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Abstract
The proofs of Kostant’s nonlinear convexity theorem and Van den Ban’s more gen-
eral convexity theorem remain in the fields of Lie theory and rely on induction. In
1991 Lu and Ratiu discovered an alternative proof to Kostant’s nonlinear convex-
ity theorem using a symplectic approach. In 2006 Foth and Otto used a similar
symplectic approach for an alternative proof of Van den Ban’s convexity theorem.
In this thesis we study the prominent part that specific Poisson structures play in
these symplectic approaches. For a thorough understanding we include many results
concerning Poisson structures on Lie groups, examine the construction of the Lu-
Evens Poisson structure and include decompositions of semisimple Lie algebras and
groups.
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1. Introduction

Historical context
In 1973 Bertram Kostant proved a theorem which later became known as Kostant’s nonlinear
convexity theorem [13], which shows that for the Iwasawa decomposition of a semisimple Lie
group the projection of a certain Lie group action orbit is the convex hull of a discrete group
orbit. In 1986 Van den Ban proved a more general version of this theorem [20]. Both proofs
remain in the field of Lie theory and are based on induction.

In 1982 Atiyah [1] and independently Guillemin and Sternberg [8] proved convexity the-
orems concerning the images of a symplectic manifold under a moment map. This theorem
allowed Lu and Ratiu to prove Kostant’s nonlinear convexity theorem in a symplectic manner
for the case of a complex semisimple Lie group [15]. They defined a Poisson structure to
identify the Lie group action orbits as the symplectic leaves of this Poisson structure. Upon
applying the convexity theorem of Atiyah-Guillemin-Sternberg (AGS) to these newly found
symplectic leaves, one readily gets Kostant’s nonlinear convexity theorem for the case of a
complex semisimple Lie group. A result by Duistermaat [4] allowed them to prove the theo-
rem in the general case.

This symplectic approach inspired Foth and Otto to use the same approach for proving Van
den Ban’s convexity theorem [6]. For this they largely relied upon the work of Evens and
Lu [5], who developed a way of constructing Poisson manifolds as subsets of the variety of
Lagrangian subalgebras of a double Lie algebra.

Outline
The present thesis explores the construction and use of Poisson structures for the purpose of
proving the previously mentioned convexity theorems in a symplectic framework. In order for
us to do this, the first sections deal with quickly covering many of the mathematical subjects
which already mentioned without explanation in the above paragraphs and also fix notation.
For example we will look at Poisson structures and the properties that make them such useful
tools. Also we will review the Cartan decomposition and from there the Iwasawa decom-
position, since both Kostant’s and Van den Ban’s convexity theorems concern the Iwasawa
decomposition. We also briefly cover the concept of a moment map, as it plays an important
role in applying the AGS theorem. The following chapters will then build upon this to follow
the proofs of first Kostant’s and then (only partially) Van den Ban’s convexity theorem which
employ this symplectic framework. Along the way we will also illustrate theorems (Theorem
2.5 and Theorem 2.6) and a proof to Drinfeld’s theorem (Theorem 3.23) that were not readily
available in the literature.
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2. Multivectors
In this section we review the definitions of tensors, the wedge product, multivectors and mul-
tivector fields in order to fix notation and avoid confusion, since one can find different defini-
tions in literature.

2.1. Spaces of alternating maps and the wedge product
Let V be an n dimensional real vector space. Then V ∗ denotes the dual space of V , i.e. the
space of all linear maps α : V → R. The vector space V ∗ is also n dimensional and there exists
a natural isomorphism Ψ : V → (V ∗)∗ defined by Ψ(v)(α) = α(v) for any v ∈ V, α ∈ V ∗.

Now we define the space of k-multilinear maps T kV ∗ = {η : V k → R}, then T kV ∗ is a
linear space. Observe that T 1(V ) = V ∗. We now define η ∈ T kV ∗ to be alternating if

η(v1, ..., vi, ..., vj, ..., vk) = −η(v1, ..., vj, ..., vi, ..., vk)

for any v1, ..., vk ∈ V . If i 6= j and vi = vj , we then observe by the above that

η(v1, ..., vi, ..., vi, ..., vk) = 0 (1)

for an alternating k-multilinear map η. We define the space ∧k(V ∗) ⊂ T kV ∗ as the set of
alternating maps. It is easy to show that ∧k(V ∗) is a linear subspace of T kV ∗. If k > dimV
then every k-tuple (v1, ..., vk) of elements of V has a linear dependency. Without loss of
generality we assume that vk can be expressed as the sum

vk =
∑k−1

i=1
civi

with ci ∈ R. Let η ∈ ∧k(V ∗), then we observe by (1)

η(v1, ..., vk) =
∑k−1

i=1
ciη(v1, ..., vi, ..., vi) = 0

and therefore η = 0. We conclude that ∧k(V ∗) = 0 for any k > dimV , and as such define the
space of alternating multilinear maps

∧(V ∗) =
⊕n

k=1
∧k(V ∗).

We now define the map Alt : T kV ∗ → T kV ∗ by

Alt η(v1, ..., vk) =
1

k!

∑
σ∈Sk

sgnσ η(vσ(1), ..., vσ(k))

for η ∈ T kV ∗, vj ∈ V and Sk the set of permutations of the set {1, ..., k}.

Lemma 2.1 ([14, Lemma 12.3]). Take any η ∈ T kV ∗, then

(a) Alt η ∈ ∧k(V ∗),
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(b) Alt η = η if and only if η ∈ ∧k(V ∗).

We now take η ∈ ∧k(V ∗) and ω ∈ ∧l(V ∗). We then define η ⊗ ω : V k+l → R by

(η ⊗ ω)(v1, ..., vk+l) = η(v1, ..., vk)ω(vk+1, ..., vk+l)

and so η⊗ω ∈ T k+lV ∗. We then define the wedge product ·∧· : ∧k(V ∗)×∧l(V ∗)→ ∧k+l(V ∗)
by

η ∧ ω =
(k + l)!

k!l!
Alt(η ⊗ ω),

which can also be expressed as

(η ∧ ω)(v1, ..., vk+l) =
1

k!l!

∑
σ∈Sk+l

sgnσ η(vσ(1), ..., vσ(k))ω(vσ(k+1), ..., vσ(l))

when applied to vj ∈ V . The wedge product clearly defines a product map on ∧(V ∗), which
we find to be bilinear, associative and anticommutative (η ∧ ω = (−1)klω ∧ η for η ∈ ∧k(V ∗)
and ω ∈ ∧l(V ∗)) by [14, Proposition 12.8]. By the same proposition we have

(α1 ∧ ... ∧ αk)(v1, ..., vk) = det(αi(vj)).

for αj ∈ V ∗, vj ∈ V . The above equations will prove to be useful when doing calculations
involving a wedge product.

Now let α ∈ ∧k(V ∗) and v ∈ V , we then define the interior product of α with v, denoted
as vyα, by

(vyα)(w1, ..., wk−1) = α(v, w1, ..., wk−1), w1, ..., wk−1 ∈ V.

Since V ∗ is an n dimensional vector space we can also look at k-multilinear maps on V ∗ and
repeat the same process as above. We then define T kV = {A : (V ∗)k → R}, and ∧k(V ) ⊂
T kV the space of alternating maps. We now notice that ∧1(V ) = T 1(V ) = (V ∗)∗ ∼= V . This
is why elements of ∧k(V ) are called k-vectors, or more generally multivectors. The wedge
product on the spaces of multivectors can be defined in the same way as before, and so for
A ∈ ∧k(V ), B ∈ ∧l(V ) and αj ∈ V ∗ we find

(A ∧B)(α1, ..., αk+l) =
1

k!l!

∑
σ∈Sk+l

sgnσ A(ασ(1), ..., ασ(k))B(ασ(k+1), ..., ασ(l))

Now take vj ∈ V , then in literature we often see a k-vector A expressed as v1 ∧ ...∧ vk, while
in fact we then have A = Ψ(v1) ∧ ... ∧ Ψ(vk). However to avoid superfluous notation, as we
see more often, the isomorphism is supressed as we identify V and (V ∗)∗.

Let V and W be vector spaces and f : W → V a linear map. We find that f induces a map
fk : ∧k(W )→ ∧k(V ) defined by the equation

(fk(A))(α1, ..., αk) = A(f ∗α1, ..., f
∗αk), A ∈ ∧k(W ), α1, ..., αk ∈ V ∗,
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where f ∗ : V ∗ → W ∗ is the dual map of f . We call fk the k-multilinear extension of f , and
from now on we will also denote it by f without fear of confusion.

Let A ∈ ∧k(V ) and α ∈ V ∗, we then define the interior product of A with α, denoted as
αyA, in the same way as before, namely

(αyA)(β1, ..., βk−1) = A(α, β1, ..., βk−1), β1, ..., βk−1 ∈ V ∗

such that αyA ∈ ∧k−1(V ). If A ∈ ∧2(V ) and α ∈ V ∗ we find that αyA ∈ ∧1(V ) = V .
Therefore A defines a map

A# : V ∗ → V : α 7→ αyA.

If we calculate its dual map (A#)∗ : V ∗ → V we find

β((A#)∗(α)) = α(A#(β)) = −A(α, β) = −β(A#(α)), ∀α, β ∈ V,

and therefore (A#)∗ = −A#. It is then also clear that any map φ : V ∗ → V with φ∗ = −φ
defines an element B ∈ ∧2(V ) such that B# = φ.

Lemma 2.2. Let V and W be vector spaces and ι : W → V an injective linear map, then

ι(∧2(W )) = {A ∈ ∧2(V ) : imA# ⊂ im ι}. (2)

Proof. Take any B ∈ ∧2(W ) and α, β ∈ V ∗ then

β(ι(B)#(α)) = β(αyι(B)) = ι(B)(α, β) = B(ι∗α, ι∗β) = (ι∗β)((ι∗α)yB)

= β(ι(B#(ι∗α)))

and therefore ι(B)# ⊂ im ι. For the converse inclusion we take any A ∈ ∧2(V ) such that
imA# ⊂ im ι. Since ι is injective there exists a linear map ψ : V ∗ → W such that the
following diagram commutes.

W V

V ∗

ι

ψ

A#

Then also A# = −(A#)∗ = −ψ∗ ◦ ι∗ and we can therefore extend the above diagram to the
following commuting diagram.

W V

V ∗ W ∗

ι

ψ

A#

ι∗

−ψ∗
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Because ι is injective we know that ι∗ is surjective and since the above diagram commutes we
find im−ψ∗ ⊂ im ι. Now since ι is injective there exists a linear map φ : W ∗ → W such that
we can again expand the commuting diagram.

W V

V ∗ W ∗

ι

ψ

A#

ι∗

−ψ∗

φ

(3)

We then observe that

φ∗ ◦ ι∗ = (ι ◦ φ)∗ = (−ψ∗)∗ = −ψ = −φ ◦ ι∗,

and since ι∗ is surjective we find that φ∗ = −φ. This makes it possible to define B ∈ ∧2(W )
by taking B# = φ. By diagram (3) we then find for any α, β ∈ V ∗ that

ι(B)(α, β) = (ι∗β)(φ(ι∗α)) = β(ι(φ(ι∗α))) = β(A#(α)) = A(α, β),

and therefore A ∈ ι(∧2(W )). We have shown both inclusions and therefore conclude (2).

2.2. Multivector fields and the Schouten bracket
If M is a smooth manifold we can define the smooth vector bundle

∧k(M) =
⋃

m∈M
∧k(TmM)

and define Xk(M) as the set of smooth sections of ∧k(M). We note this to be very similar
to the definition of diffential forms and also X0(M) = C∞(M) and X1(M) = X(M), the
set of vector fields on M . This is why elements of Xk(M) are called k-vector fields, or more
generally multivector fields. We also observe that Xk(M) = {0} for k > dimM , and we then
define X∗(M) as the direct sum of all Xk(M). We call A ∈ X∗(M) homogeneous if there
exists a k such that A ∈ Xk(M), and we then call k the degree of A, also denoted by degA.

We can now also define the wedge product · ∧ · : Xk(M)× Xl(M) → Xk+l(M) by taking
the wedge product pointwise in each tangent space, such that for A ∈ Xk(M) andB ∈ Xl(M)
in any m ∈M we get

(A ∧B)(m) = A(m) ∧B(m) ∈ ∧k+l(TmM).

Therefore if X1, ..., Xk ∈ X(M) then X1 ∧ ... ∧Xk is a k-vector field on M .
Let X ∈ X(M) and let ϕt denote its flow. If A,B ∈ X∗(M) we calculate for any m ∈ M
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the Lie derivative of the wedge product

(£X(A ∧B))(m) =
d

dt

∣∣∣
t=0

(Tmϕt)
−1(A ∧B)(ϕt(m))

=
d

dt

∣∣∣
t=0

(Tmϕt)
−1A(ϕt(m)) ∧ (Tmϕt)

−1B(ϕt(m))

=
d

dt

∣∣∣
t=0

(Tmϕt)
−1A(ϕt(m)) ∧B(m) + A(m) ∧ (Tmϕt)

−1B(ϕt(m))

= (£XA)(m) ∧B(m) + A(m) ∧ (£XB)(m)

= ((£XA) ∧B + A ∧ (£XB))(m)

and conclude that the Lie derivative £X is a derivation relative to the wedge product. Since
the Lie derivative of vector fields results in the Jacobi-Lie bracket, one might wonder if there
exists something similar for multivector fields. The answer is yes and it is called the Schouten-
Nijenhuis bracket, or Schouten bracket for short.

Theorem 2.3 (Schouten bracket theorem, [17, Theorem 10.6.1]). There is a unique bilinear
operation [ · , · ] : X∗(M)× X∗(M) → X∗(M) natural with respect to the restriction to open
sets, called the Schouten bracket, that satisfies the following properties for any homogeneous
A,B,C ∈ X∗(M):

(a) It is a biderivation of degree −1, that is, it is bilinear,

deg[A,B] = degA+ degB − 1,

and

[A,B ∧ C] = [A,B] ∧ C + (−1)(degA+1) degBB ∧ [A,C].

(b) It is determined on C∞(M) and X(M) by

a) [f, g] = 0, for all f, g ∈ C∞(M);

b) [X, f ] = X(f), for all f ∈ C∞(M), X ∈ X(M);

c) [X, Y ] for all X, Y ∈ X(M) is the usual Jacobi-Lie bracket of vector fields.

(c) [A,B] = (−1)degA degB[B,A].

In addition, the Schouten bracket satisfies the graded Jacobi identity

(−1)degA degC [[A,B], C] + (−1)degB degA[[B,C], A] + (−1)degC degB[[C,A], B] = 0.

Definition 2.4. If A and B respectively are multivector fields on the smooth manifolds M and
N , and f : M → N is smooth, we then say that A and B are f -related, denoted as A ∼f B,
if and only if

Tmf(A(m)) = B(f(m)), ∀m ∈M.
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It is a well known fact that for vector fields f -relatedness extends to the Lie bracket. This
means that for vector fields Xj and Yj on respectively M and N such that Xj ∼f Yj for
j = 1, 2, we find that [X1, X2] ∼f [Y1, Y2]. The proof of this result is not naturally extended
to the Schouten bracket of multivector fields. However if f is a submersion or a immmersion
f -relatedness does extend to the Schouten bracket as stated in the following propositions.

Proposition 2.5. Let M and N be smooth manifolds and f : M → N a submersion. If Aj
and Bj are multivector fields on M and N respectively such that Aj ∼f Bj for j = 1, 2, then
the Schouten brackets of the multivector fields are f -related, i.e.

[A1, A2] ∼f [B1, B2] (4)

Proof. Take any z ∈ M . By the submersion theorem there exist open neighborhoods U of
z and V of f(z) with local coordinates (x1, ..., xm) at z and (x̃1, ..., x̃n) at f(z) such that f
becomes the projection

f(x1, ..., xn, xn+1, ..., xm) = (x1, ..., xn). (5)

If we denote ∂j = ∂/∂xj and ∂̃j = ∂/∂x̃j , we then find for any x ∈ U that

Txf(∂j) =

{
∂̃j if 1 ≤ j ≤ n

0 if n < j ≤ m
(6)

For practical purposes we denote ∂i1...ip = ∂i1 ∧ ... ∧ ∂ip for i1 < ... < ip, and then for x ∈ U

Txf(∂i1...ip) =

{
∂̃i1,...,ip if 1 ≤ ip ≤ n

0 if n < ip ≤ m
(7)

There exist smooth functions Ai1...ip1 and Aj1...jq2 on U such that

A1 =
∑

i1<...<ip
A
i1...ip
1 ∂i1...ip and A2 =

∑
j1<...<jq

A
j1...jq
2 ∂j1...jq .

Because A1 ∼f B1 and A2 ∼f B2 we find by (6)

B1 =
∑

i1<...<ip
ip≤n

B
i1...ip
1 ∂̃i1...ip and B2 =

∑
j1<...<jq
jq≤n

B
j1...jp
2 ∂̃j1...jq ,

where Bi1...ip
1 and Bj1...jp

2 are functions on V such that

B
i1...ip
1 (f(x)) = A

i1...ip
1 (x) and B

j1...jp
2 (f(x)) = A

j1...jq
2 (x), ∀x ∈ U. (8)

We note that the left hand sides of the above equations are independent of xn+1, ..., xm by (5)
and therefore for ip, jq ≤ n we conclude

∂`A
i1...ip
1 = 0 and ∂`A

j1...jq
2 = 0, ∀` > n. (9)
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We also note by (8) for ip, jq ≤ n that

∂`A
i1...ip
1 (x) = ∂̃`B

i1...ip
1 (f(x)) and ∂`A

j1...jq
2 (x) = ∂̃`B

j1...jq
2 (f(x)), ∀` ≤ n,

by the chain rule since ∂kf`(x) = ∂k(x`) = δk` for k ≤ n. It is now interesting to split both
multivector fields into the following parts

Ae1 =
∑

i1<...<ip
ip≤n

A
i1...ip
1 ∂i1...ip , Ao1 = A1 − Ae1,

Ae2 =
∑

j1<...<jq
jq≤n

A
j1...jq
2 ∂j1...jq , Ao2 = A2 − Ae2,

since then the Schouten bracket splits into the parts

[A1, A2] = [Ae1, A
e
2] + [Ae1, A

o
2] + [Ao1, A2].

We now apply [17, eq. (10.6.12)] to calculate each part when mapped by Txf for x ∈ U ,

Txf [Ae1, A
e
2](x) = Txf

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq≤n

( p∑
k=1

(−1)k+1A
i1...ip
1 (x)∂ikA

j1...jq
2 (x)∂iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂jlA
i1...ip
1 (x)A

j1...jq
2 (x)∂jli1....ipj1...jq

)
=

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq≤n

( p∑
k=1

(−1)k+1B
i1...ip
1 (f(x))∂̃ikB

j1...jq
2 (f(x))∂̃iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂̃jlB
i1...ip
1 (f(x))B

j1...jq
2 (f(x))∂̃jli1....ipj1...jq

)
= [B1, B2](f(x))

where ∂iki1....ipj1...jq means that ∂ik is omitted from ∂i1....ipj1...jq . For the second part we find

Txf [Ae1, A
o
2](x) = Txf

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq>n

( p∑
k=1

(−1)k+1A
i1...ip
1 (x)∂ikA

j1...jq
2 (x)∂iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂jlA
i1...ip
1 (x)A

j1...jq
2 (x)∂jli1....ipj1...jq

)
=

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq>n

(−1)q+p+1∂jqA
i1...ip
1 (x)A

j1...jq
2 (x)Txf(∂i1....ipj1...jq−1) = 0
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by (7) and (9). The third part also becomes zero,

Txf [Ae1, A
e
2](x) = Txf

∑
i1<...<ip
ip>n

∑
j1<...<jq

( p∑
k=1

(−1)k+1A
i1...ip
1 (x)∂ikA

j1...jq
2 (x)∂iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂jlA
i1...ip
1 (x)A

j1...jq
2 (x)∂jli1....ipj1...jq

)
=

∑
i1<...<ip
ip>n

∑
j1<...<jq

(−1)p+1A
i1...ip
1 (x)∂ipA

j1...jq
2 (x)Txf(∂i1....ip1j1...jq) = 0

by (7) and (9). This proves in local coordinates for any z ∈M that

Tzf([A1, A2](z)) = [B1, B2](f(z))

and therefore we conclude [A1, A2] ∼f [B1, B2].

Proposition 2.6. Let M and N be smooth manifolds and f : N → M an immersion. If Aj
and Bj are multivector fields on N and M respectively such that Aj ∼f Bj for j = 1, 2, then
the Schouten brackets of the multivector fields are f -related, i.e.

[A1, A2] ∼f [B1, B2] (10)

Proof. Take any z ∈ N . There exist open neighborhoods U of z and V of f(z) with local
coordinates (x1, ..., xn) at z and (x̃1, ..., x̃m) at f(z) such that f becomes the inclusion map

f(x1, ..., xn) = (x1, ..., xn, 0, ..., 0). (11)

We adopt the notation ∂j , ∂i1...ip and ∂iki1...ipj1...jq as defined in the proof of Proposition 2.5 and
we then note for any x ∈ U that

Txf(∂i1...ip) = ∂̃i1...ip . (12)

There exist smooth functions Ai1...ip1 and Aj1...jq2 on U with all 1 ≤ ik, jl ≤ n such that

A1 =
∑

i1<...<ip
ip≤n

A
i1...ip
1 ∂i1...ip and A2 =

∑
j1<...<jq
jq≤n

A
j1...jq
2 ∂j1...jq .

There also exist smooth functions Bi1...ip
1 and Bj1...jq

2 on V with all 1 ≤ ik, jl ≤ m such that

B1 =
∑

i1<...<ip
B
i1...ip
1 ∂̃i1...ip and B2 =

∑
j1<...<jq

B
j1...jp
2 ∂̃j1...jq ,

Because A1 ∼f B1 and A2 ∼f B2 we find by (7) for any x ∈ U ,

B
i1...ip
1 (f(x)) =

{
Ai1...ip(x) if 1 ≤ ip ≤ n

0 if n < ip ≤ m
(13)

B
j1...jp
2 (f(x)) =

{
A
j1...jq
2 (x) if 1 ≤ jq ≤ n

0 if n < jq ≤ m
(14)
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We also note by (13) and (14) for ip, jq ≤ n that

∂`A
i1...ip
1 (x) = ∂̃`B

i1...ip
1 (f(x)) and ∂`A

j1...jq
2 (x) = ∂̃`B

j1...jq
2 (f(x)), ∀` ≤ n, (15)

by the chain rule since ∂kf`(x) = δk`. We also note by (13) and (14) for ip, jq > n that

∂̃`B
i1...ip
1 (f(x)) = 0 and ∂̃`B

j1...jq
2 (f(x)) = 0, ∀` ≤ n, (16)

using the chain rule again. We split both multivector fields into the parts

Be
1 =

∑
i1<...<ip
ip≤n

B
i1...ip
1 ∂̃i1...ip , Bo

1 = B1 −Be
1,

Be
2 =

∑
j1<...<jq
jq≤n

B
j1...jq
2 ∂̃j1...jq , Bo

2 = B2 −Be
2,

since then the Schouten bracket splits into the parts

[B1, B2] = [Be
1, B

e
2] + [Be

1, B
o
2] + [Bo

1, B
e
2] + [Bo

1, B
o
2].

We now apply [17, eq. (10.6.12)] to calculate [A1, A2](x) when mapped by Txf for x ∈ U ,

Txf [A1, A2](x) = Txf
∑

i1<...<ip
ip≤n

∑
j1<...<jq
jq≤n

( p∑
k=1

(−1)k+1A
i1...ip
1 (x)∂ikA

j1...jq
2 (x)∂iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂jlA
i1...ip
1 (x)A

j1...jq
2 (x)∂jli1....ipj1...jq

)
=

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq≤n

( p∑
k=1

(−1)k+1B
i1...ip
1 (f(x))∂̃ikB

j1...jq
2 (f(x))∂̃iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂̃jlB
i1...ip
1 (f(x))B

j1...jq
2 (f(x))∂̃jli1....ipj1...jq

)
= [Be

1, B
e
2](f(x))

by (12) and (15). We apply [17, eq. (10.6.12)] to calculate the remaining Schouten brackets
that make up [B1, B2](f(x)), and see by (13), (14) and (16) that the underlined terms are zero.

[Be
1, B

o
2](f(x)) =

∑
i1<...<ip
ip≤n

∑
j1<...<jq
jq>n

( p∑
k=1

(−1)k+1B
i1...ip
1 (f(x))∂̃ikB

j1...jq
2 (f(x))∂̃iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂̃jlB
i1...ip
1 (f(x))B

j1...jq
2 (f(x))∂̃jli1....ipj1...jq

)
= 0,
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[Bo
1, B

e
2](f(x)) =

∑
i1<...<ip
ip>n

∑
j1<...<jq
jq≤n

( p∑
k=1

(−1)k+1B
i1...ip
1 (f(x))∂̃ikB

j1...jq
2 (f(x))∂̃iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂̃jlB
i1...ip
1 (f(x))B

j1...jq
2 (f(x))∂̃jli1....ipj1...jq

)
= 0,

[Bo
1, B

o
2](f(x)) =

∑
i1<...<ip
ip>n

∑
j1<...<jq
jq>n

( p∑
k=1

(−1)k+1B
i1...ip
1 (f(x))∂̃ikB

j1...jq
2 (f(x))∂̃iki1....ipj1...jq

−
q∑
l=1

(−1)l+p∂̃jlB
i1...ip
1 (f(x))B

j1...jq
2 (f(x))∂̃jli1....ipj1...jq

)
= 0.

This proves in local coordinates for any z ∈ N that

Tzf([A1, A2](z)) = [B1, B2](f(z))

and therefore we conclude [A1, A2] ∼f [B1, B2].
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3. Poisson structures
In this section we look at Poisson structures on manifolds and in particular Lie groups, how
they are defined and which characteristics make them useful for proving Kostant’s and Van
den Ban’s convexity theorems.

3.1. Poisson manifolds
Definition 3.1. A Poisson structure (or Poisson bracket) on a manifold M is a bilinear opera-
tion {, } on C∞(M), the smooth functions on M , such that

1. (M, {, }) is a Lie algebra,

2. if h ∈ C∞(M) then {·, h} is a derivation, i.e. for all f, g ∈ C∞(M) we have

{fg, h} = f{g, h}+ {f, h}g.

A Poisson manifold is a manifold equipped with a Poisson structure, denoted as (M, {, }).

Due to the derivation property of the bracket, it is possible to define Hamiltonian vector
fields on a Poisson manifold.

Theorem 3.2 ([17, Proposition 10.2.1]). For h ∈ C∞(M) there exists a unique vector field
Xh on M such that

Xh(g) = {g, h}, ∀g ∈ C∞(M).

We call Xh the Hamiltonian vector field of h.

The mapping h 7→ Xh is a Lie algebra anti-homomorphism from C∞(M) → X(M) [17,
Proposition 10.2.2], i.e. X{g,h} = −[Xg, Xh].

Even though the Poisson structure is a bracket of functions it can be shown that due to its
derivation property the bracket {f, g} at a point m ∈ M only depends on f by its differential
dfm ∈ T ∗zM [17]. Therefore there exists a mapping

πm : T ∗mM × T ∗mM → R : (dfm, dgm) 7→ {f, g}(m).

Since the Poisson bracket is antisymmetric we note that πm is an alternating map and therefore
πm ∈ ∧2(TmM). This allows us to come up with a different definition for a Poisson structure
on a manifold.

Definition 3.3. Let π ∈ X2(M), a bivector field on M , such that the bracket

{f, g}(m) = π(m)(df(m), dg(m)), m ∈M, f, g ∈ C∞(M) (17)

is a Poisson bracket. We then say that π defines a Poisson structure. A Poisson manifold can
then also be denoted by (M,π).

15



We remark that a 2-vector field is often called a bivector field. Let π be a bivector field on
a smooth manifold M and define a bracket {, } on M by (17). It is clear that this bracket is
bilinear and antisymmetric and for any f, g, h ∈ C∞(M) we observe by the product rule that

{fg, h}(m) = π(m)(d(fg)(m), dh(m)) = π(m)((f dg + df g)(m), h(m))

= f(m)π(m)(dg(m), dh(m)) + π(m)(df(m), dg(m))g(m)

= f(m){g, h}(m) + {f, h}(m)g(m)

and therefore {·, h} is a derivation. Therefore {, } is a Poisson bracket if and only if the Jacobi
identity holds for the bracket. We mention without proof that this is the case if and only if the
Schouten bracket of π with itself is zero [17, p.357], which then gives the following theorem.

Theorem 3.4. A bivector field π ∈ X2(M) defines a Poisson structure on a smooth manifold
M if and only if the Schouten bracket of π with itself is zero, i.e. [π, π] = 0.

We note that the Schouten bracket has become a useful tool for checking if bivector fields
define Poisson structures by the above theorem.

Let (M,π) be a Poisson manifold. We define the map π# : T ∗M → TM such that the
equation

π(m)(α, α′) = α(π#(m)(α′)), α, α′ ∈ T ∗mM

holds for all m ∈ M . We call this the vector bundle mapping associated to π, and for any
h ∈ C∞(M) we easily see π#(m)(dh(m)) = Xh(m). We now also define the subset

π#(T ∗M) =
⋃

m∈M
π#(T ∗mM) ⊂ TM

as the characteristic distribution of the Poisson structure. We define the rank of π at m ∈ M
as the dimension of π#(T ∗mM).

Assume that M is a Poisson manifold such that the characteristic distribution is equal to
TM . Then π# defines an isomorphism T ∗mM → TmM for every m ∈ M and then it is
possible to define a 2-form Ω on M by

Ω(m)(X,X ′) = π
(
(π#(m))−1(X), (π#(m))−1(X ′)

)
=
(
(π#(m))−1(X)

)
(X ′)

for X,X ′ ∈ TmM . The Pauli-Jost theorem [10, Theorem 1] [19] then proves that Ω is closed
(dΩ = 0) as a consequence of the Poisson structure’s Jacobi identity and therefore defines
a symplectic structure on M . This already alludes to how Poisson structures are related to
symplectic structures.

Definition 3.5. Let (N, πN) and (M,πM) both be Poisson manifolds, and f : N → M a
smooth map. We call f a Poisson map if and only if πN and πM are f -related.

Let (M,πM) be a Poisson manifold and i : N → M an injectively immersed submanifold.
We call i a Poisson immersion if for any n ∈ N we find

π#
M(i(n))(T ∗i(n)M) ⊂ imTni, (18)

which in other words means that for any n ∈ N the characteristic distribution of π at i(n) lies
within the image of Tni : TnN → Ti(n)M .
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Proposition 3.6. Let (M,πM) be a Poisson manifold, N a smooth manifold and i : N → M
a Poisson immersion. There exists an induced Poisson structure on N such that i is a Poisson
map.

Proof. Since i is an immersion we know that Tni : TnN → Ti(n)M is an injective map for any
n ∈ N . By (18) we apply Lemma 2.2 to find there exists a Bn ∈ ∧2(TnN) such that

Tni(Bn) = πM(i(n)) (19)

If we now define the bivector field πN ∈ X2(N) by πN(n) = Bn we find that πN and πM are
i-related by (19). By Proposition 2.6 we then find for any n ∈ N that [πN , πN ](n) = 0 since
[πM , πM ](i(n)) = 0 and Tni is injective. We conclude that πN defines a Poisson structure on
N and that i is a Poisson map.

Definition 3.7. Let (M,πM) be a Poisson manifold and let N be a submanifold of M . We call
N a Poisson submanifold if the inclusion map is a Poisson immersion.

Lemma 3.8. Let (N, πN) be a Poisson submanifold of (M,πM) with inclusion map i. The
Hamiltonian vector fields of f ∈ C∞(M) and f ◦ i ∈ C∞(N) are i-related. Moreover, for
n ∈ N , let a be the integral curve of Xf◦i such that a(0) = n and b be the integral curve of
Xf such that b(0) = i(n), then b = i ◦ a.

Proof. We recall that πN is the induced Poisson structure on N such that it is i-related with
πM by Proposition 3.6 and therefore we find for any n ∈ N and α, β ∈ T ∗i(n)M

β(π#
M(i(n))(α) = πM(i(n))(α, β) = Tni(πN(n))(α, β) = πN(n)((Tni)

∗α, (Tni)
∗β)

= ((Tni)
∗β)(πN(n)((Tni)

∗α)) = β(Tni(π
#
N(n)((Tni)

∗α)))

and as such π#
M(i(n)) = Tni ◦ π#

N(n) ◦ (Tni)
∗. We also recall d(f ◦ i)(n) = df(i(n)) ◦ Tni =

(Tni)
∗df(i(n)) for any n ∈ N and we are then able to calculate

Tni(Xf◦i(n)) = Tni(π
#
N(n)(d(f ◦ i)(n))) = Tni(π

#
N(n)((Tni)

∗df(i(n))))

= π#
M(i(n))(df(i(n))) = Xf (i(n))

which shows us that the Hamiltonian vector fields Xf◦i and Xf are i-related.
We define the curve c = i ◦ a. It is clear that c(0) = i(n) = b(0), and for any t ∈ R we

observe

c′(t) = Tc(t)i(a
′(t)) = Ti(a(t))i(Xf◦i(a(t))) = Xf (i(a(t))) = Xf (c(t))

and therefore c is an integral curve of Xf . By the uniqueness of integral curves we then
conclude b = c = i ◦ a.

Definition 3.9. Let (M,π) be a Poisson manifold and m1,m2 ∈ M . If there exists a path
between m1 and m2 that is piecewise constructed of integral curves of Hamiltonian vector
fields, then we say that m1 and m2 are in the same symplectic leaf. This is easily seen to be an
equivalence relation and we call the equivalence class containing m ∈ M the symplectic leaf
through m.
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Theorem 3.10 (Symplectic Stratification Theorem, [17, Proposition 10.4.4]). Let (M,π) be
a finite dimensional Poisson manifold. Then M is the disjoint union of its symplectic leaves.
Each symplectic leaf in M is an injectively immersed Poisson submanifold, and the induced
Poisson structure on the leaf is symplectic. The dimension of the leaf through a pointm equals
the rank of the Poisson structure at that point, and the tangent space to the leaf at m equals
π#(T ∗mM).

The above theorem tells us how Poisson structures on a manifold can be used to identify
submanifolds as symplectic, which will prove to be the main purpose the Poisson structures
used in sections 6 and 7.

Proposition 3.11. Let (M,π) be a Poisson manifold with i : N →M a Poisson submanifold.
Let n ∈ N , then the symplectic leaf through i(n) in M is a subset of i(N).

Proof. Take any m in the symplectic leaf through i(n). By Definition 3.9 there exists a path
from i(n) to m which is piecewise constructed of the integral curves of Hamiltonian vector
fields. Therefore there exist points mj ∈ M , functions fj ∈ C∞(M) and scalars Tj ∈ R
with 1 ≤ j ≤ k such the integral curves bj of Xfj take on the values bj(0) = mj−1 and
bj(Tj) = mj , where m0 = i(n) and mk = m.

Assume that mj−1 ∈ i(N), then there exists some n′ ∈ N such that i(n′) = mj−1. We
define by aj the integral curve of the Hamiltonian vector field of the function fj ◦ i ∈ C∞(N)
such that aj(0) = n′. By Lemma 3.8 we then find that mj = bj(Tj) = i(aj(Tj)) ∈ i(N).

Since m0 = i(n) ∈ i(N) we may now conclude by induction that m = mk ∈ i(N), and we
have therefore shown that the symplectic leaf through i(n) is a subset of i(N).

3.2. Poisson Lie groups and the double Lie algebra
Lie groups are a specific example of manifolds and therefore the notion of Poisson structures
makes sense on a Lie group. In this section we look at multiplicative multivector fields on Lie
groups and how they can be utilized in defining a Poisson structures on a Lie group.

Definition 3.12. A multivector field Π on a Lie group G is called multiplicative if

Π(g1g2) = rg2Π(g1) + lg1Π(g2), g1, g2 ∈ G (20)

where rg2 and lg1 are the differential mappings for the right multiplication by g2 and left
multiplication by g1 respectively.

For a multiplicative multivector field Π we easily observe that it is zero in the identity of
the Lie group G, as inserting g1 = g2 = e into (20) gives us Π(e) = 0. The intrinsic derivative
of Π then exists at the identity (see Appendix A) and it is defined as

deΠ : g→ ∧2(g) : X 7→ £XΠ(e)

where X is any vector field on G such that X(e) = X . The following lemma gives some
interesting properties of multiplicative multivector fields.
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Lemma 3.13. Assume that G is connected. Then,

(a) a multivector field Π is multiplicative if and only if Π(e) = 0 and the Lie derivative £V Π
is left invariant whenever V is a left invariant vector field on G;

(b) the Schouten bracket of a left invariant multivector field and a multiplicative multivector
field is left invariant;

(c) the Schouten bracket of two multiplicative multivector fields is again multiplicative;

(d) a multiplicative multivector field is identically zero on G if and only if its intrinsic deriva-
tive at e is zero.

Proof. Parts (a), (c) and (d) are from [15, Lemma 4.6] and we therefore refer the reader to
the original article for their proofs. We included (b) in this lemma, and we therefore show its
proof. Take Π1 a left invariant multivector field and Π2 a multiplicative multivector field on
G. We may assume that Π1 = V1 ∧ ...∧ Vk where all Vj are left invariant vector fields. By the
Schouten bracket product rule [17, eq. (10.6.9)] we find

[Π1,Π2] =
∑k

j=1
(−1)j−1V1 ∧ · · · ∧ V̌j ∧ · · · ∧ Vk ∧£VjΠ2

which immediately shows that the Schouten bracket is left invariant since each £VjΠ2 is left
invariant by (a).

Let Π be a multiplicative bivector field on a Lie group G. The dual map of the intrinsic
derivative deΠ : g→ ∧2(g) defines on g∗ the antisymmetric bracket [·, ·]Π : ∧2(g∗)→ g∗, i.e.

[ξ, η]Π(X) = deΠ(X)(ξ, η), X ∈ g, ξ, η ∈ g∗.

If ξ ∈ g∗ we denote the corresponding left invariant 1-form on G by ξl, and similarly we
denote by X l the left invariant vector field on G corresponding to X ∈ g. We can now extend
the bracket [, ]Π to the left invariant 1-forms, by defining [ξl, ηl]Π = ([ξ, η]Π)l. For X ∈ g we
then find by Lemma 3.13 (a) that £XlΠ is left invariant and then

£XlΠ(ξl, ηl)(e) = deΠ(X)(ξ, η) = X([ξ, η]Π) = X l([ξl, ηl]Π)(e)

and therefore by left invariance we find £XlΠ(ξl, ηl) = X l([ξl, ηl]Π).

Lemma 3.14. If G is a connected Lie group, λ a left invariant bivector field and Π a multi-
plicative bivector field on G, then

[λ,Π](ξl1, ξ
l
2, ξ

l
3) = −

∑
τ∈A3

λ(ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]Π) (21)

for any left invariant 1-forms ξlj on G, and A3 the set of even permutations.
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Proof. We may assume that λ = X l ∧ Y l for some X, Y ∈ b. We then find that

[λ,Π] = [X l,Π] ∧ Y l −X l ∧ [Y l,Π] = £XlΠ ∧ Y l −X l ∧£Y lΠ

We can then calculate

[λ,Π](ξl1, ξ
l
2, ξ

l
3) =

1

2

∑
τ∈S3

sgn(τ)
(
£XlΠ(ξlτ(1), ξ

l
τ(2))Y

l(ξlτ(3))−X l(ξlτ(1))£Y lΠ(ξlτ(2), ξ
l
τ(3))

)
=

1

2

∑
τ∈S3

sgn(τ)
(
X l([ξlτ(1), ξ

l
τ(2)]Π)Y l(ξlτ(3))−X l(ξlτ(1))Y

l([ξlτ(2), ξ
l
τ(3)]Π)

)
=
∑
τ∈A3

(
X l([ξlτ(2), ξ

l
τ(3)]Π)Y l(ξlτ(1))−X l(ξlτ(1))Y

l([ξlτ(2), ξ
l
τ(3)]Π)

)
= −

∑
τ∈A3

(X l ∧ Y l)(ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]Π) = −

∑
τ∈A3

λ(ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]Π)

which completes our proof.

The above lemma now allows us to prove the following lemma.

Lemma 3.15. [15, Lemma 4.7] On a connected Lie group G, a multiplicative bivector field Π
defines a Poisson structure if and only if the dual map of its intrinsic derivative at e defines a
Lie algebra structure on g∗.

Proof. We recall that Π defines a Poisson structure if and only if the Schouten bracket [Π,Π]
equals zero. Since [Π,Π] is multiplicative by Lemma 3.13 we find by the same lemma that
[Π,Π] equals zero if and only if the intrinsic derivative de[Π,Π] equals zero. The bracket
[, ]Π defined by the dual map of deΠ is necessarily antisymmetric and therefore defines a Lie
algebra structure on g∗ if and only if the Jacobi identity holds. We therefore prove the lemma
by showing that this Jacobi identity for [, ]Π is equivalent to de[Π,Π] = 0.

We take any X ∈ g and recall that then £XlΠ is left invariant. For ξj ∈ g∗ we then find by
Lemma 3.14,

de[Π,Π](X)(ξ1, ξ2, ξ3) = £Xl [Π,Π](ξl1, ξ
l
2, ξ

l
3)(e)

= 2[£XlΠ,Π](ξl1, ξ
l
2, ξ

l
3)(e)

= −2
∑

τ∈A3

£XlΠ(ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]Π)(e)

= −2
∑

τ∈A3

X l([ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]Π]Π)(e)

= −2
∑

τ∈A3

X([ξτ(1), [ξτ(2), ξτ(3)]Π]Π).

The above equation holds for any X ∈ g, and hence the Jacobi identity for [, ]Π is equivalent
to de[Π,Π] = 0.

The above lemma will prove to be a useful tool when showing that a bivector field on a Lie
group defines a Poisson structure. One such case is when we take any R ∈ ∧2(g) and then
define the bivector field π on the connected Lie group G by

π(g) = rgR− lgR, g ∈ G. (22)
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We then easily check that π is multiplicative by calculating π for g1, g2 ∈ G and using that lg1
and rg2 commute.

π(g1g2) = rg1g2R− lg1g2R = rg2rg1R− lg1lg2R
= rg2(rg1R− lg1R) + lg1(rg2R− lg2R) = rg2π(g1) + lg1π(g2)

The intrinsic derivative of π at the identity is explicitly given as

deπ(X) =
d

dt

∣∣∣
t=0
r−1

exp tXπ(exp tX) =
d

dt

∣∣∣
t=0
R− Adexp tX R = − adX R (23)

and the dual map of deπ defines a bracket [, ]π : ∧2(g∗)→ g∗.

Lemma 3.16. The bracket [, ]π on g∗ defined by the dual map of the intrinsic derivative at the
identity of π as defined in (22) is given by

[ξ, η]π = ad∗ξyR η − ad∗ηyR ξ

for ξ, η ∈ g∗, where ad∗X denotes the dual map of adX with respect to the canonical pairing
between g and g∗.

Proof. We show this with a calculation as for any X ∈ g we find

[ξ, η]π(X) = deπ(X)(ξ, η) = (− adX R)(ξ, η) = −R(ad∗X ξ, η)−R(ξ, ad∗X η)

= (ad∗X ξ)(ηyR)− (ad∗X η)(ξyR) = ξ(adX(ηyR))− η(adX(ξyR))

= −ξ(adηyRX) + η(adξyRX) = (ad∗ξyR η − ad∗ηyR ξ)(X)

which shows the desired equation.

We define the element [R,R] ∈ ∧3(g) as

[R,R](ξ1, ξ2, ξ3) =
∑

τ∈A3

ξτ(1)([ξτ(2)yR, ξτ(3)yR]) (24)

for ξ1, ξ2, ξ3 ∈ g∗. The notation used is reminiscent of the Schouten bracket, which will be
explained by Lemma 3.18.

Lemma 3.17. The bivector field π as in (22) defines a Poisson structure on G if and only if
[R,R] as defined in (24) is ad-invariant.

Proof. We start by calculating adX [R,R] for any X ∈ g when applied to ξ1, ξ2, ξ3 ∈ g∗.

(adX [R,R])(ξ1, ξ2, ξ3)

= [R,R](ad∗X ξ1, ξ2, ξ3) + [R,R](ξ1, ad∗X ξ2, ξ3) + [R,R](ξ1, ad∗X ξ2, ξ3)

=
∑

τ∈A3

[R,R](ad∗X ξτ(1), ξτ(2), ξτ(3))

=
∑

τ∈A3

(ad∗X ξτ(1))([ξτ(2)yR, ξτ(3)yR])

+ ξτ(3)([(ad∗X ξτ(1))yR, ξτ(2)yR]) + ξτ(2)([ξτ(3)yR, (ad∗X ξτ(1))yR])

=
∑

τ∈A3

ξτ(1)([X, [ξτ(2)yR, ξτ(3)yR]])

+ ξτ(1)([(ad∗X ξτ(2))yR, ξτ(3)yR]) + ξτ(1)([ξτ(2)yR, (ad∗X ξτ(3))yR])
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In order to rewrite the above we first take any X ∈ g and ξ, η ∈ g∗ and calculate

η(ad∗X ξ)yR) = R(ad∗X ξ, η) = adX R(ξ, η)−R(ξ, ad∗X η) = [ξ, η]π(X)− (ad∗X η)(ξyR)

= (adξ η)(X)− η(adX(ξyR)) = η(ad∗ξ X)− η([X, ξyR])

which then gives us (ad∗X ξ)yR = ad∗ξ X − [X, ξyR]. We note that we defined the map
adξ : g∗ → g∗ : η 7→ [ξ, η]π, even though g∗ is not necessarily a Lie algebra and ad is mostly
reserved for the adjoint representation of a Lie algebra. Nonetheless the terminology is useful
at the moment and we use the newly found identity to continue our calculation.

(adX [R,R])(ξ1, ξ2, ξ3)

=
∑

τ∈A3

ξτ(1)

(
[[X, ξτ(2)yR], ξτ(3)yR] + [ξτ(2)yR, [X, ξτ(3)yR]]

)
+ ξτ(1)

(
[ad∗ξτ(2) X − [X, ξτ(2)yR], ξτ(3)yR] + [ξτ(2)yR, ad∗ξτ(3) X − [X, ξτ(3)yR]]

)
=
∑

τ∈A3

ξτ(1)

(
[ad∗ξτ(2) X, ξτ(3)yR] + [ξτ(2)yR, ad∗ξτ(3) X]

)
=
∑

τ∈A3

−(ad∗ξτ(3)yR ξτ(1))(ad∗ξτ(2) X) + (ad∗ξτ(2)yR ξτ(1))(ad∗ξτ(3) X)

=
∑

τ∈A3

(− ad∗ξτ(3)yR ξτ(1) + ad∗ξτ(1)yR ξτ(3))(ad∗ξτ(2) X)

=
∑

τ∈A3

[ξτ(1), ξτ(3)]π(ad∗ξτ(2) X) =
∑

τ∈A3

[ξτ(2), [ξτ(1), ξτ(3)]π]π(X)

We therefore see that [R,R] is ad-invariant if and only if the Jacobi identity holds for the
bracket [, ]π. According to Lemma 3.15 the latter statement is equivalent to π defining a
Poisson structure on G.

We call any R ∈ ∧2(g) such that [R,R] is ad-invariant a classical r-matrix. The above
lemma has thus given a method for defining a Poisson structure on a connected Lie group
using a classical r-matrix.

Lemma 3.18. Let R ∈ ∧2(g) and Rl and Rr respectively be the left and right invariant
multivector fields on G such that Rl(e) = Rr(e) = R. Then the Schouten brackets of the
multivector fields with themselves are

[Rl, Rl](g) = −2lg[R,R], (25)
[Rr, Rr](g) = 2rg[R,R], (26)

for any g ∈ G and with [R,R] ∈ ∧3(g) as defined in (24).

Proof. We start with the case of the left invariant multivector field. Take Xi,j ∈ g such that
R =

∑
j X1,j ∧X2,j . If we take any ξ ∈ g∗, we find that

ξyR =
∑

j

∑
ρ∈S2

sgn(ρ) ξ(Xρ(1),j)Xρ(2),j

Also Rl =
∑

j X
l
1,j ∧X l

2,j and therefore by [17, eq. (10.6.10)] we observe

[Rl, Rl] = −
∑

j,k

∑
ρ,ρ′∈S2

sgn(ρρ′)[X l
ρ(1),j, X

l
ρ′(1),k] ∧X l

ρ(2),j ∧X l
ρ′(2),k.
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The mapping X 7→ X l where X l(e) = X from g to the left invariant vector fields on G is a
Lie algebra homomorphism and therefore

[Rl, Rl] = −
∑

j,k

∑
ρ,ρ′∈S2

sgn(ρρ′)[Xρ(1),j, Xρ′(1),k]
l ∧X l

ρ(2),j ∧X l
ρ′(2),k

from which we conclude that [Rl, Rl] is left invariant. If we then apply the above equation
when taken in the identity to any ξ1, ξ2, ξ3 ∈ g∗ we find

[Rl, Rl](e)(ξ1, ξ2, ξ3)

= −
∑
j,k

∑
ρ,ρ′∈S2

∑
τ∈S3

sgn(ρρ′) sgn(τ)ξτ(1)([Xρ(1),j, Xρ′(1),k])ξτ(2)(Xρ(2),j)ξτ(3)(Xρ′(2),k)

= −
∑
j,k

∑
ρ,ρ′∈S2

∑
τ∈S3

sgn(τ)ξτ(1)([sgn(ρ)ξτ(2)(Xρ(2),j)Xρ(1),j, sgn(ρ′)ξτ(3)(Xρ′(2),k)Xρ′(1),k])

= −
∑

τ∈S3

sgn(τ)ξτ(1)([ξτ(2)yR, ξτ(3)yR]) = −2
∑

τ∈A3

ξτ(1)([ξτ(2)yR, ξτ(3)yR])

= −2[R,R](ξ1, ξ2, ξ3)

and therefore [Rl, Rl](e) = −2[R,R]. Since [Rl, Rl] is left invariant we conclude (25).
For the case of the right invariant multivector field we can repeat the above process, but we

note that the mapping X 7→ Xr where Xr(e) = X from g to the right invariant vector fields
on G is a Lie algebra anti-homomorphism, which makes that we pick up an extra minus along
the way, such that we find (26).

Definition 3.19. A Poisson Lie group is a Lie group U equipped with a Poisson structure πU
such that the multiplication map µ : U × U → U is a Poisson map, where U × U is equipped
with the Poisson structure πU ⊕ πU .

From this definition it is easy to discern that for any u1, u2 ∈ U we find

πU(u1u2) = ru2πU(u1) + lu1πU(u2) (27)

and thus (U, πU) is a Poisson Lie group if and only if πU is multiplicative. The Lie algebra
u of U , is also the Lie algebra of the identity connected component of U . The bivector field
πU still defines a Poisson structure on this identity component and we therefore conclude by
Lemma 3.15 that the dual map of the intrinsic derivative deπU defines a Lie algebra structure
on u∗, which is often expressed as

[ξ, η]u∗(X) = deπU(X)(ξ, η) =
d

dt

∣∣∣
t=0

(
r−1

exp(tX)πU(exp(tX))
)

(ξ, η), X ∈ u, ξ, η ∈ u∗.

If we now look at the direct sum of vector spaces u⊕u∗, we notice that there exists a natural
scalar product defined by

〈X + ξ, Y + η〉 = η(X) + ξ(Y ), X, Y ∈ u, ξ, η ∈ u∗, (28)

and that 〈, 〉 is symmetric and nondegenerate. On the vector space u ⊕ u∗ it is now possible
to uniquely define a Lie algebra structure such that both u and u∗ are subalgebras and that 〈, 〉

23



becomes ad-invariant with respect to this new Lie algebra structure [16, Theorem 1.12]. We
call this the double Lie algebra of u, denote it by d = u ./ u∗ and denote the corresponding
Lie bracket as [, ]d. Due to the ad-invariance of the pairing this Lie bracket is explicititly given
by 

[X, Y ]d = [X, Y ]u

[X, ξ]d = ad∨X ξ − ad∨ξ X

[ξ, η]d = [ξ, η]u∗

X, Y ∈ u, ξ, η ∈ u∗,

where ad∨X = (− adX)∗ and ad∨ξ = (− adξ)
∗ with respect to the canonical pairing between u

and u∗.
Interestingly we can now also define an action of U on d given by

u · (X + ξ) = AduX + (Ad∨u ξ)y(r−1
u πU(u)) + Ad∨u ξ, u ∈ U,X ∈ u, ξ ∈ u∗ (29)

where Ad∨u = (Adu−1)∗ with respect to the canonical pairing between u∗ and u. For any
Z ∈ u and ξ, η ∈ u∗ we observe

d

dt

∣∣∣
t=0
η
(
(Ad∨exp(tZ) ξ)y(r−1

exp(tZ)πU(exp(tZ)))
)

=
d

dt

∣∣∣
t=0

(r−1
exp(tZ)πU(exp(tZ)))(Ad∨exp(tZ) ξ, η)

=
d

dt

∣∣∣
t=0

(r−1
exp(tZ)πU(exp(tZ)))(ξ, η) + πU(e)(ad∨Z ξ, η)

= [ξ, η]u∗(Z) = (adξ η)(Z) = η(− ad∨ξ Z).

Using the above we find for any X,Z ∈ u and ξ ∈ u∗,

d

dt

∣∣∣
t=0

exp(tZ) · (X + ξ)

=
d

dt

∣∣∣
t=0

Adexp(tZ) X + (Ad∨exp(tZ) ξ)y(r−1
exp(tZ)πU(exp(tZ))) + Ad∨exp(tZ) ξ

= adZ X − ad∨ξ Z + ad∨Z ξ = [Z,X + ξ]d,

and we thus observe that the action defined in (29) corresponds with the adjoint action of U as
a subgroup of the adjoint group of d.

Definition 3.20. A triple of Lie algebras (g, g+, g−) together with a nondegenerate ad-invariant
symmetric bilinear form 〈, 〉 on g is called a Manin triple if g+ and g− are isotropic subalgebras
of g with respect to 〈, 〉 such that g = g+ ⊕ g− is a direct sum of vector spaces.

We see immediately that (d, u, u∗) is a Manin triple. Interestingly, if (g, g+, g−) is a Manin
triple, there exists an identification of g− with g∗+ by mapping X− 7→ 〈X−, ·〉, since 〈, 〉 is
nondegenerate.
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3.3. Drinfeld’s theorem
The following section addresses a theorem by Drinfeld [3] which finds a correspondence be-
tween Poisson homeneous spaces and the variety of Lagrangian subalgebras of d. Although
Drinfeld himself describes the proof of this theorem “simple and more or less straightfor-
ward” and therefore does not give it in the original publication, we have found otherwise and
therefore include our version of the proof in this section. We note that contrary to our earlier
expectations, Drinfeld’s theorem is not necessary in defining the Lu-Evens Poisson structure.
However, despite its inapplicability, we still would like give an exposition of this work as it
expands upon the literature used in the present thesis.

Let (U, πU) be a Poisson Lie group with Lie algebra u, d be the double Lie algebra of u and
the pairing 〈, 〉 as defined in (28).

Definition 3.21. A subalgebra l of d is called Lagrangian if dim l = dim u and 〈a, b〉 = 0 for
all a, b ∈ l. We denote the set of Lagrangian subalgebras of d by L(d).

We note immediately that u and u∗ are both Lagrangian subalgebras. As all Lagrangian
subalgebras are n dimensional by definition it is clear that L(d) is a subset of Gr(n, d), the
Grassmannian of n dimensional subspaces of d. The adjoint group D of d is a Lie group that
acts on Gr(n, d). Because elements of D as Lie algebra homomorphisms they also preserve
Lie subalgebras. Finally since 〈, 〉 is ad-invariant we find thatD preservesL(d). We remember
that U acts on d by (29), and therefore can be immersed into D as a Lie subgroup. Therefore
U also acts on L(d).

Definition 3.22. Let (U, πU) be a Poisson Lie group and (M,π) be a Poisson manifold. We
call M a (U, πU)-homogeneous Poisson space if it is equipped with a transitive action σ :
U ×M → M : (u,m) 7→ um which is a Poisson map, where U ×M is equipped with the
Poisson structure πU ⊕ π.

Since σ is a Poisson map, we find for any u ∈ U and m ∈M that

π(um) = Tmσu(π(m)) + Tuσm(πU(u)), (30)

where Tmσu and Tuσm are respectively the differentials of the maps σu : M →M : m 7→ um
and σm : U →M : u 7→ um.

As the action is transitive, we see that σm is a submersion and also that the entire Poisson
structure on M is determined by π(m) ∈ ∧2(TmM) for a fixed m ∈ M . Now let Um be the
stabilizer subgroup of m in U , with Lie algebra um. Then σm : U → M factors through to
a diffeomorphism σm : U/Um → M : uUm 7→ um [22, Proposition 15.5]. Through this
diffeomorphism we can identify u/um ∼= TmM by the map

ψm ≡ TeUm(σm) : X + um 7→
d

dt

∣∣∣
t=0

exp(tX)m.

Then ψ−1
m π(m) ∈ ∧2(u/um) and we note that Teσm = ψm ◦ ρm by the chain rule, where

ρm : u→ u/um is the canonical projection. Also we find that the dual map of ρm has image

im ρ∗m = u⊥m = {η ∈ u∗ : η|um = 0}
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and it therefore defines an isomorphism

χm : u⊥m → (u/um)∗,

such that ρ∗m ◦ χm = idu⊥m
. We now define a subspace lm ⊂ d depending on m by

lm = {X + ξ : X ∈ u, ξ ∈ u⊥m, (χmξ)y(ψ−1
m π(m)) = X + um}. (31)

Theorem 3.23 (Drinfeld [3]).

1. lm is a Lagrangian subalgebra of d for all m ∈M .

2. For all m ∈M and u ∈ U ,

lm ∩ u = um, (32)
u · lm = lum. (33)

3. LetM be a U -homogeneous space. The existence of a (U, πU)-homogeneous Poisson struc-
ture π on M is equivalent to the existence of a U -equivariant map

P : M → L(d) : m 7→ lm

such that lm ∩ u = um for all m ∈M .

We call the map P the Drinfeld map and lm the Lagrangian subalgebra d associated to
(M,π) at the point m. Before we prove the above theorem we prove some useful lemmas
first.

Lemma 3.24. For a fixed m ∈ M there exists a left invariant bivector field λ on U such that
ρmλ(e) = ψ−1

m π(m). Then $ := λ+ πU and π are σm-related.

Proof. We know that ψ−1
m π(m) ∈ ∧2(u/um), and so we know there exist Xj, Yj ∈ u such that

ψ−1
m π(m) =

∑
j(Xj + um) ∧ (Yj + um). We now define λ(e) =

∑
j Xj ∧ Yj ∈ ∧2(u), such

that ρmλ(e) = ψ−1
m π(m). We make λ a left invariant bivector field on U , i.e. λ(u) = luλ(e).

We then observe for any u′ ∈ U that

(σm ◦ lu)(u′) = uu′m = σu(u
′m) = (σu ◦ σm)(u′)

and by differentiating the above identity for u′ at e we can calculate

Tuσmλ(u) = Tuσmluλ(e) = TmσuTuσmλ(e) = Tmσuψmρmλ(e) = Tmσuπ(m). (34)

By substituting (34) into equation (30) we get

π(σm(u)) = Tuσm(λ(u) + πU(u)) = Tuσm($(u)), (35)

which shows that $ and π are σm-related.
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An interesting consequence of this lemma is when we use that σm is a submersion and apply
Proposition 2.5 to find that [π, π] and [$,$] = [λ, λ] + 2[λ, πU ] are σm-related.

Lemma 3.25. If ξ1, ξ2, ξ3 ∈ u∗, then

[λ, λ](e)(ξ1, ξ2, ξ3) = −2
∑

τ∈A3

ξτ(1)([ξτ(2)yλ(e), ξτ(3)yλ(e)]), (36)

[λ, πU ](e)(ξ1, ξ2, ξ3) = −
∑

τ∈A3

λ(e)(ξτ(1), [ξτ(2), ξτ(3)]u∗). (37)

Proof. We apply Lemma 3.18 to find [λ, λ](e) = [λ(e), λ(e)] ∈ ∧3(g). Then we immediately
find (36) by using (24).

Take Ue as the identity connected component of U , and define ξlj as the left invariant 1-form
on Ue corresponding to ξj for j = 1, 2, 3. Since πU is multiplicative we can apply Lemma
3.14 to find

[λ, πU ](ξl1, ξ
l
2, ξ

l
3) = −

∑
τ∈A3

λ(ξlτ(1), [ξ
l
τ(2), ξ

l
τ(3)]πU )

If we recall that [, ]u∗ is the bracket defined by πU , then taking the above equation in e imme-
diately delivers us (37).

On the other hand if we now take Xj + ξj ∈ d for j = 1, 2, 3, we then find

〈X1 + ξ1,[X2 + ξ2, X3 + ξ3]d〉
= 〈X1, [ξ2, ξ3]d + [X2, ξ3]d + [ξ2, X3]d〉+ 〈ξ1, [X2, X3]d + [X2, ξ3]d + [ξ2, X3]d〉
= 〈X1, [ξ2, ξ3]u∗〉+ 〈[X1, X2]u, ξ3〉 − 〈ξ2, [X1, X3]u〉

+ 〈ξ1, [X2, X3]u〉+ 〈X2, [ξ3, ξ1]u∗〉+ 〈[ξ1, ξ2]u∗ , X3〉

=
∑

τ∈A3

〈Xτ(1), [ξτ(2), ξτ(3)]u∗〉+ 〈ξτ(1), [Xτ(2), Xτ(3)]u〉 (38)

All the previous results now combine in the result:

Lemma 3.26. Let ξj ∈ u⊥m for j = 1, 2, 3, then

(ψ−1
m [π, π](m))(χmξ1, χmξ2, χmξ3) = −2〈ξ1yλ(e) + ξ1, [ξ2yλ(e) + ξ2, ξ3yλ(e) + ξ3]d〉.

Proof. We had already noted by Lemma 3.24 that

(ψ−1
m [π, π](m))(χmξ1, χmξ2, χmξ3) = (ψ−1

m [π, π](σm(e)))(χmξ1, χmξ2, χmξ3)

= (ψ−1
m Teσm[$,$](e))(χmξ1, χmξ2, χmξ3)

= ([λ, λ](e) + 2[λ, πU ](e))(ρ∗mχmξ1, ρ
∗
mχmξ2, ρ

∗
mχmξ3)

= [λ, λ](e)(ξ1, ξ2, ξ3) + 2[λ, πU ](e)(ξ1, ξ2, ξ3)

We can then apply Lemma 3.25, and (38) to find

(ψ−1
m [π, π](m))(ξ1, ξ2, ξ3) = [λ, λ](e)(ξ1, ξ2, ξ3) + 2[λ, πU ](e)(ξ1, ξ2, ξ3)

= −2
∑

τ∈A3

ξτ(1)([ξτ(2)yλ(e), ξτ(3)yλ(e)]u) + λ(e)(ξτ(1), [ξτ(2), ξτ(3)]u∗)

= −2
∑

τ∈A3

〈ξτ(1), [ξτ(2)yλ(e), ξτ(3)yλ(e)]u〉+ 〈ξτ(1)yλ(e), [ξτ(2), ξτ(3)]u∗〉

= −2〈ξ1yλ(e) + ξ1, [ξ2yλ(e) + ξ2, ξ3yλ(e) + ξ3]d〉
which completes our proof.
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The next lemma gives a relatively result from linear algebra, which we mention without
proof.

Lemma 3.27 ([5, Lemma 2.24]). Let V be an n dimensional vector space and let V ∗ be its
dual space. On the direct sum vector space V ⊕ V ∗, consider the symmetric product defined
by

〈v1 + λ1, v2 + λ2〉 = λ1(v2) + λ2(v1), v1, v2 ∈ V ;λ1, λ2 ∈ V ∗.

Let V0 be any subspace of V . For α ∈ ∧2(V/V0), define

Wα = {v + λ : v ∈ V, λ ∈ V ⊥0 , λyα = v + V0}

Then α 7→ Wα is a one-to-one correspondence between elements in ∧2(V/V0) and maximal
isotropic subspaces W of V ⊕ V ∗ such that W ∩ V = V0.

Proof of Drinfeld’s theorem (Theorem 3.23). First we prove part 2, as we will use its results in
proving part 1. It is clear that um ⊂ lm. Also ifX ∈ lm∩u, thenX+um = 0y(ψ−1

m π(m)) = 0
and therefore X ∈ um, from which we conclude (32).

Take any X ∈ um, then exp(tX)m = m for all t ∈ R. From this we then find that for any
u ∈ U and t ∈ R that

exp(t(u ·X))um = exp(tAduX)um = u exp(tX)u−1um = u exp(tX)m = um

and so we find that u ·X ∈ uum and therefore u · um ⊂ uum. Since now also uum = u · (u−1 ·
uum) ⊂ u · uu−1um = u · um we conclude that u · um = uum, or in other words Adu um = uum.
From this we can immediately also conclude that if ξ ∈ u⊥m that then Ad∨u ξ ∈ u⊥um.

If we now take any u ∈ U and X + ξ ∈ lm, we then find that u · (X + ξ) ∈ lum if and only
if

(χum Ad∨u ξ)y(ψ−1
umπ(um)) = AduX + (Ad∨u ξ)y(ru−1πU(u)) + uum. (39)

In order to show this we first note that σm ◦ ru = σum and then we apply Lemma 3.24 to
calculate

ψ−1
umπ(um) = ψ−1

umπ(σm(u)) = ψ−1
umTuσm($(u)) = ψ−1

umTuσmrur
−1
u $(u)

= ψ−1
umTeσumr

−1
u $(u) = ρumr

−1
u (luλ(e) + πU(u))

= ρum(Adu$(e) + r−1
u πU(u))

We apply this to find

(χum Ad∨u ξ)y(ψ−1
umπ(um)) = (χum Ad∨u ξ)y(ρum(Adu λ(e) + r−1

u πU(u)))

= ρum
(
(ρ∗umχum Ad∨u ξ)y(Adu λ(e) + r−1

u πU(u))
)

= (Ad∨u ξ)y(Adu λ(e) + r−1
u πU(u)) + uum

= Adu(ξyλ(e)) + (Ad∨u ξ)y(ru−1πU(u)) + uum. (40)
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We then observe that since X + ξ ∈ lm we get

ξyλ(e) + um = ρm((ρ∗mχmξ)yλ(e)) = (χmξ)y(ρmλ(e)) = (χmξ)y(ψ−1
m π(m))

= X + um.

Therefore X − ξyλ(e) ∈ um which means that Adu(X − ξyλ(e)) ∈ uum. This combined with
(40) proves that equation (39) holds, and therefore u · lm ⊂ lum. We can easily conclude from
this result that (33) holds by looking at u−1 · lum.

For part 1 it is clear by Lemma 3.27 that lm is a maximal isotropic subspace of d. Take any
a, b ∈ lm and Z ∈ um. We then find

〈Z, [a, b]d〉 = 〈[Z, a]d, b〉 =
d

dt

∣∣∣
t=0
〈exp(tz) · a, b〉

Since Z ∈ um we observe that exp(tZ)m = m for any t ∈ R and thus using (33) we find

exp(tZ) · a ∈ exp(tZ) · lm = lexp(tZ)m = lm,∀t ∈ R.

Using that lm is isotropic we therefore find that

〈z, [a, b]d〉 =
d

dt

∣∣∣
t=0
〈exp(tz) · a, b〉 =

d

dt

∣∣∣
t=0

0 = 0 (41)

Now take any Xj + ξj ∈ lm for j = 1, 2, 3. We now apply Lemma 3.24 and find that there
exists a left invariant bivector field λ on U such that

Xj + um = (χmξj)y(ψ−1
m π(m)) = (χmξj)y(ρmλ(e)) = ρm((ρ∗mχmξj)y(λ(e)))

= ξjyλ(e) + um

and so there exists Zj ∈ um such that Xj = Zj + ξjyλ(e). We note that ξjyλ(e) + ξj ∈ lm
since zj ∈ lm by part 2. We then find by repeatedly applying (41) that

〈X1 + ξ1,[X2 + ξ2, X3 + ξ3]d〉
= 〈Zj + ξ1yλ(e) + ξ1, [Z2 + ξ2yλ(e) + ξ2, Z3 + ξ3yλ(e) + ξ3]d〉
= 〈ξ1yλ(e) + ξ1, [Z2 + ξ2yλ(e) + ξ2, Z3 + ξ3yλ(e) + ξ3]d〉
= 〈[ξ1yλ(e) + ξ1, Z2 + ξ2yλ(e) + ξ2]d, ξ3yλ(e) + ξ3〉
= 〈[ξ3yλ(e) + ξ3, ξ1yλ(e) + ξ1]d, Z2 + ξ2yλ(e) + ξ2〉
= 〈[ξ3yλ(e) + ξ3, ξ1yλ(e) + ξ1]d, ξ2yλ(e) + ξ2〉
= 〈ξ1yλ(e) + ξ1, [ξ2yλ(e) + ξ2, ξ3yλ(e) + ξ3]d〉

We can then apply Lemma 3.26 again and that [π, π] = 0 since π defines a Poisson structure
to find that

〈X1 + ξ1,[X2 + ξ2, X3 + ξ3]d〉 = (ψ−1
m [π, π](m))(ξ1, ξ2, ξ3) = 0

Since lm is maximal isotropic we then find that [X2 + ξ2, X3 + ξ3] ∈ lm, from which we
conclude that lm is a subalgebra of d.
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For proving one direction of part 3 we notice that a (U, πU)-homogeneous Poisson structure
π on M defines a Drinfeld map as a direct consequence of parts 1 and 2 of the theorem.

For the converse we want to show that the Drinfeld map P induces a (U, πU)-homogeneous
Poisson structure on M . Pick any m ∈ M . Because lm ⊂ d is maximal isotropic and because
lm ∩ u = um, Lemma 3.27 shows that there is a unique element π(m) ∈ ∧2(u/um) such that
(31) holds. Define a bivector field π on M by (30). This is well defined because the Drinfeld
map is U -equivariant, which gives (33). By Lemma 3.24 there exists a left invariant bivector
field λ on U such that ρmλ(e) = ψ−1

m π(m), and as such ξjyψ−1
m π(m) = ξjyλ(e) + um for

ξj ∈ u⊥m. Therefore ξjyλ(e) + ξj ∈ lm, while Lemma 3.26 gives us

(ψ−1
m [π, π](m))(χmξ1, χmξ2, χmξ3) = −2〈ξ1yλ(e) + ξ1, [ξ2yλ(e) + ξ2, ξ3yλ(e) + ξ3]〉

and since lm is a Lagrangian subalgebra we then find [π, π] = 0 and therefore that π is Poisson.
It is (U, πU)-homogeneous because (33) holds by definition.

3.4. Lu-Evens Poisson structure
In this section we discuss a Poisson structure on the set of Lagrangian subalgebras of a double
Lie algebra found by Evens and Lu in [5]. In section 7 we will see this structure play an
important part in proving Van den Ban’s convexity theorem.

As in the previous section, let (U, πU) be a Poisson Lie group with Lie algebra u and let
d = u ./ u∗ be the double Lie algebra. We note d∗ = (u ⊕ u∗)∗ = u∗ ⊕ (u∗)∗ ∼= u∗ ⊕ u,
and thus we denote elements of d∗ as ξ + X with ξ ∈ u∗ and X ∈ u. There exists a natural
isomorphism between d and its dual defined by the nondegenerate pairing 〈, 〉 which is given
by

# : d∗ → d : ξ +X 7→ X + ξ.

We now define R ∈ ∧2(d) by

R(ξ +X, η + Y ) = η(X)− ξ(Y ), X, Y ∈ u, ξ, η ∈ u∗ (42)

and we then easily observe (ξ+X)yR = X− ξ. We recall from section 3.3 that the Lie group
D is defined as the adjoint group of d and that U is a Lie subgroup of D.

Lemma 3.28. R as defined in (42) is a classical r-matrix and

[R,R](f1, f2, f3) = −〈#f1, [#f2,#f3]d〉 (43)

for f1, f2, f3 ∈ d∗.

Proof. We first calculate [R,R] explicitly. Take any fj = ξj +Xj ∈ d∗, then

[R,R](f1, f2, f3)

=
∑

τ∈A3

(ξτ(1) +Xτ(1))([(ξτ(2) +Xτ(2))yR, (ξτ(3) +Xτ(3))yR]d)

=
∑

τ∈A3

〈Xτ(1) + ξτ(1), [Xτ(2) − ξτ(2), Xτ(3) − ξτ(3)]d〉.
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By using the symmetry and the ad-invariance of 〈, 〉 and the isotropy of u and u∗ we then find

[R,R](f1, f2, f3)

= 〈X1 + ξ1, [X2 − ξ2, X3 − ξ3]d〉+ 〈X1 − ξ1, [X2 + ξ2, X3 − ξ3]d〉
+ 〈X1 − ξ1, [X2 − ξ2, X3 + ξ3]d〉

= 〈X1 + ξ1, [X2 − ξ2, X3 − ξ3]d〉+ 〈X1 − ξ1, 2[X2, X3]d − 2[ξ2, ξ3]d〉
= 〈X1 + ξ1, [X2 − ξ2, X3 − ξ3]d〉 − 〈X1, 2[ξ2, ξ3]d〉 − 〈ξ1, 2[X2, X3]d〉
= 〈X1 + ξ1, [X2 − ξ2, X3 − ξ3]d − 2[ξ2, ξ3]d − 2[X2, X3]d〉
= −〈X1 + ξ1, [X2 + ξ2, X3 + ξ3]d〉 = −〈#f1, [#f2,#f3]d〉

and thus we have proven (43). Now we ought to check that [R,R] is ad-invariant, with respect
to the adjoint representation of D on d, which we denote by Ad to distinguish it from the
adjoint representation of U on u. For any d ∈ D we observe

f1(Add#f2) = 〈#f1,Add#f2〉 = 〈Add−1#f1,#f2〉 = f2(Add−1#f1)

= Ad
∨
d f2(#f1) = 〈#Ad

∨
d f2,#f1〉 = f1(#Ad

∨
d f2)

and thus # ◦ Ad
∨
d = Add ◦#. We apply this to (43) and see

[R,R](Ad
∨
d f1,Ad

∨
d f2,Ad

∨
d f3) = −〈#Ad

∨
d f1, [#Ad

∨
d f2,#Ad

∨
d f3]d〉

= −〈Add#f1, [Add#f2,Add#f3]d〉
= −〈Add#f1,Add[#f2,#f3]d〉
= −〈#f1, [#f2,#f3]d〉
= [R,R](f1, f2, f3)

which is an equivalent statement of [R,R] being ad-invariant.

Since R is a classical r-matrix we can conclude by Lemma 3.17 that the bivector field

π−(d) =
1

2
(rdR− ldR), d ∈ D, (44)

defines a Poisson structure on D and thus (D, π−) is a Poisson Lie group.

Definition 3.29. Let (G, π) be a Poisson Lie group with a Lie subgroup H . We call H a
Poisson Lie subgroup of (G, π) if the inclusion map is a Poisson immersion.

Proposition 3.30. (U, πU) is a Poisson Lie subgroup of (D, π−).

Proof. In order to prove that the inclusion i : U → D map is a Poisson immersion, we need
to show for any u ∈ U ,

π#
− (i(u))(T ∗i(u)D) ⊂ imTui.
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Since i is a Lie group homomorphism we find i ◦ lu = li(u) ◦ i for any u ∈ U , and therefore

Tui ◦ lu = Te(i ◦ lu) = (li(u) ◦ i) = li(u) ◦ Tei,

from which we conclude that imTui = li(u) imTei. Also T ∗i(u)D = (l−1
i(u))

∗T ∗eD = (l−1
i(u))

∗d∗

and therefore we ought to prove(
l−1
i(u)π−(i(u))

)#
(d∗) = l−1

i(u)

(
π#
− (i(u))((l−1

i(u))
∗d∗)

)
⊂ imTei. (45)

We therefore want to explicitly calculate l−1
i(u)π−(i(u)) ∈ ∧2(d). For any ξ + X, η + Y ∈ d∗

we get

2(l−1
i(u)π−(i(u)))(ξ +X, η + Y ) = (l−1

i(u)ri(u)R−R)(ξ +X, η + Y )

= Ad
−1

i(u)R(ξ +X, η + Y )−R(ξ +X, η + Y ) (46)

where Ad denotes the adjoint representation of D on d. In the proof of Lemma 3.28 we
showed the identity Ad

∨
d = #−1 ◦Add ◦# for any d ∈ D. Also since the action of U on d by

(29) we find that Adi(u)a = uu̇. If ξ +X ∈ d∗ we then find

Ad
∨
i(u)(ξ +X) = #−1(Adi(u)(X + ξ)) = #−1(u · (X + ξ))

= Ad∨u ξ + AduX + (Ad∨u ξ)y(r−1
u πU(u)).

Using the above we compute

Ad
−1

i(u)R(ξ +X, η + Y )

= R(Ad∨u ξ + AduX + (Ad∨u ξ)y(r−1
u πU(u)),Ad∨u η + Adu Y + (Ad∨u η)y(r−1

u πU(u)))

= (r−1
u πU(u))(Ad∨u ξ,Ad∨u η)− (r−1

u πU(u))(Ad∨u η,Ad∨u ξ)

+ (Ad∨u η)(AduX)− (Ad∨u ξ)(Adu Y )

= 2(Ad−1
u r−1

u πU(u))(ξ, η) + η(X)− ξ(Y )

= 2(l−1
u πU(u))(ξ, η) +R(ξ +X, η + Y ).

We note that Tei : u → d and therefore if ξ + X ∈ d then (Tei)
∗(ξ + X) = ξ. By combining

the above with (46) we observe

(l−1
i(u)π−(i(u)))(ξ +X, η + Y ) = (l−1

u πU(u))(ξ, η)

= (l−1
u πU(u))((Tei)

∗(ξ +X), (Tei)
∗(η + Y )) = (Tei(l

−1
u πU(u)))(ξ +X, η + Y )

and therefore (l−1
i(u)π−(i(u)) = Tei(l

−1
u πU(u)). By Lemma 2.2 we conclude that (45) holds,

and therefore i is a Poisson immersion. Therefore U is a Poisson Lie subgroup of (D, π−), but
we still need to check that the induced Poisson structure on U by π− is exactly πU by showing
that πU and π− are i-related. We recall i ◦ lu = li(u) ◦ i and observe

π−(i(u)) = li(u)(Tei(l
−1
u πU(u))) = Tu(li(u) ◦ i ◦ l−1

u )(πU(u)) = Tui(πU(u)),

which completes the proof.
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Pick any l ∈ L(d). The orbit D · l by the adjoint action of D on L(d) is a smooth manifold,
as it is identified with D/Dl by [22, Proposition 15.5], where Dl is the stabilizer subgroup of
l in D. We specifically name the action

α : D ×D · l→ D · l : (d, l′) 7→ d · l′

and we note that α is transitive. From α we define the maps αd : D · l→ D · l : l′ 7→ d · l′ and
αl′ : D → D · l : d 7→ d · l′. Because α is transitive we observe that αl is a submersion. We
define a bivector field Π on D · l by

Π(l′) = 1
2
Teαl′(R), l′ ∈ D · l. (47)

Proposition 3.31. Π defines a Poisson structure on D · l.

Proof. For any d ∈ D we observe that αd·l = αl ◦ rd and therefore

2Π(αl(d)) = 2Π(d · l) = Teαd·l(R) = Te(αl ◦ rd)(R) = Tdαl(rdR) = Tdαl(R
r(d))

from which we conclude that 2Π and Rr, the right invariant multivector field on D defined by
R, are αl-related. By Proposition 2.5 and Lemma 3.18 we then find that

4[Π,Π](d · l) = [2Π, 2Π](αl(d)) = Tdαl(2rd[R,R]) = 2Teαd·l([R,R]) (48)

for any d ∈ D.
Take any l′ ∈ D · l and v ∈ T ∗l′ (D · l). Then f := v ◦ Teαl′ ∈ d∗, and since α describes the

adjoint action we find that kerTeαl′ = dl′ = {a ∈ d : [a, l′]d ⊂ l′}, the normalizer subalgebra
of l′ in d. Therefore f ∈ d⊥l′ . We know l′ ⊂ dl′ since l′ a subalgebra and then f ∈ l′⊥. Because
l′ is isotropic we find #(l′⊥) ⊂ l′ and as such #(f) ∈ l′.

To determine [Π,Π](l′) we apply it to vj ∈ T ∗l′ (D · l) for j = 1, 2, 3. By (48) this equals
applying [R,R] to fj := vj ◦Teαl′ up to a scalar. By the previous paragraph all #(fj) ∈ l′ and
by (43) we then find

[Π,Π](l′)(v1, v2, v3) = 1
2
[R,R](f1, f2, f3) = −1

2
〈#f1, [#f2,#f3]d〉 = 0

since l′ is a Lagrangian subalgebra. Therefore [Π,Π] equals zero everywhere, which completes
our proof.

The following lemma is not needed in defining the Lu-Evens Poisson structure, but will be
used in the proof of Lemma 7.6.

Lemma 3.32. Let l′ ∈ D · l such that l′ is its own normalizer, i.e. dl′ = l′. Then there exists a
linear isomorphism φ : l′ → T ∗l′ (D · l) such that for any a, b ∈ l′ we find

Π(l′)(φ(a), φ(b)) = 〈pru a, b〉,

where pru : d→ u is the projection along u∗. Furthermore,

(Teαl′) ∗ ◦φ = χ,

where χ : l′ → l′⊥ : a 7→ 〈a, ·〉.
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Proof. We note that the map Teαl′ : d → Tl′(D · l) has kernel dl′ = l′, and therefore there
exists a linear isomorphism ψ : d/l′ → Tl′(D · l) such that Teαl′ = ψ ◦ ρ, where ρ : d→ d/l′

the canonical projection. We note that ψ∗ : T ∗l′ (D · l)→ (d/l′)∗ also is an isomorphism while
ρ∗ : (d/l′)∗ → d∗ clearly has image l′⊥ and therefore defines and defines an isomorphism
ρ∗ : (d/l′)∗ → l′⊥. We finally notice that χ : l′ → l′⊥ : X + ξ 7→ 〈X + ξ, ·〉 = ξ + X
is an isomorphism since l′ is Lagrangian. This allows us to define the isomorphism φ =
(ψ∗)−1 ◦ (ρ∗)−1 ◦ χ, for which we notice

(Teαl′)
∗ ◦ φ = ρ∗ ◦ ψ∗ ◦ φ = ρ∗ ◦ (ρ∗)−1 ◦ χ = ρ∗ ◦ (ρ∗)−1 ◦ χ = χ.

By combining the above with (47) we calculate for any X + ξ, Y + η ∈ l′,

Π(l′)(φ(X + ξ), φ(Y + η)) = 1
2
Teαl′(R)(φ(X + ξ), φ(Y + η))

= 1
2
R(χ(X + ξ), χ(Y + η)) = 1

2
R(ξ +X, η + Y ) = 1

2
(η + Y )((ξ +X)yR)

= 1
2
〈X − ξ, Y + η〉 = 1

2
〈(X − ξ) + (X + ξ), Y + η〉 = 〈X, Y + η〉

= 〈pru(X + ξ), Y + η〉,

which completes the proof.

Proposition 3.33. (D · l,Π) is a (D, π−)-homogeneous space.

Proof. We already observed that the action α is transitive. By the definition of Π we find

Π(d · l′) = 1
2
Teαd·l′(R) = Tdαl′(

1
2
rdR) = Tdαl′(

1
2
ldR + π−(d))

and since αl′ ◦ ld = αd ◦ αl′ this gives us

Π(d · l′) = Tl′αd(Teαl′(
1
2
R)) + Tdαl′(π−(d)) = Tl′αd(Π(l′)) + Tdαl′(π−(d))

and thus we conclude that α is a Poisson map.

We recall that the inclusion map i : U → D is Poisson, and if we define the action α̃ :
U ×D · l→ D · l by

α̃(u, l′) = α(i(u), l′), u ∈ U, l′ ∈ D · l.

We then define U · l ⊂ D · l as the orbit of l by the action α̃, which is a smooth manifold as
it is identified with U/Ul by [22, Proposition 15.5], where Ul is the stabilizer subgroup of l in
U . If we denote by α̃l′ : U → U · l : u 7→ α̃(u, l′) and by il the inclusion map U · l→ D · l we
observe the following diagram to be commutative.

U D

U · l D · l

i

α̃l′ αl′

il

(49)
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Proposition 3.34. U · l is a Poisson submanifold of (D · l,Π).

Proof. Take any l′ ∈ U · l and any v, w ∈ T ∗l′ (D · l). We observe

Π(l′)(v, w) = 1
2
(Teαl′(R))(v, w) = 1

2
(R)((Teαl′)

∗v, (Teαl′)
∗w) = w(1

2
Teαl′(((Teαl′)

∗v)yR))

and we therefore conclude that Π#(l′)(v) = 1
2
Teαl′(((Teαl′)

∗v)yR)). We recall from the proof
of Proposition 3.31 that ξ + X := (Teαl′)

∗v ∈ d∗ and X + ξ = #(ξ + X) ∈ l′ ⊂ kerTeαl′ .
We also recall that (ξ +X)yR = X − ξ and therefore

Π#(l′)(v) = 1
2
Teαl′((ξ +X)yR) = 1

2
Teαl′((X − ξ) + (X + ξ)) = Teαl′(X).

We recall Tei : u→ d : X 7→ X and therefore by diagram (49) we observe

Π#(l′)(v) = Teαl′(TeiX) = Te(αl′ ◦ i)(X) = Te(il ◦ α̃l′)(X) = Tl′il(Teα̃l′(X)) ∈ imTl′il

and therefore il : U · l→ D · l is a Poisson immersion since il(l′) = l′, from which we conclude
that U · l is a Poisson submanifold of (D · l,Π).

By the above proposition we know that there exists an induced Poisson structure on U · l
defined by a bivector field Π′, that Π′ and Π are il-related and that therefore il is a Poisson map
from the Poisson manifold (U · l,Π′) to the (D · l,Π).

Lemma 3.35. Let (M,πM) and (N, πN) be Poisson manifolds and let f : M → N be a
Poisson map. Let M0 ⊂ M and N0 ⊂ N be Poisson submanifolds such that f(M0) ⊂ N0,
then the induced map f0 : M0 → N0 is a Poisson map.

Proof. If we denote the inclusion maps iM and iN we observe that the following diagram
commutes.

M N

M0 N0

f

f0

iM iN (50)

Let πM0 ∈ X2(M0) and πN0 ∈ X2(N0) define the induced Poisson structures on M0 and N0

respectively. Since πM0 and πM are iM -related while πM and πN are f -related we find that πM0

and πN are (f ◦ iM)-related. By diagram (50) this means that πM0 and πN are (iN ◦f0)-related
and therefore

πN(iN(f0(m))) = Tm(iN ◦ f0)(πM0(m)) = Tf0(m)iN(Tmf0(πM0(m)))

for any m ∈ M0. On the other hand since iN is a Poisson immersion we know Tf0(m is
injective while

πN(iN(f0(m))) = Tf0(m)iN(πN0(f0(m)))

and therefore πN0(f0(m)) = Tmf0(πM0(m)) for any m ∈ M0. We conclude that f0 is a
Poisson map since πM0 and πN0 are f0-related.
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Corollary 3.36. (U · l,Π′) is a (U, πU)-homogeneous space.

Proof. By Proposition 3.30 (U, πU) is a Poisson Lie subgroup of (D, π−) with inclusion map
i. Its orbit (U · l,Π′) is a Poisson submanifold of (D · l,Π) with inclusion map il by Proposition
3.34. It is clear that (U × U · l, πU ⊕ Π′) is a Poisson submanifold of (D ×D · l, π− ⊕ Π) by
the map

i× il : U × U · l→ D ×D · l : (u, l′) 7→ (i(u), il(l
′)).

Because (D · l,Π) is a (D, π−)-homogeneous space by Proposition 3.33 we know that the
action map α is a Poisson map. By the definition of U · l we observe that α(U ×U · l) ⊂ U · l.
By Lemma 3.35 we conclude that the induced action map

α0 : U × U · l→ U · l
is a Poisson map. Since α0 clearly is transitive we conclude that (U · l,Π′) is a (U, πU)-
homogeneous space.

Since (U · l,Π′) is a (U, πU)-homogeneous space we recall from Drinfeld’s theorem (Theo-
rem 3.23) that there exists a Drinfeld map P : U · l → L(d), which maps any l′ ∈ U · l to its
associated Lagrangian subalgebra of d.

Theorem 3.37 ([5, Theorem 2.21]). For any l ∈ L(d), the Lagrangian subalgebra of d asso-
ciated to (U · l,Π′) at l equals

ul ⊕ (u⊕ u⊥l ) ∩ l, (51)

where ul is the normalizer subalgebra of l in u.

Proof. We recall that the Lagrangian subalgebra of d associated to (U · l,Π′) at l, which we
will denote by l′, is defined as

l′ = {X + ξ : X ∈ u, ξ ∈ u⊥l , (χlξ)y(ψ−1
l Π′(l)) = X + ul},

where the maps ψl : u/ul → Tl(U · l) and χl : u⊥l → (u/ul)
∗ are isomorphisms. We will prove

that l′ equals (51).
Take any X + ξ ∈ l′, then ξ ∈ u⊥l , and thus there exists Y ∈ u such that ξ + Y ∈ d⊥l .

We know by the proof of Proposition 3.34 that there exists some v ∈ T ∗l (D · l) such that
(Teαl)

∗v = ξ + Y and Π#(l)(v) = Teαl(Y ). Since l lies in both D · l and U · l we find that
il(l) = l. Since Π and Π′ are il-related we also find

Π#(l)(v) = vyΠ(l) = vy(TlilΠ
′(l)) = vy((Tlil ◦ ψl ◦ ψ−1

l )Π′(l)) (52)
= (Tlil ◦ ψl)((Tlil ◦ ψl)

∗v)y(ψ−1
l Π′(l))

By differentiating the maps in diagram (49) and extending it with u/ul we get the following
commuting diagram.

u/ul u d

Tl(U · l) Tl(D · l)

ψl

ρl Tei

Teα̃l Teαl

Tlil

(53)
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We recall that χl ◦ ρ∗l = id(u/ul)∗ and we therefore conclude by the above diagram,

(Tlil ◦ ψl)
∗ = χl ◦ ρ∗l ◦ (Tlilψl)

∗ = χl ◦ (Tl ◦ il ◦ ψl ◦ ρl)∗ = χl ◦ (Teαl ◦ Tei)∗

= χl ◦ (Tei)
∗ ◦ (Teαl)

∗

and therefore,

(Tlil ◦ ψl)
∗v = χl(Tei)

∗(Teαl)
∗v = χl(Tei)

∗(ξ + Y ) = χlξ.

By combining the above equation with (52) and by using diagram (53) again we observe,

Π#(l)(v) = (Tlil ◦ ψl)
(
(χlξ)y(ψ−1

l Π′(l))
)

= (Tlil ◦ ψl)(X + ul) = (Tlil ◦ ψl)(ρl(X))

= Teαl(Tei(X)) = Teαl(X).

Therefore X − Y ∈ kerTeαl = dl and thus X − Y ∈ u ∩ dl = ul.
It is clear that Y + ξ ∈ u⊕ u⊥l . Since l is Lagrangian and a subset of dl we find

Y + ξ = #(ξ + Y ) ⊂ #(d⊥l ) ⊂ #(l⊥) = l,

from which we finally conclude

X + ξ = (X − Y ) + (Y + ξ) ∈ ul ⊕ (u⊕ u⊥l ) ∩ l,

and therefore l′ is a subset of (51). We easily observe that (51) is isotropic since

〈ul, ul〉 = 0, 〈ul, u⊕ u⊥l 〉 = 0, 〈l, l〉 = 0,

and since l′ is maximal isotropic we conclude that l′ equals (51).

Let U∗ be a connected and simply connected Lie group with Lie algebra u∗. Since there is a
symmetry between u and u∗ in the definition of d, we expect that there also exists a symmetry
between U and U∗ in D. Lemma 3.31 shows us that the Poisson structure π− restricted to U
is a Poisson structure πU . In the same way we can restrict π− to U∗ and call it πU∗ . It must be
a multiplicative bivector field and by (23) we calculate the intrinsic derivative

deπU∗(ξ)(X, Y ) = (−1
2
adξR)(X, Y ) = −1

2
(R([ξ,X]d, Y ) +R(X, [ξ, Y ]d))

= −1
2
((ad∨X ξ)(Y )− (ad∨Y ξ)(X)) = ξ(−[X, Y ]u),

for any X, Y ∈ u and ξ ∈ u∗. We therefore conclude by Lemma 3.15 that πU∗ defines a
Poisson structure on U∗. Clearly (U∗, πU∗) is a Poisson Lie subgroup of (D, π−). The orbit
U∗ · l is a Poisson submanifold of (D · l,Π) and a (U∗, πU∗)-homogeneous space, but we omit
the proofs here as they are very similar the proofs of Proposition 3.34 and Corollary 3.36.
Since U · l and U∗ · l are both Poisson submanifolds of D · l we observe by Proposition 3.11
that (U · l) ∩ (U∗ · l) contains the symplectic leaf through l.
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4. Moment maps and convexity theorems
Let G be a Lie group with Lie algebra g which acts on a Poisson manifold (M,π) by the
smooth left action σ : G×M → M : (g,m) 7→ gm. For every g ∈ G we can then define the
diffeomorphism σg : M → M : m 7→ gm. We say that the action σ leaves π invariant if π is
σg-related to itself for every g ∈ G, and the action then describes a symmetry of (M,π).

By this action we can also define for X ∈ g a vector field σX on M called the infinitesimal
generator by

σX(m) =
d

dt

∣∣∣
t=0
σ(exp(tX),m)

The mapping X 7→ σX is a Lie algebra anti-homomorphism [22, Lemma 15.1], i.e. σ[X,Y ] =
−[σX , σY ].

Definition 4.1. A map J : M → g∗ defines functions JX ∈ C∞(M) for X ∈ g by JX(m) =
J(m)(X). We call J a moment map for the action σ if the Hamiltonian vector field of JX
equals the infinitesimal generator ofX , i.e. π#(dJX) = σX . We then also call σ a Hamiltonian
action.

If we define XH(M) as the set of Hamiltonian vector fields on M , then by the above defi-
nition σX ∈ XH(M) for any X ∈ g and a Hamiltonian action σ. Then also the diagram below
commutes.

g

C∞(M) XH(M)

X 7→JX X 7→σX

h7→Xh

Interestingly the mapping X 7→ JX for a moment map J is a Lie algebra homomorphism, i.e.
J[X,Y ] = {JX , JY }, since the other two maps in the diagram are anti-homomorphisms.

There then exist the following convexity theorems relating to moment maps.

Theorem 4.2 (Atiyah [1]-Guillemin-Sternberg [8]). If J : M → t∗ is a moment map for a
Hamiltonian torus T action on a compact symplectic manifold M , then the image J(M) is the
convex hull of J(MT ), where MT denotes the fixed point set of the action.

Theorem 4.3 (Duistermaat [4]). If J : M → t∗ is a moment map for a Hamiltonian torus
action on a compact symplectic manifold M and if Q is the fixed point set (or a connected
component of it) of an anti-symplectic involution of M leaving J invariant, then J(Q) =
J(M) and it is the convex hull of J(MT ∩Q).

Theorem 4.4 (Hilgert-Neeb-Plank [9, Theorem 4.1 (i),(v)]). If J : M → t∗ is a moment
map for a Hamiltonian torus T action on a connected symplectic manifold M , such that J
is proper, i.e. J is a closed mapping and J−1(Z) is compact for every Z ∈ t∗. Then J(M)
is a closed, locally polyhedral, convex set. More precisely, for each m ∈ M there exists a
neighborhood UJ(m) ⊂ t∗ of J(m) such that J(M)∩UJ(m) = (J(m) + ΓJ(m))∩UJ(m), where
ΓJ(m) = t⊥m + Cm. Here, tm denotes the Lie algebra of the stabilizer Tm of m, and Cm ⊂ t∗m
denotes the cone which is spanned by the weights of the linearized action of Tm. The cone
ΓJ(m) is independent of the choice of preimage point of J(m).
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We recall from the previous section that a Poisson structure foliates a manifold into sym-
plectic leaves. Since the above convexity theorems only apply to symplectic manifolds, we
discern the reason to why Poisson structures are particularly useful in proving Kostant’s and
Van den Ban’s convexity theorems. Poisson structures are a means identifying particular sub-
manifolds as symplectic, upon which the above convexity theorems then may be applied.
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5. Decompositions of semisimple Lie algebras
Both Kostant’s and Van den Ban’s convexity theorems concern the Iwasawa decomposition of
a semisimple Lie group. This section covers certain aspects of the structure of semisimple Lie
algebras and semisimple Lie groups needed for the purpose of the present thesis, starting with
the Cartan decomposition.

5.1. Cartan decomposition
Let g be a real semisimple Lie algebra and let Bg be its Killing form. We then call an auto-
morphism τ on g an involution if τ 2 = idg, the identity map on g.

Lemma 5.1. Let V be a real or complex vector space and τ an endomorphism of V such that
τ 2 = idV . Then τ only has eigenvalues 1 and −1, and V is a direct sum of the (+1)- and
(−1)-eigenspaces.

Proof. Let (·, ·) be an inner product on V . The bilinear form (or sesquilinear form if V is
complex) 〈·, ·〉 defined by

〈X, Y 〉 = (X, Y ) + (τX, τY )

is easily shown to be an inner product of V . Since τ 2 = idV it is clear that 〈τX, τY 〉 = 〈X, Y 〉,
and therefore τ is orthogonal if V is real and unitary if V is complex with respect to 〈·, ·〉. Also
if λ is an eigenvalue of τ and v 6= 0 such that τv = λv, then λ2v = τ 2v = v and therefore
λ = ±1, while

V = ker(τ − idV )⊕ ker(τ + idV ),

the direct sum of eigenspaces.

Definition 5.2. We call an involution θ on g a Cartan involution if and only if the symmetric
bilinear form

Bθ(X, Y ) = −Bg(X, θY ), X, Y ∈ g (54)

is positive definite.

Since θ is an involution, its only possible eigenvalues are 1 and −1 by Lemma 5.1 and thus
has corresponding eigenspaces, k and p respectively. We find the following inclusions

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p, (55)

due to θ being an automorphism, and we note that k is a subalgebra of g while p is not. We
also note that if X ∈ k then adX preserves the eigenspaces k and p. If Y ∈ p then adY maps
k and p into one another. Interestingly we then find that adX adY also maps k and p into one
another, and as such

Bg(X, Y ) = Trg(adX adY ) = Trk(adX adY ) + Trp(adX adY ) = 0.
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This also gives Bθ(X, Y ) = −Bg(X, θY ) = Bg(X, Y ) = 0, and we therefore conclude that
k and p are orthogonal with respect to both Bg and Bθ. We recall that Bθ is positive definitie
since θ is a Cartan involution and find as a result

Bg(X1, X2) = −Bθ(X1, θX2) = −Bθ(X1, X2) < 0, ∀X1, X2 ∈ k,

Bg(Y1, Y2) = −Bθ(Y1, θY2) = Bθ(Y1, Y2) > 0, ∀Y1, Y2 ∈ p,

from which we conclude that Bg is negative (positive) definite on k (on p).

Definition 5.3. We call a vector space decomposition g = k⊕p a Cartan decomposition if and
only if the subspaces bracket according to (55) and the Killing form Bg is negative definite on
k and positive definite on p.

We have previously found that a Cartan involution leads to a Cartan decomposition, however
one can also easily show the converse. Let g be a real semisimple Lie algebra with Cartan
decomposition g = k⊕ p. We define the map θ : g→ g by

θ(X + Y ) = X − Y X ∈ k, Y ∈ p.

It is clear that θ2 = idg while θ is an automorphism as a consequence of (55) and therefore θ
is an involution. It is easily checked that Bθ as defined in (54) is positive definite on both k
and p, and therefore θ is a Cartan involution.

5.2. Cartan decomposition in the complex case
If g is a complex semisimple Lie algebra, we can regard it as a real vector space gR by
only allowing multiplication by real scalars. The Lie bracket of g still defines a Lie bracket
on gR and therefore gR is a real Lie algebra. If {v1, ..., vn} is a basis of g we find that
{v1, ..., vn, iv1, ..., ivn} is a basis of gR. The Killing form BgR on gR then equals 2 ReBg.
The Killing form of g is nondegenerate by the semisimplicity of g and from this we conclude
that BgR is also nondegenerate and therefore gR is also semisimple. We call a u a real form of
g if u is a subalgebra of gR such that gR = u⊕ iu as vector spaces. If u is also a compact sub-
algebra of gR, i.e. the Killing form BgR is negative definite on u, then u is a compact real form
of g. We mention without proof that every complex semisimple Lie algebra has a compact
real form [11, Theorem 6.11].

Let u be a compact real form of g, then

BgR(iX, iY ) = 2 ReBg(iX, iY ) = −2 ReBg(X,X) = −BgR(X,X) > 0, ∀X, Y ∈ u.

and therefore BgR is positive definite on iu. Clearly k = u and p = iu bracket according
to (55) and therefore gR = u ⊕ iu is a Cartan decomposition. We then also observe that
the corresponding Cartan involution is complex conjugation with respect to u, the proof of
which we omit. In light of previous observations, this means that any complex semisimple Lie
algebra has a Cartan decomposition. It requires more work to prove, but this is also true for
any real semisimple Lie algebra (see [11, Corollary 6.18]).
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Moreover, if gR = k⊕ p is a Cartan decomposition of a complex semisimple Lie algebra g
regarded as a real Lie algebra gR, then k is a compact real form and p = ik.

Conversely let g be real semisimple Lie algebra. We define a complex vector space gC by the
real tensor product

gC = g⊗R C

which we call the complexification of g. We identify g with the subspace g ⊗ 1 ⊂ gC, and
multiplication by a complex scalar is defined on gC as λ(X ⊗ µ) = X ⊗ λµ. The complex-
ification is a complex Lie algebra as the bracket of g extends to gC. It is clear that gC is a
complex Lie algebra, (gC)R = g⊕ ig as real vector spaces and thus g is a real form of gC. We
note that BgC restricted to g× g is equal to Bg and therefore gC is semisimple since BgC must
be nondegenerate.

Now assume there exists a Cartan decomposition k⊕ p of g, then u = k⊕ ip is a subalgebra
of (gC)R by (55). Since B(gC)R is the real part of the complex linear extension of 2Bg, and
since u⊕ iu = (gC)R we find that u is a compact real form of gC.

5.3. Global Cartan decomposition
Up until now we have only been concerned with the Cartan decomposition on the level of
semisimple Lie algebras. In order to lift the decomposition to the group level we first define
the following.

Definition 5.4. Let G be a connected Lie group with Lie algebra g. We call G a semisimple
Lie group if and only if g is semisimple.

By the previous section there exists a Cartan decomposition of the Lie algebra of a semisim-
ple Lie group. The next theorem gives an analogous result of the Cartan decomposition for
the group.

Theorem 5.5 ([11, Theorem 6.31]). Let G be a real semisimple Lie group, let θ be a Cartan
involution of its Lie algebra g, let g = k⊕ p be the corresponding Cartan decomposition, and
let K be the analytic subgroup of G with Lie algebra k. Then there exists a unique Lie group
automorphism Θ of G with differential θ. Moreover,

(a) Θ2 = idG,

(b) the subgroup of G fixed by Θ is K,

(c) the mapping K × p→ G given by (k,X) 7→ k expX is a diffeomorphism onto,

(d) K is closed,

(e) K contains the center Z of G,

(f) K is compact if and only if Z is finite.
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The group automorphism Θ is called the global Cartan involution, while the diffeomor-
phism described in (c) is called the global Cartan decomposition. We note that in the literature
the symbol θ usually denotes both the Cartan involution and the global Cartan involution, as
the context of use generally makes it clear which of the two it signifies. In this thesis we adopt
this convention.

If we now define P = exp p, the global Cartan decomposition is often referred to as G =
KP . Note though that P is not a subgroup of G as p is not a subalgebra of g. However P is a
closed submanifold of G and diffeomorphic to p through exp : p → P . We also note that for
X ∈ k, Y ∈ p we get

exp(X) exp(Y ) exp(−X) = exp(AdexpX Y ) = exp(eadXY ) ∈ exp p = P

since [k, p] ⊂ p. Since K is the analytic subgroup of G with Lie algebra k we then find that K
acts on P by conjugation, and as such we can define a K-orbit Op = {kpk−1 : k ∈ K} in P .

5.4. Iwasawa decomposition
Let g be a real semisimple Lie algebra with Cartan decomposition g = k ⊕ p. Let θ be the
corresponding Cartan involution which in turn defines a positive definite symmetric bilinear
form Bθ as in (54). Take any H ∈ p and any X, Y ∈ g, then,

Bθ(ad(H)X, Y ) = −B([H,X], θY ) = B([X,H], θY ) = B(X, [H, θY ])

= B(X, θ([θH, Y ])) = −B(X, θ([H, Y ])) = Bθ(X, ad(H)Y )

and we therefore find that ad(H) is self-adjoint with respect to Bθ. If we now choose a as
a maximal abelian subalgebra of p, then {ad(H) : H ∈ a} is a commuting set of endo-
morphisms of g, and thus all of its elements preserve one another’s eigenspaces. Because
all ad(H) are self-adjoint the eigenvalues are real for any simultaneous eigenvector X of all
adH we can therefore find a functional α : a→ R such that α(H) is the eigenvalue of ad(H)
corresponding to X . The simultaneous eigenspace corresponding to α ∈ a∗ is then defined as

gα = {X ∈ g : [H,X] = α(H)X, ∀H ∈ a}.

We now call α a restricted root of g if α 6= 0 and gα 6= 0. We denote the set of these roots
as ∆(g, a). The corresponding space gα is then called a restricted root space. The following
theorems characterize the restricted root spaces further.

Lemma 5.6. For α, β ∈ ∆(g, a) such that α + β 6= 0 we find that Bg(gα, gβ) = 0.

Theorem 5.7 ([11, Proposition 6.40]). The restricted roots and the restricted root spaces have
the following properties:

(a) g is the orthogonal direct sum g = g0 ⊕
⊕

α∈∆(g,a) gα with respect to Bθ

(b) [gα, gβ] ⊂ gα+β

(c) θ(gα) = g−α and hence α ∈ ∆(g, a) implies −α ∈ ∆(g, a)
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(d) g0 = a⊕m orthogonally with respect to Bθ, where m = Zk(a), the centralizer of a in k

If we now choose a positive system ∆+ ⊂ ∆(g, a) we can define the set

n =
⊕

α∈∆+
gα. (56)

One way of choosing a positive system is by a lexicographic ordering. Here we choose an
ordered basis {H1, ..., Hk} of a and then call a restricted root α positive if there exists a j such
that α(Hj) > 0 and α(Hi) = 0 for all i < j.

Theorem 5.7 allows us to characterize n. For example it is quite obvious that n is a subal-
gebra of g by (b). Also since ∆+ is finite and (b) we see that n is nilpotent. We also observe
that [a, n] ⊂ n because of (b) combined with the fact that a ⊂ g0 by (d). We therefore observe
that a⊕ n also is a subalgebra of g, and because a is abelian we note that [a⊕ n, a⊕ n] ⊂ n,
making a⊕ n solvable. We can now find another

Proposition 5.8 (Lie algebra Iwasawa decomposition). A real semisimple Lie algebra g is a
direct sum of the Lie subalgebras g = k⊕ a⊕n as vector spaces, with k, a and n as previously
defined.

Proof. We know that a ∩ n = 0 by the definition of n and since a ⊂ g0. Therefore the
directness of the sum depends on k∩ (a⊕n) being zero, and thus we take any X ∈ k∩ (a⊕n).
Since θX = X we find that X ∈ θa⊕ θn, but since θa = a and n ∩ θn = 0 we also find that
X ∈ a ⊂ p and so X = −θX = −X which gives X = 0.

We now take any X ∈ g, then by Theorem 5.7 we find there exist H ∈ a, Y ∈ m and
Xα ∈ gα such that

X = H + Y +
∑

α∈∆(g,a)
Xα

= H + Y +
∑

α∈∆+
Xα +X−α

= H + Y +
∑

α∈∆+
Xα +X−α + θX−α − θX−α

=
(
Y +

∑
α∈∆+

X−α + θX−α

)
+H +

(∑
α∈∆+

Xα − θX−α
)

We therefore find that X ∈ k⊕ a⊕ n, which completes the proof.

Much as the Cartan decomposition this result can be lifted to the level of a Lie group, as
specified in next the theorem which we mention without proof.

Theorem 5.9 (Iwasawa decomposition, [11, Proposition 6.46]). Let G be a real semisimple
Lie group, let g = k⊕a⊕n be an Iwasawa decomposition of the Lie algebra g ofG, and letK,
A and N be the analytic subgroups of G with Lie algebras k, a and n. Then the multiplication
map K × A×N → G : (k, a, n) 7→ kan is a diffeomorphism onto. The groups A and N are
simply connected.

The diffeomorphism defined in the above theorem is called the Iwasawa decomposition,
and it is often used to define a projection such as

ρA : G = KAN → A : g = kan 7→ a.
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which will play a part in things to come. Another interesting thing to remember is that since a
is abelian that A = exp(a). This is particularly useful when we realize that {e} × a ⊂ K × p
is a closed submanifold and is diffeomorphically mapped by the global Cartan decomposition
to A = e exp(a) ⊂ K exp(p) = G. Therefore A is closed in G and exp : a → A is a
diffeomorphism. We define log : A → a as the inverse of this diffeomorphism. We mention
without proof that exp : n→ N also is a diffeomorphism [21, Lemma 17.13].
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6. Kostant’s nonlinear convexity theorem
Let G be a semisimple Lie group with Cartan decomposition KP and a corresponding Iwa-
sawa decomposition G = KAN , such that A ⊂ P and then ρA : G → A is corresponding
the middle projection. We recall that exp : a → A is a diffeomorphism with inverse log. We
have already previously noted that for any a ∈ A the K-orbit Oa = {kak−1 : k ∈ K} runs
through P . We also recall that the Weyl group of A in K is defined as W = W (K,A) =
NK(A)/ZK(A), where NK(A) and ZK(A) are respectively the normalizer and the centralizer
of A in K. We also recall that W is a finite group. We are now ready to state Kostant’s
nonlinear convexity theorem:

Theorem 6.1 (Kostant [13, Theorem 4.1]). Fix a ∈ A, then image of the K-orbit Oa under
the middle projection diffeomorphically mapped to a equals the convex hull of the Weyl group
orbit W · a mapped into a, i.e.

log(ρA(Oa)) = conv[log(W · a)]

The strategy for proving the above theorem in a symplectic framework used by Lu and Ratiu
[15] is to find a Poisson structure on AN such that its symplectic leaves coincide with the K-
orbits of a K-action on AN such that there exists a K-equivariant map AN → P . Since the
K-orbits are then proven to be symplectic manifolds, we apply Theorem 4.2 (and Theorem 4.3
depending on the case) for a suitable Hamiltonian action and moment map defined on the K-
orbits. It is then a small step to prove Kostant’s nonlinear convexity theorem using convexity
theorems from section 4. We follow their approach, which first proves Theorem 6.1 in the
case where G is a complex semisimple Lie group and then uses this result to also prove the
theorem in the real case.

6.1. Complex case
Let G be a complex semisimple Lie group with Lie algebra g. We can then also regard g as a
real Lie algebra gR which has a Cartan decomposition k⊕p. We have previously observed that
k is a compact real form of g and that p = ik. We can also choose a maximal abelian subspace
a ⊂ p, which leads to the Iwasawa decompositions g = k ⊕ a ⊕ n and G = KAN . We now
define b = a⊕ n, which we remember to be a solvable subalgebra of g, and B = AN , which
is a connected subgroup of G since A and N are analytic subgroups.

Lemma 6.2. The spaces (g, k, b) together with 〈, 〉 = ImBg, the imaginary part of the Killing
form of g, is a Manin triple.

Proof. By the Lie algebra Iwasawa decompositon we see that indeed the decomposition of
vector spaces holds and both k and b are obviously also subalgebras of g. Since g is semisimple
we know that its Killing form is nondegenerate which ensures that 〈, 〉 is a nondegenerate ad-
invariant symmetric bilinear form. We now only need to show that both k and b are isotropic
with respect to 〈, 〉.

First of all recall that k is a compact real form of g and therefore Bg is the complex linear
extension ofBk, which is real on k, and we therefore find that 〈k, k〉 = 0. By the same argument
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we find that Bg is real on a ⊂ p = ik, and therefore 〈a, a〉 = 0. Then by Lemma 5.6 we find
that 〈n, a⊕ n〉 = 0 and therefore b is also isotropic.

As a consequence we know k 7→ b∗ : X 7→ 〈X, ·〉 to be an isomorphism, and therefore
k ∼= b∗. For ξ ∈ b∗ we denote the corresponding element in k by ξk.

Definition 6.3. On the subgroup B = AN , define a bivector field π by

(r−1
b π(b))(ξ, η) = 〈ρk(Ad−1

b ξk), ρb(Ad−1
b ηk)〉, ξ, η ∈ b∗, b ∈ B (57)

The next lemmas will all be angled towards proving Theorem 6.7 which states that π defines
a Poisson structure. There is another way of proving this [16, Theorem 4.3], but it requires
theory regarding double Lie groups and dressing transformations which isn’t necessary to
address for the purpose of this thesis. However due to the mentioned publication this Poisson
structure is often referred to in literature as the Lu-Weinstein Poisson structure.

Lemma 6.4 ([15, Lemma 4.3]). π is antisymmetric.

Proof. We simply calculate this using the symmetry and ad-invariance of 〈, 〉 and the isotropy
of k and b. Take any b ∈ B and ξ, η ∈ k.

(r−1
b π(b))(ξ, η) + (r−1

b π(b))(η, ξ)

= 〈ρk(Ad−1
b ξk), ρb(Ad−1

b ηk)〉+ 〈ρb(Ad−1
b ξk), ρk(Ad−1

b ηk)〉
= 〈(ρk + ρb)(Ad−1

b ξk), (ρk + ρb)(Ad−1
b ηk)〉

= 〈Ad−1
b ξk,Ad−1

b ηk〉 = 〈ξk, ηk〉 = 0.

This then proves that π is indeed a bivector field.

Lemma 6.5 ([15, Lemma 4.4]). π is multiplicative.

Proof. We take any ξ ∈ b∗, X ∈ b and b ∈ B, and then first observe that

〈(Ad∗b ξ)k, X〉 = (Ad∗b ξ)(X) = ξ(AdbX) = 〈ξk,AdbX〉 = 〈Ad−1
b ξk, X〉 = 〈ρk Ad−1

b ξk, X〉

such that ρk Ad−1
b ξk = (Ad∗b ξ)k. Now take any ξ, η ∈ b∗, we can then calculate that

r−1
b1b2

π(b1b2)(ξ, η) = 〈ρk(Ad−1
b1b2

ξk), ρb(Ad−1
b1b2

ηk)〉 = 〈Ad−1
b2

Ad−1
b1
ξk, ρb Ad−1

b2
Ad−1

b1
ηk〉

= 〈Ad−1
b1
ξk,Adb2 ρb Ad−1

b2
(ρb + ρk) Ad−1

b1
ηk〉

= 〈Ad−1
b1
ξk,Adb2 Ad−1

b2
ρb Ad−1

b1
ηk〉

+ 〈ρk Ad−1
b1
ξk,Adb2 ρb Ad−1

b2
ρk Ad−1

b1
ηk〉

= r−1
b1
π(b1)(ξ, η) + 〈Ad−1

b2
(Ad∗b1 ξ)k, ρb Ad−1

b2
(Ad∗b1 η)k〉

= r−1
b1
r−1
b2
rb2π(b1)(ξ, η) + r−1

b2
π(b2)(Ad∗b1 ξ,Ad∗b1 η)

= r−1
b1b2

rb2π(b1)(ξ, η) + Adb1 r
−1
b2
π(b2)(ξ, η)

= r−1
b1b2

rb2π(b1)(ξ, η) + r−1
b1b2

lb1π(b2)(ξ, η)

We conclude that π is multiplicative.
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We remember that the dual map of the intrinsic derivative of a multiplicative bivector field π
at e defines a bracket [, ]π on b∗ and we will see that it defines a Lie algebra structure according
to the next proposition.

Proposition 6.6 ([15, Proposition 4.8]). The dual map of the intrinsic derivative of π at e
coincides with the Lie bracket map on k.

Proof. We take any X ∈ b and ξ, η ∈ b∗ and calculate

〈([ξ, η]π)k, X〉 = [ξ, η]π(X) = deπ(X)(ξ, η) =
d

dt

∣∣∣
t=0

(r−1
exp(tX)π(exp(tX)))(ξ, η)

=
d

dt

∣∣∣
t=0
〈ρk(Ad−1

exp(tX) ξk), ρb(Ad−1
exp(tX) ηk)〉 = 〈ρkξk, ρb(− adX ηk)〉

= 〈ξk,−[X, ηk]〉 = 〈ξk, [ηk, X]〉 = 〈[ξk, ηk], X〉

and therefore ([ξ, η]π)k = [ξk, ηk]. This shows us that [, ]π defines a Lie algebra structure on b∗

and then isomorphism b∗ → k : ξ 7→ ξk is a Lie algebra homomorphism.

The next theorem is an immediate consequence of applying Lemma 3.15 to Lemma 6.5 and
Proposition 6.6.

Theorem 6.7 ([15, Theorem 4.9]). The bivector field π as in Definition 3.12 defines a Poisson
structure on B.

Since we now have a Poisson structure on B, we want to utilize it by finding that the K-
orbits of P correspond to the symplectic leaves of this structure. In order to do this we first
have to find a diffeomorphism which identifies B and P . We recall the Cartan decompo-
sition G = KP and the Iwasawa decomposition G = KB, and therefore we find the two
diffeomorphisms

ψI : B → K\G : b 7→ Kb

ψC : P → K\G : p 7→ Kp

which gives us the diffeomorphism ψ = ψ−1
I ◦ ψC : P → B, p 7→ b if p = kb by the Iwasawa

decomposition. This means that ψ = ρB
∣∣
P

, where ρB : G→ B is defined as the projection by
the Iwasawa decomposition. Also if we define the left K-actions

K ×K\G→ K\G : (k,Kg) 7→ Kgk−1

σB : K ×B → B : (k, b) 7→ ρB(bk−1)

σP : K × P → P : (k, p) 7→ kpk−1

one can then easily check that ψ, ψI and ψC are intertwining maps for these actions. In the case
of σB this then also illustrates that σB indeed defines a left K-action. Therefore the K-orbits
on P for the adjoint action σP are diffeomorphically mapped to the K-orbits of the action σB

on B. We will show that the symplectic leaves of π coincide with the latter by showing that
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characteristic bundle of π is spanned precisely by the infinitesimal generators of σB. We recall
the definition of the infinitesimal generator and calculate it for X ∈ k in b ∈ B to explicitly be

σBX(b) =
d

dt

∣∣∣
t=0
ρB(b exp(−tX)) =

d

dt

∣∣∣
t=0

(rb ◦ ρB ◦ r−1
b )(lb(exp(−tX)))

= rbρb Adb(−X) = rb(−ρb AdbX)

since rb and ρB commute for any b ∈ B.

Theorem 6.8 ([15, Theorem 4.11]). For any ξ ∈ b∗, we have π#(ξl) = σBξk . Therefore the
symplectic leaves of π in B are exactly the orbits of the K-action σB in B.

Proof. Take any η ∈ b∗, and let ηr be the right invariant 1-form on B defined by η. We then
calculate the pairing of ηr with π#(ξl) at a point b ∈ B is given by

(ηr, π#(ξl))(b) = π(b)(ηr(b), ξl(b)) = π(b)(r∗b−1η, l∗b−1ξ) = π(b)(r∗b−1η, r∗b−1r∗b l
∗
b−1ξ)

= (r−1
b π(b))(η,Ad∗b−1 ξ) = 〈ρk Ad−1

b ηk, ρb Ad−1
b (Ad∗b−1 ξ)k〉

= 〈ρk Ad−1
b ηk, ρb Ad−1

b ρk Adb ξk〉 = 〈ρk Ad−1
b ηk, ρb Ad−1

b (1− ρb) Adb ξk〉
= 〈ρk Ad−1

b ηk, ρbξk〉 − 〈ρk Ad−1
b ηk, ρb Ad−1

b ρb Adb ξk〉
= 〈ηk,−Adb ρb Ad−1

b ρb Adb ξk〉 = η(−ρb Adb ξk) = η(r−1
b σBξk(b))

= ηr(b)(σBξk(b)) = (ηr, σBξk)(b).

We therefore conclude that π#(ξl) = σBξk for all ξ ∈ b∗.

Let T be the connected subgroup of K with Lie algebra t = ia, such that t is maximal
abelian in k. Then T is a maximal torus of K and we can identify a with t∗ through 〈, 〉 by
Lemma 5.6.

Theorem 6.9 ([15, Theorem 4.13]). The restriction of σB to T leaves the Poisson structure π
on B invariant and the map

J := log ◦ρA : B = AN → a : an 7→ log(a)

is a moment map for this T -action.

Proof. Since [t, a] = i[a, a] = 0 we find that T andA commute. From the fact that [a⊕n, n] ⊂
n we find that n is an ideal of t ⊕ a ⊕ n. Therefore N is a normal subgroup of TAN . From
this we find that for t ∈ T and b = an ∈ B = AN that tnt−1 ∈ N and so

J(σB(t, b)) = log(ρA(ρB(bt−1))) = log(ρA(tant−1)) = log(ρA(a(tnt−1))) = log(a) = J(b)

which gives us that J is invariant under T . For X ∈ t, let JX ∈ C∞(B) be the X-component
of J , i.e. JX(b) = 〈J(b), X〉 for b ∈ B. Interestingly since N is a normal subgroup of TAN
we find for any b = an, b′ = a′n′ ∈ B

J(bb′) = J(ana′n′)) = log(ρA(aa′(a′−1na′)n′)) = log(aa′) = log(a) + log(a′)

= J(b) + J(b′)
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Now if X ∈ t, there exists ξ = 〈X, ·〉 ∈ b∗ such that ξk = X . We also take Y ∈ b and Y l as
its corresponding left invariant vector field on B and then calculate

(dJX , Y
l)(b) =

d

dt

∣∣∣
t=0
JX(b exp(tY )) =

d

dt

∣∣∣
t=0
〈J(b exp(tY )), X〉

=
d

dt

∣∣∣
t=0
〈J(b) + J(exp(tY )), X〉 =

d

dt

∣∣∣
t=0
〈log(ρA(exp(tY ))), X〉

= 〈ρaY,X〉 = 〈ρaY, ρtX〉 = 〈Y,X〉 = ξ(Y ) = (ξl, Y l)(b)

which shows that dJX equals the left invariant 1-form ξl. Therefore by Theorem 6.8 we find
that π#(dJX) = σBX which proves that J is a moment map.

Proof of Kostant’s theorem (Theorem 6.1) in the complex case. We have already shown that
there exists an equivariant diffeomorphism ψ = ρB|P : P → B with respect to the K-actions
on both manifolds. If we take Oa as the K-orbit through a ∈ A by σP , then O′a = ρB(Oa)
gives the K-orbit through a in B. We know this K-orbit to be a symplectic leaf of the Poisson
structure π by Theorem 6.8 and it is necessarily compact since K is compact. The T -action
on B defines a T -action on O′a and therefore J also defines a moment map on O′a. We can
then apply Theorem 4.2 to find that

J(O′a) = conv[J(O′Ta )]

where O′Ta is the fixed point set of the action. However since ρB|P is an intertwining map we
find that O′Ta = ρB(OTa ) and therefore we can restate the previous equation as

log(ρA(Oa)) = log(ρA(ρB(Oa))) = J(O′a) = conv[J(O′Ta )] = conv[log(ρA(ρB(OTa )))]

= conv[log(ρA(OTa ))].

It is a well known fact that the fixed point set of theK-orbitOa is exactly the Weyl group orbit
W · a, and as such we find

log(ρA(Oa)) = conv[log(ρA(W · a))] = conv[log(W · a)]

which then proves Kostant’s nonlinear convexity theorem in the complex case.

6.2. Real case
As we have proven Kostant’s theorem (Theorem 6.1) for a complex semisimple Lie group we
will now use this result to also prove the real case.

Let G be a real semisimple Lie group with Lie algebra g. By Theorem 5.5 (e) the center of
G lies in K and because conjugation by any element of the center is the identity mapping on
G we find that the K-orbits are unchanged when the center is factorized from G. We therefore
assume without loss of generality that the center of G is trivial. Therefore the center of g is
also trivial, and therefore g is isomorphic to ad(g), the set of inner derivations of g. Because
g is semisimple every derivation of g is an inner derivation, and as such ad : g→ Der(g) is a
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Lie algebra isomorphism. It is well known that Der(g) is the Lie algebra of Aut(g), the set of
automorphisms of g. Since G is connected and has trivial center we see that it is isomorphic
to the identity connected component of Aut(g).

We define g1 = gC, the complexification of g, and as such gR1 = g ⊕ ig. We define the
complex Lie group G1 = Aut(g1)I and we regard it as a complexification of G. We recall that
the complexification of a real semisimple Lie algebra is semisimple and thus g1 is semisimple.
Since G1 is connected and has Lie algebra g1 it is a complex semisimple Lie group.

On g1 we define the map

τ : g1 → g1 : X + iY 7→ X − iY, X, Y ∈ g.

We note that τ is a conjugation of g1 (and thus complex antilinear) and a involution of gR1 .
Since ad : g1 → Der(g1) is a Lie algebra isomorphism and

ad(τX)Y = [τX, Y ] = τ [X, τ−1Y ] = τ(ad(X)(τ−1Y )) = (τ ad(X)τ−1)(Y )

for any X, Y ∈ g1, we find that τ defines a map

Cτ : Der(g1)→ Der(g1) : ϕ 7→ τϕτ−1,

such that ad ◦τ = Cτ ◦ ad. Let e· : Der(g1) → G1 = Aut(g1)I be the exponential map, then
clearly eCτ (ϕ) = eτϕτ

−1
= τeϕτ−1. Interestingly if ψ ∈ Aut(g1) it must be complex linear,

and since τ and τ−1 are complex antilinear we find that τψτ−1 is again complex linear since
its differential must at any point by the chain rule. As such τψτ−1 is an automorphism of g1

and therefore

ζτ : G1 → G1 : ψ 7→ τψτ−1

is a Lie group automorphism and with tangent mapping at the identity equal to Cτ . We there-
fore say that τ lifts to a group automorphism on G1, which we from now on also denote by
τ .

We define Gτ
1 as the fixed point set of τ in G1. We see that Gτ

1 is a subgroup: take any
g, g′ ∈ G1, then τ(g−1g′) = τ(g)−1τ(g′) = g−1g′ and therefore g−1g′ ∈ Gτ

1 . We also observe
that Gτ

1 is closed: define ϕ : G1 → G1 : g 7→ g−1τ(g), then ϕ obviously continuous and
Gτ

1 = ϕ−1({e}). From this we conclude that Gτ
1 is a closed subgroup, hence a Lie group.

Now X is an element of the Lie algebra of Gτ
1 if and only if exp(tX) = τ(exp(tX)) for all

t ∈ R. The latter is equivalent to τX = X which is true if and only if X ∈ g. From this we
conclude that the connected identity component of Gτ

1 equals G.
We observed earlier that there exists a Cartan decomposition g = k ⊕ p. We also recall

that k1 = k ⊕ ip is a compact real form of gC = g1. Therefore gR1 = k1 + ik1 is a Cartan
decomposition of gR1 , and as such we define p1 = ik1 = ik ⊕ p. It is clear that k1 and p1 are
invariant under τ and the fixed point sets are kτ1 = k and pτ1 = p.

Let a be a maximal abelian subspace of p, and let a′ be any maximal abelian subalgebra of
g containing a. Take any X ∈ a′ ∩ p, then [X, a] = 0 while X ∈ p and therefore X ∈ a. We
then find that a = a′ ∩ p since the other inclusion is by definition of a′.
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Now take any X ∈ a′, with its Cartan decomposition X = Xk + Xp, i.e. Xk ∈ k, Xp ∈ p.
If we take any H ∈ a ⊂ p then [H,Xp] ∈ k and [H,Xk] ∈ p, while also [H,Z] = 0, and
so we conclude that [H,Xp] = [H,Xk] = 0. This especially means that Xp ∈ a and so
Xk = X −Xp ∈ a′. From this we conclude that a′ = a + a′ ∩ k.

We define a1 = a + i(a′ ∩ k) ⊂ p1, such that it is maximal abelian in p1. Clearly the fixed
point set aτ1 = a. We choose a basis X1, ..., Xn of a1 such that X1, ..., Xm is a basis for a.
From this ordered basis define the positive systems of ∆+ ⊂ ∆(g, a) and ∆+

1 ⊂ ∆(g1, a1)
using a lexicographic ordering. We can then define n and n1 as in (56) such that the following
Iwasawa decompositions exist by Proposition 5.8:

g = k⊕ a⊕ n, g1 = k1 ⊕ a1 ⊕ n1.

Since g1, k1 and a1 invariant under τ while τ 2 = idg1 , we find n1 is invariant under τ . Its fixed
point set nτ1 equals n as n = g ∩ n1.

By Theorem 5.5 there exist the global Cartan decompositions

G = KP = K exp p, G1 = K1P1 = K1 exp p1,

while by Theorem 5.9 there exist the Iwasawa decompositions

G = KAN, G1 = K1A1N1.

Lemma 6.10. Let v be a τ -invariant subspace of g1 such that exp : g1 → G1 bijectively maps
v to V ⊂ G1. The subset V is then τ -invariant and if vτ and V τ are the fixed point sets of τ in
v and V respectively, then V τ = exp(vτ ).

Proof. Since τ is a group automorphism of G1 with differential τ : g1 → g1, we observe
that τ ◦ exp = exp ◦τ . Now take any g ∈ V , then there exists a element X ∈ v such that
g = expX . Because v is τ -invariant we then observe

τ(g) = τ(expX) = exp τ(X) ∈ exp(v) = V,

and therefore V is τ -invariant.
Assume that X ∈ vτ , then τ(expX) = exp τX = expX and therefore exp(vτ ) ⊂ V τ .

Now assume g ∈ V τ , then there exists Y ∈ v such that g = expY . Also exp(τY ) =
τ(expY ) = expY , and since exp : v → V is bijective we find that τY = Y and therefore
Y ∈ vτ , showing the other inclusion such that we can conclude that V τ = exp(vτ ).

Corollary 6.11. P1, A1 and N1 are τ -invariant, and their fixed point sets under τ are P , A
and N respectively.

Proof. This follows from pτ1 = p, aτ1 = a and nτ1 = n and that exp defines diffeomorphisms
p1 → P1, a1 → A1, n1 → N1, p→ P , a→ A and n→ N by Lemma 6.10.

Since P1 is τ -invariant we can conclude that K1 is also τ -invariant by the global Cartan
decomposition. We then prove (Kτ

1 )e to be K in the same way that we proved that (Gτ
1)e

equals G.
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We fix a ∈ A, and denote by Oa the K-orbit in P through a and by Oa,1 the K1-orbit in P1

through a. The orbit Oa,1 is τ -invariant because τ(a) = a and K1 is τ -invariant. Also

Oa = {kak−1 : k ∈ K} = {kak−1 : k ∈ (Kτ
1 )e} = ({kak−1 : k ∈ Kτ

1 })a
= (({kak−1 : k ∈ K1})τ )a = (Oτa,1)a

and therefore Oa is the a-connected component of Oτa,1.

Proposition 6.12 ([15, Proposition 6.1]). Let π be the Poisson structure on B1 = A1N1 as
defined in Definition 6.3. Then τ restricted to B1 is anti-Poisson with respect to π, namely,
τ∗π = −π where τ∗π denotes the pushforward of π by τ .

Proof. Lemma 6.5 says that π is multiplicative on B1. Since τ is a group automorphism, we
know that

τ ◦ lg = lτ(g) ◦ τ τ ◦ rg = rτ(g) ◦ τ

which gives a similar property for the tangent maps by differentiating the above and apply-
ing the chain rule. We use this to show that the pushforward τ∗π, defined by (τ∗π)(b1) =
Tτ(b1)τ(π(τ(b1))) since τ is an involution, is also multiplicative:

(τ∗π)(b1b2) = Tτ(b1b2)τ(π(τ(b1b2))) = Tτ(b1b2)τ(π(τ(b1)τ(b2)))

= Tτ(b1b2)τ(lτ(b1)π(τ(b2)) + rτ(b2)π(τ(b1)))

= Tτ(b1)τ(b2)τ
(
lτ(b1)π(τ(b2))

)
+ Tτ(b1)τ(b2)τ

(
rτ(b2)π(τ(b1))

)
= lτ(τ(b1))Tτ(b2) (π(τ(b2))) + rτ(τ(b2))Tτ(b1)τ (π(τ(b1)))

= lb1Tτ(b2)τ (π(τ(b2))) + rb2Tτ(b1)τ (π(τ(b1)))

= lb1(τ∗π)(b2) + rb2(τ∗π)(b1)

Now τ∗π+π is also a multiplicative bivector field and by Lemma 3.13 (d) it is identically zero
if its intrinsic derivative at the identity is zero. Therefore we prove τ∗π = −π by showing that
de(τ∗π) = −deπ.

We recall that the dual of b1 is identified with k1 through 〈, 〉 = ImBg1 . For ξ ∈ b∗1 we define
ξk1 ∈ k1 such that ξ = 〈ξk1 , ·〉. Proposition 6.6 tells us that the dual map of deπ coincides with
the Lie map on k1

deπ(X)(ξ, η) = 〈[ξk1 , ηk1 ], X〉, X ∈ b1, ξ, η ∈ b∗1.

On the other hand if we calculate the intrinsic derivative of τ∗π at e we find

de(τ∗π)(X) =
d

dt

∣∣∣
t=0
r−1

exp(tX)Tτ(exp(tX))τ(π(τ(exp(tX))))

=
d

dt

∣∣∣
t=0
Texp(tX)τ(r−1

exp(tτ(X))π(exp(tτ(X)))) = τ(deπ(τ(X)))

and therefore for any X ∈ b1, ξ, η ∈ b∗1,

de(τ∗π)(X)(ξ, η) = deπ(τ(X))(τ ∗ξ, τ ∗η) = 〈[(τ ∗ξ)k1 , (τ ∗ξ)k1 ], τ(X)〉.
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The Killing form Bg1 is the complex linear extension of Bg and thus it is real on g × g. It
follows that for any X = X ′+ iX ′′ and Y = Y ′+ iY ′′ in g1 with X ′, X ′′, Y ′, Y ′′ ∈ g, we have

〈X, τ(Y )〉 = ImBg1(X
′ + iX ′′, Y ′ − iY ′′)

= Im[Bg1(X
′, Y ′)− iBg1(X

′, Y ′′) + iBg1(X
′′, Y ′) +Bg1(X

′′, Y ′′)]

= Im[−Bg1(X
′, Y ′)− iBg1(X

′, Y ′′) + iBg1(X
′′, Y ′)−Bg1(X

′′, Y ′′)]

= ImBg1(−X ′ + iX ′′, Y ′ + iY ′′) = 〈−τ(X), Y 〉

and as such for ξ ∈ b∗1 and Y ∈ b1,

〈(τ ∗ξ)k1 , Y 〉 = (τ ∗ξ)(Y ) = ξ(τ(Y )) = 〈ξk1 , τ(Y )〉 = 〈−τ(ξk1), Y 〉.

Using the above results we show

de(τ∗π)(X)(ξ, η) = 〈−τ([−τ(ξk1),−τ(ξk1)]), X〉 = −〈τ 2([ξk1 , ξk1 ]), X〉 = −deπ(X)(ξ, η),

which completes our proof.

Proof of Kostant’s Theorem (Theorem 6.1) in the real case. By Theorem 6.8 the symplectic
leaves of π1 in B1 are the K1-orbits. We have also previously observed that the projection
ρB1 |P1 : P1 → B1 is an K1-equivariant map. We fix a ∈ A, then the K1-orbit in B1 through
a is given by O′a,1 = ρB1(Oa,1). The orbit O′a,1 is a compact symplectic manifold because
K1 is compact by Theorem 5.5 (f), and since τ is anti-Poisson with respect to π on B1 by
Proposition 6.12 we find that τ is anti-symplectic on O′a,1.

We also note that the K-orbit through a in B, denoted by O′a, equals ρB1(Oa). Since K1

and B1 are τ -invariant we find that ρB1 and τ commute, and therefore ρB1 maps τ fixed point
sets to one another. Since ρB1 : P1 → B1 a diffeomorphism and a ∈ B1 we find

O′a = ρB1(Oa) = ρB1((Oτa,1)a) = (ρB1(Oτa,1))a = (ρB1(Oa,1)τ )a = (O′τa,1)a.

such that O′a is a connected component of the fixed point set of O′a,1 under τ .
Define a0 as the orthogonal complement of a in a1 with respect to the Killing form Bg1 , and

pra : a1 → a as the projection along a0. Since A1 is abelian we can also uniquely decompose
A1 = AA0 for A0 = exp a0, and define the projection ρA : B1 = AA0N1 → A.

If T1 is the maximal torus of K1 with Lie algebra ia1, then we know by Theorem 6.9 that
its action leaves π invariant on B1 and that

J : B1 = A1N1 → a1 : b1 = a1n1 7→ log a1,

is a moment map for the T1-action. If we define T as the subtorus of T with Lie algebra
t = ia ⊂ ia1 = t1, we then define the map JT := pra ◦J : B1 → a. For any b1 ∈ B1 and
X ∈ t we then observe

JT,X(b1) := 〈JT (b1), X〉 = 〈pra J(b1), X〉 = 〈J(b1), prtX〉 = 〈J(b1), X〉 = JX(b1),
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and as such JT is a moment map for the T -action, since J is a moment map for the T1 action
while T ⊂ T1. For any b1 = aa0n1 ∈ B1 we find

JT (b1) = JT (aa0n1) = ιa log(aa0) = ιa(log(a) + log(a0)) = log(a)

which gives JT = log ◦ρA. We note A0 to be τ -invariant as A and A1 are τ -invariant, which
makes it clear that JT is τ -invariant.

We restrict the T -action and the moment map JT to the symplectic leaf O′a,1 such that we
can apply Theorem 4.3 to find

JT (O′a) = conv[JT (O′Ta,1 ∩ O′a)] = conv[JT (O′Ta )]

Since ρA◦ρB1 = ρA and because ρB is a T -equivariant map we find that the above is equivalent
to

log(ρA(Oa)) = conv[log(ρA(OTa ))]

We now take any p = expY ∈ P and assume that it is fixed by T , then for all X ∈ a and
t ∈ R we find that

expY = exp tiX expY exp(−tiX) = exp(Ad(exp tiX)Y ) = exp(eti adXY )

and taking the log and derivative of t at zero we find that [X, Y ] = 0 for all X ∈ a. Since
a is a maximal abelian subspace in p we then find that Y ∈ a and so p ∈ A. Therefore OTa
equalsOa ∩A, which is well known to be the orbit of the relative Weyl group W = W (K,A)
through a, and as

log(ρA(Oa)) = conv[log(ρA(OTa ))] = conv[log(ρA(W · a))] = conv[log(W · a)]

which completes our proof of Kostant’s nonlinear convexity theorem (Theorem 6.1) in the real
case.

55



7. Van den Ban’s convexity theorem
LetG be a real semisimple Lie group of finite center with Lie algebra g and let τ be a involution
of G i.e. a Lie group automorphism such that τ 2 = idG. Denote by Gτ the fixed point set of
G under τ , and let H be an open subgroup of Gτ . There exists a τ -invariant maximal compact
subgroupK ofGτ and the associated global Cartan involution θ commutes with τ . We denote
the differential mappings of the involutions also by τ and θ, which are involutions of g. Since
h, the Lie algebra of H , is also the Lie algebra of Gτ , we find that h is the (+1)-eigenspace of
τ . We denote by q the (−1)-eigenspace of τ , and by Lemma 5.1 we then know that g = h⊕ q.
The Cartan involution θ has the Cartan decomposition g = k ⊕ p as the usual eigenspace
decomposition, and k is the Lie algebra of K. Since θ and τ commute they have simultaneous
eigenspaces and therefore g decomposes into the subspaces

g = (k ∩ h)⊕ (p ∩ h)⊕ (k ∩ q)⊕ (p ∩ q).

We define a−τ as a maximal abelian subspace of p ∩ q, and we choose maximal abelian sub-
space a ⊂ p such that it contains a−τ . Let X ∈ a and Y ∈ a−τ , then [X, τY ] = −[X, Y ] = 0
and as such [τX, Y ] = τ [X, τY ] = 0. Because X − τX lies in p ∩ q and since it commutes
with any Y ∈ a−τ we find that X − τX is an element of a−τ by the definition of a−τ . We
conclude that

τX = X − (X − τX) ∈ a

and therefore a is τ -invariant. For any X ∈ a we then observe

X = 1
2
(X + τX) + 1

2
(X − τX) ∈ (a ∩ h)⊕ (a ∩ q)

and as such we find the direct sum of vector spaces a = (a ∩ h)⊕ (a ∩ q), since the converse
inclusion is obvious. Clearly a−τ ⊂ a ∩ q, while a ∩ q is abelian and a subset of p ∩ q. By the
maximality of a−τ we then conclude a−τ = a∩q. We define aτ = a∩h such that a = aτ⊕a−τ
and then we denote by pra−τ : a→ a−τ the projection along aτ .

We decompose g with respect to both a−τ and a and denote the corresponding sets of re-
stricted roots by ∆(g, a−τ ) and ∆(g, a). We choose an ordered basis H1, ..., Hn of a such that
H1, ..., Hm is a basis of a−τ and then pick the positive systems ∆+(g, a−τ ) and ∆+(g, a) by a
lexicographic ordering.

Lemma 7.1. The positive systems ∆+(g, a−τ ) and ∆+(g, a) are compatible in the following
sense,

∆+(g, a−τ ) = {α|a−τ : α ∈ ∆+(g, a), α|a−τ 6= 0}. (58)

Proof. Let α ∈ ∆+(g, a) such that α|a−τ 6= 0, then for any nonzero X ∈ gα and H ∈ a−τ we
observe

α|a−τ (H)X = α(H)X = [H,X],
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and therefore α|a−τ ∈ ∆(g, a−τ ). Since α is a positive root and nonzero on a−τ there exists a
Hj ∈ a−τ such that α(Hj) > 0 while α(Hi) = 0 if i < j, and therefore α|a−τ ∈ ∆+(g, a−τ ).

For the converse inclusion let β ∈ ∆+(g, a−τ ) and choose a nonzero X ∈ gβ . By Theorem
5.7 there exists a decomposition

X = X0 +
∑

α∈∆+(g,a)
Xα +X−α (59)

and then for any H ∈ a−τ we find

β(H)X = [H,X] =
∑

α∈∆+(g,a)
α(H)(Xα −X−α). (60)

Due to the directness of the root space decomposition we find that all nonzero X0, Xα and
X−α are linearly independent and therefore by combining (59) and (60) we find

β(H)X0 = 0, β(H)Xα = α(H)Xα, β(H)X−α = −α(H)X−α.

for all H ∈ a−τ . Hence we conclude X0 = 0. Now assume there exists α ∈ ∆+(g, a) such
that X−α 6= 0, then α|a−τ = −β /∈ ∆+(g, a−τ ), which contradicts our earlier observation
and therefore X−α = 0 for all α ∈ ∆+(g, a). Now since X 6= 0 there must exist some
α ∈ ∆+(g, a) such that Xα 6= 0. We then find that β(H) = α(H) for all H ∈ a−τ such that
α|a−τ = β and we therefore conclude (58).

Using ∆+(g, a) we define n by (56) which then results by Proposition 5.8 in the Iwasawa
decomposition

g = k⊕ a⊕ n.

We then define the spaces

n0 =
⊕

α∈∆+(g,a),α|a−τ=0
gα, n1 =

⊕
β∈∆+(g,a−τ )

gβ, (61)

such that we can make the decomposition n = n0 ⊕ n1. By Theorem 5.9 there exists the Iwa-
sawa decomposition G = KAN , where A and N are the analytic subgroups of G generated
by a and n respectively, and we denote by ρA : G → A the corresponding middle projection.
We denote by A−τ the analytic subgroup generated by a−τ .

We note that θ ◦ τ is an involution since θ and τ commute. Since a−τ ⊂ p ∩ q we find that
(θ ◦ τ)|a−τ = ida−τ . Therefore if β ∈ ∆(g, a−τ ) we observe that

(θ ◦ τ)(gβ) = g(θ◦τ)∗β = gβ

and thus gβ and n1 are (θ ◦ τ)-invariant. The involution θ ◦ τ decomposes gβ into (+1)- and
(−1)-eigenspaces, which we denote by (gβ)+ and (gβ)− respectively. We then define

∆+
− = {β ∈ ∆+(g, a−τ ) : (gβ)− 6= 0}
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and the closed cone

Γ(∆+
−) =

∑
β∈∆+

−
R+Hβ

where Hβ ∈ a−τ such that Hβ is orthogonal to ker β with respect to the Killing form Bg and
β(Hβ) = 1. Denote by WK∩H the Weyl group

WK∩H = WK∩H(a−τ ) = NK∩H(a−τ )/ZK∩H(a−τ ).

We are now ready to state Van den Ban’s convexity theorem:

Theorem 7.2 (Van den Ban [20, Theorem 1.1]). Let G be a real semisimple Lie group of finite
center with an involution τ and let H be a open subgroup of Gτ . Fix a ∈ A−τ , then

(pra−τ ◦ log ◦ρA)(aH) = conv[WK∩H · log a] + Γ(∆+
−). (62)

In the next section we follow a part of the proof of the above convexity theorem by Foth
and Otto in the publication [6] for the case of a complex semisimple Lie group. Its approach is
acknowledged to be inspired by the method used by Lu and Ratiu to prove Kostant’s nonlinear
convexity theorem. A Lu-Evens Poisson structure is defined on an H-orbit in K\G, which
is then used to foliate the H-orbit into its symplectic leaves. A suitable Hamiltonian action
and moment map are then defined on these symplectic leaves such that Theorem 4.4 can be
applied to prove Van den Ban’s convexity theorem. Contrary to the previous sections, we will
only concern ourselves with the part of the proof which is concerned with Poisson structures,
as the focus of this thesis lies there.

7.1. Complex case
Let G be a simply connected complex semisimple Lie group with Lie algebra g. As in section
6.1 we can regard g as a real Lie algebra gR with Cartan decomposition k ⊕ p. We denote by
θ both the corresponding Cartan and global Cartan involutions.

Let τ be an anti-holomorphic involution on G such that it commutes with θ, and also denote
the corresponding complex antilinear involution on g by τ . It decomposes gR into a (+1)- and
(−1) eigenspace, which we denote by h and q respectively.

The analytic subgroupK generated by k is also the fixed point setGθ. BecauseK = Gθ and
since τ and θ commute we observer that K is τ -invariant. The analytic subgroup H generated
by h is then also the identity connected component of Gτ .

As before we fix a maximal abelian subalgebra a−τ of p∩q. We recall that if a is a maximal
abelian subspace of p such that a−τ ⊂ a, that then a = aτ ⊕ a−τ where aτ = a∩ h, while also
a−τ = a∩q. By choosing an ordered basisH1, ..., Hn is a basis a such thatH1, ..., Hm is a basis
of a−τ we can pick the positive systems ∆+(g, a−τ ) and ∆+(g, a) by a lexicographic ordering
such that (58) holds. We define n by (56) such that by Proposition 5.8 we get the Iwasawa
decomposition g = k ⊕ a ⊕ n which gives the group Iwasawa decomposition G = KAN by
Theorem 5.9. We recall from Lemma 6.2 that (g, k, a⊕ n, 〈, 〉 = ImBg) is a Manin triple, and
therefore k is a Lagrangian subalgebra of g. We recall from section 3.3 that G acts on L(g),
the set of Lagrangian subalgebras of g, by the adjoint action.
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Lemma 7.3. There exists a manifold structure on the G-orbit through k in L(g), such that the
map

κ : K\G→ G · k : Kb 7→ Ad−1
b (k) (63)

is a diffeomorphism.

Proof. We define the smooth right action

ς : G×G · k→ G · k : (g, l) 7→ g−1 · l = Ad−1
g (l),

which is clearly transitive. We observe that the stabilizer is given by

Gk = {g ∈ G : Ad−1
g (k) = k} = NG(k),

where NG(k) is the normalizer subgroup of k in G. Then there exists a manifold structure on
G · k such that the map κ ≡ ςk : NG(k)\G → G · k is a diffeomorphism the equivalent of
[22, Proposition 15.5] for smooth right actions. It is clear for any k ∈ K and X ∈ k that
AdkX ∈ k, and thus K ⊂ NG(k).

Now take any g ∈ NG(k). Since G = K exp p and p = Ad(K)a by [11, Theorem 6.51] we
find that there exist k, k′ ∈ K and X ∈ a such that

g = k′ exp(AdkX) = k′k expXk−1.

Since Adg(k) ⊂ k we find that eadX(k) = AdexpX(k) ⊂ k. Now take any α ∈ ∆(g, a). If
Y ∈ gα, then θY ∈ g−α and as such Y + θY ∈ gθ = k. We then also observe that

eα(X)Y + e−α(X)θY = eadX(Y + θY ) ∈ k,

and therefore

eα(X)Y + e−α(X)θY = θ(eα(X)Y + e−α(X)θY ) = e−α(X)Y + eα(X)θY.

The above gives us α(X) = 0 since Y and θY independent. We thus find α(X) = 0 for all
α ∈ ∆(g, a) and as such conclude that X = 0, hence g ∈ K. Therefore NG(k) ⊂ K, which
completes our proof.

For any a ∈ A, we use the above lemma to identify the left coset Ka with the Lagrangian
subalgebra l := Ad−1

a (k) of g. As H is a subgroup of G we find that KaH is an immersed
submanifold of K\G diffeomorphic to H · l by the same lemma. In order to define a Lu-
Evens Poisson structure on the orbits we must determine what to take for d = u ./ u∗, and
the obvious choice seems to be d = g, u = h with the nondegenerate ad-invariant symmetric
bilinear form 〈, 〉 = ImBg. We still must find a subalgebra of g which can be identified as u∗.

We recall that p = ik and since τ is complex antilinear we similarly find that

τ(iX) = −iτ(X) = −iX, ∀X ∈ h, τ(iY ) = −iτ(Y ) = iY, ∀Y ∈ q,
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and as such we conclude that q = ih. Moreover, h is a real form of g. We also like to note that
if X ∈ m = zk(a), the centralizer of a in k, then iX belongs to p and necessarily commutes
with every element of a. Since a is maximal abelian we find that iX ∈ a. It is quite obvious
that ia ⊂ ip = k centralizes a, and we therefore find that m = ia. If we define c as a⊕ ia we
find by Theorem 5.7 the decomposition

g = c⊕
⊕

α∈∆(g,a)
gα. (64)

Clearly c is maximal abelian in g, and since a ⊂ p we find that the adjoint action of c on g is
diagonalizable. By [11, Corollary 2.13] we conclude that c is a Cartan subalgebra of g. We
note that g can be regarded as the complexification of h since h is a real form of g. It is clear
that

cτ := c ∩ h = (a ∩ h)⊕ i(a ∩ q) = ia−τ ⊕ aτ

is a real form of a ⊕ ia and therefore c can be considered as the complexification of cτ . We
therefore conclude that cτ is a Cartan subalgebra of h, which is clearly θ-stable. Since a−τ

is maximal abelian in p ∩ q we find that ia−τ is maximal abelian in k ∩ h, and therefore the
compact dimension of cτ is maximal. There exists a decomposition

g = (a⊕ ia)⊕
⊕

β∈∆(g,c)
gβ (65)

as complex vector spaces since a⊕ ia is a Cartan subalgebra. By [11, Proposition 6.70] there
exists no β ∈ ∆(g, c) such that β maps all of ia−τ to zero, or equivalently on a−τ since β
complex linear.

We note for β ∈ ∆(g, c) that β|a ∈ ∆(g, a) is a root if β|a 6= 0. Conversely if α ∈ ∆(g, a)
there must exist β ∈ ∆(g, c) such that β|a = α by (64) and (65). We therefore conclude
that there exist no α ∈ ∆(g, a) such that α|a−τ = 0. Interestingly we observe for the spaces
defined in (61) that n0 = ∅ and n1 = n, from which we conclude that (θ ◦ τ)(n) = n. We find
that τn = θn since θ is an involution and then τn ∩ n = {0} by Theorem 5.7 (c). Also since
n = n1, we observe

g = c⊕
⊕

β∈∆(g,a−τ )
gβ,

from which we conclude that c is the centralizer of a−τ . We denote by c−τ = c ∩ q the fixed
point set of c under −τ .

Lemma 7.4. (g, h, c−τ⊕n) equipped with 〈, 〉 = ImBg, the imaginary part of the Killing form
of g, is a Manin triple.

Proof. Since h is a real form of g we observe that Bg is a complex linear extension of Bh,
which is real on h. We conclude that h is isotropic with respect to ImBg. Because c−τ ⊂
q = ih we conclude by similar reasoning that 〈c−τ , c−τ 〉 = 0 and by Lemma 5.6 we find that
〈n, c−τ ⊕ n〉 = 0 since c−τ ⊂ a⊕m = g0. Therefore c−τ ⊕ n is also isotropic with respect to
ImBg.
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We know by Theorem 5.7 that

g = (a⊕m)⊕ n⊕ θn = c⊕ n⊕ τn (66)

is a direct sum of vector spaces. Therefore if X ∈ g there exist H ∈ c and Y, Y ′ ∈ n such that

X = H + Y + τY ′ = (1
2
(H + τH) + Y ′ + τY ′) + 1

2
(H − τH) + (Y − Y ′)

from which we observe that X ∈ h⊕ c−τ ⊕n. Since the right hand side of (66) is a direct sum
of vector spaces we know that c−τ ∩ n = {0}.

Take any X ∈ h ∩ (c−τ ⊕ n). Since τX = X we observe that X ∈ c−τ ⊕ τn. Because
τn ∩ n = {0} and c−τ ∩ n = {0}, we then find

X ∈ (c−τ ⊕ n) ∩ (c−τ ⊕ τn) = c−τ .

Then X = τX = −X and therefore X must be zero. We conclude that

g = h⊕ c−τ ⊕ n

is a direct sum of vector spaces, which completes our proof.

By the above lemma we observe that c−τ ⊕ n is isomorphic to the dual of h through 〈, 〉. It
is now appropriate to define h∗ = c−τ ⊕n and we then find g = h⊕h∗ such that we can regard
g as the double Lie algebra of h. It is now possible to use the results found in section 3.4.
First we define a Poisson structure π− on G by (44) with R as defined in (42). We then use
Lemma 3.30 to find a Poisson structure πH on H such that (H, πH) is a Poisson Lie subgroup
of (G, π−).

Let C−τ and H∗ be the analytic subgroups generated by c−τ and h∗ respectively. Since
c−τ ⊂ g0 we know [c−τ , n] ⊂ n and therefore C−τ normalizes N . Then C−τN is a subgroup
of G which is connected and is clearly also a subgroup of H∗. The Lie algebra of C−τN
clearly contains both c−τ and n, and therefore also h∗, hence H∗ ⊂ C−τN . We conclude
that H∗ = C−τN . There also exists a Poisson structure πH∗ on H∗ such that (H∗, πH∗) is a
Poisson Lie subgroup of (G, π−). We define

l ≡ Ad−1
a (k) = κ−1(Ka). (67)

We define a Poisson structure Π on the orbit G · l such that (H · l,ΠH) and (H∗ · l,ΠH∗)
are Poisson submanifolds, where ΠH and ΠH∗ are the Poisson structures induced by Π. Let
il : H · l → G · l denote the inclusion map, which is a Poisson immersion. We also recall
that (H · l,ΠH) is a (H, πH)-homogeneous space. Through the diffeomorphism κ defined in
Lemma 7.3 we then find that Pa = κ(H · l) ⊂ K\G and P ∗a = κ(H · l) ⊂ K\G are both
Poisson submanifolds of K\G, and then Ma, the symplectic leaf through Ka, must lie in
Pa ∩ P ∗a by Proposition 3.11. If Π0 ∈ X2(Pa) is the bivector field which defines the Poisson
structure on Pa, then ΠH and Π0 are κ-related. We also note that as sets Pa = KaH and
P ∗a = KaH∗.

For the rest of the section we fix a ∈ A−τ .
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Lemma 7.5 ([6, Lemma 3.2]). The Poisson manifold Pa is regular and equals the union of
Aτ -translates of Ma, i.e. each p ∈ Pa can be written p = ma′ with unique a′ ∈ Aτ , m ∈Ma.

Proof. Take any c ∈ Cτ , and any X ∈ g, then τ(AdcX) = Adτ(c) τX = Adc τX . Therefore
if X ∈ h then AdcX ∈ h and if X ∈ c−τ then AdcX ∈ c−τ . Since cτ ⊂ g0 we know that
[cτ , n] ⊂ n, and since Cτ is the analytic subgroup of cτ we find that Adc leaves n invariant,
and thus Adc leaves both h and h∗ invariant. We then find that Adc leaves R as defined in (42)
invariant. We recall that the Poisson structure π− defined on G equals zero at g if Adg R = R,
and we therefore conclude π−(c) = 0 for any c ∈ Cτ .

Since the Poisson structure πH on H is induced by π− we find that πH(c) = 0 for any
c ∈ Cτ . The orbit Pa = KaH is a (H, πH)-homogeneous space and the corresponding left
action of H on Pa is given by

σ : H × Pa → Pa : (h1, Kah) 7→ Kahh−1
1 .

We define the maps σp : H → Pa : h 7→ σ(h, p) and σh : Pa → Pa : p 7→ σ(h, p), such the
(H, πH)-homogeneity of Pa gives

Π0(σh(p)) = Π0(σ(p, h)) = Teσh(Π0(p)) + Teσp(πH(h)), p ∈ Pa, h ∈ H.

For any c ∈ Cτ we recall that πH(c) equals zero and thus we conclude by the above that
σc : Pa → Pa is a Poisson diffeomorphism. For any a1 ∈ Aτ ⊂ Cτ we then know that
the above map with c = a−1

1 is also a Poisson diffeomorphism and therefore maps Ma, the
symplectic leaf through Ka, diffeomorphically to Maa1 , the symplectic leaf through Kaa1.
Let a1 6= a2 ∈ Aτ , then there exists no c′ ∈ C−τ such that a1c

′ = a2. Therefore a1C
−τ ∩

a2C
−τ = ∅ which in turn gives P ∗aa1 ∩P

∗
aa2

= ∅ by uniqueness of the Iwasawa decomposition.
Since Maaj ⊂ P ∗aaj for both j = 1, 2 we conclude Maa1 6= Maa2 . We define the map

γ : Ma × Aτ → Pa : (Kah, a′) 7→ Kaha′, (68)

and we note by the previous observations that it must be injective.
Let p = Kah ∈ Pa and let Mp be the symplectic leaf through p. We know by the previous

observations that the codimension of Mp in Pa is at least dim(aτ ). Through the diffeomor-
phism κ defined in Lemma 7.3 the point p is identified with l′ := Ad−1

ah k, and since l′ ∈ H · l
we find

dim(Pa) = dim(H · l) = dim(H · l′) = dim(H/Hl′) = dim(h/hl′) = dim((h/hl′)
∗)

= dim(h⊥l′ ).

We know by Theorem 3.10 that the dimension of Mp equals the rank of Π′#(l′), and therefore

codim(Mp) = dim(Pa)− dim(Mp) = dim(h⊥l′ )− rank(Π′
#

(l′)). (69)

We also notice that since k is its own normalizer algebra in g, so is l′ and therefore hl′ ⊂ l′. We
then notice by Theorem 3.37 that the Lagrangian subalgebra associated to l′ is a subset of l′:

hl ⊕ (h⊕ h⊥l′ ) ∩ l′ ⊂ l′

62



Since both subalgebras are Lagrangian and therefore of equal dimension we conclude that

l′ = {X + ξ : X ∈ h, ξ ∈ h⊥l′ , (χl′ξ)y(ψ−1
l′ Π′(l′)) = X + hl′},

where ψl′ is the map identifying Tl′(H ·l′) ∼= h/hl′ and χl′ is the map identifying h⊥l′
∼= (h/hl′)

∗.
Interestingly we then find that

codim(Mp) = dim({ξ ∈ h⊥l′ : (χl′ξ)y(ψ−1
l′ Π′(l′)) = 0})

= dim({X + ξ ∈ l′ : X = 0}) = dim(l′ ∩ h∗).

Since k is compact we find that l′ also is a compact subalgebra, while the maximal compact
subspace of h∗ equals iaτ , and therefore codim(Mp) ≤ dim(aτ ). Combined with our previous
observation we conclude that codim(Mp) = dim(aτ ) and therefore MpA

τ has the same di-
mension as Pa. We thus infer thatMpA

τ is an open subset of Pa. Since codim(Mp) = dim(aτ )
for any p ∈ Pa we conclude by (69) that the rank of the Poisson structure is constant in all of
Pa, and therefore Pa is a regular Poisson manifold.

Let Σ(Pa) be the set of symplectic leaves of Pa and let Mp ∈ Σ(Pa) be the symplectic leaf
through p ∈ Pa. If a′ ∈ Aτ we note by previous observations Mpa

′ = Mpa′ and thus Aτ acts
on Σ(Pa). Because of this action, Σ(Pa) can be represented as a disjoint union of itsAτ -orbits.
For each such orbit we choose a representative M ′, and we define Σ′ ⊂ Σ(Pa) as the set of
representatives. Since Pa is the union of all symplectic leaves we then find

Pa =
⊔

M ′∈Σ′
M ′Aτ ,

which is a disjoint union of open nonempty subsets. Since Pa is connected we conclude that
Σ′ consists of at most one element and therefore Pa = MaA

τ , which shows that γ as defined
in (68) is surjective and thus bijective.

We define the torus T = exp(ia−τ ) ⊂ H . For t ∈ T and Kah ∈ Pa we observe that
Kaht−1 ∈ KaH = Pa and we therefore observe that the map

σT : T × Pa → Pa : (p, t) 7→ pt−1

is a left action. We note that since T and Aτ commute, T also acts on Ma by the above lemma.
The next lemma illustrates that this action is Hamiltonian and defines its corresponding mo-
ment map.

Lemma 7.6 ([6, Lemma 3.3]). The action of T on Ma is Hamiltonian with a moment map
J = − pra−τ ◦ log ◦ρA. Here, t∗ is identified with a−τ via 〈, 〉. Moreover, the moment map is
proper.

Proof. We will first prove that σT is a Hamiltonian action on Pa and with J the corresponding
map. Choose Z ∈ t = ia−τ and any p = Kah ∈ Pa. We will prove that the Hamiltonian
vector field of JZ ∈ C∞(Pa) equals the infinitesimal generator (σT )Z(p).

By the Iwasawa decomposition there exists k ∈ K and b ∈ AN such that ah = kb, and
therefore p = Kah = Kb. For X ∈ h we then define the path c(t) ∈ Pa by

c(t) = p exp(tX) = Kb exp(tX) = K exp(tAdbX)b
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such that c(0) = p and c′(0) ∈ TpPa. We then observe that

dJZ(p)(c′(0)) =
d

dt

∣∣∣
t=0
JZ(c(t)) =

d

dt

∣∣∣
t=0
〈J(c(t)), Z〉

while we also note

J(c(t)) = (− pra−τ ◦ log ◦ρA)(K exp(tAdbX)b) = −(pra−τ ◦ log)(ρA(exp(tAdbX))ρA(b))

= −(pra−τ (log(ρA(exp(tAdbX))) + log(ρA(b))).

Because t ⊂ k ∩ h and aτ ⊂ h while both k and h are isotropic subspaces with respect to 〈, 〉
we observe 〈k⊕ aτ , t〉 = 0. By Lemma 5.6 we also observe

〈n, t〉 = ImBg(n, ia
−τ ) = iReBg(n, a

−τ ) = 0,

and therefore t and k⊕ aτ ⊕ n are orthogonal with respect to 〈, 〉. We then find

dJZ(p)(c′(0)) = − d

dt

∣∣∣
t=0
〈(pra−τ (log(ρA(exp(tAdbX))) + log(ρA(b))), Z〉

= −〈pra−τ (pra(AdbX)), Z〉 = −〈AdbX,Z〉 = −〈Ad−1
b Z,X〉.

If we define l′ := κ−1(p) = Ad−1
b (k), then there exists an isomorphism φ : l′ → T ∗l′ (G · l)

by Lemma 3.32. We note that then Tp(il ◦ κ−1)(c′(0)) ∈ Tl′(G · l), which we can calculate
explicitly to be,

Tp(il ◦ κ−1)(c′(0)) =
d

dt

∣∣∣
t=0
il(κ

−1(Kb exp(tX))) =
d

dt

∣∣∣
t=0
il(Ad−1

b exp(tX)(k))

=
d

dt

∣∣∣
t=0

Ad−1
exp(tX) Ad−1

b (k) =
d

dt

∣∣∣
t=0

exp(−tX) · l′ = −Teαl′(X) (70)

Since Z ∈ k we find that Ad−1
b Z ∈ l′ and we then find by Lemma 3.32,

φ(Ad−1
b Z)(Tp(il ◦ κ−1)(c′(0))) = −φ(Ad−1

b Z)(Teαl′(X)) = −(Teαl′)
∗(φ(Ad−1

b Z))(X)

= −χ(Ad−1
b Z)(X) = −〈Ad−1

b Z,X〉.

and therefore

dJZ(p) = (Tp(il ◦ κ−1))∗φ(Ad−1
b Z).

If we denote by Π0 the Poisson structure on Pa we find that Π0 and ΠH are κ−1-related while
we recall that ΠH and Π are il-related, and thus Π0 and Π are (il ◦ κ−1)-related. Take any
Y + η ∈ l′, we then find using Lemma 3.32 that(

φ∗
(
Tp(il ◦ κ−1)(Π#

0 (p)(dJZ(p)))
))

(Y + η)

= Π0(p)
(
(Tp(il ◦ κ−1))∗φ(Ad−1

b Z), (Tp(il ◦ κ−1))∗φ(Y + η)
)

=
(
Tp(il ◦ κ−1)Π0(p)

)
(φ(Ad−1

b Z), φ(Y + η))

= Π(il(κ
−1(p)))(φ(Ad−1

b Z), φ(Y + η))

= Π(l′)(φ(Ad−1
b Z), φ(Y + η)) = 〈prh Ad−1

b Z, Y + η〉. (71)
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Since t ⊂ g0 = {X ∈ g : [X, a] = 0} we observe that [a, t] = 0 and [n, t] ⊂ n by Theorem
5.7 (b). Therefore if H ∈ a and Y ∈ n we find

AdexpH Z = eadHZ = Z and AdexpY Z = eadY Z = Z +
∑∞

k=1
(adY )kZ ∈ Z + n.

Because A and N are analytic subgroups while b ∈ AN we observe that Ad−1
b Z ∈ Z + n.

Since n ⊂ h∗ we then find that prh(Ad−1
b Z) = Z. We use (70) with X = −Z to quickly

calculate

φ∗(Tp(il ◦ κ−1)((σT )Z(p))))(Y + η) = (φ(Y + η))
d

dt

∣∣∣
t=0
il(κ

−1(Kb exp(−tZ)))

= (φ(Y + η))(Teαl′(Z)) = ((Teαl′)
∗ ◦ φ)(Y + η)(Z)

= χ(Y + η)(Z) = 〈Z, Y + η〉,

and by combining the above with (71) and prh(Ad−1
b Z) = Z we observe

Π#
0 (p)(dJZ(p)) = (σT )Z(p),

since φ∗, Tl′il and Tpκ−1 are all injective. We conclude that σT is a Hamiltonian action on Pa
with J as its moment map. Since Ma is a symplectic leaf of Pa and since T also defines an
action on Ma, the restriction of J to Ma is then the moment map for the Hamiltionian action
of T on Ma.

For the proof that J is a proper map we refer to the original article.

We notice that the left hand side of (62) is exactly−J(aH) = −J(KaH) = −J(Pa). Take
any p ∈ Pa, then by Lemma 7.5 there exist a′ ∈ Aτ , m ∈ Ma such that p = ma′. Since
log(a′) ∈ aτ we find

J(p) = (− pra−τ ◦ log ◦ρA)(ma′) = −(pra−τ ◦ log)(ρA(m)a′)

= − pra−τ (log(ρA(m)) + log(a′)) = − pra−τ (log(ρA(m))) = J(m).

As such J(aH) equals J(Ma), and since Ma is a connected symplectic manifold, one can use
Theorem 4.4 to find J(aH). Foth and Otto calculate that the convex polyhedral set−J(Ma) ⊂
a−τ is exactly as described on the right hand side of (62), by closely studying the local cones
mentioned in Theorem 4.4. This is a quite extensive process which is unrelated to Poisson
structures and we therefore choose not to study it in the present thesis.

7.2. Real case
In the previous section we looked at a part of the proof of Van den Ban’s convexity theorem
in the case that G is a complex semisimple Lie group. In the unpublished article [18], Otto
studies a generalization of Duistermaat’s theorem (Theorem 4.3) for noncompact manifolds,
and one of the generalization’s mentioned applications is Van den Ban’s convexity theorem in
the case that G is a real semisimple Lie group. The strategy is very similar to the one used in
section 6.2. On a complexification of G, for which one knows by the previous result that Van
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den Ban’s convexity theorem holds, one uses that G is the fixed point set an involution upon
which the new generalization of Duistermaat’s theorem [18, Corollary 3.2] is applied. This
eventually allows one to prove Van den Ban’s convexity theorem in the real case.

We would like to note however that the article referred to in this section has not appeared in
a peer reviewed journal. Furthermore, we have not attempted to check the details of the article
ourselves for a lack of time.

8. Outlook
In 2016 Bălibanu and Van den Ban published an article [2] in which they prove a generalization
of Van den Ban’s convexity theorem (Theorem 7.2). One might not unreasonably expect that
there also exists a proof for this latest generalization which employs the symplectic approach.
This was our original motivation for studying the alternative proofs of Kostant’s and Van den
Ban’s theorems. However due to a lack of time we were not able to explore if a similar
approach also works for this new convexity theorem.
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A. Intrinsic derivative
In section 3.2 we define on a Lie group G for a k-vector field Π which is zero in the identity
the intrinsic derivative at the identity by

deΠ : g 7→ ∧k(g) : X 7→ (£XΠ)(e) (72)

where X is any vector field on G such that X(e) = X . It is not straightforward that this is
well defined and therefore we would like to shine a light on the matter in this appendix. For
this we follow the approach from [7, p.149-150].

A.1. Definition
Let M be a smooth manifold and let E1 and E2 be vector bundles over M . For any m ∈ M
there exists an open neighborhood U of m such that we can trivialize open subbundles Vj =
(Ej)U ⊂ Ej by the maps

τ1 : V1 → U × Rk, τ2 : V2 → U × Rl,

which are both isomorphisms of vector bundles on U . If ϕ : E → F is a vector bundle map,
then ϕτ := τ−1

2 ◦ ϕ ◦ τ1 describes a map from U × Rk to U × Rl. We can also regard ϕτ

as a map U → Hom(Rk,Rl). The derivative Tmϕτ at m then defines a mapping TmM →
Tϕτ (m) Hom(Rk,Rl) ∼= Hom(Rk,Rl).

For m we define Kτ
m = kerϕτ (m) ⊂ Rk and Lτm = cokerϕτ (m) = Rl/ imϕτ (m). We de-

note the corresponding inclusion map ιτm : Kτ
m → Rk and the projection map ρτm : Rl → Lτm.

We define the intrinsic derivative of ϕτ to be the linear map dmϕτ : TmM → Hom(Kτ
m, L

τ
m)

at m given by

dmϕ
τ (v) = ρτm ◦ Tmϕτ (v) ◦ ιτm, ∀v ∈ TmM.

The definition of the intrinsic derivative is clearly dependent on the choice of the trivializa-
tions τ used for E1 and E2. We note that τ1 defines a bijective linear map

Aτ (m′) : (E1)m′ → Rk

for every m′ ∈ U , where (E1)m′ is the fiber of E1 at m. In the same way τ2 defines Bτ (m′) :
(E2)m′ → Rl for all m′ ∈ U . Using this notation we observe that

ϕτ (m′) = Bτ (m′) ◦ ϕ(m′) ◦ Aτ (m′)−1, ∀m′ ∈ U. (73)

If σ1 and σ2 are also trivializations of E1 and E2 respectively we find that the maps

Aστ (m′) = Aσ(m′) ◦ (Aτ (m′))−1 ∈ GL(Rk)

Bστ (m′) = Bσ(m′) ◦ (Bτ (m′))−1 ∈ GL(Rl)

are smooth maps from U to GL(Rk) and GL(Rl), and describe the transformation from
one pair of trivializations to the other. As in the case of τ , there exists a map ϕσ : U →

67



Hom(Rk,Rl), which at m has kernel Kσ
m with ισm as inclusion map and cokernel Lσm with ρσm

as projection map. We note by (73) that

ϕσ(m′) = Bστ (m′)ϕτ (m′)Aστ (m′)−1 ∈ Hom(Rk,Rl)

for any m′ ∈ U . Clearly Aστ (m)Kτ
m = Kσ

m and as such we define Aστ (m) : Kτ
m → Kσ

m such
that the diagram

Rk Rk

Kτ
m Kσ

m

Aστ (m)

ισm

Aστ (m)

ιτm

commutes. Similarly we see

Bστ (m) ker ρτm = Bστ (m) imϕτ (m) = imϕσ(m) = ker ρσm

and define Bστ (m) : Lτm → Lσm such that the diagram

Rl Rl

Lτm Lσm

ρτm

Bστ (m)

ρσm

Bστ (m)

commutes. Now there exists a natural isomorphism

Υ : Hom(Kτ
m, L

τ
m)→ Hom(Kσ

m, L
σ
m) : C 7→ Bστ (m)CAστ (m)−1

defined by the trivializations. If the intrinsic derivative is independent of the choice of trivial-
ization, then we should find that Υ(dmϕ

τ (v)) = dmϕ
σ(v) for any v ∈ TmM . We can simply

calculate the derivative of ϕσ in m using the Leibniz rule, and thus Tmϕσ(v) equals

TmB
στ (v)ϕτ (m)Aστ (m)−1 +Bστ (m)Tmϕ

τ (v)Aστ (m)−1 +Bστ (m)ϕτ (m)Tm((Aστ )−1)(v)

for any v ∈ TmM . We observe

ϕτ (m)Aστ (m)−1 ◦ ισm = (ϕτ (m) ◦ ιτm)Aστ (m)−1 = 0,

ρσm ◦Bστ (m)ϕτ (m) = Bστ (m)(ρτm ◦ ϕτ (m)) = 0,

since kerϕτ (m) = Kτ
m = im ιτm and imϕτ (m) = ker ρτm. The intrinsic derivative of ϕσ at m

then is

dmϕ
σ(v) = ρσm ◦Bστ (m)Tmϕ

τ (v)Aστ (m)−1 ◦ ισm
= Bστ (m)(ρτm ◦ Tmϕτ (v) ◦ ιτm)Aστ (m)−1 = Υ(dmϕ

τ (v))
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for any v ∈ TmM , and thus we see that the intrinsic derivative is independent of the choice of
trivialization. If we now define Km = kerϕ(m) and Lm = cokerϕ(m), it is clear that for any
pair of trivializations τ on U there naturally exist isomorphisms

Aτ (m) : Km → Kτ
m, Bτ (m) : Lm → Lτm,

such that if σ is another pair of trivializations on U ,

Aσ(m) = Aστ (m) ◦ Aτ (m), Bσ(m) = Bστ (m) ◦Bτ (m).

We then find there exists a unique linear map

dmϕ : TmM → Hom(Km, Lm),

such that for any pair of trivializations τ on U ,

dmϕ
τ = Bτ (m)dmϕAτ (m)−1.

We then call dmϕ the intrinsic derivative of ϕ at m.

A.2. Special case
Let G be a Lie group, then ∧k(G) is a vector bundle over G and G × R is a product bundle
over G. We can trivialize ∧k(G) by the map

∧k(G)→ G× ∧k(g) : (g, A) 7→ (g, r−1
g A)

since the differential of right multiplication by g−1 defines a isomorphism TgG → g. We
define

∧k(g)→ Hom(R,∧k(g)) : A 7→ (t 7→ tA)

which is an isomorphism since ψ 7→ ψ(1) is its inverse. Now if Π is a k-vector field on G
we can also see it as a vector bundle map G × R → G × ∧k(g) and therefore we are able
to calculate its intrinsic derivative. Recall that dgΠ(v), the intrinsic derivative of Π at g ∈ G
applied to some v ∈ TgG, describes a linear map from the kernel to the cokernel of t 7→ tΠ(g).
However the kernel of (t 7→ tA) is nonzero if and only if A = 0 and therefore it only makes
sense to define the intrinsic derivative at a point g0 if Π(g0) = 0. In this case the kernel is R and
the cokernel is ∧k(g) and because of this we can identify dg0Π as a mapping Tg0G → ∧k(g).
In this thesis we only deal with the case that Π is zero at the identity and since TeG = g we
find that deΠ : g→ ∧k(g). Also because of the trivilization of ∧2(G) used we find that deΠ is
defined by

deΠ : g 7→ ∧k(g) : X 7→ d

dt

∣∣∣
t=0
r−1

exp tXΠ(exp tX)

which coincides with the manner in which the intrinsic derivative is calculated in this thesis.
However this still does not imply that this definition of the intrinsic derivative coincides with
the one given by (72).
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If we take X as any vector field on G such that X(e) = X ∈ g, we define γ(t) as its
integral path with γ(0) = e and its flow by ψt. If we now pick any trivialization of ∧2(G) to
G × ∧2(g), then we find that Tγ(t)ψt ∈ GL(∧2(g)) and we therefore may apply the Leibniz
rule when calculating the Lie derivative

(£XΠ)(e) =
d

dt

∣∣∣
t=0

(Tγ(t)ψt)
−1Π(γ(t)) =

d

dt

∣∣∣
t=0

(Teψ0)−1Π(γ(t)) + (Tγ(t)ψt)
−1Π(e)

=
d

dt

∣∣∣
t=0

Π(γ(t)) = deΠ(γ′(0)) = deΠ(X)

Now since the Lie derivative and the intrinsic derivative are both independent of the choice of
trivialization, we see that (72) holds in general.
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Boston, 2002.

[12] L.I. Korogodski and Y.S. Soibelman. Algebras of functions on quantum groups. Part I,
volume 56 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 1998.

[13] B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci.
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