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Abstract

The original proof of Matsuki duality relies heavily on algebraic
methods ([Mat79],[Mat82]). In 1992, Mirkovic, Uzawa and Vilonen
gave a geometric proof of Matsuki duality for a flag manifold associ-
ated with a Borel subgroup, and in the real case for such a manifold
associated with a minimal parabolic subgroup ([Mir92]). In 2002,
Bremigan and Lorch extended this result to flag manifolds associated
with general parabolic subgroups ([BL02]). The goal of this thesis
is to analyze the geometric proof of Bremigan and Lorch. To make
our examination as self contained as possible, a lot of details have
been added to the original proof including general results from the
structure theory of semisimple Lie algebras and groups. The orbits of
SL(C, 2) and SL(R, 2) on their respective flag manifolds will be studied
as examples of Matsuki correspondence.
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1 Introduction

The purpose of this thesis is to investigate Matsuki correspondence between
orbits on real or complex flag manifolds. The correspondence is named after
Toshihiko Matsuki who established it in the real case for minimal parabolic
groups in 1977 ([Mat79]). In 1982 he extended the results to non-minimal
parabolic groups ([Mat82]). Both results rely heavily on algebraic methods.
The Matsuki correspondence turns out to be useful in a number of situations,
specifically in geometry and representation theory (see [Sch82, Section 4.5]
and [BL02, Section 1]).

In 1992, Mirkovic, Uzawa and Vilonen gave a geometric proof of Mat-
suki duality for a flag manifold associated with a Borel subgroup, and in
the real case for such a manifold associated with a minimal parabolic sub-
group ([Mir92]). This proof is extended to flag manifolds associated with
general parabolic subgroups of G by Bremigan and Lorch in 2002. The proof
makes use of the moment-norm technique. This technique has turned out to
be useful for studying group actions and orbit correspondences in multiple
geometric settings (see [Mir92] and [BL02, Section 1]).

Before giving an outline of the structure of this thesis, let us present
a concise version of Matsuki correspondence for a complex semisimple Lie
group G. Let θ and σ be two commuting complex conjugations on G of
which θ is a Cartan involution of gR (the Lie algebra g viewed as a real Lie
algebra). Let K denote the fixed point group of σθ and let G0 denote the
fixed point group of σ. Let Q be a parabolic subgroup of G and let X denote
the variety of parabolic subgroups of G that are conjugate to Q. There is a
natural bijection G/Q→ X and via this bijection we see that X is a smooth
manifold. Both G0 and K act by conjugation on X. Matsuki correspondence
is a one-to-one correspondence between the G0-orbits and K-orbits in X (see
Theorems 57 and 58 for the exact formulation). A similar correspondence
exists for real semisimple Lie groups and we will discuss the proofs for both
cases in this paper (see Theorems 68 and 69).

The setup of this thesis is as follows. First, we shall revisit the required
basic theory needed to properly understand and investigate the Matsuki cor-
respondence. Concepts which we shall investigate will include (but will not
be limited to) flag manifolds (Section 1.2), parabolic subgroups and their
Levi decompositions (Section 1.1 and Section 2.2), involutions and complex
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conjugations on semisimple Lie groups (Section 2.1) and Kähler structure on
the flag manifold (Section 2.5).

Secondly, we will make the required preparations to apply the moment-
norm technique. We will introduce certain smooth functions f± : X → R.
For these functions we shall investigate the integral curves of their gradients,
the critical points of f± and the Hessians of f± at these points (Sections
3.1 - 3.3). These data will be used to establish a useful stratification of X
(Section 4.2).

Finally we shall prove the complex version of Matsuki correspondence for
complex semisimple Lie groups (Section 4.3). After this, the real version for
complex semisimple Lie groups and the real version for real semisimple Lie
groups will be derived from the complex case for complex groups (Sections
5.1 and 5.3).

To guide the intuition on Matsuki correspondence, we will examine two
examples. We shall investigate Matsuki correspondence for the semisimple
Lie groups SL(2,C) and SL(2,R) (Sections 1.2 and 6.1 respectively). Thor-
ough computations to support these results are postponed to Sections 6.2
and 6.3.

1.1 Basic structure theory

In this section we will revisit some basic properties of the framework in which
we shall investigate Matsuki correspondence.

A Lie algebra is a vector space g equipped with a bilinear map [, ] :
g×g→ g that is anti-symmetric and satisfies the Jacobi identity. Concretely,
for X, Y, Z ∈ g, we require [X, Y ] = −[Y,X] and [X, [Y, Z]] + [Y, [Z,X]] +
[Z, [X, Y ]] = 0. The algebra is called real or complex, depending on whether
the vector space g is real or complex. We will often write ad(X) for the map
g→ g given by X 7→ [X, Y ].

Closely related to a Lie algebra is the notion of a Lie group. A Lie group
is a smooth manifold equipped with the structure of a group such that the
product map (x, y) 7→ xy and the inversion map x 7→ x−1 are smooth. Let
e ∈ G denote the identity element of the group G, and let TeG denote the
tangent space of the manifold G at the point e. A natural map to consider on
a group is the conjugation map Cx : G→ G given by y 7→ xyx−1. A natural
operation to consider on smooth manifolds is differentiation which brings
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us to define the map Ad : G → GL(TeG) as Ad(x) = TeCx. By applying
differentiation at e ∈ G we get a linear map TeAd : TeG → End(TeG). It
turns out that the vector space TeG combined with the map TeAd is a Lie
algebra (see [vdB10, Cor 4.14]) such that ad = TeAd.

It is one of the fundamentals of Lie theory that every Lie algebra can be
realized as the tangent space at the identity of a simply connected Lie group.
If two simply connected Lie groups have isomorphic Lie algebras, then these
groups are isomorphic as well. We now adopt the notation g = TeG and
TeAd = ad. Via the map Ad, there is a natural action of G on its Lie algebra
g called the adjoint action. For x ∈ G, the map Ad(x) is a Lie algebra
automorphism of g i.e. Ad(x)[X, Y ] = [Ad(x)X,Ad(x)Y ] for X, Y ∈ g.

An algebra is called simple if it is not abelian (i.e. [, ] is non-trivial on
g) and g has no proper nonzero ideals. An algebra is called semisimple if it
is a direct sum of simple ideals. A Lie group is called semisimple if it is
connected and if its associated Lie algebra is semisimple (see [Kna02, Page
61]). An algebra is called reductive if for every ideal a in g, there is a
corresponding ideal b in g such that g = a⊕ b. Every reductive Lie algebra
is the direct sum of a semisimple Lie algebra and an abelian Lie algebra
(see [Kna02, Cor. 1.53]). For the purposes of this thesis, we will define a
reductive group to be a Lie group such that its associated Lie algebra is
reductive (see [Kna02, Page 384] for a broader discussion of reductive groups).

Let K denote either C or R and let g be a Lie algebra over K. The Killing
form B of g is the map g×g→ K, defined by B(X, Y ) = Tr(ad(X)◦ad(Y )).
The following lemma contains a property of the Killing form which we will
use often throughout this thesis.

Lemma 1. The Killing form is invariant under any automorphism of g.
Specifically, the Killing form is invariant under the adjoint action of G on g.

Proof. Let ϕ be an automorphism of g. It follows from ϕ[X,ϕ−1Y ] = [ϕX, Y ]
that ad(X)(ϕX) = ϕ◦ad(X)◦ϕ−1. By using the cyclic property of the trace,
we get the following result.

B(ϕX,ϕY ) = Tr(ad(ϕX)ad(ϕY ))

= Tr(ϕad(X)ϕ−1ϕad(Y )ϕ−1)

= Tr(ϕ−1ϕad(X)ad(Y )) = B(X, Y )

We conclude that the Killing form is invariant under any automorphism of
g.
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Let g be the Lie algebra of G and let Int(g) denote the analytic subgroup
of Aut(g) with Lie algebra ad(g). The group Int(g) equals Ad(G)e where
subscript e denotes the connected component of the identity (see [Kna02,
Section I.11]). Notice that for a semisimple group G, we have Int(g) = Ad(G)
since G is connected.

Let g be a complex Lie algebra. A Lie subalgebra g0 ⊂ g is called a real
form of g if g ' g0 ⊕ ig0. When we forget about the complex structure of a
complex Lie algebra g, we will denote this with gR i.e. gR ' g0 ⊕R ig0 seen
as real vector spaces and for a real form g0 of g.

Let g be a real or complex Lie algebra. An automorphism σ of g that sat-
isfies σ2 = Idg is called an involution. For a complex Lie algebra this means
in particular that σ is complex linear. In both the real and complex case,
the eigenvalues of any involution σ of g are ±1. This yields a decomposition
of g as g+ ⊕ g− where g± denotes the ±1 eigenspace of σ.

Assume now that g is a complex Lie algebra. By a conjugation of g we
mean an involution τ of gR such that τ(λX) = λτ(X) for all X ∈ g and all
λ ∈ C. It follows from this that the ±1 eigenspaces of gR are related to each
other by g− = ig+. This implies that g+ is a real form of g with associated
conjugation map τ . Conversely, let g0 be a real form of g. For X, Y ∈ g0, we
define the map σ : g → g to be σ(X + iY ) = X − iY . Then σ is a complex
conjugation of g ' g0 ⊕ ig0 in the above sense.

Let g be a real semisimple Lie algebra. An involution θ is called a Cartan
involution if the bilinear form Bθ : g×g→ R given by (X, Y ) 7→ −B(X, θY )
is a positive definite inner product. The form Bθ is called the Cartan inner
product on g induced by θ, and g+ and g− are orthogonal with respect to
this inner product (see [vdB15, Lemma 15.5]).

Let g be a complex semisimple Lie algebra. A conjugation of g induces an
involution of gR. A conjugation on g is called Cartan if the induced involution
of gR is Cartan.

Let G be a real or complex Lie group. An involution on G is an auto-
morphism σ of G such that σ2 = IdG. By the chain rule it follows that the
tangent map Teσ of an involution σ is an involution of g. The involutions σ
and Teσ are usually denoted by the same symbol.

Let G be a complex Lie group. Then GR denotes G viewed as a real
Lie group (thus, we forget about the structure of a complex manifold). A
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conjugation on G is an involution σ of GR such that Teσ is a conjugation of
g. The following lemma contains the relation between complex conjugations
and the Killing form on a complex Lie algebra.

Lemma 2. Let σ be a complex conjugation of a complex Lie algebra g and let
B denote the Killing form on g. For X, Y ∈ g, we get B(X, Y ) = B(σX, σY ).

Proof. Recall that gσ is a real form of g and let X1, X2 ∈ gσ. It follows
from B(X1, X2) = Bgσ(X1, X2) that B(X1, X2) ∈ R, hence B(σX1, σX2) =
B(X1, X2). Let Y1, Y2 ∈ gσ, then we can do the following:

B(σ(X1 + iX2), σ(Y1 + iY2)) = B(X1 − iX2), Y1 − iY2)

= B(X1, Y1)−B(X2, Y2)

− i(B(X1, Y2) +B(X2, Y1))

= B(X1 + iX2, Y1 + iY2)

Let us return to the situation of a real semisimple Lie algebra. For a
Cartan involution, we use the notation k = g+ and p = g− and the associated
decomposition g = k ⊕ p is called the Cartan decomposition of g. The
following lemma expresses how the Cartan involution extends from a Lie
algebra to a Lie group:

Lemma 3. Let G be a real semisimple Lie group and let θ be a Cartan
involution on its associated Lie algebra g. Let g = k ⊕ p be the Cartan
decomposition of g with respect to θ and let K denote the connected Lie
subgroup of G associated to the algebra k. Then:

(a) there exists a unique Lie group automorphism θ of G with differential
θ,

(b) θ2 = 1,
(c) the subgroup of G fixed by θ equals K,
(d) K is closed.

Proof. See [Kna02, Th. 6.31].

The automorphism θ of G is called the global Cartan involution as-
sociated with θ. From now on we shall denote it with θ to emphasize the
relation with the involution on Lie algebra level. Cartan involutions will be
studied in greater detail in Section 2.1.
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Let G be a semisimple Lie group, either complex or real, and let g be its
associated Lie algebra. A subalgebra t of g is a subspace of g that is closed
under ad(X) for all X ∈ t. An element X ∈ g is said to be a semisimple
element if ad(X) : g→ g diagonalizes over the algebraic closure of the base
field. A torus in g is an abelian subalgebra of g consisting of semisimple
elements. A torus t in g is called maximal if there is no torus in g properly
containing t. A maximal torus in g is called a Cartan subalgebra of g.

Let t be a Cartan subalgebra of g. Then the centralizer of t in g equals t
(see [vdB10, Lemma 31.4]). Define T as ZG(t), then T is a closed subgroup
of G with Lie algebra t and T is called a Cartan subgroup of G.

A Cartan subalgebra t in g is called split if for all X ∈ t, the map
ad(X) : g → g diagonalizes over the base field. Notice that in a complex
semisimple Lie algebra, every Cartan subalgebra is split. A compact real
semisimple Lie algebra will not contain a split Cartan subalgebra, and a
non compact real semisimple Lie algebra will contain at least one Cartan
subalgebra that is not split, and there need not be a split Cartan subalgebra
at all.

From now on, g is a complex semisimple Lie algebra. Let t be a Cartan
subalgebra in g. A root of t in g is a non-zero element of t∗ such that the
subspace gα = {Y ∈ g : [H, Y ] = α(H)Y,H ∈ t} of g is non-zero. The
set of roots with respect to t is denoted ∆ = ∆(g, t). The complement of
∪α∈∆Ker(α), is a finite union of convex, connected components which are
called Weyl chambers. Let C denote such a chamber. By construction, a
root is either negative or positive on C. The roots that are positive on a
specific choice of Weyl chamber C, are denoted ∆+ = ∆(g, t, C) (see [vdB10,
Section 31]).

Let g be a Lie algebra (complex or real). Then g is called a solvable
Lie algebra if there is a sequence of subalgebras gj ⊂ g satisfying 0 =
g0 ⊂ · · · ⊂ gk = g such that gj−1 is an ideal in gj and such that gj/gj−1

is abelian. Let g be the semisimple Lie algebra associated to G. All Borel
subalgebras are conjugate under Int(g). A Lie subalgebra b ⊂ g is called a
Borel subalgebra in g if it is a maximally solvable subalgebra of g. An
example of a Borel subalgebra is t

⊕
α∈∆+ gα where ∆+ denotes a choice of

positive roots.

A subalgebra of a complex semisimple Lie algebra is called complex
parabolic if it contains a Borel subalgebra. A subalgebra q of a real semisim-
ple Lie algebra g is called real parabolic if qC is complex parabolic in gC
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where the subscript C denotes the complexification. Let G be a semisimple
Lie group, either complex or real, and let g be its associated Lie algebra. Let
q be a parabolic subalgebra of g. It is known that q equals its own normalizer
i.e. Ng(q) = q. Define Q = NG(q), then Q is a closed subgroup of G with
Lie algebra q. The subgroup Q of G is called a parabolic subgroup of G.

Lemma 4. Let G be a complex semisimple Lie group and let Q be a parabolic
subgroup of G. Then Q equals its own normalizer in G i.e. NG(Q) = Q.
Furthermore, Q is connected.

Proof. See [Hum75, Section 23.1].

Parabolic subgroups of real semisimple Lie groups need not be connected.
For example, SL(2,R) is a real semisimple Lie group and the subgroup of
upper triangular matrices is parabolic, but this subgroup is not connected.

Lemma 5. Let g be a complex reductive Lie algebra and let s be a reductive
Lie subalgebra of g. Let t ⊂ s be an abelian subalgebra. If t is a Cartan
subalgebra of g, then it is also a Cartan subalgebra of s.

Proof. Let X ∈ t. Since t is a Cartan subalgebra in g, it follows that X is
semisimple i.e. ad(X) diagonalizes over the base field. Since ad(X) is a Lie
algebra-homomorphism, it leaves s invariant. Hence, we see that ads(X) =
ad(X)|s diagonalizes. Hence, the elements of t are semisimple with respect
to s.

We still need to prove that t is maximal in s. Assume that t is not
maximal and that it is contained in a Cartan subalgebra t′ in s. By using the
self-centralizing property of Cartan algebras, we obtain the following result:

t′ = Zs(t
′) ⊂ Zg(t

′)
A
⊂ Zg(t) = t

At inclusion A we used t ⊂ t′. We obtain t′ = t which proves that t is
maximal with respect to s.

Lemma 6. Let t be a Cartan subalgebra in a semisimple Lie algebra g. For
every S ∈ t the centralizer of S in g is a reductive algebra.

Proof. This is a corollary of the theorem in [Hum11, p. 26].
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Lemma 7. Let g be complex semisimple Lie algebra. Let σ and θ be com-
muting complex conjugations of g and let θ be Cartan. Let s0 ⊂ g be a σ- and
θ-stable torus in g. Then there exists a σ- and θ-stable Cartan subalgebra in
g containing s0.

Proof. Define u = gθ and let s±0 = s0 ∩ g±σ. Define v = Zu(s
+
0 ). Notice that

v is σ-stable and notice that s±0 ⊂ v±σ. We may extend s−0 to a maximal
abelian subspace of v−σ and denote this subspace by s−. Let s be a maximal
abelian subspace of v containing s−. We will show that s is σ-stable.

Let X ∈ s. Notice that X − σX ∈ v−σ centralizes s−. By maximality of
s− in v−σ, we see that X−σX ∈ s− which implies X−σX ∈ s. Since X ∈ s,
this implies that σX = X − (X − σX) ∈ s. Hence, s is σ-stable. Finally,
sC = s⊕ σs is a θ, σ-stable Cartan subalgebra in uC = g.

1.2 A restricted version of Matsuki correspondence
with examples

In this section we shall present a rudimentary version of Matsuki corre-
spondence. We shall demonstrate Matsuki correspondence for the Lie group
SL(2,C).

Let G be a complex semisimple Lie group and let Q ⊂ G be a parabolic
subgroup. Define X to be the set of parabolic subgroups of G that are
conjugate to Q. Notice that G has a transitive action on X. Let x ∈ X and
let Gx denote the subgroup of elements of G that leave x invariant. Since the
G-action is transitive, we see that X ' G/Gx. Through this identification
we obtain X as a complex manifold. A parabolic subgroup equals its own
normalizer (see Lemma 4) and we obtainGx = x from which we seeX ' G/x.
A manifold of this form is called a flag manifold. By picking x = Q, we obtain
X ' G/Q.

The following theorem contains an illustrative version of Matsuki corre-
spondence for flag manifolds.

Theorem 8. Let G be a (connected) complex semisimple Lie group and let
Q ⊂ G be a parabolic subgroup. Let θ and σ be two commuting complex
conjugations on G such that θ is Cartan. We use the notation G0 = Gσ

and K = Gθσ for the points in G fixed by σ and θσ respectively. There is
a one-to-one correspondence between G0- and K-orbits in X ' G/Q called
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Matsuki correspondence. Two such orbits are in correspondence when their
intersection contains precisely one K0-orbit (we use the notation K0 = Kσ).

The requirement that we need to find two commuting conjugations is not
very restrictive. We will investigate this in Section 2.1.

Let G be the complex semisimple Lie group SL(2,C). There is a natural
G-action on C2 by multiplication. Recall that for an n-dimensional vector
space V , the flag variety F(V ) is defined to be the set of sequences of sub-
spaces {0} = V0 ⊂ V1 ⊂ . . . Vn−1 ⊂ Vn = V such that dim(Vi+1/Vi) = 1 for
i ∈ {0, . . . , n− 1}.

The natural action of SL(V ) on F(V ) is transitive. It follows that F(V )
carries the unique structure of a smooth manifold such that for every F ∈
F(V ), the map g 7→ gF between SL(V ) and F(V ) is a submersion.

In particular, F(C2) consists of all sequences 0 ⊂ V1 ⊂ C2 where V1 is a
one-dimensional subspace of C2. Clearly a choice of flag in C2 is equivalent
to a choice of one-dimensional subspace in C2, hence F(C2) ' P1(C).

The map z 7→ [z : 1] := C · (z, 1) extends to a biholomorphic diffeomor-

phism from the Riemann sphere Ĉ onto the projective space P1(C). For

g =

(
a b
c d

)
∈ SL(2,C)

and z ∈ C, we get the following SL(2,C)-action on P1(C):

g[z : 1] = [az + b : cz + d] = [(az + b)(cz + d)−1 : 1]

It follows from this formula that the action of SL(2,C) on Ĉ is given by:

g · z =
a · z + b

c · z + d
for z ∈ Ĉ (1)

This action is called the action by fractional linear transformation.

Let P = SL(2,C)∞ be the stabilizer of∞ ∈ Ĉ. It is not hard to establish
that P is given by the upper triangular matrices in G (notice that P equals
the stabilizer of [1 : 0] ∈ P1(C)). Since the action is transitive, it follows that

G/P ' Ĉ. (It is known that every proper parabolic subgroup of SL(2,C)
can be realized as a stabilizer of a flag in F(C2), hence we can realize it as a

stabilizer of the action on Ĉ.)
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Define the following complex conjugations on G:

σ

(
a b
c d

)
=

(
d c

b a

)
(2)

θ

(
a b
c d

)
=

(
a b
c d

)∗−1

=

(
d −c
−b a

)
(3)

It is straightforward to check that both conjugations commute and it is well
known that θ is Cartan in G. The precise form of the fixed point sets and
their orbits in Ĉ are given in Table 1. The intersections of Gσ- and Gσθ-orbits
are given in Table 2. Computing these orbits is postponed till Section 5.2.

Table 1: The fixed point sets with their orbits in Ĉ

Gσ SU(1, 1) Orbits: • D0 = {z ∈ C : |z| < 1}
• ∂D0 = {z ∈ C : |z| = 1}
• D∞ = {z ∈ Ĉ : |z| > 1}

Gσθ
{(

a 0
0 a−1

)
: a ∈ C∗

}
Orbits: • {0}

• {∞}
• C∗

Gσθ ∩Gσ
{(

eit 0
0 e−it

)
: t ∈ R

}
Orbits: • {0}

• {∞}
• {z ∈ C : |z| = r} for all r ∈ R+

Table 2: Intersections of Gσ- and Gσθ-orbits

G
σ
θ-orb

its
→

Gσ-orbits →
∩ D0 ∂D0 D∞

{0} {0} ∅ ∅
{∞} ∅ ∅ {∞}
C∗ D0\{0} ∂D0 C \D

The intersections in table 2 that consist of precisely one Gσθ ∩ Gσ-orbit
are marked red. Notice that every row and every column contains one and
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only one red marked intersection. Hence, the following orbits are in corre-
spondence:

• D0 ←→ {0}

• ∂D0 ←→ C∗

• D∞ ←→ {∞}
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2 Preliminaries

2.1 Involutions and conjugations on a semisimple Lie
group G

Recall that X was defined as the variety of subgroups in G conjugate to
a parabolic subgroup Q. There is a natural action of G on X. Matsuki
correspondence is a correspondence between orbits in X of subgroups of G
that are fixed by certain conjugations and involutions of G. In this section
we will study these involutions and conjugations.

Let g be a complex Lie algebra. A real form of g is a Lie subalgebra g0

of g such that g ' g0 ⊕ ig0 where we view g as a real linear space. Using
this decomposition, we can define a complex conjugation σ in the following
way: let X + iY ∈ g0 ⊕ ig0, then σ(X + iY ) = X − iY . For the other way
around, let σ be a complex conjugation on g. Notice that g−σ = igσ so that
g = gσ ⊕ igσ. From this it follows that gσ is a real form of g (remember
that superscript σ denotes the fixed point set under σ). We see that we
may identify real forms of g with conjugations on g. The real form need
not be unique and there is a type of real form which is of special interest:
a compact real form i.e. a real form gu such that the Killing form of g is
strictly negative definite when restricted to gu (there are many equivalent
ways to characterize compactness of a Lie algebra). There exists a compact
real form for any complex semisimple Lie algebra and this form is unique up
to conjugation by Int gR [Kna02, Th. 6.11, Cor. 6.20].

Let τ denote the conjugation associated to a compact real form gu. It is
known that τ is a Cartan involution of gR [Kna02, Th. 6.14]. We will use this
to show that every real semisimple Lie algebra g0 has a Cartan involution.
For this, we require the following result (the proof is obtained from [Kna02,
Th. 6.16]):

Theorem 9. Let g0 be a real semisimple Lie algebra, let θ be a Cartan
involution and let σ be an involution on g0. Then there exists a ϕ ∈ Int g0

such that ϕθϕ−1 commutes with σ.

Proof. Set ω = σθ, this is an automorphism of g0. Its inverse is easily seen
to be ω−1 = θσ. We will first show that ω is symmetric with respect to the
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Cartan inner product Bθ (let B be the Killing form of g0).

Bθ(ωX, Y ) = −B(ωX, θY )
A
= −B(X,ω−1θY )

= −B(X, θσθY ) = −B(X, θωY ) = Bθ(X,ωY )

At A we used Lemma 1. We conclude that ω is symmetric with respect to
Bθ. A Bθ-symmetric automorphism of g0 has real non zero eigenvalues, hence
ρ := ω2 is positive definite. The operator ρ interacts with θ in the following
way:

ρθ = σθσθθ = θθσθσ = θω−2 = θρ−1

Specifically, we obtain θρθ−1 = ρ−1. We will extend this to θρrθ−1 = ρ−r for
r ∈ R.

Let Λ denote the set of eigenvalues of ρ. Since ρ is a positive definite
symmetric operator with respect to the inner product Bθ, we see that Λ ⊂
]0,∞[ and that Λ is a finite set. For each λ ∈ Λ, let P (λ) ∈ End(g0) be
the orthogonal projection with image equal to the eigenspace Ker(ρ − λI)
where I denotes the identity map on g0. Notice that P (λ)2 = P (λ) and that
P (λ)P (µ) = 0 for all λ, µ ∈ Λ with λ 6= µ. We can write I and ρ as follows:

I =
∑
λ∈Λ

P (λ), ρ =
∑
λ∈Λ

λP (λ)

For r ∈ R we define the endomorphism ρr ∈ End(g0) by

ρr =
∑
λ∈Λ

λrP (λ).

By using the above mentioned properties, notice that ρ1 = ρ, ρ0 = I and ρr

is invertible by ρ−r. Furthermore, for every k ∈ Z we have

(ρr)k = ρrk.

Finally, it follows from θρθ−1 = ρ−1 that Λ is invariant under the map λ 7→
λ−1 and that θP (λ)θ−1 = P (λ−1) for all λ ∈ Λ. From this we obtain the
following:

θρrθ−1 =
∑
λ∈Λ

λrP (λ−1) =
∑
λ∈Λ

(λ−1)rP ((λ−1)−1) =
∑
λ∈Λ

λ−rP (λ) = ρ−r
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Set ϕ = ρ
1
4 which is the element of Int(g0) for which we can prove the

desired result.

(ϕθϕ−1)σ = ρ
1
4 θρ−

1
4σ

= ρ
1
2 θσ

= ρ−
1
2ρω−1

= ρ−
1
2ω = ωρ−

1
2 = σθρ−

1
2 = σρ

1
4 θρ−

1
4 = σ(ϕθϕ−1)

Let g be a complex Lie algebra. In order to prove that every real semisim-
ple Lie algebra has a Cartan involution, we need to relate the Killing form
of g to the Killing form of gR. We will do this in the following two lemmas.

Lemma 10. The Lie algebra g is semisimple over C if and only if gR is
semisimple over R.

Proof. See [Kna02, Remark 1.58].

Lemma 11. Let Bg denote the Killing form of g and let BgR denote the
Killing form of gR. The following identity holds:

BgR = 2ReBg

Proof. Notice ad(g) ⊂ End(g) and let V1, . . . , Vn be a basis of g0 over R. By
this choice of basis, we see End(g0) ' Mn(R) ⊂ Mn(C) ' End(g). Notice
that V1, . . . , Vn, iV1, . . . , iVn is a basis of gR from which we obtain End(gR) '
M2n(R). Let X ∈ g. There is an embedding ad(g) ↪→ Mn(C) ↪→ M2n(R) by
the following identification:

ad(X) 7→
(

Re ad(X) −Im ad(X)
Im ad(X) Re ad(X)

)
Let j denote the above mapping. Using the linearity of the trace and the
fact that the real part of a sum equals the sum of its real parts, we get the
following:

Tr (j(ad(X)) = Tr

(
Re ad(X) −Im ad(X)
Im ad(X) Re ad(X)

)
= Tr (2 Re ad(X))

= 2 Re Tr (ad(X))
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For X, Y ∈ g, the Killing form takes on the following expression: Bg(X, Y ) =
Tr (adXadY ). Using this expression, we are able to finish the proof:

BgR(X, Y ) = Tr (j(ad(X)ad(Y )) = 2 Re Tr (ad(X)ad(Y )) = 2Re Bg(X, Y )

Let σ be the complex conjugation of g with respect to a given real form
g0, and τ conjugation with respect to a compact real form gu which exists by
earlier remarks in this section. Using Theorem 9, we will prove that every
real semisimple Lie algebra has a Cartan involution. Let us first make the
following remark. Let ϕ ∈ Int g0, then ϕτϕ−1 is a complex conjugation whose
set of fixed points equals ϕ(gu). By Equation 1 we obtain that ϕ(gu) is a
compact subalgebra of g, hence ϕτϕ−1 is the conjugation of a compact real
form of g.

The following proof is due to [Kna02, Th. 6.18].

Theorem 12. Every real semisimple Lie algebra g0 has a Cartan involution.

Proof. Let g be the complexification of g0 and let σ be the complex conjuga-
tion associated to g0. There exists a compact real form gu for g and let τ be
the complex conjugation associated to gu. Both σ and τ are involutions on
gR and τ is a Cartan involution with of this algebra. By Theorem 9, there
exists a ϕ ∈ Int gR such that ϕτϕ−1 commutes with σ. The involution ϕτϕ−1

is the conjugation with respect to ϕ(gu). By the remarks above, ϕ(gu) is a
compact real form for g with associated involution ϕτϕ−1. Set θ = ϕτϕ−1,
we will prove that this map restricts to a Cartan involution on g0.

Using Lemma 11 we get the following identity between the Cartan inner
products on gR and g:

(BgR)θ(X, Y ) = −BgR(X, θY ) = −2Re Bg(X, θY ) (4)

Since θ represents conjugation of a compact real form, we know that it is
also a Cartan involution on gR. Hence, the left part of the above expression
is positive when X = Y . Now, let X ∈ gσ, i.e. σX = X. We know by
construction that σ commutes with θ and we get σθX = θσX = θX. It
follows that θ restricts to an involution on g0. Let X, Y ∈ g0, then we get
the following result for the Cartan inner products:

Bθ(X, Y ) = −Bg0(X, θY )
A
= −Bg(X, θY ) =

1

2
(BgR)θ(X, Y )
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At equality A, we used that the Killing form of g0 , is the restriction of the
Killing form on g. The expression on the right is positive definite because of
Equation 4. We conclude that θ is a Cartan involution on g0.

When we assume the existence of a Cartan conjugations on a complex
semisimple Lie algebras, we can prove the existence of a Cartan involution on
a real semisimple Lie algebra. It will be useful later on to prove the other way
around, i.e. when we assume the presence of a Cartan involution on a real
algebra, then we can construct a Cartan conjugation on its complexification.

Corollary 13. Let g0 be a real semisimple Lie algebra and let θ0 be a Cartan
involution on g0. Let g be the complexification of g0 and let (θ0)C denote
the complex linear extension of θ0 to g. Let σ be the complex conjugation
associated to the real form g0 of g. Define θ = (θ0)Cσ. Then θ is a Cartan
conjugation on g that commutes with σ.

Proof. Since (θ0)C is complex linear on g and since σ is complex anti linear
on g, it is immediate that θ is complex anti linear. We should check that θ is
an involution of gR. By complex linearity, (θ0)C preservers both g0 and ig0.
On the first of these spaces, σ equals Idg and on the second σ equals −Idg.
This implies that (θ0)C and σ commute. Clearly, θ is an automorphism of
gR. On g0, σ equals Idg0 which clearly commutes with (θ0)C = θ0. On ig0,
σ equals −Idg0 which commutes with (θ0)C = −iθ0. We conclude that (θ0)C
and σ commute from which we obtain θ2 = (θ0)Cσ(θ0)Cσ = (θ0)2

Cσ
2 = Idg.

Hence, θ2 = Idg and we see that θ is an involution on gR. In order to prove
that θ is a Cartan, we need to show that θ is a Cartan involution on gR

The Killing form Bg is the complex linear extension of Bg0 hence Bg =
(Bg0)C. We need to check that Bθ is positive definite on g × g. Let X, Y ∈
g0 such that X + iY 6= 0. Notice that θ(X + iY ) = (θ0)Cσ(X + iY ) =
(θ0)CX − (θ0)C(Y ) = θ0(X) − iθ0(Y ). For now, we will adopt the notation
Bθ(X + iY,X + iY ) = −BgR(X + iY, θ(X + iY )).

Bθ(X + iY,X + iY )

= Bθ(X,X) +Bθ(X, iY ) +Bθ(iY,X) +Bθ(iY, iY )

= −BgR(X, θX)−BgR(X, θ(iY ))−BgR(iY, θX)−BgR(iY, θ(iY ))

= −Bg0(X, θ0X) + iBg0(X, θ0Y )− iBg0(Y, θ0X)− (i)(−i)Bg0(Y, θ0Y )

The terms on the far left and far right equal −Bg0(X, θ0X) and −Bg0(Y, θ0Y )
respectively. Both terms are positive since θ0 is a Cartan involution on g0.
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Since Bg0 is symmetric and since Bg0 respects the decomposition of g0 into
gθ00 ⊕ gθ00 , the two terms in the middle cancel each other. We conclude that
Bθ is positive definite on gR × gR which implies that θ is Cartan on g.

Finally, we need to show that θ and σ commute. Here we use the fact
that (θ0)C and σ commute:

θσ = (θ0)Cσσ = (θ0)C = σσ(θ0)C = σ((θ0)Cσ) = σ θ

2.2 Levi decomposition of parabolic groups

Let G be complex semisimple Lie group and let g be its associated Lie alge-
bra. In this section we will examine the Levi decomposition of a parabolic
subalgebra q ⊂ g and its parabolic subgroup Q ⊂ G. We will introduce some
notation and study some general properties of parabolic algebras.

Lemma 14. Let θ be a Cartan conjugation on g. There exists a θ-stable
Cartan subalgebra t in g.

Proof. Let g = gu ⊕ igu where gu = gθ. Let t0 ⊂ gu be a Cartan subalgebra
in gu. Define t = t0 ⊕ it0. Then t is θ-stable, maximal and abelian and it
consists of semisimple elements since t0 consists of semisimple elements. We
conclude that t is a θ-stable Cartan subalgebra in g.

Let t be a θ-stable Cartan subalgebra in g and let ∆ = ∆(g, t) denote
the set of roots of g relative to t. Let ∆+ = ∆+(g, t) be a choice of positive
roots. For α ∈ ∆, define the following subspace of g:

gα = {Y ∈ g : [H,Y ] = α(H)Y,H ∈ t}

The Borel subalgebra b associated to the positive system ∆+ is a subalgebra
characterized as follows:

b = t⊕ n with n =
⊕
α∈∆+

gα

A subalgebra q of g is called parabolic if it contains an Int (g)-conjugate of
b.
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We will characterize all parabolic subalgebras q of g containing the Borel
subalgebra b. Let Π ⊂ ∆+ be the system of simple roots in ∆+ and let Π′

be a subset of Π. Define Γ = ∆+ ∪ {α ∈ ∆ : α ∈ SpanZ(Π′)} and note that
Γ ⊂ ∆. Then qΠ′ = t ⊕

⊕
α∈Γ gα is a parabolic subalgebra and it turns out

that every parabolic subalgebra containing b is of this form [Kna02, Lemma
7.76].

Let q denote the parabolic subalgebra qΠ′ defined above. Define the
following subalgebras of q:

l = t⊕
⊕

α∈Γ∩−Γ

gα and nq =
⊕

α∈Γ,α 6∈−Γ

gα (5)

It follows from this definition that q = l⊕ nq. Notice that l is reductive and
nq is a maximal solvable ideal of q. A decomposition of this type is called a
Levi decomposition(see [Kna02, Cor 5.94]).

Let Q = NG(q) be the parabolic subgroup associated to q and let T ⊂ Q
be the Cartan subgroup in Q associated to t. Let L and NQ denote the Lie
subgroups of Q associated to l and nq. We can decompose Q as the semidirect
product LnNQ. In general, the Levi component L is not unique, but there
is only one Levi component L such that T ⊂ L [Spr98, Cor. 8.4.4].

Define ñq =
⊕

α∈Γ,α 6∈−Γ g−α and q̃ = l ⊕ ñq. The following two equalities
will be useful later on and follow directly from definition:

l = q ∩ q̃ and g = ñq ⊕ l⊕ nq (6)

As a map g → g, θ is skew linear. Since t is θ−stable, this induces a skew
linear automorphism on t∗ = HomC(t,C) by λ 7→ λ ◦ θ−1 hence λ 7→ λ ◦ θ is
a complex linear map. For α ∈ ∆, we adopt the notation θ(α) = α ◦ θ.

Lemma 15. Let α ∈ ∆. Then θ(α) = −α.

Proof. Let tR denote the real torus in t i.e. {H ∈ t : α(H) ∈ R,∀α ∈ ∆}.
From the remarks above, it is clear that θ(α) ∈ t∗. It suffices to prove the
result for H ∈ tR.

θα(H) = α(θ(H)) = α(−H) = −α(H)
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Lemma 16. Let ϕ : g → g be a skew linear automorphism such that ϕ
leaves t invariant. Then ϕ(∆) = ∆ and ϕ(gα) = gϕα for all α ∈ s∆, where
ϕα = α ◦ ϕ−1.

Proof. Let H ∈ t, α ∈ ∆ and X ∈ gα.

[H,ϕ(X)] = ϕ([ϕ−1H,X])

= ϕ(α(ϕ−1H)X)

= α(ϕ−1H)ϕ(X) = ϕ(α)(H)ϕ(X)

It follows that ϕ(α) ∈ ∆ and ϕ(X) ∈ gϕα

The following two corollaries follow from Equation 6, Lemma 15 and
Lemma 16.

Corollary 17. Let α ∈ ∆. Then θ(gα) = g−α. In general: if t is stable
under the conjugation δ, then δ(gα) = gδ(α).

Corollary 18. The Cartan conjugation θ sends nq to ñq and ñq to nq. We
obtain l = q ∩ θ(q).

2.3 Realizing the flag manifold as an adjoint orbit

Let X be the variety of parabolic subgroups of G that are conjugate to Q.
In order to prove the Matsuki correspondence, it is pivotal that we obtain a
description X as an adjoint orbit of Gu in gu. The goal of this section is to
obtain this description (Theorem 22).

Let σ be a complex conjugation on G and let θ be a Cartan conjugation
on G that commutes with σ. Define Gu = Gθ and let gu be its Lie algebra.
Let T ⊂ Q be a θ-stable Cartan subgroup. Let t be the Lie algebra of T and
define tu = t ∩ gu.

Lemma 19. Let Q = L n NQ be the unique Levi decomposition of Q such
that T ⊂ L. Then

X ' G/Q ' Gu/(Gu ∩ L) (7)

Proof. Since Q equals the normalizer of Q in G, we can associate X with
G/Q (see Section 1.2 for details). Let G ' Gu exp(itu)N = GuTRN be the
Iwasawa decomposition of G. This yields the following decomposition on the
parabolic group: Q = (Q∩Gu)(TR ∩Q)(N ∩Q) = (Q∩Gu)TRN . We obtain
X ' G/Q ' Gu/(Gu ∩Q). We are left with showing that Gu ∩ L ' Gu ∩Q
holds.
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Since L ⊂ Q, Gu ∩L ⊂ Gu ∩Q is immediate. The other inclusion follows
from the observation that L is the largest θ-stable Lie subgroup in Q (this
follows from the fact that l is the largest θ-stable Lie subalgebra of q, which
follows from Corollary 18). Hence Gu ∩ Q ⊂ Gu ∩ L and we conclude that
Gu ∩Q = K ∩ L which proves the lemma.

There is a continuous map Gu → Gu/(Gu ∩ L) given by g 7→ g(Gu ∩ L).
Since Gu is compact, it follows that X is compact as well. Also, since Gu

acts transitively on Gu, it follows that Gu acts transitively on X as well. All
elements of X are Gu-conjugate, but not all parabolic subgroups of G are
G-conjugate let alone Gu-conjugate.

Lemma 20. There exists an element Υ ∈ tu such that α(Υ) = 0 for α ∈
∆(l, t), and α(iΥ) < 0 for α ∈ ∆(nq, t).

Proof. Let Π = {α1, . . . , αn} be a simple system such that {α1, . . . , αk} is
associated to Q in the sense of Section 2.2. Let Z1, . . . , Zn be the dual basis
of α1, . . . , αn in t∗∗ ' t. Notice the following:

αi(θZj) = (θαi)(Zj)
A
= −αi(Zj)

B
= −αi(Zj) = αi(−Zj)

At equality A we used Lemma 15 and at equality B we used that αi(Zj) = δij
by definition where δij denotes the Kronecker-delta. The above holds for all

αi ∈ Π and since t ' tu ⊕ itu, we get Zj ∈ itu. Define Υ =
∑k

j=1 iZj. It is
immediate that Υ satisfies the claim.

Combining the results of Lemmas 20 and 15, we see that α ∈ ∆(ñq, t)
implies α(iΥ) > 0. By Equation 6 we get that α ∈ ∆(g, t) implies α(Υ, t) ∈
R. We will use this later on, specifically in Section 3.3. The following lemma
contain a useful properties of Υx.

Lemma 21. Let Υ be as in Lemma 20 and let ZG(Υ) denote the centralizer
of Υ in G. It holds that Zg(Υ) = l and ZG(Υ) = L.

Proof. By Lemma 20 and Equation 6, we see that the Zg(Υ) = l. Hence, on
subgroup level, we obtain the identity ZG(Υ)e = Le where the subscript e
denotes the connected component of the identity.

It is known that L is connected (see [Spr98, Cor. 8.4.4]) and that ZG(Υ)
is connected (see [Spr98, Th. 6.4.7] and notice ZG(Υ) = ZG(expCΥ)). Com-
bining this yields ZG(Υ) = L.
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Theorem 22. Let f : X → Ad(Gu)Υ be given by f(gQg−1) = Ad(g)Υ for
g ∈ Gu. The map f is a diffeomorphism between X and the adjoint Gu-orbit
of Υ in gu.

Proof. Denote the G-stabilizer of Υ by ZG(Υ) and denote the g-stabilizer of
Υ by Zg(Υ). By Lemma 19, the map f is well defined if ZGu(Υ) equals Gu∩L.
From Lemma 21, we obtain ZG(Υ) = L which implies ZGu(Υ) = L ∩ Gu by
restriction. Hence, f is well defined and it follows immediately that f is one-
to-one. Since f is surjective by construction, it follows that f is bijective.

By the theorem above, there exists a g ∈ Gu/(Gu ∩ L) such that Qx =
gQg−1. We can find a Levi decomposition for Qx by setting Lx = gLg−1 and
Nx = gNqg

−1. Notice that the Levi factor Lx is well defined since g ∈ Gu

is determined modulo Gu ∩ L. Similarly, on the algebra level we may set
lx := Ad(g)l, nx = Ad(g)nq and ñx = Ad(g)ñq. With regard to Equation 6,
we may write:

g = ñx ⊕ lx ⊕ nx (8)

This decomposition does not intrinsically depend on x, but on the choice
of Levi decomposition of Q i.e. on the initial choice of Cartan subgroup T
and Cartan conjugation θ. Continuing in this notation, Theorem 22 gives a
correspondence between x ∈ X and Υx = Ad(g)Υ in the Gu-orbit of Υ in
gu. Let O denote this orbit, hence O = Ad(Gu)Υ. Let qx be the Lie algebra
of Qx. We get the following identifications:

g/qx ' TxX ' TΥxO ' gu/(gu ∩ lx) (9)

The following lemma will be useful later on.

Lemma 23. Let s be a θ-stable Cartan subalgebra of g and let s ⊂ qx. Then
s ⊂ lx and Υx ∈ s.

Proof. By assumption, we get θs ⊂ θqx. Since s is θ-stable, we see that
s = s ∩ θs ⊂ qx ∩ θqx. By Corollary 18, we obtain s ⊂ lx.
By combining Lemmas 21 and 6, we deduce that lx is reductive. Since s is
a Cartan subalgebra of g and lx is reductive, we obtain that s is a Cartan
subalgebra in lx. By using Lemma 21 once more, we see that Υx belongs to
the center of lx, hence Υx ∈ s.
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2.4 The tangent space of X

Using the action of Gu, we will describe the tangent space of X at any x ∈ X
(Lemma 24).

We will use TxX ' g/qx as in Equation 9. Let ι : gu/(gu ∩ lx)→ g/qx be
the inclusion map induced by the inclusion gu ⊂ g (this is well-defined since
gu ∩ lx ⊂ qx). Note that ι is a linear isomorphism. For Z ∈ g, we will denote
the decomposition with respect to Equation 8 as Z = Zñx + Zlx + Znx .

Lemma 24. Let Ix : g/qx → gu/(gu ∩ lx) be defined by

Ix(Z + qx) = (Zñx + θZñx) + (gu ∩ lx), Z ∈ g

Then Ix is the inverse of ι.

Proof. We will first show that Ix is well defined. Let Z1 +qx = Z2 +qx. Since
qx = lx⊕nx, Equation 8 gives us that Z1 and Z2 have identical ñx-component.
Since Ix depends solely on this component, we get Ix(Z1 + qx) = Ix(Z2 + qx).
Notice that (Zñx + θZñx) is θ-invariant, which implies (Zñx + θZñx) ∈ gu and
we conclude that Ix is well defined.

Next, we will show that Ix is the inverse of ι. Since qx = l⊕nx, Equation
8 tells us that Z − (Zñx + θZñx) ∈ qx. Hence, the element Z ∈ g/qx can be
represented by (Zñx + θZñx) + qx. Using this, we can show that Ix is a right
inverse for ι:

ι(Ix(Z + qx)) = ι((Zñx + θZñx) + (gu ∩ lx)) = (Zñx + θZñx) + qx = Z

To show that Ix is a left inverse for ι, observe that Z ∈ gu/(gu ∩ lx) implies
that θ(Z) = Z. From Corollary 18 we obtain that this implies θZñx = Znx .
Using Equation 8 once more, we show that Ix is a left inverse of ι:

Ix(ι(Z + (gu ∩ lx))) = Ix(ι(Zñx + Znx + (gu ∩ lx)))

= Ix(Zñx + qx)

= (Zñx + θZñx) + (gu ∩ lx) = Z + (gu ∩ lx)
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2.5 Vector fields and Kähler structure on X

In this section we will describe a Kähler structure on X. Connected to
this subject, we will introduce and study the almost complex structure on
X induced by the complex structure of G (Lemma 25), and finally we will
construct a specific Kähler form on X (Theorem 28).

Let M be a smooth manifold. A Kähler structure on M is an interplay
between four different but compatible structures: symplectic, Riemannian,
almost complex and Hermitian structure. All structures vary smoothly with
respect to x ∈M .
Symplectic structure: a 2-form ω on M that is both closed and non-
degenerate. The 2-form ω is called the symplectic form.
Riemannian structure: a form g on M that is positive definite, symmetric
and bilinear. The form g is called the Riemannian metric.
Almost complex structure: a complex structure Jx : TxM → TxM , J2

x =
−IdM on each tangent space TxM , depending smoothly on x ∈M .

Now assume that M is a complex manifold i.e. around each x ∈M there
are complex coordinates in Cn such that the transition maps between charts
are biholomorphic. Multiplication by i in the tangent space gives M a nat-
ural almost complex structure, denote it with J .
Hermitian structure: a form h on M that is positive definite, skew sym-
metric and sesquilinear. The sesquilinearity should be considered with re-
spect to J i.e. for u and v smooth vector fields on M , we get h(ux, Jxvx) =
ih(ux, vx). The form h is called the Hermitian form.

Using the above structures, we can define a Kähler structure on a complex
manifold M :
Kähler structure: a Hermitian form h on M such that its imaginary part is
a closed 2-form. It follows from the non-degeneracy of h, that its imaginary
part is non-degenerate as well and we see that the imaginary part is in fact
a symplectic form. For this reason, Im h is denoted with ω which is called
the Kähler form.

Kähler structures on M can be defined on manifolds that do not have an
a priori Hermitian structure. In order to do this, we need a compatibility
condition on three different structures: symplectic, Riemannian and almost
complex structure. Let M be a complex, smooth manifold. We call the above
structures compatible on TxM , if they satisfy the following equations (let u
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and v be smooth vector fields on M):

gx(ux, vx) = ωx(Jxux, vx), ωx(ux, vx) = gx(ux, Jxvx) (10)

The triplet (g, ω, J) is called compatible if it is compatible for all x ∈M . For
a compatible triplet it is straightforward to verify that g+ iω is a Hermitian
form. The notation h = g+iω is used in both approaches of Kähler structure
(for more details on Kähler structure, see [Hec, Section 3.1]).

Since G/Q is a complex manifold, there is a complex structure induced
on Gu/(Gu ∩Lx). A complex structure induces an almost complex structure
J , hence by Lemma 19 there is an almost complex structure on X. The
following lemma shows what the almost complex structure on X looks like.

Lemma 25. The almost complex structure Jx at TΥx(O) ' gu/(gu ∩ lx)
induced by isomorphism with g/qx, is given by

Zñx + θZñx + (g ∩ lx)
Jx7→ i(Zñx − θZñx) + (g ∩ lx)

Proof. The almost complex structure Jx on gu/(gu ∩ lx) is compatible with
the complex structure on g/qx. This means Jx(Ix(Z+qx)) = Ix(iZ+qx). The
term on the right evaluates to iZñx+θiZñx+(gu∩lx) = i(Zñx−θZñx)+(gu∩lx)
from which the desired result follows.

The above result is part of a bigger picture. From Equation 8, we obtain
ñx ' g/qx as complex linear spaces. By Lemma 19 we get q/qx ' gu/(gu∩ lx)
as complex linear spaces. This induces ñx ' gu/(gu ∩ lx) as complex linear
spaces.

For Z ∈ g, let ξZ denote the vector field on X induced by Z, i.e. ξZ(y) =
∂t|t=0 exp(tZ)y for y ∈ X. By Equation 9 and Lemma 24, we get the following
for Z ∈ g:

ξZ(x) = ξ(Zñx+θZñx )(x) (11)

By Lemma 25 we obtain

JxξZ(x) = ξi(Zñx−θZñx )(x) (12)

For brevity of notation, we will often write ξZ instead of ξZ(y) when it is
clear from context whether we mean the vector field ξZ of X, or the vector
ξZ(y) ∈ TyX tangent to X in y. The following lemma will be useful later on.
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Lemma 26. Let g ∈ Gu, Z ∈ gu and x ∈ X. Then TxlgξZ(x) = ξAd(g)Z(gx)
where lx denotes the left action of Gu on X.

Proof.

TxlgξZ(x) = Txlg ∂t|t=0 exp(tZ)x

= ∂t|t=0 g exp(tZ)x = ∂t|t=0 exp(tAd(g)Z)gx = ξAd(g)Z(gx)

At this point, the (almost) complex structure is the only part of the
triple present at X. It turns out that the coadjoint orbits of G have a G-
invariant symplectic structure (see [Aud04, Page 60/61]). Inspired by the
construction of this symplectic structure, we define the following form on X
(B is the Killing form on g).

ωx(ξZ(x), ξW (x)) = −B(Υx, [Z,W ]) x ∈ X, Z,W ∈ gu (13)

On the left, Z and W are elements of TxX ' gu/(gu ∩ lx). Hence, we should
check that the right hand part of the above definition is independent of choice
of representative in gu ∩ lx. From the Ad-invariance of the Killing form, we
obtain −B(Υx, [Z,W ]) = −B([Υx, Z],W ) = B([Υx,W ], Z). Since ZG(Υx) =
lx, any component of Z and W in lx is send to zero. Hence, ωx(ξZ(x), ξW (x))
with Z,W ∈ gu, does not depend on the choice of representative of in gu/(gu∩
lx).

We will show that the Equation 13 defines a symplectic form on X, the
following lemma will be useful for this:

Lemma 27. The form defined in Equation 13 is symplectic and Gu-invariant.

Proof. Since B is bilinear and since [, ] is bilinear and skew-symmetric, it
follows that ω is linear and skew-symmetric, hence is a well-defined 2-form
on X. Next, since G is semisimple, the Killing form is non-degenerate from
which it follows that ωx is non-degenerate (if [Z,W ] = 0 for all W ∈ gu, then
ad(Z) = 0 as a map gu → gu). For Gu-invariance, notice that Gu acts on X
by left multiplication:

g−1 · ωx(ξZ(x), ξW (x)) = ωgx(TelgξZ(x), TelgξW (x))
A
= −B(Υgx, [Ad(g)Z,Ad(g)W ])

= −B(Ad(g)Υx,Ad(g)[Z,W ])
B
= −B(Υx, [Z,W ]) = ωx(ξZ(x), ξW (x))
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At Equality A we use Lemma 26, at Equality B we use the fact that the
Killing form is invariant under the adjoint action of G. We conclude that
ω is Gu-invariant. For the proof that ω is closed, we refer to [vdB16, Prop.
4.4].

Using the symplectic form from Equation 13, we can construct a Kähler
form on X.

Theorem 28. There is a Gu-invariant Kähler form on X given by

〈ξZ , ξW 〉x = −2iB(Υx, [Zñx , θWñx ]) (14)

Here, x ∈ X and Z,W ∈ g induce left invariant vector fields ξZ , ξW on X.

Proof. Following the remarks above, the natural construction for a Kähler
form is

h(ξZ , ξW ) = 〈ξZ , ξW 〉 = ω(JξZ , ξW ) + iω(ξZ , ξW ) = g(ξZ , ξW ) + iω(ξZ , ξW )
(15)

Here we defined g to be (ξZ , ξW ) 7→ ω(JξZ , ξW ), hence for x ∈ X we get
gx(ξZ(x), ξW (z)) = ω(JxξZ(x), ξW ). We will prove that ω is real and then we
will show that g is positive definite which turns h in a Kähler form (and g in
a Riemannian metric). After some work, we will end up with the result from
Equation 28.

ωx(ξZ , ξW ) = ωx(ξZñx+θZñx
, ξWñx+θWñx

)

= −B(Υx, [Zñx + θZñx ,Wñx + θWñx ])

Recall thatB is compatible with the Cartan conjugation θ i.e. the eigenspaces
of θ areB-orthogonal to each other. Since Υx ∈ tu = t∩gu, we get θ(Υx) = Υx

and hence, we may ignore elements in the minus eigenspace of θ in the right
argument of B. We obtain the following expression:

ωx(ξZ , ξW ) = −B(Υx, [Zñx , θWñx ] + [θZñx ,Wñx ]) (16)

One of the definitions of a Kähler structure, is that ω is the imaginary part
of a Hermitian structure h. By Equation 15 this means that we want ω to
be real. We can check that ω is real, by checking if it is J-invariant:

ωx(JxξZ , JxξW ) = ωx(ξiZñx−iθZñx
, ξiWñx−iθWñx

)

= −B(Υx, [iZñx ,−iθWñx ] + [iθZñx ,−iWñx ])

= −B(Υx,−i2[Zñx , θWñx ]− i2[θZñx ,Wñx ]) = ω(ξZ , ξW )
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Next, lets turn our attention to g from Equation 14. Clearly g is bilinear,
symmetric and it depends smoothly on x since the assignment x 7→ Υx is
smooth (this follows from the fact that g 7→ Ad(g) is smooth). In order to
prove that g is a Riemannian metric, it suffices to prove that g is positive
definite.

gx(ξZ , ξW ) = ω(JxξZ , ξW )

= −B(Υx, [iZñx , θWñx ] + [−iθZñx ,Wñx ])

= −B(iΥx, [Zñx , θWñx ]− [θZñx ,Wñx ]) (17)

Set W = Z and take the root space decomposition of: Zñx =
∑

α∈∆(ñx,t)
Zα.

We get the following expression for g(ξZ , ξZ):

gx(ξZ , ξZ) = −B(iΥx, [Zñx , θZñx ]− [θZñx , Zñx ])

= −B(iΥx, 2[Zñx , θZñx ])

= −2B(iΥx, [
∑

Zα,
∑

θZα])

= −2B([iΥx,
∑

Zα],
∑

θZα])

= −2B(
∑

α(iΥx)Zα,
∑

θZα])
(1.)
= −2

∑
α(iΥx)B(Zα, θZα])

In step (1.) we used that the individual root spaces Zα are B-orthogonal to
each other. By Lemma 20, α(iΥx) < 0 and remember that B is positive def-
inite on the negative eigenspace of θ. We conclude that the above expression
is positive for Z 6= 0 and we conclude that g is positive definite (since ω is
skew-symmetric, it follows that h is positive definite as well).

Finally, let us show that h(ξZ , ξW ) = 〈ξZ , ξW 〉, satisfies Equation 14. We
combine Equation 17 and Equation 16 to obtain:

hx(ξZ , ξW ) = gx(JxξZ , ξW ) + iω(ξZ , ξW )

= −iB(Υx, [Zñx , θWñx ]− [θZñx ,Wñx ])

+ −iB(Υx, [Zñx , θWñx ] + [θZñx ,Wñx ])

= −2iB(Υx, [Zñx , θWñx ])
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3 Properties of f±

3.1 The functions f± and their critical points

In this section, we shall define real-valued functions f± on X using the mo-
ment map with respect to the symplectic form ω (defined in section 2.5). We
shall investigate some of its properties including critical points i.e. the points
where ∂xf

±(x) = 0.

Let Z ∈ gu and let ξZ be its associated vector field on X. A moment
map is a map mGu : X → g∗u such that dmGu(V )(Z) = ω(V, ξZ) holds.
A moment map is called Gu-equivariant if for g ∈ Gu, mGu(g−1x)(Z) =
mGu(x)(Ad(g)Z). A Gu-equivariant moment map is unique up to addition
with a constant linear form in {λ ∈ g∗u : λ|[gu,gu] = 0} (the annihilator of
[gu, gu]). Since gu is semisimple, the annihilator equals the zero ideal and the
Gu-equivariant moment map is unique (see [Aud04, Page 75]). The following
lemma asserts the existence of the Gu-equivariant moment map.

Lemma 29. The Gu-equivariant moment map is given by mGu(x)(Z) =
B(Υx, Z) with Υx ∈ tu as in Section 2.3 and B the Killing form on g.

Proof. Since Gu acts transitively on X, it suffices to prove dmGu(V )(Z) =
ω(V, ξZ) for V = ξW with W ∈ gu.

(dmGu)x(ξW )(Z) = ∂t|t=0B(exp(tW )Υx, Z)
A
= B(∂t|t=0 Ad(exp(tW ))Υx, Z)

= B(ad(W )Υx, Z)

= B([W,Υx], Z) = −B(Υx, [W,Z]) = ω(ξW , ξZ)

At Equation A we used the linearity of the Killing form, we end up with the
expression for ω from Equation 13. We conclude that mGu is a moment map.
Let g ∈ Gu, the following computation shows that mGu is Gu-equivariant.

mGu(gx)(Z) = B(Υgx, Z)

= B(Ad(g)Υx, Z) = B(Υx,Ad(g)−1Z) = mGu(x)(Ad(g−1Z)

Since the Killing form is non-degenerate (gu ⊂ g is semisimple), it gives
us an identification between gu and g∗u via Z 7→ B(Z, ∗). From this, we see
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that µGu : X → gu given by µGu(x) = Υx, is in fact the dual map of the
moment map mGu . Notice that this is precisely the function f from Theorem
22. The differential of the dual map equals the map Ix from Lemma 24.

On gu, the Killing form B is negative definite. This makes the map
Z 7→ −B(Z,Z) into a norm-squared function and we will denote it by ||.||2B.
Through the identification between gu and g∗u, this norm is transferred to g∗u
as well. Using the notation Υx = Ad(g)Υ for some g ∈ Gu (see Section 2.3),
we get the following:

||mGu(x)||2B = ||µGu(x)||2B
= −B(Υx,Υx) = −B(Ad(g)Υ,Ad(g)Υ) = −B(Υ,Υ)(18)

Here we used that the Killing form is invariant under the adjoint action.
Notice that the norm of the moment map and its dual are constant on X.

Let σ be a complex conjugation on G that commutes with θ. Let K = Gθσ

and let K0 = Kσ be the real form of this subgroup with respect to σ. Let k
and k0 denote their respective Lie algebras. Then mK0(x)(Z) = B(Υx, Z) for
Z ∈ k0 denotes a moment map with respect to the K0-action on X. Thus the
moment map for K0 is obtained from the map for Gu by restriction. Hence,
µK0(x) is the projection of Υx onto k0 in the decomposition gu = k0 ⊕ g−σu .
Through this observation, we arrive at the definition of f±:

f± : X → R, f±(x) = 2||Pr±σµGu(x)||2B (19)

In this equation, Pr±σ is the projection onto g±σu in gu = gσu ⊕ g−σu , hence
the plus and minus superscript of f are associated to the plus and minus
eigenspace of σ in gu. Notice that f+(x) = 2||µK0(x)||2B. We will now
investigate some properties of f±.

Lemma 30. The functions f± are K0-invariant and their sum is constant.

Proof. Notice that the projection onto the ±-eigenspace of σ, can be written
in the following way: Pr±σµGu(x) = 1

2
(µGu(x)± σµGu(x)) (this formula also

explains the factor 2 in Equation 19). If we substitute this formula in the
definition of f±, we get the following:

f±(x) = −2B(
1

2
(µGu(x)± σµGu(x)),

1

2
(µGu(x)± σµGu(x)))

= −B(Υx,Υx)∓B(Υx, σΥx) (20)
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Since the Killing form is invariant under the adjoint action, we getB(Υx,Υx) =
B(Υ,Υ) (see Equation 18). Hence f+(x)+f−(x) = −2B(Υ,Υ) which is con-
stant. For K0-invariance, let k ∈ K0. Notice the following:

B(Ad(k)Υx, σAd(k)Υx) = B(Ad(k)Υx,Ad(k)σΥx) = B(Υx, σΥx)

Combining this result with Equation 20 yields the K0-invariance of f±.

Lemma 31. For Z ∈ gu and x ∈ X, we get

ξZ(f+)(x) = −2B(Z, [µGu(x), σµGu(x)])

Here ξZ(f+) denotes the directional derivative of f+ with respect to the vector
field ξZ.

Proof. If h denotes a differentiable function on R2, then∂t|t=0 h(t, t) = ∂t|t=0 h(t, 0)+
∂t|t=0 h(0, t). We can use a similar trick here as well:

−ξZ(f+)(x) = − ∂t|t=0 f
+(exp(tZ)x) (21)

= − ∂t|t=0B(Υ,Υ)−B(Ad(exp(tZ)Υx, σAd(exp(tZ)Υx)

= B([Z,Υx], σΥx) +B(Υx, σ[Z,Υx])

= B([Z,Υx], σΥx) +B(Υx, [σZ, σΥx])

= B(Z, [Υx, σΥx])−B(σZ, [Υx, σΥx]) (22)

In the last line we used that the Killing form is associative with respect to
the Lie bracket (i.e. B([X, Y ], Z) = B(X, [Y, Z]). Next, we will use that σ
is its own inverse and that B is invariant under σ on gu (notice that Bgu is
real and use Lemma 2)to get a nice expression for the right hand side of the
last line above:

B(σZ, [Υx, σΥx]) = B(σσZ, σ[Υx, σΥx])

= B(Z, [σΥx,Υx]) = −B(Z, [Υx, σΥx])

Combining this equation with Equation 22 yields the following result:

−ξZ(f+)(x) = B(Z, [Υx, σΥx])−B(σZ, [Υx, σΥx])

= B(Z, [Υx, σΥx]) +B(Z, [Υx, σΥx]) = 2B(Z, [Υx, σΥx])
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Theorem 32. Let x ∈ X. The following statements are equivalent.
(a) x is a critical point for f+.
(b) x is a critical point for f−.
(c) [Υx, σΥx] = 0.
(d) σ(Υx) ∈ lx.
(e) µK0(x) ∈ qx.

Proof. (a) ⇔ (b) Follows immediately from Lemma 30.
(a) ⇔ (c) For a differentiable function, a point x is critical if and only if its
derivative equals zero. Since the Killing form is non-degenerate, the result
follows from Lemma 31.
(c) ⇔ (d) It follows from Lemma 20 that l is the centralizer of Υ. Hence,
lx is the centralizer of Υx from which the result follows.
(d) ⇒ (e) Assume (d). Since Υ ∈ tu ⊂ q, it follows that Υx ∈ qx. By (d),
we get σ(Υx) ∈ lx ⊂ qx. Hence 2µK0(x) = 2PrσΥx = Υx + σΥx ∈ qx.
(d) ⇐ (e) By Section 2.3 there exists a g ∈ Gu such that Υx = Ad(g)Υ.
Notice that θAd(g)Υ = Ad(θg)θΥ = Ad(g)Υ since Υ ∈ tu. This implies
θµK0(x) = µK0(x). Assume (e) i.e. σ(µK0(x)) ∈ qx. Since θ and σ commute,
we get σ(µK0(x)) ∈ qx ∩ θ(qx). Corollary 18 implies that σ(µK0(x)) ∈ lx.

Let us place a small remark here. The manifold X is compact (see Section
2.3) and the functions f± : X → R are continuous. This implies that f± will
attain a maximum and a minimum. This implies that f± will have at least
one critical value.

Theorem 33. Let x ∈ X. The following statements are equivalent.
(a) x is a critical point of f±.
(b) qx contains a σ- and θ-stable Cartan subalgebra of g.

Proof. (a) ⇒ (b) Assume (a). Write Υx = Υσ + Υ−σ with respect to
the decomposition Υx ∈ tu = gσu ⊕ g−σu . By combining the decomposition
with Theorem 32, we see that 0 = [Υx, σΥx] = [Υσ + Υ−σ,Υσ − Υ−σ] =
−2[Υσ,Υ−σ] and we obtain that Υσ and Υ−σ are commuting elements.

The following arguments show that that ad(Υ±σ) is diagonalizable with
the respect to Bθ; let Z ∈ gu and U, V ∈ g:

Bθ(ad(Z)U, V ) = −B(ad(Z)U, θV )

= +B(U, ad(Z)θV )

= +B(U, θ(ad(θZ)V ))

= +B(U, θ(ad(Z)V )) = −Bθ(U, ad(Z)V )
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Hence ad(Z)∗ = −ad(Z). We conclude that ad(Z) is diagonalizable and
specifically that ad(Υ±σ) are diagonalizable, hence Υ±σ are semisimple ele-
ments. Define s0 = Span{Υx, σΥx}. Then s0 is a torus in g. By Lemma 7
there exists a σ- and θ-stable Cartan subalgebra s in g containing s0. We
have s = Zg(s) ⊂ Zg(Υx) = lx ⊂ qx which proves (b).
(a) ⇐ (b) Assume (b) and let s be a σ- and θ-stable Cartan subalgebra
of g. From Lemma 23 we obtain Υx ∈ s ⊂ lx. By using that s is σ-stable,
we see that σΥx ⊂ σs = s. Hence, Υx and σΥx are both elements of the
commutative subalgebra s and we get [Υx, σΥx] = 0. Theorem 32 now tells
us that x is a critical point of f±.

Notice that statement (b) of the above theorem is independent of the
choice of Υx. This implies that (a) is independent as well which is quite
remarkable since f± does depend on the choice of Υx. From now on, we will
denote the Cartan subalgebra of Theorem 33 (b) with s. Using this notation,
we can lift the result of Lemma 20 to the Cartan subalgebra s of g:

Lemma 34. Let x ∈ X be a critical point of f± and let Υx as in Theorem
32. Let s be a σ- and θ-stable Cartan subalgebra of qx. Then α(Υx) = 0 for
α ∈ ∆(lx, s) and α(iΥx) < 0 for α ∈ ∆(nx, s)

Proof. Let g ∈ Gu such that Qx = gQg−1. There is a g-induced canonical
mapping from ∆(g, t) to ∆(g,Ad(g)t) given by α 7→ g.α = Ad(g−1)∗α, hence
g.α(Z) = α(Ad(g−1)Z). From Lemma 20, it is immediate that α(Υx) = for
α ∈ ∆(lx,Ad(g)t) and α(iΥx) < 0 for α ∈ ∆(nx,Ad(g)t).

Both Ad(g)t and s are θ-stable Cartan subalgebras of lx, hence they are
conjugate by some l ∈ Lx ∩ Gu (see [Kna02, Prop. 7.35]). By the same
canonical mapping described above, which is this time induced by l, we can
associate the roots of ∆(qx,Ad(g)t) to ∆(qx, s) by α 7→ l.α. Since Lx is the
centralizer of Υx (see Lemma 21 for a similar statement on the group level),
it follows that Ad(l−1)Υx = Υx which implies α(Υx) = 0 for α ∈ ∆(lx, s) and
α(iΥ) < 0 for α ∈ ∆(nx, s).

3.2 The tangent and normal bundles of X and the gra-
dients ∇f±

In this section, we will study a decomposition of TxX for x ∈ X a critical
point of f+. We need this decomposition in the next section in order to study
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the Hessian of f+ at x. We will study the integral curve of ∇f+(x) and show
that it is tangent to the G0-orbit and K−orbit of x in X.

Define V = TxX and V 1 = Tx(K0x) (subscript zero stands for the fixed
points with respect to σ, hence K0 = Kσ). By taking the orthogonal com-
plement with respect to the Riemannian form g from Equation 17 in V ,
we define the two more vector subspaces of V : V2 = V ⊥1 ∩ Tx(G0x) and
V3 = V ⊥1 ∩ Tx(Kx). We will prove that V = V 1 ⊕ V 2 ⊕ V 3 as an orthogonal
direct sum.

Let us first study how σ acts on ñx ⊂ g. We have ñx = ⊕gα for α ∈
∆(ñx, s) where s is a σ- and θ-stable Cartan subalgebra in qx (see Theorem
33). We want to know what happens to α when σ is applied. Since g =
ñx ⊕ nx ⊕ lx (see Equation 6), there are three possibilities which we will list
now:

∆1 = {α ∈ ∆(ñx, s) : σα ∈ ∆(ñx, s)}

∆2 = {α ∈ ∆(ñx, s) : σα ∈ ∆(nx, s)}

∆3 = {α ∈ ∆(ñx, s) : σα ∈ ∆(lx, s)}

In this partition of ∆(ñx, s), we can decompose ñx into the following
subspaces:∑

α∈∆1

gα = ñσx ⊕ ñ−σx ,
∑
α∈∆2

gα = ñσθx ⊕ ñ−σθx ,
∑
α∈∆3

gα = ñx ∩ σlx (23)

Hence, we obtain the following expression:

ñx = ñσx ⊕ ñ−σx ⊕ ñσθx ⊕ ñ−σθx ⊕ (ñx ∩ σlx) (24)

A similar expression can be found for nx. Recall that for non zero Zα ∈ gα
and non zero Zβ ∈ gβ, B(Zα, Zβ) is non zero if and only if β = −α (see
[Kna02, Prop. 2.17]). By Lemma 15, this implies β = θ(α). From this we
obtain that the decomposition in Equation 24 is B-orthogonal.

Theorem 35. Let x ∈ X be a critical point of f±. The following identities
hold:

Tx(G0x) ' ñσx⊕ ñσθx ⊕ ñ−σθx ⊕ (ñx ∩ σlx)
Tx(Kx) ' ñσx⊕ ñ−σx ⊕ ñσθx ⊕ (ñx ∩ σlx)
Tx(K0x) ' ñσx⊕ ñσθx ⊕ (ñx ∩ σlx)
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Proof. Let H denote the groups K0, G0 or K and let h denote the Lie algebra
of H. We can write Tx(Hx) ' Tx(H/(H ∩Qx)) ' h/(h∩ qx) ' Prñxh where
we use g = ñx ⊕ lx ⊕ nx. It follows that we may use projection onto ñx to
find an expression for the tangent space.

We begin with the isomorphism for Tx(G0x). We can plug Equation 24
and its counterpart for nx, into the expression g = ñx⊕ lx⊕ nx (Equation 6):

g = (ñσx ⊕ nσx)⊕(ñ−σx ⊕ n−σx )⊕(ñσθx ⊕ nσθx )⊕(ñ−σθx ⊕ nσθx )⊕M
The subspace M on the right is defined as (ñx∩σlx)⊕lx⊕(nx∩lx). Notice that
the operator 1 + σ sends the negative eigenspace of σ to zero, hence projects
onto the positive eigenspace. Using this, we get the following expression for
g0:

g0 = (ñσx ⊕ nσx)⊕ (1 + θ)(ñσθx ⊕ nσθx )⊕ (1− θ)(ñ−σθx ⊕ n−σθx )⊕ Prg0M

Since σ and θ commute, they work in almost the same way on Z ∈ ñ±σθx :
σZ = σ(±σθZ) = ±θZ (the nx variant of this result follows in the same
way). The image of 1 + θ on (ñσθx ⊕ n−σθx ), contains the points X + θX for
X ∈ ñσθx . This means that using projection to ñx on this image, we at least
get ñσθx . Since the image of 1 + θ is contained in (ñσθx ⊕ nσθx ), we conclude
that Prñx((1 + θ)(ñσθx ⊕ nσθx )) = ñσθx . An analogous result for (1 − θ) holds
and we see that after projection to ñx, we get the following:

Prñx(g0) = ñσx ⊕ ñσθx ⊕ ñ−σθx ⊕ PrñxPrg0M

We are left to show that PrñxPrg0M = ñx ∩ σlx. Notice that M = lx + σlx,
hence Prg0M = (1 + σ)M = M . From the decomposition M = (ñx ∩ σlx)⊕
lx ⊕ (nx ∩ lx), it follows that PrñxM = (ñx ∩ σlx).

The second isomorphism follows analogously. For the third isomorphism
we can find an expression for k0 by taking the intersection between g0 and k:

g0 ∩ gσθ = k0 = (1 + θ)ñσx ⊕ (1 + θ)ñσθx ⊕ Prk0(M)

In the same way as above, we use projection onto ñx and the first two terms
will give ñσx ⊕ ñσθx . Notice Prk0(M) = (1 + σ)(1 + σθ)M = (1 + σ)M + (1 +
σ)θM . Notice that θM = M since lx is θ-stable (see Corollary 18). By using
(1 + σ)M = M , we obtain Prk0(M) = ñx ∩ σlx from which the desired result
follows.
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Corollary 36. From Theorem 35, we obtain the following identities (here,
x is a critical point of f±):

Tx(G0x) + Tx(Kx) = TxX

Tx(G0x) ∩ Tx(Kx) = Tx(K0x)

We are interested in finding the relation between the tangent spaces de-
scribed above, and the integral curve for the gradient of f+. For this, we
require an expression for ∇f+(x). This expression can be found in the fol-
lowing lemma. Let ξZ be the vector field on X associated to Z ∈ g and let
J denote the almost complex structure on X as in Section 2.5.

Lemma 37. Let x ∈ X (not necessarily a critical point of f+). Then
∇f+(x) = −2JξσµGu (x)(x) = −4JξµK0

(x).

Proof. Let Z ∈ gu and let g denote the Riemannian metric from Equation
17. From ξZf

+(x) = gx(∇f+(x), ξZ(x)), we see that it suffices to show
ξZf

+(x) = gx(−2JξσµGu (x)(x), ξZ(x)) for all Z ∈ gu. From Lemma 31 we get
ξZf

+(x) = −2B(Z, [µGu(x), σµGu(x)]). On the other hand, using Equation
10 and Equation 13, we get the following:

gx(−2JξσµGu (x)(x), ξZ(x)) = ωx(−2J2ξσµGu (x)(x), ξZ(x))

= 2ωx(ξσµGu (x)(x), ξZ(x))

= −2B(µGu(x), [σµGu(x), Z])

= −2B([µGu(x), σµGu(x)], Z)

Since this holds for all Z ∈ gu, the left equation follows. For the right hand
side of the equation, notice that µK0(x) = 1

2
(µGu(x) + σµGu(x)) (see Section

3.1). By linearity of the map Z 7→ ξZ , we get the following:

−4JξµK0
(x) = −2J(ξµGu (x) + ξσµGu (x))

Since µGu(x) ∈ qx, it follows from Equation 12 that ξµGu (x) = 0 which implies
the right hand part and concludes the proof.

By Lemma 30, f+ + f− is constant. Applying the gradient operator on
this expression yields 0 = ∇f+ +∇f−, hence ∇f− = −∇f+. This is a useful
result which allows us to prove the following statement for f± by proving it
for f+.

38



Lemma 38. Let x ∈ X, then ∇f±(x) is tangent to the G0-orbit and K-orbit
of x in X.

Proof. By Lemma 37, we have ∇f+(x) = −2JξσµGu (x)(x) = 2ξσ(iµGu (x))(x)
and it suffices to prove that ξσ(iµGu (x))(x) is an element of the tangent space
of both orbits i.e. σ(iµGu(x)) ∈ (g0 +qx)∩ (k+qx). Notice that iµGu(x) ∈ qx
via the construction of µGu(x) = Υx. From this, we obtain the following two
expressions:

σ(iµGu(x)) + qx = iµGu(x) + σ(iµGu(x)) + qx = gσ + qx = g0 + qx

σ(iµGu(x)) + qx = σ(iµGu(x))− iµGu(x) + qx

= σ(iµGu(x)) + θ(iµGu(x)) + qx ∈ gσθ + qx = k + qx

Hence we obtain σ(iµGu(x)) ∈ (g0 + qx)∩ (k+ qx) which concludes the proof
for f+. The f− result follows from the remarks above.

Using the above lemma, we can find the reverse implication of the second
equation of Corollary 36:

Corollary 39. The point x ∈ X is a critical point of f± if and only if
Tx(G0x) ∩ Tx(Kx) = Tx(K0x).

Proof. By the remark above, we only need to prove the implication ‘⇐’.
Assume Tx(G0x) ∩ Tx(Kx) = Tx(K0x). By Lemma 38, we get ∇f+(x) ∈
Tx(K0x). From Lemma 30, we obtain that f+ is constant on K0-orbits,
hence ∇f+(x) = 0 which means that x is a critical point of f+.

With the following general result, we can investigate orbits in X contain-
ing integral curves of ∇f±.

Theorem 40. Let M be a smooth manifold and H a Lie group acting
smoothly from the left on M . Let ξ be a vector field on M such that for
all x ∈ M , it holds that ξ(x) ∈ Tx(Hx). Then every integral curve of ξ is
contained in a single H-orbit of M .

Proof. Let I ⊂ R be an open interval and let γ : I → M denote an integral
curve for ξ. Let t0 ∈ I and fix x0 ∈M such that γ(t0) ∈ Hx0. Let Hx0 be the
stabilizer of x0 in H and define N ' H/Hx0 . Consider the following map:

ϕ : N →M, hHx0 7→ hx0
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The map ϕ is a smooth and injective immersion. Let y ∈ N . By definition
Tϕ(y)(Hx0) equals the image of Tyϕ. Define the section ξ : N → TN by

Tyϕ · ξ(y) = ξ(ϕ(y)) for all y ∈ N . This section is well defined since the
image of ξ is contained in the image of ϕ by assumption. We get the following
commuting diagram:

N M

TN TM

ξ

ϕ

ξ

Tϕ

The section ξ is a smooth vector field of N in the point γ(t0). There exists an
integral curve γ :]t0−δ, t+δ[→ N of ξ with δ > 0, such that ϕ◦γ(t0) = γ(t0).
It follows that ϕ ◦ γ is an integral curve of ξ in M . By decreasing δ, we may
assume that ]t0−δ, t0+δ[⊂ I and by uniqueness of integral curves this implies
γ = ϕ ◦ γ on ]t0− δ, t0 + δ[. Since the image of ϕ lies inside Hx0, this implies
that γ(]t0 − δ, t0 + δ[) ⊂ Hx0.

Let O denote an H-orbit on M and define IO = {t ∈ I : γ(t) ∈ O}. Since
H-orbits on M cover M , we obtain

I =
⋃

O∈H\M

IO

where H\M denotes the set of H-orbits of M . Since the H-orbits of M are
mutually disjoint, we see that the sets IO are mutually disjoint. It follows
form the above computations that IHx0 is open in I. Since the sets IO are
mutually disjoint, we find that

IHx0 = I\
⋃
O6=Hx0

IO.

Since IHx0 is the complement of an open set in I, we obtain that IHx0 is closed
in I. By connectedness of I we obtain IHx0 = I. It follows that γ(I) ⊂ Hx0

which concludes the proof.

The next corollary follows from Theorem 40 and Lemma 38.

Corollary 41. Each integral curve of ∇f+ is contained in a single G0
0-orbit

and in a single K0-orbit
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Notice that Corollary 36 implies that V is the orthogonal direct sum of
V 1 and V 2⊕V 3. We will end this section with a description of V 2 and V 3 and
we will prove that they are orthogonal, thereby proving V = V 1 ⊕ V 2 ⊕ V 3

as orthogonal direct sum.

From Lemma 34, we obtain that ad(iΥx) acts on gα with α ∈ ∆(ñx, s),
with a non zero eigenvalue. It follows that ad(iΥx) acts on ñx as an invertible
linear transformation. This action preserves the decomposition of ∆(ñx, s)
into ∆1,∆2 and ∆3 or equivalently it preserves the decomposition of ñx into
the associated root spaces from Equation 23. This allows us to define the
following subspaces:

ad(iΥx)
−1(ñ−σθx ) ⊂ ñσθx ⊕ ñ−σθx and ad(iΥx)

−1(ñ−σx ) ⊂ ñσx ⊕ ñ−σx (25)

We will investigate these subspaces in Theorem 43 but it will be useful to
prove the following lemma first.

Lemma 42. Let Z,W ∈ g and let BgR be the Killing form of the algebra gR.
Let g be the Riemannian form of Equation 17. The following holds

gx(ξZ(x), θW (x)) = BgR,θ([iΥx, Zñx ],Wñx) = BgR,θ(ad(iΥx)Zñx ,Wñx)

Proof. Using Equation 17, we get the following:

gx(ξZ , ξW ) = B(iΥx, [θZñx ,Wñx ]− [Zñx , θWñx ])

= B([iΥx, θZñx ],Wñx ])−B([iΥx, Zñx ], θWñx ])

= B(θ[θiΥx, Zñx ],Wñx ])−B([iΥx, Zñx ], θWñx ])
(1.)
= −B(θ[iΥx, Zñx ],Wñx ])−B([iΥx, Zñx ], θWñx ])

= −2Re B([iΥx, Zñx ], θWñx ]) (26)

In step (1.), we used that θiΥx = −iθΥx = −iΥx since θ is a complex
conjugation and Υx is θ-invariant by construction. In the last step we used
Lemma 2. Next, by applying Lemma 11, we get the following:

−2Re B([iΥx, Zñx ], θWñx ]) = −BgR([iΥx, Zñx ], θWñx ])

= BgR,θ([iΥx, Zñx ],Wñx ])

= BgR,θ(ad(iΥx)Zñx ,Wñx)
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Theorem 43. The map Z 7→ ξZ(x) maps
1. ad(iΥx)

−1(ñ−σθx ) isomorphically onto V 2

2. ad(iΥx)
−1(ñ−σx ) isomorphically onto V 3

Furthermore, V 2 ⊥ V 3 with respect to the Riemannian form g from Equation
17.

Proof. By Theorem 35, we see that dimV 2
x = dim ñσθx and dimV 3

x = dim ñ−σx .
Hence, we need only prove that that ad(iΥx)

−1(ñ−σθx ) is mapped into V 2 and
ad(iΥx)

−1(ñ−σx ) into V 3.

Let Z ∈ ad(iΥx)
−1(ñ−σθx ). Then Z ∈ ñσθx ⊕ ñ−σθx hence ξZ(x) ∈ Tx(G0x).

It follows from Lemma 42 that gx(ξZ(x), ξW (x)) = 0 for all W ∈ ñσx ⊕ ñσθx ⊕
(ñx∩lx). Since W 7→ ξW (x) maps the latter space onto Tx(K0x) (see Theorem
35), it follows that ξZ(X) ∈ Tx(K0x)⊥ i.e. ξZ(x) ∈ V 2. The second inclusion
follows by application of analogous arguments.

We are left to show V 2 ⊥ V 3. Let z ∈ V 2
x and w ∈ V 3

x . By the first part
of this theorem, there exists Z ∈ ad(iΥx)

−1(ñ−σθx ) and W ∈ ad(iΥx)
−1(ñ−σx )

such that z = ξZ(x) and w = ξW (x). By Lemma 42 we obtain gx(v, w) =
BgR,θ(ad(iΥx)Zñx ,Wñx) = 0 since ñ−σθx is perpendicular to ñσx ⊕ ñ−σx with
respect to gx. This concludes the proof.

3.3 The Hessian of f± at critical points

In this section we will study the behavior of the Hessian of f± at critical
points of f±.

In the context of a Riemannian manifold M , the Hessian of a smooth
function f : M → R can be defined as Hess(f)(X, Y ) = X(Y f)− df(∇XY )
where X, Y are vector fields on M and ∇X is the covariant derivative in the
direction of X. We are only interested in the Hessian at critical points i.e. at
x ∈ M such that dfx = 0. From the equality X(Y (f))(x) = Y (X(f))(x) −
df(x)[X, Y ], we obtain Hess(f)x(X, Y ) = X(Y f)(x).

Lemma 44. Let x ∈ X be a critical point of f±. For W,Z ∈ gu, the following
expression holds:

Hessxf
+(ξW , ξZ) = B([σΥx, Z − σZ], [Υx,W − σW ])
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Proof. From Equation 22, we obtain ξZ(f+)(x) = −B(Z − σZ, [Υx, σΥx]).
The next step is to apply ξW to this expression:

(ξW ξZf
+)(x) = ∂t|t=0 ξZ(f+)(exp(tW )x)

= − ∂t|t=0B(Z − σZ, [Ad(etW )Υx, σAd(etW )Υx])

= −B(Z − σZ, [[W,Υx], σΥx] + [Υx, σ[W,Υx]])

In the last line we used the same trick as in the proof of Lemma 31. By the
Jacobi identity we obtain the following expression for [Υx, σ[W,Υx]]:

[Υx, σ[W,Υx]] = [Υx, [σW, σΥx]] = −[σΥx, [Υx, σW ]]− [σW, [σΥx,Υx]]

In view of Theorem 32 we obtain [σΥx,Υx] = 0. Plugging this into the above
equation, we get the following:

(ξW ξZf
+)(x) = −B(Z − σZ, [[W,Υx], σΥx]− [σΥx, [Υx, σW ]])

= −B(Z − σZ, [[W,Υx], σΥx] + [[Υx, σW ], σΥx])

= −B(Z − σZ, [[W,Υx], σΥx]− [[σW,Υx], σΥx])

= −B(Z − σZ, [[W − σW,Υx], σΥx])

We arrive at the desired result by using the associativity of the Killing form
and the skew-symmetry of the Lie brackets once again:

(ξW ξZf
+)(x) = −B(Z − σZ, [[W − σW,Υx], σΥx])

= −B(Z − σZ,−[σΥx, [W − σW,Υx]])

= B([Z − σZ, σΥx], [W − σW,Υx])

= B([σΥx, Z − σZ], [Υx,W − σW ])

Lemma 45. Let x ∈ X be a critical point of f+ and let α, β ∈ ∆(ñx, s) with
Z ∈ gα and W ∈ gβ. We get the following expression for the Hessian at this
point:

Hessx(f
+)(ξZ(x), ξW (x)) = −4α(iΥx) ·σα(iΥx) ·Re(B(Z, θW −σW −σθW ))

(27)

Proof. Define W̃ = (W + θW )− σ(W + θW ). By Equation 11 and Lemma
44, we get the following expression for the Hessian:

Hessx(f
+)(ξZ , ξW ) = B([σΥx, (Z + θZ)− σ(Z + θZ)], [Υx, W̃ ])
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Notice that [Υx, W̃ ] is invariant under θ since both Υx and W̃ are invariant
under θ. By using linearity of the Killing form and the brackets, and Lemma
2, we obtain the following expression:

Hessx(f
+)(ξZ , ξW ) = +B([σΥx, θZ − σθZ], [Υx, W̃ ])

+ B([σΥx, Z − σZ], [Υx, W̃ ])

= 2ReB([σΥx, Z − σZ], [Υx, W̃ ])

= −2ReB([Υx, [σΥx, Z − σZ]], W̃ )

= −2ReB([Υx, [σΥx, Z]], W̃ )

+ 2ReB([Υx, [σΥx, σZ]], W̃ ) (28)

Applying Lemma 2 to the second term, yields the following:

2ReB([Υx, [σΥx, σZ]], W̃ ) = 2ReB([Υx, [σΥx, σZ]], W̃ )

= 2ReB(σ[Υx, [σΥx, σZ]], σW̃ )

= 2ReB([σΥx, σ[σΥx, σZ]],−W̃ )

= −2ReB([σΥx, [Υx, Z]], W̃ ) (29)

Combining [σΥx,Υx] = 0 from Theorem 32 with the Jacobi identity, we
obtain [σΥx, [Υx, Z]] = [Υx, [σΥx, Z]]. Combining this with Equations 28
and 29 yields the following identity:

Hessx(f
+)(ξZ , ξW ) = −4Re(B([Υx, [σΥx, Z]], W̃ ))

We can manipulate this identity until we arrive at the desired result.

−4Re(B([Υx, [σΥx, Z]], W̃ )) = −4Re(B(−i2[Υx, [σΥx, Z]], W̃ ))

= −4Re(B(−[iΥx, i[σΥx, Z]], W̃ ))

= −4Re(B([iΥx, [σiΥx, Z]], W̃ ))

= −4α(iΥx)σ(α)(iΥx)Re(B(Z, W̃ ))

In the last step of the above computation we used that α(iΥx) is real by
Lemma 34. Finally, notice that B(Z,W ) = 0 since W is not in g−α.

Theorem 46. The vector space V, V 1, V 2 and V 3 where defined in Section
3.2. Let x ∈ X be a critical point of f±. Then:
(a) Hessx(f

+)|V×V 1 = 0,
(b) Hessx(f

+)|V 2×V 3 = 0,
(c) Hessx(f

+)|V 2×V 2 is negative definite,
(d) Hessx(f

+)|V 3×V 3 is positive definite.
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Proof. (a) Let z ∈ V and w ∈ V 1. Then there exist Z ∈ gu and W ∈ k0 such
that z = ξZ(x) and w = ξW (x). We get Hessx(f

+)(z, w) = ξZξWf
+(x). But

f+ is K0-invariant because of Lemma 30 hence ξW (f+)(x) = 0 from which
the result follows.

(b) Let w ∈ V 2 and z ∈ V 3. By Theorem 43 and Equation 25 there
exist W ∈ ñσθx ⊕ ñ−σθx and Z ∈ ñσx ⊕ ñ−σx such that w = ξW (x) and z =
ξZ(x). By Equation 11 we may represent w and v as ξWñx+θWñx

and ξZñx+θZñx

respectively. We may now apply Lemma 44 for Wñx + θWñx and Zñx + θZñx

since these are elements of gu.

Notice that Wñx + θWñx ∈ ñσθx ⊕ ñ−σθx ⊕ nσθx ⊕ nσθx and that Zñx + θZñx ∈
ñσx ⊕ ñ−σx ⊕ nσx ⊕ nσx. By the remark under Equation 24, these spaces are
B-orthogonal. Finally, since ad(iΥx) and ad(Υx) leave this decomposition
into root spaces fixed, it follows that Hessx(f

+)(ξWñx+θWñx
, ξZñx+θZñx

) = 0 by
Lemma 44.

(c) Let z ∈ V 2 and z 6= 0. Then there exists a Z ∈ ñσθx ⊕ ñ−σθx with
ad(iΥx)Z ∈ ñ−σθx such that z = ξZ(x) and Z 6= 0. Recall that we defined ∆2

to be the α ∈ ∆(ñx, s) such that σ(α) ∈ ∆(nx, s). Alternatively, we could
define ∆2 to be the α ∈ ∆(ñx, s) such that θσ(α) ∈ ∆(ñx, s). Hence ∆2

splits into orbits of the group {1, θσ}. We will call two elements α, β ∈ ∆2

conjugate when α = β or α = θσβ. Equivalence of elements of ∆2 is denoted
by α ∼ β.

For α, β ∈ ∆, define Hαβ(Z) = Hessx(f
+)(ξZα(x), ξZβ(x)) where Zα de-

notes the projection of Z onto gu,α. By linearity we get the following expres-
sion for the Hessian:

Hessx(f
+)(ξZ(x), ξZ(x)) =

∑
α,β∈∆2

Hαβ(Z) (30)

Claim 1 If α, β ∈ ∆2 and α 6∼ β, then Hαβ(Z) = 0.

Claim 2 If α ∈ ∆2 and Zα 6= 0 or Zσθα 6= 0, then
∑

β,γ∈∆2:β∼α,γ∼α

Hβγ(Z) < 0.

Since Z is non zero, there will be an α ∈ ∆2 such that either Zα or Zσθα is
nonzero. Combining both claims with Equation 30 shows Hessx(f

+)(z, z) <
0. The claims are proven in Lemma 47.

(d) The proof is similar to that of part (c). Let z ∈ V 3 and z 6= 0. Then there
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exists a Z ∈ ñσx ⊕ ñ−σx with ad(iΥx)Z ∈ ñ−σx such that z = ξZ(x) and Z 6= 0.
Recall that ∆1 was defined as the α ∈ ∆(ñx, s) such that σ(α) ∈ ∆(ñx, s).
We will call two elements α, β ∈ ∆1 conjugate when α = β or α = σβ.
Equivalence of elements of ∆1 is denoted by α ∼ β.

Claim 3 If α, β ∈ ∆3 and α 6∼ β, then Hαβ(Z) = 0.

Claim 4 If α ∈ ∆3 and Zα 6= 0 or Zσα 6= 0, then
∑

β,γ∈∆3:β∼α,γ∼α

Hβγ(Z) > 0.

Since Z is non zero, there will be an α ∈ ∆1 such that either Zα or Zδα is
nonzero. Combining both claims with Equation 30 shows Hessx(f

+)(z, z) >
0. The claims are proven in Lemma 47.

Lemma 47. The claims in Theorem 46 (c) and (d) are valid.

Proof. Claim 1 and 2 We use the same notation as in Theorem 46 (c). Let
α, β ∈ ∆2. Notice that σθβ ∈ ∆(ñx, s), hence B(Zα, σθZβ) = 0. Hence, by
Lemma 45 we obtain the following:

Hαβ(Z) = −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZβ − σZβ) (31)

Claim 1 Let α, β ∈ ∆2 and α 6∼ β. From β 6∼ α, we obtain β 6= α and
σθβ 6= α. By Lemma 15 and applying θ on both sides, we get θβ 6= −α and
σβ 6= −α. We arrive at B(Zα, θZβ − σZβ) = 0. It follows by Equation 31
that Hαβ(Z) = 0.

Claim 2 Let α ∈ ∆2 and Zα 6= 0 or Zθσα 6= 0. We need to check two
cases: α = σθα and α 6= σθα.
Case 1 Assume α = σθα. By using Equation 31 we get the following:∑

β,γ∈∆2:β∼α,γ∼α

Hβγ(Z) = Hαα(Z)

= −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZα − σZα)

By Corollary 34, we see that α(iΥx) > 0 since α ∈ ∆2 ⊂ ∆(ñx, s) and
σ(α)(iΥx) < 0 since σ(α) ∈ ∆(nx, s). Hence, we need to show that ReB(Zα, θZα−
σZα) < 0.
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It follows from ad(iΥx)Z ∈ ñ−σθx and α = σθα that Zα ∈ ñ−σθx . From
σθZα = −Zα we obtain σZα = −θZα. We get the following:

B(Zα, θZα − σZα) = B(Zα, θZα + θZα) = 2B(Zα, θZα) < 0

Case 2 Assume α 6= σθα. Using Equation 31, we get the following:∑
β,γ∈∆2:β∼α,γ∼α

Hβγ(Z) = Hαα(Z) + 2Hσθα,α(Z) +Hσθα,σθα(Z) (32)

= −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZα − σZα)

− 8σθ(α)(iΥx)θ(α)(iΥx)ReB(Zσθα, θZα − σZα)

− 4σθ(α)(iΥx)θ(α)(iΥx)ReB(Zσθα, θZσθα − σZσθα)

By Corollary 17, we see that the θ-terms in the outside of the Killing form
cancel each other. By Lemma 34, we see that −σ(α(iΥx))α(iΥx) > 0. We
will show that the Killing form expressions in the above equation, are all non
positive.

Since α 6= σθα = −σα, we observe thatB(Zα,−σZα) = 0 andB(Zσθα,−σZσθα) =
0. Hence, the first Killing form of the above expression equals B(Zα, θZα
which is non positive. Similarly, the third Killing form equalsB(Zσθα), σZσθα)
which is non positive.

We are left with the second Killing form from Equation 32. Notice
ad(iΥx)(Zα + Zσθα) ∈ ñ−σθx . This implies σθ[α(iΥx)Zα − σα(iΥx)Zσθα] =
−α(iΥx)Zα+σα(iΥx)Zσθα which implies α(iΥx)σθZα = σα(iΥx)Zσθα. Specif-
ically, we obtain:

Zσθα =
α(iΥx)

σα(iΥx)
σθZα

Since α ∈ ∆2 and by Lemma 34, we see that α(iΥx)
σα(iΥx)

< 0. Applying this
identity to the second Killing form of the equation above yields the following:

ReB(Zσθα, θZα − σZα) =
α(iΥx)

σα(iΥx)
ReB(σθZα, θZα − σZα)

By Lemma 2 we see that B(σθZα, θZα) = B(σZα, Zα) = 0. By using the
same lemma once more, we obtain the following:

α(iΥx)

σα(iΥx)
ReB(σθZα,−σZα) = − α(iΥx)

σα(iΥx)
ReB(θZα, Zα) ≤ 0
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Finally, notice that by the assumptions on Zα and Zσθα, at least one of the
Killing form expressions below Equation 32 will be non zero. Hence, the sum
at Equation 32 is (strictly) negative.
Claim 3 Let α, β ∈ ∆3 and α 6∼ β. We again obtain Lemma 45, but for
different roots. Notice that σβ ∈ ∆3 hence B(Zα,−σZβ) = 0. From β 6∼ α,
we obtain β 6= α and σβ 6= α. By Lemma 15 and applying θ on both sides,
we get θβ 6= −α and σθβ 6= −α. We arrive at B(Zα, θZβ − σZβ) = 0.

Claim 3 and 4 We use the same notation as in Theorem 46 (d). Let
α, β ∈ ∆1. Notice that σβ ∈ ∆(ñx, s), hence B(Zα, σZβ) = 0. Hence, by
Lemma 45 we obtain the following:

Hαβ(Z) = −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZβ − σθZβ) (33)

Claim 3 Let α, β ∈ ∆1 and α 6∼ β. From β 6∼ α, we obtain β 6= α and
σβ 6= α. By Lemma 15 and applying θ on both sides, we get θβ 6= −α and
θσβ 6= −α. We arrive at B(Zα, θZβ − θσZβ) = 0. It follows by Equation 33
that Hαβ(Z) = 0.

Claim 4 Let α ∈ ∆1 and Zα 6= 0 or Zσα 6= 0. We need to check two
cases: α = σα and α 6= σα.
Case 1 Assume α = σα. By using Equation 33 we get the following:∑

β,γ∈∆1:β∼α,γ∼α

Hβγ(Z) = Hαα(Z)

= −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZα − θσZα)

By Corollary 34, we see that α(iΥx) > 0 since α ∈ ∆1 ⊂ ∆(ñx, s) and
σ(α)(iΥx) > 0 since σ(α) ∈ ∆(ñx, s). Hence, we need to show that ReB(Zα, θZα−
σθZα) < 0.

It follows from ad(iΥx)Z ∈ ñ−σx and α = σα that Zα ∈ ñ−σx . From
σZα = −Zα we obtain σZα = −Zα. We get the following:

B(Zα, θZα − θσZα) = B(Zα, θZα + θZα) = 2B(Zα, θZα) < 0
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Case 2 Assume α 6= σα. Using Equation 31, we get the following:∑
β,γ∈∆1:β∼α,γ∼α

Hβγ(Z) = Hαα(Z) + 2Hσα,α(Z) +Hσα,σα(Z) (34)

= −4α(iΥx)σ(α)(iΥx)ReB(Zα, θZα − σθZα)

− 8σ(α)(iΥx)α(iΥx)ReB(Zσα, θZα − σθZα)

− 4σ(α)(iΥx)α(iΥx)ReB(Zσα, θZσα − σθZσα)

By Lemma 34, we see that −σ(α(iΥx))α(iΥx) < 0. We will show that the
Killing form expressions in the above equation, are all non positive.

Since α 6= σα, we get −α 6= θσα and we observe that B(Zα,−θσZα) = 0
and B(Zσθα,−σθZσθα) = 0. Hence, the first Killing form of the above ex-
pression equals B(Zα, θZα which is non positive. Similarly, the third Killing
form equals B(Zσθα), σZσθα) which is non positive.

We are left with the second Killing form from Equation 34. Notice
ad(iΥx)(Zα+Zσα) ∈ ñ−σx . This implies σ[α(iΥx)Zα−σα(iΥx)Zσα] = −α(iΥx)Zα+
σα(iΥx)Zσα which implies α(iΥx)σZα = −σ(α)(iΥx)Zσα. Specifically, we
obtain:

Zσα = − α(iΥx)

σα(iΥx)
σZα

Since α ∈ ∆1 and by Lemma 34, we see that − α(iΥx)
σα(iΥx)

< 0. Applying this
identity to the second Killing form of the equation above yields the following:

ReB(Zσα, θZα − θσZα) = − α(iΥx)

σα(iΥx)
ReB(σZα, θZα − θσZα)

From σα 6= α, we see that θσα 6= −α. We obtain B(σZα, θZα) = 0. By
using the same lemma once more, we obtain the following:

− α(iΥx)

σα(iΥx)
ReB(σZα,−θσZα) =

α(iΥx)

σα(iΥx)
ReB(Zα, θZα) ≤ 0

Finally, notice that by the assumptions on Zα and Zσα, at least one of the
Killing form expressions below Equation 34 will be non zero. Hence, the sum
at Equation 34 is (strictly) positive.
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4 Matsuki correspondence for a complex group

4.1 Limit points of the integral curve γ(t, x)

Let γ(t, x) be the integral curve for ∇f+ through the point x ∈ X and let
C denote the set of critical points of f±. In this section, we will prove that
limt→±∞ γ(t, x) exists and lies inside C (Theorem 50). The proof for the most
part is technical and relies heavily on a version of  Lojasiewicz’s inequality
(Lemma 49 (c)).

Recall that superscript 0 denotes the connected component of the identity.

Lemma 48. C contains finitely many K0
0−orbits.

Proof. Let Nc denote the vector subspace of TcX consisting of vectors that
are orthogonal to Tc(K

0
0c) in TcX. By the first part of Corollary 36, Nc ⊂

V 2
c ⊕ V 3

c . By the second part of this corollary, V 2
c ⊕ V 3

c ⊂ Nc. By Theorem
46, the Hessian of f+ at c ∈ C is non degenerate. Hence, there is a transverse
slice S to K0

0 · c through c, with a neighborhood U of c in S on which c is
the only critical point of f+|U .

Since f+ is K0-invariant (Lemma 30), the set K0
0c consists of critical

points of f+ (see the remark below the proof). By construction, the set K0
0U

has only K0
0c as critical points of f+, hence the K0

0 -orbits are topologically
isolated. By adding open subsets complementary to K0

0C, we can extend
K0

0C to a cover of X. Since X is compact and since the individual orbits K0
0c

in C are disjoint, it follows that there can only be finitely many of these K0
0c

orbits.

In the above proof, we use that f+ is K0-invariant in order to prove that
all elements of K0

0c are critical points of f+. This result does not extend
to K0c. The reason for this is that since K0

0 is connected, the Hessian of
f+ cannot become degenerate on K0

0c. For a different connected component
V in K0c, we know that f+ attains the same value as on K0

0c because of
K0-invariance of f+. We do not know anything about the Hessian of f+ on
V and this Hessian could be degenerate, indicating that points in V are not
necessarily critical points of f+.

Let x ∈ X, not necessarily a critical point. Let γ(t, x) be the integral
curve through x of ∇f+. Since X is compact, these integral curves are
complete.
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We will call a point y ∈ X a limit point of γ(t, x) if given any neighbor-
hood U of y, there exists an increasing, unbounded sequence {tn}∞n=1 ⊂ R
such that γ(tn, x) ∈ U for all n ∈ N. If limt→∞ γ(t, x) exists, the only limit
point of γ(t, x) will be the point limt→∞ γ(t, x).

Lemma 49. (a) L is nonempty and lies in a single K0
0 -orbit in C.

(b) Let c ∈ C such that L ⊂ K0
0c. Let U ⊂ X be an open neighborhood of

K0
0c. Then there exists t0 ≥ 0 such that for t ≥ t0, γ(t, x) ∈ U .

(c) There exists a neighborhood V of K0
0c, together with constants m > 0 and

3
4
≤ r < 1, such that the following holds for z ∈ V :

||∇f−(z)|| ≥ m|f−(z)− f(K0
0c)|r

Here, f− is adjusted by a constant such that f− equals 0 on K0
0c. The norm

on the left side, is the Kähler norm associated to the Kähler form of Equation
14.

Proof. (a) Notice that {γ(n, x)}n∈N is a sequence in X. By compactness of
X, there exists a convergent subsequence and we see that L is nonempty.
Next, we will prove that L is connected, the proof of which comes from
[Kir84, 2.10].

Assume that L ⊂ U ∪V with U, V disjoint open sets in X. Since U ∪V is
open, Y = X \ (U ∪ V ) is a closed subset of a compact manifold X, hence is
compact. Let y ∈ Y and Vy an open neighborhood of y in Y . Since y is not
a limit point of γ(t, x), there exists a ty ∈ R such that for t ≥ ty, γ(t, x) 6∈ Vy
(formally, we may only state that γ(t, x) ∈ Vy finitely often, by making ty
bigger, we get that γ(t, vy) does not lie in Vy at all). The collection of sets
{Vy}y∈Y form a cover of Y , hence we may choose a finite subcover which we
shall index by a finite subset I ⊂ Y . Let T = Maxy∈Ity. For t ≥ T , we
get γ(t, x) 6∈ Vy for all y ∈ I, hence γ(t, x) 6∈ Y . By Y = X \ (U ∩ V ), it
follows that γ(t, x) ∈ (U ∩ V ). Finally, since [T,∞) is connected, γ([T,∞))
is connected in U ∩ V which means that γ([T,∞)) either lies in U or in V
(there is no connected component shared by both opens). Hence, L must lies
in either U or V and we see that L cannot be written as the union of two
disjoint non-empty open subsets. We conclude that L is connected.

Let c ∈ L. Then there exists a monotonically increasing sequence tn
such that limn→∞ γ(tn, x) = c. We will prove that c ∈ C. First, observe the
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following:

∂tf
+(γ(t, x)) = df+(γ(t, x))γ′(t, x)

= df+(γ(t, x))∇f+γ(t, x)) = ||∇f+(γ(t, x))||2 ≥ 0

It follows that f+ ◦ γ is monotonically increasing. Since X is compact it
follows that f+◦γ has an upper bound which implies that limt→∞ f

+(γ(t, x))
exists. This implies that limt→∞ ||∇f+(γ(t, x))|| = 0. Hence, by continuity of
∇f+, we see limn→∞ ||∇f+(γ(tn, x))|| = ||∇f+(c)|| = 0. This implies c ∈ C.

Finally, since L is connected it should lie in a connected component of C,
hence L is contained in a single K0

0 -orbit by Lemma 48.

(b) Let c ∈ C such that L ⊂ K0
0c (existence is guaranteed by part (a)).

Assume that the statement is false i.e. there exists an open neighborhood
U of K0

0c such that t ≥ t0 implies γ(t, x) 6∈ U for all t0 ≥ 0. Hence
{γ(n, x)}n∈N ⊂ X \U . Since U is open, X \U is closed in X, hence X \U is
compact and {γ(n, x)}n∈N has a convergent subsequence. Via L ⊂ K0

0c ⊂ U ,
all limit points of γ(t, x) should be inside U which is a contradiction. We
conclude that for every open neighborhood U of K0

0c, there exists a t0 ≥ 0
such that t ≥ t0 implies γ(t, x) ∈ U .

(c) The desired result is an adaptation of  Lojasiewicz’s inequality, first proved
by  Lojasiewicz in [Loj65, p.62]. We will apply the version presented on [HH,
p.26] for real analytic manifolds. Using  Lojasiewicz’s inequality, there exists
a neighborhood Uc of c, together with constants m > 0 and 0 < r < 1, such
that for all z ∈ Uc, we get the the following:

||∇f−(z)|| ≥ m|f−(z)|r (35)

Since f− and the Kähler norm are K0-invariant (Lemma 30 and Theorem
28 respectively), the same result holds for the K0

0 -translates of Uc. Define
V = (

⋃
k∈K0

0
kUc) ∪ {z ∈ X : f−(z) ∈ (−1, 1)}. Equation 35 holds on V and

notice that |f−(z)| < 1 for z ∈ V . This makes t 7→ |f−(z)|t monotonically
decreasing, and hence we may choose r to be larger such that r ∈ [3

4
, 1).

Finally, notice that K0
0c is contained in V since f− equals 0 on this subset,

which concludes the proof.

Define π±(x) = limt→±∞ γ(t, x). Notice that the minus sign in π−(x) is
not referring to f− directly, but it does so indirectly. If we let γ±(t, x) denote
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the integral curves to ±∇f+ (notice −∇f+ = ∇f−), we can equivalently
define π±(x) as limt→∞ γ±(t, x). For now, we will stick to γ(t, x) as integral
curve of ∇f+.

Theorem 50. Let x ∈ X. The limits π±(x) exist and belong to C.

Proof. Let c ∈ C such that L ⊂ K0
0c and let s ∈ R. Since c is a limit point,

the distance traveled along γ(s, x) towards c, will at least be the distance
between c and γ(s, x). Hence, the distance between γ(s, x) and c will always
be smaller then

∫∞
s
||γ′(t, x)||dt. We will show the convergence of π+(x), by

showing that the above integral tends to zero for s→∞.

Let V be the neighborhood of K0
0c of Lemma 49 (c). By part (b) of

the same Lemma and by rescaling R, we may assume that γ(t, x) ∈ V for
t ≥ s ≥ 0. Define H(t) = f−(γ(t, x)) where f− is adjusted by a constant
such that it equals zero on K0

0c. By the chain rule, we get the following:

H ′(t) = gx(∇f−(γ(t, x)), γ′(t, x))

= gx(−∇f+(γ(t, x)),∇f+(γ(t, x)))

= −||∇f+(γ(t, x))||2 = −||γ′(t, x)||2 (36)

It follows that |H ′(t)| 12 = ||γ′(t, x)||. Observe that H(t) ≥ 0 since it is
defined as the norm of a projection (see Section 3.1), and H ′(t) ≤ 0 because
of Equation 36. By the inequality of Lemma 49 (c), we get for t ≥ s:

|H ′(t)| 12 ≥ m|H(t)|r. Squaring both sides yields

|H ′(t)| = −H ′(t) ≥ m2H(t)2r = m2H(t)2−ε where we define ε = 2(1− r)

Notice that 0 < ε ≤ 1
2
. This inequality can be rewritten as ∂tH(t)ε−1 ≥

m2(1− ε) since H(t) is nonnegative. Integrating both sides yields the follow-
ing:

H(t)ε−1 ≥ m2(1− ε)t hence H(t) ≤Mt
−1
1−ε (37)

Here, M = (m2(1− ε))
−1
1−ε but since ε is a constant, we should just regard it

as a constant. With that said, notice that M is finite for all possible values
of ε.

Define the auxiliary function F (t) = t1+ε. Using Hölder’s inequality, we
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can find an upper limit for the integral we are interested in:∫ ∞
s

||γ′(t, x)||dt =

∫ ∞
s

√
−H(t)dt

=

∫ ∞
s

√
−H(t)F (t)

F (t)
dt

≤
(∫ ∞

s

−H ′(t)F (t)dt

)1
2

·
(∫ ∞

s

1

F (t)
dt

)1
2

(38)

We can evaluate the integral on the right straight away:
∫∞
s
F (t)−1dt = s−ε

ε
.

This is finite since ε > 0. For the integral on the left, we will use integration
by parts: ∫ ∞

s

−H ′(t)F (t)dt = − H(t)F (t)|∞s +

∫ ∞
s

H(t)F ′(t)dt (39)

Combining Equation 37 with the definition of F (t) = t1+ε ,we see that

H(t)F (t) = O(t
ε2−1
1−ε ) where we use big O notation. Since ε < 1

2
implies

1 − ε > 0 and ε2 − 1 < 0, we see that H(t)F (t)
t→∞−→ 0. Using the right

part of Equation 37 once more, we see H(s)F (s) = O(s
−ε2
1−ε ). With identical

arguments, we see
∫∞
s
H(t)F ′(t)dt = O(s

−ε2
1−ε ). Hence, the integrals on the

right hand side of Equation 39 are finite which justifies our use of integration
by parts. Plugging these results into Equation 38, we get the following:∫ ∞

s

||γ′(t, x)||dt = O(s
−ε

2−2ε ) hence

∫ ∞
s

||γ′(t, x)||dt s→∞−→ 0 (40)

We conclude that π+(x) = limt→∞ γ(t, x) converges and by Lemma 49 (a),
the limit point lies inside C. The same arguments hold for π− when we
interchange f− with f+ and γ with γ∇f− .

Theorem 50 allows us the see π± as a map i.e. π± : X → C. In the
following sections we will make use of this interpretation. More specifically,
the inverse images of π± of “K0

0 -like” orbits C, will correspond with “G0-like”
and “K-like” orbits in X. Two orbits in X are called Matsuki dual if they
correspond to the same orbit in C.
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4.2 The stratifications S+
c and S−c

In this section we will study two stratifications of X, indexed by the K0
0 -

orbits in C. That is, we will define two decompositions of X into smooth
(connected) submanifolds. It turns out that the strata accompanying the
orbit K0

0c, are precisely the G0
0- and K0-orbits of c ∈ C. At the core of the

proof lies the analysis by Kirwan of real, minimally non-degenerate functions
on a compact Riemannian space (see [Kir84, Ch. 10]).

Define the following two subsets of X:

S+
c = {x ∈ X : π+(x) ∈ K0

0c} S−c = {x ∈ X : π−(x) ∈ K0
0c}

Notice that the sets S±c depend on c through their K0
0 -orbit in X. Further-

more, if c, c′ ∈ C belong to different K0
0 -orbits then the associated sets S+

c

and S+
c′ are disjoint. This statement is also valid with superscripts − instead

of +. Let S+
C and S−C denote the collection of the sets S+

c , respectively S−c ,
for c ∈ C. Then Lemma 51 below shows that S+

C and S−C form (Morse) strat-
ifications of X. Before we prove this lemma, we should first introduce two
submanifolds Σ±c of X containing K0

0c.
We start by selecting an open, relatively compact neighborhood Ω+ of e in
G0

0. Then K0
0Ω+ is open and relatively compact as well, so we just as well

assume from the start that Ω+ is left K0
0 -invariant. Let c ∈ C and let G0

0c

denote the associated isotropy subgroup of G0
0. The image Ω+

c of Ω+ in G/G0
0c

is open and relatively compact. Moreover, the map G0
0 → X, g 7→ gc induces

an injective immersion jc : G0
0/G

0
0c → X. It follows that Σ+

c := jc(Ω
+
c ) is a

locally closed submanifold of X containing K0
0c as a compact submanifold.

By application of Theorem 46 we see that for every x ∈ K0
0c the Hessian of

of f+ is negative semidefinite on the tangent space

Tx(Σ
+
c ) = Tx(G

0
0x)

and that Tx(Σ
+
c ) is a maximal subspace of TxX with this property. By

shrinking Ω+ if necessary we may arrange that f+ takes on its maximum
value in Σ+

c precisely on K0
0c.

Similarly, we can construct a locally closed submanifold Σ−c of X on which
f+ takes on its minimum precisely on K0

0c, and such that for each x ∈ K0
0c,

the subspace TxΣ
−
c is maximal in TxX with respect to the condition that the

Hessian of f+ at x is positive semidefinite on TxΣ
−
c .

The next lemma shows that S+
C and S−C form (Morse) stratifications of X.
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Lemma 51. If c ∈ C, then the following assertions are valid.
(a) The strata S+

c and S−c are smooth (connected) submanifolds of X.
(b) There exists a K0

0 -stable neighborhood Uc of c in X such that Σ+
c ∩ Uc =

S+
c ∩ Uc and Σ−c ∩ Uc = S−c ∩ Uc.

Proof. (a) The submanifolds Σ±c satisfy the conditions of of Theorem 10.4
of [Kir84]. Part of the proof of this theorem requires an adaptation of the
Riemannian metric on X such that the associated gradient of f+ is tangent to
both Σ+

c and Σ−c , see [Kir84, Lemma 10.5]. In our situation this is automatic
since by Lemma 38, the gradient of f+ is tangent to both the G0- and K-
orbit through c. Anyway, from Theorem 10.4 of [Kir84] it follows that S+

c

and S−c are (locally closed) smooth submanifolds.

For connectedness: Let x, y ∈ S+
c and let γx and γy denote the inte-

gral curves of ∇f+ such that γx(0) = x and γy(0) = y respectively. Then
limt→∞ γx(t) ∈ K0

0c and limt→∞ γy(t) ∈ K0
0c. By reparameterizing γx and γy,

we may assume that there exists a value t ∈ R such that both γx(t) ∈ K0
0c

and γy(t) ∈ K0
0c. Notice that K0

0c is path-connected since it is a connected
component of a manifold, hence there is a path µ in K0

0c of finite length
connecting γx(t) and γy(t). Notice that K0

0c ⊂ S+
c . By combining the paths

γx, µ and γy appropriately, we can construct a path between x and y that
lies inside S+

c . This implies that S+
c is connected.

(b) This statement also follows from the theorem of Kirwan.

Before continuing we remark that in the present situation f+ is actually a
smooth function with a non-degenerate critical manifold in the sense of Bott,
i.e. the set C of critical points is a compact smooth submanifold of X and
the Hessian of f+ at any point c ∈ C has null space equal to TcC. According
to [Kir84, Remark 10.18], this implies that the integral curves t 7→ γc(t) of
f+ have limits for t→ ±∞. This observation could in fact be used to replace
the present proof of Theorem 50.

For the following five lemmas, the proof for S+
c is analogous to that for

S−c . Therefore we will omit the proof of the latter.

Lemma 52. Let c ∈ C, then S+
c ⊂ G0

0c and S−c ⊂ K0c.

Proof. Let x ∈ S+
c . Then π+(x) = uc for some u ∈ K0

0 . Let Uc denote the
open neighborhood of Lemma 51 (b). By Lemma 49 (b), there is a large t ∈ R
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such that γ(t, x) ∈ Uc. Via π+(γ(t, x)) = π+(x) it is clear that γ(t, x) ∈ S+
c

and by using Lemma 51 (b) once more, we see that γ(t, x) ∈ Σ+
c . Hence,

there exists a g1 ∈ G0
0 such that γ(t, x) = g1c. By Corollary 41, x and γ(t, x)

lie in the same G0
0 orbit, hence there exists a g2 ∈ G0

0 such that γ(t, x) = g2x.
Combining the two expressions for γ(t, x), we see that x = g−1

2 g1c ∈ G0
0c.

We conclude S+
c ⊂ G0

0c.

Lemma 53. Let c ∈ C, then S+
c ⊂ G0

0c and S−c ⊂ K0c as open subsets.

Proof. We want to prove that S+
c is open in G0

0c and we will do this by
proving that every element x ∈ S+

c has an open neighborhood in G0
0c which

is contained in S+
c .

By Lemma 51 (b), there exists an open K0
0 -stable neighborhood Uc of c

such that Uc ∩ Σ+
c = Uc ∩ S+

c .
Since c ∈ Uc and since it is K0

0 -stable, Uc is an open neighborhood of K0
0c.

By Lemma 49 (b), there is a large t ∈ R such that γ(t, x) ∈ Uc. We consider
the flow map ϕ : y 7→ γ(t, y), which is a diffeomorphism of X. It follows
from Theorem 40 that ϕ preserves each orbit G0

0y. This orbit has a unique
manifold structure for which the map g 7→ gy is a submersion from G0

0 onto
G0

0y. For this manifold structure, the inclusion map G0
0y → X is an injective

immersion. A priori it is not clear that G0
0y is a locally closed submanifold.

It follows from the proof of Theorem 40 that the flow map ϕ restricts to
the orbit as a diffeomorphism ϕy : G0

0y → G0
0y for the specified manifold

structure.

On the other hand, it follows from the definition of S+
c that this locally

closed submanifold is invariant under ϕ. From ϕ(x) = γ(t, x) ∈ Uc it follows
by continuity that there exists an open neighborhood Vx of x in X such that
ϕ(Vx) is an open subset of Uc. It now follows that

ϕ(Vx ∩ S+
c ) = ϕ(Vx) ∩ S+

c = ϕ(Vx) ∩ Uc ∩ S+
c = ϕ(Vx) ∩ Σ+

c .

The latter set is an open neighborhood of ϕ(x) in G0
0c. It follows that

Vx ∩ S+
c = ϕ−1(ϕ(Vx) ∩ Σ+

c ) = ϕ−1
c (ϕ(Vx) ∩ Σ+

c )

is an open neighborhood of x in G0
0c which is contained in S+

c .

Lemma 54. Let c ∈ C. Then S+
c = G0

0c and S−c = K0c.
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Proof. By Lemma 52, S+
c ⊂ G0

0c. Let x ∈ G0
0c. Then there exists a c′ ∈ C

such that x ∈ S+
c′ . By Lemma 52 we get S+

c′ ⊂ G0
0c
′ so x ∈ G0

0c
′. It follows

that G0
0c = G0

0c
′, hence S+

c′ ⊂ G0
0c. We thus see that G0

0c equals the union of
all the strata which it meets.

Since different strata are disjoint, it follows that G0
0c is a disjoint union

of strata. By Lemma 53, we know that the strata are open and since G0
0 is

connected, this implies that there can only by one stratum that meets G0
0c,

hence S+
c = G0

0c.

Lemma 55. Every G0
0-orbit in X meets C and every K0-orbits meets C.

Proof. Let x ∈ X. Then c = π+(x) ∈ C and x ∈ S+
c . From Lemma

54 we obtain x ∈ G0
0c from which we obtain G0

0x ⊂ G0
0c. It follows that

c ∈ C ∩G0
0x.

Lemma 56. For c ∈ C, G0
0c ∩ C = K0

0c and K0c ∩ C = K0
0c.

Proof. Let c′ ∈ G0
0c∩C. then c′ ∈ S+

c ∩C by Lemma 51(b). Then π+(c′) = c′

since c′ ∈ C. Since c′ ∈ S+
c , it follows that π+(c′) ∈ K0

0c and we obtain
G0

0c ∩ C ⊂ K0
0c. For the other way around, observe that K0

0c ⊂ G0
0c by

K0
0 ⊂ G0

0, and notice that K0
0c ⊂ C by Lemma 48.

4.3 Matsuki correspondence for complex semisimple
groups

In this section, we shall formulate and prove Matsuki correspondence in the
complex case. The basic idea is to look at inverse images of the maps π± :
X → C. For a K0

0 -orbit in C, these images turn out to be G0
0- and K0-orbits

in X. Orbits in X that stem from the same orbit in C are called Matsuki
dual.

Let G be a complex semisimple (connected) group with Cartan conjuga-
tion θ and complex conjugation σ commuting with θ. Define Gu = Gθ and
G0 = Gσ, and let K0 = Gu ∩G0. Set K = (K0)C = Kσθ. We will denote the
connected component of the identity with a superscript 0. Let G′0 be a group
such that G0

0 ⊂ G′0 ⊂ G0 and let K ′0 = G′0 ∩ K0 be the maximal compact
subgroup of G′0. Let K ′ be the complexification of K ′0, i.e. the unique group
such that K0 ⊂ K ′ ⊂ K and K ′∩K0 = K ′0. Let Q be any parabolic subgroup
of G and let X = G/Q.
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The Matsuki correspondence can be described in the following way:

Theorem 57. (a) There is a bijection between the following sets:

{G′0-orbits in X} ←→ {K ′0-orbits in C}
β+ 7−→ β+ ∩ C = π+(β+)

(π+)−1(β) = G′0c ←− [ K ′0c = β

For a G′0-orbit β+, β = β+ ∩ C is the unique K ′0-orbit in β+ on which f+|β+

assumes a maximum value.
(b) There is a bijection between the following sets:

{K ′-orbits in X} ←→ {K ′0-orbits in C}
β− 7−→ β− ∩ C = π−(β−)

(π−)−1(β) = K ′c ←− [ K ′0c = β

For a K ′-orbit β−, β = β− ∩ C is the unique K ′0-orbit in β− on which f+|β−
assumes a minimal value.
(c) The above defined mappings yield a bijection between the following sets:

{G′0-orbits in X} ←→ {K ′-orbits in X}

Proof. (a) We will first prove the statement for G′0 = G0
0. Let β+ be a

G0
0-orbit in X. By Lemma 55, β+ meets C which implies that we may also

view β+ as a G0
0-orbit of an element c of C i.e. β+ = G0

0c. By Lemma 54,
π+(β+) = K0

0c and by Lemma 56 β+ ∩ C = K0
0c. Notice that the c ∈ C is

unique up to K0
0 which makes β+ 7→ β+ ∩ C into an injection.

For the other way around, let β be a K0
0 -orbit in C i.e. β = K0

0c. We get
(π+)−1(β) = S+

c from the definition of S+
c . By Lemma 54 we see (π+)−1(β) =

G0
0c. Since the individual strata S+

c are disjoint, we see that the map β 7→
(π+)−1(β) = β+ is injective.

These maps are each others inverses and since they are injective, we
conclude that both maps are bijective. For the general case, take G′0 and
K ′0 as above. From K ′0 = K0

0K
′
0 =

⋃
k∈K′0

K0
0k, we obtain K ′0 as a union of

K0
0k (co)sets. We can find a similar decomposition for G′0 by noticing that

in Iwasawa decomposition, all the disconnected components will be in the
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maximal compact group, hence in K ′0. Hence, we find that G′0 =
⋃
k∈K′0

G0
0k.

Using Lemma 56, we find the following:

(G′0c) ∩ C =

 ⋃
k∈K′0

G0
0kc

 ∩ C =
⋃
k∈K′0

(G0
0kc ∩ C) =

⋃
k∈K′0

K0
0kc = K ′0c

This proves that 7−→ is well defined and injective. The ←− [ follows from
using the same decomposition as above, and the fact that the inverse image
of a union, is the union of the inverse images.

For any integral curve of ∇f+ in β+, the maximum value of f+ is reached
when t → ∞. Since π+(β+) = β+ ∩ C = β, it is clear that f+ attains its
maximum on β.

(b),(c) The proof of (b) is analogous to that of (a). Statement (c) follows
directly from (a) en (b).

Theorem 57 contains the essence of the Matsuki correspondence. We
call a G′0- and a K ′-orbit dual, if they are associated to the same K ′0-orbit
through the above theorem. There are two things which we should point out.
The first is that the c used in the above theorem is not unique. If we have
an element x ∈ X and we want to find the unique critical K ′0-orbit in G′0x,
then c = π+(x) is the logical choice, yielding K ′0c as critical orbit. But for
y ∈ G′0x with y 6∈ G0

0x, we get π+(x) 6= π+(y) even though they are in the
same G′0-orbit and represent the same critical K ′0-orbit.

Secondly, we should point out that not every K ′0-orbit of X is a critical
orbit for f+, despite f+ being K0-invariant. Also, G′0x ∩ K ′0x can contain
multiple K ′0-orbits without the two orbits being each others dual ().

Let α be a K ′0-orbit in X. Then α+ is the G′0-orbit in X associated to α
by Theorem 57. Similarly, α− is the associated K ′-orbit in X. The following
theorem contains more properties of the Matsuki correspondence.

Theorem 58. (a) Let α+ and β− be G′0- and K ′-orbits respectively. The
following statements are equivalent.

(i) α+ and β− are in duality.
(ii) α+ ∩ β− ∩ C 6= ∅

(iii) α+ ∩ β− contains exactly one K ′0−orbit.
(iv) α+ ∩ β− 6= ∅ and f+ is constant on α+ ∩ β−.
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(b) Let α and β be two K ′0-orbits in C.

α+ ⊂ Cl(β+)⇔ α− ∩ β+ 6= ∅ ⇔ β− ⊂ Cl(α−)

Here, Cl denotes the topological closure in X. If α+ ⊂ Cl(β+) and α 6= β,
then f+(α) < f+(β).
(c) Let α be a K ′0-orbit of C. The flow yields the following two continuous
mappings: γ : (−∞,∞]× α+ → α+ and γ : [−∞,∞)× α− → α−. Thus the
orbits of K ′0 in C are strong deformation retracts of the corresponding G′0-
and K ′-orbits in X via the gradient flow of f+. In particular π+ and π− are
continuous on any G′0- respectively K ′-orbit.

Proof. (a) (i) ⇔ (ii) By Theorem 57, both α+ and β− intersect C in a single
K ′0-orbit. In duality, this is the same K ′0-orbit and the equivalence of (i) and
(ii) follows directly.
(i) ⇒ (iii) By Theorem 57 (a), the maximum value of f+ in α+, is uniquely
attained in the K ′0-orbit α+ ∩ C. By Theorem 57, the minimum value of f+

in β−, is uniquely attained in the K ′0-orbit β− ∩ C. Assume that α+ and β−

are dual i.e. α+ ∩ C = β− ∩ C. Define m = f+(α+ ∩ C), hence m is the
maximum value of f+ on α+ and the minimum value of f+ on β−.

Clearly the K ′0-orbit α+ ∩ C is inside α+ ∩ β−. Assume that there is a
second K ′0-orbit in α+ ∩ β− and denote this orbit with γ. Then f+(γ) < m
since m is maximum value of f+ in α+ uniquely attained at the K ′0-orbit
α+ ∩ C. Similarly, f+(γ) > m since m is the minimum value of f+ in β−

uniquely attained at the K ′0-orbit β−∩C. This is a contradiction from which
we conclude that α+ ∩ β− contains exactly one K ′0-orbit.
(iii) ⇒ (iv) Since K ′0 ⊂ K0, f is K ′0-invariant (Lemma 30) which implies
that it is constant on every K ′0-orbit.
(ii) ⇐ (iv) We will prove the contrapositive statement i.e. “not (ii)” should
imply “not (iv)”. Let α+ ∩ β− ∩ C = ∅. If α+ ∩ β− = ∅, then there is
nothing left to prove. Let x ∈ α+∩β−. By Corollary 41, γ(R, x) is contained
within one single G0- and one single K-orbit. Since γ(R, x) is connected (it
is clearly path-connected), we know that it lies in a G0

0- and a K0-orbit. This
implies that γ(R, x) ⊂ α+ and γ(R, x) ⊂ β−. By assumption γ(R, x)∩C = ∅.
Notice that the function t 7→ f+(γ(t, x)) is monotonically increasing since its
derivative is positive. Hence, f+ is not constant on α+ ∩ β−.

(b) We will prove the first equivalence, the second equivalence follows
analogously. Let α and β be K ′0-orbits of C.
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‘⇒’ Assume α+ ⊂ Cl(β+) and let x ∈ α+. Since G0 and G′0, and K and
K ′0 contain a similar neighborhood of the identity, Tx(G0x) = Tx(G

′
0x) and

Tx(Kx) = Tx(K
′
0x) hold. From Corollary 36 it follows that G′0K

′
0x contains

an open neighborhood Ux of x. Since x ∈ Cl(β+) there exists an element
y ∈ β+ which lies inside Ux. Since y ∈ Ux ⊂ G′0K

′
0x, we can write y = gk · x

with g ∈ G′0 and k ∈ K ′0 which is equivalent to g−1y = kx. By definition,
g−1y ∈ β+ and kx ∈ α− and we obtain α− ∩ β+ 6= ∅.
‘⇐’ Suppose x ∈ α− ∩ β+. By Corollary 41, γ(R, x) is contained in β+ and
we obtain that π−(x) ∈ Cl(β+). From x ∈ α−, it follows that K ′0π

−(x) is
the critical orbit of both α+ and α− (this follows from α− and α+ being dual
orbits). We obtain α+ = G′0π

−(x) ⊂ G′0Cl(β
+) and since β+ is a G′0-orbit in

X, we get α+ ⊂ Cl(β+) which completes the proof.

For the final part of (b), let α+ ⊂ Cl(β+) and α 6= β. From the above
equivalence, we get that α− ∩ β+ 6= ∅ and let x ∈ α− ∩ β+. Since α 6= β,
we know that α− and β+ are not dual since they have a different critical
K ′0-orbit. By part (ii) from part (a), we see that x cannot be a critical point
of f+. By Theorem 57, f+ restricted to β+ assumes a maximum on β and
f+ restricted to α− assumes a minimum on α. Hence, f+(x) < f+(β) and
f+(x) > f+(α).
(c) We will only prove the statement for α+ since the proof for π− is anal-
ogous. Since γ is smooth, the only thing we need te prove is the continuity
at infinity: for all ε > 0, there must be a neighborhood U ⊂ α+ of x and
a t0 ∈ R such that for all x′ ∈ U and t ≥ t0, we get L(π+(x), γ(t, x′)) < ε
where L denotes the distance on X.

By Lemma 49 (c), there is a neighborhood V of α such that  Lojasiewicz’s
inequality holds. Let m > 0 be as in Lemma 59 below. Put U = {y ∈
X : f+(y) > f+(α). Then α+ ∩ U ⊂ V . By continuity of f+, the set U
is open in X which implies that U ∩ V is an open neighborhood of α in X
such that U ∩ V ∩ α+ = U ∩ α+. Replacing V by V ∩ U we see that we
may assume that V ∩ α+ = {y ∈ α+ : f+(y) > f+(α) − m}. Notice that
if y ∈ V ∩ α+, then γ(R+, y) ⊂ V ∩ α+ since f+ can only increase along γ
(hence f+(γ(t, x)) > f+(α) −m for t > 0). This is precisely the condition
for which Equation 40 is valid. Hence, by the estimates given in the proof
of Equation 40, there exists a s0 ∈ R such that for all y ∈ V ∩ α+, we get∫∞
s
||γ′(t, y)||dt < ε

3
.

Let x ∈ α+ be fixed and let t0 ∈ R such that γ(t0, x) ∈ V ∩ α+. Let
Ux be an open neighborhood of x such that for all x′ ∈ Ux, it holds that
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γ(t0, x
′) ∈ V ∩α+ and such that L(γ(s0 + t0, x), γ(s0 + t0, x

′)) < ε
3
. Now, for

t ≥ s0 + t0, the following holds by application of the triangle inequality:

L(π+(x), γ(t, x′)) ≤ L(π+(x), γ(s0 + t0, x))

+ L(γ(s0 + t0, x), γ(s0 + t0), x′)

+ L(γ(s0 + t0, x
′), γ(t, x′))

The first and the third term in equation, are smaller then
∫∞
s0
||γ′(t, y)||dt

which is smaller then ε
3
. The second term is smaller than ε

3
by construction

of Ux. We conclude that γ is continuous on (−∞,∞]× α+.

Lemma 59. Let α be a K ′0-orbit of C and let V be an open neighborhood of
α on X. There exists a positive real number m such that for all y ∈ α+, the
inequality f+(y) > f+(α)−m implies that y ∈ V .

Proof. Assume that the statement is false. This means that there exists a
sequence {yi} ⊂ α+ such that yi 6∈ V and such that limi→∞ f

+(yi) = f(α).
Since {yi} is a sequence in X which is compact, we may assume without
loss of generality, that the sequence converges to some value y. Since f+ is
continuous, f+(y) = f+(α). If y ∈ V , then V cannot be an open set since
yi 6∈ V . If y ∈ α+ and not y ∈ V , then we contradict Theorem 57 (a) by
having f+ attain a maximum value outside of α.
The only possibility left is that y belongs to the border of α+. Let β+ be
the G′0-orbit of y. Every element of β can be written as ry with r ∈ G′0, and
every element of β lies at the border of α+ since ryi is a sequence in α+ that
converges to ry. Hence, the entire orbit β+ is inside the border of α+. By
Theorem 58 (b), we get f+(β) < f+(α). Since f+(β) is the maximum value of
f+ in β+, we get f+(y) ≤ f+(β) < f+(α) which contradicts limi→∞ f

+(yi) =
f+(α).
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5 Matsuki correspondence for a real group

5.1 Real Matsuki correspondence for complex groups

In Chapter 4, we have proven Matsuki correspondence for complex semisim-
ple Lie groups. For these groups there is in fact a different variant of Matsuki
correspondence which requires three commuting complex conjugations, one
of which is a Cartan. This result is called “real Matsuki correspondence”
even though the group G for which this result holds is complex. This version
can be used to prove Matsuki correspondence for real groups which is the
reason for the name. We will explore this in section 5.3. The present sec-
tion is dedicated to proving the “real Matsuki correspondence” for complex
semisimple groups G (formulated in Theorem 68 and 69).

As mentioned above we require an extra conjugation on G that commutes
with θ and σ, let τ denote such a conjugation and let Q < G be parabolic such
that τ(Q) = Q. Notice that τ on X ' G/Q is well defined and let Xτ denote
the fixed points under τ . It is known that τ -stable parabolic subgroupsQ that
are G-conjugate, are in fact Gτ conjugate, hence Xτ ' (G/Q)τ ' Gτ/Qτ (see
[Bor91, Th. 20.9]). The quotient (G/Q)τ does not change when we replace
G with a simply connected cover of G, from which we obtain that Xτ is
a connected since Gτ is connected (see [Ste68, Th. 8.2]). Since Gτ

u has a
continuous embedding into Xτ and since Gτ

u is compact, we see that a Gτ
u-

orbit in Xτ is closed. It follows from qτ + gτu = gτ that the Gτ
u-orbit of the

identity is also open, hence Gτ
u acts transitive on Xτ .

Let T ⊂ Q be a τ, σ-stable Cartan subalgebra (for existence we refer to
Theorem 73 in Section 5.2). The radical of q is unique and since Q is τ -stable,
we see that τnq = nτq = nq. Since l = q∩ θ(q) (see Corollary 18) and since θ
and τ commute, we obtain that τ l = l. It follows that the Levi decomposition
of Q is τ -stable. This implies that Υ− τΥ satisfies the conditions of Lemma
34 and we may assume without loss of generality that Υ ∈ t−τu .

In Theorem 22 we identified X with the Gu-orbit of Υ in gu. Clearly the
same argument hold for Xτ which we can now identify with the Gτ

u-orbit of
Υ in gτu. Let O−τ denote this orbit (this is analogous to the definition of O
in Section 2.3). We can sum up the above results as follows:

Xτ ' (G/Q)τ ' (Gu/(Gu ∩ L))τ ' Gτ
u/(G

τ
u ∩ L) ' Gτ

uΥ ' O−τ (41)

It should be clear by now that Xτ and X share a lot of the same properties.
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The above sequence of isomorphism summarizes that the analogy holds for
all arguments from Section 2.3. The following lemmas, can be seen as the
τ -analogues of Sections 2.5 to 3.3.

Lemma 60. The Kähler form of Theorem 28 is τ -sesquilinear i.e. for x ∈ X
and Z,W ∈ g, we have 〈ξτZ , ξτW 〉τx = 〈ξZ , ξW 〉x.

Proof. Let Qx = gQg−1 with some g ∈ Gu. From Υx = Ad(g)Υ we get
τ(Υx) = Ad(τg)τΥ. Since Υ ∈ t−τu we get τΥ = −Υ and we obtain τ(Υx) =
−Ad(τg)Υ = −Υτx.

Recall that nx is defined as Ad(g)nq (see Section 2.3) and τnq = nq. It
follows that ñτx = τ ñx. When we plug both of these formulas into Equation
14, we obtain the following:

〈ξτZ , ξτW 〉τx = −2iB(Υτx, [(τZ)ñτx , θ(τW )ñτx ])

= −2iB(−τΥx, [τ(Zñx), θτ(Wñx)])

= 2iB(τΥx, τ [(Zñx), θ(Wñx)])

= 2iB(Υx, [(Zñx), θ(Wñx)]) = 〈ξZ , ξW 〉x

Here we used Lemma 2 and that τ and θ commute.

Lemma 61. The function f+ on X is τ -invariant.

Proof. It follows from Υτx = −τΥx (see proof 60) that µGu(τx) = −τµGu(x)
(for definition, see Section 3.1). Since τ commutes with θ and σ, we see that
projection onto K0 = Gσθ ∩Gσ is τ -equivariant. The result now follows from
Lemma 2:

f+(τx) = ||µK0(τx)||2B = || − τµK0(x)||2B = ||µK0(x)||2B = f+(x)

Lemma 62. The vector field ∇f+ is τ -invariant.

Proof. It follows from Lemma 60 that the Riemannian metric g is τ -invariant
(it is the real part of a τ -sesquilinear form). By Lemma 61 df+ is a τ -invariant
1-form from which the result follows (see also Lemma 37).

Corollary 63. (a) Let x ∈ Xτ . Then ∇f+(x) is tangent to Xτ and in
particular: ∇(f+|Xτ ) = (∇f+(x))Xτ as vector fields on Xτ .
(b) The maps π± : X → C are τ -equivariant. This yields that π± : Xτ → Cτ
is a well defined, surjective map.
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Lemma 64. Let x ∈ Xτ . The following are equivalent:
(a) x is a critical point of f+.
(b) x is a critical point of f+|Xτ .
(c) qx contains a τ, σ, θ-stable Cartan algebra.

Proof. (a) ⇔ (b) The statement (a) implies (b) is trivial, so assume (b).
Then ξZf

+(x) = 0 for all Z ∈ gτu. Hence, we need to prove that ξZf
+(x) = 0

for all Z ∈ g−τu .

By Lemma 31 we obtain−1
2
ξZf

+(x) = B(Z, [Υx, σΥx]) = B(τZ, τ [Υx, σΥx]).
In the last step we used Lemma 2 and the observation that B(Z, [Υx, σΥx])
is real since −1

2
ξZf

+(x) is real. We have τZ = −Z by definition from which
we get ξZf

+(x) = B(−Z, τ [Υx, σΥx]).
From Υx = gΥg−1 for a g ∈ Gτ

u, we get the following:

τ [Υx, θΥx] = [τΥx, τθΥx]

= [Ad(τg)τΥ, θAd(τg)τΥ]

= [−Ad(g)Υ, θ(−Ad(g)Υ)] = [Υx, θΥx]

Hence, we obtain−1
2
ξZf

+(x)−B(Z, [Υx, σΥx]) which together with−1
2
ξZf

+(x) =
B(Z, [Υx, σΥx]) implies ξZf

+(x) = 0 for all Z ∈ g−τu . We conclude that
ξZf

+(x) = 0 holds for all Z ∈ g−τu , hence x is a critical point of f+.
(a) ⇐ (c) This follows from Theorem 32.
(a) ⇒ (c) Let x ∈ Xτ be a critical point of f+. Define the subgroup
W = ZG(Υx,σ) ∩ ZG(Υx,−σ). It follows as a corollary from Lemma 21, that
the subgroup W is inside Qx (the connected Lie subgroup of G associated to
qx). The elements Υx and σΥx are semisimple (see the proof of Theorem 33).
By [Hum11, Section 2.2] it follows that W is a reductive group. It follows
from Theorem 73 (the proof of which is postponed to Section 5.2) that qx
contains a τ, σ, θ-stable Cartan subalgebra.

Lemma 65. For x ∈ Xτ , ∇f±(x) is tangent to Gτ
0x and Kτx.

Proof. Since iΥx ∈ qx, we see that σ(iΥx) + qx = iΥx + σ(iΥx) + qx. Notice
the the right hand part lies in g0. From τΥx = −Υx we get iΥx ∈ gτ . Since
σ and τ commute we see that iΥx + σ(iΥx) is fixed by τ and since qx is
τ−stable (Lemma 64), we see that iΥx + σ(iΥx) + qx ∈ gτ0. Since ∇f+(x)
is tangent to the G0-orbit of x in X and since ∇f+(x) is tangent to Xτ by
Corollary 63, we get that ∇f+(x) is tangent to the Gτ

0-orbit of x in Xτ . A
similar argument can be made for the Kτ -orbit.
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In the following lemma, we will use the same notation as in Section 3.2.

Lemma 66. Let x ∈ Cτ which is the set of critical points of f+|Xτ . The
following statements hold:
(a) V τ = Tx(X

τ ),
(b) V 1τ = Tx(K

τ
0x),

(c) V 2τ is the orthogonal complement to V 1τ in Tx(G
τ
0x),

(d) V 3τ is the orthogonal complement to V 1τ in Tx(K
τx),

(e) Tx(G
τ
0) + Tx(K

τ ) = Tx(X
τ ),

(f) Tx(G
τ
0) ∩ Tx(Kτ ) = Tx(K

τ
0 ),

(g) Hessx(f
+)|V τ×V 1τ = 0,

(h) Hessx(f
+)|V 2τ×V 3τ = 0,

(i) Hessx(f
+)|V 2τ×V 2τ is negative definite,

(j) Hessx(f
+)|V 3τ ,V 3τ is positive definite.

Proof. It follows from Equation 41 that for U ⊂ G, we obtain (TU)τ ' TU τ .
From this rule, statement (a) - (f) become a direct result of statements in
Section 3.2. Similarly, statement (g) - (j) follows from Theorem 46 with the
observation that Hessx(f

+|Xτ ) = Hessx(f
+)|TxXτ×TxXτ .

The above proposition tells us that for x ∈ Cτ , Hessf+(x) is non degener-
ate on the normal bundle to the Kτ

0 -orbit of x in Xτ . Hence, the topological
arguments from Lemma 48 are still valid which gives is the following corol-
lary:

Corollary 67. Cτ contains finitely many Kτ
0−orbits.

It should be clear by now that a lot of the arguments above, follow directly
from taking the fixed points under τ of results obtained in Section 2.3 to 3.3.
The arguments from Chapter 4 apply to the present context as well and we
see that the proof for “real Matsuki correspondence” or “τ -fixed point version
of Matsuki correspondence”, is analogous to that of the complex case. Hence,
if we take the notation from Section 4.3, we get the following result:

Theorem 68. (a) There is a bijection between the following sets:

{G′0
τ
-orbits in Xτ} ←→ {K ′0

τ
-orbits in Cτ}

β+ 7−→ β+ ∩ Cτ = π+(β+)

(π+)−1(β) = Gτ ′

0 c ←− [ Kτ ′

0 c = β
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For a G′0
τ -orbit β+, β = β+ ∩ Cτ is the unique K ′0

τ -orbit in β+ on which
f+|β+ assumes a maximum value.
(b) There is a bijection between the following sets:

{K ′τ -orbits in Xτ} ←→ {K ′0
τ
-orbits in Cτ}

β− 7−→ β− ∩ C = π−(β−)

(π−)−1(β) = K ′
τ
c ←− [ K ′0

τ
c = β

For a K ′τ -orbit β−, β = β− ∩ Cτ is the unique K ′0
τ -orbit in β− on which

f+|β− assumes a minimal value.
(c) The above defined mappings yield a bijection between the following sets:

{G′0
τ
-orbits in Xτ} ←→ {K ′τ -orbits in Xτ}

Theorem 69. (a) Let α+ and β− be G′0
τ - and K ′τ -orbits respectively. The

following are equivalent:

(i) α+ and β− are in duality.
(ii) α+ ∩ β− ∩ Cτ 6= ∅

(iii) α+ ∩ β− contains exactly one K ′0
τ−orbit.

(iv) α+ ∩ β− 6= ∅ and f+ is constant on α+ ∩ β−.

(b) Let α and β be two K ′0
τ -orbits in Cτ .

α+ ⊂ Cl(β+)⇔ α− ∩ β+ 6= ∅ ⇔ β− ⊂ Cl(α−)

Here, Cl denotes the topological closure in Xτ . If α+ ⊂ Cl(β+) and α 6= β,
then f+(α) < f+(β).
(c) Let α be a K ′0

τ -orbit of Cτ . The flow yields the following two continuous
mappings: γ : (−∞,∞]× α+ → α+ and γ : [−∞,∞)× α− → α−. Thus the
orbits of K ′0 in Cτ , are strong deformation retracts of the corresponding G′0

τ -
and K ′τ -orbits in Xτ via the gradient flow of f+. In particular, restricting
π+ and π− to any G′0

τ - respectively K ′τ -orbit is continuous.

5.2 A τ, σ, θ-stable Cartan subalgebra in a complex re-
ductive group

In this section, we will complete the proof of implication (a)⇒ (c) of Lemma
64. We will prove that on a complex reductive group with commuting com-
plex conjugations τ, σ, θ with θ being a Cartan, there exists a τ, σ, θ-stable
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Cartan subalgebra (Theorem 73). In order to prove this, we will first show
that a τ, σ, θ-stable Cartan subalgebra exists in a complex semisimple Lie al-
gebra under certain conditions (Theorem 72). Using this result, we will prove
the statement on Lie algebra level which implies the result on Lie group level.
We will use the following notation: τ ′ = τθ, σ′ = σθ and gu = gθ.

In order to prove Theorem 72, we require the following two lemmas.

Lemma 70. The following statements are equivalent:
(a) Every (σ′, τ ′)−stable split Cartan subalgebra in g is trivial.
(b) g−σ

′ ∩ g−τ
′
= 0.

Proof. (a) ⇒ (b) Assume (a) and assume that (b) is false. Then the space
g−σ

′ ∩ g−τ
′

is non-trivial and since θ commutes with both σ′ and τ ′, we see
that the space is θ-stable. This yields the following decomposition:

g−σ
′ ∩ g−τ

′
= n ∩ g−σ

′ ∩ g−τ
′ ⊕ igu ∩ g−σ

′ ∩ g−τ
′

= g−σu ∩ g−τu ⊕ i(g−σu ∩ g−τu )

We obtain g−σu ∩ g−τu 6= 0. Let X ∈ g−σu ∩ g−τu be non zero. Then CX is a
non-trivial (σ′, θ′)stable Cartan subalgebra in g−σ

′ ∩ g−τ
′

which contradicts
(a).

(a) ⇐ (b) We will prove this by contraposition. Assume that (a) is false and
let t ⊂ g be a non-trivial (σ′, τ ′)−stable split Cartan subalgebra in g. There
is a non zero X ∈ t and by assumption X ∈ g−σ

′ ∩ g−τ
′

i.e. (b) is false.

Lemma 71. Let u be a compact Lie algebra and let σ be a conjugation on
this algebra. Let t−σ be a maximal abelian subspace of u−σ and let t be a
maximal abelian subalgebra in u containing t−σ. Then t is σ-stable.

Proof. Let X ∈ t be non zero and notice X−σX ∈ t−σ by maximality of t−σ

in u−σ. It follows from σ(X) = X − (X − σX) ∈ t + t−σ = t that σ(t) ⊂ t,
hence t is σ-stable.

Theorem 72. Let g−σ ∩ g−τ = 0. Then there exists a Cartan subalgebra
t ⊂ g that is τ, σ, θ-stable.

Proof. Since the conjugations commute, u = gθ is a τ, σ-stable subalgebra
of gR. On u, the involutions τ ′ and σ′ reduce to τ and σ and we obtain the
following decomposition of u:

u = uσ ∩ uτ ⊕ uσ ∩ u−τ ⊕ u−σ ∩ nτ
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Notice that u−σ∩u−τ = 0 by assumption. Choose a maximal abelian subspace
t−σ in u−σ ∩ uτ and a maximal abelian subalgebra t−τ in uσ ∩ u−τ . Notice
that [uσ, u−σ] ⊂ u−σ and that [uτ , u−τ ] ⊂ u−τ . We obtain the following:

[uσ ∩ u−τ , u−σ ∩ uτ ] ⊂ u−σ ∩ u−τ = 0

This result implies that t−σ⊕ t−τ is maximal abelian in uσ∩u−τ ⊕u−σ∩uτ =
u−στ . Let t be a maximal torus in n containing t−σ⊕ t−τ . We will prove that
t is σ- and τ -stable.

Let X ∈ t. Then X − σX commutes with t−σ and belongs to u−σ =
u−σ ∩ uτ ⊕ u−σ ∩ u−τ = u−σ ∩ uτ . By maximality of t−σ in u−σ, it follows
that X − σX ∈ t−σ which implies X − σX ∈ t. From X ∈ t we obtain that
σX = X − (X − σX) ∈ t which proves that t is σ-stable. That t is τ -stable
follows in an analogous fashion.

We have obtained that t is σ- and τ -stable Cartan subalgebra. This
implies that tC = t⊕ σt is a τ, σ, θ-stable Cartan subalgebra of uC = g.

Theorem 73. Let W be a complex reductive group with three commuting
complex conjugations τ, σ, θ where θ Cartan. Then W contains a τ, σ, θ-stable
Cartan subalgebra.

Proof. Let A be a maximal σ′, τ ′-stable split Cartan subalgebra i.e. for a ∈
A, σ′(a) = τ ′(a) = a−1. It follows from [Hel01, 11.3] that such a Cartan
subalgebra exists and that we may assume that it is θ-stable as well. Let
H = ZW (A) be the center of A in W which is τ, σ, θ-stable. Moving over to
Lie algebra level, W being reductive allows us the write the Lie algebra h of
H, as a direct product of the Lie algebra a of A, and a direct product of simple
Lie algebras h1×· · ·×hn. Since a is τ, σ, θ-stable, it suffices to find a maximal
τ, σ, θ-stable Cartan subalgebra in h1 × · · · × hn. Notice that h1 × · · · × hn
has no non trivial σ′, τ ′-stable split Cartan subalgebra by construction, hence
Lemma 70 and Theorem 72 yield the desired Cartan subalgebra.

5.3 Matsuki correspondence for real semisimple Lie
groups

The complex Matsuki correspondence is about a complex (connected) semisim-
ple Lie group G, equipped with commuting conjugations σ,θ of which θ is

70



also Cartan. This gives rise to a real form Gσ (previously denoted G0) and
a complex subgroup Gσθ (previously denoted K). Let Q be a parabolic sub-
group of G. The complex Matsuki correspondence relates Gσ- and Gσθ-orbits
in G/Q via Gσ ∩Gσθ-orbits in G/Q.

For real Matsuki correspondence there is one additional complex con-
jugation τ which commutes with both θ and σ and such that the parabolic
subgroup Q is τ -invariant. Then Gτ is a real form of G and Gτ/Qτ a real flag
manifold. The real Matsuki correspondence relates (Gτ )σ- and (Gτ )σθ-orbits
on Gτ/Qτ via (Gτ )σ ∩ (Gτ )σθ-orbits in Gτ/Qτ .

Notice that in both cases the starting point is a complex Lie group G. In
this section will describe the real Matsuki correspondence in terms of a real
(connected) semisimple Lie group G0, two commuting involutions σ0 and θ0

where θ0 is a Cartan involution on G0 and a parabolic subgroup Q0 of G0.
Let g0 be the Lie algebra of G0, and let q0 be the Lie algebra of Q0. Notice
that Q0 = NG0(q0).

Let G′0 be a connected real semisimple Lie group covering G0 via ϕ : G′0 →
G0. Define q′0 as ϕ−1

∗ (q0) where ϕ∗ denotes the differential map of ϕ. Then
Q′0 = NG′0

(q′0) is a parabolic subgroup of G′0 and observe Q′0 = ϕ−1(Q0).
From this result we get an induced diffeomorphism ϕ : G′0/Q

′
0 → G0/Q0.

Hence, we are free to choose a specific covering group. Let g = (g0)C and let
G be the simply connected complex semisimple Lie group G with Lie algebra
g. Let τ : g→ g be the complex conjugation of g such that g0 = gτ .

Define θ = (θ0)Cτ . By Corollary 13, θ is a complex conjugation of g. Let
g0 = h0 ⊕ q0 be the decomposition of g0 with respect to σ0 i.e. h0 = gσ00 and
q0 = g−σ00 . Define σ = (σ0θ0)Cτ , which is an conjugation of g by construction.

Lemma 74. The conjugations σ and θ commute.

Proof. By Corollary 13, τ commutes with θ and it is clear that (σ0)C and θ
commute. Notice that θ0 leaves the decomposition g = g0 ⊕ ig0 = gτ ⊕ g−τ
fixed (same argument as for Corollary 13) and since τ and (σ0)C are linear,
it follows that they commute. Hence, all elements that arise in the definition
of σ and θ commute from which the result follows.

Lemma 75. The conjugation σ on g defines a real form gσ on g called the
Flensted-Jensen real form.
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Proof. Out of the definition of σ, we see that gσ = gσ0θ00 ⊕ ig−σ0θ00 . Using the
decompositions of g0 associated to σ0 and θ0, we get the following:

gd0 = gσ0θ00 ⊕ g−σ0θ0 = (k0 ∩ h0)⊕ (p0 ∩ q0)
⊕

i((k0 ∩ q0)⊕ (p0 ∩ h0)) (42)

It is clear from the above expression, that the orthogonal complement of gσ

is igσ.

Since σ and θ commute, the Lie subalgebra of gσ given by gθ ∩ gσ, is
compact and is maximal as such. From Equation 42 we obtain gσ ∩ gθ =
(k0 ∩ h0)

⊕
i(p0 ∩ h0). Let h denote (h0)C, then the maximally compact

subalgebra of gd0 is given by h ∩ gσ. Notice that h = (gθ0)C = g(θ0)C . Since
σ0 and θ0 commute with each other, (σ0)C and (θ0)C commute as well. This
implies σθ = (σ0)C and hence h = gσθ.

So at this point we have a complex (connected) semisimple Lie group G
and complex commuting conjugations σ, θ, τ on G where θ is Cartan. Notice
that Q = NG(q0) is a parabolic subgroup of G that is τ -stable and such that
Qτ = Q0. By Theorem 68, there is a duality between the Gσ ∩ Gτ - and
Gσθ ∩ Gτ -orbits in Xτ ' Gτ/Qτ ' G0/Q0. Two orbits are dual when their
intersection equals exactly one Gσθ ∩Gσ ∩Gτ -orbit in Xτ .

Let us examine the Lie algebras of the subgroups that come out of these
intersections. The first intersection equals gσ∩gτ = gσ0θ00 ⊕ig−σ0θ00 ∩g0 = gσ0θ00

and the second intersection equals gσθ ∩ gτ = h ∩ g0 = h0. The third inter-
section equals gσθ ⊕ gσ ⊕ gτ . By intersecting with gτ , we are restricted to
the case that τ equals the identity. Hence the intersection equals gσ0θ00 ∩ gσ00 .
We end up with correspondence between Gσ0θ0

0 - and Gθ0
0 -orbits in G0/Q0 via

Gθ0
0 ∩Gσ0θ0

0 -orbits of G0/Q0. Hence, we have established Matsuki correspon-
dence for real (connected) semisimple Lie groups.
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6 Real and complex Matsuki correspondence

for G = SL(2,C)
To illustrate Matsuki correspondence, we have studied Matsuki correspon-
dence for the complex semisimple Lie group SL(2,C) in Section 1.2. In
Section 6.1 we will examine Matsuki correspondence for the real semisimple
Lie group SL(2,R). The calculations of the fixed point groups and orbits for
both groups, can be found in Sections 6.2 and 6.3.

6.1 Matsuki correspondence for SL(2,C)

In this section we shall describe Matsuki correspondence for the real case
(Theorem 68).

Let the notation be as in section 1.2. For the real version of Matsuki corre-
spondence we require a third conjugation. Let τ be the complex conjugation
associated to the real form SL(2,R) in SL(2,C), hence:

τ

(
a b
c d

)
=

(
a b

c d

)
Let the subscript 0 denote the fixed point set with respect to τ : Gτ = G0 =
SL(2,R). Analogous to Section 1.2 we get an action of G0 on X = G/P

where P denotes the stabilizer of ∞ in Ĉ. It follows from Equation 41 that
we may restrict this G0 action to Xτ ' G0/P0 and it is straightforward to

see Xτ = R̂. The action of G0 onto Xτ is given by the restriction of the
action described in Equation 1.

By Theorem 68 there is the one-to-one correspondence between Gσ
0 - and

Gσθ
0 -orbits in G0/P0 ' R̂. Two orbits are dual when their intersection equals

precisely one Gσθ
0 ∩Gσ-orbit. Table 3 will give an overview of the fixed point

sets and their orbits in R̂, Table 4 contains the intersections of Gσ
0 - and

Gσθ
0 -orbits.
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Table 3: The fixed point groups with their orbits in R̂

Gσ
0

{
±
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)
: t ∈ R

}
Orbits: • R̂ \ [−1, 1]

• (−1, 1)
• {+1}
• {−1}

Gσθ
0

{(
r 0
0 r−1

)
: r ∈ R∗

}
Orbits: • {0}

• {∞}
• R+

• R−

Gσθ
0 ∩Gσ

{
±
(

1 0
0 1

)}
Orbits: {r} for every r ∈ R̂

Table 4: Intersections of Gσ
0 - and Gσθ

0 -orbits

G
σ
θ

0
-orb

its
→

Gσ
0 -orbits →

∩ R̂ \ [−1, 1] (−1, 1) {+1} {−1}

{0} ∅ {0} ∅ ∅
{∞} {∞} ∅ ∅ ∅
R+ [1,∞) (0, 1) {1} ∅
R− (−∞,−1] (−1, 0) ∅ {−1}

The intersections which consist of precisely one Gσθ
0 -orbit are marked red.

Notice that there are multiple intersections which consist of more than one
Gσθ

0 -orbit. We get the following duality:

• R̂ \ [−1, 1]←→ {∞}

• (−1, 1)←→ {0}

• {+1} ←→ R+

• {−1} ←→ R−
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6.2 Calculating the fixed points

We will calculate the groups of fixed points used in the previous two sections.
For the fixed points, the real case follows directly from the complex case by
intersection with Gτ = SL(2,R). For this reason we will only calculate the
fixed points in the complex case.

Let’s start by calculating Gσ. By Equation 2 this group consists of the
matrices in G that satisfy the following equation:(

a b
c d

)
=

(
d c

b a

)
We obtain a = d and b = c. Using this we can express the group of fixed
points in the following way:

Gσ =

{(
a b

b a

)
: |a|2 − |b|2 = 1 for a, b ∈ C

}
= SU(1, 1)

Using Equation 3, we can do an analogous calculation for Gσθ:(
a b
c d

)
= σθ

(
a b
c d

)
= σ

(
d −c
−b a

)
=

(
a −b
−c d

)
Hence, we obtain a = d, b = −b and c = −c. We get b = c = 0 and since we
are working in G, we get d = a−1. Hence we get the following expression for
Gσθ:

Gσθ =

{(
a 0
0 a−1

)
: a ∈ C∗

}
Finally, an expression for Gσθ ∩ Gσ can be found by taking the intersection
of the expressions above:

Gσθ∩Gσ =

{(
a 0
0 a

)
: a ∈ C∗ such that a = a−1

}
=

{(
eit 0
0 e−it

)
: t ∈ R

}

6.3 Calculating the orbits

In this section we will calculate the relevant orbits in X and Xτ that were
used in Sections 1.2 and 6.1 respectively.
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Notice that the subgroups Gσ
0 , Gσθ

0 and Gσθ
0 ∩ Gσ

0 are equal to the sub-
groups Gσ, Gσθ and Gσθ ∩ Gσ intersected with G0. The orbits of the inter-
section of the subgroups, equal the intersections of the orbits of subgroups
since the conjugations commute. Hence, the fixed point groups of the real
case are obtained by intersecting the fixed point groups of the complex case
with G0. The orbits are obtained by taking the intersection of the orbits in
the complex case with the orbit of G0 in Xτ which equals R̂.

Notice that the amount of orbits may change when we move from the
complex to the real case and that connectedness of the orbit may be lost.
The Gσ-orbits will turn out to be the complicated ones. We will first describe
the Gσθ- and Gσθ ∩Gσ-orbits.

Let z ∈ Ĉ. We will first calculate the Gσθ-orbits. The action of g ∈ Gσθ

on z is described by Equation 1 and combining this with the results from
Section 6.2 we get the following:

gz =

(
a 0
0 a−1

)
z =

az + 0

0z + 1
a

= a2z

It is immediate that for z ∈ C∗, the orbit equals C∗. It is also clear that
z = 0 and z = ∞ are stabilized by Gσθ and we obtain the orbits described
in Table 1. The Gσθ ∩Gσ-orbits follow in analogous fashion.

We will tackle the Gσ-orbits in Ĉ in several lemmas.

Lemma 76. Every Gσ-orbit in Ĉ is invariant under rotation i.e. invariant
under multiplication by eit with t ∈ R.

Proof. Let a, b ∈ C satisfy |a|2 − |b|2 = 1 and let a be described in polar
coordinates as ρeit. Using Equation 1, we can do the following calculation:(

a b

b a

)
z =

az + b

bz + a
=
ρeitz + b

bz + ρeit
=
ρz + be−it

beitz + ρ
· e

it

e−it
=
ρz + be−it

be−itz + ρ
· e2it

By Section 6.2, the matrix on the left is in Gσ. Define b̃ = be−it and notice
that |a|2 − |b̃|2 = |a|2 − |b|2 = 1. Hence, we can describe the quotient on the
right hand side as an element of the Gσ-orbit of z:

ρz + be−it

be−itz + ρ
=

(
a b̃

b̃ a

)
z

This implies that every rotation of an element of a Gσ-orbit, is inside the
same Gσ-orbit.
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By letting b and z have the same angle with respect to a real line, we
obtain some nice results:

Lemma 77. Let b ∈ C be such that ρ2 − |b|2 = 1 and let b = yeit be its
polar decomposition. Let z = reit ∈ C for some r ∈ R+ ∪ {0}. The following
formula holds:

f(r, y) :=

∣∣∣∣( ρ b

b ρ

)
z

∣∣∣∣ =

√
1 + y2r + y

yr +
√

1 + y2
(43)

Proof. We obtain the following by applying Equation 1:∣∣∣∣( ρ b

b ρ

)
z

∣∣∣∣ =

∣∣∣∣ ρreit + yeit

yeitre−it + ρ

∣∣∣∣ =
|ρreit + yeit|
|yr + ρ|

=
ρr + y

yr + ρ

Plugging in ρ =
√

1 + y2 gives the desired result.

Lemma 78. The function f(r, y) has the following properties; let y, r ≥ 0.
(a) For a fixed r, f(r, y) is continuous in the second parameter for y ∈ [0,∞).
(b) For a fixed r, limy→∞ f(r, y) = 1 and f(r, 0) = r.
(c) For 0 ≤ r < 1, f(r, y) is monotonically increasing in y. For r = 1, f(r, y)
is constant in y. For r > 1, f(r, y) is monotonically decreasing.

Proof. (a) Since yr +
√

1 + y2 ≥ 1, the continuity follows from composition
of continuous functions.

(b) Notice that limy→∞

√
1+y2

y
= 1. Multiplying both the numerator and

denominator by 1
y

yields the result.
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(c) We require the y-derivative of f(r, y):

∂yf(r, y) = ∂y
1

yr +
√

1 + y2
(
√

1 + y2r + y)

= −
r + y√

1+y2

(yr +
√

1 + y2)2
(
√

1 + y2r + y)

+
1

yr +
√

1 + y2
(1 +

ry√
1 + y2

)

=
1

(yr +
√

1 + y2)2

(
−(r +

y√
1 + y2

) · (
√

1 + y2r + y)

+ (yr +
√

1 + y2) · (1 +
ry√

1 + y2
)

)

=
1

(ry +
√

1 + y2)2
· 1− r2√

1 + y2

The term on the left is positive, the sign of the term on the right depends
on 1− r2. For 0 ≤ r < 1 we get 1− r2 > 0, for r = 1 we get 1− r2 = 0 and
for r > 1 we get 1− r2 < 0. This implies the desired result.

Theorem 79. The Gσ-orbits in Ĉ are listed in Table 1.

Proof. Let z ∈ C with |z| = 1. By Lemma 76, all elements of length 1 lie
inside this orbit. By the following reasoning, the orbit can’t be larger then
this circle:∣∣∣∣( a b

b a

)
eit
∣∣∣∣ =

∣∣∣∣aeit + b

beit + a

∣∣∣∣ =

∣∣∣∣aeit/2 + be−it/2

beit/2 + ae−it/2

∣∣∣∣ =

∣∣∣∣∣ ã+ b̃

b̃+ ã

∣∣∣∣∣ = 1

Here we use ã = aeit/2 and b̃ = be−it/2. Hence, the Gσ-orbit of any element
of the unit circle, equals the unit circle.

Let z = 0 and let c ∈ R such that 0 < c < 1. By Lemma 78 and the
Intermediate Value Theorem, we know that there will be a g ∈ Gσ such that
|gz| = c. By Lemma 76 this implies that the Gσ-orbit of z will at least
contain the open unit disk. Notice that the boundary of the disk already a
full Gσ-orbit, hence it cannot be contained in the same orbit as the open unit
disk.
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Since SU(1, 1) is connected (it is isomorphic to SU(2)) its orbit through 0
is connected as well (the action is continuous), which implies that any |z| > 1
cannot be part of this orbit. Hence, the orbit of any element of the unit disk,
equals the unit disk.

Finally, let z =∞. We get the following:(
a b

b a

)
z =

a

b

It follows from |a|2 − |b|2 = 1 that |b| < |a|. For b = 0, z is fixed. For b 6= 0,
we see that |a

b
| > 1. For these values we can use Lemmas 78 and 76 in the

same way as above. We conclude that the Gσ-orbit of an element z ∈ Ĉ with
|z| > 1, equals the z ∈ Ĉ with |z| > 1.
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