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Abstract

The usage of Machine Learning in medicine is a new and a very fast

moving technology which is getting more and more attention by information

technology companies, doctors, patients and scientists. This technology holds

promise for several aspects of medicine, including improving diagnosis of

disease, early detection of disease and personalized health care.

Currently, experiments with real-world clinical data are necessary

to investigate how models based on different statistical analysis methods

perform in clinical practice. Previous research has observed and measured the

influence of various predictors on survival after a cardiac arrest event, both

in the form of biomarkers present in the results of blood analysis and from

other types of patient information. This master’s thesis project continues

this study, trying to find better models using different advanced modeling

methods for the prediction of several factors related to disease outcome using

a large and comperhensive dataset of clinical data.



List of Tables

1 List and Statistics for the Numeric variables . . . . . . . . . . 53

2 Baseline Models Concordance Indexes and AUC . . . . . . . . 55

3 Labdata Models Concordance Indexes and AUC . . . . . . . . 56

4 Full Models Concordance Indexes . . . . . . . . . . . . . . . . 57

1



List of Figures

1 Example of a Kaplan-Meier Curve . . . . . . . . . . . . . . . . 16

2 ROC Chart : Area Under Curve of Area Under Curve of Base-

line Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 ROC Chart : Area Under Curve of Baseline Long . . . . . . . 59

4 ROC Chart : Area Under Curve of Baseline Reduced . . . . . 59

5 ROC Chart : Area Under Curve of Baseline Reduced Long . . 60

6 ROC Chart : Area Under Curve of Baseline Reduced Paired

Squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 ROC Chart : Area Under Curve of Baseline Reduced Paired

Squared Long . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 ROC Chart : Area Under Curve of LabData . . . . . . . . . . 62

9 ROC Chart : Area Under Curve of Labdata Long . . . . . . . 62

10 ROC Chart : Area Under Curve of Labdata Reduced . . . . . 63

11 ROC Chart : Area Under Curve of Labdata Reduced Long . . 63

12 ROC Chart : Area Under Curve of Labdata Paired and Squared 64

13 ROC Chart : Area Under Curve of Labdata Paired and Squared

Long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

14 ROC Chart : Area Under Curve of Full model . . . . . . . . . 65

15 ROC Chart : Area Under Curve of Full model Long . . . . . . 66

16 ROC Chart : Area Under Curve of Reduced (from short model) 66

2



17 ROC Chart : Area Under Curve of Reduced (from short model)

Long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

18 ROC Chart : Area Under Curve of Reduced (from long model) 67

19 ROC Chart : Area Under Curve of Reduced (from long model)

Long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

20 ROC Chart : Area Under Curve of Paired . . . . . . . . . . . 68

21 ROC Chart : Area Under Curve of Paired Long . . . . . . . . 69

22 ROC Chart : Area Under Curve of Squared . . . . . . . . . . 69

23 ROC Chart : Area Under Curve of Squared Long . . . . . . . 70

24 ROC Chart : Area Under Curve of Paired and Squared . . . 70

25 ROC Chart : Area Under Curve of Area Under Curve of

Paired and Squared Long . . . . . . . . . . . . . . . . . . . . . 71

26 Model After regularization started from the short dataset, im-

plemented on the short dateset. . . . . . . . . . . . . . . . . . 72

27 Model After regularization started from the long dataset, after

Stepwise Regression for interaction and squared terms . . . . . 73

28 Model After regularization started from the long dataset, after

Stepwise Regression for interaction and squared terms . . . . . 74

3



1 Introduction

Machine Learning is a new and promising subfield of Algorithmic Data Anal-

ysis that is rapidly progressiong over the last years. Due to the available stor-

age space, processing power and the rapid increase of network connectivity,

there have been huge advancements in data collection, sharing and process-

ing technologies. If wae also take into account the recent large increase of

the volume of data generated from almost all sources, it is possible to imple-

ment increasingly complex machine learning methods, something impossible

with past technology. Consequently, the field has started to accomplish im-

pressive results in real-world scenarios. Among other sectors, it has shown

great promise in clinical data analytics. However, the field is still very young

and in order to evaluate how different models perform in scenarios of clinical

practice, experiments with clinical data need to be performed.

The aim of this thesis is to compare the performance of several dif-

ferent analysis methods and machine learning techniques for survival analysis

based on clinical data. It will test different approaches of tackling the usual

issues that may occur in an analysis task like that.

For this purpose, clinical data from heart disease patients treated in

the University Medical Center of Utrecht will be used. The data is taken from

UPOD (Utrecht Patient Oriented Database). Over the past years, the UPOD

group has published several scientific papers in this field. In these papers,

conventional epidemiological methods like logistic regression analysis were

used to assess associations between hematological parameters and outcome.

In these approaches first order models were studied.

The UPOD database contains, on a patient level, time-stamped

data on laboratory test results, ICD (International Classification of Diseases)-

coded diagnoses, medication orders and medical procedures for all patients

treated at the UMC Utrecht. In addition to a database comprising data from

the Laboratory Information System, UPOD contains a worldwide unique
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database with hematology data on automated blood cell analyses performed

with Abbott Cell-Dyn Sapphire automated blood cell analyzers used at UMC

Utrecht (around 400 unique patients per day).

In the current project, special attention will be paid to the explo-

ration of this hematology data for the prediction of length of survival in a

cohort of patients. Previous research has observed and measured the influ-

ence of various predictors, both in the form of biomarkers present in the

results of blood analysis and from other types of patient information. The

size of the database and especially the depth of information present in the

hematology data provides for a unique opportunity to add to the current re-

search by developing new predictive models, identifying new biomarkers and

comparing the performance of different analysis techniques.

The Current research interest of the UPOD group concerns the

prediction of several health outcomes including sepsis, myocardial infarction,

fracture healing after severe trauma, survival at admission at the emergency

department and outcome of cardiac surgery, based on hematologic parame-

ters. Another related issue is the mortality of patients that have been diag-

nosed with outcomes of this type. Together with the heamatological informa-

tion, the cohorts that the group studies contain information about diseases,

outcomes of tests and medication provided. The purpose of the thesis is to

use advanced data analytic techniques to explore the hematological data to

the full potential, while utilizing any other information that may be of value.

One characteristic of the questions that are answered during re-

search on this kind of data is that they apply to subsets of patients. There-

fore it is hard to find a large number of homogenous cases from the same

hospital that can be examined. If the sample size is small then there is a risk

of increasing variation. The most probable sources of variation are proven to

be the non-heamatological and environment variables like age, sex and basic

clinical measurements. For variables like this, there has been research based

on datasets that are orders of magnitude larger than this, so they could be

possibly taken into account in our models by using them to calculate prior
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probabilities.

Generally, an attempt will be made to combine different parts of the

database that have not been used together in the past, using techniques not

used before on those data, in order to create more complex models than the

ones in the past research. Other than finding relevant biomarkers, another

goal is to test the different techniques mentioned above in order to figure out

which one has the best performance on the specific dataset and provide a

roadmap for future research.

.

1.1 Dataset

The dataset was built from 2 different sources. The first one was taken from a

cohort in the Utrecht Coronary Biobank (UCORBIO), with patients enrolled

from October 2010 until April 2013.

Patients are followed-up for five years, of which three have passed

at the moment of writing. The vital status of patients was collected from the

hospital administration system, which is strictly updated by research staff.

The cause of death was obtained from medical reports from our or other

hospitals or institutions. If a patient died at home, the general practitioner

involved in the case was consulted to obtain further information on the cause

of death.

The variables taken into account for each patient include personal

information (like sex, age, weight), information about previous diseases and

pre-existing conditions and the data from the Cell-Dyn automated blood

analysis machine.

All patients undergoing coronary angiography at the University

Medical Centre of Utrecht are asked to participate in this biobank. Hence,

this cohort comprises a wide spectrum of heart disease patients and controls.
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The study has been approved by the medical ethics committee of the Uni-

versity Medical Centre Utrecht and all patients provided written informed

consent.

From the full dataset, several variable selection steps were taken,

both manual and algorithm-based in order to deduce which variables are the

relevant ones and discard all the others. After descriptive statistics, the first

step taken was an initial manual selection of variables. This will be discussed

in more detail in the next chapters.

The full list of working variables together with some basic descrip-

tive statistics can be seen on Appendices 1 and 2.

1.2 Related Work

Vanneschi citeVanneschi2011 et al compared techniques of Survival Forest,

Suport Vector Machines and Random Forests to predict survival of breast

cancer patients using as predictors a well known group of 70 genes that have

predictive power over breast cancer survival. They did not follow the tra-

ditional Survival Analysis procedure (using the survival function) but just

classified the patients in groups of patients survived or not at a given time

point. The research showed that the Genetic Programming method out-

performed the other ones, while also being the only one that has a way to

implicitly perform feature selection.

SurvivalSVM is an algorithm that implements the SVM algorithm

for survival models, developed by Van Belle et al [21] and implemented by

the same group as the SurvivalSVM R package. It works by reformulating

the survival problem into a rank regression one, optimizing the concordance

index between observed event times and estimated ranks of the event oc-

curence. Instead of the naive approach of comparing all data pairs in the

response and time domain, it is optimized for selecting only the appropriate

pairs to compare, significantly reducing the computation time without loss
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of performance.

SurvivalSVM has already successfully been used in medical research,

including a study by Van Belle et al [21] where SurvivalSVM was used to

predict cancer from a high-dimensional microarray gene expression data and

showed that it could give better results than traditional proportional hazards

models.

Panahiazar et al[17] used Machine Learning techniques on labora-

tory data, disease information and generally clinical data in clinical care

databases in order to calculate a risk score of survival based on patient-

specific characteristics. Methods used were random forest, logistic regression,

SVM, decision trees and boosting methods. The work managed to improve

the ROC score calculated by using the already well known Seattle Heart

Failure Model (SHFM).[13] The best pest performing methods were logistic

regression and the Ada Boosting method based on the work by Collins[6].

Gijberts at al [8] used data from the same patients that this thesis is

using, also using a baseline set of clinical as well as some haematological lab-

based predictors to construct survival graphs using the Proportional Hazards

model, with the goal to predict death and other major cardiovascular events.

Along with the AUC scores, the Continuous net reclassification improvement

(cNRI) and the Integrated Discrimination Improvement (IDI) were calculated

in order to find the improvement between different models.

Resulting from the analysis in the work above, the features found

to be most predictive for survival were :

1. Red cell distribution width.

2. MLR : Ratio of Monocytes to Lymphocytes

3. LMR : Ratio of Lymphocytes to Monocytes

4. Monocyte percentage in Leukocytes
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5. Monocyte count

6. Lymphocyte count

7. Lymphocyte percentage in Leukocytes

1.3 Chapter Synopsis

• Chapter 1 is the introduction of the dissertation, showing the dataset

and information about the nature of the research.

• Chapter 2 discusses the theoretical background and methodology used

in the research.

• Chapter 3 discusses the steps taken to implement the methodology

discussed above in order to get the needed results.

• Chapter 4 demonstrates the results and the discussion relevant to them,

together with the conclusion and ideas for future work.

• Chapter 5 provides the concluding remarks of the research, together

with some ideas for the continuation of the work.

2 Methods

2.1 Survival Analysis

Survival analysis [5] is defined as the branch of statistics that deals with

analyzing data where the outcome variable is the amount of time until one

or more events happen. It can be defined as a way to analyze time-to-event

data.
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One of the prerequisites to implement survival analysis is to define

the event and the time units used to measure the ’lifetime’ or the time un-

til that event occurs. In survival analysis, the dependent variables can be

considered as :

1. A binary variable that represents the event happening or not.

2. A numeric variable for the length of time that passed from the begin-

ning of the study until the event happens or the study finishes.

The definition of these variables can contain some ambiguity. For

example if the event is organ or mechanical failure there could be multiple

definitions for it. The usual survival analysis models assume that this ambi-

guity has been cleared up. Usually, in addition to the mortality data, there

are other observation data, which serve the role of independent variables.

Survival analysis was first used in medical research, and continues to

extensively be used. However, widespread use of survival analysis started to

take place during and after WW2 where the reliability of military equipment

needed to be accurately measured. After the end of the war, it also rapidly

spread to the private sector, generally testing the reliability of products.

During the 70’s, survival analysis started to also be used in the social sciences.

In that context, it can investigate phenomena such as employment, inflation,

supply and demand for bank loans and life expectancy of products.

Other names for Survival analysis are : reliability theory or reli-

ability analysis in engineering, duration analysis or duration modelling in

economics, and event history analysis in sociology.

In the case of survival analysis in medical research, the most popu-

lar events used are death, development of an adverse reaction, relapse from

remission, and development of a new disease. The duration of the research

varies, and could last weeks or even years. The unit used to count the time is
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usually days. Theoretically, the time until the event can be zero. However,

it should always be non-negative.

For simplicity’s sake, and since this is the case with the particular

problem tackled by the thesis, we will follow the usual terminology of survival

analysis literature, referring to the event of interest as ’death’ and to the time

to the event as survival time.

2.1.1 Censoring

Censoring[20] is a very fundamental issue that occurs in survival analysis

when the amount of time units until an event is only partially known. Several

types of censoring can occur :

1. Right censoring occurs when a subject leaves the study (also defined

in medical literature as lost to follow-up) or when the study is finished

before the event occurs for that subject.

2. Left censoring occurs when the event has happened at some point of

time before the study begins. Obviously, it does not make sense in the

case of the event being death.

In our case, we encounter the possibility of right-censoring, which is encoun-

tered in the subjects that are alive when the last information about them

was taken. Therefore, there is measurement data until one point, and the

death date is some time after that.

The reasons that censoring can occur in the context of a study are:

1. The study ends before the event happens for this particular subject.

2. A subject withdraws from the study.
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3. The measurement data for a subject is missing from a certain time

point onwards.

In order for the analysis of censored data to work properly, cen-

soring times should be randomly distributed and must be considered non-

informative, otherwise the non-randomness should be in some way incorpo-

rated in the analysis.[9]

If there are no cases that are considered censored, survival analysis

could be emulated by standard linear regression procedures. This can be

attained by using time as a target variable. However, using this might not

be as informative as survival analysis for the estimation of survival. Possible

reasons include:

1. Time-to-event is always defined to be positive so if it is used as an

target variable it should have a skewed distribution.

2. The probability of survival beyond a certain point (survival function)

and the hazard function used are more informative than just using a

method like regression, which does not provide a survival function.

Possible types of right-censoring are :

1. Fixed Type I censoring which occurs when a study has a fixed duration

and is decided from the beginning that it should end after time t. In

that case, every subject that has not experienced the event after t units

of time is considered censored.

2. Random Type I censoring which occurs when a study has a fixed end

date but does not begin at the same time for each subject, meaning

that censoring times are different for each subject.

3. Type II censoring which signifies a study that ends after a specified

number of events.
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In our case, the data is taken from the patients on admission to the

hospital, and a death date is provided if the patient died before the last day

of the study, which is a fixed date. Therefore, the censoring falls into the

case of Random Type I censoring.

2.1.2 Survival Function

Let T be a non-negative continuous random variable that represents the time

until the event occurs. The probability density function of T is demoted by

f(t) and its cumulative distribution function is :

F (t) = Pr(T < t) (1)

.

for the specified time t.

The survival function S(t) gives the probability that the object will

survive longer than t.

S(t) = Pr(T ≥ t) = 1− F (t) (2)

The survival function has the following properties :

1. It is non-increasing, so S(u) ≤ S(t) for all u > t.

2. When t = 0, it is defined that S(t) = 1 , so every subjects survives at

t = 0.

3. When t =∞ , it is defined that S(t) = 0

The survival function can be expressed both with parametric and non-parametric

methods. Parametric methods assume that the underlying distribution of the
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survival times follows certain known probability distributions. Popular ones

include the exponential, Weibull, and log normal distributions. For parame-

ter estimation, they usually use a form of maximum likelihood.

However, the most prevalent method of estimating the survival func-

tion is using the Kaplan-Meier estimator.

2.1.3 The Hazard Function

An alternative characterization of the distribution of T is provided by the

hazard function. The hazard function (also known as the failure rate or force

of mortality) is the event rate of mortality for a certain time t, conditional on

survival until time t or later (T>t). The hazard function can be considered

as the instantaneous risk of the event happening at a certain time t after

admittance, or as the instantaneous rate of occurrence of the event. It is

defined as :

h(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)

dt
(3)

The numerator of this expression is the conditional probability that

the event will occur in the interval [t, t + dt) given that it has not occurred

before, and the denominator is the width of the interval. Dividing one by the

other we obtain a rate of event occurrence per unit of time. Taking the limit

as the width of the interval goes down to zero, we obtain an instantaneous

rate of occurrence.

The probability in the numerator can also be explained as the ratio

of the joint probability that T is in the interval [t, t + dt) and T ≥ t ,also

written as f(t)dt , to the probability of T ≥ t which is S(t) by definition.

Thus, the hazard function can also be expressed as :

14



h(t) =
f(t)

S(t)
(4)

2.1.4 Kaplan-Meier estimator

The Kaplan-Meier estimator (also called the product limit estimate) is a

simple non-parametric statistic that is used to compute the survival function

based on time-to-event data. The results of the Kaplan-Meier estimator are

expressed in a curve which plots the probability of survival over time when

time is measured in small intervals.

For a sample size of N patients, let the observed times-to-event for

each patient be :

t1 ≥ t2 ≥ t3 ≥ . . . ≥ tN (5)

Let ni demote the total number of non-censored subjects until time

ti and di the total number of events happening (in our case deaths) until

time ti.

The Kaplan-meier estimator is the non-parametric maximum like-

lihood estimate of S(t) where the maximum is taken over the set of all piece-

wise constant survival curves with breakpoints at the event times ti. The

estimated survival function can be expressed as

Ŝ(t) =
∏
ti<t

ni − di
ni

(6)

The Kaplan-meier curve shows a series of declining horizontal steps,

which, in a large enough sample size, should approximate the plot of the true

survival function. Between these steps, the value of the survival function is

implied to be constant.
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Figure 1: Example of a Kaplan-Meier Curve

In the usual case, a vertical drop in Kaplan-meier curve signifies an

event. Right censored cases are also followed until the censoring time, which

in most representations of Kaplan-meier curves is shown by a checkmark.

2.1.5 The log-rank test statistic

It is also possible for two groups of subjects to be compared with each other

by testing the null hypothesis that there is no difference in the survival distri-

bution between these groups. Simply comparing the proportions of survival

at a specific time does not give an overall picture. Alternatively, the most

widely used method to for this is the log-rank test, a form of chi-square test

that compares estimates of the hazard functions of the groups at each given
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time.

For each time, it measures the observed and expected number of

events in each group and aggregates them to get an overall summary across

all the time points where there is an event.

The log-rank test is also called Mantel-Cox test, and is equivalent

to a time-stratified Cochran-Mantel-Haenszel test(Mandel, 1963).

For each distinct time j that there is an observed event in either

group, N1j and N2j is defined as the number of subjects eligible for an event

(haven’t had en event and not being censored) and O1j and O2j as the ob-

served number of events, so Oj = O1j +O2j and Nj = N1j +N2j.

Under the null hypothesis of the two groups having identical survival

and hazard functions, the distribution has expected value of

E1j = N1j
Oj

Nj

(7)

and variance of :

Vj =
Oj(N1j/Nj)(1−N1j/Nj)(Nj −Oj)

Nj − 1
(8)

The null hypothesis is tested by comparing O1j to E1j for each j

and is defined as :

Z =

∑j
j=1O1j − E1j√∑j

j=1 Vj

(9)

The log-rank test statistic can be understood as the score func-

tion of proportional hazards model comparing two groups, and therefore is

equivalent to the likelihood ratio test based on that model.
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2.1.6 Hazard Ratio and Relative Risk

The hazard ratio is defined as the ratio of the respective survival functions

obtained by performing an analysis on two levels of an explanatory variable.

In practice, it is a measure that shows how much the effect of a specific

variable contributes to the value of a target variable (the time until the

event). For example, from a medical perspective, the hazard ratio could

describe the odds of a patient healing faster under a particular treatment as

opposed to using another treatment or no treatment at all. However, it is

not a time-based method and therefore does not convey information about

how much each treatment shortens the patient’s healing.

In clinical trials, the term hazard ratio is often used interchangeably

with the term of relative risk. However, there are some subtle yet important

differences between them. The relative risk measures the ratio of the prob-

ability of an event occurring in an exposed group by the probability of an

event occurring in a non-exposed group. In a clinical trial example, it could

compare the risk of developing a disease for two groups of patients taking a

different kind of medication.

The main conceptual difference between the hazard ratio and the

relative risk is that relative risk is cumulative over the entire study using a

defined endpoint and describes the whole time period whereas the hazard

ratio describes the instantaneous risk over a subset of the time period.

2.2 The Proportional Hazards Model

2.2.1 Proportional Hazards Assumption

A Proportional hazards model is one particular class of survival models that

assumes that the effects of the predictor variables (and thus the hazard func-

tion) are constant over time.

18



For example, a treatment with a certain drug could constitute a 10%

reduction in risk of dying to a patient. The proportional hazards assumption

would hold if the reduction percentage is the same at any time t. If the

proportional hazards assumption holds, then it is possible to determine the

model’s parameters without having considered the hazard function.

One way to test the proportional hazards assumption is to test for

a non-zero slope in a generalized linear regression of the scaled Schoenfeld

residuals on functions of time[19] . In some cases, just looking at the results

of the numerical test cannot detect a non-proportionality (the relation of the

residuals to the time), even though it will be obvious if the residuals are

plotted versus a function of time.

2.2.2 Cox Regression

It has been claimed [7] that if the proportional hazards assumption holds,

then the effect of the covariates can be estimated without using the hazard

function. The method proposed is called Cox regression and the model out-

put is the Cox Proportional Hazards Model. Since h(t) does not have to

be specified, it is considered a semi-parametric method. An essential pre-

requisite of implementing Cox Regression is checking if the proportionality

assumption exists. Methods for doing this will be discussed further.

The hazard function for the proportional hazards model has the

following form :

h(t) = h0(t)× exp{b1x1 + b2x2 + ...+ bpxp} (10)

h0(t) is called the baseline hazard and is the value of the hazard

function when all the coefficients are set to 0. The baseline hazard function is

estimated non-parametrically, so the survival times are not expected to follow

a particular distribution. In essence, cox regression is a linear regression of
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the logarithm of the hazard function on the xi variables, with h(0) being an

intercept that varies with time.

The quantities exp(bi) are the model’s hazard ratios. A hazard ratio

greater than 1 for bi implies that as the value of the parameter increases, the

hazard is going to increase in proportion, and thus the probability of survival

will decrease.

Based on the above function, the ratio of the actual hazard function

and the baseline hazard function can be computed. This is called relative risk

and can be expressed with summing all the individual hazard functions for

each parameter. Dividing the hazard function left and right by h0(t) results

in the hazard ratio:

h(t)

h(t0)
= exp

p∑
i=1

xibi (11)

The estimation of the coefficients is made through the partial like-

lihood. This function is constructed by conditioning on the observed event

times and computing a conditional probability that individual i experienced

the event, given that someone did. :

Lp(b) =
∏
ti

exibi∑
jεRi

exibi
(12)

where Ri is the set of subjects that could experience an event at ti,

and subject i is the subject with the event at ti. We can think of the partial

likelihood as the joint density function for subjects’ ranks in terms of event

order, if there were no censoring and no tied event times. Consequently if

we use the partial likelihood for estimation of parameters we are losing infor-
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mation, because we are suppressing the actual times of events even though

they are known, hence the name ”partial likelihood”.

One important property of the above model is that in order to es-

timate the regression coefficients, the only information needed is the ranks

of the failure times. The actual absolute times are not used except in gen-

erating the ranks, therefore the time interval between the units should not

matter. The shape of the baseline hazard is also irrelevant since it does not

appear in the calculation.

There are several approaches for handling ties in the data. Breslow’s

method is the most commonly used method, mainly because it is easy. It is

an approach in which the partial likelihood method is ran in a similar way as

shown above. In our case the Effron approximation will be used, a method

that is generally agreed to produce better results[1].

2.3 Performance Scoring

The c-index or Concordance Index is one of the most popular scoring mea-

sures for scoring the prediction performance of different time-to-event models.

It was introduced by Harrel, Lee, and Mark [10]. It can also be defined as a

measure of the amount of ’concordance’ or agreement between the predicted

and the observed survival. Unlike other similar performance measures, Har-

rell’s C-index does not depend on choosing a fixed time for evaluation of

the model and specifically takes into account censoring of individuals. When

there are no censored data, the C-Index is equivalent to the estimation of the

Mann-Whitley parameter Pr(X > Y ) [14].

Let Ti define the time to event for case i. The concordance index is

computed as follows:

1. Form all possible pairs of observations over all the data.

2. Omit those pairs where the shorter event time is censored. Also,
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omit pairs i and j if Ti = Tj and both are censored, therefore Ti and Tj have

maximum values. Ties are only allowed if one of the observations stops at

an event and the other is a censored observation. Let P denote the total

number of permissible pairs.

3. Count 1 for each permissible pair in which the shorter event time

had the shorter predicted event time. Count 0.5 if the predicted outcomes

are tied. Let C denote the total sum over all permissible pairs.

The concordance index is defined as CI = C
P

.

2.3.1 Validation

One of the main characteristics of our particular dataset is that it is both

relatively small (as a ratio of rows to columns) and sparse, meaning that

death occurs in less than 10 percent of the cases. With that in mind, it is

not practical to follow a classical approach of dividing the data into a training

and a test set, since the data omitted from the training set is too vital for the

model. Also, it is almost certain that any model produced this way would be

overfitted and would not generalize well. Thus, it is imperative that a more

effective type of approach should be used.

In our case, a bootstrapping method with replacement was imple-

mented. In this case, the observed dataset is repeteadly sampled and the

samples form a large number of bootstrapped datasets (usually given by the

user), each having the same size. The purpose is to treat the original data

as the general population and the bootstrap samples as samples from that

population. The model is fitted to all the bootstrap samples and an error

measure of some kind is estimated. The estimate of the variance of the orig-

inal data is the variability of the point estimates accross the bootstrapped

datasets.

The bootstrapping approach used for validation in the present work

is also described in Harrel’s 1996 paper[10]. It uses the C-Index as a perfor-
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mance measure, outputting it in the form of the Sommer’s D (Dxy value)

which can be transformed to the C-Index by calculating 0.5 ∗ (Dxy + 1). It

consists of the following steps :

1. Fit the model to the original data and estimate C using this fitted

model. This estimate of C or Apparent Concordance Index can be

denoted as Capp.

2. for b = 1, .., B :

(a) Take a bootstrap sample with replacement from the original data,

with size equal to the number of cases.

(b) Fit the model to the bootstrap sample, and estimate C using this

fitted model and this bootstrap dataset. Denote the estimate by

Cb, boot

(c) Estimate C by applying the fitted model from the bootstrap sam-

ple to the original data. Let Cb, orig denote the estimate

3. Calculate the estimate of optimism O = B−1
∑B

b=1Cb,boot − Cb,orig

4. Calculate the optimism adjusted measure of predictive ability as Capp−
O

This bootstrap approach is very intuitive: usually when we apply

a model fitted using a bootstrap dataset to the original data, the predictive

accuracy will be lower than the apparent accuracy when evaluating the fitted

model using the same data that was used to fit it. We calculate the difference

in these predictive abilities for each bootstrap sample, and take the average

across many (Harrell et al suggest 100-200 times) bootstrap samples. This

estimate of optimism is then subtracted off the naive estimate of predictive

ability.
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2.4 Preprocessing

2.4.1 Imputation

After the initial discarding of the variables that convey information of no

clinical use, there may still be some variables with missing values. The pro-

cess of replacing missing data is called imputation. The type of imputation

used here is multiple imputation, [15]. The method works by performing

stochastic regression methods on multiple imputed data sets, and the results

are analyzed seperately and averaged. It models the noise in the distribution

of the data, and therefore is able to model the uncertainty of the process that

created it.

The goals of an imputation model are to account for the process

that created the data and preserve both the relations in the data and the

uncertainty about them.

The method chosen was fully conditional specification (FCS), also

known as MICE (Multiple Imputations with Chained Equations). FCS works

by specifying the imputation model on a variable to variable basis by a set

of conditional densities, one for each incomplete variable. It draws the im-

putations based on iterating over the conditional densities.

2.4.2 The MICE Algorithm

Let Yj with (j = 1, ..., p) be one of p incomplete variables, where Y =

(Y1, ..., Yp). The observed and missing parts of Yj are denoted by Y obs
j and

Y mis
j respectively, so Y obs

j = (Y obs
1 , . . . , Y obs

p ) and Y mis
j = (Y mis

1 , . . . , Y mis
p )

stand for the observed and missing data in Y respectively.

The number of imputations is equal to m ≥ 1. The hth im-

puted data sets is denoted as Y (h) where h = 1, . . . , m. Let Y−j =

(Y1, ..., Yj−1, Yj+1, ..., Yp) denote the collection of the p− 1 variables in Y ex-
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cept Yj . Let Q denote the quantity of scientific interest (e.g., a regression

coefficient). In practice, Q is often a multivariate vector. More generally, Q

encompasses any model of scientific interest.

The analysis starts with an observed, incomplete data set Y obs.

The problem encountered when trying to solve this is that it is impossible

to estimate Q from Y obs without making unrealistic assumptions about the

unobserved data. Multiple imputation methods try to solve this problem

by creating several imputed versions of the data, replacing the missing val-

ues with plausible ones. These plausible values are drawn from a distribution

specifically modeled for each missing entry. The result is a number of datasets

that have the same values in the places where there were no missing values

but different imputed values for each one. Since all the datasets are now com-

plete, normal analysis techniques can be used to estimate Q on each imputed

dataset. Finally, all the estimates Q(1), ..., Q(m) are pulled into one estimate

and the variance is calculated. For quantities Q that are approximately nor-

mally distributed, we can calculate the mean over Q(1), ..., Q(m) and sum the

within- and between-imputation variance according to the method proposed

by Rubin.

The chained equations method works as follows :

Let the hypothetically complete data Y be a partially observed

random sample from the p-variate multivariate distribution P (Y | θ). We

assume that the multivariate distribution of Y is completely specified by

θ, a vector of unknown parameters. The problem is how to get the dis-

tribution of P (Y | θ), either explicitly or implicitly. The algorithm man-

ages that by sampling iteratively from conditional distributions of the form

P (Y1 | Y−1, θ1), . . . ., .P (Yp | Y−p, θp).

The parameters θ1, . . . , θp are specific to the respective condi-

tional densities and are not necessarily the product of a factorization of the

’true’ joint distribution P (Y |θ). Starting from a simple draw from observed

marginal distributions, the tth iteration of chained equations is a Gibbs sam-
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pler (Geman, 1984) that successively draws :

θ1
∗(t)P (θ1 | Y 1

obs, Y 2
(t−1), . . . , Y p

(t−1))

Y 1
∗(t)P (Y1 | Y 1

obs, Y 2
(t−1), . . . , Y p

(t−1), θ1
∗(t))

. . .

θp
∗(t)P (θp | Y p

obs, Y 1
(t), . . . , Y

(t)
p−1)

Y p
∗(t)P (Yp | Y p

obs, Y 1
(t), . . . , Y p

(t), θp
∗(t))

where Ŷ (t)j = (Y obs
j , Y

∗(t)
j ) is the jth imputed variable at iteration

t. Previous imputations Y
∗(t−1)
j only enter Y ∗(t) through its relation with

other variables, and not directly. Convergence can therefore be quite fast.

The number of iterations can often be a small number, say 10-20. The

name chained equations refers to the fact that the MICE algorithm can be

easily implemented as a concatenation of univariate procedures to fill out the

missing data.

In the process of imputing multivariate data, one can also encounter

a number of problems [22]:

1. For a given Yj , predictors Y−j used in the imputation model may

themselves be incomplete.

2. Circular dependence can occur, where Y1 depends on Y2 and Y2depends

on Y1 because in general Y1 and Y 2 are correlated, even given other

variables.

3. Especially with large p and small n, collinearity and empty cells may

occur.

4. Rows or columns can be ordered, e.g., as with longitudinal data.
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5. Variables can be of different types (e.g., binary, unordered, ordered,

continuous), thereby making the application of theoretically convenient

models, such as the multivariate normal, theoretically inappropriate.

6. The relation between Yj and Y−j could be complex, e.g., nonlinear, or

subject to censoring processes.

7. Imputation can create impossible combinations (e.g., pregnant fathers),

or destroy deterministic relations in the data (e.g., sum scores).

8. Imputations can be nonsensical (e.g., body temperature of the dead).

2.4.3 Regularisation

In machine learning, regularization is the process that adds additional infor-

mation to a model in order to prevent overfitting and to solve wrongly posed

problems by penalizing models with extreme coefficient values. In practice,

it is a model selection technique that imposes a complexity penalty in order

to reduce the number of variables in the model.

The two fundamental requirements for regularization are :

1. A way of validating the predictive power of the model, for example

cross-validation.

2. A parameter that lets the user choose the strictness of the complexity

penalty, and therefore the complexity of the model.

For our case, the regularization process involves penalized maxi-

mum likelhood[16]. The most common variants are L1 and L2 regularization,

which work by modifying algorithms that minimize a loss function b(X, Y )

to minimize b(X, Y ) + λ||w||, where b is the model’s weight vector, the ||.||
operator is either the L1 or L2 norm and λ is the regularization parameter.
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Specifically, the LASSO penalty will be used. It uses the constraint

that ||w||1, the L1-norm of the parameter vector is no greater than a given

value. This way, an upper limit is set to the sum of the absolute values of

the coefficients.

One of the advantages of the LASSO method in respect to the

other methods (for example using the L2 penalty), is that as the regulariza-

tion penalty increases, more parameters will turn to zero. So, the resulting

variable set has less but more relevant nonzero variables than in the other

cases, making the LASSO method better for variable selection purposes.

The R package used for implementing the regularization is glmnet.

It computes a grid of values for different values of the regularization param-

eter alpha. The algorithm is fast and can exploit sparsity in the input value

matrix. The glmnet algorithms use cyclical coordinate descent (Windham

et al, 1987) which successfully optimizes the objective function over each

parameter with others fixed, and cycles repeatedly until convergence.

2.4.4 Stepwise Regression

Another method for model selection used was forward and backward step-

wise regression. The algorithm starts with a candidate variable set and, using

a certain measure for each step, looks for a best model through the possi-

ble variable sets by checking the addition and removal of variables. It uses

various methods of evaluating the models in order to find the best possible

improvement for each step.

Forward stepwise selection implements a greedy hill climbing tech-

nique. The search starts from a model with no variables and adds for each

step the variable that gives the greatest improvement in score. until no fur-

ther improvement can be made. Conversely, backward stepwise selection

starts with the full model containing all candidate variables and removes the

variable whose deletion has the best impact on the model fit, repeating this
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process until there is no variable that improves the model.

There is also the possibility of bidirectional elimination, testing all

backward and forward moves for each step and determining the best fit.

A multitude of measures can be used as the model comparison crite-

rion. It can be a simple test based on F-statistics (adding significant terms or

dropping non-significant ones). Some implementations also use other kinds

of criteria such as adjusted R-square, Akaike information criterion, Bayesian

information criterion, PRESS, or false discovery rate.

Stepwise regression generally should obey the hierarchy principle.

This states that if a model contains either Xk or some interaction tern in-

volving X and is shown to be a statistically significant predictor of Y, then

the model should also include X and in the case of Xk all Xj where j < k,

whether these lower-order terms are significant or not. Similarly, if the result

model contains parameters that function as interaction terms between 2 or

more variables, it also should contain the original variables that form these

interaction terms.

2.5 Random Forest

Random Forests [4]are generally defined as an ensemble learning method for

classification, regression and other tasks, that operates by constructing a

multitude of decision trees at training time and outputting the class that

is the mode of the classes (classification) or mean prediction (regression)

of the individual trees. Random forests correct for decision trees’ habit of

overfitting to their training set. Other alternative methods to Random Forest

are bagging [3] and boosting [18].

In Random Forests, randomization is introduced in two forms. First,

a randomly drawn bootstrap sample of the data is used for growing the tree.

Second, the tree learner is grown by splitting nodes on randomly selected
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predictors.

In the general case, each tree is grown with the following method :

1. Draw a bootstrap sample of the training data

2. Grow a decision tree on the data by recursively repeating the following

steps for each terminal node of the tree until a minimum node size

nmin (provided by the user) is reached :

(a) Select m variables at random from the variable set. The value of

m should be provided in the algorithm call.

(b) Pick the best variable split point among the chosen variables.

(c) Split the node into 2 child nodes.

2.5.1 Random Survival Forests

Random Survival Forests [12], implemented by the randomSurvivalForest

package in R, is a method modeled after the one proposed by Breiman and

can be used for the analysis of right censored data. Its main notable feature

is that it is highly adaptive and assumption free. Therefore, it does not rely

on the usual restrictive assumptions like proportional hazards that other

methods do.

The survival forest algorithm, as implemented by Iswaran et al is

described as follows :

1. Draw B bootstrap samples from the data having a size of 2/3 of the

original data.

2. For each one of the samples grow a tree. For each node of the tree,

randomly select m variables (where m is given by the user) for split-

ting on. Split the node on the variable which maximizes survival time

differences across daughter nodes.
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3. Grow the tree to the maximum size satisfying the constraint that the

total number of events in a node should be larger than a predefined

number.

4. Calculate a total cumulative hazard function for each tree and average

them to obtain the ensemble cumulative hazard function

5. Compute an OOB (out of the bag) error rate for the ensemble.

For each split, a predetermined survival criterion is used. Starting

from the root node, every node is split into a left and right daughter node

in a recursive repetition of the process. The best split for a node is found by

searching over all possible combinations of variables and split values of the

variables and maximizing the survival difference. This way, dissimilar cases

will be pulled apart, iteratively increasing the homogenity of each node in

each split.

The value of m, n and the minimum events per node are parameters

that should be provided by the user in the function call.

The models’ performance is scored by the error rate, calculated as

1 minus the model’s concordance index. The error rate must be between 0

and 1. An error of 0.5 signifies that the model scores no better than random

guessing, while an error rate of 0 shows perfect accuracy.

3 Analysis

In this chapter, we will discuss the practical implementation of the theory

discussed in the previous chapters, including manual data selection, imputa-

tion, variable selection and validation.

31



3.1 Data collection

At the moment of inclusion, blood was drawn from the arterial sheath in-

serted for coronary angiography. Differential blood counts were performed

according to routine clinical practice and all hematological parameters were

subsequently stored in the UPOD. From the UPOD, we collected an extrac-

tion of the Abbott Cell-Dyn18 data. The data that corresponded to the

blood sample drawn for the purpose of this study were used for analysis.

Parameters that were used in this study comprised all 15 routine

UPOD leukocyte parameters: leukocyte, neutrophil, monocyte and lympho-

cyte counts and percentages, neutrophil cell size (mean and coefficient of

variation (CV)) and complexity (mean and CV) and lymphocyte cell size

(mean and CV) and complexity (mean and CV). These numbers are de-

rived from the Abbott Cell-Dyn18 machine which uses multi angle polarized

scatter separation to classify cell properties. By shining an Argon laser on

individual cells, cell size is defined as the axial light loss at 0 degrees and cell

complexity is defined as the intermediate angle forward scatter at 7 degrees.

The CV represents the standard deviation of the measurements, indicating

the variation in cell size or complexity within one patient.

Additionally, other types of data were collected separately. These

include : demographical data, history of acute coronary syndrome (ACS), his-

tory of percutaneous coronary intervention (PCI), history of coronary artery

bypass grafting (CABG), cerebrovascular accident/transient ischemic attack

(CVA/TIA) or peripheral arterial disease (PAD), medication use, cardiovas-

cular risk factors (diabetes, body mass index (BMI), hypertension, hyperc-

holesterolemia, smoking), the indication for catheterization, the angiographic

severity of CAD and details concerning the procedure were collected.
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3.2 Initial Selection

From the full UPOD dataset, 76 variables were chosen. They include the full

set of the patients’ hematological measurements taken from the Abbot Cell-

Dyn Sapphire analyzers, as well as a number of binary variables indicating

various diseases and standard demographic and physical data including age,

sex and weight. The latter is the baseline model used for survival model

research in the UMC hematology department. Also, a BMI variable was

created from the height and weight variables.

The sample population measures 2450 patients, of which 142 died

before the end of the study. Subjects were all over 18 years old, with 1791 of

them being men and 659 being women. There are 27 variables with missing

values, most of them having around 10 values missing. The only ones with

considerably more are the binary variables of Smoking (187) and LV function

(548).

3.3 Imputation

The first step of the MICE imputation pipeline is to create a prediction

matrix. This is an m ∗m binary matrix where m is the number of variables.

For each variable, it indicates which ones of the others will be used for the

calculation of imputing its missing values. For the purpose of imputation, we

had to exclude the variables that are expected to have no predictive power

over any of the rest of them, namely the times and dates of admittance or

death and the variable containing the patient IDs.

The multiple imputation produced 15 imputed datasets each having

different values, which were joined together. The fact that our dataset had

15x more cases than the original data was solved by weighting each case by

1/15 in each subsequent analysis step. This was defined as the ’long’ version

of the data.
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Additionally, a ’short’ version was created by one of the 15 im-

puted datasets output, in order to compare the effectiveness creating multiple

datasets during multiple imputation.

3.4 Proportional Hazards Assumption

For testing the assumptions of proportional hazards, we used the cox.zph

method from the rms package. The method checks proportionality of all

model predictors by looking for its interactions with time. It produces the

Pearson-product-moment correlation between the scaled Schoenfeld residuals

and the time variable for each covariate, in the form of p-values. It also

includes a global test that counts for the interactions of all the predictors

tested at once.

The null hypothesis is that the scaled Schoenfield residuals are not

correlated with time. Therefore, we can deduce that a p-value of less than

0.05 signifies a violation of the proportionality assumption.

Using plot() on a cox.zph model results in plots for the residuals for

each individual variable against time, together with a smooth curve. This is

useful in order to capture different kinds of correlation of the residuals with

time that can’t be made clear with the numerical test, such as quadratic

relations. Generally, in order for the assumption to be satisfied, the line has

to be as straight and ’flat’ as possible, with a slope of zero or close to it.

The scoenfield residuals method for testing the proportional haz-

ards assumption of the long models does not give accurate results, probably

because of the lack of support for weighting, therefore the assumption was

impossible to determine by numerical tests. For most cases, the plots for the

residuals look similar in the short and long models with the same variables,

however for the long models there is no definite way to guarantee that the

assumption is satisfied.
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3.5 Main Analysis

Initially, we built 3 models :

1. The baseline model, containing only the patient information variables

without the haematological data.

2. The lab data model, containing only the data resulting from blood

analysis, plus the Age and Gender of the subject.

3. The full model, containing all variables.

After performing L2 regularization and stepwise regression in those

models and the models resulting from these procedures, cox regression and

survival random forest models were fitted for each one and the resulting

models were compared to each other. Each model was tested both on the

long and the short dataset.

3.5.1 Proportional Hazards model Fitting.

The proportional hazards model fitting was performed by the cph function in

Harrel’s rms package [9], using the implementation of the partial likelihood

method originally present in the coxph function of the survival pagkage .

In order to avoid overflow in the argument to the exponential function, the

algorithm automatically scales and centers data.

The output from the cph function produces the following statistics:

1. The coefficient for each variable. Their exponentiated versions can be

interpreted as multiplicative effects on the hazard.

2. The standard errors for each coefficient
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3. A z score, representing the ratio of each regression coefficient to its stan-

dard error, a Wald statistic[9] that is asymptotically standard normal

under the hypothesis that the corresponding β is 0.

4. The p-values of the total likelihood ratio and logrank score, which are

asymptotically equivalent tests of the omnibus null hypothesis that all

of the βs are equal to 0.

5. Discrimination indexes like the model’s R squared and Sommer’s D,

which can be used for ranking the models’ performance.

The coxph method documentation describes a case where the max-

imum likelihood estimate of a coefficient can be infinity. That implies a

dichotomous variable that divides the dataset to 2 groups, one with all the

events happening and another that none happen.

In that case, the following can happen : Either the log likelihood

converges, the information matrix becomes effectively singular, an argument

to the exp() function becomes too large for the computer hardware, or the

maximum number of interactions is exceeded, with the most probable cause

being the first. The primary consequence for the user is that, in that case,

the Wald statistic is not useful. However, the likelihood ratio and the score

tests remain valid.

After the manual variable selection and imputation, the dataset be-

ing output as just a full model with all the original variables as predictors

would still be potentially inefficient to directly input into machine learning

models. The main reason is that the variable set is still too large for tradi-

tional machine learning algorithms, both simply because of its size and also

because the row-to-column ratio is lower than usual.

There should also be a lot of intercorrelation between the variables

due to the nature of the data. Therefore, automatic variable selection tech-

niques can play a very vital role in solving this problem by offering simpler

models with less variables that capture the most possible amount of variance.
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The literature offers a multitude of variable selection techniques.

The ones used in this project are regularization using penalized maximum

likelihood via the lasso penalty (from R package glmnet) and model selection

via stepwise regression using the BIC penalty (from the stepAIC package).

All the different models that resulted from variable selection algo-

rithms were used for further analysis and comparison with each other.

Before the LASSO regularization step began, proportional hazards

models were fitted for each of the 3 initial variable sets. The function used was

cph from the rms package. cph is a modification of the coxph, the standard

function of fitting cox models in R, offering some extra options that enable

more efficient validation of the cox regression results.

The function also supports weighting of the input data. For the

cases that the long model is an input, each variable was weighted with weights

of value 1/15.

3.5.2 Regularization

The first step taken was automatic variable selection. This was achieved by

executing LASSO regression on each model through the cv.glmnet function

contained in the glmnet R package.

Glmnet computes the grid of values for different values of the regu-

larization parameter lambda and outputs the result for each respective value.

The algorithm is fast and can exploit sparsity in the input value matrix. The

glmnet algorithms use the method of cyclical coordinate descent [2], which

successively optimizes the objective function over each parameter with oth-

ers fixed, and cycles repeatedly until convergence. While in our case the

LASSO penalty was used, it would also be possible to use the elastic-net

penalty. The cv.glmnet function runs the glmnet algorithm together with

k-fold cross-validation. In our case the default value of 10 was used.
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The output is a set of different models for different lambda values.

The lambda value finally used is the one that produced the minimal cross-

validation error. The resulting models contain all variables that have non-

zero values of coefficients after the algorithm execution.

Results

1. In the baseline model, only the Indication variable was removed by

glmnet.

2. In the lab data model, neutrophil percentage, c-b-ht and c-b-rbcfmn

were removed.

3. In the full model, only c-b-rbcicv and c-b-HDW were removed. How-

ever, in addition to imputing the long dataset, imputation of the short

version was also tried, with the results being much different. In that

case, only 36 variables remained in the final model. This may be due

to the smaller variability of the imputed values in the short dataset.

3.5.3 Stepwise regression

The implementation that was used is the StepAIC function contained in the

MASS package. Its input is an initial model –from where the search starts–

plus upper and a lower variable formulas used for providing boundaries to

the search process. The model is an R object representing a fitted model,

in our case a result of the cph function of the R rms package. The upper

and lower formulas represent the range of models that the stepwise algorithm

will search. Using formulas of variables as an input object also allowed us

to specify more complex models to search, in particular models containing

interaction terms between variables or squared variables together with their

regular form.

The package natively used the AIC as a model selection criterion,
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however it also allows to manually input the penalty per parameter used in

the complexity penalty. Setting k = 2 gives the original AIC. In our case the

BIC score was preferable and was achieved by using k = ln(n), where n is

the number of rows of the dataset.

The algorithm was ran for every starting model and each output of

LASSO. The search always started from the empty model, was configured to

move both forward and backward, and used as the upper model the following

:

1. A model containing the original variables and all interaction terms

between them.

2. A model containing the original variables with the squared forms of the

variables added.

3. Models containing both.

The StepAIC algorithm supports the hierarchy principle [23]. This

states that lower order interactions should always be included together with

the higher order ones that consist of them, mainly for reasons of interpreta-

tion of the model. In practice, this means that in any case that an interaction

or squared term is found in the formula, the algorithm will also add all the

lower order terms that it consists of.

3.6 Validation and scoring

The bootstrap approach described in section 2.3.1 is also implemented in the

rms package. The cph.validate() method is its implementation for the cox

model case. It takes as input a cox regression model created by cph() and

calculates several measures, including Sommer’s D which is the one measure

that will be used in our evaluation of the models. Reparametrized to a
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probability scale from 0 to 1, it gets transformed into Harrel’s C-Index by

calculating 1/2 ∗ (D + 1). Other measures calculated are :

1. The model’s R-Squared

2. Slope shrinkage

3. The discrimination index D [(model Likelihood Ratio chi-square - 1)/L]

4. The unreliability index U = (difference in -2 log likelihood between

uncalibrated X beta and X beta with overall slope calibrated to test

sample) / L

5. The overall quality index Q = D − U .

L equals -2*log likelihood with beta=0. As Harrell states, the cor-

rected slope can be thought of as shrinkage factor that takes into account

overfitting.

The measures are calculated in different ways :

1. Index.orig : The naive measure, obtained by fitting the model and

also evaluating it in the original data.

2. Training : The mean across the bootstrap samples of C b,boot

3. Test : The mean across the bootstrap samples of C b,orig

4. Optimism : The difference between the accuracy of Training and Test

5. Index.corrected : The Index.orig value corrected by subtracting the

Optimism value

The last value is the most reliable one so we will use the corrected

naive measure of Sommer’s D in order to rate the model’s accuracy. To

validate each model, 1000 bootstrap samples were generated.
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As an additinal scoring together with with the C-Index, ROC plots

were created for the purpose of measuring the model’s accuracy on predicting

2 year mortality. The algorithm is based on the method created by Haegerty

et al [11] and the implemented in the risksetROC R library created by the

same group. To assess the performance, the Area Under Curve score was

extracted.

4 Results

4.1 Models

The results of the analysis both from the Cox Regression and the Random

Forest techniques are shown in the following table : Cox regression and

random forest analysis was ran for the variable sets described below. Analysis

was ran both on the short and long dataset. Both 10 and 100 bootstrap

sample validation methods were tried, as well as Random Forest analysis

using 10 trees. In the cases that it is not specified, the regularization was

ran on the long model.

:

1. Baseline Model (A model with all the variables except the laboratory

ones)

2. Baseline model after running LASSO regularization on the long dataset

for variable selection (Just the indication variable removed)

3. Baseline model after running LASSO and Stepwise Regression

4. Lab Data model (A model having just the data taken from the CellDyn

analyzer)

5. Lab Data model after LASSO regularization ran on the long dataset
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6. Lab Data model after LASSO regularization ran on the long dataset

plus stepAIC finding squared terms

7. Lab Data model after LASSO regularization ran on the long dataset

plus stepAIC finding squared terms and interaction terms

8. Full model (All possible variables)

9. Model after LASSO regularization ran on the short dataset

10. Model after LASSO regularization ran on the long dataset

11. Model after LASSO regularization ran on the long dataset plus stepAIC

finding interaction terms

12. Model after LASSO regularization ran on the long dataset plus stepAIC

finding squared terms

13. Model after LASSO regularization ran on the long dataset plus stepAIC

finding squared terms and interaction terms

4.1.1 Proportional Hazards

Looking at the cox regression results, the first thing that becomes obvious is

that, when the bootstrap algorithm is ran on datasets with a lot of variables,

the failure rate of the bootstrap method is larger. The issue gets worse

when the variables are numeric, or there are a lot of interaction terms. For

example, the models tested that include a large number of numeric variables

(most labdata model and the full one) have a much lower convergence rate

in the bootstrap processing, usually not exceeding 50 percent of the cases.

The failures or non-convergence in the bootstrap executions are caused by

the singularity problem discussed above.

Similarly, in the model resulting from regularization plus stepwise

regression finding interaction terms when run in the long dataset, the rate

of convergence is 18/1000, which can be attributable to the large number of
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variables (including pairs of interaction terms) being found by the stepAIC

algorithm. Similar problems exist in all the algorithm runs with large variable

sets. When StepAIC is asked to find both interaction terms and squared

terms, the result is a simple model that contains way less variables.

Comparing the concordance indexes of the cox regression on the

short and the long model, we can see that, in the vast majority of the cases

the scores get better when the long model is used. The most probable cause

of this is that the imputed values replacing the missing ones are significantly

more predictive when using 15 aggregated multiply imputed datasets instead

of just one. It would be expected that averaging the results would capture

more of the true variability of the distribution that produced the data. The

downside of using the long version is that, since the case set gets multiplied by

15, the models become more complex. Another downside of the long version

of the dataset could be that, since the non-missing values get duplicated

15 times, and since the bootstraping methods divide the set randomly into

training and test sets, it is practically certain that there will be cases with

almost or exactly the same values in all their variables that exist both in

the training and the test set. That would result in lower reliability for the

models using the long dataset and also possibly overfitting.

Four of the strongest performing models are shown in Appendix 2.

We can see that they mostly agree with each other in calculating the sig-

nificance of each variable and the selection of the squared and interaction

terms. Generally, the coeffients also agree with the ones present in the rest

of the models. For example, in all our models Age has a positive coefficient

and the squared term gets added any time that it is possible in the step-

wise regression runs. Similarly, Gender always has a negative coefficient and

some interaction terms reappear in all the models. Thus, we can confidently

assume about the significance of certain variables or interactions between

them.

From the c-indexes, it is also clear that generally the models con-

taining just the laboratory variables are better than the baseline ones, and
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the models containing variables from both sets are better than the former.

The AUC scores for 2-year mortality generally seem to generally

follow the s the concordance indexes, having higher AUC score in the models

with higher concordance indexes. However, the process of bootstrapping was

not followed for getting the AUC scores, and so the AUC scores should not

be considered as reliable as the reported concordance indexes.

4.1.2 Random Forest

In a similar fashion, Random Forest models were tested in the majority of

the models. Because of the computational complexity of the algorithms, the

algorithms were unable to provide meaningful results for all the variables sets

used for the proportional hazards models analysis. The concordance indexes

of the working models created are also shown in the tables in Appendix 2.

In most cases, 10 trees are used for the analysis. Attempts to test

the algorithm with 100 and 1000 trees did not produce results after running

for more than 48 hours, so they were abandoned. However, the attempts were

made on a desktop computer so they could theoretically produce results when

ran in faster hardware, such as a high speed processing cluster.

The Random Forest results show that, contrary to the proportional

hazards models, the random forest analysis can work well with datasets hav-

ing a large number of numeric dimensions, even with some of them being

intercorrelated. In fact, the best result came from the full model. On the

contrary, the models resulting from the automatic variable selection and con-

taining interaction or squared terms produced concordance indexes close to

0.5. This can be attributed to the inherent ability of random forest methods

for variable selection. However, in all cases, random forest enforced on the

long datasets provides significantly better fit than when enforced on the short

ones, with a much larger difference than the one observed in the proportional

hazards models. This could also be an indicator of overfitting.
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Another observation is that, as in the proportional hazard models,

there is a large -better than in the proportional hazards case- improvement

in the concordance indexes of the long models comparing to the scores of the

single dataset ones.

4.1.3 Specific Models

Model 8 :Full Model The first model analyzed is the full model, con-

taining the original 73 variables used for prediction. ?t is clear that the

model is not suitable by itself for any kind of analysis. All available statistics

show a worse performance than the models derived from it through variable

selection.

As expected, the p-values for most of the variables are above a

confidence interval of 0.05, meaning that they are not significant. A notable

example is the Age variable which has a small positive coefficient, showing

that as age increases, the risk of death increases too. Although in most cases

being not significant, most of the binary variables representing the presence

of diseases also have a positive coefficient.

Model 2 : Baseline After regularization ?t is obvious that there was

an improvement over the full and the baseline model, since the performance

scores are significantly better with the variables being much fewer. As in all

the other similar cases, the squared version of Age has a positive coefficient

and a low p-value, contrary to the normal version that has a negative one

and very low singnificance. The gender variable is also significant and with

a negative coefficient, something that also corresponds to the established

knowledge that women generally live longer.

Model 9 : After regularization starting from the full short model

Running the LASSO regularization to full model is very effective, resulting at
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the most efficient cox regression model, judging by its score after validation.

Almost all the p-values of the variables have been reduced and all of the

variables indicating diseases (except hyperchoresterolemie) have a positive

coefficient as expected.

Model 10 : After regularization starting from the full long model

Running the regularization on the long model gives us a model with way

more variables and almost similar concordance indexes in the case of the

proportional hazards models. The random forest results are noticeably better

than the ones in the previous model, and still much better when the model

is trained on the long dataset than the short one.

Model 11 : After regularization finding interaction terms starting

from the full long model Enforcing stepwise regression on the reduced

model looking just for interaction terms results in a very complicated model

with lots of variables, most of them being interaction terms. The models

have the best concordance indexes than all the ones testing. However, they

seem way too complicated for use in real-world applications, and possibly a

result of overfitting.

As with almost all the models that contain a lot of variables, the

concordance index of the random forest method applied to it is relatively

high, although still lower than the one corresponding to the cox model.

Model 12 :Lab Data After regularization ran on the long dataset

plus stepAIC finding squared terms This is the best performing model

from the ones that started from the labdata variable set. It contains mostly

squared terms from the set, plus the Age variable (with coefficients very

similar to the ones from the rest of the models) and the gender one, again

having a large negative coefficient.

The concordance index is similar to the one from the labdata model
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containing interaction terms, but the number of variables is smaller and the

R-Squared score is much better.

Model 13 : After regularization started from the long dataset, after

Stepwise Regression for interaction and squared terms This model

looks a lot like model 8 and 9, and is the model that accomplishes the best

combination of predictive power and number of variables. It consists mostly

of squared and interaction terms with coefficients similar to the ones at the

other models, but interestingly without the gender variable, whose variability

is probably captured by the squared and interaction terms created.

5 Conclusion

This work showed the application of machine learning and statistical analysis

methods on prediction of survival of heart disease based on laboratory and

disease information. The main conclusion to be drawn by the results is that

the random forest and cox regression methods do not work well when all

dimensions of the data are used. However, the variable selection method

proposed here, using LASSO combined with stepwise regression, seems to

reduce the issue.

Generally, the models that predict better are the ones that directly

result from the LASSO analysis, starting either from the long or the short

model. Running StepAIC on these models to find interaction terms gives

us models with lower concordance indexes but with a much lower number of

variables, and thus a lower convergence rate in the bootstrap process. Apart

from that, a small number of variables is important also because it helps the

interpretability of the model.

The models after LASSO regularization from the short dataset

(Model 9) and the one with both squared and interaction terms (Model 13)
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seem to have the best combination of a small number of variables and high

concordance index.

In any case, we see a significant difference between the models where

the analysis started from a subset of the vaiable set (baseline or Lab Data)

and the models starting from the full dataset. Thus, we can deduce that both

types of variables have predictive power over survival, and models using only

one type of them can benefit from adding selected variables from the other

type.

Furthermore, implementing multiple imputation in order to account

for the missing values seems to not work all the times as needed, and caused

more problems than it solved, making the proportional hazards assumption

not work as needed for all cases and rendering posing a threat to the reliability

of bootstrap methods.

5.1 Future Work

The most relevant future work that should be done as a continuation of this

one is a continuation of exploring the models presented in this thesis with

a dataset of more patients. The results of the bootstrap validation shown

in this thesis strongly imply that the models presented can be successfuly

generalized and used on new patient datasets. However, in the case of starting

with a new and larger dataset, one could also repeat the variable selection

steps in order to result in different and improved models.

Furthermore, in order to tackle the issue of the large number of

variables and the possible intercorrelation with each other, algorithms like

Principal Component Analysis can also be used to combine some variables

with each other, and thus result in a more robust and easier to explain model

without a large loss of useful information.

Finally, other machine learning techniques can be used. Like the
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random forest algorithm in our case, there are more machine learning tech-

niques already adapted to the survival analysis methodology shown in this

thesis, including Support Vector Machines (SurvivalSVM), boosting (Cox-

Boost) and bayesian models (bayesSurv).

In addition, as discussed in the ’Related Work’ section, there are

methods to simulate survival analysis without creating the full Kaplan-Meier

curves. For example, the predictive survival and ROC scores can be found for

a specific amount of time after admittance. This can be a preset time period

(like the 2-year mortality used in this thesis) or even a time that will divide

the patient set into equal sized groups of alive and dead ones, something that

could not be done in this case since the number of censored patients exceeds

the number of dead ones in all time periods.
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Appendices

A Statistics for numeric variables

Table 1: List and Statistics for the Numeric variables
Statistic N Mean St. Dev. Min Max Name

Age 2,445 64.221 11.327 18 93 Age (in years)
c b wbc 2,450 7.801 3.122 1.400 83.700 White blood cells
c b neu 2,450 5.006 2.369 0.430 28.600 Neutrophil amount
c b lym 2,444 1.937 1.709 0.220 76.840 Lymphocyte amount
c b mon 2,444 0.632 0.240 0.000 3.340 Monocyte amount
c b eos 2,450 0.181 0.165 0.000 3.490 eos
c b bas 2,449 0.040 0.030 0.000 0.760 bas
c b pneu 2,450 62.941 10.319 4.420 94.720 Neutrophil Percentage
c b plym 2,444 25.617 8.924 2.580 91.810 Leukocyte Percentage
c b pmon 2,444 8.428 2.621 0.040 33.900 Monocyte percentage
c b peos 2,450 2.445 1.927 0.020 22.320 procentueel aantal erytroblasten per 100 WBC
c b pbas 2,449 0.535 0.345 0.000 3.250 procentueel aantal basofiele granulocyten
c b rbco 2,450 4.460 0.484 2.690 6.200 RBC optical result
c b hb 2,450 8.469 0.965 5.170 11.930 HB result
c b mcv 2,450 89.833 5.006 56.390 111.210 MCV result
c b rdw 2,450 12.427 1.495 10.460 35.470 RDW result
c b mch 2,450 1.911 0.131 1.090 2.500 MCH result
c b mchc usa 2,450 34.260 1.143 28.454 38.266 MCHC result (USA)
c b ht 2,450 39.831 4.343 25.290 55.980 c b ht
c b plto 2,443 232.601 74.251 8.090 928.980 PLT optical result
c b mpv 2,430 7.945 1.016 5.680 16.130 MPV result
c b pct 2,430 0.182 0.050 0.010 0.650 PCT result
c b pdw 2,431 16.203 0.711 11.480 21.510 PDW result
c b irf 2,444 0.284 0.172 0.030 3.990 Immature reticulocyte fraction Absolute reticulocyte count
c b namn 2,450 143.481 10.297 112.961 176.675 Neutrophil position , 0 grades
c b nimn 2,450 135.362 4.942 105.214 155.640 Neutrophil position , 7 grades
c b npmn 2,450 125.816 10.818 61.910 166.928 Neutrophil position, 90 grades
c b ndmn 2,450 28.262 3.527 8.960 43.322 Neutrophil position 90 grades polarized
c b nfmn 2,450 70.352 2.255 62.545 92.858 Neutrophil position FL3 canal
c b nacv 2,450 2.652 0.462 1.272 5.513 Neutrophil CV 0 grades
c b nicv 2,450 3.491 0.467 1.555 7.321 Neutrophil CV 7 grades
c b npcv 2,450 7.413 2.297 1.113 17.371 Neutrophil CV 90 grades
c b ndcv 2,450 15.004 1.549 5.805 36.163 Neutrophil CV 90 grades polarized
c b nfcv 2,450 7.802 1.503 1.111 12.361 Neutrophil CV FL3 canal
c b Lamn 2,450 100.976 3.980 82.949 116.841 Lymphocyte position 0 grades
c b Limn 2,450 75.705 2.670 62.068 98.715 Lymphocyte position 7 grades
c b Lacv 2,450 4.798 1.437 1.161 11.393 Lymphocyte CV 0 grades
c b Licv 2,450 4.848 0.974 1.904 8.646 Lymphocyte CV 7 grades
c b Pimn 2,450 145.972 5.750 117.611 167.626 Trombocyte position 7 grades
c b Ppmn 2,450 124.671 5.048 70.671 140.849 Trombocyte position 90 grades
c b Picv 2,450 17.049 1.624 13.691 38.381 Trombocyte CV 7 grades
c b Ppcv 2,450 13.843 5.141 10.802 93.498 c b Ppcv
c b rbcimn 2,450 180.722 5.681 0.000 185.840 c b rbcimn
c b rbcicv 2,450 1.691 0.219 0.000 2.729 c b rbcicv
c b rbcfmn 2,450 83.810 4.388 0.000 103.187 c b rbcfmn
c b rbcfcv 2,450 11.159 2.625 0.000 67.846 c b rbcfcv
c b MCHCr 2,450 30.315 1.705 0.000 35.529 c b MCHCr
c b HDW 2,450 7.306 1.235 0.000 12.545 c b HDW
c b MCHr 2,450 31.239 7.490 0.000 106.370 c b MCHr
c b MCVr 2,450 98.777 11.354 0.000 126.967 c b MCVr
c b pHPO 2,450 3.130 6.047 0.000 68.168 c b pHPO
c b pHPR 2,450 0.312 1.488 0.000 45.107 c b pHPR
c b pMAC 2,450 1.962 2.055 0.000 30.720 c b pMAC
c b pMIC 2,450 1.255 3.224 0.190 63.606 c b pMIC
c b prP 2,450 2.370 3.013 0.000 33.804 c b prP
duration 2,450 624.684 348.264 0 1,276 Time Alive
BMI 2,410 0.003 0.0004 0.001 0.005 Body Mass Index
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B Concordance Indexes and Area Under Curve
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C ROC Charts for 2-Year Mortality

Figure 2: ROC Chart : Area Under Curve of Area Under Curve of Baseline
Model

[!]

58



Figure 3: ROC Chart : Area Under Curve of Baseline Long

Figure 4: ROC Chart : Area Under Curve of Baseline Reduced
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Figure 5: ROC Chart : Area Under Curve of Baseline Reduced Long

D Features of selected Proportional Hazards

Models
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Figure 6: ROC Chart : Area Under Curve of Baseline Reduced Paired
Squared

Figure 7: ROC Chart : Area Under Curve of Baseline Reduced Paired
Squared Long
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Figure 8: ROC Chart : Area Under Curve of LabData

Figure 9: ROC Chart : Area Under Curve of Labdata Long
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Figure 10: ROC Chart : Area Under Curve of Labdata Reduced

Figure 11: ROC Chart : Area Under Curve of Labdata Reduced Long
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Figure 12: ROC Chart : Area Under Curve of Labdata Paired and Squared
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Figure 13: ROC Chart : Area Under Curve of Labdata Paired and Squared
Long

Figure 14: ROC Chart : Area Under Curve of Full model

65



Figure 15: ROC Chart : Area Under Curve of Full model Long

Figure 16: ROC Chart : Area Under Curve of Reduced (from short model)
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Figure 17: ROC Chart : Area Under Curve of Reduced (from short model)
Long

Figure 18: ROC Chart : Area Under Curve of Reduced (from long model)
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Figure 19: ROC Chart : Area Under Curve of Reduced (from long model)
Long

Figure 20: ROC Chart : Area Under Curve of Paired
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Figure 21: ROC Chart : Area Under Curve of Paired Long

Figure 22: ROC Chart : Area Under Curve of Squared
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Figure 23: ROC Chart : Area Under Curve of Squared Long

Figure 24: ROC Chart : Area Under Curve of Paired and Squared
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Figure 25: ROC Chart : Area Under Curve of Area Under Curve of Paired
and Squared Long
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Figure 26: Model After regularization started from the short dataset, imple-
mented on the short dateset.
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Figure 27: Model After regularization started from the long dataset, after
Stepwise Regression for interaction and squared terms
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Figure 28: Model After regularization started from the long dataset, after
Stepwise Regression for interaction and squared terms
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