within it. As an operon, it contains three
genes controlled by a single promoter sequence P, i.e., a single sequence of nucleobases,
which signals RNA polymerase (RNAP) it should start synthesizing mRNA by reading
out the genetic information encoded downstream from P. Control over the transcription
process is carried out by two transcription factors – the lac repressor (LacI), which in-
hibits transcription by effectively blocking part of the promoter sequence, and the cAMP
receptor protein (CRP, also known as catabolite activator protein, CAP), which activates
transcription by forming contacts with RNAP. Each of these three proteins recognizes (at
least) one specific sequence (site) in the lac operon and, upon binding to it, affects tran-
scription. Due to the specific properties of these DNA-protein complexes, it is only natural
to dub these functional sequences specific sites. RNAP has one specific site, the promoter,
LacI binds specifically to the operator sequence O1 and to the two auxiliary operators O2

and O3, while CRP’s specific site is located close to the promoter sequence [2].
As we can see, even in this short part of DNA which is the lac operon, there are a total of

5 different specific sites for 3 regulatory proteins and binding to these sites is on average 5 to
15 kBT stronger compared to any other part of the DNA strand [3, 4]. Since we called these
tight-binding functional sites specific, patches of non-regulatory DNA, which do not play a
crucial role in transcription control, shall be called non-specific sites. Here we should clarify
that a protein does not discern between another protein’s specific site and non-specific
DNA. The repressor, for example, will bind with roughly equal affinity to a non-operator
patch of DNA and part of the promoter sequence. The exact function of the non-specific
sites has been debated for some time but the scientific community agrees that proteins use
them to quickly find their respective specific site [5–8]. This is achieved by combining 3D-
diffusion with 1D-diffusion along the DNA strand and jumps between spatially adjacent
patches of DNA brought close together due to DNA supercoiling. Another question these
sites raise is the distribution of their binding energies – are they uniformly distributed, i.e.,
do they have constant energy, or do they have a broad distribution with a wide spectrum
of binding energies. Recent work in the field [9–11] points to the latter and, since non-
specific sites are considered as having a random sequence, a Gaussian distribution is to be
expected. But calculating the partition function for this case is a seemingly insurmountable
task because now, instead of having only one group of sites, we are faced with thousands
even millions of groups all having different energies and numbers of sites.

The main goal of the current work is to derive a theory for the binding of proteins to
non-specific sites under the grand canonical ensemble and check its validity in the context
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CHAPTER 1. INTRODUCTION

of the lac operon. We begin our study by providing the theoretical background in statistical
mechanics, biophysics, statistics and tensor calculus needed in all our further considera-
tions. Modelling the binding energy distribution under the grand canonical ensemble with
the help of statistical generating functions leads us to the definition an effective energy for
the whole distribution. In other words, the partition functions for a distribution of choice
and a reservoir of non-specific sites with equal binding energy are identical as long as we
take into account the shape of the distribution and scale the constant energy properly.
We are interested not only in deriving a simple equation, which accurately predicts the
behaviour of the system, but under what conditions our model breaks down, as well. To
that end we derive a convergence criterion, which estimates the validity range of our model.
Testing our model with in vitro experimental data yields interesting and reasonable results,
which we try to link to biophysical quantities. Later on, however, when we expand our
consideration to in vivo measurements, by obtaining the binding energy distribution of the
whole E. coli genome via energy matrices [12], we are faced with a seemingly inexplicable
inconsistency. To resolve the controversy, we conceive the idea of binding modes, that is,
structural and chemical differences between specific and non-specific complexes. Finally,
we conclude our work by summarising all results we have obtained and discussing what
future research should focus on to fully resolve the issue at hand.
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Chapter 2

Theoretical background

This chapter’s aim is to provide the reader with an overview of all theoretical facts and
knowledge needed further in our study. We begin our work by describing the system we are
modelling, that is, the lac operon, by recalling its structure and function, listing all pro-
teins involved in lactose metabolism control and briefly discussing the possible regulatory
scenarios. Next, we plunge into statistical mechanics and discuss the two most prominent
approaches in lac operon activity modelling – the canonical and grand canonical ensembles.
We derive the occupation probability of a promoter site under both ensembles, compare
the results and analyse them. Our next topic of interest is biophysics, in which we focus
on the link between the binding energy of a protein to DNA and the salt conditions within
a cell. To that end we review Manning’s polyelectrolyte theory and derive Kobs ([M+

])
by

following Record et al.’s approach [13]. We conclude this theoretical background overview
with a discussion of the mathematical and statistical tools we will be using in all further
derivations.

2.1 The lac operon

In an ever-changing environment cells must adapt to the external conditions like tem-
perature, nutrition source, salt concentration etc. in order to survive. This process of
readjustment is carried out by proteins within the cell, which are synthesised ad hoc using
messenger RNA or mRNA. The mRNA itself is created by a protein called RNA polymerase
which, by sliding along the DNA of a cell, reads out (transcribes) the genetic information
encoded in the form of nucleobases. This integrated process, from transcription to protein
synthesis, is referred to as genetic expression. Being crucial to the cell’s proper function-
ing, the expression of a given gene is heavily regulated by a variety of proteins capable of
adsorbing onto DNA, thus hindering or enhancing transcription. This type of control is
commonly known as genetic regulation.

In this work we deal with one such regulatory system, the lac operon, which is a patch
of DNA found in many bacteria, E. coli among others, and is responsible for the transport
and metabolism of lactose. As an operon, it has one promoter sequence followed by more
than one (in this case three) genes. When RNA polymerase (RNAP) binds to the promoter
it begins to read out the nucleobase sequence and synthesize mRNA. What sets operons
apart from normal genes is the fact that several genes share a common promoter and their
information is transcribed onto a single mRNA strand. For the lac operon these genes are:

1. LacZ, which carries the genetic information for β-galactosidase, an enzyme which
splits the disaccharide lactose into glucose and galactose, which can then be metabolised.
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CHAPTER 2. THEORETICAL BACKGROUND

2. LacY is the gene responsible for the production of lactose permease, a membrane
protein facilitating lactose intake by the cell.

3. LacA, which encodes galactoside O-acetyltransferase, an enzyme which catalyses the
deacetylation of acetyl-coenzyme A by β-D-galactoside and is involved in the detox-
ification of the cell.

As we already mentioned, production of these proteins is governed by RNAP, but the
actual control over the transcription process is carried out by two other proteins, called
transcription factors (TFs) – the lac repressor (LacI) and the cyclic adenosine monophos-
phate (cAMP) receptor protein (also known under various names like CRP and CAP). The
repressor, as the name suggests, applies negative control over the transcription process by
physically blocking RNAP from binding to the promoter. CRP, on the other hand, is an ac-
tivator, which binds to DNA near the promoter and eases RNAP’s binding to the promoter
via direct protein-protein contacts with RNAP. Both TFs are thoroughly studied [14–16],
so we will not go in much detail regarding their structures and just mention they are both
dimeric proteins exhibiting two-fold symmetry, which ultimately affects the base sequence
of their respective adsorption sites – CRP binds to a fully symmetric consensus site, while
LacI’s preferred binding site, the operator O1, is pseudosymmetric. Both sequences are
given below:

CRP consensus A A A T G T G A T C T ‖ A G A T C A C A T T T
T T T A C A C T A G A ‖ T C T A G T G T A A A

LacI O1
A A T T G T G A G C G G A T A A C A A T T
T T A A C A C T C G C C T A T T G T T A A

The two vertical lines in the CRP consensus site signify the axis of two-fold symmetry.
Bases coloured in red for LacI’s O1 are the ones that break the symmetry of the site. The
CRP consensus site is 22 base pairs (bp) in length, therefore the axis of symmetry goes
in between the 11th and 12th bp. O1, being 21 bp long, has a central base pair (given in
bold), which lies on the axis of pseudosymmetry.

O1PA O2O3
92 basepairs 401 basepairs

Figure 2.1: A sketch of the lac operon in the case of repression. LacI and the operator
sites (O1, O2, O3) are coloured in red, the promoter sequence P and RNAP are grey and
the activator site A along with CRP are green.
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2.2. GENETIC STATISTICAL MECHANICS

Here we should point out that while CRP and RNAP have only one specific site within
the lac operon, the repressor actually has three – we already mentioned the operator which
is aided in repression by two auxiliary sites, O2 and O3, positioned 401 bases downstream
and 92 bases upstream from the promoter, respectively. A sketch of the lac operon is
presented in Fig 2.1. For clarity all three operator sequences are listed below and we have
coloured in green the common base pairs (this time, to avoid confusion, we have dropped
the complementary strands).

LacI O1 A A T T G T G A G C G G A T A A C A A T T
LacI O2 A A A T G T G A G C G A G T A A C A A C C
LacI O3 G G C A G T G A G C G C A A C G C A A T T

The last molecule which affects transcription is the lac inducer – a sugar (allolactose)
or a sugar derivative (IPTG) which binds to the repressor and changes its conformation,
effectively leading to a massive reduction of its affinity for the operator sequences.

Now that we have introduced all species taking part in transcription regulation, we
briefly discuss the genetic regulation mechanism which is influenced by cellular conditions.

We begin by assuming LacI occupies the operator site and hinders RNAP’s binding to
the promoter, which leads to very low levels of expression of the three Lac genes and lactose
is hardly metabolised, leading to its accumulation. At a certain point its concentration
is high enough and it can be partially transglycosylated by β-galactosidase, a process
which yields the allosteric inducer of the lac operon, allolactose. It binds to the repressor
leading to LacI’s dissociation from the operator site and, due to the lack of hindering,
RNAP can now begin transcribing the three Lac genes. The synthesised mRNA is used by
ribosomes as a template for Lac protein synthesis. The proteins metabolise the accumulated
lactose and when its concentration drops below a certain threshold allolactose desorbes from
the repressor, which regains its high affinity for the operator and interferes with further
transcription. CRP’s function in the entire process is to increase the transcription level of
LacZ when glucose levels are low.

As we now see, the lac operon is a complex system which renders prediction of its
behaviour a complicated task. Furthermore, this is only one example of a genetic regulation
architecture, and we should keep in mind there are thousands of other genes encoded on
DNA. In that sense, the main goal of computational biology, i.e., obtaining quantitative
information for a biological system via generalised models applicable to many different
systems, seems impossible. There are, however, methods with which genetic activity can
be predicted. Although we shall discuss them only in the context of the lac operon, one
should keep in mind they are applicable to many, if not all, genetic regulation scenarios.

2.2 Genetic statistical mechanics

After discussing how the lac operon functions, we now review how it is modelled in the
context of both the canonical and grand canonical ensembles. After obtaining the partition
functions under both frameworks, we draw parallels between them and see they yield
identical results. Through this comparison we gain insight into the nature of the fugacity,
a quantity which will prove crucial in all further considerations.

2.2.1 Canonical (NVT) ensemble

The statistical mechanical ensemble most commonly employed in modelling genetic activity
is the canonical or NV T ensemble ([17–20] and references therein). Under this framework
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CHAPTER 2. THEORETICAL BACKGROUND

a constraint over the number of proteins in our system is applied, namely, there is a
total of P protein molecules on the DNA strands, of which p are bound specifically and
P − p are adsorbed onto non-specific sites. After this clarification, we are now ready to
derive the canonical partition function. For simplicity we shall consider the case of simple
transcription, i.e, one RNAP molecule binds specifically to one promoter sequence – after
all, this section serves only as an illustration of the statistical mechanical apparatus applied
later on. For further generalized studies on the topic, one should refer to [21].

To begin our derivation, we recall the Boltzmann weights of the two possible binding
situations: exp (−pβεs) and exp (−(P − p)βεns), where β = (kBT )−1, kB is the Boltzmann
constant, T is the absolute temperature in K, εi is the binding energy, the subscripts
signify specific and non-specific binding, P is the RNAP copy number and p is the number
of RNAP molecules occupying the specific site. Next, we need to realize that before
promoter binding takes place, we have P molecules bound non-specifically and Ntotal sites,
which can accommodate them. The number of possible combinations in which this can be
achieved is given by the binomial coefficient:(

Ntotal

P

)
=

Ntotal

P !(Ntotal − P )!
(2.1)

The statistical weight of this purely non-specific binding case is given by the Boltzmann
weight multiplied by the number of possible ways of realizing it:

Zns(P ) =

(
Ntotal

P

)
exp (−Pβεns) (2.2)

In a similar fashion, we can define the statistical weight of specific binding, as well:

Zs(p) =

(
1

p

)
exp (−pβεs)⇒ Zs(p = 0) = 1, (2.3)

where p takes integer values of either 0 or 1. Since specific and non-specific binding are
decoupled safe for the total number of RNAP molecules constraint, the statistical weight
of this initial state is given by the product of the separate statistical weights:

Zstate(p = 0) = Zns(P )Zs(p = 0) = Zns(P ) (2.4)

P P
Zstate ~ exp(-Pβεns) Zstate ~ exp(-(P-1)βεns-βεs)

P RNAPs bound to non-speci�c sites P-1 RNAPs bound to non-speci�c sites
and 1 RNAP bound to the promoter

Figure 2.2: Sketches of the two possible binding states of P number of RNAP molecules:
(left) All RNAPs are bound non-specifically, therefore the statistical weight of the state
scales exponentially with the number of molecules and their binding energy. (right) One
RNAP occupies the promoter sequence and all other (P -1) are bound non-specifically.

Upon specific binding, the number of RNAP molecules bound to non-specific DNA is
reduced by one, which leads to a change in the binomial coefficient:(

Ntotal

P − 1

)
=

Ntotal!

(P − 1)!(Ntotal − P + 1)!
=

P

(Ntotal − P + 1)

Ntotal!

P !(Ntotal − P )!

'
(
Ntotal

P

)
P

Ntotal
when Ntotal � P − 1

(2.5)
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2.2. GENETIC STATISTICAL MECHANICS

We obtain the statistical weight of this state in the same way as before while taking
into account the reduced number of RNAP molecules bound to non-specific sites and the
occupation of the promoter sequence:

Zstate(p = 1) = Zns(P − 1)Zs(p = 1)

=

(
Ntotal

P

)
P

Ntotal
exp (−β ((P − 1)εns + εs))

= Zstate(p = 0)
P

Ntotal
exp (−β∆ε) ,

(2.6)

where in the last step we define the energy difference between specific and non-specific
binding as εs−εns = ∆ε and we realize we can express the statistical weight of the occupied
state as a function of Zstate(p = 0). Both states and their statistical weights are depicted
in Fig 2.2.

If we now want to obtain the probability of having the promoter sequence occupied, we
need to calculate the ratio of Zstate(p = 1) to the sum of all statistical weights Zsystem =
Zstate(p = 0) + Zstate(p = 1):

poccupied =
Zstate(p = 1)

Zsystem
=

Zstate(p = 0)P ×N−1
total exp (−β∆ε)

Zstate(p = 0)
(
1 + P ×N−1

total exp (−β∆ε)
)

=
P ×N−1

total exp (−β∆ε)

1 + P ×N−1
total exp (−β∆ε)

(2.7)

We now compare this result to the well-known Langmuir isotherm [22], describing localised
adsorption of gas molecules on a solid lattice:

θA =
pA ×Kads

1 + pA ×Kads
, (2.8)

and draw three interesting parallels:

1. The coverage fraction θA corresponds to the occupation probability of the promoter
site

2. Both the pressure pA and the RNAP copy number per non-specific site P × N−1
total

act as effective concentration of the adsorbing species

3. The adsorption constant Kads can be linked to the adsorption free energy via the
fundamental equation ∆Gads = −kBT lnKads, which makes Kads identical with the
exponential factors in Eq. 2.7.

Thus, we arrive at the conclusion that calculating the probability of finding the promoter
site occupied by an RNAP molecule can be reduced to a Langmuir adsorption type of
problem. This fact should not come as a surprise to us, since the system at hand represents
a lattice of well-defined sites. The main difference is the dimensionality – while Langmuir
derived his seminal equation for surfaces, we are looking at a one-dimensional string of
adsorption sites, which in no way changes the physics behind Langmuir’s isotherm.

2.2.2 Grand canonical (µV T ) ensemble

After discussing the canonical ensemble, we turn to the grand canonical ensemble (also
commonly referred to as µV T ), which has recently been employed by Weinert et al. [23]

7



CHAPTER 2. THEORETICAL BACKGROUND

to substitute the NVT ensemble as a tool for genetic regulation modelling. Much like
its canonical counterpart, the grand canonical ensemble’s alternative name reflects the
constraints which are applied to the system. In contrast to the canonical ensemble, under
the grand canonical it is the chemical potential of the adsorbing species µ that is kept
constant, rather than their total number. That being said, we can decouple the gene from
the non-specific sites. Since we are interested only in the partition function of the gene,
and not the whole genome, the problem is no longer complicated by the combinatorics we
were forced to use under the canonical ensemble. Then the statistical weight of a state
is simply given by its Boltzmann weight, in which the specific binding energy is offset by
the non-specific energy. The Boltzmann weight itself is scaled by a factor, exponentially
dependent on the chemical potential: eβpµe−βp(εs−εns). Summing over all possible states,
that is, over all possible occupation numbers, yields the grand canonical partition function
Ξ:

Ξ =

1∑
p=0

eβpµe−βp(εs−εns) =

1∑
p=0

λpe−βp∆ε = 1 + λe−β∆ε (2.9)

Here, as in the previous section, we define the number of RNAP molecules occupying
the promoter sequence as p and the specific-non-specific binding difference as ∆ε. The
new quantity we encounter is the fugacity λ = exp (βµ), which has a physical meaning of
activity of the adsorbing protein. Obtaining the promoter occupation probability requires
the definition of the grand potential, Φ = −kBT ln Ξ, taking its partial derivative with
respect to the chemical potential and dividing by the total number of promoter sites. Since
our system contains only one promoter, the derivative of the potential actually yields the
occupation probability:

poccupied = −∂Φ

∂µ
= βkBT

∂ ln Ξ

∂ lnλ
=
λ

Ξ

∂Ξ

∂λ

=
λ

Ξ
exp (−β∆ε)

=
λ exp (−β∆ε)

1 + λ exp (−β∆ε)

(2.10)

where we used the definition of the fugacity.
Comparing the last lines of Eq. 2.7 and 2.10 points to an important fact, first conceived

by Weinert et al.[23] – the expressions for the occupation probability, derived under both
ensembles, have the Langmuir isotherm functional form, which means the fugacity of the
adsorbing protein acts as an effective one-dimensional concentration and is approximately
equal to the average number of proteins adsorbed per nucleobase.

Although yielding analogous results, the two approaches differ significantly in the ease
with which one obtains the occupation probability. While the canonical ensemble requires
the usage of tedious combinatorics and calculating the statistical weight for each state
separately, under the grand canonical ensemble poccupied follows directly from the grand
canonical partition function function, given by the simple expression:

Ξ =
1∑
p=0

λp exp (−βp∆ε) (2.11)

Having said that, now is the proper time to discuss one binding parameter, which is
often overlooked, i.e., the energy difference between specific and non-specific binding, ∆ε.
Commonly in literature non-specific sites are deemed as a reservoir of adsorption sites
with constant energy, which is set to zero. Recently, however, developments in the field of

8



2.3. BIOPHYSICAL CONDITIONS WITHIN THE CELL

genetics have suggested otherwise – non-regulatory DNA has a binding energy distribution,
which is close to a Gaussian [9, 10]. This poses a major problem to our considerations in
both ensembles – there are thousands of non-specific reservoirs each having a different
number of sites and a separate binding energy. Tackling this problem usually involves
assuming only the sites around the peak of the distribution have a significant contribution
to the partition function and centring it around zero. As we shall see in Chapter 3, this
may often lead to contradictory results, especially if one is dealing with distributions with
a standard deviation above 1

2kBT . Having noted this, we can now clearly outline the goals
of our study:

1. Derivation of the grand partition function of a one dimensional lattice of adsorption
sites, obeying a statistical distribution

2. Calculation of distribution parameters from in vivo and in vitro binding experiments

3. Attempt to derive a theory for non-specific binding of regulatory proteins to DNA.

2.3 Biophysical conditions within the cell

The regulation of genes in E. coli relies on the interactions between the double-stranded
co-polyelectrolyte DNA and a group of proteins, capable of adsorbing onto it. These inter-
actions can be divided into two major groups: sequence specific which can vary depending
on the precise order of nucleotides in the DNA strand, and sequence non-specific, which
are constant throughout the entire strand. Hydrophobic interactions of apolar parts of the
adsorbing protein with DNA and hydrogen bonding of nucleobases of DNA to side groups
in the protein are the two most prominent specific interactions. On the other hand the
non-specific interactions are mainly attributed to the electrostatic attraction between the
negatively charged phosphate groups forming the DNA backbone and the cations in the
active center of the adsorbing protein.

A main goal of quantitative biology is using the protein-DNA interactions as levers
with which genetic regulations can be tailored. While sequence specific interactions are
not easily adjustable (chemical modifications as methylation of nucleobases is needed, for
example), one can fine-tune the electrostatics by screening the charges via the ionic strength
of the solution used, thus altering the net DNA-protein interaction energy, which leads to
a change in the observed equilibrium constant.

In this section we are mainly interested in the binding equilibrium constants Kobs

(also known as affinity constant) obtained from in vitro measurements under conditions
close to those observed in vivo. To that end, we present the theoretical background for
the dependence of Kobs on ionic concentration by deriving Kobs ([M+

])
. We do that by

essentially following the approximations made by Record et al. [13] while using a more
straightforward and simple derivation (Appendix B).

To set the stage for it, we will first make an overview of the electrostatic interaction
present on the DNA strand under Manning’s polyelectrolyte theory [24]. In its framework
DNA is seen as a string of negative charges distributed homogeneously along the length of
the strand (Fig 2.3). Due to charge interactions between the phosphate groups along the
strand, sodium ions condense from the solution onto the DNA strand. For this system we
can define a characteristic dimensionless scale ξb given by the ratio of the average axial
charge separation b to the Bjerrum length (λB, the distance at which the electrostatic
interaction between two charges becomes equal to the thermal energy).

ξb =
b

λB
= b

4πεε0kBT

e2
, (2.12)

9



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: DNA strand modelled as 1D lattice of equally spaced negative charges with
axial charge separation of b = 1.7 Å

where e is the elementary charge, ε0 is the permittivity of vacuum and ε is the relative
permittivity of the medium. Although fairly intuitive, this definition is not the one com-
monly used in biophysics literature and ξel = ξ−1

b = λB/b is usually employed, instead.
Plugging in the numbers for the system under consideration, i.e., double-stranded DNA
in water at 310 K, we obtain ξel = 4.27. If we now multiply ξel by kBT we obtain the
energy of interaction of two adjacent phosphate groups on the DNA strand. According
to the polyelectrolyte theory, charge condensation occurs when ξel > 1 and the number of
condensed counter-ions per charge on the polymer, i.e., per phosphate group, is given by:

θ =
NNa+

N
= 1− ξ−1

el = 0.77, (2.13)

from which we can conclude that the effective charge of a phosphate group is:

qeff = (1− θ)e = e/ξel (2.14)

We realise we should also include divalent ions like Mg2+ in our considerations, since they
can be found within the cell and can affect the electrostatics in our system. Further-
more, they can adsorb to DNA and compete with proteins for DNA binding. We choose
to neglect all these effects because most experimental studies reported in literature use
monovalent ions as a main electrostatics-tuning ions and divalent ions are added only in
minute quantities.

It is instructive to derive an expression for the electrostatic interactions between phos-
phate groups, which we will then use to obtain Kobs ([M+

])
. To that end, we will follow

Manning’s approach and assume a Debye-Hückel screened Coulomb interaction potential
of the form q2r−1 exp(−κr) and sum over all charge pairs, where κ is the Debye-Hückel
screening parameter:

κ =
√

8πNAIλB (2.15)

Here, I is the ionic strength of the solution in moles per litre, NA is Avogardo’s number and
λB is expressed in metres. Before we start deriving the pair potential, we recall that the
phosphate groups are equally spaced on the DNA strand and we can express the distance
rij between any two as rij = |ib− jb|, where ib and jb are the distances from an arbitrary
point on the DNA strand and i and j are integers. Thus, we can write down the total pair
interaction as:

U =
1

2

N∑
j=1
j 6=i

N∑
i=1

exp(−κ|i− j|b)
|i− j|b

=
1

2b

N∑
j=1
j 6=i

N∑
i=1

exp(−κ̃|i− j|)
|i− j|

, (2.16)

where κ̃ = κb and we divide by 2 to take into account double counting.

10



2.3. BIOPHYSICAL CONDITIONS WITHIN THE CELL

In order to tackle this sum, we make the substitution |i − j| = k. Therefore, we have
two cases for k:

i− j =

{
−k ⇒ j = i+ k

k ⇒ j = i− k,
(2.17)

which means the substitution splits the double sum into two double sums Σ1 and Σ2:

Σ1 =
1

2b

N−1∑
k=1

N∑
i=k+1

exp(−κ̃k)

k
=

1

2b

N−1∑
k=1

(N − k) exp(−κ̃k)

k
when j < i (2.18)

and

Σ2 =
1

2b

N−1∑
k=1

N−k∑
i=1

exp(−κ̃k)

k
=

1

2b

N−1∑
k=1

(N − k) exp(−κ̃k)

k
when j > i (2.19)

From these two equations it is evident that Σ1 and Σ2 are identical and we can express
the pair potential by adding up Σ1 and Σ2 and splitting the resulting single sum into two
contributions, S1 and S2:

U =
1

b

N−1∑
k=1

(N − k) exp(−κ̃)k

k
= S1 + S2, (2.20)

where

S1 =
N

b

N−1∑
k=1

exp(−κ̃)k

k
= −N

b
ln[1− exp(−κ̃)] (2.21)

and

S2 = −1

b

N−1∑
k=1

exp(−κ̃)k = −1

b

exp(−κ̃)

1− exp(−κ̃)
= −1

b

1

exp(κ̃)− 1
(2.22)

Summing in S1 and S2 is only allowed if exp(−κ̃) < 1 and N → ∞. Since we are dealing
with polymers (N � 1), we can make the approximation N →∞. On the other hand, for
double-stranded DNA under physiological conditions, i.e., 0.2 M NaCl solution, κ = 1.48
nm−1 and b = 0.17 nm, which leads to exp(−κ̃) = 0.78 < 1. That being said, we realize
we can drop the second sum since it is on the order of b−1, while S1 scales linearly with
the length of the DNA – S1 ∝ Nb−1. Therefore, we arrive at an approximate expression
for the pair potential:

U = S1 + S2 ≈ −
N

b
ln[1− exp(−κ̃)] ≈ −N

b
ln[1− 1 + κ̃+O

(
κ̃2
)
] ≈ −N

b
ln(κ̃) (2.23)

In the second to last step we expand the exponent within the logarithm and retain only
the first two terms. We must keep in mind, though, this approximation overestimates the
actual pair potential by 8%.

To obtain the interaction energy we multiply the pair potential U by the Coulomb
factor and we keep in mind we are using effective charges (Eq. 2.14):

Gel = −N
b

ln(κ̃)
q2
eff

4πεε0
= −N

b
ln(κ̃)

1

4πεε0

e2

ξ2
el︸︷︷︸
q2eff

kBT

kBT
= −NkBT

ln(κ̃)

ξel
(2.24)

Since κ̃ < 1, Gel > 0, a fact which we expect since two negatively charged phosphate groups
are repulsing each other. The attentive reader may argue the final result is questionable

11



CHAPTER 2. THEORETICAL BACKGROUND

since Gel increases linearly with charge separation, while, according to Coulomb’s law, it
should go down linearly. This is due to the assumption made in Eq. 2.13 – the number of
ions condensing on DNA decreases linearly with distance, which leads to a linear increase
of the effective charge with b.

Now that we have derived an expression for the electrostatic interactions on the DNA
strand, we turn our attention to the binding equilibrium of a regulatory protein to DNA
(Fig 2.4):

D + TF
Kobs

� DTF, (2.25)

where D is a binding site (specific or non-specific) on DNA, TF is the transcription factor,
and DTF is the complex formed. From this equilibrium we can express the observed affinity
constant Kobs:

Kobs =
[DTF]

[D][TF]
(2.26)

+
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+
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Figure 2.4: Sketch of DNA-protein binding. Both DNA and the adsorbing protein have
counter-ions condensed onto them, a fraction of which are released into the bulk solution
upon protein binding.

Although simple, this equation is not of much use in this form since it can not explain
the strong dependence of Kobs on ionic strength – upon increasing the salt concentration,
binding becomes weaker. From this well-established experimental fact and recalling Le
Châtelier’s principle we can deduce counter-ions are released from the DNA upon binding.
Of course, anion release from the active center of TF and hydration effects might also play
a major role, but for small and simple anions like Cl− and dilute solutions (concentrations
used are on the order of nM), experiments have shown that these are irrelevant [25, 26].
Furthermore, in this form the equation gives little to no information regarding the relation-
ship between the energy of binding and the observed affinity constant. Our analysis of this
relationship is even further complicated by the fact that the constant is not dimensionless
which prevents us from applying ∆G = −kBT lnK directly.

To resolve the latter issue, we first define the total number of binding sites as D0.
Then [DTF] = 〈TF〉/V and [D] = (D0 − 〈TF〉) /V , where V is the volume of the system
and 〈TF〉 signifies the average number of transcription factors bound to the DNA strand
(further in the text we will often use this notation for averaging). We obtain the average
number of adsorbed transcription factors from the grand partition function:

〈TF〉 = λ
∂ ln Ξ

∂λ
= D0

λe−βε

1 + λe−βε
, (2.27)

where, as usual, λ = eβµTF is the fugacity of the transcription factor and ε is the binding
energy of TF to D. Substituting Eq. 2.27 in the definitions of [DTF] and [D], we can write
down their ratio as:

[DTF]

[D]
=

λe−βε

1 + λe−βε

(
1− λe−βε

1 + λe−βε

)−1

= λe−βε (2.28)

12



2.3. BIOPHYSICAL CONDITIONS WITHIN THE CELL

On the other hand, for sufficiently dilute solutions (nTF � nw), the molar concentration is
proportional to the molar fraction (here vw denotes the molar volume of water in L/mol):

[TF] =
nTF
V

=
1

vw

nTF
nw
≈ xTF

vw
(2.29)

The molar fraction of the transcription factor is linked to its fugacity via the relationship:

µ = µ−◦ + kBT lnx (2.30)

Re-writing Eq. 2.30, we obtain xTF = λ exp (−βµ−◦TF), which, combined with Eq. 2.28 and
Eq. 2.29, yields:

Kobs = vw exp
(
βµ−◦TF − βε

)
(2.31)

Since we are free to decide what the standard state for TF is, we choose it in such a way
that µ−◦TF = 0:

Kobs = vw exp (−βε) (2.32)

Physically, this means we assume the transcription factor is bound to the DNA and ad-
ditional energy is needed to make it desorb from the strand. This, is in fact, true: due
to their low solubility transcription factors are always bound to DNA. Thus, we obtain a
simple expression for the observed equilibrium constant, which is proportional to the molar
volume of water and scales exponentially with the energy of binding.

Let us now ponder what kind of interactions take part in the binding energy. As we
already said, the affinity constants are highly sensitive to ionic strength conditions, which
means a major part of the binding energy is due to electrostatics and entropy gain from
counter-ion release. On the other hand since both the adsorbing protein and DNA contain
apolar groups, there should be a hydrophobic contribution, as well. Last, but not least,
we should consider the formation of hydrogen bonds upon binding.

The dependence of Kobs on the binding energy, though insightful, does not answer our
main question, that is, how the observed equilibrium constant depends on salt conditions.
Obtaining this relation requires us to assume there is another participant in the reaction
in Eq. 2.25, namely, the sodium cations, released from the DNA strand:

D + TF
K−◦
T

� DTF + νM+, (2.33)

where ν is the number of cations released upon protein binding. That being said, we can
write down the intrinsic equilibrium constant of the process:

K−◦T =
aDTF a

ν
M+

aD aTF
, (2.34)

To provide a link between K−◦T and the observed constant, we remember the relationship
between the activity and the concentration for dilute solutions:

aA = γAxA = γA
nA
ntotal

' γA
nA
nw

= γA
nA
cwV

= γA[A]vw, (2.35)

where cw is the molar concentration of water. Expressing concentrations in Eq. 2.26 in
terms of activities and multiplying both the numerator and the denominator by aνM+ yields:

Kobs =
aDTFv

2
w

aDaTFvw

aνM+

aνM+

γDγTF
γDTF

= vwK
−◦
T a
−ν
M+

γDγTF
γDTF

(2.36)
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CHAPTER 2. THEORETICAL BACKGROUND

Rearranging Eq. 2.36 and taking the natural logarithm on both sides of the equation
yields:

ln(v−1
w Kobs) = lnK−◦T + ln a−νM+ + ln

γDγTF
γDTF

(2.37)

If we now compare Eq. 2.32 and 2.37, it becomes evident that each of the three terms
on the right-hand side of Eq. 2.37 represents a contribution to the "observed" change of
free energy of the system:

1. lnK−◦T is the binding energy under standard conditions

2. ln a−νM+ is a concentration term, which depends on the ionic environment and reflects
the change in solution conditions upon binding

3. ln γDγTF
γDTF

accounts for the non-ideality of the interacting macromolecules and how this
departure from ideal behaviour changes in the process of binding.

This reasoning follows from the fundamental equation ∆G = kBT lnK and the definitions
of the activity a and the activity coefficient γ.

In order to obtain an explicit relationship between Kobs and [M+] we follow the ap-
proach of Record et al.[13] and make 2 assumptions:

1. Binding of TF to DNA does not give rise to a net change of charge on the strand –
a Z-charged macrocation (TF) binds tightly, effectively neutralizing Z charges from
the DNA strand. It may be argued that this leads to a net charge flux of Z/ξ
positive charges condensing onto the DNA strand but we must keep in mind that TF
actually also has counter-ions (X−) condensed at the active site, which are released
upon binding and do not condense on the formed complex.

2. Charge density in both the native DNA and the complex is uniform and equal.
Although binding of certain proteins like CRP to DNA introduce a bend in the
strand and there are transcription factors like the lac repressor which induce DNA-
looping ([14, 27, 28] and references therein), these effects are local and span no more
than 500 base pairs in 5× 106 base pair long prokaryotic DNA.

With these two assumption we derive the linear dependence of lnKobs on the logarithm
of the salt concentration. The full derivation can be found in Appendix B while here we
only present the final result:

ln(v−1
w Kobs) = lnK0

T + Z
ln
(
δγM+

)
ξ

− Z ln [M+]

(
1− 3

2ξ

)
, (2.38)

where δ = b
√

8πNAλBc−◦ and [M+] = [M+]/c−◦ is the molar concentration of cations divided
by the standard molar concentration c−◦ of 1 M.

The expression we arrive at is very similar to the one derived by Record et al. but
with one major difference – the concentration (third) term in Eq. 2.38 is proportional to
1 − 3 × (2ξ)−1, contradicting the result of the aforementioned researchers who derive a
dependence of 1 − 1 × (2ξ)−1. For double-stranded DNA under physiological conditions
the difference between the two factors may not seem striking (according to Record et al.
the value should be 0.88 while we obtain 0.65) but we need to keep in mind one important
feature of Eq. 2.38 – the concentration term scales linearly with the number of counter-ions
released upon binding, i.e., using Record’s result we overestimate Z by roughly one third.
Despite this discrepancy, we shall adopt Record et al.’s result, because it is widely used in
the literature and is supported by experimental measurements.
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2.4. GENETIC MATHEMATICS

Calculating the functional dependence of Kobs on cation concentration requires we take
the total derivative of lnKobs with respect to ln [M+]:

d lnKobs

d ln [M+]
= −Z

(
1− 1

2ξ

)
+
Z

ξ

d ln γM+

d ln [M+]
≈ −0.88Z (2.39)

For sufficiently low salt concentrations the derivative term is negligible and can be dropped
out. Thus, we conclude that lnKobs depends linearly on ln [M+] provided there is no
significant dependence of the activity of ions on their concentration (i.e. this is only valid
for dilute solutions).

2.4 Genetic Mathematics

In this section we give a brief overview of the mathematical background needed to obtain
the main theoretical results, presented in Chapter 3. We start by introducing the idea
of the energy matrix and showing how one can calculate the binding energy of a site
from its nucleobase sequence using vector and tensor products. Next, we argue what the
distribution of the binding energies of a DNA strand should be and arrive at the conclusion
a normal distribution is to be expected. Finally, we recall what the moment-generating
function (MGF) and a cumulant-generating function (CGF) are and derive the MGF for
the normal and Laplace distributions as examples.

2.4.1 Energy matrices and binding energy of a site

The need to predict the genetic activity in vivo has lead to the idea of the energy matrix
E – a mathematical concept which assigns an additive energy contribution to each nucle-
obase within a specific binding site and which makes theoretical calculation of its binding
energy possible. A similar idea was initially introduced by G. D. Stormo et al. in 1982
[29] but the position weight matrices (PWMs) these researchers proposed evaluated the
information carried by a nucleobase at a given position for the recognition of the site as
specific. Recently, combining modern high-throughput sequencing and cell sorting tech-
niques, Kinney et al. [30] have managed to further develop the concept of the PWM and
evolve it into the energy matrix (Fig. 2.5).
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Figure 2.5: Energy matrix E of the lac repressor as obtained by Razo-Mejia et al. [12].
The matrix gives the energy contribution of each possible base at each position of the
binding site. The binding energy is obtained by summing all contributions.
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To illustrate how one can theoretically predict the binding energy of a site, we make
use of the lac repressor energy matrix found by Razo-Mejia et al. [12]:

E =


ε1,A ε1,C ε1,G ε1,T
ε2,A . . ε2,T
. . . .
. . . .

ε21,A ε21,C ε21,G ε21,T


21×4

, (2.40)

and define a generic binding site represented by the 21-dimensional sequence vector s:

s = (GAT...CA)21 (2.41)

In both E and s A, C, G, and T signify the 4 nucleobases comprising DNA. The sequence
vector s contains one of the four nucleobases at each position, according to the DNA
sequence of the site of interest. Each element of the matrix, on the other hand, tells us
what is the energy contribution at a given position provided we have a specific base there.
For instance, the element on row 2, column 4 ε2,T informs us what the energy gain (or loss)
is when the lac repressor binds to DNA and needs to interact with thymine at position 2
of the binding site.

Our next step is to define a base vector b – a vector of length 4, which contains all
four different nucleobases, one for each position of the vector. The structure of the energy
matrix defines the base order of b, that is, since the first column of E represents A, the
second – C, etc. the base vector must be:

b = (ACGT), (2.42)

Calculating the binding energy of the site requires the introduction of the sequence
matrix S, a logical matrix which has one element per row equal to unity and all other
elements in the row are 0. The position of the unity element tells us what nucleobase we
have at the given position. S is defined as the tensor product of the sequence vector s and
the base vector b. In order to obtain a logical matrix from this tensor product we define
the linear operator δ̂ as (here I and J both signify one of the 4 nucleobases):

δ̂(IJ) =

{
1 if I = J
0 if I 6= J

(2.43)

and apply it to each entry of the obtained tensor product. Therefore,

S = δ̂ b⊗ s =



δ̂(GA) δ̂(GC) δ̂(GG) δ̂(GT)

δ̂(AA) δ̂(AC) δ̂(AG) δ̂(AT)

δ̂(TA) δ̂(TC) δ̂(TG) δ̂(TT)
. . . .
. . . .
. . . .

δ̂(CA) δ̂(CC) δ̂(CG) δ̂(CT)

δ̂(AA) δ̂(AC) δ̂(AG) δ̂(AT)


21×4

=



0 0 1 0
1 0 0 0
0 0 0 1
. . . .
. . . .
. . . .
0 1 0 0
1 0 0 0


21×4

(2.44)

If we now take the double inner product of E and S, we obtain the total interaction
energy:

E : S = ε1,G + ε2,A + ε3,T + ...+ ε20,C + ε21,A = εsite (2.45)
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2.4.2 Distribution of binding energies

As we already saw in the previous section, the binding energy of a site (be it specific or
non-specific) can be modelled as a sum of independent contributions, which are assigned
to each nucleobase in the sequence of the site. It is now of interest to see what should the
energy distribution of several thousand such sites be.

One formulation of the central limit theorem states that the sum of a number of in-
dependent and identically distributed random variables with finite variances tends to a
normal distribution as the number of variables grows. For a generic non-specific site the
probability for each nucleobase to occur at a given position is 25%, that is all possible
outcomes of our random process are identically distributed. On the other hand, since the
presence of A at position 3, for example, does not influence the nucleobases present at any
other position, we can say that the variables are independent, as well. That being said,
the application of the central limit theorem to our system seems straightforward.

We must, however, ponder the question how large should the number of variables be.
It is commonly accepted that a sum of 31 and more random variables can be deemed
normally-distributed [31]. If we are considering RNAP which occupies 41 bases, then we
can assume its binding energies to NS DNA obey a normal distribution without hesitation.
On the other hand, for transcription factors with shorter binding sites, like the lac repressor
(21 bases) and CRP (22 bases), this assumption may not hold and one may need to
resort to Student’s t distribution to estimate the mean and standard deviation of the
distribution. If we, however, compare t distributions with 20 and 30 degrees of freedom
(the degrees of freedom are defined as L − 1, where L is the number of bases in the site)
to a standardised normal distribution, we hardly see any differences – most notably the
tails of the t distributions are slightly heavier and the maxima are lower compared to the
normal distribution (Fig. 2.6). Therefore, we shall approximate the energy distributions
of these proteins to a Gaussian.

-4 -2 0 2 4
0

50

100

150

200

250

300

350

400

ϵ [kBT]

N

 (0,1)

t (20)

t (30)

Figure 2.6: Comparison between three distributions: Student’s t with 20 and 30 degrees
of freedom (t (20) and t (30), respectively) and a standard Gaussian (N (0,1)). There are
hardly any differences among the three – the peak of the Gaussian is slightly higher than
those of the Student’s ts and its tail is slightly less heavy compared to theirs (top and
bottom inset, respectively)
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2.4.3 Moment- and cumulant-generating functions

Establishing the normal distribution of the binding sites on a DNA strand has set the path
to one of the main goals of our work – calculating the grand partition function of a one
dimensional lattice of adsorption site, whose energies obey a statistical distribution. While
tackling this task, we shall encounter an interesting problem – we will have to average over
the Boltzmann weights exp(−βεi) of all sites, present on the DNA strand. In other words,
we will have to calculate 〈exp(−βε)〉. When we consider energies, obeying a Gaussian,
this task can be reduced to finding the average of a log-normal distribution, since the
exponent of a normally distributed variable with mean −β〈ε〉 and a standard deviation of
βσ is actually a log-normally distributed variable. Or in mathematical terms this reads:
for −βε ∼ N (−β〈ε〉, β2σ2)

〈exp(−βε)〉 = exp

(
− β〈ε〉+

β2σ2

2

)
(2.46)

Although this result is pivotal to our work, it is instructive to forget for a moment
we are dealing with normally-distributed variables and calculate the average exponent of
energies, obeying a distribution of choice. This generalisation aims at demonstrating our
considerations are not only applicable to analytical distributions but also ones that can
not be expressed via a function.

We begin our derivation of the average exponent in a rigorously mathematical manner,
which requires we first expand the exponent into a Taylor series:

〈exp(−βε)〉 =

〈 ∞∑
n=0

(−βε)n

n!

〉
=
∞∑
n=0

(−β)n
〈εn〉
n!

=
∞∑
n=0

µn
(−β)n

n!
= Mε(−β). (2.47)

This series is knows as the moment-generating function or MGF Mε(−β) and is used to
calculate the raw moments µn = 〈εn〉 of a distribution, hence its name. Straightforward as
this approach may be, it is not particularly useful, because it fails to yield a closed form
for the MGF. To illustrate this, we list the first few moments of the normal distribution
under consideration:

µ1 = 〈ε〉
µ2 =〈ε〉2 + σ2

µ3 = 〈ε〉(〈ε〉2 + 3σ2)

µ4 = 〈ε〉4+6〈ε〉2σ2 + 3σ4

(2.48)

If we choose a different distribution, the moments also change, i.e. this approach fails to
yield a universal, distribution-independent result. Obtaining a relatively simple expression
for the average exponent requires the use of another statistical function, closely related
to the MGF – the cumulant-generating function (CGF) K(−β), which is defined as the
natural logarithm of the MGF:

K(−β) = lnMε(−β)⇒ 〈exp(−βε)〉 = Mε(−β) = eK(−β) (2.49)

Much like the MGF, CGF is a series expansion, but the coefficients in the sum are the
cumulants κn of the distribution (in contrast to the MGF, where the coefficients are mo-
ments):

K(−β) =

∞∑
n=1

κn
(−β)n

n!
, (2.50)
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and, again mirroring the MGF, it is commonly used to calculate κn. The cumulants are
also known as Ursell functions [32] in the fields of statistical mechanics.

We now take a step back and clarify what the cumulants are and why we prefer to
use them instead of the moments. First and foremost, when dealing with a set of data,
we can easily calculate them without making any assumptions regarding the nature of the
distribution since the first cumulant is the average, the second is the variance, and the
third and fourth are the skewness γ1 and the excess kurtosis γ2, scaled by the variance:

κ1 =〈ε〉
κ2 = σ2 =

〈
(ε− 〈ε〉)2

〉
κ3 = γ1κ

3/2
2 =

〈
(ε− 〈ε〉)3

〉
κ4 = γ2κ

2
2 =

〈
(ε− 〈ε〉)4

〉
− 3κ2

2

(2.51)

Here, we should clarify what kind of information γ1 and γ2 give us about the data. The
third cumulant reflects any asymmetry around the mean the data might exhibit. Actually,
all cumulants of odd order (except the first), describe asymmetry – the higher the order
of the cumulant, the more descriptive it is for the tails of the distribution. In other words,
for symmetrical distributions all κn, where n is odd and greater than 1, should be zero,
due to the lack of any skew. On the other hand, even order cumulants (with the exception
of κ2), are a way to estimate the pointiness or flatness of the distribution. One such is κ4,
which is a function of the excess kurtosis γ2. γ2 is a means to compare the distribution of
interest to the normal distribution in terms of how far the tails of the distribution stretch
and how heavy they are [33]. To grasp the physical meaning of κ4, in Fig. 2.7 we compare
three symmetric distributions centred around zero with variances of 1 (κ1 = κ3 = 0 and
κ2 = 1): the Laplace distribution, with its long tails, has an excess kurtosis of γ2 = 3, the
uniform distribution, which lacks any form of tails, has γ2 = −1.2 and a Gaussian, which
is an intermediate case, with γ2 = 0. It is now clear that distributions like the Laplace one
which are "pointier" and have tails stretching further away from the mean compared to a
Gaussian of the same variance have a positive excess kurtosis, while "boxy" distributions,
with short tails have a negative fourth cumulant.

As we see from Eq. 2.51 the first few cumulants can readily be calculated from any
data set. Higher order cumulants cannot be expressed as simply, but that should not worry
us, since, for most practical uses, the first four cumulants are sufficient to obtain a good
estimate of the CGF.

That being said, we can outline three main properties of K(−β) that make it particu-
larly convenient for calculating 〈exp(−βε)〉:

1. It conserves the functional form of the Boltzmann weight – 〈exp(−βε)〉 is still an
exponential function, but its argument is a sum of contributions, rather than one
single energy.

2. Cumulants can be extracted rather easily from a set of data without having to fit it
to a distribution, while moments require assuming a specific distribution and only
then are we able to calculate them. This is actually a major advantage of the CGF
over the MGF since we can apply the cumulant-generating function to any set of
binding energies even if it does not obey an analytical distribution.

3. Most commonly used distributions have a finite number of non-zero cumulants or an
infinite number of cumulants, which form a series and one can easily calculate their
sum.
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Figure 2.7: Comparison between three symmetric and zero-centred distributions with equal
variances, but varying excess kurtoses. The shape, heaviness and outstretch of the tails
defines the value of the fourth cumulant.

While the first property of the CGF is self-explanatory and obvious (we shall expand on it
in Chapter 3, where we put the CGF to use), and we already explained the second, the third
requires some additional reasoning and examples. To that end we calculate 〈exp(−βε)〉 for
the Gaussian and Laplace distributions.

MGF of Gaussian distribution In this example we will calculate 〈exp(−βε)〉 for a
normal distribution by using the definition of the average value of a variable obeying a
continuous distribution. We draw inspiration from the ‘Technical Notes on Statistics’ by
G. Lebanon [34].

The probability density function PDF of a set of normally distributed binding energies
βε with average −β〈ε〉 and standard deviation βσ is given by:

fND =
1

βσ
√

2π
exp

(
− (ε− 〈ε〉)2

2σ2

)
(2.52)

To average a variable, one multiplies it by the PDF and integrates the product over the
entire support of the distribution (in our case βε ∈ (−∞;∞)):

Mε(−β) = 〈exp(−βε)〉 =

∫ ∞
−∞

1√
2πσ

exp

(
− (ε− 〈ε〉)2

2σ2

)
exp(−βε)dε (2.53)

We change the integration variable to r = (ε − 〈ε〉)/
√

2σ, which require us to multiply
the expression by

√
2σ and transforms exp(−βε) into exp(−

√
2βσr − β〈ε〉) (all terms

independent of r are brought outside the integral):

Mε(−β) =

√
2σ exp(−β〈ε〉)√

2πσ

∫ ∞
−∞

exp
(
− (r2 +

√
2βσr)

)
dr (2.54)

We recognize the incomplete square of r + βσ/
√

2 in the argument of the integrand. In
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order to obtain the complete square, we multiply and divide by exp(β2σ2/2):

Mε(−β) =
exp(−β〈ε〉+ β2σ2/2)√

π

∫ ∞
−∞

exp
(
− (r + βσ/

√
2)2
)
dr (2.55)

We make one more change of variables, namely z = r+βσ/
√

2, which results in a Gaussian
integral equalling

√
π:

Mε(−β) =
exp(−β〈ε〉+ β2σ2/2)√

π

∫ ∞
−∞

e−z
2
dz︸ ︷︷ ︸√

π

= exp

(
− β〈ε〉+

β2σ2

2

)
(2.56)

Thus, we obtain the exact same result as the one following from our realisation that
exp(−βε) is log-normally distributed, which was to be expected. From Eq. 2.56 we draw
the conclusion that it is not only the position (the mean energy) that matters for the value
of the average Boltzmann weight, but also the width of the distribution reflected by the
variance term. We shall see what the physical reasoning for this result is when we consider
it in the context of the grand canonical partition function in Chapter 3.

MGF of Laplace distribution In contrast to the previous example where our approach
was purely mathematical, in this derivation we will make use of the symmetry of the
distribution and the cumulant-generating function.

One thing to know before we start our derivation is whether the even order cumulants
follow any trend. To that end we consult with Abramowitz and Stegun’s Handbook of
Mathematical Functions [35] and notice two tendencies:

1. All odd order cumulants, except the first, are equal to zero, as one would expect for
a symmetric distribution

2. All even order cumulants can be expressed with the simple formula:

κn = 2(n− 1)!sn, (2.57)

where s is the shape parameter of the distribution.

With this knowledge in hand, we are now ready to derive the MGF for a Laplace distribu-
tion:

Mε(−β) = exp
(
K(−β)

)
= exp

( ∞∑
n=1

κn
(−β)n

n!

)
(2.58)

For now we focus only on the CGF, separate the first term from the rest of the sum and
simplify the remainder:

K(−β) = −β〈ε〉+
∞∑
n=2

2(n− 1)!
(−βs)n

n!
= −β〈ε〉+

∞∑
n=2

2

n
(−βs)n (2.59)

Since only even summands matter, we can change the summation variable n = 2j and then
make the substitution z = β2s2 (for brevity):

K(−β) = −β〈ε〉+
∞∑
j=1

2

2j
(−βs)2j = −β〈ε〉+

∞∑
j=1

zj

j
= −β〈ε〉 − ln(1− z) (2.60)
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Plugging Eq. 2.60 into Eq. 2.58 then yields:

Mε(−β) = exp
(
− β〈ε〉 − ln(1− z)

)
=

e−β〈ε〉

1− z
=

e−β〈ε〉

1− β2s2
, (2.61)

To compare this result with results known from literature, we must compute the char-
acteristic function ϕ(−β) of the Laplace distribution, since this is the most often cited
generating function. To that end, we carry out the same procedure as the one described
above, but now instead of calculating the MGF for −β, we use −iβ, where i is the imaginary
unit. Carrying all the calculation in this case yields:

ϕ(−β) = Mε(−iβ) =
e−iβ〈ε〉

1 + β2σ2
, (2.62)

which is identical with the characteristic function according to Abramowitz and Stegen,
which brings us to the conclusion that our approach is correct. The aim of these two
examples is to prove that 〈exp(−βε)〉 can be expressed as a Boltzmann weight, in which
instead of one single energy, we plug in a series of energy contributions according to the
distribution, which we are studying. This result serves as basis for out main findings,
presented in Chapter 3.
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Chapter 3

Grand canonical partition function of
a 1D lattice of non-specific sites
obeying a distribution

In this chapter we derive the grand partition function for a transcription factor binding
to a strand of non-specific DNA. As we pointed out in Section 2.2 this system does not
differ conceptually from a one dimensional lattice of localized adsorption sites with binding
energies obeying a statistical distribution. What sets non-specific DNA apart from a simple
1D lattice of sites, where one adsorbent molecule occupies only one site, is the idea of site
overlap which will be discussed briefly in Section 3.4. Our first task will be to derive
the grand canonical partition function for a Gaussian with a low variance and see that
the partition function is dominated entirely by the contribution of the peak. Then we
will generalise our considerations and, with the help of the cumulant-generating function,
we will find a general form of the partition function of a unimodal (having one peak)
distribution. We will further expand our model to mixture distributions and demonstrate
its robustness. Our last task in this chapter will be to derive a criterion for the fugacity
at which our model breaks down.

3.1 Normal distribution with low variance

In this section we focus on the simplified case of a transcription factor adsorbing on a
DNA strand comprising sites with energies obeying a normal distribution and we assume
this Gaussian has a low variance, i.e., most sites have a binding energy very similar to
the average. We will construct the grand canonical partition function Ξ for this system
stepwise by first considering a single binding site with energy εi. Then we will look at the
case when there are several copies of this site, forming a reservoir. Finally, we will write
down the partition function for a set of N reservoirs having different numbers of sites Ni

each. Since we are considering a normal distribution, we will make use of its symmetry.
We start off with one binding site with binding energy εi and occupation number p, for

which the grand canonical partition function is given by:

Ξ1,i =
1∑
p=0

λpe−βpεi , (3.1)

where β = (kBT )−1 is the reciprocal of the thermal energy, λ = eβµ is the fugacity of
the transcription factor adsorbing and µ is its chemical potential. There are two possible
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states of this system:

1. No protein adsorbs therefore p = 0, corresponding to unity

2. One protein molecule adsorbs at the site with energy εi therefore p = 1 and εi 6= 0,
corresponding to λe−βεi

This yields a partition function Ξ1,i for one site with energy εi:

Ξ1,i = 1 + λe−βεi (3.2)

On the other hand, for Ni such sites, independent of each other, the function is:

ΞNi = ΞNi1,i = (1 + λe−βεi)Ni (3.3)

Finally, when we take into consideration all possible sites with different energies (ranging
from ε1 = εmin to εN = εmax), we derive the partition function for the entire set of non-
specific sites:

Ξ =
N∏
i=1

ΞNi =
N∏
i=1

 1∑
p=0

λpe−βpεi

Ni

=
N∏
i=1

(1 + λe−βεi)Ni (3.4)

The boundaries of the product (N1 and NN ) correspond to the sites with the lowest
and the highest adsorption energy, respectively. If we add up all numbers of sites with
energies ranging from ε1 to εN , we will get the total number of sites Ntotal:

N∑
i=1

Ni = Ntotal (3.5)

For all derivations in this chapter it is more convenient to use a sum rather than a
product. Therefore, we will take the natural logarithm of the partition function:

ln Ξ =
N∑
i=1

Ni ln(1 + λe−βεi) (3.6)

Then, we express all energies εi as functions of ∆εi:

ln Ξ =
N∑
i=1

Ni ln
(
1 + λe−β〈ε〉e−β∆εi

)
, (3.7)

where ∆εi is defined as the energy deviation with respect to the average (∆εi = εi − 〈ε〉).
Since the distribution is symmetrical around 〈ε〉, deviations from the average energy are
also distributed symmetrically, i.e., −∆εi = ∆εN+1−i and the number of sites having these
energies is equal (Ni = NN+1−i). Then, we make the substitution x = exp(−β〈ε〉) and
present Eq. 3.7 as follows :

ln Ξ = N1 ln
(
1 + λxe−β∆ε1

)
+NN ln

(
1 + λxe−β∆εN

)
+ ... =

= N1 ln
[
(1 + λxe−β∆ε1

)
(1 + λxeβ∆ε1

)]
+ ... =

=

N/2∑
i=1

Ni ln
[
(1 + λxe−β∆εi

)
(1 + λxeβ∆εi

)]
=

=

N/2∑
i=1

Ni ln
[
1 + 2λx cosh(β∆εi) + λ2x2

]
(3.8)
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3.1. NORMAL DISTRIBUTION WITH LOW VARIANCE

Here, the upper boundary of the sum changes from N to N/2 because each product like
the one on the second line of Eq. 3.8 uses 2 terms from the sum in Eq. 3.6: one term that
corresponds to an adsorption energy lower than 〈ε〉 and one corresponding to an adsorption
energy higher than 〈ε〉. Next, we focus on the argument of the hyperbolic cosine and
perceive that for ∆εmax < 0.5 kBT the value of cosh ∆εi is approximately 1. To get a
physical sense of a distribution complying with this requirement, we recall the ‘3σ rule’,
which states that roughly 99.7% of a Gaussian lie within three standard deviations around
the mean. We then realise our approximation is applicable only to normal distributions
with σ < 0.17 kBT . Having said that, we further simplify the last line of Eq. 3.8:

N/2∑
i=1

Ni ln
[
1 + 2λx cosh(β∆εi) + λ2x2

]
≈

N/2∑
i=1

Ni ln(1 + λx)2 = 2 ln(1 + λx)

N/2∑
i=1

Ni

= Ntotal ln(1 + λx)

(3.9)

In the last step we keep in mind that summing over all sites with energies ranging from ε1
to 〈ε〉 (since the distribution is symmetrical εN/2 is the average energy) will yield half of
the total number of sites:

N/2∑
i=1

Ni =
Ntotal

2
(3.10)

Finally, we can derive the expression for the grand canonical partition function:

Ξ =
(
1 + λe−β〈ε〉

)Ntotal (3.11)

This result implies the partition function for a 1D lattice of normally distributed in
energy binding sites with low variance is entirely dominated by the peak, i.e., the shear
number of sites with energy close to the average overpowers the contribution from the
low-energy tail. The sites on the left of the mean may have a lower energy (thus, a greater
Boltzmann weight) but they are too few in numbers to significantly change the value of
the partition function.

To test this derivation, we compare the logarithm of the partition function ΞTh following
from Eq. 3.11 to ln ΞNum calculated numerically according to Eq. 3.6 (here, the two
subscripts, "Th" and "Num" stand for theoretical and numerical approach). To do that,
we construct a normal distribution of 5 × 106 sites with a mean energy 〈ε〉 = −3 kBT
and standard deviation σ = 0.3 kBT . Using the obtained distribution, we calculate Ξ
numerically via Eq. 3.6. On the other hand, by plugging the parameters of the distribution
in Eq. 3.11, we arrive at ΞTh. Comparison between the theoretical ln ΞTh and numerical
ln ΞNum result is given in Fig. 3.1a.

From the figure it is evident that even for this value of σ, which does not comply with
our assumption (σ < 0.17 kBT ), there is hardly any difference between the numerical and
theoretical result. This result, however, seems suspicious and to get a real sense of the
deviation from the theoretical formula, we present the ratio of ln ΞTh to ln ΞNum, ξ, as a
function of the fugacity in Fig. 3.1b

The ratio of the logarithms of the two partition functions is at a low plateau at ξ ∼ 0.95
in the low fugacity range and quickly rises to 1 as λ exp(−β〈ε〉) approaches unity. The
reasoning behind this is the fact that we have neglected the contribution from the low-
energy sites in the left tail of the distribution, thus underestimating the value of the
partition function.

We notice that even for this low standard deviation we have a difference of about 5%
between the two partition functions. A table of ξ = ln ΞTh/ ln ΞNum for different standard
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Figure 3.1: (a) Comparison between the logarithms of the theoretical grand canonical
partition function ln ΞTh and its numerical counterpart ln ΞNum calculated for a set of
5 × 106 sites obeying a normal distribution with an average 〈ε〉 = −3 kBT and standard
deviation σ = 0.3 kBT . The two partition functions are calculated according to Eq. 3.11
and 3.6, respectively. (b) The ratio of ln ΞTh to ln ΞNum, ξ, as a function of the fugacity.

deviations is given below (Table 3.1). The presented values for ξ make it obvious now that
Eq. 3.11, which only takes into account the contribution of the peak to Ξ, is far from
accurate, especially for distributions with σ > 0.5 kBT .

Table 3.1: ξ(λ = 10−7) calculated for different standard deviations

σ, [kBT ] 0.30 0.50 0.75 1.00 1.50 2.00 3.00

ξ 0.956 0.883 0.755 0.607 0.326 0.139 0.014

It is also interesting to see what happens when we plug in extreme values (+50 and
−50 kBT , for example) for the average adsorption energies, while retaining a standard
deviation of 0.5 kBT . We should keep in mind that the non-specific binding energy and
the chemical potential are coupled, i.e., shifting one variable causes a shift in the other.
This is due to the fact that in the case of non-specific binding the reservoir of constant
chemical potential is the cell itself and the fugacity is determined by the number of adsorb-
ing proteins. In other words, shifting the average energy without correcting the fugacity
effectively leads to a change of the total number of adsorbents available in the cell. Having
said that, we realize we should always scale the fugacity by the adsorption energy term.
Therefore, it is only natural to plot ln Ξ vs. λx, where x = exp (−β〈ε〉).

To illustrate this, we investigate the two cases (with extremely high and extremely low
binding energy) within a fixed fugacity range: λ ∈

[
10−7, 102

]
. For an average binding

energy of zero 〈ε〉 = 0, the lower limit corresponds to only one molecule bound to the entire
strand, while the upper limit corresponds to a 100-fold excess of adsorbents with respect
to Ntotal. For the two cases we are interested in common sense dictates that we should
observe two distinct cases:

1. When all sites have a strongly positive adsorption energy (in the range of 48.5 to
51.5 kBT ), adsorption is highly unfavourable and no sites will be occupied. From
this we conclude that the partition function will be 1. This assumption is confirmed
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by Eq. 3.11, as well. For strongly positive values of 〈ε〉 the second term in brackets
is virtually zero. Therefore, we can expand the final line of Eq. 3.9 into a Maclaurin
series:

ln Ξ

Ntotal
= ln(1 + λx)

λx→0−−−→
∞∑
n=1

(−1)(n+1) (λx)n

n
≈ λx (3.12)

As we already pointed out in Section 2.2.2, the fugacity of a species A is approx-
imately equal to the ratio of the number of molecules A adsorbed on the DNA
strand to the length of the strand expressed in number of sites, i.e., λ ≈ A/Ntotal.
This,however, is only valid in the case of 〈ε〉 = 0 – when the energy distribution is
not centred around zero, one should scale the number of adsorbed proteins by x−1.
Therefore, we can simplify Eq. 3.12 even further:

ln Ξ ≈ Ntotalλx ≈ Ntotal
Ax−1

Ntotal
x = A = 0, (3.13)

a result, which we anticipated, because of the high adsorption energy.
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10-30 10-28 10-26 10-24 10-22 10-20
-1

0

1

λx

ln
Ξ

(a) ln Ξ(λx) for 〈ε〉 = 50 kBT

Numerical

Theoretical

1014 1016 1018 1020 1022 1024
1.50

2.00

2.50

3.00

λx

ln
Ξ
⨯
10

-
7

(b) ln Ξ(λx) for 〈ε〉 = −50 kBT

Figure 3.2: (a) ln ΞTh and ln ΞNum as functions of λx for a Gaussian with 〈ε〉 = 50 kBT and
σ = 0.5 kBT . Both partition functions are equal to unity for the entire studied fugacity
range λ ∈ [10−7; 102], as expected from Eq. 3.13. (b) ln ΞTh and ln ΞNum as functions of λx
for a Gaussian with 〈ε〉 = −50 kBT and σ = 0.5 kBT . Both partition functions are linear
functions with zero intercepts and slope equal to the total number of sites, as expected
from Eq. 3.14.

2. In the other extreme, a strongly negative average energy means adsorption on any of
the non-specific sites will be highly favourable and molecules adsorb on all available
sites. The second line of Eq. 3.9 supports this assumption – for strongly negative
〈ε〉 the second term in brackets is much larger than unity and ln Ξ is proportional to
−β〈ε〉Ntotal:

ln Ξ = Ntotal ln(1 + λx)
λx�1−−−→ Ntotal ln (λx) = Ntotal(−β〈ε〉+ βµ) (3.14)

It turns out that, in this extreme case, the natural logarithm of the partition function
is linear with respect to lnλx, has a zero intercept and its slope is equal to the total
number of sites. A plot of ln ΞTh and ln ΞNum vs. λx depicts this result (Fig 3.2b).

Finally, let us plot ln Ξ vs. λx for the entire λx-range studied up to now, i.e., from
10−30 to 1020 for all cases (theoretical, numerical at positive and negative energies). The
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10-30 10-20 10-10 100 1010 1020
0

5

10

15

20

25

λx

ln
Ξ
⨯
10

-
6

0

1

2
10-2 10-1 100 101

Figure 3.3: Comparison of two numerically calculated ln Ξ(λx) at different average adsorp-
tion energies with the theoretical expression. The three partition functions overlap over
the λx range λx ∈ [10−30; 1020]

results are presented in Fig. 3.3. It is now clear that we can present every moderately
broad distribution (up to σ = 0.5 kBT ) with a function ln Ξ = Ntotal ln(1 + λx). The
function has two distinct branches, reflecting each of the cases discussed above:

1. When λx � 1 the partition function equals unity, corresponding to the physical
picture of no binding.

2. In the case of λx� 1 ln Ξ is linear with respect to ln (λx), has a zero intercept and
the slope of the line equals Ntotal, reflecting the case of binding to any site present
on the strand.

3.2 Generalized derivation of the grand canonical partition
function

In the previous section we derived the grand canonical partition function of a lattice with
sites having normally distributed binding energy, but we made an assumption which might
not always be true – we considered only narrow Gaussians with standard deviation of no
more than 0.5 kBT . Hence, now we wish to expand our considerations to wider distribu-
tions. Furthermore, we pursue to derive the partition function as generally as possible,
i.e., we wish to include other distributions, as well, since we believe our result is applicable
not only to DNA, but to any Langmuir lattice.

We again start off with the expression for the grand canonical partition function for a
1D lattice of statistically-distributed independent adsorption sites (Eq. 3.4), and, as we
pointed out in the previous section, it is more convenient to derive ln Ξ:

ln Ξ =

N∑
i=1

Ni ln(1 + λe−βεi) (3.15)
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where Ni, as usual, is the number of sites having adsorption energy εi and λ = eβµ is the
fugacity of the adsorbing molecule. Next, we present the number of sites with energy εi in
terms of the total number of sites Ntotal and the probability for a site to have this energy:

Ni = f(εi)Ntotal, (3.16)

where f(ε) is the probability density function for the given distribution. Our next step is
to substitute Eq. 3.16 in Eq. 3.15, which yields:

ln Ξ = Ntotal

N∑
i=1

f(εi) ln(1 + λe−βεi) (3.17)

We are allowed to isolate the total number of sites from the sum, because it does not
depend on the summation variable. By definition, summing over all values of a random
variable, multiplied by their probabilities, yields the average value of the variable:∑

{i}

xif(xi) = 〈x〉 (3.18)

That being said, we transform the right part of Eq. 3.17 into an average logarithm:

ln Ξ = Ntotal

〈
ln(1 + λe−βε)

〉
(3.19)

One might be tempted to approximate the average logarithm to a logarithm of an
average and this will, in fact, be a fairly good approximation, but only under certain
conditions. To gain insight into what these conditions are, we will seemingly make our
derivation more complicated than needed but in this way we will manage to express ln Ξ
as a sum of a leading term, a logarithm of an average, and a term, which vanishes for low
enough fugacities.

Having said that, we introduce a shorthand for the logarithm of the average, which we
shall call a:

a = ln
〈

1 + λe−βε
〉

= ln
(

1 + λ
〈
e−βε

〉)
(3.20)

We are allowed to make the last transformation since λ is independent of the adsorption
energy. Next, we add and subtract Ntotala from Eq. 3.19:

ln Ξ = Ntotal

(〈
ln
(

1 + λe−βε
)〉

+ a− a
)

= Ntotal

(
a+

〈
ln

1 + λe−βε

ea

〉)

= Ntotal

(
a+

〈
ln

1 + λe−βε

1 + λ〈e−βε〉

〉) (3.21)

Bringing −a inside the averaging angle brackets is possible since, for a given fugacity, a is
a function only of the average exponent, which as we already mentioned in Section 2.4.3
depends on the cumulants of the distribution and is constant for a given set of cumulants.
Our next step is to substitute the second term in the last line of Eq.3.21 with b thus
obtaining an expression for the partition function in a compact form:

ln Ξ = Ntotal

(
a+

〈
ln

1 + λe−βε

1 + λ〈e−βε〉

〉)
= Ntotal (a+ b) (3.22)
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In order to explain why a is the leading term in the expression, we must discuss how b
behaves upon decreasing the fugacity:

b =

〈
ln

1 + λe−βε

1 + λ〈e−βε〉

〉
(3.23)

For sufficiently low fugacity the second terms in both the numerator and the denominator
become negligibly small compared to unity, the fraction itself tends to 1, which means
b ≈ 0 and it can be neglected in Eq. 3.22. It can be argued, however, that the same
reasoning is applicable to the first term, as well. Although intuitively plausible, this is not
the case – since roughly half of the values for 1 + λe−βεi are greater than 1 + λ

〈
e−βε

〉
and

the other half are smaller than it, half of the summands in Ntotalb are negative and the
other half positive:

Ntotalb =

N∑
i=1

ln
1 + λe−βεi

1 + λ〈e−βε〉
≈

N/2∑
i=1

ln
1 + λe−βεi

1 + λ〈e−βε〉︸ ︷︷ ︸
>0

+

N∑
i=N/2

ln
1 + λe−βεi

1 + λ〈e−βε〉︸ ︷︷ ︸
<0

≈ 0 (3.24)

That being said the average of these summands, i.e. b, will converge to zero much more
rapidly than a. To illustrate this, we plot the ratio of −b to a as a function of λ (Fig. 3.4).
The calculation of −b/a is made for a normal distribution with mean 〈ε〉 = −1.3 kBT and
standard deviation σ = 2.3 kBT . For biological systems the typical values for the fugacity
range roughly from 1 × 10−7 to 1 × 10−5. From the graph we see that for this range the
ratio monotonously increases from approximately 2× 10−4 to 2× 10−2.
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Figure 3.4: Ratio of −b to a (see text for definitions) as a function of the fugacity λ for a
normal distribution with 〈ε〉 = −1.3 kBT and σ = 2.3 kBT . Under in vivo conditions the
second term in Eq. 3.22 is negligible.

We can now safely drop the second term in Eq. 3.22 and write the first one explicitly:

ln Ξ ' Ntotal ln
(

1 + λ
〈
e−βε

〉)
(3.25)

As we already discussed in Section 2.4, the average exponent of a variable obeying
a distribution of choice is the moment-generating function of the distribution. We also
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argued why the MGF is not convenient for our goals and decided to use its close relative,
the cumulant-generating function:

〈
e−βε

〉
= Mε(−β) = exp (K(−β)) = exp

( ∞∑
n=1

κn
(−β)n

n!

)
, (3.26)

where κn is the nth cumulant of the distribution. After this short recap, we finally re-write
Eq. 3.25 in terms of a series of cumulants:

ln Ξ ' Ntotal ln

[
1 + λ exp

( ∞∑
n=1

κn
(−β)n

n!

)]
(3.27)

If we now recall Eq. 2.51, we can write out the cumulant-generating function explicitly:

K(−β) = −β〈ε〉+
β2σ2

2
− β3γ1σ

3

6
+
β4γ2σ

4

24
+ ... (3.28)

Having pointed this out, it is now clear that one can easily calculate ln Ξ for any distribution
with a convergent moment-generating function via Eq. 3.27.

We now arrive at the conclusion that, for a distribution of choice, the expression for
ln Ξ is much more complicated than the simple expression in Eq. 3.11. We can, however,
define an effective energy εeff:

εeff ≡ 〈ε〉 −
βσ2

2
+
β2γ1σ

3

6
− β3γ2σ

4

24
+ ..., (3.29)

thus obtaining Eq. 3.27 in a simple, yet accurate form:

ln Ξ ' Ntotal ln (1 + λ exp (−βεeff)) (3.30)

Although qualitatively identical, Eq. 3.11 and Eq. 3.30 differ significantly in quantitative
terms – while Eq. 3.11 takes into account only the location (〈ε〉) of the distribution, Eq.
3.30 considers both the location and the shape of the distribution, which, as we will see,
may lead to significant departures from Eq. 3.11. To illustrate this, we again present the
ξ = ln ΞTh × ln Ξ−1

Num for several standard deviations (Table 3.2), but this time we use
Eq. 3.30 to calculate the partition function analytically. From the values listed it becomes
evident Eq. 3.30 is exact for standard deviations up to σ = 2kBT , but its accuracy
deteriorates rapidly for wider distribution.

Table 3.2: ξ(λ = 10−7) calculated for different standard deviations

σ, [kBT ] 0.30 0.50 0.75 1.00 1.50 2.00 3.00

ξ 1.000 1.000 1.000 1.001 1.005 1.025 1.255

Let us now take a step back and contemplate the physical reasoning behind Eq. 3.30.
To that end, we will take Eq. 3.29 up to the first term and gradually add more and more
terms. We will start by considering a set of sites with equal energy, which can be deemed
a normal distribution with zero variance, that is, K(−β) = −β〈ε〉. This is actually how

31



CHAPTER 3. Ξ OF A 1D LATTICE OF NS SITES OBEYING A DISTRIBUTION

non-specific sites are usually modelled – as a set of sites with uniform binding energy.
Thus, ln Ξ depends only on one parameter, the (mean) energy of the sites:

ln Ξ = Ntotal ln
[
1 + λ exp

(
− β〈ε〉

)]
(for constant ε) (3.31)

We now start to broaden the distribution (σ > 0), sites begin to differ in energy, two
tails are formed – left, with energy lower than 〈ε〉, and right, with higher energy. The
molecules will preferentially bind to the sites with lower energy – the higher the variance,
the further away from the average the tails stretch, therefore the lower the energy of these
preferred sites. To account for this "bias", we add the second term in the cumulant-
generating function:

ln Ξ ' Ntotal ln

[
1 + λ exp

(
− β〈ε〉+

β2σ2

2

)]
(for Gaussian) (3.32)

From this result it becomes clear why our derivation in Section 3.1 gave a fairly accurate
estimate of ln Ξ up to σ ≈ 0.5 kBT – for a standard deviation of 1

2kBT , the second term
in Eq. 3.32 is no more than 0.125, which (if we split the exponent), introduces a factor of
1.13 to the fugacity term. Recalling the numbers, presented in Table 3.1, we see that our
theoretical partition function overestimates the actual one by exactly 1.13.

To demonstrate the role of the shape of the distribution, i.e., its standard deviation,
we present several Gaussians with 〈ε〉 = 0 and varying widths (Fig. 3.5a). We clearly
see that the wider the distribution, the more εeff is shifted to the left. This means that
one of the arguments we made, while deriving Eq. 3.30, might not be accurate, namely
neglecting b in Eq. 3.22. We dropped this term under the pretext that it converges to
zero much more quickly than a, because of symmetry around the effective energy. We now
see that the effective energy slices the distribution more non-symmetrically the greater the
standard deviation is. This explains why ξ for broader Gaussians diverges from unity at
lower fugacities compared to narrow distributions (Fig. 3.5b and data presented in Table
3.2).
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(a) εeff (dashed vertical lines)
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(b) ξ(λ) for different effective energies

Figure 3.5: (a) Comparison of the effective energies (dashed vertical lines) of normal distri-
butions with 〈ε〉 = 0 kBT . For standard deviations up to σ ≤ 1 kBT , εeff is hardly shifted
with respect to the mean, in good agreement with our findings in Section 3.1. (b) ξ (λ) for
Gaussians with 〈ε〉 = 0 and varying standard deviation. The wider the distribution, the
lower the fugacity at which ξ diverges from 1.

It is also interesting to see how ξ behaves when we fix the effective energy at, say
−4 kBT , and use different combinations of 〈ε〉 and σ. To that end, we plot three normal dis-
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tributions and their corresponding ξ (λ) functions (Fig 3.6). Using the mathematical nota-
tion for a normal distribution with an average −β〈ε〉 and variance β2σ2, N

(
−β〈ε〉, β2σ2

)
,

we choose the following Gaussians: N1 (−1, 6), N2 (−2, 4), and N3 (−3, 2). From Fig.
3.6b it is evident it is not only the effective energy, which determines the convergence of b
(Eq. 3.23) to zero – the width of the distribution plays a separate role in b, as well.
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(a) Constant εeff and varying 〈ε〉 and σ
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(b) ξ(λ) for Gaussians with constant εeff

Figure 3.6: (a) Normal distributions with a fixed effective energy εeff = −4 kBT (green
vertical dashed line) and varying means (the black, red, and blue vertical dashed lines).
Shifting the distribution to the left leads to its narrowing, due to the constrained effective
energy. (b) ξ for the three distributions on the left. It is clear that the variance of the
distribution plays a separate role in the convergence of b (Eq. 3.23) to zero.

The reader may ask the reasonable question ’But why doesn’t the transcription factor
bind to one of the low energy sites in the tail?’, e.g. sites with energy ε < 〈ε〉 − 2.5σ. The
answer to that question lies in the low abundance of these sites, i.e., although having a
great Boltzmann weight, thus being highly favourable for binding, there are too few sites
like that on the DNA strand. What is more, the number of sites with energy lower than
ε = 〈ε〉 − βσ2/2 progressively diminishes as the distribution broadens. To illustrate this,
we plot the cumulative distribution function CDF F (βεeff) (not to be mistaken with the
cumulant-generating function) at εeff = 〈ε〉 − βσ2/2 vs. σ (Fig. 3.7a). In this case, again
for simplicity, we have set the average to zero. Upon calculating the CDF for a given
energy, we obtain what fraction of the sites have an energy no higher than the chosen one:

F (βεeff) =

∫ βεeff

−∞
f(ε)dε =

1

2
erfc

(
βσ

2
√

2

)
(3.33)

From the figure it is evident that the CDF is roughly 0.5 when σ = 0.1 kBT , which is to
be expected since the effective energy is virtually the same as the average. Increasing the
standard deviation leads to a monotonous decrease in the CDF, and at σ = 3 kBT less
then 10% of all sites have energy no higher than the effective.

Although very few, these sites absolutely dominate the partition function due to their
great Boltzmann weight. To demonstrate this we need to calculate the partition function
for the sites with ε ≤ εeff. To that end we use Eq. 3.17, but now, instead of summing over
the entire spectrum of binding sites, we only take the ones on the left hand side of the
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Figure 3.7: (a) Cumulative distribution function F at the effective energy as function of
the standard deviation. The fraction of sites having energy no higher than the effective
(εi ≤ εeff) decreases for wider distributions (b) ln Ξ of the sites having energy ε ≤ εeff
compared to the total ln Ξ as function of the standard deviation.

effective energy:

ln Ξ (F (βεeff)) = Ntotal

eff∑
i=1

f (εi) ln(1 + λe−βεi) '

' Ntotal ln

[
1 +

1

2
λe−βεeff

(
1 + erf

(
βσ

2
√

2

))]
=

= Ntotal ln
[
1 + λe−βεeff (1− F (βεeff))

]
(3.34)

where we use the equation linking the error function and its complementary: erf (x) =
1 − erfc (x). If we now divide this result by the logarithm of the total partition function,
we obtain the relative statistical weight of the sites with energy εi ≤ εeff and see they
contribute the most to the total partition function (Fig. 3.7b). Although comprising
only a small fraction of the total number of sites, these sites’ Boltzmann weights make
them favourable for binding and they manage to outplay the rest of the genome. This
finding in the context of non-specific binding can actually be parallel to specific binding,
as well. While very few in numbers, the specific sites on DNA manage to outcompete the
entire genome by having a binding energy several kBT lower than the effective one for the
non-specific reservoir.

After this extensive analysis of the normal distribution, we turn our attention to curved,
but symmetric distributions (that is, excessively long tails or the lack of such). Let us take
for example the Laplace distribution with an average of 〈ε〉 and a shape parameter s (note
that this is not the standard deviation of the distribution). Here, γ2 > 0 and all additional
even-order terms in K(−β) will be positive, which will lead to larger values of ln Ξ. The
reason for that is the existence of a small number of sites having energy considerably lower
than 〈ε〉.

ln Ξ ' Ntotal ln

[
1 + λ exp

(
−β〈ε〉+

2β2s2

2
+

4β4γ2s
4

24
+

∞∑
i=3

(βs)2i

i

)]

= Ntotal ln

(
1 + λ

e−β〈ε〉

1− β2s2

)
(for Laplace distribution)

(3.35)
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In order to compare the normal and the Laplace distributions, we need to set their
common cumulants, i.e., the average and the variance, equal. To that end, we remember
the variance formula for the Laplace distribution – κ2 = 2s2, that is, the shape parameter
s should be

√
2 times smaller than σ. Also we must take into account another constraint

over s, namely, βs < 1⇒ s < 1 kBT , otherwise the moment-generating function diverges,
which physically means the tails of the distribution stretch so far away from the mean that
the effective energy tends to infinity.

With this knowledge in mind, we choose to center both distributions at 0 and have
σ = 1 kBT and s =

√
2
−1

kBT . With these parameters, we can immediately calculate the
effective energies of the two distributions: −0.50 kBT for the Gaussian and −0.69 kBT for
the Laplace distribution (Fig. 3.8a). According to Eq. 3.30, we can collapse the entire
information carried by the distribution to a single energy value. In that sense, comparing
the effective energies as functions of σ (since we have fixed the ratio of σ to s, we have only
one free parameter) for both distributions gives us a good estimate of how their partition
functions relate (Fig. 3.8b). We see that the two effective energies are (almost) identical
up to σ = 0.5 kBT , but for greater standard deviations the Laplace effective energy begins
to diverge to infinity as σ approaches

√
2.
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Figure 3.8: (a) Comparison between the Laplace distribution and a Gaussian and their
effective energies. Both distributions are centred around zero and have a fixed variance of
1 (kBT )2 (b) Effective energies for a Gaussian and a Laplace distribution as functions of
the standard deviation of the Gaussian. Both distributions are centred around zero and
the shape parameter of the Laplace distribution is constrained to s = σ/

√
2

Finally, if we introduce a skew to our distribution, we need to add the third term in Eq.
3.29, as well. Since a skewed distribution means having a long tail, we also need to take
into account all other terms in the expansion of the CGF. To realize the physical reasoning
behind the third term, we must consider a skew normal distribution, where one of the tails
is heavier (not longer; just having a greater statistical weight).

If the left tail (the one corresponding to energies lower than 〈ε〉) is heavier, then the
distribution has a negative skewness (γ1 < 0) which makes the third term in Eq. 3.28
positive, which, on the other hand, leads to a larger value of ln Ξ. The reason for that is
the greater number of sites with energy lower than 〈ε〉 "competing" in molecule binding,
compared to the number of sites with energy higher than 〈ε〉. The same reasoning applies
if γ1 > 0, because the right tail of the distribution is heavier and sites having higher energy
are more likely to be encountered by the molecule. In this case we, again, have competition
between favourable binding energy and abundance – on one hand, the energy of these sites
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Figure 3.9: (a) Comparison of skewnormal distributions and their effective energies. In all
three cases 〈ε〉 = 0 kBT and σ2 = 2 kBT (b) εeff (γ1) for a skewnormal distribution.

makes molecule binding to them highly unfavourable, on the other hand, their abundance
makes up for that, which effectively leads to smaller values of ln Ξ. Fig. 3.9b is a good
illustration of our reasoning – moving the skew from left to right leads to an increase in
the effective energy.

It is interesting to note there are two distinct branches of εeff (γ1) - for negatively-skewed
distributions the slope of εeff (γ1) is greater than the slope for positive skew. This is due
to dependence of the excess kurtosis on the skewness:

slope =
dεeff
dγ1

=
β2σ3

6
− β3σ4

24

dγ2

dγ1
(3.36)

Increasing γ1 from a negative value to 0 leads to a decrease in the excess kurtosis from
a positive value to 0 (as γ1 → 0−, γ2 → 0+, because the distribution becomes more and
more normal). Thus, the derivative dγ2/dγ1 in Eq. 3.36 is negative, leading to an increased
slope. The same reasoning can be applied to the second branch of εeff (γ1), as well – due
to departures from normality upon increasing γ1, the derivative term is positive which
decreases the slope.

It is now clear that, within reasonable approximation, the effective energy is able to
summarise the entire information carried by a distribution, as long as we are not dealing
with pathologically wide distributions for which the assumptions made while deriving Eq.
3.30 are inaccurate.

After discussing the applicability of our model to distributions with a single peak, we
wish to push it to its limits and check how well it performs with mixture distributions,
as well. A distribution like that can be presented as a linear combination of several other
distributions, multiplied by the weight they have in the total distribution. To illustrate
this, we will consider a mixture distribution, which is a sum of two Gaussians:

ftotal(εi) = p1f1(εi) + p2f2(εi), (3.37)

where pi is the weight of the distribution i :

pi =

∫ ∞
−∞

fi(ε)dε
/ 2∑

j=1

∫ ∞
−∞

fj(ε)dε (3.38)
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When written in terms of the total probability density function ftotal(εi), Eq. 3.17 reads:

ln Ξ = Ntotal

max∑
i=min

ftotal(εi) ln
(

1 + λe−βεi
)
, (3.39)

We can now split the sum in Eq. 3.39 into two sums, according to Eq. 3.37:

ln Ξ = p1Ntotal

max∑
i=min

f1(εi) ln
(

1 + λe−βεi
)

+ p2Ntotal

max∑
i=min

f2(εi) ln
(

1 + λe−βεi
)
, (3.40)

which we readily transform into:

ln Ξ ' Ntotal ln

[
1 + λp1 exp

( ∞∑
n=1

κ(1)
n

(−β)n

n!

)
+ λp2 exp

( ∞∑
n=1

κ(2)
n

(−β)n

n!

)]
, (3.41)

following the procedure described above. The superscripts (1) and (2) signify that these
are the cumulants of f1(εi) and f2(εi), respectively.
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Figure 3.10: (a) and (c) Mixture distributions composed as sums of two Gaussians each.
In both cases the ratios of weights is p1/p2 = 2. Both mixture distributions are composed
of a normal distribution with βσ1 =

√
2 (blue line) and another normal with βσ2 = 1 (red

line) (b) and (d) ξ(λ) for the mixture distributions on the left. The divergence points λ?

are given in red dash

Eq. 3.41 can be even further generalized to a mixture distribution in which the single
distributions are not necessarily normal:

ln Ξ ' Ntotal ln

[
1 + λ

∞∑
i=1

pi exp

( ∞∑
n=1

κ(i)
n

(−β)n

n!

)]
(3.42)
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Furthermore, we can again define εeff even for this general case:

βεeff = − ln

∞∑
i=1

exp

(
ln pi +

∞∑
n=1

κ(i)
n

(−β)n

n!

)
(3.43)

but we will not go into that much detail and just present the results for two mixture
distributions consisting of two Gaussians each (Fig. 3.10).

In both cases the energy difference between the individual peaks is 3 kBT , but in Dis-
tribution 1 the less prominent peak is at energy higher than −5 kBT , while in Distribution
2 it is at lower energy. From the right panels in Fig. 3.10 we conclude that centring the less
prominent peak at lower energy simply shifts the effective energy εeff and the maximum
fugacity λ? for which the model works to lower values but does not affect the accuracy
of the model in the low fugacity range. Here, we defined λ? as the fugacity at which ξ
becomes 1.01 and diverges even further from unity. In the next section we shall refer to
λ? as the divergence point. λ? is shifted from roughly 10−5 in Distribution 1 to 10−6 in
Distribution 2 and the effective energy is lowered by ≈ 2 kBT . This is solely due to the
greater number of sites having energy lower than −5 kBT .

From all said thus far it is clear that the proposed model can be used to quickly and
accurately calculate the grand canonical partition function, if three conditions are met:

1. The moment-generating function of the distribution of choice (be it analytical or not)
needs to be convergent or dominated by the first order terms in the expansion

2. The product of the fugacity and effective Boltzmann weight is much smaller than
unity (λ exp(−βεeff)� 1)

3. The standard deviation is not excessively high

Furthermore, from Eq. 3.29 and Eq. 3.30, we can conclude that instead of using a constant
energy for the non-specific sites we are supposed to use an effective energy:

εeff =

∞∑
n=1

κn
(−β)n−1

n!
(3.44)

Finally, we should keep in mind that the true power of our model lies in its accurate
prediction of the effective energy of any set of binding energies, even if the set cannot be
fitted to an analytical distribution.

3.3 Convergence criterion

After defining the effective energy of the distribution of non-specific sites as the cumulant-
generating function in the last chapter, we compared three Gaussians with constant εeff
and noticed their divergence points λ? differed, more specifically λ? decreased as variance
went up. We are now interested in investigating what is the role of the variance apart
from being a contribution in the effective energy. Furthermore, we wish to establish a
quantitative link between the parameters of a distribution and the fugacity range in which
our model holds.

To that end we focus on the only approximation we made while deriving Eq. 3.30, i.e.,
neglecting the term b in Eq. 3.22:

b =

〈
ln

1 + λe−βε

1 + λ〈e−βε〉

〉
, (3.45)
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and check under what conditions b indeed converges to zero. First, we take into account
that for broad distributions (σ ≥ 2 kBT ) the effective energy is considerably shifted to the
left from the average energy, which means that the greater part of the summands in Eq. 3.45
would be negative (the majority of the λe−βε terms will be smaller than λ

〈
e−βε

〉
). Using

this reasoning we can explain why we observe a sudden rise in the ratio of the theoretically
to the numerically calculated partition functions – from a certain fugacity onwards b starts
to become more and more negative. By neglecting this fact, we overestimate the partition
function, which leads to a ratio greater than unity.

To define a convergence to zero criterion, we first convert the logarithm of a ratio to a
logarithm difference and then expand the logarithms around zero (for brevity we use the
substitution q = λe−βε):

b = 〈ln(1 + q)− ln(1 + 〈q〉)〉 =

〈 ∞∑
i=1

(−1)i+1 q
i

i
−
∞∑
i=1

(−1)i+1 〈q〉
i

i

〉
(3.46)

We now remember averaging is in its essence integration and an integral of a sum is a sum
of integrals. Thus, we arrive at:

b =

∞∑
i=1

(−1)i+1 〈qi〉 − 〈q〉
i

i
(3.47)

We already established that q is log-normally distributed, since ε has a normal distribution.
Therefore, the infinite sum of its moments is divergent and we must use a finite number
of summands but more than one, otherwise we obtain zero, which is to be expected, since,
in first approximation, b vanishes. If we use 2 as an upper limit of the sum, we obtain an
expression which strongly resembles the definition of a variance:

b =

2∑
i=1

(−1)i+1 〈qi〉 − 〈q〉
i

i
= 〈q〉 − 〈q〉 −

〈
q2
〉
− 〈q〉2

2
= −1

2

(〈
q2
〉
− 〈q〉2

)
(3.48)

Therefore, b calculated up to the second term is actually proportional to the variance of a
log-normal distribution:

b = −1

2
Var

(
q ∼ lnN

(
−β〈ε〉, β2σ2

))
= −1

2
λ2e−2β〈ε〉+β2σ2

(
eβ

2σ2 − 1
)

= −1

2
λ2e−2βεeff

(
eβ

2σ2 − 1
) (3.49)

From Eq. 3.49 explicitly follows that b < 0, since the term in parentheses is always greater
than unity for non-δ distributions. Also, it is now obvious why distributions with equal
εeff may have different divergence points – b, which causes the divergence of ξ from unity,
contains a factor solely dependent on the variance of the Gaussian.

We now focus on our main task in this section, namely, finding an upper limit for the
fugacity at which our approximation works well. To that end, we set an the arbitrary
upper limit of ξ, which we shall name the convergence criterion ξ?:

ξ =
a

a+ b
= (1 + b/a)−1 ≤ ξ?, (3.50)

where a = ln
(
1 + λ

〈
e−βε

〉)
as in the previous section. Rearranging Eq. 3.50 and keeping

in mind that ξ? > 1, we obtain:

− b

a
≤ 1− 1

ξ?
(3.51)
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Figure 3.11: Density plot of −b/a for λ = 10−5 as function of the standard deviation and
the average energy.

Before we continue with our derivation, we present the dependence of −b/a on 〈ε〉 and
σ in Fig. 3.11 – as we can see for most parameter combinations this ratio is negligibly
small compared to unity. When we, however, work with pathologically wide distributions
(σ > 2.5 kBT ) −b/a becomes greater than unity, a clearly non-physical result, which points
to ξ < 0.

Obtaining an explicit relationship between the fugacity and the upper limit requires
calculating b/a. We expand the denominator, a, in a Taylor series around zero up to the
second term to keep consistency with b. Thus:

b

a
= −1

2

λ2e−2βεeff(eβ2σ2 − 1)

λe−βεeff(1− λ
2 e
−βεeff)

= − λe−βεeff

2− λe−βεeff
(eβ

2σ2 − 1) ≈ −1

2
λe−βεeff(eβ

2σ2 − 1) (3.52)

We are allowed to make the last approximation since we expect λe−βεeff to still be far
smaller than 2, when the ratio becomes greater than ξ?. Plugging Eq. 3.52 into Eq. 3.51
and isolating λ yields:

λmax = 2
(

1− 1

ξ?

) eβεeff

eβ2σ2 − 1
(3.53)

Here, we define the analytical counterpart of the numerical divergence point λ? introduced
in the last section as λmax

To illustrate the applicability of our result, we compare λmax to λ? when a threshold of
1.001 is applied and we are interested in a normal distribution with mean 〈ε〉 = −1.3 kBT
and a standard deviation of σ = 2.3 kBT . Both values are in good agreement pointing to an
upper limit of λ = 1.95×10−7. If we are interested in a higher limit, say 1.01, the criterion
becomes less forgiving to the deviations and underestimates the limiting fugacity – the
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numerical results point to λ? = 2.8× 10−6, while our criterion suggests λmax = 2.0× 10−6.
Nonetheless, our criterion should be more accurate the stricter the upper limit is.

Table 3.3: Comparison of numerical (λ?) and analytical (λmax) values for the fugacity, at
which ξ is no greater than an arbitrary threshold ξ?

Distribution ξ? = 1.001 ξ? = 1.01
λ? λmax λ?/λmax λ? λmax λ?/λmax

N (−1, 6) 1.01×10−7 9.09×10−8 1.11 1.49×10−6 9.01×10−7 1.65
N (−2, 4) 7.21×10−7 6.77×10−7 1.06 8.76×10−6 6.83×10−6 1.28
N (−3, 2) 5.82×10−6 5.73×10−6 1.02 6.35×10−5 5.67×10−5 1.12

Let us now check if Eq. 3.53 accurately predicts the lowering of λ? when Gaussians with
a constant εeff are compared (Fig. 3.6b). The results are presented in Table 3.3, from which
we conclude that our method of estimating λ? is fairly accurate, that is to say, its accuracy
increases upon lowering ξ’s threshold and upon narrowing the distribution. Although
it may seem λmax fails to predict the divergence point, especially for wide distribution
under a more relaxed convergence criterion (λ?/λmax = 1.65 for N (−1, 6) and ξ? = 1.01),
we should keep in mind that both λ? and λmax scale exponentially with the chemical
potential of the adsorbed species – λ = exp (βµ). Therefore, our criterion underestimates
the true chemical potential at the divergence point by no more 1

2kBT , while µ ≈ −13.5kBT .
Furthermore, given the fact that most research in the field of computational biology aims
for order of magnitude estimates, we realise the criterion can be deemed accurate enough
to be applicable.

3.4 Transcription factors copy number and site occupation

Up until this moment we have considered only a lattice and one adsorbing protein, without
taking into account the copy number of transcription factors within the cell. Since many
regulatory proteins are almost insoluble in water, they constantly reside on the DNA strand,
thus blocking some of the sites and making them inaccessible for other proteins. This might
turn out to be a major flaw in all our considerations up to now, since inaccessible sites
cannot be included in Eq. 3.15, thus altering the site distribution and, consequently, the
partition function. Delving into this issue requires us to see what the copy number of each
protein is (for simplicity we limit ourselves to the lac operon), how many sites are blocked
upon its adsorption, and whether this is crucial to the accuracy of Eq. 3.27.

We begin our argument with the simplistic case, in which a single protein molecule
blocks only one site on the strand. In this case site inaccessibility will not be much of a
problem because of the small number of transcription factor molecules (on the order of
102) compared to the enormous number of available sites (107). To make our explanations
clearer, we consider the regulatory proteins involved in lactose control, namely, LacI, RNAP
and CRP. Their respective copy numbers within the cell are roughly 20, 1000, and 50 [3].
Even for the most abundant protein, RNAP, site inaccessibility should not be a problem,
because the blocked sites form only a minute part of the whole strand, i.e. ∼ 10−4. Here
we should point out that 107 is actually the length in nucleobases of both DNA strands
and not the number of non-specific sites. For highly specific TFs (like LacI) with a low
number of specific sites (3), the two quantities are practically identical. When we, however,
discuss promiscuous proteins like RNAP, which has roughly 2600 specific sites (promoter
sequences)[36, 37], non-specific sites begin to differ from the total number of sites. Still,
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we do not expect a major discrepancy. From all said thus far, we conclude that if proteins
were to block only the site they occupy, site inaccessibility is not a major issue and our
model should provide accurate results for the partition function.

This treatment of the problem is, however, rather oversimplified and does not take into
account two important microscopic characteristics of protein binding:

1. Sites comprise tens of adjacent bases, i.e., when a protein adsorbs on the DNA it
covers a patch of a certain length, which makes it inaccessible for other proteins

2. Adjacent sites, due to base sharing, overlap, that is, moving even only one base
upstream or downstream from the initial base of a site yields a different site.

Understanding how many sites a protein blocks upon binding involves realising that
if the protein covers 3 bases, then the two bases located immediately upstream from the
beginning of the binding site cannot be the initial base of another site because of steric
repulsion. The same reasoning applies to the bases comprising the binding site itself. For
longer binding sites, these ‘forbidden’ bases will be more – 7 for four base-long site, 9 for
five etc. or 2L− 1 for a binding site with length L. To see how this affects our derivation,
we look into the binding site length of the TFs involved in the lac operon [12]:

1. All three specific binding sites of the lac repressor are 21 bases long. Therefore, upon
adsorption, it blocks a total of 41 potential binding sites.

2. CRP’s consensus site is 22 bases long, which means the protein renders 43 sites
inaccessible for other CRP molecules

3. Promoter sequences, to which RNAP binds specifically, are usually 41 bases in length,
resulting in a total of 81 blocked sites.

Combining this knowledge with our previous reasoning about protein copy number, we
arrive at the conclusion that the lac repressor molecules block a total of roughly 800 sites,
CRPs make another 2200 inaccessible, and RNAP binding takes up 80 000 sites. While
the first two proteins block a negligible fraction of the total number of sites (≈ 10−4),
RNAP renders almost 1% of all sites inaccessible. While this may seem an obvious flaw in
all considerations up to now, we believe these blocked DNA sites should follow a similar
distribution as the one for the whole genome, that is, site accessibility does not alter the
cumulants of the distribution, only the total number of sites, forming it. The reasoning
behind this assumption is the same as the one made in Section 2.4.2 – for big enough sets
of sites the central limit theorem points to a Gaussian. Proving this assumption, however,
requires extensive simulation work, which reaches beyond the scope of this work.

There is one more factor we have not discussed up to now, namely, the presence of
proteins not related to lactose metabolism on the DNA strand. There is a wide variety of
regulatory proteins within the cell, some of which insoluble in water, which will constantly
reside on the strands and consequently block patches of it. Will this be crucial to our
model, then? We are inclined to answer ‘Important, definitely, but not enough to render
our model inapplicable.’, because, after all, we are dealing with a dynamic system with
proteins constantly moving along the DNA strand. In other words, a site which is blocked
at one point in time, will be free in the next and can be occupied by the protein we are
modelling.

All that being said, we draw the final conclusion that site accessibility is hardly relevant
for TFs with low copy number and short site lengths and it may become a serious problem
when dealing with proteins, present in large numbers and with long binding sites. But even
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then, we expect a statistical behaviour of these inaccessible sites, which, while important,
should not crucially hinder our further considerations.
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Chapter 4

Comparison with experimental
results

After deriving the grand partition function for a one dimensional lattice of sites with
binding energy, obeying a statistical distribution, we wish to test the applicability of our
model to real-life systems. To that end, we use experimental data, both in vivo and in vitro,
obtained over the course of almost four decades and see how well our model performs. We
start with an extensive overview of binding affinity measurements of the lac repressor for all
interesting binding scenarios, that is, adsorbing onto the three operator sites, binding to the
synthetic symmetric operator and non-specific binding. After obtaining binding energies
for each specific case, we compare the specific-non-specific binding energy difference to in
vivo values and see a remarkable (given the timespan and technique diversity) agreement.
We also list a few studies dealing with non-specific RNAP-DNA binding. Using the non-
specific binding energies of RNAP and LacI, and with the aid of Eq. 2.38, we obtain
the standard deviations for these two proteins’ binding energy distributions. When we,
however, compare these standard deviations to their in vivo counterparts, we see rather
disturbing discrepancies. To explain them, we turn our attention to protein configuration
and the possibility of different modes of binding, an assumption, which is confirmed by
NMR structure analyses.

4.1 In vitro binding data

Before testing our model, we need to obtain experimental data through a thorough overview
of in vitro LacI affinity studies, in which we list most findings researchers have made
spanning several decades. Our main focus is the binding sites present in the wild type E.
coli bacterium, i.e., non-specific, O1, O2, and O3. Nevertheless we also mention studies
dealing with the perfectly symmetric Oid, which, although synthetic, has been commonly
used in vivo to explain the base sequence-binding affinity relation. Due to scarcity of
experimental data we will only touch upon the binding affinity of the repressor for the
auxiliary sites. We will also mention the non-specific binding of RNAP to DNA, but we
will limit ourselves only to this case, because εNS is the energy via which we can calculate
the standard deviation of the binding energy distribution for this protein.

In order to obtain binding energies we make use of Eq. 2.32:

Kobs = vw exp
(
− βε

)
, (4.1)

where vw = 0.018 Lmol−1 is the molar volume of water. Finally, we compare our findings
with in vivo affinity data and determine whether in vitro measurements can be used to
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accurately predict the level of repression within a cell. To that end we are only interested
in affinity constants at salt concentration of 0.2 M since this is the in vivo ionic condition
[38]. Furthermore, when needed, we correct the experimental data for temperature and pH
effects, usingKobs(pH) andKobs(T ), reported in literature. Although, in vivo temperature
is 310 K, we will use data for T ≈ 297 K, due to the non-linear dependence of Kobs on T.

4.1.1 Non-specific binding of LacI and RNAP to DNA

Below, in Table 4.1, we present the non-specific binding affinity results for the lac repressor.
Although the corresponding binding energies have a rather wide standard deviation, we can
safely say εns is around −13.5 kBT . All the researchers, listed in the first column, measured
Kobs as function of salt concentration and obtained a linear dependence, as expected from
Record et al.’s theory for transcription factor binding to DNA [13]. In the last two columns
of the table the slopes, SKobs ("S" stands for slope), and intercepts, ln Kobs

1 M, obtained by
these researchers, are listed.

Table 4.1: Non-specific binding of lac repressor to DNA. Average binding energy: −13.44±
0.71 kBT

Author Year Kobs
NS [1/M] εNS [kBT ] T [K] SKobs lnKobs

1 M

deHaseth et al. [39] 1977 1.29× 104 a -13.48 294 -10.00 -8.52
deHaseth et al. [40] 1977 7.54× 103 -12.94 293 -11.94 -10.29
Revzin et al. [41] 1977 1.29× 104 -13.48 293 -10.28 -7.07
Lohman et al. [42] 1980 6.03× 103 -12.72 293 -10.70 -8.52

Ha et al. [25] 1992 3.80× 104 b -14.56 294 -9.80 -6.45
a Recalculated from data obtained at [M+]=0.13 M and pH=7.7
b Recalculated from data obtained at T=277 K and pH=7.9

As we already mentioned, the slope of Kobs ([M+
])

is a function of the number of ionic
contacts formed between the transcription factor and the DNA strand SKobs = −0.88Z,
where Z, as before, is the number of contacts formed/ions released into the solution. On
the other hand, ln Kobs

1 M is the extrapolated intercept of this line at salt concentration
equal to unity. From the data presented it is evident that when LacI and RNAP bind
non-specifically to DNA approximately 12 ionic contacts are formed in both cases. Later
in this chapter we will use this value and the averaged value for ln Kobs

1 M to calculate the
standard deviation of the distributions for both proteins.

Table 4.2: Non-specific binding of RNAP to DNA. Average binding energy: −15.98 kBT

Author Year Kobs
NS [1/M] εNS [kBT ] T [K] SKobs lgKobs

1 M

deHaseth et al. [43] 1978 1.41× 105 -15.87 294 -10.80 -5.53
Lohman et al. [42] 1980 1.73× 105 -16.08 293 -10.50 -4.84

a Recalculated from data obtained at [M+]=0.13 M and pH=7.7
b Recalculated from data obtained at T=277 K and pH=7.9

As it turns out the non-specific binding of RNAP to DNA is not a popular topic of
study since we only managed to find two reports of experimental research on the topic.
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Nevertheless, the values we calculate for the slope, intercept and binding energy are in
good agreement.

4.1.2 lac repressor affinity for O1

In a similar fashion as for the non-specific binding, we present experimental results for
the specific binding of the lac repressor. We refrain ourselves from listing promoter-RNAP
binding energies due to scarcity of reports on the matter and the large database of different
promoters.

In most early works on the topic long patches of DNA were used, which resulted in
calculating binding affinities on the order of 1011 (all results marked with ‘a’ in Table 4.3).
This is due to the length of DNA patches used, which most probably contain secondary
operator sites. Auxiliary sites facilitate DNA looping [27], which on the other hand leads
to enhanced repression. To eliminate this enhancement, we corrected the data using results
obtained by Oehler et al. [44], who found that the presence of either of the auxiliary sites
causes an approximately 30-fold increase in repression.

Table 4.3: lac repressor affinity for O1. Average binding energy: −27.90± 0.58 kBT

Author Year Kobs
1 [1/M] ε1 [kBT ] T [K] SKobs lnKobs

1 M

Record et al. [45] 1977 2.21× 1010 a,b -27.83 293 -7.04 15.89
Lohman et al. [46] 1978 1.39× 1010 a,b -27.37 293 -7.04 15.43

Herrick [47] 1980 2.80× 1010 -28.07 298 - -
O’Gorman et al. [48] 1980 1.81× 1010 -27.48 293 -1.59 21.07
Winter et al. [49] 1981 0.96× 1010 a -27.00 298 -6.76 15.50
Barkley et al. [26] 1981 1.55× 1010 a -27.48 293 -9.30 11.90
Whitson et al. [50] 1986 2.29× 1010 -27.87 298 - 6.41 13.54
Spotts et al. [51] 1991 3.00× 1010 c -28.14 293 - -

Chakerian et al. [52] 1991 1.66× 1010 c -27.55 293 - -
Zhang et al. [53] 1993 1.06× 1010 d -27.10 298 - -

Bondeson et al. [54] 1993 6.86× 1010 d -28.97 293 - -
Schlax et al. [55] 1995 3.90× 1010 -28.40 310 - -

Swint-Kruse et al. [56] 2005 4.21× 1010 c -28.48 293 - -
Wilson et al. [57] 2007 5.00× 1010 -28.65 298 - -

Romanuka et al. [58] 2009 3.05× 1010 e -28.16 293 - -
a Recalculated taking into account the auxiliary sites [44] and usage of KCl [26]
b As calculated by Barkley et al. [26]
c Recalculated using the linear relation obtained by O’Gorman et al. [48]
d Recalculated using the linear relation obtained by Whitson et al. [50]
e Recalculated to correct for pH, ionic conditions, and temperature [26, 50, 59]

Another seemingly contradictory feature of Table 4.3 we should explain is the presence
of two linear relationships used to recalculate data when the usage of only one salt con-
centration was reported (studies carried out after 1991). Since a few researchers (the ones
marked with ‘c’) utilized the experimental set up O’Gorman et al. used, we consider it is
only natural to use Kobs ([M+

])
obtained by O’Gorman et al. to recalculate the affinity

constant. What is more, as evident from the last two columns, the slope and intercept ob-
tained by these researchers differ drastically from the values most often found in literature.
Nevertheless, the linear dependence obtained by O’Gorman et al. yields reasonable values
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for the binding energy to O1

4.1.3 lac repressor affinity for the synthetic and symmetric Oid and the
auxiliary sites O2 and O3

Our next task is to present values for all other specific sites, that is Oid, O2, and O3.
Data scarcity requires us to use affinity constant ratios Kobs

1 /Kobs
i , where i is either 2 or

3, signifying that the ratio refers to either O2 or O3.

Table 4.4: lac repressor affinity for Oid, O2, and O3. Average binding energies: εid =
−30.06± 0.65 kBT , ε2 = −27.27± 0.27 kBT , and ε3 = −21.06± 0.70 kBT

Site Author Year Kobs [1/M] ε [kBT ] T [K]

Oid

Ha et al. [25] 1992 3.82× 1011 -30.69 296
Frank et al. [60] 1997 1.05× 1011 -29.39 297

Tsodikov et al. [61] 1999 2.14× 1011 -30.10 297

O2
Winter et al. [49] 1981 1.04× 1010 -27.08 298

Romanuka et al. [58] 2009 1.53× 1010a -27.46 293

O3
Winter et al [49] 1981 4.11× 107a -21.55 298

Romanuka et al. [58] 2009 1.53× 107a -20.56 293
a Recalculated via affinity constant ratios

4.1.4 In vivo vs. in vitro binding data

After reviewing in vitro binding data for all commonly studied operator sites, we wish
to see if these values agree with binding energies determined in vivo – after all, within a
living cell there are far more factors which can affect lac repressor binding (other proteins
adsorbed on DNA, supercoiling of the DNA strand, etc.) compared to the idealised in
vitro experiment, where only one protein binds to a short strand of DNA. Since in vivo
experiments yield energy differences rather than absolute values for the binding energies,
we need to calculate the binding energy of each operator offset with respect to non-specific
binding:

∆εx = εx − εns (4.2)

Table 4.5: Comparison between in vitro and in vivo binding energies to different lac oper-
ators

Conditions ∆ε1 [kBT ] ∆εid [kBT ] ∆ε2 [kBT ] ∆ε3 [kBT ]

in vitro -14.5 -16.6 -13.8 -7.6
in vivo [4] -15.3 -17.0 -13.9 -9.7

As we compare in vivo and in vitro binding (Table 4.5), we see that for strongly binding
sites there is a good agreement between values obtained via the two approaches. There are,
indeed, negligible differences of 0.8 kBT and less, which might as well be due to the high
variance of the data we use. We cannot say the same for weakest operator site, O3, though,
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because the two values for O3 differ by more than 2 kBT . We can explain this deviation
with the scarcity of in vitro binding data for this operator and the lack of precision in
determining low affinity binding. Nevertheless, the close values obtained for the other
three operator sites clearly indicates in vitro measurements, although rather simplified
compared to the in vivo case, can give an accurate estimate of cellular energetics.

4.2 Extracting standard deviations from in vitro data

As we already discussed in Section 2.3, we can extract the standard deviation of a binding
energy distribution, as long as we know the non-specific binding energy εns and a few
other biophysical parameters such as the area of hydrophobic contact, the binding energy
at 1 M salt solution and the number of ionic contacts formed upon binding. The latter
two parameters are easily extracted from binding affinity measurements of Kobs ([M+

])
.

Hydrophobic area scales linearly with the number of water molecules released upon binding
[62], but since we are working within the salt range, in which Kobs ([M+

])
is linear, we

can neglect the effect from water release [25]. Furthermore, Revzin and von Hippel have
proven that non-specific binding is independent of hydrostatic pressure, a finding pointing
to the idea that the volume change upon binding is (close to) zero [41]. Thus, we arrive at
the conclusion that the process is driven by entropy gain from ion release and hydrophobic
interactions do not play a major role. All that being said, we are now ready to extract the
standard deviation from the slope and intercept of Kobs ([M+

])
, reported in literature.

We start with the lac repressor, for which we established that 12 ions are released upon
binding and at 1 M salt concentration lnKobs

1 M = −8.17. We recall Eq. 2.38 and write it
down for salt concentration of 1 M:

ln
(
v−1
w Kobs

1 M
)

= lnK−◦T + Zξ−1 ln (δγ) (4.3)

Here, we calculate the activity coefficient γ = 0.74 according to the Debye-Hückel theory
for electrolyte solutions, a value in good agreement with [63]. In order to eliminate all
electrostatic interactions, we use the same approach as Barkley et al. [26], and add 0.2Z
to both sides of the equation and re-arrange it:

lnKne = ln
(
v−1
w Kobs

1 M
)

+ 0.2Z − Zξ−1 ln (δγ) , (4.4)

where lnKne = lnK−◦T + 0.2Z is the purely non-electrostatic (ne) part of lnK−◦T . Since we
neglect hydrophobic effects, attribute all electrostatic interactions to the average binding
energy and assume a Gaussian, it is safe to say that εne is actually equal to the second
term in Eq. 3.29. Therefore, we finally arrive at the expression (the subscript ’L’ signifies
that this is the standard deviation for the lac repressor distribution):

β2σ2
L

2
= lnKobs

1 M − ln vw − Z
(
ξ−1 ln (δγ)− 0.2

)
= 0.76 ⇒ σL = 1.24 kBT (4.5)

Carrying out the same procedure under the same assumptions for RNAP yields a
standard deviation of σR = 2.74 kBT .

It is of particular interest to see how the standard deviation, the average energy, the
number of ionic contacts and the site length all relate to each other. To that end we
calculate 〈ε〉, estimate quantities such as average energy per ionic pair and the ratio of the
standard deviation to the site size, and present them in Table 4.6.

We see two very interesting trends forming: the average standard deviation contribution
per base σ/L is close to 0.065 kBT in both cases, a fact we should try and link to the number
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Table 4.6: εeff, σ, and 〈ε〉 and their ratios to the site size L (in base pairs) and the number
of ionic contacts Z=12. All quantities are in kBT , except σ/〈ε〉, which is dimensionless

Protein (L) εeff σ 〈ε〉 σ/L 〈ε〉/Z |σ/〈ε〉|

RNAP (41) -15.98 2.74 -12.22 0.067 1.02 22.4%
LacI (21) -13.44 1.24 -12.67 0.059 1.06 9.8%

of non-electrostatic contacts formed per position of the adsorption site. On the other hand,
the average mean energy contribution per ionic contact formed 〈ε〉/L is comparable to
1.05 kBT , a value, which most probably follows from the way we model 〈ε〉 – after all,
we assumed the electrostatic interactions are a constant energy background (that is, the
electrostatic component of the binding energy is constant for all sites) and neglected the
energy gain from buried hydrophobic area. Carrying out similar calculations for other
regulatory proteins may confirm the existence of such trends, which would then enable
us to extract structural information (number and/or nature of non-electrostatic contacts)
about non-specific complexes just by examining in vitro binding data.

4.3 Binding energy distributions via E-matrices

After looking into in vitro measurements and estimating the standard deviations of the
binding energy distributions for LacI and RNAP, we turn our attention to in vivo tech-
niques for genetic activity predictions. Since energy matrices are obtained via in vivo
methods like sort-seq, we will focus on them. It is crucial to note that the elements in the
E-matrices are not initially calculated in kBT due to the computational technique used to
obtain them. The parallel tempering Monte Carlo technique, described by Kinney et al.
[30], assumes values in arbitrary units (AU) for each matrix element and iterates until a
best fit to sort-seq data is obtained. Rescaling the thus-obtained matrix to a kBT energy
scale requires assuming a model for certain energy differences. In other words, for two sites
of choice a known binding energy difference in kBT is compared to the energy difference in
AU and a scaling factor is calculated from the ratio of the two differences. This approach
is adopted by Brewster et al. [64], but in their work they do not take into consideration
the width of the RNAP distribution, which ultimately leads to inaccurate scaling.

In this section we essentially follow these researchers’ approach and we try to obtain
the proper scaling for the RNAP binding energy distribution. We do this by applying the
binding energy computation procedure explained in section 2.4.1 to the base sequences of
all sites present on both strands of E. coli DNA. To that end we use ‘The E. coli K-12
MG1655 Genome Sequence ECOLI version 2’ kindly provided by [65], which reports the
genetic sequence of this particular strain of E. coli. We choose K-12 because it is widely
considered to be the wild-type bacterium strain ([66, 67] and references therein).

Our next step is to calculate the binding energy, which we do by starting from the 5’-
end of the DNA strand, reading out the site sequence from the first to the Lth base (here,
as usual, L is the length of the site) and feeding it into the E-matrix. Then we move on to
the second base on the DNA strand, repeat the procedure, after that we slide to the third
base and so on until we reach the Lth base counting from the 3’-end, which will form the
last site. Since we are dealing with double stranded DNA, we carry out the procedure for
both strands. Thus we calculate the binding energies for all possible sites. Transforming
this set of energies into a distribution requires us to choose a bin size, in which we place
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sites with close energy. The bin size depends on the minimum and maximum binding
energy values, or in other words, for wide distributions it is better to set a wider bin size.

While carrying this procedure for RNAP, however, we are confronted with a rather
peculiar result. After hypothesising what the reason for our odd finding is, we move on to
LacI, but we encounter a similar controversy. Both results point to the idea of different
modes of binding, that is, differences in transcription factor conformation and bond nature
depending on whether binding is specific or not. This notion is strongly supported by 2D
NMR studies of specific and non-specific protein-DNA complex structures.

4.3.1 RNAP binding energies distribution

As we already pointed out, energy matrices entries are initially expressed in an arbitrary
energy scale and only then, using either in vivo or in vitro values, are they converted
to kBT . If we use the E-matrix verbatim, we usually obtain a wide distribution centred
around a non-zero value. An example of one is the distribution, presented in Fig. 4.1,
which is calculated from the original, non-rescaled RNAP E-matrix, reported by Brewster
et al. (Supplementary Materials in [64]).
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Figure 4.1: RNAP binding energy distribution as calculated with the non-rescaledE-matrix
reported by [64]

We begin our attempt to scale this distribution by assuming there is a linear relationship
between the two energy scales:

ε [kBT ] =
ε [AU]− s [AU]

r [AU/kBT ]
, (4.6)

where s [AU] and r [AU/kBT ] are the shift, expressed in arbitrary units, and the scaling
parameter (ratio) in units AU per kBT , respectively. We also assume these two parameters
are constant for all sites present on the DNA strand, thus implying there is a single E-
matrix, with which the binding energy of any site, be it specific or non-specific, can be
calculated. The biophysical implications of this assumption are a lack of discerning between
functionally different sites, formation of one and the same type and number of contacts
(electrostatic, hydrogen bonding, etc.) regardless of the site, and constant conformation.
Our next step is to take the average exponent of the energy in kBT according to Eq. 4.6
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(for brevity we drop all explicit dimensions safe for the ones distinguishing the two binding
energies):

〈exp (−βε [kBT ])〉 = exp

(
sβ

r

)〈
exp

(
−βε [AU]

r

)〉
(4.7)

Since β, s, and r are all constants, we are allowed to isolate the shift from the average
exponent. Having pointed that out, we realise the second factor in Eq. 4.7 is nothing more
than the MGF of the normally distributed variable ε [AU] with the real constant −β/r.
Then, we simply re-write Eq. 3.26 up to the second term with β/r instead of β and all
energies expressed in AU:

〈exp (−βε [kBT ])〉 = exp

(
−β (〈ε〉 [AU]− s)

r
+

(βσ [AU])2

2r2

)
= exp (−βεeff) , (4.8)

an expression from which we can easily isolate the link between the effective energy in kBT
and the cumulants in AU:

εeff [kBT ] =
〈ε〉 [AU]− s

r
− β (σ [AU])2

2r2
(4.9)

As we already established in Chapter 3, the effective energy actually expresses the binding
to the non-specific sites and it is the quantity one should use when calculating energy
offsets with respect to non-specific binding. To arrive at the scaling factor r we shall use
one such offset, namely the binding energy difference between the wild-type lac promoter
and non-specific sites. Thus, we essentially follow Brewster et al.’s approach with the main
difference that we use the proper energy offset. A well-established value from literature
[27] for this difference is −5.35 kBT . The last quantity we need in order to calculate r
is the binding energy of the wild-type promoter in kBT , which we shall express via the
binding energy in AU. Obtaining this value is rather straightforward – knowing the base
sequence of the promoter site, we apply the E-matrix to the sequence which results in
εwt [AU] = 53.4 AU. We are finally able to construct the equation expressing the energy
difference in kBT :

εwt [kBT ]− εeff [kBT ] =
εwt [AU]− s

r
− 〈ε〉 [AU]− s

r
+
β (σ [AU])2

2r2

=
εwt [AU]− 〈ε〉 [AU]

r
+
β (σ [AU])2

2r2
= −5.35 kBT

(4.10)

Before proceeding with solving it, it is worth noting two important features of Eq. 4.10:

1. Since the shift s is common for all sites, it dropped out of the equation. This not
only makes it solvable, because we now have only one variable, but it proves our
assumption that the shift is arbitrary and we can easily center the distribution at
zero, without affecting the physics of binding.

2. Our final equation resembles the one Brewster et al. use to calculate the scaling
factor. The only difference is the second term in the second line of Eq. 4.10, which
takes into account the shape of the distribution.

All that being said, we numerically solve Eq. 4.10 and are confronted with a surprising
result – the scale factor is a complex number r = 3.53± 2.10i. Clearly there is something
wrong with the assumptions we made in the course of deriving Eq. 4.10. But our only
presupposition is the initial hypothesis there is a single set of parameters s and r and one

52
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matrix, which can yield binding energies for all sites on the DNA strands. The complex
nature of r suggests the falsity of the hypothesis and points to conformational and binding
differences depending on the type of site RNAP is bound to. Several reports in the literature
support this notion: [68–71] and references therein.

After proving the RNAP E-matrix cannot be scaled using the energy difference between
a specific and a non-specific site, we speculate this re-scaling should be done using promoter
sequence energies. Furthermore, one should choose the promoters in such a way that
RNAP’s mode of binding to them is one and the same. We will illustrate this in the next
subsection in which we try to scale the lac repressor energy matrix.

4.3.2 lac repressor binding energy distribution

After establishing the RNAP E-matrix, reported in literature, is not fitting for obtaining
the non-specific site energy distribution, we carry out the same procedure for the lac
repressor, as well. As before, we start with the non-scaled distribution depicted in Fig.
4.2a, which is calculated using the LacI E-matrix, kindly provided by D. Jones of Caltech,
Pasadena, CA, USA [72], according to to the procedure described in the previous subsection
with a bin size of 0.001. We obtain a distribution with a standard deviation σ?L = 0.5 AU
and zero mean. It may seem controversial that the RNAP distribution peaks at roughly
28 000 sites, while for LacI the maximum is at less than 8000 sites. The reason for that is
the bin size chosen – since RNAP has a wide distribution a bin size of 0.1 was used.
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(a) Non-rescaled LacI distribution
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Figure 4.2: (a) LacI binding energy distribution as calculated with the non-rescaled E-
matrix, kindly provided by D. Jones of Caltech, Pasadena, CA, USA [72] (b) LacI binding
energy distribution as calculated with the rescaled E-matrix (see text)

Since the distribution is centred around zero and we already established the position is
irrelevant, we can rescale the matrix by simply multiplying it by the ratio of the standard
deviation found from in vitro data to σ?L. We then slide the re-scaled matrix along both
strands of DNA and plot the resulting distribution in Fig. 4.2b. Fitting the distribution
to a Gaussian yields σ = 1.24 kBT , which is indeed identical to the one found from in vitro
measurements. It is now interesting to see how well our analytical formula predicts the
partition function for this distribution. To that end we plot ξ (λ) and present the function
in Fig. 4.3a.

Even at first glance a major inconsistency that draws our attention is evident, namely,
the abnormally low ξ value, which is smaller than unity regardless of the fugacity. This
result most probably stems from the value of εeff we used: instead of calculating the first
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few cumulants of the distribution, we assumed it is a Gaussian (in agreement with our
reasoning in section 2.3) and used non-linear fitting to obtain the mean and variance.
Checking if this is indeed correct requires the calculation of the cumulants according to
Eq. 2.51. The results, presented in Table 4.7, clearly point to the fact that we are not
dealing with normally distributed energies, evident from the presence of a skew and excess
kurtosis.

Table 4.7: First four cumulants of the distribution in Fig 4.2b obtained via non-linear
fitting to a Gaussian and Eq. 2.51. The two approaches yield different effective energies.

Approach κ1 κ2 κ3 κ4 εeff

Non-linear fit 0.064 1.539 0.000 0.000 -0.706
Eq. 2.51 0.012 1.512 -0.305 -0.165 -0.788

From the values presented in Table 4.7 it becomes clear why the fit parameters fail
to give a reasonable value of ξ. Since we assumed a Gaussian, we ruled out the option
of having cumulants of order higher than two, thus overestimating the effective energy by
roughly 10%, which leads to an underestimation of the partition function by approximately
9% (these estimates can be obtained by plugging in the values for the effective energy in
Eq. 3.30 and expanding the logarithm). Using the correct εeff yields ξ (λ) ≈ 1 for the
fugacity range we are interested in, as is evident from the red line in Fig. 4.3a.
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Figure 4.3: (a) ξ(λ) for the binding energy distribution in Fig 4.2b. Fitting the distribution
to a Gaussian and using the fit parameters to calculate the effective energy leads to an
underestimation of ΞTh. Using Eq. 3.29 up to the fourth term yields the proper value for
the function. (b) Linear relationship between the two energy scales for the three operator
sites.

Having said that, we should ask ourselves what causes this contradictory result. Both
the negative value for the excess kurtosis and the presence of a skew dismiss the possibility
of observing a Student’s t distribution rather than a Gaussian since the t distribution has
no skew and the kurtosis for 20 degrees of freedom is 0.375. Upon closer examination
of Fig. 4.2 we see that the left tail is slightly heavier compared to the one predicted by
the fit, while the right tail is overestimated by the fit. This points to the idea that the
matrix generates more favourable sites than necessary. To explain this finding we recall
the conclusions we drew from our attempt to scale the RNAP E-matrix. Do these results
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for LacI imply different modes of binding for this protein, as well? To answer this question
we investigate the matrix even further and, at least for now, we neglect the non-Gaussian
nature of the distribution and simply assume it is indeed normal with an effective energy
equal to the one following from the detailed expansion of the CGF.

The next step in our analysis is to check the applicability of the rescaled matrix to
specific sites. As we already mentioned, we make the naïve assumption that one matrix is
able to predict both specific and non-specific binding, a notion, which we test by calculating
the binding energy of O1, O2, and O3 using the re-scaled matrix. The values we determine
are off compared to the ones known from literature – using this approach we obtain O1 =
−8.63 kBT , O2 = −7.03 kBT , and O3 = −4.97 kBT , which are clearly incorrect. In
order to compute the true scaling relation for the specific sites we again assume there is a
linear relation between the energy in arbitrary units and on the kBT scale, i.e., ε [kBT ] =
(ε [AU]−s)/r = r−1×ε [AU]−s/r. The easiest way to calculate the slope and the intercept
of this line is to plot a point with coordinates (ε[AU], ε[kBT ]) for each operator site and
then make a linear regression (Fig. 4.3b). As we suspected, the scaling parameters, which
this approach yields, differ considerably from the simple scaling relation we employed to
obtain the proper standard deviation of the distribution. Not only does the slope of the
line differ from our scaling ratio (3.85 vs. 2.48), but we now have an intercept, as well,
which indicates a non-zero mean. While the latter is not a major problem since we are able
to shift the distribution however we want (the mean is arbitrary), the former discrepancy
poses a serious question, namely ‘Is there, indeed, only one matrix, with which binding
can be modelled?’

In a final attempt to gain some more insight into the problem, we combine in vitro and
in vivo measurements. To that end we turn our attention to in vitro binding of the lac
repressor to non-specific sites with well-defined base sequence and we are mainly interested
in the interaction with the alternating polymer poly(dG-dC)· poly(dG-dC). There are two
distinct binding sites, i.e., a 21-base long site starting with G (G-site) and a complementary
one starting with C (C-site):

G-site : GCGCGCGCGCGCGCGCGCGCG
C-site : CGCGCGCGCGCGCGCGCGCGC

Since we are working with more than one site we must calculate the effective energy of the
poly(dG-dC)· poly(dG-dC) strand εGC-GC using Eq. 3.43

βεGC-GC = − ln

[
1

2
exp(−βεG) +

1

2
exp(−βεC)

]
(4.11)

To obtain the two binding energies we resort to the energy matrix instead of using in vitro
measurements because we need separate values for the two sites, a piece of information
which in vitro experiments can not provide. A reasonable question here should be "Why
not use single-stranded DNA?". The reason for that is the secondary structure of double-
stranded DNA which affects binding affinity.

Although the sequence is well-defined, it differs considerably from the specific site
sequences, which makes it indistinguishable from a random-sequence site to the LacI.
Therefore, we expect the values, calculated via the E-matrix to lie within roughly one
standard deviation away from the average energy, an educated guess, which is actually
confirmed:

εG ≈ 〈ε〉 (4.12)

εC ≈ 〈ε〉+ 1.2σ (4.13)
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We will express all energies via binding distribution parameters, that is 〈ε〉 and σ, without
explicitly writing them down in kBT values, to illustrate how this approach can also be
used for calibration of energy matrices. Plugging Eq. 4.12 and 4.13 into Eq. 4.11 we
calculate the effective energy of our model lattice:

βεGC-GC = − ln
1

2
− ln [exp (−β〈ε〉) + exp (−β〈ε〉 − 1.2βσ)]

= ln 2− ln
[
e−β〈ε〉

(
1 + e−1.2βσ

)]
= ln 2 + β〈ε〉 − ln (1 + exp (−1.2βσ))

(4.14)

Our next step is to compare the affinity constants for a truly non-specific site and for
the lattice under consideration. Sadly, there is no such investigation made at least to our
knowledge. Riggs et al. [73] however point out that poly dA· poly dT binds LacI roughly 8
times stronger than poly(dG-dC)· poly(dG-dC). On the other hand Revzin and von Hippel
[41] have found that poly dA· poly dT binds to LacI seven-fold tighter compared to non-
specific DNA. Wang et al. [74], however, report an affinity ratio of only 3. It is fair to
say, then, that poly dA· poly dT binds the repressor 5 times more tightly than non-specific
DNA. Therefore:

KGC-GC

KA-T
≈ 1

8
and

Kns

KA-T
≈ 1

5
⇒ Kns

KGC-GC
≈ 1.6 (4.15)

If we now take the natural logarithm on both sides of the equation and keeping in mind
that the equilibrium constant is a function of the binding energy (Eq. 2.32), we obtain:

ln
Kns

KGC-GC
= ln

vw exp(−βεeff)

vw exp(−βεGC-GC)
= βεGC-GC − βεeff = ln 1.6 (4.16)

Substituting the last line of Eq. 4.14 and Eq. 3.29 up to the second term into Eq. 4.16,
we obtain:

β2σ2

2
− ln(1 + exp(−1.2βσ)) = ln 0.8 (4.17)

This equation has two roots, one of which is non-physical. Therefore, we can conclude that
the standard deviation of the distribution is:

σ ≈ 0.69 kBT (4.18)

Unfortunately, this value is off by a factor of roughly 2 compared to σL, a result which we
already expected given the inaccurate predictions for the operator binding energies. As
a last resort measure let us see what are the possible bounds for the standard deviation
by using 1/3 and 1/7 for the affinity constant ratio KNS ×K−1

GC-GC. Following the same
procedure as described above we find σupper = 1.04 kBT when the ratio is 1:3 and σlower =
0.2 kBT for KNS × K−1

GC-GC = 1/7. Although σupper comes close to σL we are inclined
to question this result since Wang et al. are using a conceptually different experimental
procedure. Furthermore, their experiments are carried out at T > 310 K, and as we know
from the studies of Frank et al. [60] and deHaseth et al. [39] repressor affinity diminishes
upon increasing the temperature. With this final result we come to the conclusion that
the repressor E-matrix is not fitting for non-specific site binding energy predictions. If it
were, it should have been able to yield the proper standard deviation in our last set of
calculations.

Let us now ponder what the cause for this discrepancy may be, while keeping in mind
we already encountered a similar situation when dealing with RNAP. Recalling our ex-
planation for RNAP, we ask ourselves if there is more than one binding mode for the lac
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repressor, as well. To answer this question we turn our attention to NMR studies done
by R. Boelens and his group, who investigated the problem of the repressor binding to
operator and non-specific sites thoroughly. In 2004 they managed to obtain results which
clearly show major differences in both the contacts formed between DNA and the TF, and
in the conformation of the DNA-TF complexes (Fig. 7 in [75], also [58, 76, 77] and the
references therein). Their study supports our assumption of differentiated binding modal-
ity and confirms hydrophobic contacts do not play a major role in non-specific binding.
Furthermore, it suggests what kind of interactions may be the cause of the variability of the
binding energy, that is, hydrogen bonds formed between the LacI and the DNA backbone.

We now arrive at the conclusion that energy matrices currently reported in literature
can not be used to calculate the standard deviation of the non-specific energy distribution
due to the different number, geometry and nature of the formed complexes. This, although
implied by the way these matrices are obtained, is nota priori evident since some of these
matrices are used to model the specific-non-specific binding energy difference [64]. Ob-
taining E-matrices from a wide variety of non-specific sites using similar (if not the same)
experimental techniques will shed more light on the matter and plausibly help us to better
understand what makes a specific site specific.
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Chapter 5

Discussion and Outlook

In the preceding few chapters we discussed a variety of topics spanning from genetics (the
description of the lac operon), through biophysics (the linear relationship between affinity
and salt concentration) and statistical mechanics (applications of the grand canonical en-
semble in genetic regulation modelling) to statistics and tensor calculus. Then, we looked
into a problem rarely discussed, namely the distribution of regulatory protein-DNA binding
energies, and with the help of this theoretical background we managed to develop a sim-
ple, yet powerful theory, which is able to accurately calculate the grand canonical partition
function of a lattice like DNA. Finally, we tested our theory with experimental data from
both in vitro and in vivo measurements and drew two conclusions with biophysical rele-
vance. On one hand, we extracted the standard deviation of binding energies for LacI and
RNAP and saw it scales with the number of bases these proteins occupy when adsorbed.
On the other hand, the idea of binding mode differentiation explained the controversial
results we faced while trying to apply energy matrices to non-specific binding. Now is the
proper time to evaluate our findings in a more general manner and seek links to phenomena
outside the scope of biophysics. Furthermore, we ought to discuss what future research
can focus on to provide more insight into the topic of binding energy distributions.

The effective energy εeff and the standard deviation σ

As we derived in Chapter 3, we are able to collapse a whole distribution, with all its differ-
ent energies and numbers of sites having these energies into a single value, which, within
reasonable approximation, reflects the entire information the distribution carries:

εeff =

∞∑
n=1

κn
(−β)n−1

n!
= 〈ε〉 − βσ2

2
+
β2γ1σ

3

6
− β3γ2σ

4

24
+O

(
σ5
)

(5.1)

It is worth noting that, although in rigorous mathematical terms the εeff is an expansion
in the cumulants κn, it can also be deemed an expansion in the standard deviation. We
simply need to define a ’standardised’ mean ¯〈ε〉 = 〈ε〉/σ (we put standardised in quotations
since this is not the usual meaning of the word in statistics). Then:

εeff = ¯〈ε〉σ − βσ2

2
+
β2γ1σ

3

6
− β3γ2σ

4

24
+O

(
σ5
)

(5.2)

What is more, as we demonstrated in Chapter 4 the average energy is completely arbitrary
and we can set it to zero, thus reducing the effective energy to a function of the standard
deviation alone. This reasoning now explains why we put so much effort in obtaining it –
σ turns out to be the parameter, which properly scales all cumulants. On top of that, in

59



CHAPTER 5. DISCUSSION AND OUTLOOK

our initial model for the distribution, we assumed the energies obey a Gaussian. Setting
the average to zero renders the effective energy a function of only one variable, σ.

But what is it that makes the standard deviation so important in biophysical terms?
To answer this question we ponder its physical meaning by considering a normal distribu-
tion. 3σ intervals to the left and right of the average cover 99.7% of the entire Gaussian.
If we now split these 6σs in smaller intervals (or bins) of fixed size we obtain, say, N bins.
Let us now think about two other Gaussians, one wider and one narrower than our initial
distribution. If we carry out the same task for both of them, while keeping the bin size the
same, the number of bins we obtain is different – wider distributions yield more bins than
narrower, or in other words when the standard deviation increases, the number of bins
goes up, as well. With this simple example we wish to illustrate protein’s ability to discern
between sites with respect to their energy, i.e., the wider the distribution, the larger the
number of sites the protein can distinguish between. To support our reasoning we recall the
standard deviations we calculated for the two regulatory proteins we studied, RNAP and
LacI, with σR = 2.74 kBT and σL = 1.24 kBT , respectively. RNAP, being a multivalent
protein, with thousands of promoter sites, needs to be able to distinguish between sites
with a similar base sequence, which ultimately means similar energies. On the other hand,
the repressor, whose functional sites are only a few, does not need to be that selective when
it comes to non-specific sites. To fully grasp the reasoning behind this, we need to recall
which energy contribution to εNS we have not modelled up to now. While electrostatic
interactions can be described via the DNA-protein binding theory devised by Record et
al. and hydrophobic interactions are hardly relevant for non-specific complexes, modelling
hydrogen bonding, which is the sequence-specific part of εNS, is not straightforward. We
can speculate that σ2 is a measure of the number of hydrogen bonds a protein forms when
binding to a NS site. Then highly specific proteins like LacI will have a smaller σ due to the
small number of specific contacts they form with NS sites. On the other hand, RNAP will
’recognise’ parts of a NS site as specific and will be prone to form more hydrogen bonds.
All that being said we realise the standard deviation is most probably characteristic of the
protein, not the DNA it binds to, and it is an indirect measure of its specificity. To verify
this conclusion, however, an extensive study of many proteins binding non-specifically to
different DNA strands should be carried out, a task which is beyond the scope of our work
and which we leave to future research.

Energy matrices and modes of binding

In our endeavour to verify the obtained standard deviations for RNAP and the lac re-
pressor, we stumbled upon a rather intriguing inconsistency, namely the energy matrices,
commonly used in literature to model specific site binding energies, are unfitting for non-
specific sites. This finding led us to the idea of binding modality, that is, proteins bind
differently to functionally different sites, a notion supported by NMR studies. This result
is important not only because it theoretically and independently predicts an experimental
fact, but suggests what further experiments should be done. The first and by far the most
important is obtaining non-specific energy matrices, which accurately predict protein-DNA
interactions and possibly answer some of the questions posed by the standard deviation de-
pendence on site size. On the other hand 2D NMR studies, which are a powerful structure
determination tool, can be used to examine the interactions in a wide variety of non-specific
complexes, such as the ones formed between TFs and alternating polymeric DNA (like the
one studied in Section 4.3). These two approaches combined will help us understand the
function of the non-specific sites even better and gain even more insight into the problem
of DNA recognition processes.
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Chapter 6

Conclusion

The recent development of a variety of high-throughput experimental techniques for genetic
processes investigation has lead to a boom in the field of quantitative biology, and more
specifically in gene regulation studies. The accumulation of in vivo and in vitro results on
the matter has naturally paved the way towards theoretical prediction of a cell’s behaviour
under certain conditions. That being said, the rapid expansion of the newly emerged field
of computational biology seems only natural. Using statistical mechanics and biophysics
as tools, researchers are developing models, which aim to either explain currently available
results or predict experimental outcomes.

Though extensively studied for more than 5 decades, the lac operon still remains the
system of choice when it comes to genetic regulation modelling. The great number of
possible regulatory frameworks provides fertile ground for theoretical studies. While most
researchers focus on the problem of lactose control by examining how regulatory proteins
affect the process of transcription, few have looked into the interactions between these
proteins and non-regulatory DNA. The current work deals with exactly this topic and is
an attempt to devise a theory of non-specific DNA-protein interactions.

The main results of our work can be summarized as follows:

1. The problem of binding energy distribution for non-specific adsorption sites on a
one dimensional lattice was discussed under the framework of the grand canonical
ensemble. With the help of the cumulant-generating function an effective energy was
defined, with which one quickly and accurately predicts the value of the partition
function for a distribution of choice.

2. Using in vitro affinity measurements, we extracted the average energies and the
standard deviations of the RNAP and lac repressor binding energy distributions.

3. The inconsistency between standard deviations calculated from in vivo and in vitro
experiments led us to the concept of binding mode differentiation.

Although we acknowledge some of our results and conclusions require more in-depth inves-
tigation, we should point out that our research is still in progress and we strive to gain a
better understanding of the matter. Nevertheless, we hope the current work provides novel
insight into transcription factor-DNA interactions and serves as inspiration for future work
in the field, both theoretical and experimental.
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Appendix A

List of Abbreviations and Symbols

Abbreviations
RNAP RNA polymerase
LacI lac repressor
CRP cAMP receptor protein
CAP catabolite activator protein, another name for CRP
TF transcription factor
O1 main operator site of LacI
O2 and O3 auxiliary operator sites of LacI
MGF moment-generating function
CGF cumulant-generating function
PDF probability density function
CDF cumulative density function
D DNA binding site
DTF DNA-TF complex

General thermodynamics
Symbol Units Description
T K Absolute temperature
kB J K−1 Boltzmann constant
NA mol−1 Avogadro’s number
β = (kBT )−1 J−1 Inverse thermal energy
µ kBT Chemical potential
λ = eβµ − Fugacity
∆G kBT Change of Gibbs’ free energy
K − Thermodynamic equilibrium constant
xi − Molar fraction of species ‘i’
ai − Activity of species ‘i’
γi − Activity coefficient of species ‘i’

Statistical mechanics
Symbol Units Description
ε kBT Binding energy
∆ε kBT Specific-non-specific binding energy difference
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εeff kBT Effective binding energy (Eq. 3.29)
Φ kBT Grand potential
Ntotal − Total number of non-specific sites on DNA
P − Total number of molecules adsorbed on DNA
p − Promoter occupation number
Zi − Statistical weight of state ‘i’, canonical partition function
Ξ − Grand canonical partition function
ΞTh − Grand canonical partition function, according to Eq. 3.11
ΞNum − Grand canonical partition function, according to Eq. 3.1
ξ = ln ΞTh × ln Ξ−1

Num − Ratio of ln ΞTh to ln ΞNum
ξ? − Convergence criterion, maximum acceptable value of ξ
λ? − Divergence point, λ at which ξ exceeds ξ?
λmax − Theoretical counterpart of the divergence point (Eq. 3.53)

Electrochemistry and Biophysics
Symbol Units Description
e C Elementary charge
ε0 F m−1 Vacuum permittivity
ε − Permittivity of the medium
λB m Bjerrum length
b m Axial charge spacing on DNA
ξel = λB × b−1 − Characteristic scale of DNA charge-charge interaction
qeff = e× ξ−1

el C Effective charge of a phosphate group on DNA
I mol L−1 Ionic strength
κ =
√

8πNAIλB m−1 Debye-Hückel screening parameter
κ̃ = κ× b − Reduced axial charge separation
δ =
√

8πNAλBc−◦ L1/2 mol1/2 κ̃ scaled with the ionic strength
vw L mol−1 Molar volume of water
cw = v−1

w mol L−1 Molar concentration of water
Kobs L mol−1 Observed affinity constant
Z − Number of charges in the active center of the TF

Statistics
Symbol Units Description
〈ε〉 kBT Average binding energy
σ kBT Standard deviation
N (−β〈ε〉, β2σ2) − Mathematical notation for a normal distribution with mean

−β〈ε〉 and standard deviation βσ
µn (kBT )n nth moment of a distribution
κn (kBT )n nth cumulant of a distribution
Mε(−β) − MGF of a random variable ε with parameter −β
K(−β) − CGF of a random variable ε with parameter −β
ϕ(−β) = M(−iβ) − Characteristic function with parameter −β
γ1 kBT Skewness of a distribution
γ2 kBT Excess kurtosis of a distribution
s kBT Shape parameter of a Laplace distribution
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Appendix B

Dependence of the affinity constant
on salt concentration

We start our derivation by recalling Eq. 2.37 and the two approximations made in
Section 2.3:

ln(v−1
w Kobs) = lnK−◦T + ln a−νM+ + ln

γDγTF
γDTF

(B.1)

With the two approximations we can estimate the sodium ions released upon bind-
ing. Prior to binding, the DNA strand has N phosphate groups with θN Na+ con-
densed on them. After binding, the number of phosphates is reduced by the charge
of the transcription factor and the number of condensed ions drops to θ(N − Z).
Therefore, the number of ions released is proportional to the charge in the active
center of the protein:

ν = θN − θ(N − Z) = Zθ (B.2)

In order to tackle the last term in Eq. B.1, we recall the physical meaning of
the activity coefficient - it represents the energy excess µ? in an non-ideal system,
compared to the ideal case:

γ = e−βµ
?

(B.3)

Therefore, it is more convenient to work with energy excess, rather than activity
coefficients. To that end we re-write the last term in Eq. B.1 in terms of chemical
potentials:

ln
γDγTF
γDTF

= β(µ?DTF − µ?D − µ?TF) (B.4)

We can now break down the energy excess for each species into several contributions:

1. µ?TF can be split into two parts - one for the active site µ?as and one for the
remaining part of the protein µ?r . Thus we assume that major changes take
place only at the active site. Furthermore, we assume the non-ideality of the
active site is proportional to its charge and arises from non-ideality of the
solution itself:

µ?as = Zµ?M+ (B.5)

2. We suppose non-ideality in the DNA strand is solely due to the electrostatic
interactions between the phosphate groups, which we have already expressed
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in Eq. 2.24:

βµ?D = βGel = −N
ξel

ln(κ̃) = −N
ξel

[
ln [M+]

2
+ ln δ

]
, (B.6)

where δ = b
√

8πNAλBc−◦ and [M+] = [M+]/c−◦ is the molar concentration of
cations divided by the standard molar concentration c−◦ of 1 M.

3. We model µ?DTF as the sum of µ?TF and µ?D after binding. We presume µ?TF
loses the contribution from the active site due to binding but retains µ?r . On
the other hand, from Manning’s theory we know the excess energy of the DNA
is proportional to the number of charges on the strand. After binding we
have effectively neutralised Z phosphates from the strand. In that sense, we
estimate a decrease in the DNA component of µ?DTF equal to the fraction of
phosphate groups neutralised upon binding:

µ?DTF = µ?r + µ?D −
Z

N
µ?D (B.7)

We are now ready to re-write Eq. B.4 in terms of the contributions we recognized:

ln
γDγTF
γDTF

= β

(
µ?r + µ?D −

Z

N
µ?D − µ?D − µ?r − µ?as

)
= −β

(
µ?as +

Z

N
µ?D

)

= Z

(
− βµ?M+ +

ln [M+]

2ξel
+

ln δ

ξel

)

= Z ln γM+ +
Z

ξel

(
ln [M+]

2
+ ln δ

) (B.8)

Thus Eq. B.1 transforms to:

ln(v−1
w Kobs) = lnK0

T + Z

(
ln γM+ +

ln [M+]

2ξel
+

ln δ

ξel

)
︸ ︷︷ ︸

ln
γDγTF
γDTF

−Z

(
θ ln γM+ − θ ln [M+]

)
︸ ︷︷ ︸

−ν ln aM+

= lnK0
T + Z ln [M+]

(
1

2ξel
− θ

)
+ Z ln γM+(1− θ) + Z

ln δ

ξel

= lnK0
T + Z ln [M+]

(
3

2ξel
− 1

)
+ Z

ln γM+

ξel
+ Z

ln δ

ξel

= lnK0
T + Z

ln
(
δγM+

)
ξel

− Z ln [M+]

(
1− 3

2ξel

)
(B.9)
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