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Chapter 1

Introduction

1.1 Property testing

In the past 20 years, the amount of data that is being processed has exploded.
Companies such as Google and Amazon keep track of a lot of user data,
and have enormous data centers. For example, Google’s data centers are
estimated to store multiple exabytes (1 exabyte = 1 million terabytes) of data.
Also, experiments in CERN produce so much data, that it was preferable to
use magnetic tape, one of the first computer storage media, to reduce costs,
amongst other reasons.

Our interest lies with solving decision problems which have enormous
amounts of data as input. Processing these amounts of data and looking for
a certain property in it is often not feasible in reasonable time: even linear-
time algorithms are too slow when the input is huge. To solve this, we look
for algorithms that are significantly faster than linear-time algorithms. It is,
however, often impossible to get deterministic, sub-linear-time algorithms for
these problems, while guaranteeing correctness. Sub-linear-time algorithms
do not have time to read the entire input, which might be necessary for some
problems in order to guarantee correctness.

Two assumptions arise from this setting. First, since sub-linear-time
algorithms cannot process the entire input, they have to choose which part
of the input they inspect. This choice introduces a random factor into the
algorithms, which has to be allowed. Therefore, the correctness requirement
for these sub-linear-time algorithms has to be relaxed; the fast algorithms
have to produce the correct answer with high probability, in contrast to
always being correct. Second, because these fast algorithms do not process
the entire input, it is difficult, or sometimes even impossible, to distinguish
between certain boundary cases of input. To this end, the possible inputs are
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limited; only yes-instances of the decision problem, and clear no-instances
are allowed as input, where the meaning of ‘clear’ is left unspecified for now.
In other words, we may assume that our input is not a boundary case. In
practice it is of course impossible to check whether the input satisfies this
condition before processing it. The sub-linear-time algorithms have to allow
boundary cases as their input as well, but they are not as good at giving the
correct answer in those cases. We will touch upon this subject after giving
the formal definition later on. Using these two assumptions, it is possible to
create sub-linear-time algorithms for some problems which we shall refer to
as property testing algorithms or property testers, for decision problems.

Aside from when the input is large, property testers also have their use in
other situations. For instance, property testers can be used as pre-processing
algorithms for decision problems, to quickly sieve the clear no-instances from
the possible yes-instances. Due to the nondeterministic nature of property
testers, it might be the case that some inputs are processed incorrectly. De-
pending on the property tester, however, it may only reject no-instances,
such that none of the yes-instances is wrongly rejected. Another situation in
which property testers may do well is when the input is noisy, i.e. contains
random errors. In this situation, one would not necessarily be interested in
boundary cases, since it could be that a random error occurred in the input,
switching that input from a yes- to a no-instance, or vice versa. A property
tester is able to give the correct answer for a decision-problem with high
probability, except for the boundary-cases, which in the case of noisy inputs
are of little interest anyway.

1.2 Quantum computing

Our goal in this thesis is to use quantum algorithms as property testers. In
this section, we introduce some basic concepts from quantum mechanics, as
well as give a quick overview of the history of quantum computing.

1.2.1 Quantum mechanics

In 1900 to 1925, a group of physicists developed a new physical theory which
described the behaviour of small particles: quantum mechanics. This theory,
a set of mathematical rules for describing that behaviour, allows a number of
phenomena which are not (often) observed in our everyday lives, and prove
to be counterintuitive to humans.

For instance, the concept of superposition arises, which says that a particle
can be in multiple basis states “at the same time”. It is impossible to observe
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this behaviour, however, since such a particle will collapse into one of the basis
states when it is observed. Because this concept cannot be observed directly
it is difficult to imagine it. The famous thought-experiment which tries to
illustrate superposition for large objects is that of Schrödinger’s cat, in which
the cat is in a state of being alive and dead at the same time. The experiment
is as follows: in an isolated box, you put a living cat, a particle which is in
superposition of decaying and not-decaying, and a mechanism which releases
poison and kills the cat when triggered by the decaying particle. The idea is
that since the particle is in a state of both decaying and not-decaying, the
release of the poison, and therefore the life of the cat, is in a similar state.
However, it is impossible to observe such a thing, because when it is observed
the superposition of a particle will always collapse to one of its basis states.
In the cat’s case, it will be either dead or alive upon opening the box.

Let |1〉 , |2〉 , . . . , |N〉 be the N basis states in which a physical system
can be. A quantum state of that system is then a superposition of those
N basis states:

∑N
i=1 αi |i〉, where αi ∈ C is the amplitude of the basis

state |i〉. Since observing a quantum state forces it to collapse into one
of its basis states, how does it know which state to collapse to? It col-
lapses to a basis state randomly, according to the probability distribution
Pr[system collapses to state |i〉] = |αi|2. This induces a condition on the
amplitudes, namely that

∑N
i=1 |αi|2 = 1.

Another important concept is that of interference. Quantum states share
traits with waves, which are subject to interference with other waves. When
you throw two rocks in water, the waves generated by those two rocks will
intersect. These intersecting waves interact in two ways: constructive and
destructive. When two waves meet in a point and they are both in a crest
or both in a trough, they reinforce each other, creating a bigger amplitude
for the resulting wave in that point; this is called constructive interference.
When the two waves meet in a point when one is in a crest and the other
in a trough, they work against each other, and reduce the amplitude of the
resulting wave in that point, possibly negating each other entirely; this is
destructive interference. Both interactions are illustrated in Figure 1.1.

Quantum states can interact in a similar way. It is possible to manipulate
quantum states, such that the amplitudes change, and with them, the prob-
ability of the basis state into which the quantum state will collapse. As will
be shown in the section on Grover’s search algorithm, the trick of quantum
computing is to manipulate the amplitudes such that only those of “good”
states will be big at the end of the algorithm.

These two concepts are important for quantum computing; together they
are part of what makes quantum computing powerful. They are, however,
not the only results from quantum mechanics. Another concept worth men-
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Figure 1.1: Constructive (left) and destructive (right) interference.

tioning is that of entanglement, which shows two quantum systems can be
linked such that the collapse of one of the two results in the collapse of the
other as well, even if the two systems are geographically far apart. The small-
est example of entanglement is that of an EPR-pair, named after Einstein,
Podolsky, and Rosen [15]. Entanglement is often encountered in the field
of quantum information and communication, where this linking of distant
quantum systems is very useful.

1.2.2 Quantum computing

The idea of using quantum mechanics for computation didn’t come until
the early 1980s, when Paul Benioff, Richard Feynman and Yuri Manin all
independently came up with the idea of using quantum mechanics for com-
putation. Richard Feynman observed that it appeared to be impossible to
simulate quantum systems on classical computers efficiently, and suggested
a basic model for a quantum computer which could simulate these systems
efficiently. However, this is not the only reason why quantum computers are
being studied.

Currently, microchips seem to be following Moore’s law, which states that
the number of transistors on these chips doubles about every two years. This
requires the circuits to be made of such small components, that quantum
effects are starting to affect them. Microchip manufacturers try to suppress
these effects, because they are not accounted for, and therefore unwanted. At
the same time, however, the fact that these effects arise can be seen as a sign
suggesting that technology has advanced far enough to produce components
that are so small, that quantum mechanics can be used effectively.
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Another reason why quantum computers are of interest is the fact that
quantum memory allows faster algorithms than is possible with classical com-
puters. Some famous results are that of Peter Shor, who found a polynomial
time algorithm for finding prime factors of natural numbers [32], and that
of Lov Grover, who gave an algorithm for searching an unordered n-element
database in O(

√
n) time [24]. In Section 3.2 we will discuss Grover’s search

algorithm in depth.

1.3 Contribution and outline of this thesis

In this thesis we focus on the property of Eulerianity1, and give a quan-
tum algorithm which tests whether a graph is Eulerian, with quantum query
complexity O(n1/3/

√
ε+log(1/(εd))/ε2), which is lower than the lower bound

proven for classical property testers. In Chapter 2 we explain the formal def-
inition of property testing, we zoom in on graph property testing and the
models used in graph property testing, and show some results. Chapter 3
contains the basics of quantum computing and explains the quantum al-
gorithms used in this thesis. An overview of what is known in quantum
property testing (on graphs) is given in Chapter 4, and our quantum algo-
rithm for testing Eulerianity is presented in Chapter 5. Finally, we mention
some possible subjects for future work in this area in Chapter 6.

1A graph G is Eulerian if there exists a cycle in G which visits every edge exactly once.
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Chapter 2

Property Testing

In this chapter we introduce the notion of property testing, and explain its
formal definition with some examples in Section 2.1. The focus of this thesis
is on graph property testing, which will be introduced and explored further
in Section 2.2.

2.1 General property testing

Let us formalise the concept of a property tester, as we introduced in Section
1.1. Following is the meta-definition of property testing, taken from [28]:

Property Testing.

Let X be a set of objects and d : X ×X → [0, 1] be a distance measure on X .
A subset P ⊆ X is called a property. An object x ∈ X is ε-far from P if
d(x, y) ≥ ε for all y ∈ P; x is ε-close to P if there is a y ∈ P such that
d(x, y) ≤ ε.
An ε-property tester for P is an algorithm that receives as input either an
x ∈ P or an x that is ε-far from P. In the former case, the algorithm accepts
with probability at least 2/3; in the latter case, the algorithm rejects with
probability at least 2/3.1

The value for the probability in the above definition is chosen to be 2/3, but
could be changed to any constant in (1/2, 1). The error level can be reduced
to any desired level by taking the majority outcome after multiple runs of
the algorithm. Note that if an input is accepted with high probability, it has
to be ε-close to P .

1Accepting an input x that lies in P with probability ≥ 2/3 makes a property tester
complete, and the rejecting when x 6∈ P with probability ≥ 2/3 makes it sound.
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As mentioned, the given definition is a meta-definition, meaning that
it is incomplete on its own. We still need to provide definitions for X ,P ,
and d, in order to be able to apply it. Although not required by the meta-
definition, we also need to specify the way in which x can be accessed, as
well as how the complexity is measured. A property tester is given access
to one or more functions, which act as an oracle, with which the tester
can access x. For example, let X be the set of all n-bit strings, such that
x = x1x2 . . . xn. A natural choice for the access function would be a function
f : [n] → {0, 1}, which simply returns the bit of x at the queried index, i.e.
f(i) = xi. Another example when X is the set of all n-vertex directed graphs,
is gin, gout : [n] → [n], which return the in- and out-degree, respectively, of
the vertex given as input to the function. The complexity is then typically
measured in the number of queries made to these oracle access functions.

As a simple warm-up example, let us instantiate the meta-definition for
deciding whether a bit string is the all-zero string. Since our inputs will be bit
strings, X =

⋃
n∈N{0, 1}n, the set of all bit strings. Then Pn = {0n}, the set

containing only the all-zero n-bit string, and we can define P =
⋃
n∈NPn. Let

|x| denote the Hamming weight of x.2 For the distance measure, the natural

choice is the normalised Hamming distance, dn(x, y) = |x⊕y|
n

, where ⊕ is the
XOR-operator. Note that we only compare n-bit input strings with strings of
the same length. Also note that an n-bit string that is ε-far from the all-zero
string is a bit string with at least εn 1-bits. To access our bit-string we use
the same f we suggested before for bit strings: f : [n]→ [n], f(i) = xi. The
complexity is then measured in the number of times we use f . We are now
set to give a property tester for testing whether a string is the all-zero string.

Consider the following tester:

Algorithm 2.1.
Pick 2/ε indices uniformly at random, and query the input string at those
indices. If any of the queries returns a 1-bit, then reject, otherwise accept.

Let us analyse the tester. To show that the tester satisfies the conditions
set in the meta-definition, we need to show that it accepts inputs in P
with probability ≥ 2/3 (completeness), and rejects inputs which are ε-far
from P with the same probability (soundness). Notice that the tester al-
ways accepts inputs in P , i.e. the all-zero string, in which case we say that
the tester has one-sided error. It remains to show that if the input is ε-far
from P , the tester rejects that input with probability ≥ 2/3, or equiva-
lently, the tester accepts that input with probability ≤ 1/3. If the input

2The Hamming weight of an n-bit string x is the number of indices where x has a 1-bit,
i.e.

∑n
i=0 xi.
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is ε-far from P , we know that it contains at least εn 1-bits. Therefore,
we can upper bound the probability that none of the queries picks a 1-bit:
Pr[none of the queries returns a 1-bit] ≤ (1−ε)2/ε < 1/3,3 which was exactly
what we wanted to show. The number of queries we make to the input is
Θ(1/ε), which is independent of the length of the input. Note that using the
complement of P does not result in the same setting: if ε > 1/n, no string
is ε-far from P and we could trivially accept all inputs without querying
anything.

This was just a simple example, but many more interesting property
testers exist. One of the better known testers is that of Blum, Luby and
Rubinfeld (BLR) [35], on testing linearity of (Boolean) functions. A Boolean
function f : {0, 1}n → {0, 1} is called linear if and only if ∀x, y ∈ {0, 1}n :
f(x ⊕ y) = f(x) ⊕ f(y). Here X is the set of all n-bit Boolean functions
and P is the set of all n-bit linear Boolean functions. The distance measure
between two Boolean functions f and g is the number of inputs on which

the two functions differ, divided by 2n:
∑

x∈{0,1}n f(x)⊕g(x)
2n

. It is possible to
interpret these Boolean functions as 2n-bit strings, in which case the distance
measure would be the normalised Hamming distance which we also used in
the warm-up example. The way we access f is by making calls to it, and the
complexity is measured in the number of calls made to f . Checking whether
the linearity condition holds for f on all inputs (including boundary cases
of f that are very close to being linear), would take Ω(2n) calls to f . If,
however, the input function is linear or ε-far from it, the BLR algorithm can
decide, with high probability, whether the function is linear or not, using
only a constant number of calls to f . The test is as follows:

Algorithm 2.2 (BLR linearity test).

Choose x, y ∈ {0, 1}n uniformly at random. Query f at the three points x, y
and x⊕ y. Accept if f(x⊕ y) = f(x)⊕ f(y), and reject otherwise.

The algorithm itself is very simple, and it is clear that it only uses a constant
number of queries, since only 3 calls are being made to f .

Linear functions are always accepted by this tester, so it has one-sided
error. The main difficulty here, as is often the case, lies in proving the
soundness of the property tester. The proof of this is beyond the scope of
this thesis, but can be found in [35], where Fourier analysis is used, and in
[8], where a more classical, yet longer proof is given.

For further reading on property testing, see [19, 28].

3Here we used the inequality (1− x
y )y ≤ e−x for y > 1, |x| ≤ y.
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2.2 Graph property testing

As the name suggests, graph property testing is about property testing, where
X from the meta-definition from Section 2.1 is the set of all (n-vertex) graphs.
In this section, we will introduce the three most used instantiations (also
called models) of the meta-definition in graph property testing: the dense
graph model (Section 2.2.1), the bounded-degree model (Section 2.2.2), and
the general graph model (Section 2.2.3). In each section we will discuss a
model, its distance measure, and way of accessing the graph. The complexity
measure is the same in all of the models: it is measured in the number of
times the graph has been queried by means of its oracle function(s). In
every section we will also discuss a property tester for Bipartiteness in that
model, to see some property testing algorithms, and also to observe how
different models give different results for the same property. As we will see,
most models follow from a common representation of graphs, which in turn
have natural choices for the distance measure and access functions. The
discussion of the three models will be in the context of undirected graphs;
directed graphs will be discussed on their own in Section 2.2.4.

2.2.1 Dense graph model

The dense graph model is best suited for graphs with many edges, as the name
suggests. The representation it uses is effectively an adjacency matrix, which
is why this model is sometimes referred to as the adjacency matrix model.
From this representation follows a natural choice for the distance measure:
the distance between two adjacency matrices is the number of matrix entries
in which the two graphs differ, divided by the number of entries in a matrix.
In other words, if x and y are two n× n matrices, the distance to each other

is defined as dn(x, y) =
∑n

i=1

∑n
j=1 xij⊕yij
n2 , which is equal to the normalised

Hamming distance. Note that we only compare graphs of the same number
of vertices, so the number of entries of both adjacency matrices are equal.
The distance measure does not reflect that the adjacency graph is symmetric,
as is the case here since we assumed only undirected graphs as input. More
often than not, self-loops are not allowed, and this is also not taken into
account in the current distance measure. One can solve both these issues
by setting the denominator in the distance measure to

(
n
2

)
instead of n2.

The expression, however, becomes more complex, and the difference is not
significant, which is why the chosen distance measure is seen more often.
In further writing, we will omit the suffix n from the distance measure d
when n is clear from the context. From the definition of ε-far and the chosen
distance measure, it now follows that if a graph G = (V,E) is ε-far from P ,
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then it differs in more than εn2 edges from every H ∈ P , and so it requires at
least that many edge modifications to be made to have the property. Edge
modifications can be the removal or insertion of edges.

The way a property tester can access the graph in this model, is by making
queries to the adjacency matrix representation. The property tester is given
a function f : [n] × [n] → {0, 1}, which represents the adjacency matrix:
f(i, j) returns 1 if there is an edge between vertices i and j, and 0 otherwise.
Queries of this kind are sometimes referred to as vertex-pair queries. Different
types of queries are possible, and the problem setting often determines which
are used. In addition to f , it is possible that other functions are available
which have information about the input graph. For example, it is common
to see that a property tester is allowed to query the degrees of vertices and
do vertex-pair queries as well.

Bipartiteness in the dense graph model

Here we shall discuss a tester for Bipartiteness in the dense graph model.
Recall that a graph G = (V,E) is called bipartite, if and only if, there exists
a partitioning V1, V2 of V , such that E ⊆ V1 × V2.

The following tester is due to Goldreich, Goldwasser and Ron [20]:

Algorithm 2.3 (Bipartiteness Tester in the Dense Graph Model).

With input n, ε, and oracle access to the adjacency matrix of the n-vertex
input graph G = (V,E):

1. Uniformly select a subset of Õ(1/ε2) vertices of V .4

2. Accept if and only if the subgraph induced by this subset is bipartite.

Step (2) consists of creating the subgraph in local memory, by querying all
pairs in the subset of step (1), and checking whether the subgraph is bipartite,
by using Breadth-first search (BFS) to find a cycle of odd length (if it finds
one, the subgraph is not bipartite). It is clear that if G is bipartite, the
algorithm will accept G with probability 1, and therefore the tester has one-
sided error. Proof of soundness can be found in [20]. The query complexity
of the algorithm is equal to the number of queries made in step (2), which
is Õ(1/ε4), since every possible pair of the chosen vertices has to be queried.
A more complex analysis (which we skip here) by Alon and Krivelevich [1]
shows that the algorithm is still a bipartite tester, if only Õ(1/ε) vertices

4The tilde sign is an indication that a logarithmic factor is omitted, i.e. Õ(f(n)) =
O(f(n) · log(f(n)).
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are picked in step (1), so that the query complexity becomes Õ(1/ε2). Note
that the query complexity is completely independent of the size of the input,
and only depends on the proximity parameter ε. Because ε is often taken to
be a small constant, we say that the tester uses only a constant number of
queries, independent of n.

2.2.2 Bounded-degree model

The bounded-degree model is meant for graphs whose vertices all have a degree
bounded by some parameter δ. Its representation is a number of adjacency
lists, which is why this model is also referred to as the adjacency list model,
or incidence list model. Each list belong to a vertex, and contains all the
labels of the vertices it is connected to, in no particular order.

As in the dense graph model, the distance measure follows naturally from
the representation, and is again the number of entries in which the two
undirected graphs differ, over the maximum number of possible entries in the
adjacency lists, δn. From this we can derive that G = (V,E) is ε-far from
P , if and only if G differs more than εδn edges from every graph G′ ∈ P .
Again, the symmetry of undirected graphs is not taken into account, but this
changes the computed distance only by a factor 2.

To access the graph in this model, we use a function f : [n] × [δ] →
([n] ∪ {0}), and f(x, i) returns the i-th neighbour of the vertex x, if such a
neighbour exists. If x has fewer than i neighbours, the value 0 is returned
instead. Note that the neighbours need not be ordered in any particular way,
and so it is classically not possible to check whether x is connected to another
vertex y with fewer than O(δ) queries to f . These kind of queries are often
referred to as neighbour queries.

For this model as well, there are more types of queries possible in addition
to the one just explained. One such query uses a function g : [n]→ ([δ]∪{0})
which returns the degree of the vertex passed to g. Note that if no such
function is available to the tester, it is possible to query the degree of a vertex
in O(log δ) queries, using the function f mentioned before in combination
with binary search.

Bipartiteness in the bounded-degree model

As opposed to the Bipartiteness tester in the dense graph model, it is not
possible to have a Bipartiteness tester in the bounded-degree model which
uses only a constant number of queries. In fact, Goldreich and Ron [21]
showed that the query complexity for testing Bipartiteness is lower bounded
by Ω(

√
n), where n is the number or vertices in the graph. In a subsequent

14



work [22], Goldreich and Ron present a Bipartiteness tester for the bounded-
degree model, using Õ(poly(1/ε) ·

√
n) queries:

Algorithm 2.4 (Algorithm Test-Bipartite).

• Repeat Θ(1
ε
) times:

1. Uniformly select s in V .

2. Let K = poly((log n)/ε) ·
√
n, and L = poly((log n)/ε);

3. Perform K random walks starting from s, each of length L;

4. If some vertex v is reached (from s) both on a prefix of a random
walk corresponding to an even-length path and on a walk-prefix
corresponding to an odd-length path, we found a cycle of odd length
and we reject. Otherwise, continue.

• In case none of the iterations rejected, accept.

The tester selects O(1/ε) starting vertices and from each starting vertex
it performs poly((log n)/ε) ·

√
n random walks, each of length poly((log n)/ε).

The resulting complexity is Õ(poly(1/ε) ·
√
n), which is essentially tight in

terms of the dependency on the size of the input, n.
If the input graph G is bipartite, it is clear that the tester always accepts,

since the algorithm tries to find a witness which proves that G isn’t bipartite.
The tester tries to find such a witness by looking for an odd cycle. The
analysis is rather complex, so it won’t be discussed here, but can be found
in [21].

2.2.3 General graph model

In the previous models we have seen that the distance measure followed from
the representation of the graph. In the general graph model, however, these
are decoupled, and we have no reasonable absolute point of reference, since
we assume neither that the graphs are sparse, nor that they are dense. Hence
this model is suited for any type of graph, which is why this model is called
the general graph model. The aim of this model was to strengthen the link
between property testing and standard algorithmic studies, by being less
dependent on the representation of the graph.

Since the distance measure now has no reasonable absolute point of ref-
erence, the distance between two graphs has to be relative to their size in
terms of the number of edges.
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The distance between two graphs is the number of edges they do not share,
divided by the maximum number of edges of the two graphs, i.e. E4E′

max(|E|,|E′|) ,

where A4B = (A∪B)\(A∩B). Sometimes the denominator in the distance
measure is chosen to be (|E| + |E ′|)/2 instead. These different choices can
give different results, but they are related by a factor 2. In practice it is
often the case that only the number of the input graph is known, and not
that of the graphs in P . That is why often a graph G = (V,E) in this model
is called ε-far from P if and only if G needs at least ε|E| edge modifications
in order to be in P .

Now that there is no particular representation that the graph depends
on, we are also free to pick query types. In this model both vertex-pair
and neighbour queries (queries that were allowed in the previous models) are
used.

Bipartiteness in the general graph model

A tester for Bipartiteness in the general graph model is presented in a paper
by Kaufman, Krivelevich and Ron [27]. Since the general graph has to take
care of both dense and bounded-degree graphs, it is clear that it should also
suffer from the drawbacks of those two models. Kaufman et al. are able to
construct an algorithm whose complexity is Õ(min(

√
n, n2/m)), where n is

the number of vertices in the graph and m the number of edges in the graph.
The algorithm itself is largely based on the tester for bipartiteness in

the bounded-degree model, which uses random walks to find a cycle of odd
length. If no such cycle is found, the input is claimed to be bipartite. In
the paper, the aim is to give a tester for the case where the graph is almost
regular, i.e. the maximum degree is of the same order as the average degree.
In order to deal with the general case it is then shown that the general case
can be reduced to a special case of an almost-regular graph. The proofs are
beyond the scope of this introduction, but can be found in [27].

2.2.4 Directed vs. undirected graphs

In the previous sections, the graphs were always undirected graphs. The
mentioned models translate naturally to directed graphs, but in the case
of neighbour queries, such as in the bounded-degree model, there are two
possible extensions.

The first simply involves having versions for both incoming and outgoing
edges. Instead of having one adjacency list per vertex, we now have two: a
list for incoming and outgoing edges. This means we also need functions to
access these different list, i.e. fin : [n]× [δ]→ ([n]∪{0}) and fout : [n]× [δ]→
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([n] ∪ {0}), for incoming and outgoing edges, respectively. Similarly, we
can have two functions, gin and gout, for checking the in- and out-degrees of
vertices, if available in the model.

The second possible extension for the bounded-degree model only allows
for one of the two directions of edges; either you can query incoming edges, or
outgoing. The latter is often a more natural model for the problem setting.
For example when we use web pages as vertices, we will likely use hyperlinks
as outgoing edges, since it is difficult (if at all feasible) to gather all web pages
that refer to a specific web page. These possible extensions to directed graphs
are also called the bidirectional and unidirectional models, respectively.

In a recent paper by Czumaj, Peng and Sohler [13], a link was made
between the complexity of the bidirectional model, and that of the unidirec-
tional model. They show that if a property can be tested in the bidirectional
model with constant query complexity, the same property can be tested in
the unidirectional model with sublinear query complexity.
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Chapter 3

Quantum Computing

In this chapter we will explain the basics of quantum computing in Section
3.1, and introduce the quantum algorithms that will be used in this thesis
in Section 3.2. Most of the material in this chapter is based on the lecture
notes of de Wolf [34], and for more information on quantum computing and
quantum algorithms, we refer the reader to [30].

3.1 Quantum computing

3.1.1 Qubits

What is the difference between quantum computers and classical comput-
ers, which we use now? Classical computers use bits to store information,
and use logical gates, such as AND- and NOT-gates, to manipulate these
bits. Quantum computers use quantum bits, or qubits for short, which are
manipulated by using a different kind of gate.

Qubits are quantum states as described in Section 1.2.1, with two possible
basis states, represented by orthogonal 2-dimensional vectors of length 1:
|0〉 = (10) and |1〉 = (01). A qubit |ψ〉 therefore represents a quantum state
|ψ〉 = α |0〉 + β |1〉, with |α|2 + |β|2 = 1, but can also be interpreted as a
two-dimensional vector of length 1: |ψ〉 = (αβ), with |α|2 + |β|2 = 1.

For multiple qubits, we use the tensor product ⊗ to combine the ba-
sis states into a bigger system.1 For example, suppose that we have 2

1The following definition of a tensor product is taken from [34]: If A = (Aij) is an
m×n matrix and B a p×q matrix, then their tensor or Kronecker product is the mp×nq

matrix: A⊗B =


A11B · · · A1nB
A21B · · · A2nB

. . .

Am1B · · · AmnB

 .
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qubits. Each of the qubits has two possible basis states, which results in
4 possible combinations. This gives us 4 basis states for a 2-qubit sys-
tem, just like there are 4 possible classical states for bits: 00, 01, 10, and
11. Similarly, we have the following basis states in a quantum computer:
|0〉⊗|0〉 = (1, 0, 0, 0)T , |0〉⊗|1〉 = (0, 1, 0, 0)T , |1〉⊗|0〉 = (0, 0, 1, 0)T and
|1〉⊗|1〉 = (0, 0, 0, 1)T , where vT is the transpose of the vector v. The basis
states correspond to 4-dimensional, pairwise orthogonal vectors of length 1.
In general, the ⊗ operator is omitted and we write |0〉|0〉 or |00〉 for |0〉⊗|0〉.
For n qubits, we can also write |0〉 , |1〉 , |2〉 , . . . , |2n − 1〉, since any n-bit
string can be interpreted as a number from 0 to 2n − 1. A general n-qubit
state can be written as

∑
x∈{0,1}n αx |x〉, where

∑
x∈{0,1}n |αx|2 = 1.

At any point during a computation, we can measure one or multiple
qubits. As explained in Section 1.2.1, measuring a quantum state will cause it
to collapse into one of its basis states according to the probability distribution
generated by the squared amplitudes of the corresponding basis states. For
example, suppose we have the following two-qubit state |ζ〉 = 1√

3
|0〉|φ〉 +√

2
3
|1〉|ψ〉. Measuring the first qubit will collapse the two-qubit state in the

state |0〉|φ〉 with probability 1/3, or in state |1〉|ψ〉 with probability 2/3.
Apart from measuring in the standard basis |0〉 and |1〉, it is also possible

to measure a qubit in a different orthonormal basis. For example, |+〉 =
1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) form an orthonormal basis. When

measured in this basis, the quantum state will collapse to either |−〉 or |+〉.
Although it will not be used in this thesis, it has been put to good use
by Bennett et al. in their paper on quantum cryptography [6] and much
subsequent work.

3.1.2 Gates

Now we will look into manipulating qubits. Quantum mechanics only allow
linear operations to transform quantum states. Since this model represents
qubits as vectors, linear operations are modelled by matrices. Not any matrix
can be used, however, because the resulting vector represents the qubit(s)
after the transformation, and therefore has to have length 1. The matrices
have to be length-preserving, also referred to as norm-preserving. A d × d
complex matrix U is called unitary, if its conjugate transpose2 U∗ is also its
inverse, i.e. UU∗ = U∗U = I, where I is the d × d identity matrix. Unitary
matrices are length-preserving, and we will refer to unitary matrices on a few
qubits as gates.

2The conjugate transpose of a matrix A is the transpose A, after taking the complex
conjugate of its entries.
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Here are some examples of gates that work on one qubit:

• X, the bitflip gate:

(
0 1
1 0

)
,

• Z, the phaseflip gate:

(
1 0
0 −1

)
,

• Rφ, the phase gate:

(
1 0
0 eiφ

)
,

• H, the Hadamard gate: 1√
2

(
1 1
1 −1

)
.

The bitflip gate X is comparable to the classical NOT-gate: it flips the
basis states of the qubit on which it is acting. For example, suppose |φ〉 =
α |00〉 + β |11〉, and X is applied to the second qubit, the result will be
(I⊗X) |φ〉 = α |01〉+β |10〉. Note that we used the tensor product of the 2×2
identity matrix and X. Since we only wanted to manipulate the second qubit,
all other qubits in the system should stay the same. Mathematically, we can’t
ignore those qubits, so we apply the identity matrix I to them. To apply these
linear operations in parallel, we combine the individual linear operations with
the tensor product. If we want to apply gates sequentially, we use matrix
multiplication, e.g. if we want to apply U after V on a quantum state |φ〉,
this will be equal to UV |φ〉. In future writing, we shall use U⊗k to represent
the tensor product of k times the linear operation U , i.e. U ⊗ U ⊗ . . . ⊗ U .

The phaseflip gate Z has no equal in classical computing, since classical
bits are not subject to phase. In quantum computing, however, phase is
important for interference, as mentioned in Section 1.2.1. The phaseflip gate
simply switches the polarity of a the basis state |1〉: Z |0〉 = |0〉 , Z |1〉 =
− |1〉. If we view a qubit as a vector in the two-dimensional plane, applying
Z would be equal to reflecting through |0〉.

The phase gate Rφ is similar to the phaseflip gate in the sense that it has
no classical equivalent. The phase gate, however, rotates the |1〉 component
with an angle of φ in the two-dimensional plane. In fact, Z is a special case
of the phase gate where the phase is rotated by an angle π.

The Hadamard gate H is a very common gate, even though its use is not
immediately apparent. Let us apply H to the 1-qubit basis states:

H |0〉 =
1√
2

(|0〉+ |1〉), H |1〉 =
1√
2

(|0〉 − |1〉).

Since H is unitary and equal to its conjugate transpose H∗, H is its own
inverse. The second application of H should therefore result in the starting
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state. Let us verify this for |0〉:

H(H |0〉) =
1√
2
H(|0〉+ |1〉) =

1√
2

(H |0〉+H |1〉)

=
1

2
((|0〉+ |1〉) + (|0〉 − |1〉)) = |0〉 .

Here we see an example of destructive interference; the phase of the first |1〉
negates that of the second.

In case of H |0〉, we have a uniform superposition over all the possible
1-qubit basis states; |0〉 and |1〉. In general, it is the case that for n qubits,
H⊗n |i〉 = 1√

2n

∑
j∈{0,1}n(−1)i·j |j〉, where i · j =

∑n
k=1 ik · jk is the inner

product on the n-bit strings i and j. In particular, it follows that:

H⊗n |0n〉 =
1√
2n

∑
j∈{0,1}n

(−1)0·j |j〉 =
1√
2n

∑
j∈{0,1}n

|j〉 ,

meaning that H⊗n |0n〉 is equal to the uniform superposition of all 2n basis
states of n-qubit strings. This is often used at the beginning of algorithms,
to set up the state of the algorithm, such that every possible string j is con-
sidered. It is then up to the algorithm to use interference in a clever way.

We can also construct gates that work on multiple qubits together. These
gates take more than 1 qubit as input, and produce the same number of qubits
as output. We will show two common gates for more than 1 qubit, and we
start with the CNOT gate:

CNOT, controlled-not gate:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The controlled-not gate CNOT is a conditioned bitflip gate: if the first
qubit is |0〉, nothing happens, but if it is |1〉, the second qubit is flipped.
In fact, for every unitary U , there exists a controlled version of it, which
we refer to as a controlled-U gate. For controlled gates it is important to
know which bit is used to check whether U has to be applied, called the
control-bit. The qubit(s) which may be transformed, is called the target-
bit(s). We assume that the first of the two qubits is the control-bit, unless
stated otherwise. Consider the following example of a controlled-not gate.
Let |φ〉 = α |01〉 + β |11〉, and let C be the controlled-not gate. If we apply
C to |φ〉, where the first qubit is the control-bit, this will result in:

C |φ〉 = α(C |01〉) + β(C |11〉) = α |01〉+ β |10〉 .
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The second multiple-qubit gate we want to show is the CCNOT gate:

CCNOT, Toffoli gate:



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The controlled-controlled-not gate CCNOT, also known as the Toffoli gate,
is similar to the controlled-not gate. Instead of two, it takes three qubits as
its input, and flips the third qubit, if and only if, the first two are both |1〉.

Using length-preserving linear operations with real entries implies that
there is an infinite number of possible gates, which in practice can’t all possi-
bly be implemented exactly. To tackle this problem, some sets of gates have
been considered for usage:

1. The set of all 1-qubit unitaries together with the 2-qubit CNOT gate,

2. The set consisting of the controlled-not, Hadamard, and the phase-gate
Rπ/4,

3. The set consisting of the Hadamard and Toffoli gates.

The first set is universal, meaning that any unitary can be built from these
gates, but it still contains an infinite number of gates. The second set is
universal with approximation, meaning that any unitary can be arbitrarily
well approximated by these gates, efficiently, as a result from the Solovay-
Kitaev theorem. The same holds for the third set, if we only consider unitary
matrices that have real-numbered entries. From a theoretical point of view,
we are satisfied knowing that it is possible to approximate the necessary gates
efficiently with only a small set of gates, but we will use any unitary (with
real entries) in algorithms as needed, for simplification.

3.1.3 Quantum parallelism

One of the advantages of quantum computing we want to highlight, is that of
quantum parallelism. Suppose there exists a classical circuit for computing
some function f : {0, 1}n → {0, 1}m, and remember that the NAND-gate
is universal for classical circuits. Since we can simulate a NAND-gate with
quantum gates (using a Toffoli gate, and setting the target-bit to |1〉), any
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classical circuit can be recreated, using qubits and quantum gates. Therefore,
we can build a quantum circuit U that computes f as well, i.e. a mapping
U : |x〉 |0m〉 7→ |x〉 |f(x)〉 , ∀x ∈ {0, 1}n. So far, this can also be done by
the classical circuit, but if |φ〉 is the uniform superposition of all 2n possible
states, U computes f for all those states simultaneously:

U |φ〉 = U

 1√
2n

∑
x∈{0,1}n

|x〉 |0m〉

 =
1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉 .

By itself, however, the resulting state is not very useful: measurement of
the final state would result in collapsing the state into a computed value
for a single random x ∈ {0, 1}n. By combining quantum parallelism with
interference, it becomes possible to get speed-ups over classical computing.

3.2 Quantum algorithms

In this section we explain the quantum algorithms used in this thesis. In par-
ticular, we shall look at Grover’s database search algorithm, and an extension
to it, which takes care of variable search times.

Almost every quantum algorithm deals with queries, which we shall ex-
plain here. Consider an N -bit string input x = (x1, . . . , xN) ∈ {0, 1}N .
Usually, N = 2n, so that the bit xi can be addressed by the n-bit string rep-
resenting an index i. Access to the input x is through a “black-box” interface,
which is modelled as a quantum operation that works on n+ 1 bits:

Ox : |i, b〉 7→ |i, b⊕ xi〉 ,

where ⊕ is addition modulo 2.
Using this quantum operation to access the memory, it is also possible

to do queries which map |i〉 7→ (−1)xi |i〉 by setting the target bit to |−〉 =
H |1〉 = 1√

2
(|0〉 − |1〉):

Ox(|i〉|−〉) =
1√
2
Ox |i, 0〉 −

1√
2
Ox |i, 1〉

=
1√
2
|i, xi〉 −

1√
2
|i, 1− xi〉

= |i〉 1√
2

(|xi〉 − |1− xi〉) = (−1)xi |i〉|−〉 .

This kind of query is often more convenient than the regular query, as we
shall see in Grover’s search algorithm. When we wish to use this kind of
oracle, we will write Ox,± as the unitary for the map |i〉 7→ (−1)xi |i〉.
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3.2.1 Grover’s search algorithm

Consider the following problem. Let x be an N = 2n bit string, i.e. x ∈
{0, 1}N . Our goal is to find an index i such that xi = 1, if there is such an i, or
to output that there isn’t one otherwise. In 1996, Lov Grover [24] invented his
quantum search algorithm, which uses O(

√
N) queries to the memory. This

is optimal up to a constant, since a lower bound on the number of queries
of Ω(

√
N) was proven by Bennett et al. in 1993 [5], interestingly, two years

before Grover’s algorithm was invented. The quadratic speed-up compared to
classical algorithms is not as big as some other quantum algorithms provide,
but because searching is such a basic task in many algorithms, it is widely
applicable.

The idea behind the algorithm is as follows. The solution is going to
be one of the indices, so we take n qubits, and to start, we set them to
the uniform superposition of all possible indices. Then we do the Grover
iteration a number of times, each iteration using interference to increase the
amplitude of those indices at which there is a 1-bit. After a well-chosen
number of Grover iterations, we measure the qubits, collapsing them to a
basis state |i〉, and check whether xi is a 1-bit. If it is a 1-bit, we output i,
otherwise we output that there is no 1-bit in the string x.

Before the actual algorithm and analysis are given, a few definitions are
needed. As described in the idea behind the algorithm, we divide the indices
into two groups, the “good” and the “bad” indices. Similarly, we will name
the basis states good or bad, depending on what kind of index they represent.
Let t be the number of good states, we define three quantum states:

• |U〉 = 1√
2n

∑
i∈{0,1}n |i〉, the uniform superposition of all possible in-

dices,

• |B〉 = 1√
N−t

∑
i:xi=0 |i〉, the superposition of all bad indices,

• |G〉 = 1√
t

∑
i:xi=1 |i〉, the superposition of all good indices.

Lastly, we will use R to denote the unitary transformation that maps every
state |i〉 7→ − |i〉 , i ∈ {0, 1}n \ {0n}, and maps 0n to itself.

Suppose that we know that there are t 1-bits in x (we will deal with this
assumption later on). The algorithm and analysis are then as follows (taken
from [34]):

Algorithm 3.1 (Grover’s Search).

1. Setup the starting state |U〉 = H⊗n |0n〉

2. Repeat the following k = O(
√
N/t) times:
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|B〉

|G〉

|U〉 , |φ〉

θ |B〉

|G〉

|U〉

θ

|φ〉

θ

Figure 3.1: (left) The starting state of the algorithm. (right) The state after
the reflection through |B〉 during the first iteration.

(a) Apply Ox,±, i.e. reflect through |B〉
(b) Apply H⊗nRH⊗n, i.e. reflect through |U〉

3. Measure and check that the resulting i is a solution

To explain that this algorithm is correct, we will first show that Ox,± and
H⊗nRH⊗n are reflections through |B〉 and |U〉, respectively, in the space
spanned by |B〉 and |G〉. A reflection through a vector u is a unitary A
such that Av = v for v = u, and Aw = −w for all w orthogonal to u. The
application of Ox,± is by definition the reflection through |B〉: the phase of
every good state is flipped, while every bad state remains the same. For the
reflection through |U〉, we use the known formula for a reflection through a
subspace V : 2 |V 〉 〈V | − I.3 In our case, this resolves to

2 |U〉 〈U | − I = 2(H⊗n |0〉)(〈0|H⊗n)−H⊗nIH⊗n

= H⊗n(2 |0〉 〈0| − I)H⊗n = H⊗nRH⊗n,

which is precisely the transformation we apply in order to reflect through |U〉.
The following analysis will be geometric in nature and although there

is an equivalent algebraic one, the geometric version is a bit more intuitive
and easier to follow. Before the first iteration, the situation is as in the left
side of Figure 3.1, where |φ〉 is the current state of the algorithm. Since

3Like |·〉, 〈·| is part of the bra-ket notation used in physics, also called Dirac notation.
Both represent vectors, but 〈·| is the conjugate transpose of |·〉, i.e. |v〉 = 〈v|∗.
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|B〉

|G〉

|U〉

θ
θ

|φ〉

3θ

Figure 3.2: The state after the reflection through |U〉 during the first itera-
tion.

|B〉 and |G〉 form a 2-dimensional basis, we can write |U〉 = 1√
N

∑N−1
i=0 |i〉 =

sin(θ) |G〉+cos(θ) |B〉 , for θ = arcsin(
√
t/N). Let us see what happens to |φ〉

during a Grover iteration. After applying Ox,±, |φ〉 has been reflected through
|B〉, and we end up in the situation illustrated in the right side of Figure 3.1.
After the reflection through |U〉, we end up in the situation in which |φ〉 is at
an angle of 3θ with |B〉. After another iteration, |φ〉 will be at an angle of 5θ,
and so on. Every Grover iteration rotates the state of the program towards
the “good” state |G〉, by an angle of 2θ. After k iterations, |φ〉 will have gone
from |U〉 to the state sin((2k+ 1)θ) |G〉+ cos((2k+ 1)θ) |B〉. The probability
of seeing a good state after measuring |phi〉, is Pk = sin2((2k + 1)θ), which
we want to be as close to 1 as possible. If we choose k̃ = π/4θ − 1/2, then
(2k̃ + 1)θ = π/2, which results in a probability of exactly 1, for finding a
good solution. However, π/4θ − 1/2 will usually not be an integer, and so
we have to take the integer closest to k̃. The error probability will still be
small, if t is sufficiently small:

1− Pk = cos2((2k + 1)θ) = cos2((2k̃ + 1)θ + 2(k − k̃)θ)

= cos2(π/2 + 2(k − k̃)θ) = sin2(2(k − k̃)θ) ≤ sin2(θ) =
t

N
,

where we used |k − k̃| ≤ 1/2 in the last inequality.
In the above analysis, we assumed that t, the number of solutions, was

known. This way it was possible to compute θ, and in turn, k: the optimal
number of Grover iterations. If t is not known beforehand, it is not possible to
compute the optimal k, and we have to use systematic guesses. The expected
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number of queries we have to do in this case, is still O(
√
N), as is analysed

by Boyer et al. in [9].

3.2.2 Amplitude amplification

The underlying idea in Grover’s search algorithm of moving the computer’s
state towards the superposition of the good states, can also be applied to
other search-related situations. Suppose we have a function χ : Z → {0, 1}
for which any z ∈ Z is called a solution if χ(z) = 1, and an algorithm to
check whether a given z is a solution, which we write as Oχ. If an algorithm
(classical or quantum) finds a solution with probability p, we would normally
need to do about 1/p runs before we would find a solution. Using amplitude
amplification we can find a solution with only O(

√
1/p) runs of the quantum

algorithm A that simulates the algorithm. Amplitude amplification is a
generalisation of the method used in Grover’s algorithm, and works as follows:

1. Setup the starting state |U〉 = A |0〉

2. Repeat the following O(1/
√
p) times:

(a) Apply Oχ (i.e. reflect through |B〉)
(b) Apply ARA∗ (i.e. reflect through |U〉)

3. Measure and check whether the resulting z is a solution.

As we did in the analysis for Grover’s algorithm, let us check that ARA∗
is the reflection through |U〉 by rewriting the known formula for a reflection
through a subspace:

2 |U〉 〈U | − I = 2(A |0〉)(〈0| A∗)−AIA∗

= A(2 |0〉 〈0| − I)A∗ = ARA∗.

The analysis is analogous to the one done for Grover’s algorithm. In fact,
Grover’s algorithm is a special case of amplitude amplification, where A =
H⊗n is a simple algorithm with success probability p, and Oχ is the query to
the input string.

3.2.3 Quantum search with variable search times

Another result we shall use in this thesis, is that of quantum search with
variable search times by Ambainis [2]. In Grover’s algorithm we made the
assumption that the cost of evaluating xi was the same for all i. The prob-
lem setting in Ambainis’s algorithm is similar to that of Grover’s algorithm,
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although instead of N bits, we have N items, and to evaluate an item xi, i.e.
apply Ox,±, we need ti steps, which is not necessarily the same for all i.

A naive way to solve this problem, would be to use Grover’s search and
to take the worst-case scenario in which each evaluation has maximum cost
tmax = maxi∈{0,1}n ti. This results in an O(

√
Ntmax) step algorithm. In case

the evaluation times ti are known, we can use the quantum algorithm of
Ambainis to reduce this to O(

√
t21 + t22 + · · ·+ t2N) steps. If the ti are not

known, Ambainis’s algorithm has an additional polylogarithmic overhead.
In this thesis we will use Ambainis’s quantum search algorithm to search

through a number of lists. The cost we are interested in in this case will be
the number of quantum queries that have to be made. The situation is as
follows: we have 2k lists of lengths γ1, . . . , γ2k, and evaluating an item in a list
has constant query cost. Using Grover’s algorithm on a list j ∈ {1, . . . , 2k}
will cost O(

√
γj) queries. Hence the cost of evaluating a list j is O(

√
γj),

and when we plug this into Ambainis’s algorithm, we see that the number of

queries to evaluate 2k lists is O
(√∑2k

j=1(
√
γj)2

)
= O

(√∑2k
j=1 γj

)
.
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Chapter 4

Quantum Property Testing

In this chapter, we look at the combination of the two areas discussed in
Chapters 2 and 3: quantum property testing. Quantum property testers,
or quantum testers, are quantum algorithms which satisfy the conditions of
property testers, as defined in Section 2.1. In Section 4.1, we discuss some
general results in quantum property testing, and in Section 4.2 we zoom in
on quantum property testers whose input are graphs.

4.1 General quantum property testing

The notion of quantum property testing, as opposed to classical property
testing, was first defined by Buhrman et al. [11]. Their definition is a modified
version of the classical property testing definition by Goldreich in his survey
[18]: instead of using the original definition of M as a probabilistic oracle
machine, they allow M to be a quantum oracle machine.

Buhrman et al. [11] continued by giving a number of results, showcasing
some of the possibilities and limitations of quantum property testing. Their
first result is an example of the power of property testing: there exists a
property that requires O(1/ε) queries for a quantum tester, for which any
classical tester requires Ω(log n) queries. The example given is that of a
random subset of the Hadamard code, which is an error-correcting code used
to detect and correct errors which occur during transmission of messages.
Let N = 2n. The Hadamard code of a string y ∈ {0, 1}n is an N -bit string x,
defined as xi = y · i mod 2. The Bernstein-Vazirani quantum algorithm [7]
can find y using only 1 query, while classical algorithms need Ω(n) queries.
The algorithm is as follows:
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Algorithm 4.1 (Bernstein-Vazirani algorithm).

1. Start with the state |0n〉.

2. Apply Hadamard gates to every qubit: the resulting state will be

1√
2n

∑
i∈{0,1}n

|i〉 .

3. Do a phase query: the resulting state becomes

1√
2n

∑
i∈{0,1}n

(−1)xi |i〉 =
1√
2n

∑
i∈{0,1}n

(−1)y·i |i〉 .

4. Apply Hadamard gates to all qubits again, and the resulting state will
be |y〉.1

Buhrman et al. construct for a subset A ⊆ {0, 1}n of messages, the prop-
erty PA = {x ∈ {0, 1}N : ∃y ∈ A such that x = h(y)}, which contains all
Hadamard codewords for the strings in A. Using the Bernstein-Vazirani al-
gorithm, they prove that for all A ⊆ {0, 1}n there exists a quantum tester for
PA which uses O(1/ε) queries, and has one-sided error. They also prove that
for most A of size |A| = N/2, a classical tester for PA requires Ω(n) queries,
even if they have two-sided error.

For more information and proofs, see [7, 11, 28].
The second result proven in [11], is that there exist quantum testers

which are exponentially faster than their best classical counterparts. Again,
a quantum decision algorithm with the required separation is used to design a
property. Again, let N = 2n. Consider a function f : {0, 1}n → {0, 1}n, with
the promise that there exists an s ∈ {0, 1}n \ {0n} such that x = y⊕ s if and
only if f(x) = f(y), where y ⊕ s is the bitwise addition modulo 2. Simon’s
problem [33] is to find s. Simon’s algorithm [33] solves this problem with
Θ(n) queries, by using a subroutine which results in an equation s · y = 0,
for some y. The algorithm is as follows:

Algorithm 4.2 (Simon’s algorithm).

1. Repeat the following subroutine until n − 1 linearly independent equa-
tions have been obtained

1Here we have used the fact from Chapter 3 that H⊗n |j〉 = 1√
2n

∑
i∈{0,1}n(−1)j·i |i〉.
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(a) Start with the state |0n〉 |0n〉, and apply Hadamard gates to the first
n qubits, so that we end up with the state 1√

2n

∑
i∈{0,1}n |i〉 |0n〉.

(b) Query f on the first register of n qubits, storing the result in the
second register: 1√

2n

∑
i∈{0,1}n |i〉 |f(i)〉.

(c) Measure the second register, such that the state collapses to
1√
2
(|i〉+ |i⊕ s〉) |f(i)〉, for some i ∈ {0, . . . , 2n − 1}.

(d) Ignore the second register, and apply Hadamard gates to the first
n qubits, obtaining:

1√
2

(
H⊗n |i〉+H⊗n |i⊕ s〉

)
=

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j |j〉+
∑

j∈{0,1}n
(−1)(i⊕s)·j |j〉

 =

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j(1 + (−1)s·j) |j〉

 .

(e) Measure the n qubits to obtain y, resulting in a linear equation:
y · s = 0.

2. Solve, for s, the system of n−1 linearly independent equations obtained
from step 1, using Gaussian elimination.

The reason why the resulting y at the end of the subroutine satisfies s ·y = 0,
is because the only basis states |j〉 with a non-zero amplitude, are those for
which s·j = 0. Brassard and Høyer [10] created a modified version of Simon’s
algorithm, which finds an equation that is linearly independent from previous
equations found for each run of the subroutine. In turn, Buhrman et al. use
the algorithm to give a tester which uses O(n log n) queries, for the property

L = {f : {0, 1}n → {0, 1}n | ∃s ∈ {0, 1}n\{0n} ∀x ∈ {0, 1}n f(x) = f(x⊕s)}.

They also prove that any classical tester for L uses Ω(
√
N) queries, which

demonstrates the exponential separation in query complexity. For more in-
formation and proofs, see [33, 10, 11, 28].

The last result from [11] we mention here, is that there exist properties for
which there does not exist an efficient quantum tester. In fact, Buhrman et
al. prove that most properties containing 2n/20 elements from {0, 1}n require
Ω(n) queries.
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After these results from Buhrman et al. [11], a lot of research has been
done regarding quantum testers. For example, significant results have been
achieved in the areas of juntas, linearity of Boolean functions, group theo-
retic properties, and more. Note that the testers discussed here only consider
classical properties. There also exist quantum testers for quantum proper-
ties and classical testers for quantum properties. For more information on
quantum property testing, see the survey by Montanaro and de Wolf [28].

4.2 Quantum property testing on graphs

Compared to classical graph property testing, relatively little research has
been done on quantum property testing on graphs. Only a small number of
papers on quantum property testing concern graphs, each of which we will
discuss. In the following, let the input graph G = (V,E).

In the work of Chakraborty et al. [12], the problem of graph isomorphism
is studied. The authors take the classical tester for graph isomorphism de-
veloped by Fischer and Matsliah [16] as their starting point. The model used
for the classical tester, is that of the dense graph model: graphs are repre-
sented by their adjacency matrices. The graphs can be accessed by querying
a single entry at a time, and the goal is to determine whether two graphs G
and H are isomorphic, or ε-far from being isomorphic, meaning that in order
for them to be isomorphic, one would need to modify at least an ε-fraction
of the entries in their adjacency matrices. In their work [16], Fischer and
Matsliah considered two cases:

• unknown-unknown case. Both G and H are unknown, and they
can only be accessed by querying their adjacency matrices.

• known-unknown case. The graph H is known (given in advance
to the tester), and the graph G is unknown (can only be accessed by
querying its adjacency matrix).

For the known-unknown case they give nearly tight bounds of Θ̃(
√
|V |) on

the query complexity. For the unknown-unknown case they give a classi-
cal tester that needs Õ(|V |5/4) queries, and prove a lower bound of Ω(|V |).
Chakraborty et al. [12] focus on the bottleneck of the classical tester: the
subroutine that checks how much two probability distributions are alike.
By using quantum queries, they manage to create quantum testers which
have query complexity Õ(|V |1/3) in the known-unknown case, and between
Ω(|V |1/3) and Õ(|V |7/6) in the unknown-unknown case.

Recently, Harrow and Montanaro [25] discovered a way to, given a state |ψ〉
and a set of n measurements, determine with high probability whether one
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of the measurements would accept |ψ〉. Since measurements possibly modify
the state, this is not simply applying the measurements one after another.
In their paper [25], they mention a number of applications for this technique,
one of them being the testing of graph isomorphism. Using the new tech-
nique, the query complexity of testing graph isomorphism has been reduced
to O((|V | log |V |)/ε).

Ambainis, Childs and Liu [3] provide quantum speedups for the testers
of Bipartiteness and Expander2 [3] in the bounded-degree model. The clas-
sical testers for Bipartiteness [22] and Expander [23, 14, 26, 29] use random
walks to construct two sets of vertices. These sets are then checked for com-
mon vertices, also called collisions. The query complexity for these classical
testers is Õ(

√
N), where N is the number of vertices in the graph. This

is almost optimal, as both problems have query complexity lower bounds
of Ω(

√
N). For more detail on the Bipartiteness tester, see Section 2.2.2.

Ambainis et al. [3] use the element distinctness quantum algorithm, also by
Ambainis [4], which given a set of elements checks whether all elements in the
set are distinct. As a result, they speed-up the check for collisions and end
up with quantum algorithms for testing both Bipartiteness and Expansion
with query complexities of Õ(N1/3), which are polynomially better than the
classical testers’ lower bounds. They also provide a lower bound on the query
complexity of a quantum tester for Expansion of Ω(N1/4), proving that there
is no exponential speedup possible for that property. They have, however,
been unable to prove a lower bound for Bipartiteness.

2A graph G is an α-expander if for every U ⊆ V with |U | ≤ |V |/2, we have |∂(U)| ≥
α|U |, where ∂(U) is the set of vertices in V \ U adjacent to at least one vertex in U .
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Chapter 5

A Quantum Tester for
Eulerianity

In this chapter we look at the results obtained from our research on finding
a quantum property tester for Eulerianity that has lower query complexity
than is classically possible.

In Section 5.1 we focus on explaining the Eulerianity property and the
model that is used, as well as present some lemma’s about graphs that are
ε-far from Eulerianity. The best classical tester known for Eulerianity has
query complexity Õ(

√
n/ε3) with a lower bound of Ω(

√
n/ε) where n is the

number of vertices in the graph, and is discussed in Section 5.2. In Section
5.3 we show that there exists a quantum tester for Eulerianity which has
quantum query complexity O(n1/3/

√
ε + log(1/(εd))/ε2) where d is half of

the average degree vertex in the input graph.

5.1 Eulerianity

Eulerianity is a graph property: a graph is called Eulerian, if it contains a
cycle that traverses every edge in the graph exactly once. The definition
was first discussed in 1736, when Euler was solving the Seven Bridges of
Königsberg problem. The problem statement asked whether it was possible
to take a walk through the city of Königsberg, on which you would cross
every bridge in the city exactly once and return to the starting point. Euler
proved that this was impossible: he modelled the city as a graph, where
the city areas were vertices and the bridges were represented by edges, and
showed that for a graph to be Eulerian, every vertex needs to have even
degree. He also hypothesised that every (undirected) connected graph of
which all vertices had even degree, were Eulerian, which was later proven by
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Carl Hierholzer in 1873. In the case of directed graphs, there is a theorem
that says that a graph is Eulerian if and only if every vertex has equal in and
outdegree, and all vertices with non-zero degree belong to a single connected
component.

The model we use for the testers is the general graph model with directed
graphs without parallel edges. The distance measure depends on the number
of edges in the graph, meaning that a graph with m edges is ε-far from being
Eulerian, if at least εm edge modifications (adding/removing an edge) are
needed to make G Eulerian. The queries that the tester may use, are:

• vertex-pair queries: for u, v ∈ V check whether (u, v) ∈ E,

• neighbour queries: for v ∈ V, i ∈ [n] return the i-th neighbour of v,

• degree queries: for v ∈ V , return the in or outdegree of v.

Each of these queries has cost 1.
We shall now prove some properties from [31] that we will need later on.

In the following, let G = (V,E) be the input graph, and let |V | = n and
|E| = m. For any v ∈ V , we write d+(v) for the indegree of v, and d−(v) for
its outdegree, and let d = m

n
be the average degree of the graph G. We shall

also write components, or connected components, for sets of vertices that are
connected in the underlying undirected graph GU .1

When a graph is ε-far from being Eulerian, we know that following lemma
from [31]:

Lemma 5.1. Let G be a directed graph with m edges that is ε-far from being
Eulerian. Then at least one of the following holds:

• G has more than ε
8
m biased edges.

• The number of connected components in G is greater than ε
8
m.

Proof. We proceed with proof by contradiction. Assume that G is ε-far
from being Eulerian and has at most ε

8
m biased edges and has at most ε

8
m

undirected connected components. We shall show that it is possible to make
G Eulerian with fewer than εm edge modifications. First, for every vertex
v we will make the indegree of v equal to its outdegree, and we will refer
to this new graph as G′. After creating G′, we will connect the underlying
undirected graph of G′ and conclude that the newly formed graph is Eulerian.

1The underlying directed graph GU of a directed graph G, is the graph G with the
directions on its edges dropped. Note that GU can have parallel edges, unlike G itself, if
there are pairs of vertices that have edges in both directions.
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Case

1.

2.

3.

3.a

3.b

Before After

(u, v) 6∈ E u v (u, v) ∈ Eu v

(v, u) ∈ E u v (v, u) 6∈ Eu v

(u, v) ∈ E, (v, u) 6∈ E and:

(v, w) ∈ E
and

(u,w) 6∈ E

u v

w

(v, w) 6∈ E
and

(u,w) ∈ E

u v

w

(w, u) ∈ E
and

(w, v) 6∈ E

u v

w

(w, u) 6∈ E
and

(w, v) ∈ E

u v

w

Figure 5.1: An illustration for the process of inducing degree equality.

To fix the degrees of the vertices, note that if there is a vertex u ∈ V with
d+(u) > d−(u), there must be a vertex v ∈ V with d−(v) > d+(v). Consider
such u, v and their possible cases (for an illustration, see Figure 5.1):

1. (u, v) 6∈ E, we add the edge (u, v).

2. (v, u) ∈ E, we remove the edge (v, u).

3. (u, v) ∈ E and (v, u) 6∈ E. We consider two subcases.

(a) There exists a vertex a such that (v, a) ∈ E (so that necessarily
a 6= u) and (u, a) 6∈ E, then we remove (v, a) and add (u, a).

(b) There exists a vertex a such that (a, u) ∈ E (so that necessarily
a 6= v) and (a, v) 6∈ E, then we remove the edge (a, u) and add
the edge (a, v).

It is clear that the conditions for the three cases together cover all possibil-
ities. It remains to show that necessarily at least one of the two subconditions
in case 3 holds. Suppose, contrary to the claim, that neither of the two con-
ditions holds. Since for every a such that (v, a) ∈ E, we have that (u, a) ∈ E
and (u, v) ∈ E, we get that d−(u) > d−(v). With the same reasoning, because

36



we have that for every a such that (a, u) ∈ E we have that (a, v) ∈ E, and
(u, v) ∈ E, we get that d+(v) > d+(u). But since d+(u) > d−(u), this implies
that d+(v) > d−(v), which contradicts our assumption that d−(v) > d+(v).

By our assumption that G has at most ε
8
m biased edges, we have that

(1/2)
∑

v∈V :v is biased

|d+(v) + d−(v)| = # biased edges ≤ ε

8
m.

Using the method described above, we reduce this sum in steps of two, using
at most 2 edge modifications per step. When all vertices have equal indegree
and outdegree, then

∑
v∈V |d+(v)− d−(v)| = 0. Since∑

v∈V

|d+(v)− d−(v)| =
∑

v∈V : v is biased

|d+(v)− d−(v)|

≤
∑

v∈V : v is biased

|d+(v) + d−(v)| ≤ ε

4
m,

the total cost of reducing it to 0 is at most ε
4
m edge modifications. Let the

resulting graph be denoted by G′.
We now proceed to connect the undirected components. By fixing the

degree inequalities, we removed at most ε
8
m edges, meaning that in the worst

case, the number of components has grown to at most ε
4
m. From each of

these components, we select a representative vertex, and we add edges to
make a directed cycle over the representative vertices. Now the components
are connected, and we used at most ε

4
m edge modifications to do so. Note

that the in and outdegrees of the representative vertices remain equal, but
are increased by 1.

The resulting graph is now Eulerian, and since we used at most ε
4
m+ ε

4
m =

εm
2

edge modifications, it follows that G is ε
2
-close to being Eulerian, which

contradicts our assumption that G was ε-far from being Eulerian.

The following claim is also from [31].

Claim 5.1. If a graph G has more than ε
8
m undirected connected compo-

nents, then G has at least ε
16
m undirected connected components each con-

taining fewer than 16
εd

vertices.

Proof. The claim follows from a simple counting argument: if G has fewer
than ε

16
m components each of which contains fewer than 16

εd
vertices, it follows

that G has more than ε
16
m components with at least 16

εd
vertices, meaning

that G has more than ε
16
m· 16

εd
= n vertices, which contradicts the assumption

that G contains n vertices.
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5.2 Classical tester for Eulerianity

The following classical algorithm and analysis are due to Orenstein and
Ron [31]. Their algorithm has query complexity Õ(

√
n/ε3/2), and they prove

a lower bound of Ω(
√
n/ε) queries. The model they use is as described above.

As stated before, there is a theorem that tells us that in order to prove
that a directed graph G is Eulerian, it is sufficient to show that its underlying
undirected graph GU (the same graph as G, but with the directions of the
edges dropped) is connected, and every vertex has equal in and outdegrees.
Note that this allows isolated vertices in G with no incoming or outgoing
edges. The algorithm from [31] uses these criteria and therefore has two
phases: the first phase tests if the in and outdegrees of some of the vertices
are equal, while the second phase looks for a disconnected component. In
their paper, Orenstein and Ron [31] define biased vertices as vertices whose
indegree does not equal their outdegree, and biased edges as edges of which
at least one vertex is biased.

First, we will state a necessary lemma for the algorithm, taken from [27]:

Lemma 5.2. There exists a procedure Sample-Edges-almost-Uniformly-in-
G that uses Õ(

√
n/δ) degree and neighbour queries in G and for which the

following holds: For all but (δ/4)m of the edges e in G, the probability that
the procedure outputs e is at least 1/(64m). Furthermore, there exists a subset
U0 ⊂ V (G), |U0| ≤ (δn/2), such that for all edges (u, v) ∈ E that are output
with probability less than 1/(64m), we have u, v ∈ U0.

This procedure Sample-Edges-Almost-Uniformly-in-G is used in the al-
gorithm for testing Eulerianity, and the proof of Lemma 5.2 can be found
in [27]. Let G = (V,E) be the directed input graph, |V | = n, |E| = m, and
d = m

n
the average degree. The algorithm is then as follows:

Algorithm 5.1 (Classical Eulerianity tester [31] (input: G, ε and d)).

Phase 1: Checking for biased vertices

1. Sample s = 2048
ε

edges by running Sample-Edges-Almost-Uniformly-in-
G with the parameter δ set to ε/4.

2. For each sampled edge check if one of its endpoints is a biased vertex
(by performing degree queries), implying that it is a biased edge.

3. If a biased edge is found, then reject.
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Phase 2: Checking connectivity

4. For i = 1 to ` = log(16/εd) do:

(a) Uniformly and independently select si = 64 log(16/εd)
2iεd

vertices:

(b) From each sampled vertex perform a Breadth-First Search (BFS)
on the underlying undirected graph GU . Stop the BFS when 2i ver-
tices have been reached or it is impossible to continue the search.

5. If any of the above searches stopped before reaching 2i vertices, then
reject.

6. If no step caused rejection, accept.

The following theorem is the result from Orenstein and Ron [31] on testing
Eulerianity in directed graphs for which we sketch its proof.

Theorem 5.1. Algorithm 5.1 is a property tester for Eulerianity in the
model described in Section 5.1.

Proof. Let G be the input graph. The algorithm clearly accepts any G that
is Eulerian, so it remains to show that every G that is ε-far from being
Eulerian, is rejected with probability at least 2/3. For the remainder of this
proof, assume that G is ε-far from being Eulerian. It follows from Lemma 5.1
that G has more than ε

8
m biased edges, or G has more than ε

8
m connected

components.
In the first case, there are at least ε

8
m biased edges, and phase 1 of the

algorithm will reject with probability at least 2/3. By sampling 2048
ε

edges
“almost uniformly”, using the procedure from Lemma 5.2 with the parameter
δ set to ε

4
, with high constant probability, a biased edge will be selected with

probability 1− (1− (1/64) · (ε/16))2048/ε > 2/3, which will lead to rejection
of G.

In the second case, there are at least ε
8
m components, and phase 2 will

reject with probability at least 2/3. Let Bi be the set of components which
contain at least 2i−1 and at most 2i − 1 vertices. By Claim 5.1, there are
at least ε

16
m components which contain fewer than 16

εd
vertices. Let ` =

log(16/(εd)), then
∑`

i=1 |Bi| ≥ ε
16
m. Note that it is unlikely that ` is an

integer, and although it is not a big problem in the analysis, we will assume
that ` is an integer for simplicity. Therefore, there must exist a j ∈ [`], such
that |Bj| ≥ εm

16`
. The probability that a uniformly random vertex v ∈ V

belongs to a component in Bj is:∑
C∈Bj

|C|
n

≥ |Bj| · 2j−1

n
≥ 2j−1 · εm

16`n
=

2jεd

32`
.
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In phase 2 of the algorithm, for i ∈ [`], si = 64`
2iεd

vertices are picked uniformly
at random. For i = j, the probability that none of those sj vertices lies in⋃
C∈Bj

C, is at most:(
1− 2jεd

32`

)sj
=

(
1− 2

sj

)sj
≤ e−2 < 1/3.

Therefore, the probability of sampling one of the vertices that lie in a compo-
nent in Bj is at least 1−e−2 > 2/3. Let v be the vertex that is sampled from
a component in Bj. The BFS will start from v and search that component
until 2j vertices have been reached or until it can’t reach any vertices that
haven’t been reached during the BFS. Since the component in which v lies
contains at most 2j − 1 vertices, the BFS will get stuck and this will cause
Phase 2 to reject G.

Now we compute the query complexity of Algorithm 5.1. Phase 1 uses
the procedure Sample-Edges-Almost-Uniformly from Lemma 5.2 with δ = ε

4

which uses Õ(
√
n/δ) = Õ(

√
n/ε) queries. Since that procedure is called

2048
ε

times, phase 1 uses Õ(
√
n/ε3/2) queries. The query complexity of phase

2 is bounded by the sum over the possible values of `, of the number of
vertices sampled times the maximum number of vertices to look for, times
the maximum degree of every vertex, i.e.

∑̀
i=1

si · 2i · 2i =

(
64 log(16/εd)

εd

)
·
∑̀
i=1

2i = O

(
log(1/εd)2

ε2

)
.

The total query complexity is therefore

Õ

(√
n

ε3
+

log(1/εd)2

ε2

)
.2

5.3 Quantum tester for Eulerianity

Our main result is a quantum tester for Eulerianity with query complexity
O(n1/3/

√
ε + log(1/(εd))/ε2), which is lower than the classical lower bound

in terms of the dependency on n. The input and the model are the same as
for the classical tester.

The quantum tester is given below:

2The calculated query complexity is not the upper bound of Õ(
√
n/ε3/2) that Orenstein

and Ron [31] claim. However, we were unsuccessful in reproducing their analysis, so we
work with the slightly higher upper bound.
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Algorithm 5.2 (Quantum Eulerianity tester (input: G, ε and d = m
n

)).

Phase 1: Checking for biased vertices

1. If d > n1/3, apply amplitude amplification for O(n1/3/
√
ε) iterations to

the following procedure:

• Pick (u, v) ∈ V × V uniformly at random.

• Check if (u, v) is biased, by querying and comparing the in and out
degrees of both u and v.

2. If a biased edge is found, reject.

3. If d ≤ n1/3, do the following:

• Apply amplitude amplification for O(n1/3) iterations to the follow-
ing procedure:

– Pick v ∈ V uniformly at random.

– Check whether v is biased by querying and comparing its in
and outdegree.

• If a biased vertex is found, reject.

• Choose k = 16n1/3

ε
vertices uniformly at random.

• Use Ambainis’ algorithm from Section 3.2.3 to search for a biased
vertex in both the in and outdegree adjacency lists of the k vertices.

• If a biased vertex is found, reject.

Phase 2: Checking connectivity

4. Do the same as phase 2 in Algorithm 5.1.

The correctness of Algorithm 5.2 is captured in the following theorem:

Theorem 5.2. Algorithm 5.2 is a quantum property tester for Eulerianity
in the general model.

Proof. Since the algorithm only looks for witnesses to the claim that the
input graph G is not Eulerian, it is clear that any graph that is Eulerian
will be accepted. It remains to show that if G is ε-far from being Eulerian,
Algorithm 5.2 rejects G with probability at least 2/3.

For the following, assume that G is ε-far from being Eulerian. From
Lemma 5.1 it follows that either G has more than ε

8
m biased edges, or G has

more than ε
8
m components. Since phase 2 of Algorithm 5.2 is the same as
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that of the classical tester, Algorithm 5.1, we know from Theorem 5.1 that
in the case that G has more than ε

8
m components, the quantum tester will

reject G with probability at least 2/3.
We proceed to prove that, assuming G has more than ε

8
m biased edges,

the quantum tester rejects G with probability at least 2/3. Let β be the
number of biased vertices in G. We consider the following cases:

1. d > n1/3 ,

2. d ≤ n1/3 and β ≥ n1/3,

3. d ≤ n1/3 and β < n1/3.

Case 1: d > n1/3.
In this case, the probability that a random vertex pair is an edge in G is rel-
atively high, and a reasonable portion of those edges is biased. The quantum
tester picks a random pair of vertices (u, v) ∈ V ×V , and uses amplitude am-
plification to amplify the states which correspond to biased edges. The prob-
ability that (u, v) is a biased edge is at least p1 = εm

8n2 = εd
8n
> εn1/3

8n
= ε

8n2/3 .
Using amplitude amplification, we find a biased edge with high probability

after O(
√

1/p1) = O(
√

8n2/3

ε
) = O(n

1/3
√
ε

) iterations.

Case 2: d ≤ n1/3 and β ≥ n1/3.
In this case, the number of biased vertices β is relatively high, and we have a
decent probability to pick a biased vertex when picking uniformly at random.
The quantum tester picks a vertex v ∈ V uniformly at random, and uses
amplitude amplification to boost the states corresponding to biased vertices.
The probability that v is a biased vertex is at least p2 = β

n
≥ 1

n2/3 . Using
amplitude amplification, we find a biased vertex with high probability, after
O(
√

1/p2) = O(n1/3) iterations.
Case 3: d ≤ n1/3 and β < n1/3.

In this case, the graph is pretty sparse and the number of biased vertices is
low. However, since Lemma 5.1 still gives us that there must be at least ε

8
m

biased edges, it must be the case that some biased vertices have high degrees,
and are therefore connected to many vertices. The degrees of vertices are
low on average, and so it is feasible to search through their adjacency lists.
Note that if VB ⊆ V is the set of biased vertices in V , then by Lemma 5.1:
1
2

∑
v∈VB d

−(v) + d+(v) > εm
8

. Since there are at most n1/3 biased vertices,
it follows that there is a u ∈ VB such that d−(u) + d+(u) > εm

4β
> εm

4n1/3 ≥
εn

4n1/3 = εn2/3

4
, where we have used that m ≥ n, since otherwise we know

from the start that the graph does not contain a cycle. This implies that
at least εn2/3

8
different vertices are connected to u. Choosing k = 16n1/3

ε
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vertices uniformly at random, the probability that none of those k vertices
is connected to u, is at most (1 − ε

8n1/3 )k = (1 − 2
k
)k ≤ e−2 < 1/3. Using

the quantum search with variable search times from Section 3.2.3 we find a
biased vertex in the adjacency lists of the k vertices with probability at least
2/3.

The three cases together cover all possibilities, and so phase 1 rejects G
with probability at least 2/3 if G is ε-far from Eulerianity.

The query complexity of Phase 1 is as follows. Case 1 uses a constant
number of queries in each iteration of the amplitude amplification, to check

whether a state is a biased edge. This results in O(
√

n2/3

ε
) queries for

this case. Case 2 also uses a constant number of queries in each iteration of
the amplitude amplification, but in this case to check whether a state is a
biased vertex. This results in O(

√
n2/3) queries.

Case 3 requires a bit more analysis. Note that to evaluate an adjacency
list entry, the algorithm uses a constant number of queries to check whether
that vertex is biased or not, by querying and comparing its in and outdegree.
The k vertices we picked can be connected to a biased vertex with an incoming
or outgoing edge, so we have to check both those lists. As in Section 3.2.3,
we can search the 2k lists of lengths γ1, γ2, . . . , γ2k with Ambainis’ quantum

search algorithm, using O(
√∑2k

j=1 γj) queries. We know that the average

length of the adjacency lists is d/2 = m
2n

, since every vertex is connected to d
other vertices on average. If we view the sum of the lengths γi as a random
variable X, we can use Markov’s inequality3 to upper bound the sum of the
lengths, and therefore the number of queries the algorithm needs to perform.
The expected value is

E(X) = E

(
2k∑
j=1

γj

)
=

2k∑
j=1

E(γj) =
2k∑
j=1

d/2 = kd,

and so it follows that,

Pr[X ≥ 100kd] ≤ kd/(100kd) = 1/100.

Putting it all together, we let the algorithm use at most
√∑2k

i=1 γi <
√

100kd =
√

10016n1/3d
ε
≤ O(

√
n2/3

ε
) queries in Phase 1. There is a 1/100

probability that Phase 1 is not finished after that many queries, and in that
case we stop Phase 1 and proceed as if no biased vertex has been found.

3Markov’s inequality: If X is a non-negative random variable, then Pr[X ≥ a] ≤
E(X)/a, for every a > 0.
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The query complexity for Phase 2 is the same as we saw in Section 5.2:

O
(

log(16/(εd))
ε2

)
. The total complexity therefore is

O

(
2

√
n2/3

ε
+
√
n2/3 +

log(16/(εd))

ε2

)
= O

(
n1/3

√
ε

+
log(16/(εd))

ε2

)
.

We see that our quantum tester has only a factor n1/3 in its query complexity,
whereas the lower bound for classical testers contains a factor

√
n. This

means that our quantum tester has a polynomial speed-up compared to the
best known, or possible, classical tester for Eulerianity.
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Chapter 6

Future Work

As mentioned in Chapter 4, little work has been done on quantum property
testing on graphs as of yet, and so there is a lot of opportunity for future
work to be done there. Below we list a number of subjects which might be
of interest for further research.

• A better tester for Eulerianity? In this thesis we found a quantum
tester for Eulerianity, but we do not know if it is optimal in terms of
query complexity. Phase 1 of the quantum tester may be improved
in order to get an even better (i.e. smaller) dependence on n. Phase 2
might also benefit from quantum algorithms, such as quantum BFS [17],
but could possibly already have query complexity O(1

ε
) if the analysis

from Orenstein and Ron [31] is correct.

• A quantum lower bound for Eulerianity. This thesis has focused
on finding a quantum tester for Eulerianity, with an upper bound on
the query complexity that was below the classical lower bound from
[31], in terms of the dependence on n. In this we succeeded, but it is
possible that there exists a quantum tester with an even lower query
complexity. Finding a quantum lower bound, however, is difficult, and
might be worthy of research on its own. Ambainis et al. [3] found
quantum testers for both Bipartiteness and Expander in the bounded-
degree model, but could only give a lower bound on the complexity
for the Expander property. This demonstrates that finding a quantum
lower bound is not straightforward, but the techniques used in [3] might
be useful in the case of Eulerianity.

• Bipartiteness in the general graph model. Ambainis et al. [3]
found a quantum tester for Bipartiteness in the bounded-degree model.
Their algorithm is based on the ideas of the classical algorithm, for
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which they managed to find significant speed-ups. Kaufman et al. give
a classical tester for Bipartiteness in the general graph model, and a
lower bound on the query complexity (see Section 2.2.3). The classical
tester transforms the input graph in such a way, that it can then use
the solutions from the bounded-degree and dense models to test for
Bipartiteness. Using the insights gained from Ambainis et al. and this
thesis, it might be possible to find a quantum tester with a query
complexity below the classical lower bound of Ω(min(

√
n, n2/m)).

• Relation between quantum uni- and bidirectional graph mod-
els. Czumaj et al. recently published their result which demonstrates
a relationship between testing in the uni- and bidirectional bounded-
degree graph model. Among their results they claim that if a prop-
erty can be tested with constant query complexity in the bidirectional
model, it can be tested with sub-linear query complexity in the unidirec-
tional model. They also prove that the same does not necessarily hold
for digraphs with an arbitrary maximum degree: there exist digraph
properties which can be tested with a constant number of queries in
the bidirectional model, but require an almost linear number of queries
in the unidirectional model. It would be interesting to see if the first
claim can be improved upon in the quantum setting, and if the second
claim still holds in the quantum setting.

• Find quantum testers for more graph properties. As mentioned,
not a lot of papers exist on the topic of quantum graph property testing.
A good start would be to look for quantum testers which perform better
than is possible in the classical setting. This may eventually lead to
more general insights in this field.
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