
Scalable and Reuse-Oriented
Data Integration

A Distributed Semi-Automatic Approach

Matthijs Gerard Dabroek

Department of Information and Computing Sciences
Utrecht University

A thesis submitted for the degree of
Master of Business Informatics

First supervisor
dr.ir. J.M.E.M. van der Werf

Utrecht University

Second supervisor
dr. F.J. Bex

Utrecht University

External supervisor
W. Wezelman, MSc.

ING Bank N.V.

October, 2016

i

Abstract

In the current information age, it is crucial for an organization to integrate all of
its available source systems to provide deep insights, adhere to regulations, or provide
a competitive edge. However, data integration often proves to be a tedious and
costly process. In this study we aim to answer the question: can we formulate and
construct a semi-automatic distributed system to enable scalable and reuse-oriented
data integration?

To aid the process of data integration we propose a system that takes advantage
of previously provided associations between source schemas. To provide a common
language between disparate sources, we introduce the use of an ontology to our
proposed solution. We attempt to semi-automatically match attributed from the
schemas of source systems to entities of the ontology, by utilizing a self-learning
aspect and a feedback loop. We attempt to achieve this by applying a dual approach,
using both semantical and structural aspects of the source and the ontology.

We constructed a proof-of-concept and performed a user acceptance study to
evaluate our approach and validate our solution. Our contribution is two-fold: we
distribute our data integration system, thereby contributing to the scalability of the
system, and we reuse previously obtained results to enable semi-automatic matching.

We performed both quantitative and qualitative analysis to evaluate the accuracy
and feasibility of our system. The outcome suggests that our solution has merit and
shows that end-users have positive expectations towards its use and performance.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objective . 3
1.3 Outline . 3

2 Research Approach 5
2.1 Research Questions . 5

2.1.1 Main Research Question . 5
2.1.2 Sub Research Questions . 5

2.2 Research Method . 6
2.2.1 Design Science Research . 6
2.2.2 Literature Research . 7
2.2.3 Case Study Research . 8

3 Data Integration 9
3.1 Data Integration Architectures . 9
3.2 Data Integration Techniques . 10

3.2.1 Schema Mapping and Matching . 10
3.2.2 Semantic Integration with Ontologies 13

3.3 Distributed Data Integration . 14
3.3.1 Peer-to-Peer Infrastructure . 15
3.3.2 Replication and Scalability with DHTs 17
3.3.3 Scalable Computation . 18

3.4 Existing Distributed Integration Approaches 19
3.4.1 Pairwise Schema Mapping . 19
3.4.2 Mapping with Machine Learning Techniques 19

3.5 Related Concepts . 20

4 Proposed Solution 22
4.1 Infrastructure . 23

4.1.1 Network . 23
4.1.2 Node . 23

ii

Contents iii

4.2 System Dynamics . 24
4.3 Matching Process . 26

4.3.1 Semantic-based Approach . 27
4.3.2 Structure-based Approach . 29
4.3.3 Scoring . 30
4.3.4 User-feedback . 31

4.4 Mapping Process . 31
4.4.1 Bottom-up Approach . 32
4.4.2 Top-down Approach . 32

4.5 Reference Architecture . 32
4.5.1 Business Layer . 34
4.5.2 Presentation Layer . 34
4.5.3 Data Layer . 35

5 Proof-of-Concept 36
5.1 Business Layer . 36

5.1.1 Ontology Search . 37
5.1.2 Structure Search . 38
5.1.3 Scoring . 39

5.2 Presentation Layer . 39
5.2.1 Technology . 39
5.2.2 User Interaction . 40

5.3 Data Layer . 41

6 Evaluation 43
6.1 Case Study Description . 43
6.2 Data Collection . 44

6.2.1 Interviews . 44
6.2.2 Ontology Extraction . 44

6.3 Results . 45
6.3.1 Quantitative Analysis: Accuracy 45
6.3.2 Qualitative Analysis: User Acceptance 47

7 Discussion 50
7.1 Findings and Implications . 50
7.2 Validity . 50

7.2.1 Construct Validity . 51
7.2.2 Internal Validity . 51
7.2.3 External Validity . 51
7.2.4 Reliability . 51

7.3 Limitations . 52
7.3.1 Case Study Design Method . 52
7.3.2 Instance-based Matching . 52

7.4 Recommendations . 52
7.4.1 Reuse of Infrastructure . 52

iv Contents

7.4.2 Reuse of Existing Mappings . 53
7.4.3 Simplified Storage Solution . 53

8 Conclusions 54
8.1 Future Work . 55

A Activity Diagram of Matching Process 57

B User Acceptance Survey 58

References 60

List of Figures

1.1 Traditional Integration Approach . 2
1.2 New Integration Approach . 2

2.1 Combined Research Approach . 6
2.2 Design Cycle, reprinted from Schenkhuizen (2016) 7

3.1 Physical Integration . 10
3.2 Logical Integration . 10
3.3 Decision Tree to Determine a Phone Number, adapted from Doan, Halevy,

and Ives (2012) . 12
3.4 Unstructured Peer-to-Peer Network . 16
3.5 Structured Peer-to-Peer Network . 16
3.6 Chord Network showing Associated Peer References 18

4.1 Network of Interconnected Nodes . 24
4.2 Distributed Sorting Process with MapReduce 25
4.3 Business Process View of the Matching Process 27
4.4 Subgraph Isomorphism . 30
4.5 User-feedback . 31
4.6 System Architecture . 33
4.7 Three-layer Application Architecture . 33

5.1 Regex Pattern to Detect camelCase Identifiers with Explanation 37
5.2 Relational Matching . 38
5.3 React and Redux Application State . 39
5.4 User Interface . 40
5.5 Autocomplete Functionality . 41

6.1 Point-to-point . 43
6.2 Hub-and-spoke . 43
6.3 Precision and Recall . 46
6.4 Measures of Relevance . 47

v

vi List of Figures

6.5 UTAUT Research Model, adapted from Venkatesh, Morris, Davis, and Davis
(2003, p. 447) . 48

6.6 User Acceptance Study Results . 49

Acknowledgements

First of all, I want to thank Jan Martijn van der Werf, my academic supervisor, for
providing me with the continuous input and feedback needed to pinpoint on the topic,
and steer the research in the right direction. I also want to thank Floris Bex, as my
second academic supervisor, for taking the time to read and evaluate my work.

A special thanks to my company supervisor, Wouter Wezelman, for giving me the
opportunity to perform this research in the context of a large organization. His supervision,
good advice, and backing enabled me to speak to the right people, have proper resources,
and bring this research to a successful conclusion.

Next, I want to thank several other colleagues, Fekke Odijk, Sandra Wennemers,
Siem Lakeman, Erik Baauw, and Peter Leenes, for taking time and providing me with
a complete and in-depth insight into the processes and procedures of the organization.
Also, Stefan de Jong, Lucian Baghiuc, and Jacob Goense, for their input and knowledge
on the local source systems and related processes.

Likewise, big thanks to data scientists Robert Rodger and John Muller, for giving
me insight into machine learning techniques, data science approaches, and other useful
feedback on my proof-of-concept. Similarly, my sincere gratitude to everyone else I’ve
talked to in the organization, who has helped me develop my ideas and gave their input
on my proof-of-concept.

I want to thank my fellow master students, especially Marja Tiekink and Courtney
Schriek, for their patience in our bi-weekly lunches, while listening to me rambling on
about my work.

A big thanks to my father, Gerard Dabroek, for reading my work and for his compre-
hensive review and helpful suggestions. And last but not least, Katia Agnamazian, for
being my team member and trusted confidant, providing me with all the patience, love,
inspiration, and support needed to endure and finish this project.

vii

Chapter 1

Introduction

1.1 Problem Statement

Major corporations deal with a plethora of (legacy) systems developed in different
programming eras, each with their own standards and paradigms. Data is spread across
multiple systems, formats, languages, and divisions, frequently resulting in an overly
complex network of connected IT. Information is often hard to find, slow to collect, and
difficult to analyze. In the current information age, coupling systems to create added
business value and deeper business insights is inevitable to keep a competitive edge.
Information on demand depends on the ability of the enterprise architecture to find and
combine all key data in time, no matter the format or location.

For financial institutions, data integration is vital not only to add business value, but
also for accurate statutory and compulsory regulatory reporting. Whether it is externally,
for regulator and investor communities, or internally, for managerial decision-making,
customer intelligence, or advanced analytics, information from many systems across the
enterprise is required. Aggregating and interpreting the correct information scattered over
numerous source systems, is a tedious and complex process. An abundance of sources need
to be identified and a vast amount of data has to be interpreted. After correctly identifying
the required information, it has to be extracted from the source systems, transformed
into usable data, and loaded into a data warehouse for further interpretation. Many data
owners, business analysts and system experts, are working in parallel to manually identify
information and connect source systems. Previously identified knowledge is often ignored
and reuse overlooked. Manually creating these so-called mappings between source systems
and a common agreed-upon standard tends to be slow, repetitive, costly, and error prone.

Yet aggregating business data on a large scale proves to be extremely difficult, complex,
and demanding (Gagnon, 2007). Companies commonly use traditional manual extract,
transform, load (ETL) procedures to translate data from one source system to the other,
a tedious and highly customized process. Because of this, business value and agility is
lost, due to production costs and limited time.

What is needed is to integrate the data from several disparate sources. Several
definitions for data integration exist in literature. Data integration is the problem of
combining data residing at different sources, and providing the user with a unified view of
these data (Lenzerini, 2002). Data integration is a set of techniques that enable building

1

2 Chapter 1 Introduction

systems geared for flexible sharing and integration of data across multiple autonomous
data providers (Doan et al., 2012).

The notion of data integration is becoming more and more relevant while the magnitude
of available data sources increases steadily and data creation is occurring at a record
rate (Villars, Olofson, & Eastwood, 2011). Data growth challenges and opportunities
are often referred to with the term big data. Gartner defined three – now widely used –
characteristics of big data, i.e. increasing volume (amount of data), velocity (speed of
data in and out), and variety (range of data types and sources) (Beyer & Laney, 2012).
But piles of data are useless to businesses if there is no good way to retrieve, observe,
and interact with that data to generate tangible information and practical knowledge. A
strong data integration strategy can help companies to harness information coming in
from every direction and use it to support their business goals.

A common issue in large enterprises is that the conceptual model of data differs greatly
between systems. Systems can hold similar entities with completely different attributes,
or common attributes with a different semantic representation. This issue is not only
common between applications, but can also occur within applications, particularly when
that application is divided into separate components. Since the advent of the microservice
architecture, data integration has gained a renewed wave of attention. As more and more
applications are being deployed in the cloud, monolithic applications are being broken
down into independently deployable and scalable services (Lewis & Fowler, 2014). This
involves rethinking data sharing between different components of the system.

A drawback of traditional data integration methods is the centralization of authority
and governance over the integrated systems, as depicted in Figure 1.1. Data integrators
need to have a global overview of all the resources spread over the source systems. Experts
need to be involved and consulted every time a change is introduced in a source system.
This creates bottlenecks in the development of these systems.

Figure 1.1 Traditional Integration Ap-
proach Figure 1.2 New Integration Approach

1.2 Objective 3

Therefore, new ways to integrate data sources are required, since traditional ways of
integrating simply require too much modelling, maintenance, and coordination among the
owners of the data sources. Owners of data sources need to be able to collaborate without
any central authority or global standardization, as depicted in Figure 1.2. The ability
to scale up to more sources requires us to redesign architectures to exploit the power of
large clusters. That means challenges like schema matching will need to be tackled in a
much more parallelizable and scalable way.

We hypothesize that an important piece missing in existing distributed solutions is
scalable reuse between source systems. None of these systems retain acquired knowledge
in a scalable and resilient fashion. What is lacking is the capability of the system to
distribute, cache, and reuse previously made associations by expert knowledge or machine
learning.

Much research has been conducted and tremendous progress has been made on the
topic of data integration (A. Halevy, Rajaraman, & Ordille, 2006). Despite the amount of
progress, there are still a number of open research challenges and issues, to two of which
this thesis tries to find a solution. First is a scalable, distributed solution to the tedious
process of matching and interlinking the data models between the distinct data sources.
Second is the lack of industry support for decentralized data integration solutions.

1.2 Objective

The objective of this research is to provide means and a proof of concept to aid the
process of distributed data integration, without shifting the responsibility of the system
experts to a centralized authority, to improve scalability and resilience. The goal is to
provide an unobtrusive solution, without disrupting - or with minimal impact on - the
established process, by building a knowledge system where mappings are being created
and stored to easily retrieve data that is needed. This way we aim to enable continuous
dynamic integration of regularly connecting and disconnecting peers.

The goal of this research is to aid the process of mapping local resources to a shared,
common language. We aim to do this by:

• improving scalability and resilience by distributing the process;

• reducing complexity and costs by localizing responsibility;

• improving consistency by reducing replication of data;

• improving efficiency, accuracy and automation by reusing previous results.

1.3 Outline

In Chapter 2 we illustrate our research approach. We start by presenting our research
questions, followed by the combined research methods approach we selected, to show how
they will support our research.

4 Chapter 1 Introduction

In Chapter 3 we present the results of our literature study. We define the main
concepts like data integration, and introduce important related concepts. We also explore
several architectures and techniques that can support our objective.

In Chapter 4 we present our devised solution. We describe the different aspects of the
solution, present a supporting architecture, and explain how it can be applied to support
the process of data integration.

In Chapter 5 we explain how we devised our proof-of-concept. We explain how we
implemented several of the components of our proposed architecture and give a preview
of the systems’ interface.

In Chapter 6 we evaluate our work. We describe the details of our case study and
present the results of both the quantitative and qualitative analysis we preformed.

In Chapter 7 we discuss our findings and their implications. We discuss the threats to
the validity of our research, address the limitations of our research, and provide some
recommendations for the case study organization.

In Chapter 8 we describe explicitly how we answered the questions posed in Chapter 2
and provide several suggestions for future work on this research topic.

Chapter 2

Research Approach

2.1 Research Questions

2.1.1 Main Research Question

Based on the before-mentioned problem statement and objective we have formulated the
following main research question.

Can we formulate and construct a semi-automatic distributed system to enable scalable
and reuse-oriented data integration?

Our main research question contains two key properties of the system we aim to
construct. Semi-automatic, to reduce the dependency on system experts and reuse
previously acquired knowledge, and distributed, to ensure the scalability of the system.

2.1.2 Sub Research Questions

The main research question can be divided in several sub questions. Together they should
provide a satisfying answer to our main research question.

I. How can distributed data integration be accomplished?

In order to provide source system experts with full control and governance over their data
flowing into the system, it is key to decentralize the process.

II. Which techniques support distributed data integration?

Next to the peer-to-peer negotiation and consistency algorithms, there are numerous
techniques to support the data integration process. In our research we will look at protocols
and algorithms for peer-to-peer connections, distributed hash tables, and consensus and
consistency algorithms. We aim to assess and discern the optimal techniques needed for
our proposed solution.

III. How can these techniques be combined in a system architecture?

We aim to provide an architecture in which we combine the techniques found for SRQII
into an integrated system. Theory and practice should come together to form a satisfying
system architecture.

5

6 Chapter 2 Research Approach

IV. Can the applicability or usability be demonstrated with an implementation or proof-
of-concept?

We will create an implementation of our proposed solution to demonstrate that the
concept is feasible and performant.

V. Can it be applied in large-scale enterprises and does it work?

By applying our concept in a real-world environment, we intent to show that our imple-
mentation can be of benefit in a practical and commercial context.

2.2 Research Method

For our research we combine design science research with case study research. This way
we combine (Figure 2.1) a structured and theoretical approach with a rigorous hands-on
approach, in which we can build, refine, and evaluate our theories. This method will be
supported by a thorough literature research to support and structure our stated questions
and propositions.

Figure 2.1 Combined Research Approach

2.2.1 Design Science Research

We address the problem based on the four basic problem solving principles of Pólya (1945)
taken from his book, ‘How to Solve It’; understand the problem, devise a plan, carry out
the plan, and look back. Additionally, we follow the design science approach described
by Hevner, March, Park, and Ram (2004). Design science is all about problem solving
in a structured way to evaluate if your solution actually solves your problem. Design
science is contrasting from natural science in the fact that we examine and stage artificial
phenomena, instead of observing natural phenomena occurring in the “real world”.

We start in the problem domain by defining our problem as it exists in the real
world. By analyzing the problem, we elevate to a conceptual level referred to as the
abstraction domain. In the abstraction domain we can devise or construct a solution to
our generalized problem. By implementing the solution, we return to the physical level by
creating a tangible artifact that allows us to evaluate our solution on our initial problem.

2.2 Research Method 7

Figure 2.2 Design Cycle, reprinted from Schenkhuizen (2016)

This cyclic approach, as depicted in Figure 2.2, can be done iteratively to fine-tune our
solution and make sure we actually solve our problem.

We make use of a running example to illustrate our solution and make the theory
more easily to grasp. As domain of the running example we chose the average medium to
large-sized enterprise. Eventually we evaluate our solution by applying it in a case study
at a major corporation.

2.2.2 Literature Research

First a literature study is conducted to gain insight in the maturity of the research area.
Next, we aim to identify gaps in the current research and provide new insight into the field
by devising and constructing a generic solution through a mash up of existing techniques.
In our research we ended up exploring a wide variety of topics like peer-to-peer algorithms,
ontology matching, the semantic web, and machine learning.

The literature research consists of a semi-structured literature review using the
snowballing process. Snowballing refers to a continuous, recursive process of searching,
scanning and aggregating references of articles, books, and other research documents.
Our review of the literature aims to confirm that a gap exists and that our proposed
research can lead to interesting scientific insights.

8 Chapter 2 Research Approach

2.2.3 Case Study Research

Our case study research follows the research design as proposed by Yin (2003) in his book,
Case Study Research. We will elaborate on the five components of a research design
mentioned in the chapters of his book.

As indicated in the previous section, our case study research begins with a thorough
literature review and the careful and thoughtful posing of research questions and objectives.
We perform literature research to rely our analytical strategy on theoretical propositions.
We aim to follow explicit procedures when doing our research, to protect against threats to
validity, maintaining a chain of evidence. In this effort we follow Yin (2003) his blueprint
of case study research as a “linear but iterative process”. We organized this research
according to the six elements of case study research: the plan, design, preparation, data
collection, analysis, and reporting.

The essence of a case study, the central tendency among all types of case study,
is that it tries to illuminate a decision or set of decisions: why they were taken,
how they were implemented, and with what result. (Schramm, 1971)

In general, case studies are the preferred strategy when "how" or "why" questions
are being posed, when the focus is on a contemporary phenomenon within some real-life
context (Yin, 2003). Therefore, a case study provides detailed contextual views on our
phenomenon of interest. In other words, we place our solution in a real-world context,
to observe and analyze its efficiency and effectiveness. As the quote by Schramm (1971)
states, we try to shed light on the set of steps we have taken to explain why, how, and to
what outcome they have led us.

A single-case design case study will be performed at a Dutch multinational banking and
financial services corporation headquartered in Amsterdam with a worldwide workforce
exceeding 75-thousand. On one hand this case study is intended to identify and validate
the problem, and on the other hand to propose, construct, and evaluate a generic solution.
Finally, we aim to design an architecture and proof-of-concept that aids the process of
data integration through reuse.

To support our approach, interviews with practitioners will be conducted to assess if our
problem statement is valid and to justify our approach is addressing the correct problem.
Afterwards, to support our evaluation, we will conduct interviews with practitioners to
assess if our proof-of-concept is doing what it should do, which is to aid the process of
integration. Furthermore, to judge if there is any platform of support by looking at user
acceptance.

Chapter 3

Data Integration

Integration comes from the Latin word integer, meaning whole or entire. It generally refers
to combining components so that they work together or form a whole. Data integration is
the problem of combining data residing at different sources, and providing the user with
a unified view of these data (Lenzerini, 2002). It is relevant to numerous applications in
both commercial and scientific context, like in enterprise information integration, medical
information management, geospatial information systems, and commercial applications.

Data integration has been the focus of research since the early eighties (Draffan &
Poole, 1980; Smith et al., 1981). Since then, there has been extensive theoretical research
and commercial development in this area. In the past five years, a tremendous effort has
been made in producing comprehensive overviews of this field and many of its peripheral
subjects (Bellahsene, Bonifati, & Rahm, 2011; Özsu & Valduriez, 2011; Doan et al., 2012;
Shvaiko & Euzenat, 2013).

Data integration involves joining, transforming, enriching, and cleansing data, but
what it doesn’t enforce is how the integration takes place. Traditional data integration
began with extract, transform and load (ETL) tools designed to automate efforts to pull
data from source systems, convert it into a consistent format and load it into a data
warehouse or other target database. This process is commonly referred to as the data
warehouse approach.

More recently, as data sources continue to increase and get updated more frequently,
organizations need a more flexible approach. The data warehouse approach simply does
not provide the real-time or near-real-time decision-making that is required by some
applications. The rise of the service-oriented architecture also stimulated the interest
in more decoupled or loosely coupled solutions to data integration. This is when the
field of data virtualization started to develop. Data virtualization enabled a more agile
approach to data integration. In the following chapter we will explain several architectures,
techniques, and related concepts of data integration.

3.1 Data Integration Architectures

Integration can either be done physically or logically (Jhingran, Mattos, & Pirahesh,
2002). In the former, the source databases are integrated and the integrated database is
materialized. These are better known as data warehouses. The integration is performed

9

10 Chapter 3 Data Integration

by ETL tools, which perform a multi-phase process. This process consists of extracting
data from sources, transforming the data to match the global conceptual schema, and
loading them in a target database. This process is depicted in Figure 3.1. In the latter,
also referred to as virtual integration, the global conceptual (or mediated) schema is
entirely virtual and thus not materialized at all (see Figure 3.2).

Traditionally, there are two approaches for designing a virtual data integration system.
In the global-as-view (GAV) approach, one defines the concepts in the global schema as
views over the sources, whereas in the local-as-view (LAV) approach, one characterizes
the sources as views over the global schema. Calì, Calvanese, De Giacomo, and Lenzerini
(2001) describe an approach to accessing data integration systems by specifying the global
schema in terms of a conceptual data model.

Figure 3.1 Physical Integration Figure 3.2 Logical Integration

Note that physical distribution does not necessarily imply that the computer systems
are geographically apart; they could very well be in the same location. It simply implies
that the communication between them is done over a network instead of through shared
memory or shared disk, with the network as the only shared resource. In virtual integration
the data remains in the sources, and is accessed when needed at query processing time.
In our research we focus solely on virtual integration.

3.2 Data Integration Techniques

3.2.1 Schema Mapping and Matching

One of the most vital operation for all data integration systems is identifying how a
source database schema relates to the target, integrated schema. Schema matching is
the problem of generating correspondences between elements of two schemas (Bernstein,
Madhavan, & Rahm, 2011). As it turns out, creating mappings is one of the main
bottlenecks in developing data integration systems. This task is often difficult because it
requires a deep understanding of the semantics of the data sources. Hence, focusing on
techniques that reduce the time required from a person to create mappings is essential.

3.2 Data Integration Techniques 11

There are two main sources of information to investigate when trying to match data
of two source systems. First of all, there is the source schema generally consisting of
entities with their attributes, and the relationships between these entities. This metadata
is often referred to as the source description and proves to be a vital source of information.
Without this metadata, it would be much more difficult to apply matching strategies.
The source schema can be analyzed with a different level of granularity. This means
that matching can be performed for individual schema elements (i.e. attributes) or for
combinations of elements (i.e. complex structures of attributes).

The second fundamental source of information is the data itself. The raw data
contained in a system provides all kinds of hints about what kind of data we are dealing
with. This can also be used to match entities over different source systems. This is
referred to as the instance-level approach, opposing the previously described schema-level
approach.

Matches between source schemas and matches between data can be found using several
different techniques. In the following sections we will briefly describe a few of them. We
describe two approaches of matching, one that compares the names of schema elements
and another that compares the data instances.

Name-based Matching

String matching deals with the problem of finding strings that refer to the same real-world
entity (Doan et al., 2012). String matching is an important technique used in many data
integration tasks, including both schema matching and data matching. But similar entities
in different source systems are often labeled in a completely different way. It is common for
element names in source descriptions to comprise of acronyms or abbreviations. Matching
may require to split these names on certain delimiters (i.e. capitals) and expanding
acronyms and abbreviations using domain-specific dictionaries. Rahm and Bernstein
(2001) name several commonly used metrics in their survey of approaches to automatic
schema mapping: equality of string (in the same or similar namespace), equality of
canonical name representations–after stemming and other preprocessing (also referred to
as root form or word stem), equality of synonyms and/or hypernyms, and similarity based
on common substrings, string metrics like edit distance, and soundex (i.e. a phonetic
algorithm for comparing names by sound, as pronounced in English). Lastly, matching
can be done with a dictionary approach. This enables domain-specific vocabulary to
be replaced with more generic terms. Examples of these approaches can be found in
Table 3.1. This approach is also referred to as the language-based or linguistic approach.

Instance-based Matching

Merely matching the schema-level is often not enough to find matching elements. This is
where we can employ the expressiveness of the data instances. Instance-level data can give
important insight into the contents and meaning of schema elements. This is especially
true when useful schema information is limited, as is often the case for semi-structured
data.

12 Chapter 3 Data Integration

Matching approach Example

Equality of string (in the same or similar
namespace)

Name equals name (but product name
does not equal employee name)

Equality of canonical form EName equals employee name and
EmpNO equals employee number

Equality of synonyms Employee equals worker and salary equals
wage

Equality of hypernyms Manager is-a person and employee is-a per-
son, implying manager ⇠= employee

Similarity of names based on common sub-
strings, edit distance, or soundex

managedBy ⇠= manager and report-
sTo ⇠= Reports2

User-provided or dictionary name matches handledBy ⇠= employee

Table 3.1 Semantic-based Matching Approaches (Rahm & Bernstein, 2001) with Examples

Since schema matching tasks are often repetitive, and often performed in a particular
domain, similar concepts tend to reoccur. This observation implies schema matching
should be able to improve over time. Machine learning has a strong case for repetitive
tasks. It enables the system to improve matching accuracy over time.

A variety of classification techniques have been proposed to perform such an instance
matching or classification, such as rules, neural networks, and machine learning techniques.
Two common learners are the rule-based learner and the naive Bayes learner.

Figure 3.3 Decision Tree to Determine a Phone Number, adapted from Doan et al. (2012)

3.2 Data Integration Techniques 13

A rule-based learner examines a set of training examples and computes a set of rules
that can be applied to test instances. These rules can be represented as decision trees, as
can be seen in Figure 3.3. After that, new data can be positively or negatively classified
by simply applying the earlier produced rules.

The naive Bayes learner examines the attributes of a given instance and assigns to
the instance the most likely class, given the occurrences of attributes in the training data.
Which means it estimates the probability of a correct classification by computing the
deviation for each of the existing classifications and predicts the one with the closest
similarity, which must be the most likely.

Instance-level matching can also be performed by exploiting available auxiliary in-
formation. For example, previously found mappings obtained from matching different
schemas can be reused to improve the mapping accuracy. Examples of this technique are
further discussed in the section about existing machine learning systems. Consider that
there is not always the possibility to use the instance-level to improve the quality of the
matching process.

3.2.2 Semantic Integration with Ontologies

The application of ontologies for the sharing and reuse of knowledge among software
systems is not a new idea. Hull (1997) already mentioned an "ambitious" framework by
DARPA, supporting automated data integration using ontologies. Uschold and Gruninger
(2004) predicted that ontologies in particular and semantics-based technologies in general
will play a key role in achieving seamless connectivity.

Gruber (1991) introduced the concept of “building libraries of shareable, reusable
knowledge in which common ontologies play a central role as a knowledge coupling
construct”. Ontologies are first mentioned in an information science context by Gruber
(1991) as “coherent sets or vocabularies of representational terms, together with textual
and formal definitions, that embody a set of representational design choices”. Later,
Gruber (1993) presented the more widely accepted definition of an ontology as an “explicit
specification of a conceptualization”. In (1997), Borst defined an ontology as a “formal
specification of a shared conceptualization”. Studer, Benjamins, and Fensel (1998) merged
these two definitions stating that: “An ontology is a formal, explicit specification of a
shared conceptualization.” Guarino, Oberle, and Staab (2009) extensively describe all
the elements of this definition in their chapter “What is an Ontology?” in the Handbook
on Ontologies. In short, they state that without at least a minimal shared ontological
commitment from ontology stakeholders, the benefits of having an ontology are limited.
This is why it is important for those ontologies to be well-founded, to support large-scale
interoperability. More recently, Lenzerini (2011) coined the notion ontology-based data
management (OBDM) for this approach.

A domain ontology represents concepts which belong to a particular domain. They
give meaning in the context of this domain, while in the context of another they could
mean something entirely different. Examples of this are window (display rectangle in a
graphical user interface, or a time period), pipe (smoking pipe, or instrument), and tree
(perennial woody plant, or data structure).

14 Chapter 3 Data Integration

Not only between domains there can be confusion about the semantics of a term, also
within a domain multiple meanings for a term can exist. For example, in computer science
the words channel (grayscale representation of a primary color in a digital image, or a tool
used for inter-process communication), but also pointer (data type used in programming,
or the graphical image which follows movements of the pointing device), and many many
more.

Why is using an ontology important? It introduces a set of terms used by all individuals
involved in the domain, domain model, architecture, and implementation, and with it, it
brings unambiguousness. The goal is to avoid translation, because as Evans (2004) points
out in his book on Domain-Driven Design,

Translation blunts communication and makes knowledge crunching anemic.

And every time concepts are translated between systems, a direct ability to think clearly
about these entities is lost, and space for error is introduced. The game of Chinese
whispers is often used as a metaphor to illustrate this problem. One person whispers
a word or sentence to the next, which is passed down through a group of people until
the last person announces it out loud. Errors usually accumulate in the passing of the
message, so the announcement of the last person differs significantly from the one of the
first.

To summarize, a shared ontology introduces a formal naming of types, properties,
and interrelationships of the entities that exist in a particular domain of discourse. Using
the same common, ubiquitous language brings an unambiguous way of communicating
and establishes structure and relationships which will prove to be of value later in this
research.

Several systems have been devised using ontologies as conceptual schemas for infor-
mation integration systems. Wache et al. (2001) analyze existing information integration
systems from an ontology point of view, and discuss several aspects of how ontologies are
used to support the integration task. Noy (2004) provides a brief survey of ontology-based
approaches to semantic integration developed by researchers in the ontology community.
This paper gives a convenient overview to the major themes in this research field. Later, we
will show an example of how ontologies can be applied in the context of data integration.

3.3 Distributed Data Integration

The rise of the World Wide Web and availability of a magnitude of structured data
sources fueled the exploration of large-scale data integration. Özsu and Valduriez (2011)
provide a book-long disquisition on distributed databases. A. Halevy et al. (2006) describe
some of the important bodies of work done in the data integration field, and propose
further research on some challenges to data integration research today. One of these
challenges involves the need of distributed data integration. A distributed architecture
lets IT manage data in separate systems and create a logical data model that can be used
to integrate information for analysis without moving it to a single location.

3.3 Distributed Data Integration 15

3.3.1 Peer-to-Peer Infrastructure

The successful adoption of peer-to-peer (P2P) file sharing systems, like Kazaa and
BitTorrent, emphasizes the problem of interoperability in current enterprise information
systems. Peer-to-peer is defined by Zaihrayeu (2006) as a distributed communication
model in which peers have equivalent functional capabilities in providing each other
with data and services. P2P removes the central authority and introduces a new, social
perspective that relies on self-organization. Moving to P2P data integration seems like a
natural step. Shifting from a single, centralized mediated schema towards an arbitrary
number of peers where each peer runs a local data integration system which integrates
both its own data and data from other peers.

Several P2P solutions for data management in distributed data integration systems
have been proposed and formalized (Ng, Ooi, Tan, & Zhou, 2003; A. Y. Halevy et al.,
2004; Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2006). The fundamental
approach of peer data management systems, or PDMSs, is to eliminate the reliance on a
central, authoritative mediated schema. This model is conceptually related to peer-to-peer
computing.

Although the topic of distributed data integration has been studied extensively for
quite some time, and several P2P data integration systems have been proposed, there are
still a lot of challenges to be faced. Because of the fact that almost all of the work on this
topic has been fragmented (Özsu & Valduriez, 2011), the market has yet to successfully
adopt integrated solutions.

At the basis of every P2P system lies a P2P network, built on top of a physical
network, which in most cases is the Internet. It is commonly referred to as the overlay
network. The overlay network usually has a different topology than the physical network
and all the algorithms focus on optimizing communication over the overlay network. In
the optimization they try to minimize the number of hops that a message needs to make
from source to destination.

Özsu and Valduriez (2011) provide a comparison of the main types of P2P networks,
concluding that there is room for improvement in each class of P2P networks. In the next
sections we will briefly discuss all three types of P2P networks.

Unstructured Networks

Unstructured networks, depicted in Figure 3.4, do not predefine any structure in the
overlay topology. Nodes randomly connect with each other; giving the network it’s ad-hoc
nature. Therefore, unstructured networks are easy to construct (Özsu & Valduriez, 2011).
All nodes fulfill the same role, meaning that the network is less sensitive to high rates of
churn (i.e. the rate in which nodes join and leave the network), rendering the network
more robust.

Structured Networks

Structured networks, as depicted in Figure 3.5, were developed to address the scalability
issues of unstructured networks (Özsu & Valduriez, 2011). Structured networks, like
the name suggests, are structured by imposing an overlay topology on the nodes. This

16 Chapter 3 Data Integration

Figure 3.4 Unstructured Peer-to-Peer Network

specific protocol ensures that any node can efficiently search the network for a resource,
achieving higher scalability at the expense of a lower autonomy.

Figure 3.5 Structured Peer-to-Peer Network

Yet, to be able to route traffic in an efficient manner, nodes in a structured network
need to store information about specific neighboring nodes. This makes the network less
resilient to high rates of churn. The most popular implementation of this infrastructure

3.3 Distributed Data Integration 17

is by the use of Distributed Hash Tables (DHTs) (Özsu & Valduriez, 2011), in which
consistent hashing is used to assign values to specific peers. We will dive deeper into the
details of DHTs later.

Hybrid Networks

Hybrid networks use a combination of peer-to-peer and client-server models. In this
infrastructure a central server commonly helps peers to find each other. Every hybrid
network makes a trade-off between scalability, flexibility and autonomy. The centralized
functionality provided by a structured server/client network provides robustness, and the
node equality afforded by the pure peer-to-peer unstructured networks provides flexibility
and autonomy. Hybrid networks have proven to be more efficient than pure networks.

3.3.2 Replication and Scalability with DHTs

Distributed hash table (DHT) systems are a class of peer-to-peer routing infrastructures
that build an overlay network to enable enable scalable wide-area storage and retrieval of
information (Zhang, Goel, & Govindan, 2003). It implements the idea of a hash table in
a distributed fashion. A hash table is a data structure used to implement an associative
array, a structure that maps keys to values. Just like the hash table, key-value pairs
are stored in a DHT, but any contributing peer can retrieve a value associated with a
given key. The responsibility for the maintenance of mapping keys to values is distributed
among the peers, in such a way that churn causes minimal disruption. This allows for
scalability of the network and resilience to peer arrival, departure, and failure.

Chord is a protocol and algorithm for a peer-to-peer distributed hash table developed
at the Massachusetts Institute of Technology (Stoica, Morris, Karger, Kaashoek, &
Balakrishnan, 2001). In Chord, nodes and keys are arranged in a ring (as shown in
Figure 3.6). Chord specifies how keys are assigned to nodes, and how a node can retrieve
the value for a given key by locating the node responsible for that key. Therefore, keys
can be located by a simple sequential search for the node that ought to own the key.

To improve search performance, Chord maintains additional routing information.
This routing table is referred to as the finger table of each node. Each finger table has
O(logN) entries, each entry twice as far away from the previous node in the identifier
circle (see Figure 3.6). This allows the search procedure to perform a binary search of
the identifier circle, and therefore approach the proximity of the target key much quicker
than a sequential search.

There are several established algorithms available from which we can choose to
distribute the mappings over the system. Since DHT systems are best for key-based search,
which we need to lookup mappings, we investigated several existing implementations.
Chord is the most popular of the four leading distributed hash table protocols, presented
in 2001 along with CAN, Tapestry, and Pastry. There are several academic works
comparing the performance of these DHT implementations. Li, Stribling, Gil, Morris,
and Kaashoek (2004) conclude that these protocols can achieve similar performance if
parameters are sufficiently well-tuned. Yet, a recent study (Medrano-Chávez, Pérez-
Cortés, & Lopez-Guerrero, 2015) shows Kademlia to be superior to Chord in high churn

18 Chapter 3 Data Integration

Figure 3.6 Chord Network showing Associated Peer References

scenarios. Kademlia (Maymounkov & Mazieres, 2002) is well known for its use in file
sharing networks (e.g. BitTorrent, Kad Network, Gnutella).

3.3.3 Scalable Computation

To enable scalable computation, MapReduce, a programming paradigm that allows for
massive scalability, can be used. MapReduce is a highly scalable programming model that
enables parallel processing across huge datasets (Dean & Ghemawat, 2008) using a large
number of nodes, collectively referred to as a cluster. MapReduce processes data close to
where it is stored in order to improve efficiency by reducing transfer distances. The model
consists of the following sequential steps. First the map step, in which a certain process
or function is applied to local data. Second, the shuffle step, in which similar data gets
redistributed so that data with the same key is located on the same node. And lastly the
reduce step, in which the nodes process each group of data with the same key in parallel.

Several studies have been performed to study the feasibility of distributed learning.
For instance, Caragea, Silvescu, and Honavar (2003) and Bhaduri, Wolff, Giannella,
and Kargupta (2008) studied the feasibility of distributed decision-tree induction in
peer-to-peer systems.

With the power of the MapReduce paradigm, several systems for distributed machine-
learning with MapReduce were devised. Gillick, Faria, and DeNero (2006) use Hadoop
and the MapReduce framework to evaluate its usefulness for standard machine learning
tasks. Chu et al. (2007) adapt the MapReduce paradigm to demonstrate this parallel
speed up technique on a variety of learning algorithms like linear regression, k-means,
logistic regression, naive Bayes, and several more. They did this to harness the power of
multicore systems, however the same technique can be applied in distributed systems.

3.4 Existing Distributed Integration Approaches 19

MLbase (Kraska et al., 2013) aims at both end-users and researchers, trying to
make machine-learning accessible by providing a simple and declarative solution. It
hides underlying complexity of distributed computation by providing a set of high-level
operators.

The original goal of Mahout, a suite of machine learning libraries designed to be
scalable and resilient, was to implement the algorithms mentioned in the paper of Chu et
al. (2007). It is meant as a commercial friendly, stable, scalable suite of machine learning
tools.

3.4 Existing Distributed Integration Approaches

The areas of schema matching and schema mapping have been the topic of research for
decades. A lot of different techniques have been devised and have been fine-tuned in
several iterations. Following, is a selection of techniques that have been formulated and,
some of them, developed in the past.

3.4.1 Pairwise Schema Mapping

In the Piazza peer data management system (PDMS) proposed by A. Y. Halevy et al.
(2004) each end-point defines the mapping between the local schema and the schema of
any other peer that contains data that are of interest. Piazza provides “an interlinked
collection of semantic mappings between peers’ individual schemas”. Piazza relies on
the transitivity of the defined mappings and tries to extract mappings between schemas
that have no defined mapping. Nevertheless, they use a centralized “global” catalog and
cache the mappings at each peer to provide performance to the system. The system
also assumes to exist in a relatively stable environment and sees joining a PDMS as a
heavyweight operation.

Hyperion (Arenas et al., 2003) generalizes this approach to deal with autonomous peers
that form connections at run-time, using mapping tables to define value correspondences
among heterogeneous databases. In contrast to Piazza, their proposal assumes absence of
central authority, no global schema, ephemeral participation of peers, and continuously
evolving coordination rules among peers.

PGrid (Aberer et al., 2003) also relies on pairwise mappings between peers, however
it assumes initial mappings are constructed by skilled experts. Just like Piazza they are
relying on the transitivity of these mappings. To extract new mappings, PGrid employs a
gossip algorithm that relates schemas of the peers between which there is no predefined
schema mapping yet.

3.4.2 Mapping with Machine Learning Techniques

Machine-learning approaches are especially useful in data integration scenarios where
new elements have to be matched against an existing collection of entities. The LSD
(Learning Source Descriptions) system (Doan, Domingos, & Halevy, 2001) introduced
the idea of employing current machine-learning techniques to semi-automatically find

20 Chapter 3 Data Integration

mappings. LSD firsts asks the user to provide the semantic mappings for a small set of
data sources, then uses these mappings together with the sources to train a set of learners.

The COMA system (Do & Rahm, 2002) considered a generic form of reusing past
matches, and also considered composing multiple matching approaches in a flexible way.

GLUE (Doan, Madhavan, Domingos, & Halevy, 2002) uses the previously described
approach of automatically extracting mappings between shared schemas. Given two
ontologies, for each concept in one ontology GLUE finds the most similar concept in
the other. It uses multiple learning strategies, each using a different type of information
either in the data instances or in the taxonomic structure of the ontologies. On top of
that, GLUE exploits a variety of heuristics and constraints to further improve mapping
accuracy.

3.5 Related Concepts

Data virtualization is an umbrella term for the technology that offers data consumers a
unified, abstracted, and encapsulated view for querying and manipulating data stored
in a heterogeneous set of data stores (Van der Lans, 2012). Simply stated, it makes a
heterogeneous set of databases or files look like one integrated database, without requiring
technical details about the data, such as how it is structured or where it is physically
located. When used in business intelligence systems, it often makes architectures simpler,
more affordable, and more agile. Data virtualization also reduces the need for data
replication, improving data consistency as well as reducing the risk of introducing data
errors. Data virtualization allows updates to be written back to source systems.

In many situations where data virtualization is applied, data integration is applied
as well. But data virtualization does not require data integration. When only one data
store is virtualized, no data integration is needed. Data virtualization could be used to
only transform the technical interface of a data store into one that is more suitable for a
particular data consumer.

Data virtualization can be thought of as a Service-Oriented Architecture (SOA) for
data. Microsoft (2007) defined it as “a loosely-coupled architecture designed to meet the
business needs of the organization”. SOA is basically a set of architectural principles for
a collection of services that communicate with each other. This can either involve simple
data passing between services, or services coordinating some activity. But where the
traditional SOA approach has focused on business processes, data virtualization focuses on
data that those processes use. SOA and data virtualization both aim for time-to-market
advantages, as well as business agility.

Data federation is an aspect of data virtualization where the data stored in a het-
erogeneous set of autonomous data stores are made accessible to data consumers as one
integrated data store by using on-demand data integration (Van der Lans, 2012). Data
virtualization and data federation are often confused, because the difference between
them is subtle. Data federation always implies multiple data stores, whereas data virtual-
ization could encapsulate the implementation of just one data store, omitting technical
information about the data. Moreover, data federation attempts to impose a single data
model on the data, which makes it far more difficult to enable data governance (i.e. write

3.5 Related Concepts 21

back to the source systems).
The goal of Enterprise Information Integration (EII) is to provide uniform access to

multiple data sources without having to first load them into a data warehouse (A. Y. Halevy
et al., 2005). EII translates the user’s query into queries on the data sources and integrates
the result of those queries so that it appears to have come from a single integrated database
(Bernstein & Haas, 2008). According to these definitions, the goal of EII is to make a set
of heterogeneous data sources appear as a single, homogeneous data source to a user or
system. In that sense, EII is quite synonymous with data virtualization. Just as data
federation, the use of the acronym fell out of fashion and should be seen as an “older”
term for data virtualization.

Chapter 4

Proposed Solution

In this chapter we introduce the SAMARITAN (Semi AutoMAtic distRIbuTed dAta
iNtegration) system, to aid the process of data integration.

Our envisioned solution is about the utilization, sharing, replication, and reuse of
mappings across a distributed system. For our proposed solution, we use the techniques
described in Rahm and Bernstein (2001) on schema matching and follow up on the
suggestion from A. Halevy et al. (2006) on reusing human attention.

To circumvent the issues with central authority we propose to use a common choice for
distribution, which is to use the peer-to-peer (P2P) network architecture. A. Y. Halevy et
al. (2004) propose to implement their global mappings using distributed hash table (DHT)
techniques, which should increase scalability and robustness of their query reformulation
algorithm. We take this notion and apply it to store and distribute the extracted mappings
over the network – basically functioning as a cache – to be used for further automated
mapping in conjunction with the machine learning techniques proposed by Doan et al.
(2001).

Our contribution is two-fold: first, we distribute the mappings and computation,
thereby contributing to the scalability of the system, and second, we reuse existing
mappings to enable semi-automated matching based on previously recorded results.

With this proposal we aim to improve the agility of enterprises by aiding the process of
data integration. Our objective is to improve scalability and resilience by distributing the
process, reduce complexity and lower costs by localizing responsibility, improve consistency
by reducing replication of data in the enterprise, and improve efficiency and automation
by reusing previously obtained results.

Because pairwise schema mapping, as described in section 3.4.1, in P2P systems using
name-matching or string-matching is computationally expensive when applied to a huge
domain, the region referred to as search space, we have to find a way to limit the set of
items to match with. We aim to limit the search space by applying the use of an ontology
to our solution, as suggested by Uschold and Gruninger (2004).

In this chapter we examine several different aspects of the system. These aspects
are at different levels of abstraction. To deal with this we will look at the system from
varying architectural views. A view is a representation of a coherent set of architectural
elements as read by system stakeholders, and consists of a representation of a set of
elements and the relations among them (Bass, Clements, & Kazman, 2012). We use two

22

4.1 Infrastructure 23

views in particular: the process view, and the physical view. The process view deals with
the dynamic aspect of the system, explains its processes, and shows the runtime behavior
of the system. The physical view depicts the system from a system engineer’s point of
view. It is concerned with the topology of software components on the physical layer.

First, we explain about the infrastructure of the system as a whole. We describe the
two main elements of our systems: the overall network and the nodes in the network.
Additionally, we give an overview of the dynamics of the nodes in the system. Subsequently,
we zoom in to a lower level and dive into the intricacies of the matching and mapping
processes of a single node, upon joining the system. Lastly, we present a reference
architecture, mapping these steps unto a system architecture, that supports our solution.

4.1 Infrastructure

4.1.1 Network

The infrastructure of our system consists of a network of interconnected nodes (Figure 4.1).
Together they hold and supply a global conceptual schema to which new sources are being
mapped semi-automatically. The global conceptual schema can be queried by end users
to retrieve and aggregate data from disparate source systems.

Our initial idea was to use an unstructured P2P network, because of the absence of
imposed hierarchy on the system. Also the ad-hoc nature of unstructured P2P networks
fits closely to the system we aim to construct. However, we choose to go for a structured
approach, because of the scalability issues imposed by the unstructured network. In our
proposal scalability and resilience trump all other features. Besides that, a structured
network ensures a lower latency for queries and reduces message flooding.

Even though Chord is more popular among academics (by number of published
papers), there are more reference-implementations for Kademlia (because of its use in
file sharing networks). Hence we favor the use of Kademlia over Chord to specify the
structure of the network and the exchange of information. Note that there is actually very
little difference between these systems and their routing tables. The overall principles
are very similar. It supports our distributed application architecture in the sense that it
partitions storage and computing tasks between peers.

4.1.2 Node

A node is a connection point in a communication network. If the network is a distributed
system, the nodes are called peers and are effectively both client and server at once.
The nodes are equally important and equally privileged participants of the network. A
node can serve as either a data sharing node, or a computing node, or both. A node can
represent any system, or group of interconnected systems with a shared interface, as long
as it can be controlled via a piece of middleware.

Before a node can join the network it needs some middleware; a little extra piece of
software that acts as a bridge between the network and the node itself. The middleware,
depicted as a small, orange box in Figure 4.1, enables the node to communicate with the
network and to orchestrate shared resources.

24 Chapter 4 Proposed Solution

Figure 4.1 Network of Interconnected Nodes

Each node its middleware has several responsibilities. It needs to take care of handling
distributed storage, aid in the computation of the distributed matching process, provide
a user interface to the end user, and help to maintain the network.

4.2 System Dynamics

When a node joins the network (Figure 4.1; number 2), it undergoes several subsequent
processes. First is a bootstrapping process, where the newly joining node locates a
bootstrapping node that provides initial configuration information to successfully join the
overlay network. In this initial phase, the joining node receives a unique identifier and a
routing table from another node that is already connected to the network. The routing
table provides the addresses of existing peers in the network. The specific implementation
is described by Maymounkov and Mazieres (2002) in their paper on Kademlia.

A node is not required to offer source data. When the node does decide to share its
data, the node first shares its source schema, which is an abstract collection of metadata.
This can be a JSON schema, XML schema, relational database schema, or any other
structured or semi-structured schema that formally describes the elements in the data
offered by the node. The schema is parsed and processed in the matching process, which
we will describe in-depth later this chapter.

The network stores the schema elements and the location of the peer, and will try
to determine which entities can be mapped to the schema of the new node. In this
connecting phase the result of the automated matching is presented to a system expert.
This expert has the possibility to accept or reject the proposed mapping. Any expert

4.2 System Dynamics 25

decision needs to be stored, since it is as useful to know what does not match as it is to
know what does. To the elements of the schema of which no match is found, instance
data is requested to perform an additional mapping process. The successful mappings
will also be stored and replicated over the network.

Because the matching process can be a very computationally expensive process, it
is not performed by one centralized server, since we can make use of the computing
power available to use via other nodes in the system, reflected by number 1 in Figure 4.1.
P2P is in used extensively for file sharing purposes, but to a much lesser extend for
P2P computing. By using idle computing power of several of the nodes in the network,
we can reduce the overall cost of, and load on the system. To improve scalability and
performance of the distributed processes, we intend to parallelize them. This way we can
take advantage of the distributed environment we are working in and exploit the power
of large clusters. We can apply the previously described techniques, like MapReduce,
to distribute the computation of new matches over the nodes in the P2P network. As
depicted in Figure 4.2, the group of elements to match are split and distributed to several
different nodes in the system. These, in turn, compute the matching suggestions from the
elements to the shared ontology. The partitioned results are returned to be aggregated to
a combined end result, ready for inspection by a system expert.

Figure 4.2 Distributed Sorting Process with MapReduce

Not only computing power is shared, also storage is distributed in this network. The
matching process produces a set of valid mappings. To make use of these mappings, we
distribute them across the system, to be reused to provide suggestions when another
node joins the network. These mappings are replicated from node to node, to produce a
resilient system. Nodes can disconnect, or leave the system, without it losing “memory”
of previously made mappings, since these are retrievable from other nodes in the system.

From the above-mentioned process, several distributed "tables" or "collections" arise.
One containing all the available elements in the system, another containing all the
successfully obtained mappings of current and previously connected nodes.

26 Chapter 4 Proposed Solution

When a node disconnects or in case of a node failure, illustrated in Figure 4.1 by the
arrow with number 3, the data available in this node is no longer obtainable or accessible
to the network. The nodes left in the network need some kind of mechanism to detect that
a node has left the network and remove it from their routing table. This is called routing
table management. In order to keep the routing table up to date, each node periodically
searches for the peers it should have. If one of the peers it has in its routing table does
not respond, the peer removes it from its routing table, and replaces it with the closest
peer it finds. In a Kademlia network, each peer reference in the routing tables goes both
ways. When leaving the network, a node only needs to send a leave message to all the
nodes in its own local routing table, which can subsequently remove the disconnecting
node and look for the next best peer.

Next to removing the node from the routing table, the system needs to know that the
data associated with that node is no longer available. Nevertheless, we still want to make
use of the mappings we created for these elements. This is why we only have to remove
the reference of the node from the first replicated table, which maintains the schemas of
the available sources. The second replicated table is unaltered and can still be used for
future mappings.

To summarize, once a node is connected to the network, it can share several pieces of
information. If the node has been connected before, it can share its successful mappings
from its data to the global ontology, if not, it commences with the matching process.
Additionally, it can share its own source data upon receiving a query from the network.
Next to sharing its own information, the node can accept to store replicated information
from the network, such as the successful mappings from any other source tot the global
ontology, and the node can aid in the distributed computation of the matching process of
other nodes. When a node disconnects from the network, its source data is unavailable to
the network, but its successful mappings can still be reused in the matching process.

4.3 Matching Process

Before the data of a node can be shared with the system, the matching process has to
be performed and finalized. The matching process addresses the problem of identifying
that two objects are semantically related. Our approach to solving this problem is
two-fold. First, we plan to give insight into the source systems’ semantics by expanding
abbreviations and acronyms, and assign meaning to the sources’ elements, with the use of
expert knowledge and dictionaries; the semantic-based approach. The system will retain
this information and reuse it to learn how to rank and present meaning to the system
experts. With these semantics we can search through the definitions of our conceptual
schema. We apply the same approach to retain and reuse the connections made by
system experts, between the identified semantics of the source schema and the ontology.
Secondly, we can use the internal relationships (i.e. foreign keys) extracted from the
source schema to improve suggestions for relationships of previously identified entities;
the structure-based approach. In Figure 4.3 you can see the matching process in Business
Process Model and Notation (BPMN) on the highest granularity level. The plus sign in
an activity indicates that it is a composite activity with a complete diagram below.

4.3 Matching Process 27

Figure 4.3 Business Process View of the Matching Process

Both the semantic-based and structural-based approaches run in parallel and are part
of a multi-phased process (Appendix A): an ingestion phase, a preprocessing phase, a
matching phase and a feedback phase. In the ingestion phase the source schema is offered
and parsed. In the preprocessing phase several types of analysis are performed, and a
graph is constructed. The matching phase takes care of the full text search, graph search,
and scoring process. In the feedback phase the end user is able to provide feedback to
the suggested mappings.

4.3.1 Semantic-based Approach

Ingestion Phase

The first thing we need is a component to digest incoming schemas. These schemas can
be ingested by allowing different source formats like JSON, XML, but also database
exports (a.k.a. data dumps) denoted in a data definition language (DDL), usually SQL.
This to identify three concepts from the sources, being the entities, their attributes, and
their constraints. The last step of ingestion is storing this freshly obtained (raw) source
information in a distributed fashion in our system.

Preprocessing Phase

After ingestion, we take all extracted strings and try to assign meaning to them. We
start this process by breaking all the strings up in separate terms, which-in context of
lexical analysis-is referred to as tokenization. It uses different strategies to try to break
up strings in understandable words. This is necessary because data definitions are often
obfuscated when they are encoded by source systems. Usually because of Oracle having a
long standing limit on table names of 30 characters, and IBM DB2 for z/OS (mainframe)
limiting table names to only 8 bytes, which resulted in extremely abbreviated naming
conventions.

A naming convention is a set of rules for choosing the character sequence to be used
for identifiers like database names. That the choice of naming conventions can be an

28 Chapter 4 Proposed Solution

extremely controversial issue, is clearly visible in the immense variety of conventions being
used interchangeably. One obvious example is the use of multiple-word identifiers. Since
most programming languages do not allow whitespace in identifiers, a way of delimiting
word is necessary, since simply concatenating words results in unreadable identifiers.
Common examples of delimiting words are PascalCase, camelCase, and snake_case.
Whilst the first two are separated by letter-case (i.e. upper- or lowercase), the latter one
is separated by a delimiter (e.g. the underscore).

Hence, to be able to interpret all the words or strings in these identifiers we have
to split these concatenated strings back into a set of separated strings, referred to as
tokens. After tokenization, we can add synonyms, filter stop words, modify and prepare
the tokens for the matching process. This is done to improve the quality of the search
results later on.

Matching Phase

To prevent creating a bottleneck in the form of exponential computational complexity,
we refrain from matching every single entity to every other. This problem is addressed by
introducing an ontology. If there is no ontology readily available, Noy and McGuinness
(2001) provide a guide to ontology development, borrowing some ideas from principles of
object-oriented design.

To compare the semantics of the source schema and the shared, common language we
use several techniques from the fields of natural language processing (NLP) and information
retrieval (IR). For instance, query expansion (QE) is the process of reformulating a query to
improve retrieval performance in information retrieval operations. QE involves techniques
such as stemming (which enables finding all the various morphological forms of a token
by reducing each token to their word stem or root form), but also adding synonyms
and removing stop words. We can apply several heuristics to identify abbreviations and
acronyms. To be able to expand synonyms and acronyms, we need to include a dictionary.

Before we start matching the semantics of the source schema with those of the ontology,
we have to give the end user the possibility to verify and correct the semantics we assigned
to the tokens. The end users’ feedback will subsequently improve our semantic process
over time.

Next we can use the semantics to perform a textual search over the ontology. The
ontology should not only consist of the name of the entity, but also a description or
definition. This way we are able to perform a search by related concepts mentioned in the
ontology terms’ descriptions. Our previously mentioned stemming process attempts to
remove the differences between different forms, thus increasing the likelihood of a positive
hit. Understemming and overstemming are issues to be reckoned with. Understemming
reduces retrieval; failing to return relevant documents. Yet, overstemming reduces
precision; returning irrelevant documents when they shouldn’t be.

After stemming we can match elements based on string equality or string similarity, by
calculating several string metrics, as referred to in our literature study. We can combine
several of these techniques to extract and apply semantics to the raw metadata extracted
from the source systems.

4.3 Matching Process 29

Finally, we need to score the results of the matching phase. Most search engines
use a similarity algorithm called TF/IDF, short for term frequency–inverse document
frequency, which shows the significance of a term in a collection of documents. The score
increases corresponding to the number of times a term appears in a document (TF), and
is counterbalanced by the number of times the terms appear in the total collection (IDF).
Consequently, terms that appear in many documents get a lower relevance score than
more infrequently occurring terms.

We utilize TF/IDF for one of the main features of our system: increasing relevance
through the reuse of confirmed interrelations. By adding more and more feedback from
specialists, the TF/IDF statistic will score relevant documents higher, rendering our
system more and more accurate.

Feedback Phase

After the matching phase we can present the end user with ranked ontology suggestions
for positive or negative feedback. If the end user finds a match in the ontology directly, he
can select and commit it right away. If no proper suggestion is found, the end-user should
be presented with a way to search for the correct entity anyway. This alternative search
and subsequent commit is incorporated and related to the previously applied semantics,
forming new associations, and consequently improving suggestions.

4.3.2 Structure-based Approach

Our second matching approach, structure-based matching, takes the relational information
of the source databases into account, and therefore starts with extracting constraints
from the source schema to link its concepts together. To achieve this, we use a regular
expression to find primary keys and foreign keys between tables in our source schema. We
use these foreign keys to construct a representation of relationships between the entities
in our source system. This representation is generally referred to as a graph. We can use
this graph by comparing it to our ontology, which is a graph of related concepts as well.
We call this the structure-based approach. A simplified description would be relationship
matching ; we compare relationships in the source with relationships in the ontology. We
use this technique to suggest related entities in the ontology.

The problem of finding correspondences between two (sub)graphs is called graph
isomorphism, or graph matching, and is a notorious problem in computer science. The
term isomorphism consists of the words iso, meaning "equal", and morphe, meaning
"form" or "shape" and is defined as a mapping of similarity or correspondence of form
between elements of two sets, preserving existing vertices between the elements. Simply
put, two graphs which contain the same quantity of graph vertices, linked in the same
way, are said to be isomorphic.

Ullmann (1976) described a recursive backtracking algorithm for solving the subgraph
isomorphism problem. Though, the running time of his procedure is, in general, exponen-
tial, or best case scenario, polynomial. Recently, some progress has been made by Babai
(2015), publishing an algorithm that appears to be more efficient (quasi-polynomial time)
than achieved before.

30 Chapter 4 Proposed Solution

Figure 4.4 Subgraph Isomorphism

When a match between the two graphs is found, we can start to give suggestions for
relationships of previously identified matches between the source and ontology. By way
of illustration, source database A has a constraint between the tables wages and workers
(see Figure 4.4). In the ontology B these entities are called salary and employee. If a
system expert identifies and assigns the term salary from A to wages from B, we can
consecutively suggest that the related schema entity workers could potentially represent
employee in the ontology. Hence, we increase the score of this option, to make it rank
higher on the provided list of suggestions.

4.3.3 Scoring

The last step in our matching process is scoring or ranking of the results. Ranking is a
central part of many information retrieval systems. From our different approaches, we
receive a different kind of output. The objective is to combine these results in a way
that makes sense, by merging the result of both searches and prioritizing results that
are common in both result sets. We have to assign relevance to each of our supplied
suggestions. We can do this by assigning a certain weight or influence to every separate
module. This means that a successful match in one module of approach, could have more
influence on the scoring of a certain result than another.

To improve our matching accuracy, we need to have a strategy to reduce or circumvent
our error rates. The first type of error, false positive (type I error), represents a document

4.4 Mapping Process 31

selected by the system, but ignored or rejected by the expert. These errors should
theoretically diminish automatically the more feedback the system receives from end
users. More relevant suggestions will get pushed to the top, consequently, less relevant
suggestions will get pushed down and off the list of suggestions.

The second error, false negative (type II error), represents a document not selected
by the system, but searched for by expert. In our user interface, we have incorporated
a search field with autocomplete functionality for every item to be identified. This way
if our list of suggestions is inadequate, the end user can still find the proper term. By
associating the term with our entity, it will automatically become more relevant and be
selected by the system in a subsequent search.

4.3.4 User-feedback

A key aspect to our system is to reuse previously made relationships to improve the
ranking of suggestions. This is where user-feedback can be utilized. Imagine, one of
our proposed suggestions is ten times affirmed, and three times rejected to be correct.
Another of our suggestions is two times affirmed and never rejected. Which suggestion
should rank higher, and which should rank lower? We use both positive and negative
feedback to rank our results.

Figure 4.5 User-feedback

As the amount of user-feedback grows, several different suggestions can be selected as
correct mappings to the global conceptual schema. These suggestions receive, next to their
weighted score from the semantic mapping, also a score based on previous user-feedback.
Every time a suggestion is selected and chosen this is recorded as positive feedback, and
every time a suggestion is selected but ignored this is recorded as negative feedback, as
depicted in Figure 4.5. The ratio between positive and negative feedback determines the
user feedback score, which weighs in the total score of the suggestion. It can happen,
that the score of a certain suggestion is infinity, because there is no negative feedback
recorded. In this case we introduce a threshold, to prevent a suggestion with a single
positive feedback and no negative feedback from tipping the scales.

4.4 Mapping Process

When a node decides to share its data with the system, it needs to follow the above-
mentioned matching process, upon joining the network. As described, this process requires

32 Chapter 4 Proposed Solution

a human to interact with the system to provide feedback. There are several ways for
the user to interact with the semantic process, which is performed by the system. These
strategies are part of the mapping process.

The mapping process, performed by end users, is strongly aided by the reuse of
knowledge in the matching process. In contrast to the semantic approach of the matching
process, the mapping process addresses the more high-level problem; ignoring the specifics
concerning the operation of the system.

The mapping problem refers to the identification of correspondences between a source
and a target schema. A specific strategy or approach is required to resolve this problem.
We discovered two different approaches that we can apply to address the mapping problem:
a bottom-up approach and a top-down approach. The former generates a bigger amount of
reusable knowledge; the latter significantly reduces the time needed to finish the process.

4.4.1 Bottom-up Approach

The first way we can tackle this problem is by analysing every element and every derived
token of the source system. We label this as the bottom-up approach. Defining all the
elements in the source systems is still a tedious procedure. It doesn’t differ greatly from
the original problem of schema mapping, except for the semantics we can already provide
and prefill to make the life of a modeller at least a little easier. The more often this
process is repeated for separate source systems, the smarter and thus more accurate the
suggested mappings will be. We aim to basically provide a “click-to-confirm” interface.
Where the end-user simply has to provide simple true or false feedback.

4.4.2 Top-down Approach

More often, only a small subset of a source database is needed for reporting. Taking the
bottom-up approach would demand too much time and resources. This is why in the
top-down approach we only define what information is needed from the source systems and
define only the appropriate elements. The down-side of this approach is that less feedback
is provided to the system, which reduces the variety of information the system holds
and can cope with. On the other hand, the system will not be flooded with irrelevant
information that is rarely needed by external systems anyway.

4.5 Reference Architecture

The reference architecture shows how the previously described process steps are mapped
onto the modules of the system. Our proposed architecture provides the system to be
used in two different ways. One way is producing information and enables re-use. This
is done via a user interface, providing the end-users with the ability to contribute to
the accuracy of the system by giving their feedback. The other way is purely about
consuming information previously stored in the system, and is solely used to give back
suggestions for a single entity. This second way should only be utilized after the system
has undergone a sufficient amount of training. Its interface is defined as a web application

4.5 Reference Architecture 33

programming interface providing a programmable interface to a set of services which can
be implemented by existing systems.

Figure 4.6 System Architecture

Our system is decomposed in several modules or components. Decomposing the
system into modules gives it the attribute of maintainability. This way we aim to easily
add more matching strategies to our system in future work.

The system architecture, as depicted in Figure 4.6, shows the ingestion of the source
schema into the schema pool. Next both matching strategies are executed in parallel,
allowing for both semantic and structural analysis of the data. The provided ontology
is used to discover correspondences, rank them and present them to the graphical user
interface. After the user has given feedback about the suitability of the suggested matches,
this feedback flows back into the system. Accepted mappings are stored in a mapping
pool, out of which requested mappings can be served.

Figure 4.7 Three-layer Application Architecture

34 Chapter 4 Proposed Solution

The system is subdivided in three distinct layers (see Figure 4.7): business layer,
presentation layer, and data layer. All of these layers and their components are located
in every node in the network (whether they are data sharing nodes, computing nodes,
or both), and are therefore completely distributed. In the following sections we will go
deeper into the function and interaction between these layers, and take a look at how
they are organized.

4.5.1 Business Layer

The business layer holds the logic for the whole matching process. This process consists of
a couple of processes, splitting the application in several different components or modules
with different responsibilities. Each module represents encapsulations of a group of related
responsibilities. In Figure 4.7 the modules depicted in red are more generic modules,
they take care of shared processes like parsing, tokenization, and scoring. The blue and
green modules respectively represent the semantic-based approach and structure-based
approach.

4.5.2 Presentation Layer

The presentation layer, or interface layer, is built to provide an interface for end users to
provide continuous feedback to the matches the system is producing. The input provided
by the end users is fed back into the system and stored for later use. The presentation
layer provides two interfaces to interact with: the user interface (UI) and application
programming interface (API).

The UI provides a means for the end user to interact with the system in an intuitive
manner. The user is able to provide a source schema, either by providing a SQL-file or
connecting directly to the source database. The system extracts all necessary information
from the source schema and starts the initial matching phase. The initial matching phase
consists of assigning meaning to all the tokens extracted from the source schema. The
first results are presented to the end user to be assessed and either approved or dismissed.
By having this intermediate step to provide meaning to the source, a reusable dictionary
is being constructed, since words and meaning are being interrelated.

There is a second interface module providing a versatile interface which can be used in
conjunction with many other architectures. The API outputs exactly the same suggestions
as the UI, yet in a machine consumable fashion. Like this the matching power of the
system can be reused by other architectures.

Providing an API next to the UI, therefore has significant impact on the usability of
the system. By following the principle of information hiding, we hide implementation
details so that the end-user is not encumbered with complexity inside the system. We
also hope to push the adoption of our solution by providing an easy-to-use programmable
and integrable interface. The goal is to be plugged into existing architectures, without
disrupting the established process. So our solution should be easy to integrate directly
into existing ETL approaches, to enable semi-automatic translation of loaded data objects.
In short, this pluggable architecture, that allows to plug in functionality using versatile
modules, is intended to benefit acceptance through ease of integration.

4.5 Reference Architecture 35

4.5.3 Data Layer

The data layer is designed to provide the system with its distributed characteristics. It is
where the data lives, once it is gathered from the source systems. Its data is organized
and categorized in a way that enables reuse. The source schema elements, semantics,
ontology, and mappings are stored here and have to be readily available for fast retrieval.

Chapter 5

Proof-of-Concept

Because of the limited time we had for this research we could not possibly implement all
the aspects as presented in the previous chapter. We had to choose a limited but sufficient
set of features, to be able to complete a working product, yet still show the feasibility
of our proposed solution. Since the proof-of-concept was developed in association with
the case study organization, the proof-of-concept is partially linked to the context this
organization, although we have tried to keep most parts of our system as generic as
possible. In this chapter we formulate our approach to achieve this goal.

5.1 Business Layer

To start the ingestion phase, we present users with a way to manually provide a source
schema. Since SQL as source description is most common, for now we decided to implement
the support for this source format only. We used several regular expressions to pattern
match strings from the schema definition, and extract the entities, attributes, constraints,
and other metadata needed.

For the preprocessing of the elements we extracted from the source schema we
used Elasticsearch, a search engine based on the Apache Lucene project. It provides a
distributed, full text search engine with an HTTP web interface. It also provides a set of
very powerful algorithms called analyzers. Analyzers are composed of a single tokenizer
and zero or more token filters. Tokenizers are used to break a string down into a stream
of terms or tokens. A simple tokenizer might split the string up into terms wherever it
encounters whitespace or punctuation. But as discussed in the previous chapter, technical
identifiers from source systems rarely adhere to sensible natural language constructs, and
are usually obfuscated with naming conventions.

To split these identifiers into tokens we use a more complex analyzer; the pattern
analyzer1. The pattern analyzer can separate text into terms via regex, short for regular
expressions, which is a sequence of symbols and characters that expresses a pattern to be
searched for (see Figure 5.1). To illustrate, we can give the analyzer the string EmpNO,
and it will break it up and return the tokens Emp and NO. If we give it department_id,
it will break it up in department and id.

1
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-analyzer.html

36

5.1 Business Layer 37

([^\p{L}\d]+) # accept non letters and numbers,

| (?<=\D)(?=\d) # or non-number followed by number,

| (?<=\d)(?=\D) # or number followed by non-number,

| (?<=[\p{L} && [^\p{Lu}]]) # or lower case

(?=\p{Lu}) # followed by upper case,

| (?<=\p{Lu}) # or upper case

(?=\p{Lu} # followed by upper case

[\p{L}&&[^\p{Lu}]] # then lower case

)

Figure 5.1 Regex Pattern to Detect camelCase Identifiers with Explanation

Next, the token filters accept a stream of tokens from the tokenizer and can modify
tokens (e.g. lowercasing or stemming), delete tokens (e.g. remove stop words) or add
tokens (e.g. synonyms). We use several of the token filters. Elasticsearch has built-in
preconfigured stemming algorithms for about thirty languages. The stemming filter is
available as one of numerous built-in token filters. These filters are not exclusive and
can be combined as needed. Another example of a token filter we used, is the synonym
token filter. This filter allows to handle and match synonyms, possibly imported from
external sources, during the analysis process to increase chances of a match. We use this
filter to expand common abbreviations and acronyms in the context of our case study
organization. The key to optimal matching results is the proper configuration of the
tokenizer and token filters.

5.1.1 Ontology Search

For the ontology search, we employed the proprietary common language or ontology of
the case study organization, partially made available to us (it is still under development
at the time of writing). We use the ontology to perform full text searches, again using
Elasticsearch, on the tokens extracted from our source systems. For this we loaded the
ontology, including its term descriptions, into Elasticsearch.

Elasticsearch uses a structure called an inverted index, which is designed to allow very
fast full text searches. An inverted index consists of a list of all the unique words that
appear in any document, and for each term, a list of the documents in which it appears. In
our case this index consists of all the terms from our ontology, including their associated
descriptions. By default, results are returned sorted by relevance—starting with the
most relevant documents, represented by a positive floating-point number. The standard
similarity algorithm used in Elasticsearch is TF/IDF. On top of that, Elasticsearch uses
a field-length norm, which takes into account the length of the field the term was found
in. The longer the field is, the less likely it is that term in the field will be relevant (i.e. a
title field will be more relevant than a content field). We use this numerical statistic later
on, as a weighting factor for the ranking of our suggestions. For a more in-depth theory
of the scoring mechanism of Elasticsearch, we refer to the article2 on their website on

2
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html

38 Chapter 5 Proof-of-Concept

scoring theory.
Another very powerful feature of Elasticsearch is that it allows us to configure different

analyzers both at index time and at search time3. This means we can break up our
obfuscated identifiers at index time, and store the tokens in such a way that we can search
for them in natural language at search time. This is exactly what we need, since we do
not want to search for the identifiers in the obscure format in which they are encoded in
the source schema.

5.1.2 Structure Search

As mentioned in the process section, we need to compare two graphs for our structural
matching approach. The first graph we construct from the ontology; the second graph we
construct from the constraints that we extracted from the source schema.

For the structural search we tried to use a small, yet elegant, open-source library4

made by Herold, to compute isomorphism between subgraphs of the ontology graph and
the graph we constructed. Unfortunately, this approach did not render the desired result,
which is why we decided to only use relational information from identified graph elements.
Practically, this means that when an element in the source is identified with a term
from our ontology, we suggest all the related ontology terms to all the related elements
of the source schema. For example, a schema entity Worker has three relationships:
Wage, Division, and Title, as depicted in Figure 5.2. Worker is identified in the ontology
as Employee. Now for all its relationships, all related ontology terms are proposed.
Eventually, this tactic will affect the scoring if a similar match is found in another
matching approach.

Figure 5.2 Relational Matching

3
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyzer.html

4
https://github.com/wires/graph-isomorphisms

5.2 Presentation Layer 39

5.1.3 Scoring

Elasticsearch provides us with a scoring function based on which we can present our
results for the full text search. However, as mentioned before we need to incorporate
the structural matching results in our list of suggestions. To do this we need to combine
the results of both searches in a logical manner. For this we merge the result of both
searches and prioritize results that are common in both result sets. Hence, if a semantically
matching term is suggested for one of these schema entities, and this term also appears
in the related ontology terms, we increase the score of the suggestion.

5.2 Presentation Layer

5.2.1 Technology

To create an interface that is easily deployable and accessible from anywhere in an
enterprise, we chose to use web technology to construct our presentation layer. The most
significant framework being React, an “open-source JavaScript library for building user
interfaces”. React uses declarative views that make the codebase more predictable and
easier to debug. It is maintained by Facebook and a community of individual developers
and is currently being used on the sites of Netflix, Imgur, Airbnb and other notable
companies.

An important feature of React is the use of a virtual DOM (Document Object Model);
an abstract way of representing a structured document (e.g. the user interface) via objects.
React stores this data structure in-memory, computes the resulting differences from a
user action, and then updates the displayed application efficiently. Efficiently meaning
that the React library only re-renders the components on the page that were actually
changed, which is usually only a small subset of the total amount of components.

Figure 5.3 React and Redux Application State

Our interface consists of encapsulated components each managing their own state.
This state is controlled by another open-source framework, Redux. Redux is a “predictable
state container for JavaScript applications”. It stores the whole state of the application in
an object tree inside a single store. The only way to change this state tree is to emit an
action, an object describing what happened. To specify how every action transforms the
state tree, you write special functions called reducers. So instead of mutating the state

40 Chapter 5 Proof-of-Concept

directly, you specify the mutations you want to happen with plain objects called actions.
Then you write a special functions called reducers to decide how every action transforms
the application’s state (see Figure 5.3).

All of this is to make the presentation layer predictable, because there is always only
one way to change the state of the application. This means we know where to look if
something unintended might happen.

5.2.2 User Interaction

The user interface provides a way for the end user to upload an SQL-file. After the
user uploads the file, the system will parse the document and return all the tokens it
encountered, ready for semantic analysis. We applied certain heuristics to automatically
accept the proposed meaning or leave it up to the user to fill out the meaning manually.
We do this to save time by preventing the user to having to fill out every single meaning, for
every single token. These heuristics consist of trying to find abbreviations and acronyms
based on word length and amount of vowels in the term. When a term has a certain
“established” significance, meaning it has been confirmed by an end user often enough to
receive a score above a certain threshold, we preselect the semantics without any user
interference.

Figure 5.4 User Interface

After that, the user can either accept or change the assigned meaning (see Figure 5.4),
on which the ontology term gets refreshed. Every time the user alters the meaning of the
tokens, the ontology terms are analyzed again and refreshed based on the new information.

If the ontology term could not be found using the semantic approach, the user has
the possibility to manually search for the correct term. By the use of autocomplete (see

5.3 Data Layer 41

Figure 5.5), we try to predict the rest of a word while the user is typing. Autocomplete
aims to speed up human-computer interaction, and successfully does so when it correctly
predicts the term that was intended with only a few characters typed.

Figure 5.5 Autocomplete Functionality

Like most schema matching scenarios, there is a human in the loop, therefore it is
important to have excellent graphical support for viewing results and interacting with
them (Falconer & Noy, 2011).

Whenever a user interacts with the user interface and adds semantics or creates
relationships between elements, it has an effect on the suggestions of other elements. Under
the hood, every new piece of information causes a tremendous amount of recalculation.
Relationships have to be sought and new suggestions have to be scored and ranked. To
do this for all elements in the source schema at once is unnecessary, because the end user
cannot process this amount of information anyway. That is why we solely take the tokens
currently being under investigation by the end user and recalculate only the ones that
were affected by the change.

Imagine a term was assigned to one of the attributes on the page. We compute if
the attribute its tokens are associated with any other item currently displayed, or if
the attribute has a relationship with an item that is currently displayed. If so we only
recalculate the suggestions of this item.

5.3 Data Layer

After all the literature research done on distributed storage, we have discovered that this
topic is worth a thesis on its own. By using an existing solution in our proof-of-concept
we have tried to avoid the complexity of reinventing the wheel on this topic of research.
Yet, we still wanted to use the scalability of a distributed system.

Elasticsearch comes with an integrated storage solution, which uses a technique called
sharding. Under the hood, sharding makes use of the techniques we have discussed in our
theoretical research on distributed storage (i.e. consistent hashing). This technique does
not only involve storage though, it also involves concepts like adaptive load balancing,
routing, and partitioning in distributed computing.

Scaling up can be done either vertically (bigger servers) or horizontally (more servers).
Vertical scaling has its limits. Better and more fault-tolerant scalability comes from
horizontal scale. Elasticsearch gives us the ability to add more nodes to the cluster and

42 Chapter 5 Proof-of-Concept

to spread load and reliability between them. It knows how to manage multiple nodes to
provide scale and high availability. This also means that our application doesn’t need to
care about managing it. So to summarize, out-of-the-box, Elasticsearch is set for scale,
and can be distributed over a cluster. This means it is not only the storage solution we
were looking for, but can also handle the distributed computation.

Chapter 6

Evaluation

To evaluate our proposed solution we have performed a case study in real-life context. We
have chosen to do this at an organization that has an immense amount of data sources.
Going from some sources being introduced less than a week ago, to dating back to several
decades ago.

Through our case study we tried to answer the following questions. What is the
current situation at our case study organization? How can we place our solution in the
context of the organization? And does our solution improve or aid the current process?
The following sections will try to answer these questions one by one.

6.1 Case Study Description

A classical but critical mistake is often made in point-to-point interfaces between different
source systems. Source data from one system is transferred and transformed to meet the
internal requirements of the target system without adhering to an overall domain model.
This results in an unmanageable network (Figure 6.1) of interfaces with an abundance of
non-standardized data transformations.

Figure 6.1 Point-to-point Figure 6.2 Hub-and-spoke

This is exactly what happens when data get transformed from one source system to
another and aggregated by a third party. As illustrated earlier by the game of Chinese
whispers, data gets misinterpreted, mislabeled and misused. The consequence of this for

43

44 Chapter 6 Evaluation

our case study organization ING Bank N.V., is that incorrect labeling or missing data
lineage affects consistency and hinders submission of raw or summarizing data needed by
regulators to evaluate the bank’s operations and overall financial health.

To address this problem ING wishes to harmonize the definitions of data that they
exchange across systems by introducing a shared common language they call ING Es-
peranto, based on IBM’s Industry Models for Banking (BDW). A global data definition
process is set up to achieve harmonized data definitions and to create ING Esperanto.
Harmonizing data definitions is necessary to enable a single source of truth and to ensure
an accurate data lineage.

ING Esperanto is a business data glossary, describing the terms that are used on
a daily basis, to avoid any ambiguity or miscommunication. In essence, the Esperanto
translates to three distinct components. A set of Business Terms that all of ING needs to
adhere to. These are defined, and managed by the respective Business Owners. Focused
on the information we need to exchange globally and thus need to agree upon globally. A
Logical Data Model, based on IBM BDW, linked to the Business Terms. A Physical Data
Model, reflecting technical tables (rows and columns).

In our case study we used ING Esperanto as an ontology to limit the search space of
our schema matching solution.

The newly proposed architecture of our case study organization exists of several data
lakes, in which data from various sources flows together (see Figure 6.2). This data is
ingested by the data lakes via APIs. We aim eventually to be able to plug our solution in
between of the existing systems, to enable semi-automatic translation of freshly inserted
data objects.

6.2 Data Collection

6.2.1 Interviews

To get a grasp on the current situation of the ING, and how we could plug our solution into
ING’s current process, we performed interviews with several people across the organization,
that touch upon the topic of global data management. From Data Modellers to Enterprise
Architects, from Ops Engineers to a Chief Data Officer. These interviews not only enabled
us to develop a great insight into the current processes at the organization, but also
facilitated our acquaintance with new and supporting technologies like Elasticsearch.

6.2.2 Ontology Extraction

To build our ontology from ING’s business terms, we used the available, yet poorly
documented, API of IBM’s InfoSphere Information Governance Catalog (IGC). (Though,
fortunately, it provides an API, otherwise we would have to write a scraper to extract
these terms and related context.) We extracted the business terms and corresponding
context (structure) for each term to construct the ontology. Based on this context, we
were able to write a script to generate the edges between the terms for our graph.

6.3 Results 45

6.3 Results

To assess if our solution actually improves or aids the current process and is a success, we
pose that two criteria need to be met. We need to answer the questions; how efficient is
our solution, and how is the solution received? So first, the system needs to be efficient
enough to employ it without actually achieving a reverse effect of our objective, i.e.
slowing the process down. Second, the system needs to be accepted and adopted by the
target group.

6.3.1 Quantitative Analysis: Accuracy

How do we avoid irrelevant suggestions and find what we are looking for? To measure
relevance or accuracy we can use two measures called precision and recall. Precision is
defined as how many retrieved documents are really relevant and recall as how much of
all the relevant information is found. For example, when our matching system returns
30 documents, only 20 being relevant, while failing to return 40 additional relevant
documents, its precision is 20/30 and its recall is 20/60. So, precision is how useful the
results are, and recall is how complete the results are.

With that, precision can be seen as a measure of exactness or quality, whereas recall
is a measure of completeness or quantity. To perform statistical analysis, one should take
as the null hypothesis that all, and only all the relevant documents are selected. This
outcome corresponds to maximum precision (no type I errors) and maximum recall (no
type II errors).

precision =
|{relevant documents}| \ |{retrieved documents}|

|{retrieved documents}| (6.1)

recall =
|{relevant documents}| \ |{retrieved documents}|

|{relevant documents}| (6.2)

Looking at Figure 6.3, we can also define precision as the amount of true positives
(left half of the circle), divided by the amount of all selected documents (the full circle).
Recall can also be defined as the amount of true positives (again the left part of the
circle), divided by all relevant documents (left half of the figure).

For the first criterion we have performed several automated tests, as well as some man-
ual analysis. For these tests, we constructed five database schemas in the organizational
domain. These database schemas consist of tables describing the organizational structure,
like departments, employees, addresses, phone numbers, etc. We also constructed a small
ontology to fit the domain of our database schemas.

In our first test, we took the order of our database schemas and permuted it to every
single permutation possible. In our case this equaled five factorial, meaning 120 possible
permutations. We excluded the effects of outliers or extremes, by taking the average
difference in efficiently of assigning meaning to tokens of 120 differently ordered sets of
five databases. In this test we excluded user input, and relied solely on our algorithms to
automatically select semantics by applying heuristics and the use of a dictionary. As a
dictionary we used WordNet 3.1 (Miller, 1995), a lexical database for the English language,
containing 155.287 unique words grouped in 117.659 sets of synonyms.

46 Chapter 6 Evaluation

Figure 6.3 Precision and Recall

Our second test consisted of selecting five different permutations and performing the
above-mentioned method manually. In this case we could include user input and assigned
meaning to every token of the databases. This test covered less permutations, but showed
to be much more reliable.

Table 6.1 Confusion Matrix

Selected Not selected
Relevant True positive False negative

(Type II error)
Not relevant False positive

(Type I error)
True negative

Our third test consisted of a single run of defining semantics to a single permutation
of the databases, again performed by an end user, but this time we tried to measure how
accurate the system identifies the corresponding ontology. We did this by measuring the
four quarters of the confusion matrix (see Table 6.1). With these measures we defined
the precision and recall; giving an indication of the accuracy of the system.

Our first test, averaging the result of 120 permutations, shows an insignificant one
percent increase in accuracy of automatically selecting the proper semantics. Nevertheless,
the system on average identifies 72,4% of the tokens automatically.

The second test, applying user input, shows an increase in accuracy of 4,38% in
automatically selecting semantics for the tokens. At the same time our system identified
73,89% of the tokens automatically. This suggests that our system benefits from user
input.

The last test, running a real-world scenario, we used our user interface to relate the
identified tokens to the properties of the ontology. For this we identified all the elements

6.3 Results 47

Figure 6.4 Measures of Relevance

of a single set of schemas. Running consecutively through this set, we obtained the
following values for precision and recall, as depicted in Figure 6.4.

6.3.2 Qualitative Analysis: User Acceptance

To validate and provide structure to our user acceptance analyses we have chosen to
follow the unified theory of acceptance and use of technology (UTAUT). UTAUT is a
technology acceptance model formulated by Venkatesh et al. (2003) which tries to explain
the degree of acceptance of the use of information technology. The model was formulated
based on conceptual and empirical similarities across eight technology acceptance models.
They state that for new software systems to improve productivity, they must be accepted
and used by employees in organizations.

The theory holds that there are four core determinants of intention and usage;
performance expectancy, effort expectancy, social influence, and facilitating conditions.
The first three are direct influencing factors of behavioral intention; the fourth is a
direct determinant of use behavior. Four moderators (i.e. gender, age, experience, and
voluntariness of use) are proposed, modifying the influence of the four core determinants
on behavioral intention and use behavior (Figure 6.5).

Venkatesh et al. (2003) define performance expectancy as “the degree to which an
individual believes that using the system will help him or her to attain gains in job
performance”. Effort expectancy is defined as “the degree of ease associated with the use
of the system”. Social influence is defined as “the degree to which an individual perceives
that important others believe he or she should use the new system”. And facilitating
conditions are defined as “the degree to which an individual believes that an organizational
and technical infrastructure exists to support use of the system”.

48 Chapter 6 Evaluation

Figure 6.5 UTAUT Research Model, adapted from Venkatesh et al. (2003, p. 447)

Using a short survey, we employed the UTAUT to explain adoption and organizational
use of our proposed solution. With questions addressing the before-mentioned factors, the
survey measured adoption and its relation to the determinants of intention. Questions
were posed in statements on which participants could indicate their level of agreement on
a 5-point Likert scale (see Appendix B).

The survey was send to a group of fifteen employees across the organization, with
whom we have had one or multiple meetings. These people were involved and properly
informed about the extent of the research and proof-of-concept. We have received ten
valid responses from our target group, composed of some very similarly and some very
diversely answered questions. Figure 6.6 shows the study results in a Likert plot. The
percentage on the left-hand side of the plot refers to the strongly negative (1) and negative
(2) attitudes. The percentage in the center refers to the total of neutral (3) response, and
the percentage on the right-hand side reflects the positive (4) and strongly positive (5)
attitudes.

The answered surveys were exclusively filled out by males, age equally distributed,
ranging from mid-twenties to end-fifties. They see themselves as experienced in the topic
of data integration (Q4), with a predominant part (60%) on the right-hand side of the 5-
point scale. With the highest scores, the expectation (Q5) towards the performance of the
proposed solution is high. The expectation towards the learning-curve (Q6) is more diverse,
ranging from one to four, and is the only answer with the center of gravity on the left side
of the neutral. Most of the respondents perceive social influence (Q7) as an influencing
factor, yet the sentiment seems subtle since we measure no extreme outliers. Responses
on facilitating conditions (Q8) are bell-shaped over the neutral, suggesting that there is
no consensus between the respondents on the existence of supporting organizational and
technical infrastructure. The most diversely answered question is on the voluntary use of

6.3 Results 49

0%

0%

10%

20%

40%

30%

50%

70%

70%

60%

50%

40%

30%

20%

30%

30%

30%

30%

20%

40%

30%

Q4. Experience

Q5. Performance Expectancy

Q6. Effort Expectancy

Q7. Social Influence

Q8. Facilitating Conditions

Q9. Voluntariness of Use

Q10. Behavioural Intention

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 6.6 User Acceptance Study Results

the system (Q9), giving us an almost evenly distributed answer over the options, making
it is hard to say anything about the perceived voluntariness of use of the proposed system.
The last question on behavioral intention (Q10), shows how likely is it the respondent
would use the proposed solution. The response only shows answers on the positive end
of the scale, implicating it would be very likely the respondents would actually use the
proposed system. All in all, the respondents are predominantly positive in their response,
showing an favourable attitude towards the proposed system.

Chapter 7

Discussion

7.1 Findings and Implications

In our research, we have outlined our research and proposed a strategy on how data
integration can be aided by distributing and automating the process. In our literature
research we have touched upon several different techniques that support distributed
semi-automatic data integration.

We have formulated an approach to semi-automatic data integration and designed a
system architecture, combining several techniques and results from our literature research.
We have implemented a proof-of-concept to demonstrate the feasibility and applicability
of our proposed solution. From analysis of user interaction with our proof-of-concept we
can conclude that our implementation of our proposed solution had a positive influence
on the speed of the mapping process. We attribute this improvement to the provision of a
fair amount of accurate suggestions and by providing means for quick searching through
the ontology.

Lastly, we have employed a case study at ING, a Dutch multinational banking and
financial services corporation headquartered in Amsterdam, to show our solution is fit to
be applied in large-scale enterprises. According to outcome of our statistical analysis and
our survey following the UTAUT technology acceptance model, there is a predominantly
positive attitude towards our solution. The questioned employees appear to have medium
to high expectations and believe the system to have a positive influence on the existing
process.

To summarize, we have formulated and constructed a semi-automatic distributed
system to aid scalable and reuse-oriented data integration demonstrating its feasibility
and applicability in real-world context. We believe the combination of our matching
strategies and a distributed solution is a unique and proper approach to scalable data
integration, but hinges on the use of a decent and suitable ontology.

7.2 Validity

Since research design is based on following a list of logical steps, we can judge the quality
of our research according to several logical tests. Yin (2003) lists four commonly used
tests to establish the quality of any empirical social research, thus also relevant to case

50

7.2 Validity 51

studies. In his book he distinguishes the several tactics for dealing with these four tests
when doing case studies. In the following sections we will discuss the construct validity,
internal validity, external validity, and reliability of our research.

7.2.1 Construct Validity

In verifying the construct validity of our research it is critical to confirm that we identified
the correct operational measures for the concepts we studied. Case study tactics (Yin,
2003) for construct validity are to use multiple sources of evidence, establish a chain
of evidence, and to have key informants draft the case study report. To ensure the
validity of the constructs of our study, we conducted extensive literature research and
contextual research in the case study company. This way we have been able to support
our hypotheses and give structure to the extent of our research.

For the evaluation of the performance of our solution, it can be questioned if precision
and recall are the proper measures. One could argue that recall is not important, as long
as there are at least some good hits returned. And precision could be could be irrelevant
as long as at least some of the top ranking hits returned are adequate or satisfactory.

7.2.2 Internal Validity

Evaluation of internal validity is for explanatory or causal studies only, and not for
descriptive or exploratory studies. Since we do not seek to establish causal relationships,
whereby certain conditions are believed to lead to other conditions, we also do not apply
any of the tactics proposed by Yin.

7.2.3 External Validity

The domain to which this study can be generalized is huge. As we explained in our
problem statement, every organization in the world has the problem of reconciling data
within in the organization to be able to extract business value. By applying different
ontologies, this research can be applied to many more domains and contexts. Yin (2003)
his tactic to evaluate external validity, is the use of theory in single-case studies. Therefore,
we have built the aspects of this study upon previously conducted research and proposed
future work.

7.2.4 Reliability

To verify the reliability if this research, we have to demonstrate that the operations
of this study, like the data collection and the matching quality, can be repeated with
similar results. Yin (2003) proposes to use a case study protocol and develop a case study
database to provide reliability.

Even though our approach can be repeated, it could show dissimilar results. It is
difficult to guarantee similar or stable results, since the amount of data we had to our
disposal in our case study was limited. The system is supposed to benefit from large
amounts of data and feedback. It is difficult to simulate large-scale user feedback with
limited time and resources.

52 Chapter 7 Discussion

7.3 Limitations

7.3.1 Case Study Design Method

Research Design

We understand and openly acknowledge the strengths and limitations of case study
research. We see case study research, like any other form of research, as a complement to
the strengths and limitations of other types of research. As a research method, the case
study is used in many situations, to retain the holistic and meaningful characteristics of
real-life events. Not surprisingly, the case study has been a common research method in
a great variety of research fields.

Generalization

A common concern about case studies is that they provide little basis for scientific
generalization. The short answer is that, like experiments, case studies are generalizable
to theoretical propositions and not to populations (Yin, 2003). Therefore, the objective of
the case study is not to do statistical analysis, but to generalize our theoretical conclusions.

Single-case Design Case Study

This research, though limited to a single case, represents a problem that is not exclusive
nor restricted to our case study organization. When extended to multiple organizations
we expect to see similar results as we encountered in our study.

7.3.2 Instance-based Matching

In our literature research, we discussed instance-based matching, next to name-based
matching. Because of the sensitivity of the data in our case study company, we have
decided to keep this approach out of scope.

7.4 Recommendations

Due to time constraints and practical difficulties we haven’t been able to deeply study
every aspect of our research. Nevertheless, we would like to make some suggestions to
the case study organization regarding the topic of data integration.

7.4.1 Reuse of Infrastructure

Most of the current data transfer in the organization is done via existing XFB (AXway
File Broker) interfaces. TCP and FTP are the basic protocols used for XFB, and data is
transferred in file formats. By making use of existing organizational infrastructure we
could reduce the amount of configuration needed for a new system, therefore reducing
the time of implementation. The use of our API, functioning as a kind of middleware,
could be a workable solution, demanding the smallest footprint as possible on the existing
infrastructure.

7.4 Recommendations 53

7.4.2 Reuse of Existing Mappings

The data lakes of ING ensure that only relevant information is extracted and stored.
This simplifies the process of data integration significantly, since irrelevant data does
not have to be identified. Manually constructed mappings, even though a fairly limited
amount, are currently already stored in the data lakes themselves. That means part of
the information and infrastructure is already in place. What is needed is a way to reuse
these existing mappings to ease the job of data modellers and data owners.

7.4.3 Simplified Storage Solution

Another interesting topic we encountered, worthy of further research is the use of bigtable.
Bigtable is a compressed, high-performance data storage system built on Google tech-
nologies designed to scale into petabytes, across a great range of machines. It can be
described as a sparse, distributed multi-dimensional sorted map. In contrast, a data ware-
house database is a normal relational database kept on third normal form, to eliminate
data redundancy. However, for business intelligence reports where multi-dimensional
modelling is prevalent this is not efficient. Several employees have suggested bigtable as
storage solution for ING’s data integration process. Mostly because the complexity of a
structural or normalized solution is computationally expensive. A flat structure reduces
complexity and improves scalability. Although, this approach would have its effects on
our structure-based approach.

Chapter 8

Conclusions

We started this research in Chapter 1, by posing the problem of the complexity and
tediousness of data integration and formulated our objective: to provide means and a
proof of concept to aid the process of distributed data integration. In Chapter 2 we
formulated several research questions and illustrated our research approach, following the
case study research method described by Yin (2003) and design science research method
described by Hevner et al. (2004).

In Chapter 3 we discussed our literature research, where we introduced the concepts
of data integration and several related concepts. To answer question

I. How can distributed data integration be accomplished?

we showed different architectures and techniques for distributed and scalable schema
mapping and schema matching, and presented the benefits of the use of ontologies.
By doing this we built upon previously performed research on distributed integration
approaches.

We have explored several ways of how distributed data integration can be accomplished
by comparing several different distributed infrastructures to answer question

II. Which techniques support distributed data integration?

and concluded that a structured peer-to-peer infrastructure is optimal for what we aim to
achieve. We have discerned and assessed several techniques like distributed hash tables,
string matching, and machine learning to support our objective. From these we have
selected several existing approaches needed to formulate a proposed solution.

In Chapter 4 we have formulated a solution to a distributed semi-automatic matching
and mapping system to answer question

III. How can these techniques be combined in a system architecture?

We devised a corresponding strategy and reference architecture, to respectively explain
how they interact and show how different layers and modules are composed.

As described in Chapter 5, we have implemented our solution through a proof-of-
concept to assess its feasibility and performance, to answer question

54

8.1 Future Work 55

IV. Can the applicability or usability be demonstrated with an implementation or proof-
of-concept?

For the proof-of-concept we have used web technologies to ensure ease of deployment and
accessibility. We have used open-source libraries like React and Redux to construct a
user interface and API. To speed up the user-computer interaction, we have employed a
combination of several newly devised heuristics and existing techniques.

Even though our proof-of-concept differs in many ways from our initially envisioned
solution, our contribution remains the same; we have constructed a distributed system,
thereby contributing to the scalability of the system, and we have reused information to
enable semi-automated matching based on previously recorded results.

In Chapter 6 we illustrated our case study research at a large multinational organiza-
tion, answering question

V. Can it be applied in large-scale enterprises and does it work?

We employed our proof-of-concept to evaluate the proposed solution, and validate the
accuracy and feasibility of our system. By applying our proof-of-concept in a real-world
context, we showed that the data integration process benefits from our solution.

We have found that by applying heuristics we can partially and semi-automatically
assign semantics to our sources. We also concluded that with the limited amount of data
we had to our disposal it is difficult to give a conclusive answer about the accuracy of the
system.

Next to that, we conducted a user acceptance study following the UTAUT technology
acceptance model. We have concluded from our study, that the system is received
predominantly positive, with high expectations on the performance and efficiency of the
proposed system.

Lastly, in Chapter 7 we have discussed our findings and their implications. We have
discussed the several aspects and threats to validity relevant to our research, have noted
the limitations of our study, and made several proposals to extend our current work and
add future work.

8.1 Future Work

We have only been able to implement the proposed bottom-up strategy in our proof-of-
concept. Implementing the top-down strategy could prove to add significant business
value, since it mimics the information retrieval processes of an organization more closely.

Next to that, we encourage researchers to build upon our current system with the
matching strategies provided in our literature research. There are many more approaches
to matching, which could be incorporated in our system by adding a module to our
business layer that hooks into the scoring function. Likewise, as initially proposed, we
would like to see the content-based matching strategy to be added to our system.

Unfortunately, we were unable to let the proper end users play with our system to
measure a difference in efficiency in the integration task. For future work it would be
interesting to research what effect our system has on the work of a data integrator.

56 Chapter 8 Conclusions

To increase the scalability of our structure matching approach, we propose to implement
the use of a graph database like Neo4j. This approach could prove faster, and more scalable
than our current approach.

Lastly, we hypothesize, based on the work of Falconer and Noy (2011), that the user
interface is of tremendous importance for the accuracy, and with that effectiveness of our
system. If the performed task is perceived as difficult or annoying, the process fails with
it. For example, large schemas cannot be comprehensively observed on a single screen.
It could be beneficial to partition them and present them in fragments to be matched
independently.

Appendix A

Activity Diagram of Matching Process

57

Appendix B

User Acceptance Survey

As you might know, for the last months we have been working on a system that aids the
process of translating source descriptions, or source schemas, to ING Esperanto. (ING
Esperanto is the ING flavor of the IBM industry model for banks and other financial
institutions.) We have implemented a proof-of-concept where we transform and apply
semantics to raw source data to semi-automatically find matches in the business terms of
ING Esperanto.

We have conducted interviews with several people across the organization, that touch
upon the topic of global data management. We have tried to explain the extent of our
proposed system, and now we would like to receive your feedback on it.

1. What is your job title or function in the organization?

a) Open answer

2. What is your gender?

a) Male

b) Female

c) I’d rather not say

3. What is your age?

a) 20-29 years

b) 30-39 years

c) 40-49 years

d) 50-59 years

e) 60-69 years

4. How much experience or knowledge do you have on the topic of data integration?

a) 1. no experience

b) 5. very experienced

58

Appendix B User Acceptance Survey 59

5. What is your expectation towards the performance of the proposed solution? (Do
you expect it to aid the process of data integration?)

a) 1. low expectation

b) 5. high expectation

6. How much effort do you expect it will take to get familiar with the proposed
solution?

a) 1. little effort

b) 5. lot of effort

7. Do you perceive that ’important others’ believe you should use the new system?

a) 1. no, not at all

b) 5. yes, a lot

8. Do you believe that an organizational and technical infrastructure exist to support
use of the proposed system?

a) 1. doesn’t exist

b) 5. already exists

9. Do you perceive the use of the system as being voluntary?

a) 1. involuntary

b) 5. voluntary

10. How likely is it you would use the proposed solution? (only answer if applicable)

a) 1. not likely

b) 5. very likely

Please enter your email address if you wish to receive the final outcome of this survey.

References

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M.,
& Schmidt, R. (2003). P-grid: a self-organizing structured p2p system. ACM
SIGMOD Record , 32 (3), 29–33.

Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R. J., & Mylopoulos, J.
(2003). The hyperion project: from data integration to data coordination. ACM
SIGMOD Record , 32 (3), 53–58.

Babai, L. (2015). Graph isomorphism in quasipolynomial time. arXiv preprint
arXiv:1512.03547 .

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd ed.).
Addison-Wesley Professional.

Bellahsene, Z., Bonifati, A., & Rahm, E. (2011). Schema matching and mapping (Vol. 57).
Springer.

Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise.
Communications of the ACM , 51 (9), 72–79.

Bernstein, P. A., Madhavan, J., & Rahm, E. (2011). Generic schema matching, ten years
later. Proceedings of the VLDB Endowment , 4 (11), 695–701.

Beyer, M. A., & Laney, D. (2012). The importance of ‘big data’: a definition. Stamford,
CT: Gartner , 2014–2018.

Bhaduri, K., Wolff, R., Giannella, C., & Kargupta, H. (2008). Distributed decision-tree
induction in peer-to-peer systems. Statistical Analysis and Data Mining , 1 (2),
85–103.

Borst, W. N. (1997). Construction of engineering ontologies for knowledge sharing and
reuse. Universiteit Twente.

Calì, A., Calvanese, D., De Giacomo, G., & Lenzerini, M. (2001). Accessing data
integration systems through conceptual schemas. In International conference on
conceptual modeling (pp. 270–284).

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2006). Data
management in peer-to-peer data integration systems. Global Data Management ,
177–201.

Caragea, D., Silvescu, A., & Honavar, V. (2003). Decision tree induction from dis-
tributed heterogeneous autonomous data sources. In Intelligent systems design and
applications (pp. 341–350). Springer.

60

Appendix B User Acceptance Survey 61

Chu, C., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., & Olukotun, K. (2007).
Map-reduce for machine learning on multicore. Advances in neural information
processing systems, 19 , 281.

Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.
Communications of the ACM , 51 (1), 107–113.

Do, H.-H., & Rahm, E. (2002). Coma: a system for flexible combination of schema
matching approaches. In Proceedings of the 28th international conference on very
large data bases (pp. 610–621).

Doan, A., Domingos, P., & Halevy, A. Y. (2001). Reconciling schemas of disparate
data sources: A machine-learning approach. In Acm sigmod record (Vol. 30, pp.
509–520).

Doan, A., Halevy, A., & Ives, Z. (2012). Principles of data integration. Elsevier.
Doan, A., Madhavan, J., Domingos, P., & Halevy, A. (2002). Learning to map between

ontologies on the semantic web. In Proceedings of the 11th international conference
on world wide web (pp. 662–673).

Draffan, I., & Poole, F. (1980). The classification of distributed data base management
systems. Distributed Data Bases: An Advanced Course, 57.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Falconer, S. M., & Noy, N. F. (2011). Interactive techniques to support ontology matching.
In Schema matching and mapping (pp. 29–51). Springer.

Gagnon, M. (2007). Ontology-based integration of data sources. 2007 10th International
Conference on Information Fusion, 1–8.

Gillick, D., Faria, A., & DeNero, J. (2006). Mapreduce: Distributed computing for
machine learning. Berkley, Dec, 18 .

Gruber, T. R. (1991). The role of common ontology in achieving sharable, reusable
knowledge bases. In Proceedings of the second international conference on principles
of knowledge representation and reasoning (pp. 601–602).

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge acquisition, 5 (2), 199–220.

Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? In Handbook on
ontologies (pp. 1–17). Springer.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: the teenage years.
In Proceedings of the 32nd international conference on very large data bases (pp.
9–16).

Halevy, A. Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., . . . Sikka, V.
(2005). Enterprise information integration: successes, challenges and controversies.
In Proceedings of the 2005 acm sigmod international conference on management of
data (pp. 778–787).

Halevy, A. Y., Ives, Z. G., Madhavan, J., Mork, P., Suciu, D., & Tatarinov, I. (2004).
The piazza peer data management system. IEEE Transactions on Knowledge and
Data Engineering , 16 (7), 787–798.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information
systems research. MIS quarterly , 28 (1), 75–105.

62 Appendix B User Acceptance Survey

Hull, R. (1997). Managing semantic heterogeneity in databases: a theoretical prospective.
In Proceedings of the sixteenth acm sigact-sigmod-sigart symposium on principles of
database systems (pp. 51–61).

Jhingran, A., Mattos, N., & Pirahesh, H. (2002). Information integration: A research
agenda. IBM systems Journal , 41 (4), 555–562.

Kraska, T., Talwalkar, A., Duchi, J. C., Griffith, R., Franklin, M. J., & Jordan, M. I.
(2013). Mlbase: A distributed machine-learning system. In Cidr (Vol. 1, pp. 2–1).

Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of the
twenty-first acm sigmod-sigact-sigart symposium on principles of database systems -
pods ’02 (p. 233). New York, New York, USA: ACM Press.

Lenzerini, M. (2011). Ontology-based data management. In Proceedings of the 20th acm
international conference on information and knowledge management (pp. 5–6).

Lewis, J., & Fowler, M. (2014). Microservices: a definition of this new ar-
chitectural term. Retrieved from http://martinfowler.com/articles/

microservices.html

Li, J., Stribling, J., Gil, T. M., Morris, R., & Kaashoek, M. F. (2004). Comparing the
performance of distributed hash tables under churn. In International workshop on
peer-to-peer systems (pp. 87–99).

Maymounkov, P., & Mazieres, D. (2002). Kademlia: A peer-to-peer information system
based on the xor metric. In International workshop on peer-to-peer systems (pp.
53–65).

Medrano-Chávez, A. G., Pérez-Cortés, E., & Lopez-Guerrero, M. (2015). A performance
comparison of chord and kademlia dhts in high churn scenarios. Peer-to-Peer
Networking and Applications, 8 (5), 807–821.

Microsoft. (2007). Service-Oriented Architecture (SOA) in the real world. Retrieved from
https://msdn.microsoft.com/en-us/library/bb833022.aspx

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the
ACM , 38 (11), 39–41.

Ng, W. S., Ooi, B. C., Tan, K.-L., & Zhou, A. (2003). Peerdb: A p2p-based system for
distributed data sharing. In Data engineering, 2003. proceedings. 19th international
conference on (pp. 633–644).

Noy, N. F. (2004). Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Record , 33 (4), 65–70.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating
your first ontology. Stanford knowledge systems laboratory technical report KSL-
01-05 and Stanford medical informatics technical report SMI-2001-0880, Stanford,
CA.

Özsu, M. T., & Valduriez, P. (2011). Principles of distributed database systems. Springer
Science & Business Media.

Pólya, G. (1945). How to solve it: a new aspect of mathematical model. Princeton
University Press Princeton.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. the VLDB Journal , 10 (4), 334–350.

Schenkhuizen, J. (2016). Consistent Inconsistency Management: a Concern-Driven
Approach (Unpublished master’s thesis). Utrecht University, The Netherlands.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://msdn.microsoft.com/en-us/library/bb833022.aspx

Appendix B User Acceptance Survey 63

Schramm, W. (1971). Notes on case studies of instructional media projects.
Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future

challenges. IEEE Transactions on knowledge and data engineering , 25 (1), 158–176.
Smith, J. M., Bernstein, P. A., Dayal, U., Goodman, N., Landers, T., Lin, K. W., & Wong,

E. (1981). Multibase: integrating heterogeneous distributed database systems. In
Proceedings of the may 4-7, 1981, national computer conference (pp. 487–499).

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review , 31 (4), 149–160.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles
and methods. Data & knowledge engineering , 25 (1), 161–197.

Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23 (1), 31–42.

Uschold, M., & Gruninger, M. (2004). Ontologies and semantics for seamless connectivity.
ACM SIGMod Record , 33 (4), 58–64.

Van der Lans, R. (2012). Data virtualization for business intelligence systems: revolu-
tionizing data integration for data warehouses. Elsevier.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of
information technology: Toward a unified view. MIS quarterly , 425–478.

Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why
you should care. White Paper, IDC .

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., &
Hübner, S. (2001). Ontology-based integration of information-a survey of existing
approaches. In Ijcai-01 workshop: ontologies and information sharing (Vol. 2001,
pp. 108–117).

Yin, R. (2003). Case study research: Design and methods. SAGE Publications.
Zaihrayeu, I. (2006). Towards peer-to-peer information management systems. International

Doctorate School in Information and Communication Technology, University of
Trento, Trento, Italy .

Zhang, H., Goel, A., & Govindan, R. (2003). Incrementally improving lookup latency in
distributed hash table systems. In Acm sigmetrics performance evaluation review
(Vol. 31, pp. 114–125).

SAMARITAN: Distributed Semantic Integration

with Elasticsearch

A Guide to Scalable and Reuse-Oriented Data Integration

Matthijs G. Dabroek
Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
m.g.dabroek@students.uu.nl

ABSTRACT
In the current information age, it is crucial for an orga-
nization to integrate all of its available source systems to
provide deep insights, adhere to regulations, and provide a
competitive edge. However, data integration often proves to
be a tedious and costly process. In this paper we present
SAMARITAN, a semi-automatic distributed system that
takes advantage of previously specified associations between
source schemas to enable scalable and reuse-oriented data
integration. To provide a common language we include the
use of ontologies. We constructed a proof-of-concept with
Elasticsearch to evaluate our approach and validate our so-
lution. Our contribution is two-fold: we distribute the data
integration system, thereby contributing to the scalability
of the system, and we reuse previously obtained results to
enable semi-automatic matching.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.2.1 [Software Engineering]: Software Archi-
tectures; H.2.4 [Database Management]: Systems

Keywords
big data challenge, distributed data governance, semantic
integration, data lake, elasticsearch

1. INTRODUCTION

Big data challenges. In the current information age, it is
crucial for an organization to integrate all of its available
source systems to provide deep customer insights, comply
to law and regulations, or provide a competitive edge by
bringing actionable analytics at a timely rate. However, this
often requires tedious, slow, and costly processes like data
transformation and data integration. The business intelli-
gence landscape tries to keep up with this pace, but tradi-
tional data warehousing (DWH) solutions appear to reach

their limitations. There are not enough hours in one day
to process all the data pouring into the enterprise. It is
estimated that a staggering 70% of the time spent on ana-
lytics projects is concerned with identifying, cleansing, and
integrating data [3]. Yet, many organizations have built en-
terprise data warehouses (EDWs) and rely heavily on this
technology to meet their business’s operational and report-
ing needs. This problem is literary growing, since the rate
of data creation is at an all-time high and increasing with a
steady pace [10]. The problems emerging from this observa-
tion are referred to as big data challenges [5].

New architecture. Traditional ways of integrating require
too much modelling, maintenance, and coordination among
the owners of the data sources [4]. As data sources continue
to increase, organizations are reconsidering enterprise data
warehouses for a more flexible approach to data manage-
ment. Big data requires a big, new big architecture [11].
The data lake architecture has drawn a lot of attention, be-
cause the problems it aims to address pertain to big data
challenges. James Dixon, CTO of Pentaho, coined the, now
trending, term on his blog1, with the following description:

”If you think of a datamart as a store of bot-
tled water - cleansed and packaged and struc-
tured for easy consumption - the data lake is a
large body of water in a more natural state. The
contents of the data lake stream in from a source
to fill the lake, and various users of the lake can
come to examine, dive in, or take samples.”

Data lake. The definition we prefer is the one from TechTar-
get2, which defines the data lake as ”a storage repository that
holds a vast amount of raw data in its native format until it
is needed.”In contrast to the EDW, that includes the storage
of structured, semi-structured, and unstructured data. The
data lake allows for untreated data to be digested. More-
over, the costly data transformation process is deferred until
the data is actually needed. According to Andrew White,
vice president and analyst at Gartner, the primary driver

1
https://jamesdixon.wordpress.com/2010/10/14/

pentaho-hadoop-and-data-lakes/

2
http://searchaws.techtarget.com/definition/data-

lake

for data lakes is ”the need for increased agility and accessi-
bility for data analysis.” The data lake addresses the need
for big data analytics within the enterprise without the cost
of scaling the EDW to process big data volumes [2]. The
data lake di↵ers from the traditional EDW in several ways.
The five most noteworthy being that data lakes retain all
data, data lakes support all data types, data lakes support
all users, data lakes adapt easily to change, and data lakes
provide faster insights [1]. Despite their growing popular-
ity, data lakes have received quite some criticism, as analyst
firms like Gartner question their long-term viability. If or-
ganizations don’t coordinate the untreated data that they
throw into the lakes, they risk creating convoluted swamps,
where data goes in and nothing ever comes out. A data
lake certainly benefits IT in the short term in that IT no
longer has to spend time understanding how information is
used—data is simply dumped into the data lake. But this
seems like they are only pushing the problem forward, be-
cause when this data needs to be queried, structure need to
be applied to the data anyway. Gartner warns about this,
stating: ”without at least some semblance of information
governance, the lake will end up being a collection of dis-
connected data pools or information silos all in one place”
[6].

Metadata and semantics. By its definition, a data lake
accepts any data, without oversight or governance. With-
out descriptive metadata and a mechanism to maintain it,
the data lake risks turning into a data swamp. And with-
out metadata, every subsequent use of the data means ana-
lysts will need to start from scratch. Without any form of
data integration at the schema level, it can very quickly be-
come a large collection of unrelated data silos, also referred
to as data puddles. To keep the data lake useful, quite a
lot of metadata—defining the data structure, contents, and
lineage—needs to be collected and managed, or governed.
Several problems concerning the data lake are addressed by
literature. O’Leary states that although data governance
generally is considered a non-technical issue, it is a criti-
cal component of making the lake work [8]. To address the
shortcomings of the data lake, Franz Inc. developed the
Semantic Data Lake

3 and CapGemini the Business Data

Lake.4 IBM introduces Data Reservoirs. All of these seem
to agree that data governance is critical.

Data governance. Data governance (DG) refers to the over-
all management of the availability, usability, integrity, and
security of the data employed in an enterprise [9]. The ques-
tion is, does data governance take away the added benefit
of agility? Data governance does not per se require data
to be modelled and adhere to a global conceptual schema.
It simply requires that there is metadata available and the
data that is o↵ered has enough metadata to make it useful
for the subsequent data discovery process.

3
http://allegrograph.com/semantic-data-lake/

4
https://www.capgemini.com/insights-data/data/

business-data-lake

Figure 1: Network of Interconnected Nodes

2. SAMARITAN
Existing solutions still require a centralized governing body
or council, just like the DWH approach imposed a central
authority. We argue that to enable scalability, a distributed
data governance approach is needed, where data owners are
responsible for their own data and metadata. They have
to make sure their data is useful for the consumers of these
data. With this approach, we somewhat mimic data silos
from the traditional DWH approach, but in a scalable fash-
ion.

Data governance and semantic consistency are key aspects,
and technology should be applied or added to the lake to
provide this. We add semantics to prevent data lakes to
perish like many congested SharePoint environments in the
past. We propose a solution to provide semantic context
to ingested data. Our proposed approach is two-fold: to
increase agility we distribute the data governance process
by making data owners responsible for their own data and
metadata, and to aid the process of integration we employ a
semi-automated semantic integration system by using Elas-
ticsearch. The objective is to enable the creation of a semi-
automated data repository, functioning as a self-service data
catalog for end users for faster data discovery.

To address the aforementioned shortcomings of existing so-
lutions, we devised the SAMARITAN system for Semi Auto-
MAtic distRIbuTed dAta iNtegration. In SAMARITAN we
have combined the missing key aspects in a single system.
Our proposed reference architecture shows how the di↵erent
process steps are mapped onto the modules of the system.

2.1 Distributed Data Governance
According to Loshin [7], the first responsibility of data own-
ership is the definition of data. The data owner is responsible
for understanding what information is to be brought into a
system. Moreover, he is responsible for assigning the mean-
ings to collections of data, and constructing a data model to
hold the collected information. Loshin also discusses the
centralized versus decentralized distribution of ownership
across the enterprise. He poses that the benefits of the de-
centralized model include decreased management overhead,
bureaucracy, and system integration. The costs include lack

of enterprise standardization for data and systems, and the
inability to make use of merged data for additional knowl-
edge discovery. We claim that these costs can be reduced by
implementing a global conceptual schema, to improve en-
terprise standardization. Moreover, it allows data owners
to decide which data they want to interconnect with this
global conceptual network, federating the data sources and
enabling knowledge discovery.

The infrastructure of our system consists of a network of
interconnected nodes (Figure 1). Together they hold and
supply a global conceptual schema to which new sources are
being mapped semi-automatically. The global conceptual
schema can be queried by end users to retrieve and aggre-
gate data from disparate source systems. Once a node is
connected to the network (Figure 1, number 2), it can share
several pieces of information. If the node has been connected
before, it can share its successful mappings from its data to
the global ontology, if not, it commences with the match-
ing process. Additionally, it can share its own source data
upon receiving a query from the network. Next to sharing
its own information, the node can accept to store replicated
information from the network, such as the successful map-
pings from any other source tot the global ontology, and the
node can aid in the distributed computation of the match-
ing process of other nodes (Figure 1, number 1). When a
node disconnects from the network (Figure 1, number 3), its
source data is unavailable to the network, but its successful
mappings can still be reused in the matching process, since
these are replicated over the network.

2.2 Dual Matching Approach
Before the source data of a node can be shared with the
system, the matching process has to be performed and fi-
nalized. The matching process addresses the problem of
identifying that two objects are semantically related. Our
approach to solving this problem is two-fold. First, we plan
to give insight into the source systems’ semantics by ex-
panding abbreviations and acronyms, and assign meaning
to the sources’ elements, with the use of expert knowledge
and dictionaries: the semantic-based approach. The sys-
tem will retain this information and reuse it to learn how
to rank and present meaning to the system experts. With
these semantics we can search through the definitions of our
conceptual schema. We apply the same approach to retain
and reuse the connections made by system experts, between
the identified semantics of the source schema and the on-
tology. Secondly, we can use the internal relationships (i.e.
foreign keys) extracted from the source schema to improve
suggestions for relationships of previously identified entities:
the structure-based approach.

Both the semantic-based and structural-based approaches
run in parallel and are part of a multi-phased process: an in-
gestion phase, a preprocessing phase, a matching phase and
a feedback phase. In the ingestion phase the source schema
is o↵ered and parsed. In the preprocessing phase several
types of analysis are performed, and a graph is constructed.
The matching phase takes care of the full text search, graph
search, and scoring process. In the feedback phase the end
user is able to provide feedback to the suggested mappings.

Figure 2: User-feedback

2.3 Semantic Integration with Elasticsearch

Elasticsearch. To support the distributed data governance
approach, we propose to perform semantic integration of
data using Elasticsearch. Elasticsearch uses a structure called
an inverted index, which is designed to allow very fast full
text searches. An inverted index consists of a list of all the
unique words that appear in any document, and for each
term, a list of the documents in which it appears. In our case
this index consists of all the terms from our ontology, includ-
ing their associated descriptions. By default, search results
are returned sorted by relevance—starting with the most
relevant documents, represented by a positive floating-point
number. The standard similarity algorithm used in Elastic-
search is TF/IDF, short for term frequency–inverse docu-
ment frequency, which shows the significance of a term in a
collection of documents. The score increases corresponding
to the number of times a term appears in a document (TF),
and is counterbalanced by the number of times the terms ap-
pear in the total collection (IDF). Consequently, terms that
appear in many documents get a lower relevance score than
more infrequently occurring terms. We use this numerical
statistic, as a weighting factor for the ranking of our sugges-
tions. For a more in-depth theory of the scoring mechanism
of Elasticsearch, we refer to the article5 on scoring theory.

Domain ontology. To provide a common or global con-
ceptual language we include the use of an domain ontology.
The ontology is a formal description of the domain of inter-
est, and is the central part of the whole system. We start
by loading the ontology, consisting of a set of terms and
corresponding descriptors, into Elasticsearch. Elasticsearch
indexes the ontology and stores an optimal representation
for us to match against at a later moment.

Schema digestion. Next, we can digest incoming source
schemas to identify the entities and attributes living in the
source system. We allow di↵erent source formats, just like
the data lakes, like semi-structured (e.g. JSON, XML), but
also highly structured data, like database exports, denoted
in a data definition language (DDL), often SQL.

Semantic search. After ingestion, we take all extracted
strings and try to assign meaning to them. We start this
process by breaking all the strings up in separate terms,
which-in context of lexical analysis-is referred to as tokeniza-
tion. This is necessary because data definitions are often

5
https://www.elastic.co/guide/en/elasticsearch/

guide/current/scoring-theory.html

Figure 3: System Architecture

obfuscated when they are encoded in source systems. Usu-
ally because of limits on the length of table names, which
resulted in extremely abbreviated naming conventions. Af-
ter tokenization, we add synonyms, filter stop words, mod-
ify and prepare the tokens for the matching process. This
is done to improve the quality of the search results later
on. Before we start matching the semantics of the source
schema with those of the ontology, we give the end user the
possibility to verify and correct the semantics we assigned
to the tokens. The end users’ feedback will subsequently
improve our semantic process over time. Next we can use
the semantics to perform a textual search over the ontology
its terms and descriptors. We can match elements based
on string equality or string similarity, by calculating several
string metrics. After the matching phase we present the end
user with ranked ontology suggestions for positive or nega-
tive feedback. If the end user finds a match in the ontology
directly, he can select and commit it right away. If no proper
suggestion is found, the end-user is presented with a way to
search for the correct entity anyway. This alternative search
and subsequent commit is incorporated and related to the
previously applied semantics, forming new associations, and
consequently improving suggestions.

Statistical error. To improve our matching accuracy, we
need to have a strategy to reduce or circumvent our error

rates. The first type of error, false positive (type I error),
represents a document selected by the system, but ignored or
rejected by the expert. These errors should theoretically di-
minish automatically the more feedback the system receives
from end users. More relevant suggestions will get pushed
to the top, and consequently, less relevant suggestions will
get pushed down and eventually disappear from the list of
suggestions. The second error, false negative (type II er-
ror), represents a document not selected by the system, but
searched for by expert. The system should provide a way
for the end user to manually search for ontology terms. This
way if our list of suggestions is inadequate, the end user can
still find the proper related term. By associating the term
with our entity, it will automatically become more relevant
and be selected by the system in a subsequent search.

Ranking through reuse. A key aspect to our system is to
reuse previously made relationships to improve the ranking
of suggestions. This is where user-feedback can be utilized.
Imagine, one of our proposed suggestions is ten times af-
firmed, and three times denied to be correct. Another of our
suggestions is two times a�rmed and never denied. Which
suggestion should rank higher, and which should rank lower?
We use both positive and negative feedback to rank our re-
sults. As the amount of user-feedback grows, several di↵er-
ent suggestions can be selected as correct mappings to the
global conceptual schema. These suggestions receive, next
to their weighted score from the semantic mapping, also a
score based on previous user-feedback. Every time a sug-
gestion is selected and chosen this is recorded as positive
feedback, and every time a suggestion is selected but ig-
nored this is recorded as negative feedback, as depicted in
Figure 2. The ratio between positive and negative feedback
determines the user feedback score, which weighs in the to-
tal score of the suggestion. It can happen, that the score
of a certain suggestion amounts to infinity, because there is
no negative feedback recorded. In this case we introduce
a threshold, to prevent a suggestion with a single positive
feedback and no negative feedback from tipping the scales.

2.4 Reference Architecture
The reference architecture shows how the previously de-
scribed process steps are mapped onto the modules of the
system. Our proposed architecture provides the system to
be used in two di↵erent ways. One way is producing infor-
mation and enables re-use. This is done via a user inter-

face, providing the end-users with the ability to contribute
to the accuracy of the system by giving their feedback. The
other way is purely about consuming information previously
stored in the system, and is solely used to give back sugges-
tions for a single entity. This second way should only be
utilized after the system has undergone a su�cient amount
of training. Its interface is defined as a web application pro-

gramming interface providing a programmable interface to
a set of services which can be implemented by existing sys-
tems.

We decomposed the system in several modules or compo-

Figure 4: Three-layered Application Architecture

nents. Decomposing the system into modules gives it the
attribute of maintainability. This way we aim to easily add
more matching strategies to our system in future work. The
system architecture, as depicted in Figure 3, shows the in-
gestion of the source schema into the schema pool. Next
both matching strategies are executed in parallel, allowing
for both semantic and structural analysis of the data. The
provided ontology is used to discover correspondences, rank
them and present them to the graphical user interface. Af-
ter the user has given feedback about the suitability of the
suggested matches, this feedback flows back into the sys-
tem. Accepted mappings are stored in a mapping pool, out
of which requested mappings can be served.

Every node in the system is subdivided in three distinct lay-
ers (see Figure 4): a business layer, presentation layer, and
a data layer. All of these layers and their components are
located in every node in the network (whether they are data
sharing nodes, computing nodes, or both), and are therefore
completely distributed.

The business layer holds the logic for the whole matching
process. This process consists of a couple of processes, split-
ting the application in several di↵erent components or mod-
ules with di↵erent responsibilities. Each module represents
encapsulations of a group of related responsibilities. In Fig-
ure 4 the modules depicted in light grey are more generic
modules, they take care of shared processes like parsing, to-
kenization, and scoring. The medium grey and dark grey
modules in the center respectively represent the semantic-
based approach and structure-based approach, equivalent to
the shading used in Figure 3.

The presentation layer, or interface layer, is built to pro-
vide an interface for end users to provide continuous feed-
back to the matches the system is producing. The input
provided by the end users is fed back into the system and
stored for later use. The presentation layer provides two
interfaces to interact with: the user interface (UI) and ap-

plication programming interface (API). Providing an API,
has significant impact on the usability of the system. The
goal is to be plugged into existing architectures, without dis-
rupting the established process, to push the adoption of the
solution. It should be easy to integrate directly into exist-
ing ETL approaches, to enable semi-automatic translation
of loaded data objects. In short, this pluggable architecture,

that allows to plug in functionality using versatile modules,
is intended to benefit acceptance through ease of integration.

The data layer is designed to provide the system with its dis-
tributed characteristics. It is where the data lives, once it is
gathered from the source systems. Its data is organized and
categorized in a way that enables reuse. The source schema
elements, semantics, ontology, and mappings are stored here
and have to be readily available for fast retrieval.

In addition to these three layers, there is a set of overlapping
services that are shared between the layers. The communi-
cation services provide communication between the compo-
nents, by transmitting asynchronous messages via a selec-
tion of protocols. Operational management services monitor
operational requirements such as scalability and fault toler-
ance, and can therefore manage the individual components
and their resources.

3. DISCUSSION
In this paper, we proposed a strategy on how data inte-
gration can be aided by distributing and automating the
process. We have deviated from the traditional approach
by keeping the data in the source systems. We have formu-
lated an approach to semi-automatic data integration and
designed a new system architecture, combining several dis-
tinct techniques. We believe the combination of our match-
ing strategies and a distributed solution is a unique and
proper approach to scalable data integration, yet hinges on
the use of a decent and suitable ontology.

4. REFERENCES
[1] C. Campbell. Top five di↵erences between data lakes

and data warehouses, 2015.
[2] Capgemini and Pivotal. The technology of the

business data lake, 2013.
[3] M. Chessell, F. Scheepers, N. Nguyen, R. van Kessel,

and R. van der Starre. Governing and managing big
data for analytics and decision makers, 2014.

[4] A. Doan, A. Halevy, and Z. Ives. Principles of data

integration. Elsevier, 2012.
[5] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar,

A. Gani, and S. U. Khan. The rise of “big data” on
cloud computing: Review and open research issues.
Information Systems, 47:98–115, 2015.

[6] N. Heudecker and A. White. The data lake fallacy: All
water and little substance. Gartner Report G, 264950,
2014.

[7] D. Loshin. Enterprise knowledge management: The

data quality approach. Morgan Kaufmann, 2001.
[8] D. E. O’Leary. Embedding ai and crowdsourcing in

the big data lake. IEEE Intelligent Systems,
29(5):70–73, 2014.

[9] M. Rouse. Data governance (dg), 2007.
[10] R. L. Villars, C. W. Olofson, and M. Eastwood. Big

data: What it is and why you should care. White

Paper, IDC, 2011.
[11] D. Woods. Big data requires a big, new architecture,

2011.

	Introduction
	Problem Statement
	Objective
	Outline

	Research Approach
	Research Questions
	Main Research Question
	Sub Research Questions

	Research Method
	Design Science Research
	Literature Research
	Case Study Research

	Data Integration
	Data Integration Architectures
	Data Integration Techniques
	Schema Mapping and Matching
	Semantic Integration with Ontologies

	Distributed Data Integration
	Peer-to-Peer Infrastructure
	Replication and Scalability with DHTs
	Scalable Computation

	Existing Distributed Integration Approaches
	Pairwise Schema Mapping
	Mapping with Machine Learning Techniques

	Related Concepts

	Proposed Solution
	Infrastructure
	Network
	Node

	System Dynamics
	Matching Process
	Semantic-based Approach
	Structure-based Approach
	Scoring
	User-feedback

	Mapping Process
	Bottom-up Approach
	Top-down Approach

	Reference Architecture
	Business Layer
	Presentation Layer
	Data Layer

	Proof-of-Concept
	Business Layer
	Ontology Search
	Structure Search
	Scoring

	Presentation Layer
	Technology
	User Interaction

	Data Layer

	Evaluation
	Case Study Description
	Data Collection
	Interviews
	Ontology Extraction

	Results
	Quantitative Analysis: Accuracy
	Qualitative Analysis: User Acceptance

	Discussion
	Findings and Implications
	Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Limitations
	Case Study Design Method
	Instance-based Matching

	Recommendations
	Reuse of Infrastructure
	Reuse of Existing Mappings
	Simplified Storage Solution

	Conclusions
	Future Work

	Activity Diagram of Matching Process
	User Acceptance Survey
	References

