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Abstract

Data is of little use when it stays inside one program’s memory – almost al-
ways, information needs to be serialised for storage, or sent to other programs
via a low-level interface. Binary storage format and communication protocol
definitions strive to establish a precise description of files or messages in or-
der to ensure senders and receivers will agree on their interpretation of their
communication. Unfortunately, many standards rely on complex and poten-
tially ambiguous descriptions, some purely textual, some based on C struct
definitions, to accomplish this. As a result, there can be multiple subtly differ-
ent implementations conforming to these specifications, leading to hard-to-find
bugs. A more formal approach has the potential to avoid this issue by fixing
formats rigidly.

Agda is a dependently typed total functional programming language and a
proof assistant. We develop a domain-specific language embedded in Agda that
is both precise enough to avoid any confusion and powerful enough to describe
real-world formats and protocols. The former is ensured by a pair of encoding
and decoding algorithms (a pretty-printer and a parser), accompanied by a proof
that they are (half)inverses; the latter is demonstrated by describing the format
of IPv4 packets in this EDSL.
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Chapter 1

Introduction

The ever-increasing popularity of web applications, cloud solutions, and thin
clients are but a few indicators of the general trend towards software systems
that distribute computation across multiple computing units. At the same time,
as more and more administrative tasks are automated, long-term storage and
accessibility of data becomes increasingly important. What these issues have in
common is the need to communicate data effectively and without error, whether
the communication takes place between clients and servers or past, current, and
future incarnations of the same software system. This communication almost al-
ways involves translating between a high-level representation of data, composed
of a programming language’s basic data structures, to a low-level representation
like strings of letters or streams of bits.

Traditionally, protocols for Internet communication are published as Re-
quests for Comments, many-page documents that attempt to use a combina-
tion of plain written English, punctuation-based diagrams and common pro-
gramming constructs such as C structs and unions to describe the format of
messages. This method of description, though consistent with long-standing
documentation practices, unfortunately allows for ambiguities and internal in-
consistencies.

Many format description languages have been created to alleviate these
concerns by providing more formal, computer-processable descriptions of for-
mats. Examples range from abstract constructs such as Backus-Naur gram-
mars, through complex and thoroughly-engineered standalone languages such
as ASN.1 and XML Schema, to implicit format descriptions like attribute-
annotated .NET classes.

We set out to design a format description language that is descriptive (usable
for describing existing protocols), embedded in a general-purpose programming
language (Agda), and verified (equipped with algorithms that provenly keep
data consistent during round trips).

In this chapter, we describe various existing languages and their relative
strengths and weaknesses, after which we use the next chapter to introduce the
surprisingly complex example that led to the creation of this language. We
present and explore our design in chapter 3, and verify that it is sufficiently
powerful to implement the motivating example in chapter 4. Finally, in chap-
ter 5, we point out its place in the extensive design space of format description
languages.
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1.1 Conventions
All code in this text is valid or abbreviated Agda code, to be used in conjunction
with version 2.5.1.1 of Agda, unless noted otherwise.

The code uses version 0.12 of the Agda Standard Library. The following
imports are assumed to be in effect throughout the entire text:

open import Algebra
open import Category.Monad
open import Data.Bool
open import Data.Empty
open import Data.Fin as F using (Fin; toℕ)
open import Data.List as L using (List)
open import Data.Maybe
open import Data.Nat as N
import Data.Product as P
open import Data.Unit using (⊤; tt)
open import Data.Vec as V using (Vec)
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PE

using (_≡_; refl; sym; cong)
open import Universe

1.2 Domain-specific languages for formats
Numerous domain-specific languages (DSLs) have been designed for the broad
purpose of describing the format of binary or similarly low-level data, each
tackling the subject from its own perspective and each providing more or less
support for certain formatting mechanisms and constructs.

PacketTypes, a DSL by McCann and Satish [14], has a role “analogous to
‘yacc’, in that it abstracts away the packet grammar into a separate specification
language, and automatically creates recognisers for the packets”. It comes with
the basic primitive type bit and a “repeat 𝑛 times” operator for forming words
of bits. Record syntax, much like the C struct, is available for specifying a
succession of fields (a “product record”) and a choice between many fields (a
“sum record”).

Types can be refined to yield new types; refinements fix values of fields
and allow overlaying of fields with fields of a more restrictive type. Certain
classes of restrictions can be added to data types using where clauses, such
as fieldA#numbytes <= 10. Although arbitrarily dependent types are not
supported, where clauses can express the constraint that the length of one field
must be equal to the value of some earlier field. Interestingly, this feature is not
considered very important, as it is not highlighted in the paper.

PADS, a DSL and related tools by Fisher and Gruber [8], tries to lessen
the development effort needed for the processing of “ad-hoc data”, therefore
focusing less on the formal aspects (e.g. correctness) of the problem. Its syntax
is C-like, with keywords Pstruct and Punion for “product records” and “sum
records”, respectively. The former of these can include literal strings "such
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as this one" which are parsed and pretty-printed as constants. Each field
is processed directly after its predecessor; the Precord modifier lets allows the
user to specify a delimiter to parse and pretty-print between fields.

PADS supports parametrising types by values, in effect a rudimentary form
of dependent types. The example PADS type Puint16_FW(:3 * len:) repre-
sents an unsigned 16-bit number to be read and written to exactly three times
as many characters as the value earlier read or written as len. As expressions
(delimited by colons) can be arbitrary C expressions, this parametrisation is
flexible and powerful; on the other hand, this design decision ties the entire
system to C, which is notoriously hard to analyse and reason about.

Finally, Devil, a DSL and tool package by Mérillon et al. [15], is “an Interface
Definition Language (IDL) for hardware functionalities”. Although its advanced
features focus on various hard-to-write but common procedures used in low-level
IO access, its basic features are conceptually similar to the previous systems: it
provides low-level registers and high-level variables and allows users to describe
how data should be transformed to and from the higher level (“reading” and
“writing”, respectively). It does not seem to contain any form of dependent
typing. Importantly, various forms of verification are supported by Devil tools.
These include verification of the correctness of Devil descriptions as well as
runtime checks in generated code that ensure read data is correctly typed.

PacketTypes, PADS and Devil all come with code generators that can gen-
erate C code for “parsing” data from one description into another from a data
format description.

1.3 An embedded, dependently typed DSL
The previous section explored the field of DSLs for data format descriptions,
all of which use their own particular syntaxes and therefore need custom tools
for all processing and analysis. An embedded DSL, on the other hand, inherits
the tools and knowledge available for the language it is embedded in (the host
language); this is but one of the advantages listed by Hudak [10].

Oury and Swierstra [16, section 3] present, as an example of the power of
dependent types, a prototypical Agda EDSL for describing data types in the
context of parsing and pretty-printing. The advantage of using Agda as a host
language is that the created descriptions can directly be reasoned about in a
well-understood proof framework.

The following subsections discuss the aforementioned EDSL, closely follow-
ing the original presentation. Deviations have been marked as such when sig-
nificant, and we have omitted constructs that are not relevant to our project.

1.3.1 Simple universes
Universes are a fundamental generic programming tool for representing types
and thereby enabling the implementation of algorithms that operate on them.
Universes are necessary because most programming languages – in particular
Haskell and Agda – do not support directly pattern-matching on types. There
are various obstacles for implementing such a feature in the language itself,
such as the possibility that types contain inductive occurrences of themselves or
other types, and that the set of types is open (additional types can be declared

4



at will) while the set of patterns of a function is closed. An (Agda) universe
is a type whose values represent a subset of the set of (Agda) types; clearly, it
is possible to pattern match on such a value. Both Haskell and Agda contain
reflection features that make it possible to create conversions between a type
and its description in some universe.

An extremely simple universe that comes to mind for describing types in a
binary setting is that of all 𝑛-bit binary words, for any 𝑛. As this universe will
later be enhanced to describe formats, we will call it “Format Type” (FT).

data FT₁ : Set where
word : (n : ℕ) → FT₁

A description of a type is hardly useful without a facility for end users to
create values that belong to it. We can implement this either as a function
or as a data type. Both these alternatives have disadvantages: the function
option seems to require a proof-theoretically stronger host language than the
data type option (see section 1.5), while the data type option leads to a data
type that is not strictly positive. Choosing the function option in accordance
with the literature, we get the following interpretation function, which maps a
type description from our universe to its corresponding Agda type:

⟦_⟧₁ : FT₁ → Set
⟦ word n ⟧₁ = Vec Bool n

Note that we can characterise the subset of types that FT₁ describes as
{⟦x⟧ | x ∈ FT₁} ⊂ Set.

Considering that any non-trivial binary format will juxtapose several of these
words, we need to add some kind of combination mechanism. Arguably the
simplest such mechanism – as shown by its prevalence in generic programming
libraries in Magalhães and Löh [13] – is binary products. Universes that allow
inductive construction of products are called closed under products. Adding
binary products yields the following universe and interpretation function, where
P is Data.Product from the standard library:

data FT₂ : Set where
word : (n : ℕ) → FT₂
_×_ : FT₂ → FT₂ → FT₂

⟦_⟧₂ : FT₂ → Set
⟦ word n ⟧₂ = Vec Bool n
⟦ t₁ × t₂ ⟧₂ = ⟦ t₁ ⟧₂ P.× ⟦ t₂ ⟧₂

We could now describe a data format with a 32-bit “source” and “destination
address” – perhaps IPv4 addresses – as follows:

Source+Destination : FT₂
Source+Destination = word 32 × word 32

1.3.2 Parsing and pretty-printing
After a data type has been described using a universe description, it should be
possible to pretty-print and parse values without further ado; in other words,
we expect the following to be available:
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parse : (t : FT₂) → List Bool → Maybe (⟦ t ⟧₂ P.× List Bool)
pretty-print : (t : FT₂) → ⟦ t ⟧₂ → List Bool

Oury and Swierstra describe [16, section 3.5 and 3.4, respectively] both these
functions in detail, and their implementations are uninteresting. Note that, for
lack of space, no relevant correctness proof is given or hinted at, making their
implementations unverified. The kind of correctness that is of primary interest
here is that parsing is a left inverse of pretty-printing:

left-inv : (t : FT₂) → (d : ⟦ t ⟧₂) →
(P.proj₁ <$> parse t (pretty-print t d)) ≡ just d

In words, this represents a round-trip property: if we take a value that
belongs to a format, pretty-print it, then parse it, parsing must succeed and
yield the original value.

Much of the value of the Agda EDSL to be created would come from a
verified implementation, as it is a feature much harder to create – and therefore
usually not present – in specialised DSLs and host languages, and it ensures the
algorithms can be trusted as much as the proof-theoretical correctness of Agda.

1.3.3 Universes with dependencies
As thoroughly argued in the original paper, the simple universe described in
section 1.3.1 is inadequate for describing more interesting formats. A very com-
mon example is a format which first specifies a length, then expects a piece of
data of the given length. Clearly, this does not fit in our fixed-length-words-
and-products universe.

Our universe therefore needs to be expanded with a mechanism for allowing
the type of later members to depend on the value of earlier members; one expects
this to be simple in a dependent host language. Recall the definition of the
dependent product from Data.Product, without universe polymorphism:

record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field

proj₁ : A
proj₂ : B proj₁

Adding P.Σ to the previous universe is similar to adding P._×_. To achieve
this, a small but significant change needs to be made: FT will need to be mutually
dependent with the interpretation function. It is this dependence (a declaration
technicality, not a dependent type) that is forbidden in many host languages,
but fortunately allowed in Agda, by separating the type declarations from the
implementations as follows:

data FT₃ : Set
⟦_⟧₃ : FT₃ → Set

data FT₃ where
word : (n : ℕ) → FT₃
_×_ : FT₃ → FT₃ → FT₃
Σ : (x : FT₃) → (⟦ x ⟧₃ → FT₃) → FT₃
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⟦ word n ⟧₃ = Vec Bool n
⟦ t₁ × t₂ ⟧₃ = ⟦ t₁ ⟧₃ P.× ⟦ t₂ ⟧₃
⟦ Σ t f ⟧₃ = P.Σ ⟦ t ⟧₃ (λ v → ⟦ f v ⟧₃)

This dependent universe is capable of representing the ubiquitous “length
then data” structure. The following represents a 16-bit length field with a
corresponding data field:

Length+Data : FT₃
Length+Data = Σ (word 16) (λ len → word (toℕ (decode len)))

Note that the user is required to be explicit about how to encode the length.
A possible (and common) encoding to be used by the preceding example is
binary encoding, implemented by a pair of functions encode : {l : ℕ} → Fin
(2^ l) → Vec Bool l and its inverse decode. The appearance of the Fin data
type indicates that there is an upper bound to the data’s length. Indeed, as the
length field itself must have a fixed length, there will be such an upper bound
for any given encoding scheme, although of course the field length and encoding
scheme can be chosen so as to make that arbitrarily large.

Note also that Oury and Swierstra [16, section 3.1] choose to add one level of
abstraction by using a more flexible base constructor instead of word. This base
constructor represents more than just the type of 𝑛-bit vectors: its argument
is a value from another universe, the “value universe”. This universe describes
common and easily processable types such as Bool, Char, and Fin n. Parsing and
pretty-printing algorithms for values of these types are defined as two separate
functions, which are then called by parse and pretty-print. Defining the
universe using the base constructor would allow a more simple definition of
Length+Data, at the expense of complicating the explanation of the universe.

1.3.4 Adding derived and uninteresting data
Another common part of both storage and communication formats is derived
information: fields whose values are to be computed from other fields, such
as checksums. Constant data such as separators and version numbers can be
“computed” from the empty set of fields. Naturally, we would like to remove the
burden of this computation from the end user, which also prevents any mistakes
or omissions, making the correctness of parsing and pretty-printing depend only
on the correctness of the format description.

Hence, what we need is a constructor for which the interpretation function
does not require data. Its pretty-printing semantics must allow the user to specify
how its value is to be derived from other data, while its parsing semantics may
simply be skipping the parsed value (parsing it is required to locate the start
of the next value), or verifying that the value is equal to the expected value.
Without further ado, we introduce the calc constructor.

data FT₄ : Set
⟦_⟧₄ : FT₄ → Set

data FT₄ where
word : (n : ℕ) → FT₄
calc : (x₁ : FT₄) → ⟦ x₁ ⟧₄ → FT₄
_×_ : FT₄ → FT₄ → FT₄
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Σ : (x : FT₄) → (⟦ x ⟧₄ → FT₄) → FT₄

⟦ word n ⟧₄ = Vec Bool n
⟦ calc x₁ v ⟧₄ = ⊤
⟦ t₁ × t₂ ⟧₄ = ⟦ t₁ ⟧₄ P.× ⟦ t₂ ⟧₄
⟦ Σ t f ⟧₄ = P.Σ ⟦ t ⟧₄ (λ v → ⟦ f v ⟧₄)

For this new constructor, parse will attempt to read (then discard) a value of
type ⟦ x₁ ⟧₄, while pretty-print will output the constructor’s second argument,
a value of that type. Note that this is a constant value, so it might not be
immediately obvious how calc allows the addition of derived data; it only does
this when used in conjunction with the dependent pair. The following example
demonstrates this, using a function parity : (n : ℕ) → Vec Bool n → Vec Bool 1
to calculate a byte’s parity.

Data+Checksum : FT₄
Data+Checksum = Σ (word 8)

(λ d₁ → calc (word 1) (parity 8 d₁))

1.4 A verified, separate-direction approach
Danielsson [7] describes an approach for creating string-based parsers and pretty-
printers in Agda with the property mentioned in section 1.3.2 by requiring users
to write a separate parser and pretty-printer. The pretty-printer is based on the
standard Hughes approach [11] and is parametrised by the parser, which takes
the shape of a grammar, to enforce the aforementioned round-trip property.
The classical pretty-printing combinators are provided for which the proof of
the property is included, along with a combinator that accepts a “manual” proof
for extensibility. The downside that the pretty-printer and grammar must be
written separately is offset by the built-in ability to format documents in mul-
tiple styles.

1.5 Tools
Agda [3] and Coq [6] are two popular dependently-typed programming lan-
guages, both more or less suitable for data formatting-related development.
Coq, being older, offers better extraction (compilation) facilities than Agda,
but the same property makes it significantly less comfortable to work with: it
lacks convenient mechanisms for a necessary generic programming tool.

The mutual dependence between the universe data type and the interpreta-
tion function in section 1.3 is known as induction-recursion; had we chosen to
implement an interpretation data type instead, we would have had induction-
induction. Agda allows inductive-inductive and inductive-recursive definitions,
while Coq does not. Although Hancock et al. [9] describe a way to convert
small inductive-recursive definitions into indexed data types, which are accept-
able, it is uncertain whether our constructs belong to this category. At the same
time, Altenkirch conjectures [1] that induction-induction is proof-theoretically
no stronger than plain induction, which makes inductive-inductive definitions
preferable to inductive-recursive variants.
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Interestingly, Idris [5], another dependently typed language, has been used
by Brady [4] to combine the ideas of the non-embedded DSL PacketTypes with
dependent types. The resulting language has approximately the same expressive
power as the EDSL described in section 1.3.
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Chapter 2

Motivation and Goals

The previous chapter explored some of the dimensions in the design space of
formatting languages along with a number of existing systems. This chapter
discusses the desired features by introducing the motivating example, as well as
the properties our design should satisfy.

2.1 Desired features
An everyday real-life example of a data format that can not be described within
the EDSL set up in section 1.3 is IPv4 packets. (We will refer to that existing
work as “the EDSL” in this section only.) To justify the claim that communica-
tion protocols contain hard-to-process descriptions, a copy of the representation
of the IPv4 header [17, section 3.1], updated with changes from later RFCs, fol-
lows. In this table, [E] represents the ECN field.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 0 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Version IHL DSCP [E] Total Length

Identification Flags Fragment Offset
Time to Live Protocol Header Checksum

Source Address
Destination Address

Options Padding

To illustrate the deficiencies of the EDSL seen so far, the following diagram
describes the dependencies between the various fields, i.e. which information
is to be derived from what. The uninteresting fields have been greyed out or
ellipsised, and the Data field was added to represent the packet’s data, which
immediately follows the header.
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This diagram reveals three main aspects for which the existing EDSL lacks
descriptive power.
Problem 1: Full-value calculations
The Header Checksum depends on the entire header.

This problem is highly conspicuous and unsolvable without modifications
to the EDSL (that is, all workarounds hurt usability). In general, dependent
type systems allows types to depend on values declared earlier, not later. As
a consequence, the calculation constructor calc (section 1.3.4) only allows a
calculation to refer backward, not forward, and it does not allow the result of a
calculation to be placed in the middle of the input it requires. Note that the
checksum calculation algorithm does not “require its own output to calculate
itself” or approximate the output iteratively; it simply considers the output field
to be filled with zeroes for the purpose of checksum calculation.

Problem 2: High-level and user-defined types
There is a mismatch between the types required by the EDSL (low-level types
such as vectors of booleans) and types that are convenient for specifying second
components (high-level types such as bounded natural numbers).

This problem arises when trying to describe the variable-length fields, Op-
tions and Data. The natural (and only) way to assign a variable length involves
a dependent product (as demonstrated by the Length+Data example in sec-
tion 1.3.3). That entails that the two length fields, Internet Header Length
(IHL) and Total Length, need to be placed in the first component of a depen-
dent product; the Options and Data fields must belong to the second compo-
nent. The length fields will have types word 4 and word 16, and therefore the
second component will be a function that receives values of those two types
in its argument. This is inconvenient for both the end user and the protocol
description developer: the end user needs to manually encode the numbers into
boolean vectors, while the protocol description developer needs to decode those
numbers again to pass into the word constructor. More specifically, the second
component will have to look like (λ c → word (toℕ (decode (getField ... c)))
× ...). Not only is this a usability issue, it also influences correctness: when
the encoding of the fields in the first component changes (perhaps because of
endianness), the decoding in the second component must also change – and
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forgetting to apply such a change twice has actually led to a bug during this
project.

Furthermore, user-defined types, such as data types representing enumera-
tions, cannot be used in the description at all, which is another usability disad-
vantage. The original presentation of the EDSL did include a more flexible base
constructor and corresponding value universe to allow more than just boolean
vectors, but such a value universe is closed, so it can not contain types defined
by format designers.

Problem 3: Awkward concepts
There is a mismatch between the data stored in the Internet Header Length
(IHL) and Total Length fields, and the data available to or of interest to end
users (in the pretty-printing and parsing case, respectively).

This problem is the trickiest to spot, but no less annoying. Even if we
manage to solve the mismatch of type levels just explained, another problem
remains: the concepts in the first component are not appropriate for the end
users. A user interested in pretty-printing arrives knowing the length of the
options that need to be pretty-printed. This user would then have to calculate,
for example, the value of the Internet Header Length manually (this is the
constant 5, representing the length of the mandatory header fields, plus the
length of the options field in 32-bit words); this would then force the Options
field to have the type word (32 * (IHL - 5)), which will require subst and
properties of natural numbers to work with.

The general issue is that the protocol-mandated Internet Header Length
and Total Length are not of any importance to the end user – the length of the
Options and the length of the Data are what they would like to know (during
parsing) or have immediate access to (during pretty-printing). In other words,
we would like to explicitly name the length of the options OL, let the Options
field have the easy-to-process type word (32 * OL), and set the IHL field to the
result of the calculation OL + 5. More generally, we need to allow parsing and
pretty-printing a transformed variant of data, which is of course acceptable if
the transformation is bijective.

In short, our first goal is thus to incorporate into the EDSL (1) calculations
that can range over all data; (2) flexible high-level types; and (3) the ability to
translate between user-friendly and protocol-mandated concepts. A description
of the IPv4 packet format will serve as a demonstration of these extensions.

2.2 Desired properties
In an attempt to formalise the mechanisms of parsing and pretty-printing, Ren-
del and Ostermann [18] introduce the concept of partial isomorphisms (PIs).
They represent a partial isomorphism as a Haskell data type with type argu-
ments 𝛼 and 𝛽 defined as a pair of functions 𝑓 :: 𝛼 → Maybe 𝛽 and 𝑔 :: 𝛽 →
Maybe 𝛼, with the invariant that “if f a returns Just b, g b returns Just a,
and the other way around”. In their section on future work, they say it “would
be interesting to see how the invariants of Iso values could be encoded in a
dependently typed language”; this encoding is actually rather straightforward:
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record PI₁ (A B : Set) : Set where
field

⇨ : A → Maybe B
⇦ : B → Maybe A
left-inv : (a : A) → (b : B) → ⇨ a ≡ just b → ⇦ b ≡ just a
right-inv : (b : B) → (a : A) → ⇦ b ≡ just a → ⇨ a ≡ just b

In this encoding, ⇨ represents 𝑓 and ⇦ represents 𝑔.
The authors do, however, state a caveat:

We will generally not be very strict [precise] with the invariant stated
above (if f a returns Just b, g b returns Just a, and the other way
around). In particular we will sometimes interpret this condition
modulo equivalence classes [sic].

Considering it is Agda’s task (and main virtue) to be very precise, we will
need to be very explicit about any imprecision we want to introduce. Fortu-
nately, what we want to express has been formalised as IsEquivalence and
Setoid in the standard library, and we can define a relaxed variant of partial
isomorphisms as follows.

record PI₂ (A B : Set) (_≈_ : Rel B _)
(isEquivalence : IsEquivalence _≈_) : Set where

SB : Setoid _ _
SB = record { Carrier = B ; _≈_ = _≈_ ;

isEquivalence = isEquivalence }

_≋_ : Rel (Maybe B) _
_≋_ = Setoid._≈_ (Data.Maybe.setoid SB)

field
⇨ : A → Maybe B
⇦ : B → Maybe A
left-inv : (a : A) → (b : B) → ⇨ a ≡ just b → ⇦ b ≡ just a
right-inv : (b : B) → (a : A) → ⇦ b ≡ just a → ⇨ a ≋ just b

Note that the relaxation has only been applied to B-equality. Not only do
the authors only relax the B-side, we can justify it more explicitly by point-
ing out that we’re interested in formatting from a high (A) level to a low (B)
level; we want to allow multiple low-level representations that parse to the same
high-level value, while we are not interested in generating multiple low-level
representations.

We modify the concept of partial isomorphisms slightly to get semipartial
isomorphisms (SPIs), the concept of which is most clearly described by the
following record:

record SPI (A B : Set) : Set where
field

⇩ : A → B
⇧ : B → Maybe A
left-inv : (x : A) → ⇧ (⇩ x) ≡ just x
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This seems to be a weaker concept, considering that it only contains one
property; in fact, it is stronger, as we can implement a conversion from an SPI
to a relaxed PI:

SPI→PI₂ : (A B : Set) → SPI A B → P.∃₂ (PI₂ A B)

This can be a “faithful” conversion, in that we can use just ∘′ ⇩ as ⇨ and ⇧
as ⇦ (so that the SPI and the PI effectively represent the same transformation).
To prove the PI properties, we can choose as the equivalence relation on B the
equality induced by ⇧ (i.e. two low-level values are equal if and only if they
parse to the same high-level value). This “equality induced by a function” can
be found in the standard library as Relation.Binary.On.setoid, and the proof
can be completed in a dozen lines.

Both partial and semipartial isomorphisms form monoids with the identity
isomorphism (that always succeeds and leaves the type unchanged) as the iden-
tity element and straightforward composition of each field as the operation. This
structure ensures that sequential composition is always possible and preserves
the coveted round-trip property. Therefore, we our second goal will be to ensure
that all parts of our system are semipartial isomorphisms.
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Chapter 3

Design

In this chapter, we will apply the techniques from chapter 1 to the problems in
chapter 2, gradually developing a suitable solution. The final design is based on
the dependently typed format descriptions from section 1.3, but separates the
concept of juxtaposition and the concept of extension.

Some data types and functions will be iteratively adjusted throughout several
sections. In these cases, we use identifiers P₁, P₂, …, Pₙ in the Agda code, and
any reference to P in the text is intended as pointing to the latest Pₙ.

3.1 Universe
We set up the following universe:

mutual
infixr 2 _×_
data DT : Set₁ where

leaf : Set → DT
_×_ : DT → DT → DT
Σ : (c : DT) → (⟦ c ⟧ → DT) → DT

⟦_⟧ : DT → Set
⟦ leaf A ⟧ = A
⟦ l × r ⟧ = ⟦ l ⟧ P.× ⟦ r ⟧
⟦ Σ c d ⟧ = P.Σ ⟦ c ⟧ (λ x → ⟦ d x ⟧)

We will often view values of DT (also known as type codes) as “type trees”, in
which each leaf is a leaf that holds a type and the other two constructors are
internal nodes that hold only structural information: just the order (_×_) or the
value-to-type relation (Σ) of subtrees. To avoid confusion, we will use the names
left and right for the first and second components of simple products (_×_),
and the names constant and dependent for the first and second components
of dependent products (Σ). The letters l, r, c, and d will be used as suffixes
for identifiers (of various types) related to left, right, constant, and dependent
components, respectively.

Only to justify calling this a “universe”, we can show this is a universe as
defined by the standard library:
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DT-universe : Universe _ _
DT-universe = record { U = DT ; El = ⟦_⟧ }

We can also restate the Length+Data example from section 1.3.3:

SimpleLength+Data : DT
SimpleLength+Data = Σ

(leaf (Vec Bool 16))
(λ len → leaf (Vec Bool (toℕ (decode len))))

Even this simple example displays the ugliness caused by the lack of high-
level types (problem 2 on page 11): the first (constant) component contains a
binary representation of the length, which needs to be decoded for use in the
second (dependent) component. Because DT allows leaf constructors to contain
arbitrary types, we can instead use “clean”, more principled data types, leading
to a high-level description. In this case, Fin would be the most natural choice
for the first (constant) component:

ProperLength+Data : DT
ProperLength+Data = Σ

(leaf (Fin (2^ 16)))
(λ len → leaf (Vec Bool (toℕ len)))

Considering the task at hand, DT is an exceedingly simple universe, bringing
only two – or, as explained below, one – operations to the table. Its leaves,
on the other hand, contain arbitrary types and therefore encompass all type-
based trickery Agda allows. The advantage of splitting out these concepts into a
separate data type will be shown in section 3.5. Note, however, that the features
offered by DT are more or less equivalent to those offered by Agda’s records:
the universe offers ordered, (possibly) dependent juxtaposition of fields.

We will now discuss a few conspicuous design choices which require further
justification.

DT uses induction-recursion

It is clear that, just like the universe described in section 1.3.3, DT is inductive-
recursive because of the Σ constructor. As discussed in section 1.5, support
for induction-recursion is present in Agda and Idris, but not in Coq, limiting
the portability of this solution. It seems possible to write this universe using
induction-induction by turning ⟦_⟧ into a data type:

mutual
{-# NO_POSITIVITY_CHECK #-}
data DT′ : Set₁ where

leaf : Set → DT′
_×_ : DT′ → DT′ → DT′
Σ : (c : DT′) → (DD′ c → DT′) → DT′

data DD′ : DT′ → Set where
leaf : {A : Set} → A → DD′ (leaf A)
_,′_ : {l r : DT′} → DD′ l → DD′ r → DD′ (l × r)
_,_ : {c : DT′} {d : DD′ c → DT′} →

(x : DD′ c) → DD′ (d x) → DD′ (Σ c d)
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The downside is that DT′ is not strictly positive, as evidenced by Agda’s
(valid) complaint if the pragma is omitted:

DT′ is not strictly positive, because it occurs
in the type of the constructor _,′_
in the definition of DD′, which occurs
to the left of an arrow
in the type of the constructor Σ
in the definition of DT′.

Much of the development described in this text was, uncatastrophically,
carried out using the DT′ definition, which indicates that this might be a “rea-
sonable” definition despite it not being strictly positive, just like traditional
quicksort is a “reasonable” (terminating) definition despite the fact that it
calls itself on a value that is not strictly structurally smaller than the corre-
sponding argument. In practice, DT′ has the distinct advantage that it allows
a developer to pattern-match directly on the value d in a function of type {t :
DT′} → (d : DD′) → ..., which – along with not having to name the implicit
argument – makes quite a few definitions easier to read; on the other hand, this
is a small gain compared to the devastating effects of a “bad” data type can
have, as demonstrated by the canonical Omega example.

DT is rather large (it does not fit in Set)

Allowing arbitrary types in leaf enhances usability: both format designers and
users can use domain-specific plain Agda datatypes directly. It also has not
presented any practical difficulty throughout the project: neither computations
nor proofs seem to become more complex because of the largeness. If required,
the universe can be stratified by adding a separate value universe V : Set and
interpretation function ⟪_⟫ : V → Set and parametrising DT by it, which allows
DT to have type Set.

DT is rather small (Set does not fit in it)

If a user would like to format actual types with this system, she’s out of luck:
the type ⟦ leaf A ⟧ is A, which is of type Set, and therefore a value of that type
cannot be a type itself. If the goal is indeed to format types, the stratification
mentioned above is a suitable solution, as it allows pattern-matching (if V allows
it), while one cannot pattern-match on types. It would also be possible to
parametrise, or even index, DT by a level, at the cost of having to add universe
polymorphism to most functions working with this system.

_×_ is superfluous

Just like P._×_ is defined in terms of P.Σ, _×_ could very easily be implemented
in terms of Σ:

_×′_ : DT → DT → DT
l ×′ r = Σ l (λ _ → r)

The advantage of the separate constructor _×_ lies in the lack of dependencies
between its arguments’ types. This makes it much easier to compute with, and
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especially reason about, than Σ. Understandably, with, rewrite (which is no
longer implemented in terms of with) and instance search have more and more
trouble generating correct functions as the complexity of dependencies increases.
Therefore, the inability to make a function work (or prove a property) for _×_
is a much stronger indicator of the unimplementability of the function (or the
falsity of the property) than the failure to do the same for Σ.

3.2 Parsing and pretty-printing
A downside of allowing the leaf constructor to contain any data type is that
there are many types that cannot be sensibly pretty-printed and parsed (e.g.
function types). We therefore need to define a concept of low-level DTs that
allow pretty-printing and parsing. Furthermore, we would like to define low-
levelness in a way that makes the pretty-printing and parsing algorithms as
simple as possible (with minimal specialised code). The simplest useful defini-
tion of low-levelness is that of being composed only of fixed-length vectors of
bits, represented as boolean values. The following data type encodes this idea:

data IsLowLevel : DT → Set where
instance leaf : {n : ℕ} → IsLowLevel (leaf (Vec Bool n))
instance _×_ : {l r : DT} →

IsLowLevel l → IsLowLevel r → IsLowLevel (l × r)
instance Σ : {c : DT} {d : ⟦ c ⟧ → DT} →

IsLowLevel c → ((x : ⟦ c ⟧) → IsLowLevel (d x)) →
IsLowLevel (Σ c d)

Not having to “state the obvious” is crucial for usability, both for format
designers and end users. The Agda 2.5 instance search mechanism is, in practice,
usually powerful enough to construct instances of IsLowLevel even for the Σ
case, despite the fact that that requires constructing a function. A value of type
IsLowLevel SimpleLength+Data, for the example given in the previous section,
can be found automatically. An instance search can be started for any value
using the it-pattern, which is surprisingly not in the standard library:

it : ∀ {a} {A : Set a} → {{x : A}} → A
it {{x}} = x

When d is a function that pattern-matches on its argument, instance search
refuses to try each case, making it necessary to build the instance manually.
In those cases, it is usually possible to give an instance for the troublesome
cases and let instances for its subtrees and supertrees be found automatically,
as demonstrated in the following example.

IntricateD : (x : ⟦ leaf (Vec Bool 1) ⟧) → DT
IntricateD (false V.∷ V.[]) = leaf (Vec Bool 2)
IntricateD (true V.∷ V.[]) = leaf (Vec Bool 5)

Intricate : DT
Intricate = leaf (Vec Bool 1) ×

Σ (leaf (Vec Bool 1)) IntricateD

IntricateILL : IsLowLevel Intricate
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IntricateILL = it where
IntricateDILL : (x : ⟦ leaf (Vec Bool 1) ⟧) →

IsLowLevel (IntricateD x)
IntricateDILL (false V.∷ V.[]) = it
IntricateDILL (true V.∷ V.[]) = it
instance

IntricateΣILL : IsLowLevel
(Σ (leaf (Vec Bool 1)) IntricateD)

IntricateΣILL = Σ it IntricateDILL

Note that the instance IntricateΣILL cannot currently be generated even
if IntricateDILL is marked as an instance, but given IntricateΣILL, the gen-
eration of IntricateILL is no problem.

Finally, some nice-to-have conversion functions depend on the presence of
leaf ⊥ in some trees. Since ex falso sequitur quodlibet, we can validly claim that
such leaves are low-level. We add the following constructor, which is a little
more general:

from-⊥ : {t : DT} → (⟦ t ⟧ → ⊥) → IsLowLevel t

The instance search will not attempt to construct the required function,
which means making it try this constructor is a waste of time, so we do not
declare it as an instance.

Given an instance of IsLowLevel t, pretty-printing is easy, that is, we can
turn a value of type ⟦ t ⟧ into a list of bits:

toList : {t : DT} → IsLowLevel t → ⟦ t ⟧ → List Bool
toList leaf d = V.toList d
toList (illl × illr) (dl P., dr) =

toList illl dl L.++ toList illr dr
toList (Σ illc illd) (dc P., dd) =

toList illc dc L.++ toList (illd dc) dd
toList (from-⊥ f) d = ⊥-elim (f d)

Parsing, the opposite operation, is a little more complex. We first need a
helper function that splits a list into the leading n elements and the rest (if
possible) and a property guaranteeing that behaviour:

splitAt′ : ∀ {a} {A : Set a} →
(n : ℕ) → List A → Maybe (Vec A n P.× List A)

splitAt′-all : ∀ {a} {A : Set a} →
(n : ℕ) → (xs : Vec A n) → (rest : List A) →
splitAt′ n (V.toList xs L.++ rest) ≡ just (xs P., rest)

Now we can define fromList:

fromList : {t : DT} → IsLowLevel t →
List Bool → Maybe (⟦ t ⟧ P.× List Bool)

fromList (leaf {n}) xs = splitAt′ n xs
fromList (illl × illr) xs with fromList illl xs
fromList (illl × illr) xs | nothing = nothing
fromList (illl × illr) xs | just (rl P., rxs₁)

with fromList illr rxs₁
... | nothing = nothing
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... | just (rr P., rxs₂) = just ((rl P., rr) P., rxs₂)
fromList (Σ illc illd) xs with fromList illc xs
fromList (Σ illc illd) xs | nothing = nothing
fromList (Σ illc illd) xs | just (rc P., rxs₁)

with fromList (illd rc) rxs₁
... | nothing = nothing
... | just (rd P., rxs₂) = just ((rc P., rd) P., rxs₂)
fromList (from-⊥ f) xs = nothing

The standard, and much cleaner, approach to writing parsing functions in
functional languages is to use a parsing monad, as described by Hutton and
Meijer [12]. In this case, too, it seems appealing to use the monad List Bool
→ Maybe (A P.× List Bool), the combination of the state monad on boolean
lists and the Maybe monad. This approach works well for the _×_ case, but
unfortunately, it is too weak for the Σ case: the Maybe monad’s _>>=_ (bind)
has the non-dependent type {A B : Set} → Maybe A → (A → Maybe B) → Maybe B
(minus universe polymorphism), while the line with fromList (illd rc) rxs₁
is effectively a dependent function.

The much-desired correctness property is now almost disappointingly easy
to prove. We must be careful, however, to find the correct statement. The
IsLowLevel-supplemented restatement of left-inv from section 1.3.2 looks sen-
sible:

left-inv′ : {t : DT} → (ill : IsLowLevel t) → (d : ⟦ t ⟧) →
(P.proj₁ <$> fromList ill (toList ill d)) ≡ just d

It is, however, too weak to use in a recursive position, as it leaves the contents
of the second component of a successful call to fromList unspecified: fromList
must return the remaining elements of the list there, without loss, insertion, or
alteration. The appropriate approach is the following:

left-inv : {t : DT} → (ill : IsLowLevel t) →
(rest : List Bool) → (d : ⟦ t ⟧) →
fromList ill (toList ill d L.++ rest) ≡ just (d P., rest)

The simpler lemma can be recovered easily.

3.3 Extension
We can now manipulate the values of low-level type descriptions, but we lack
the tools to work with high-level descriptions, which we found to be crucial for
usability and robustness (problem 2 on page 11). We introduce the concept of
extension, a description of a transformation between (the values of) two data
types. By ensuring this is a semipartial isomorphism, we can – using sequential
composition – prepend such transformations to the semipartial isomorphism
created in the previous chapter. In other words, we can start with a high-level
type, apply an extension to bring it down to a low-level type, then apply the
previous chapter’s tools to transform to lists of booleans.

The simplest possible kind of extension is that in which the recursive con-
structors simply recurse, and each leaf is converted using its own small semi-
partial isomorphism. This effectively encodes treewise compositionality of semi-
partial isomorphisms.
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data DTX₁ : DT → Set₁ where
convertLeaf : {A : Set} → (B : Set) →

(⇩ : A → B) → (⇧ : B → Maybe A) →
((x : A) → (⇧ (⇩ x) ≡ just x)) →
DTX₁ (leaf A)

_×_ : {l r : DT} → DTX₁ l → DTX₁ r → DTX₁ (l × r)
Σ : {c : DT} {d : ⟦ c ⟧ → DT} →

DTX₁ c → ((x : ⟦ c ⟧) → DTX₁ (d x)) → DTX₁ (Σ c d)

Instead of just converting leaves, we can also convert entire subtrees; we can
recover convertLeaf in the obvious way.

data DTX₂ : DT → Set₁ where
convert : {t₁ : DT} → (t₂ : DT) →

(⇩ : ⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (⇧ : ⟦ t₂ ⟧ → Maybe ⟦ t₁ ⟧) →
((x : ⟦ t₁ ⟧) → (⇧ (⇩ x) ≡ just x)) →
DTX₂ t₁

_×_ : {l r : DT} → DTX₂ l → DTX₂ r → DTX₂ (l × r)
Σ : {c : DT} {d : ⟦ c ⟧ → DT} →

DTX₂ c → ((x : ⟦ c ⟧) → DTX₂ (d x)) → DTX₂ (Σ c d)

convertLeaf₂ : {A : Set} → (B : Set) →
(⇩ : A → B) → (⇧ : B → Maybe A) →
((x : A) → (⇧ (⇩ x) ≡ just x)) →
DTX₂ (leaf A)

convertLeaf₂ B ⇩ ⇧ p = convert (leaf B) ⇩ ⇧ p

Given these data types, we expect to be able to define the following functions,
where extendValue is to play the role of ⇩ in the semipartial isomorphism.

extendType₂ : {t : DT} → DTX₂ t → DT
extendValue₂ : {t : DT} → (tx : DTX₂ t) →

⟦ t ⟧ → ⟦ extendType₂ tx ⟧

Although all definitions so far in this section are arguably the most natural
ones possible, they lead to serious difficulties when trying to define these (equally
sensible) functions:

extendType₂? (convert t₂ ⇩ ⇧ p) = t₂
extendType₂? (txl × txr) = extendType₂? txl × extendType₂? txr
extendType₂? {Σ c d} (Σ txc txd) = Σ (extendType₂? txc) {!!}

To explain the difficulty of the hole for the second (dependent) component,
we present its goal and context textually as well as graphically:

Goal: ⟦ extendType txc ⟧ → DT
——————————————————————————————
txd : (x : ⟦ c ⟧) → DTX₂ (d x)
txc : DTX₂ c
d : ⟦ c ⟧ → DT
c : DT

⟦ c ⟧ ⟦ extendType txc ⟧

DTX₂ (d _) DT

txd

extendValue txc

! ?

extendType
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In the diagram, the function required by the hole is the arrow labelled ?.
The natural way to construct it would be to compose extendType, txd and
the arrow labelled ! – but we do not have a function implementing !. In plain
English, we can get the extended second component type if we have the original
first component value, but all we have is the extended first component value. To
resolve this, we need to define the inverse operation, retraction; fortunately, we
already needed that for ⇧.

retractValue₂ : {t : DT} → (tx : DTX₂ t) →
⟦ extendType₂ tx ⟧ → Maybe ⟦ t ⟧

Note that this makes extendType and retractValue mutually dependent,
which is somewhat surprising. Since retractValue returns a Maybe (retraction
might fail), the definition of extendType for the second component needs to
use maybe′, the non-dependent Maybe eliminator, and the correct definition
becomes:

extendType₂Dep = (λ x⇒ → maybe′
(λ x⇐ → extendType₂ (txd x⇐))
(leaf ⊥)
(retractValue₂ txc x⇒))

The definitions of retractValue and extendValue are uninteresting, except
for the Σ case, which leaves us with a goal of type ⟦ maybe′ (λ x⇐ → extendType₂
(txd x⇐)) (leaf ⊥) (retractValue₂ txc (extendValue₂ txc dc)) ⟧. The
solution to this is to simultaneously give the proof of the round-trip property
(left-inv) as it applies to extension and retraction:

retractExtendId₂ : {t : DT} → (tx : DTX₂ t) → (d : ⟦ t ⟧) →
retractValue₂ tx (extendValue₂ tx d) ≡ just d

Rewriting with this proof allows us to give the value for the second compo-
nent.

Now we have set up the extension machinery, we have a method of con-
verting high-level types into low(er)-level ones, eventually arriving at a type
that IsLowLevel and whose values can therefore be pretty-printed and parsed
by toList and fromList. Recall the ProperLength+Data example from sec-
tion 3.1:

ProperLength+Data : DT
ProperLength+Data = Σ

(leaf (Fin (2^ 16)))
(λ len → leaf (Vec Bool (toℕ len)))

The problematic part is the first component, which is not low-level, but this
is easily fixed by applying standard binary encoding. The following extension
results in a fully low-level type. (The copy extension is that which leaves a type
subtree unchanged, i.e. the identity semipartial isomorphism.)

ProperLength+DataExt : DTX₂ ProperLength+Data
ProperLength+DataExt = Σ

(convert
(leaf (Vec Bool 16))
encode
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(just ∘′ decode)
(λ x → cong just (decode∘encode x)))

(λ len → copy₂)

Finally, note that in the process of adding tools for high-level types (prob-
lem 2), we have also created a solution for the problem of awkward concepts
(problem 3): we can use an extension not only for “boring” conversions between
values of high- and low-level types, but also for complex conversions between
values of entire subtrees containing user-friendly and protocol-mandated values.
It must be noted that extension is powerful enough to describe such conversions,
but its quality – mainly in terms of usability – might not suffice; more on this
in the case study (chapter 4).

3.4 Repeated extension
Often it is convenient to chain multiple extensions to allow a gradual conversion
to a fully low-level data type. For example, a checksum is almost always calcu-
lated from the binary representation of a set of fields, which implies the most
natural implementation would be one extension that translates all fields to their
binary representations, followed by another that adds the checksum. Based on
sequential composition of semipartial isomorphisms, we can define the concept
of repeated extension, which allows a user to extend zero or more times.

data DTX₂* : DT → DT → Set₁ where
base : {t : DT} → DTX₂* t t
step : {t₁ t₂ : DT} →

DTX₂* t₁ t₂ → (tx : DTX₂ t₂) → DTX₂* t₁ (extendType₂ tx)

The first and second DT arguments of DTX* represent the source and target
type, respectively. DTX* is in fact the reflexive transitive closure of DTX viewed
as a binary relation on DT.

The following easy-to-implement functions accompany this definition. Note
that extendType* is only included for reasons of symmetry, because its task is
only to return the target type, which is just t₂.

extendType₂* : {t₁ t₂ : DT} → (txs : DTX₂* t₁ t₂) → DT
extendValue₂* : {t₁ t₂ : DT} → (txs : DTX₂* t₁ t₂) →

⟦ t₁ ⟧ → ⟦ t₂ ⟧
retractValue₂* : {t₁ t₂ : DT} → (txs : DTX₂* t₁ t₂) →

⟦ t₂ ⟧ → Maybe ⟦ t₁ ⟧

The round-trip property, defined as follows, is also easy to prove:

retractExtendId₂* : {t₁ t₂ : DT} →
(txs : DTX₂* t₁ t₂) → (d : ⟦ t₁ ⟧) →
retractValue₂* txs (extendValue₂* txs d) ≡ just d

3.5 Extension with insertion
To solve the problem of calculated additional data (problem 1 on page 11), we
introduce another constructor in the extension datatype. The idea is for this
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constructor to contain a function that calculates data from the entire, top-level
value, so it always has access to all data independent of its position (unlike the
calc constructor of section 1.3.4). To do this, we need to parametrise DTX with
the top-level type, yielding the following:

data DTX₃ (ttop : DT) : DT → Set₁ where
convert : {t₁ : DT} → (t₂ : DT) →

(⇩ : ⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (⇧ : ⟦ t₂ ⟧ → Maybe ⟦ t₁ ⟧) →
((x : ⟦ t₁ ⟧) → (⇧ (⇩ x) ≡ just x)) →
DTX₃ ttop t₁

_×_ : {l r : DT} → DTX₃ ttop l → DTX₃ ttop r →
DTX₃ ttop (l × r)

Σ : {c : DT} {d : ⟦ c ⟧ → DT} →
DTX₃ ttop c → ((x : ⟦ c ⟧) → DTX₃ ttop (d x)) →
DTX₃ ttop (Σ c d)

We will need an additional data type that indicates where to insert:
data Side : Set where left right : Side

We can now define the new constructor, which contains the calculation func-
tion:

insert : {t : DT} → (t' : DT) → Side →
(⟦ ttop ⟧ → ⟦ t' ⟧) →
DTX₃ ttop t

In words, this new constructor takes as (non-hidden) arguments an inserted
type, the side at which a subtree of that type should be inserted, and an insertion
function.

All functions that work on DTX need to be updated with the new ttop pa-
rameter:

extendType₃ : {ttop t : DT} → DTX₃ ttop t → DT
extendValue₃ : {ttop t : DT} → (tx : DTX₃ ttop t) →

⟦ ttop ⟧ → ⟦ t ⟧ → ⟦ extendType₃ tx ⟧
retractValue₃ : {ttop t : DT} → (tx : DTX₃ ttop t) →

⟦ extendType₃ tx ⟧ → Maybe ⟦ t ⟧

The implementations of the updated functions are exactly the same as for
their insertionless variants (as defined in the previous section), except for the
added cases for the insert instructors. They are as follows:

extendType₃ {t = t} (insert t' left f) = t' × t
extendType₃ {t = t} (insert t' right f) = t × t'

extendValue₃ (insert t' left f) dtop d = f dtop P., d
extendValue₃ (insert t' right f) dtop d = d P., f dtop

retractValue₃ (insert t' left f) (dl P., dr) = just dr
retractValue₃ (insert t' right f) (dl P., dr) = just dl

We will often want to refer to extensions where both DT arguments are equal,
i.e. DTX₃ t t for some t : DT. Such extensions behave exactly like their inser-
tionless, one-argument variants. For convenience, we define top-level synonyms
subscripted “s” (“self”).

24



DTX₃ₛ : DT → Set₁
DTX₃ₛ t = DTX₃ t t
extendType₃ₛ : {t : DT} → DTX₃ₛ t → DT
extendType₃ₛ = extendType₃
extendValue₃ₛ : {t : DT} → (tx : DTX₃ₛ t) →

⟦ t ⟧ → ⟦ extendType₃ₛ tx ⟧
extendValue₃ₛ tx d = extendValue₃ tx d d

It is important to note that while insertion is an operation that can elegantly
be added to extension, removal of a leaf or subtree is certainly not. Conceptually,
the problem with removal is that it drops data from high-level values in a way
that makes it impossible to recover it from low-level values; in practice, this
problem manifests itself as the impossibility of implementing retractValue for
the remove constructor.

3.6 Compositional extension with insertion
A shortcoming of the insert constructor as it is currently defined is the fact
that – when dependent products are involved – it requires calculations to work
for all values, even values that do not correspond to the current extension. As a
concrete example, suppose we have the following type: a dependent product of
a number less than five and a vector of that many numbers less than five. (Five
is an example, any other number would have worked; bounded natural numbers
(Fin) have the advantage that they can easily be encoded to binary.)

PartialMaximumDep : Fin 5 → DT
PartialMaximumDep i = leaf (Vec (Fin 5) (toℕ i))

PartialMaximum : DT
PartialMaximum = Σ (leaf (Fin 5)) PartialMaximumDep

Suppose we have a function that can calculate the maximum of at least one
bounded natural number: maximum : {m n : ℕ} → Vec (Fin m) (suc n) → Fin m.
If the goal is to create an extension that appends the maximum of the number
vector if it can be calculated, we must start off with a top-level extension:

PartialMaximumExt? : DTX₃ₛ PartialMaximum
PartialMaximumExt? = Σ copy₃ PartialMaximumExtDep?

The extension for the second (dependent) component seems easy to define...

PartialMaximumExtDep? :
(c : Fin 5) → DTX₃ PartialMaximum (PartialMaximumDep c)

PartialMaximumExtDep? F.zero = copy₃
PartialMaximumExtDep? (F.suc i) =

insert (leaf (Vec Bool 1)) right {!!}

The hole we are left with (the insertion function) has the ominous, but ex-
pectable, type ⟦ PartialMaximum ⟧ → Vec Bool 1; the insertion function receives
as its argument the entire top-level value. Unfortunately, if the first (constant)
component of this value is F.zero, the second (dependent) component does not
contain enough numbers to call maximum on! In fact, there is exactly one such
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value, namely F.zero P., V.[]. What is the insertion function to return in this
case?

Of course, by inspecting the definitions of extendValue, it is easy to see
that the insertion function will only ever be passed values that do contain one
or more numbers. Consequently, it is possible and tempting to work around
the issue by returning some nonsensical default value – perhaps F.zero – which
would never be produced anyway. This would, however, introduce an unverified
ugliness in the system: as long it is present in the code, we cannot claim that
it is impossible for it to be produced, for example by a bug in extendValue.

Even worse, it is impossible to produce a default value for an arbitrary DT
(it might contain ⊥, function types, etcetera). This limitation becomes relevant
when considering the natural embedding operation on extensions: if we have an
extension with top-level type t₁, and we have some “larger” type t₂ that has
t₁ as a subtree at some point, we want to be able to embed the extension into
an extension with top-level type t₂. To write the insert case of this operation,
we need to turn an existing insertion function ⟦ t₁ ⟧ → ⟦ t ⟧ into the “larger”
function ⟦ t₂ ⟧ → ⟦ t ⟧. As argued above, a value of ⟦ t₂ ⟧ might not contain
a value of ⟦ t₁ ⟧, but it is impossible to find a of default value of the unknown
type ⟦ t ⟧ to return in that case.

The underlying issue is that the insertion function in insert is too strong: it
is required to work on all values of the top-level type. As mentioned before, we
can easily see that the only values extendValue will ever pass to the insertion
function of an insert contained within a second component of a Σ will have the
same first component as the one used to produce the extension. In the example,
PartialMaximumExtDep? pattern-matches on its argument; the insertions inside
the F.suc i case will only act on values that have F.suc i as the first component
– but the insertion function does not get access to this information.

We therefore need a way to “save the pattern-matching information in the
extension”. This motivates us to introduce two additional data types. The first,
Select, acts as a “pointer” into a data type, describing for types A and B the
relation “A can be found as a subtree in B”; the Select value represents the path
to take from the root of B to get to A. It is defined as follows:

data Select (t : DT) : DT → Set where
left : ∀ {l r} → Select t l → Select t (l × r)
right : ∀ {l r} → Select t r → Select t (l × r)
constant : ∀ {c d} → Select t c → Select t (Σ c d)
dependent : ∀ {c d} → (x : ⟦ c ⟧) →

Select t (d x) → Select t (Σ c d)
stop : Select t t

Note that this data type has the “smaller” type as its first argument and
the “larger” type as the second, which is the opposite of the arguments order
of DTX. This is caused by a technical limitation (in Agda data type definitions,
parameters must precede indices). Also note that when the path involves moving
to a second component, the value of the first component is recorded.

With Select representing the notion of finding a smaller type in a larger
type, we can define the notion CanSelect: whether a value matches a given
Select.

data CanSelect {t : DT} : {ttop : DT} →
Select t ttop → ⟦ t ⟧ → ⟦ ttop ⟧ → Set₁ where
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left : ∀ {l r} {dl : ⟦ l ⟧} {dr : ⟦ r ⟧}
{s : Select t l} {dbot : ⟦ t ⟧} →
CanSelect s dbot dl →
CanSelect {ttop = l × r} (left s) dbot (dl P., dr)

right : ∀ {l r} {dl : ⟦ l ⟧} {dr : ⟦ r ⟧}
{s : Select t r} {dbot : ⟦ t ⟧} →
CanSelect s dbot dr →
CanSelect {ttop = l × r} (right s) dbot (dl P., dr)

constant : ∀ {c d} {dc : ⟦ c ⟧} {dd : ⟦ d dc ⟧}
{s : Select t c} {dbot : ⟦ t ⟧} →
CanSelect s dbot dc →
CanSelect {ttop = Σ c d} (constant s) dbot (dc P., dd)

dependent : ∀ {c d} {dc : ⟦ c ⟧} {dd : ⟦ d dc ⟧}
{s : Select t (d dc)} {dbot : ⟦ t ⟧} →
CanSelect s dbot dd →
CanSelect {ttop = Σ c d} (dependent dc s) dbot (dc P., dd)

stop : {d : ⟦ t ⟧} → CanSelect stop d d

Unfortunately, this definition is rather notation-heavy. The core concept is
that if we have s : Select A B (“A can be found as a subtree in B”), and we
have a : ⟦ A ⟧, b : ⟦ B ⟧, we can define “a can be found in b by following s”.
Because of the types of a and b, we know this is almost always possible - the
only case in which it is not is when there is some dependent pair in B for which
the first component in b and the corresponding first component in dependent
in s have different values.

In fact, the Select relation could be described more elegantly by noticing
that it is the reflexive transitive closure of the “has immediate subtree” relation.
Having defined that, we could simply use Star from Data.Star to get Select
for free, including operators that append two selections and the proof that the
append operator is associative. Unfortunately, there is no appropriately indexed
version of Star, which we would need to define CanSelect. Therefore we define
append operators manually:

_S▻▻_ : {t₁ t₂ t₃ : DT} →
Select t₂ t₁ → Select t₃ t₂ → Select t₃ t₁

_CS▻▻_ : {t₁ t₂ t₃ : DT} {s₁ : Select t₂ t₁} {s₂ : Select t₃ t₂}
{d₁ : ⟦ t₁ ⟧} {d₂ : ⟦ t₂ ⟧} {d₃ : ⟦ t₃ ⟧} →
CanSelect s₁ d₂ d₁ → CanSelect s₂ d₃ d₂ →
CanSelect (s₁ S▻▻ s₂) d₃ d₁

These functions can be implemented using simple recursion on the first ar-
gument.

Equipped with Select and CanSelect, we can define a new version of DTX
in which the relation between the top-level type and the type currently being
extended is recorded by means of a Select.

data DTX₄ (ttop : DT) : (t : DT) → Select t ttop → Set₁ where
convert : ∀ {t₁ : DT} {s} → (t₂ : DT) →

(⇩ : ⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (⇧ : ⟦ t₂ ⟧ → Maybe ⟦ t₁ ⟧) →
((x : ⟦ t₁ ⟧) → (⇧ (⇩ x) ≡ just x)) →
DTX₄ ttop t₁ s
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_×_ : ∀ {l r : DT} {s} →
DTX₄ ttop l (s S▻▻ left stop) →
DTX₄ ttop r (s S▻▻ right stop) →
DTX₄ ttop (l × r) s

Σ : ∀ {c : DT} {d : ⟦ c ⟧ → DT} {s} →
DTX₄ ttop c (s S▻▻ constant stop) →
((x : ⟦ c ⟧) → DTX₄ ttop (d x) (s S▻▻ dependent x stop)) →
DTX₄ ttop (Σ c d) s

insert : ∀ {t : DT} {s} → (t' : DT) → Side →
((dtop : ⟦ ttop ⟧) → P.∃ (λ d → CanSelect s d dtop) → ⟦ t' ⟧) →
DTX₄ ttop t s

In each inductive occurrence of DTX, the appropriate Select is appended
to the current Select; crucially, in the Σ case, the current value of the first
component (x) is stored in the Select that points to the second. In the insert
constructor, the insertion function now receives a second argument: an object
describing that there exists some smaller value d : ⟦ t ⟧ such that we can
traverse the first argument dtop along the current Select pointer s and arrive
at this d.

This object solves the problem presented at the beginning of this section.
To check it does for PartialMaximum, let us try to define the parity-adding
extension. Both PartialMaximumExt and PartialMaximumExtDep are equal to
the earlier (question-marked) attempts. The hole we could not fill, the insertion
function, is now filled using the following simple implementation:

f : {i : Fin 4} → (dtop : ⟦ PartialMaximum ⟧) →
P.∃ (λ d → CanSelect {ttop = PartialMaximum}

(dependent (F.suc i) stop) d dtop) →
(Fin 5)

f ((F.suc i) P., d) (.d P., dependent stop) = maximum d

Fully pattern-matching on the CanSelect value allows us to discover that
the first component is F.suc i and the second component is in fact d, and we
can easily apply maximum and return the calculated maximum element.

Finally, for convenience, we might want to recover insert as defined in the
previous section, where it takes an insertion function with only one argument.
To do this, we need to pass an insertion function that ignores the new CanSelect
argument:

insertSimple : {ttop t : DT} {s : Select t ttop} →
(t' : DT) → Side → (⟦ ttop ⟧ → ⟦ t' ⟧) →
DTX₄ ttop t s

insertSimple t' s f = insert t' s (λ dtop _ → f dtop)

3.7 Embedding
For format descriptions, an essential usability factor is reusability: once we have
defined a format, we want to be able to embed it in other formats. Embedding
a type description t : DT is easy: one can just place t in any hole requiring a
DT, including a hole in a larger type that is expecting a subtree. Embedding an
extension (DTX), on the other hand, is harder, because of the first DT argument,
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which is the top-level type. The previous chapter worked out the requirements
for this embedding to be possible. The function that represents this embedding
has the following type:

embedDTX₄ : {t₁ t₂ t : DT} {s : Select t t₁} →
(s' : Select t₁ t₂) → DTX₄ t₁ t s → DTX₄ t₂ t (s' S▻▻ s)

In words, given an object s that states that t₁ can be found as a subtree
of t₂ and an extension of t with top-level type t₁, we get an extension of
the same type with the larger top-level type t₂. The implementation follows
the recursive structure of DT by pattern-matching on t₂ and is uninteresting
except for a technical challenge: the recursive calls return extensions with a
third (Select) argument shaped s₁ S▻▻ (s₂ S▻▻ s₃), while the respective holes
require (s₁ S▻▻ s₂) S▻▻ s₃. This is easily solved by applying subst using the
associativity property of _S▻▻_, but the use of subst leads to complications
when trying to prove properties about the enclosing function.

Furthermore, as also mentioned in the previous chapter, the insert case
requires “enlarging” a function ⟦ t₁ ⟧ → ⟦ t ⟧ to ⟦ t₂ ⟧ → ⟦ t ⟧. This transfor-
mation is called deepen and typed as follows. The implementation recurses on
s'.

deepen : {t₁ t₂ t t' : DT} →
(s : Select t t₁) → (s' : Select t₁ t₂) →
((dtop : ⟦ t₁ ⟧) → P.∃ (λ d → CanSelect s d dtop) → ⟦ t' ⟧) →
(dtop : ⟦ t₂ ⟧) → P.∃ (λ d → CanSelect (s' S▻▻ s) d dtop) → ⟦ t' ⟧

To show the power of embedding, let us revisit the PartialMaximum example
from the previous chapter. Using insertSimple, one can very easily write a self-
extension (DTXₛ) that inserts the parity bit; embedding can then place it inside
the second (dependent) component without the need for inspecting a value of
CanSelect.

PartialMaximumExtDep′ : (c : Fin 5) →
DTX₄ PartialMaximum (PartialMaximumDep c) (dependent c stop)

PartialMaximumExtDep′ F.zero = copy₄
PartialMaximumExtDep′ (F.suc i) = embedDTX₄

(dependent (F.suc i) stop)
(insertSimple (leaf (Fin 5)) right maximum)

PartialMaximumExt′ : DTX₄ₛ PartialMaximum
PartialMaximumExt′ = Σ copy₄ PartialMaximumExtDep′

3.8 Equality
As concisely explained by Altenkirch, McBride and Swierstra [2, section 1],
equality is no trivial topic in systems based on intensional type theory, such
as Agda. One of the most conspicuous issues is the lack of built-in functional
extensionality for the standard propositional equality, that is, the following
property:

extensionality : ∀ {a b} →
{A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
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Note that this property is only missing from (unprovable), but not in-
consistent with Agda’s implementation of type theory. This means we could
postulate it if we wished, but we would like to minimise the number of ax-
ioms added. Sadly, the lack of functional extensionality is relevant when trying
to prove two types equal if they contain any dependent products. The second
(dependent) component of a dependent product is defined as a function, so al-
though it might be easy to prove two such functions pointwise equal, that does
not suffice for standard propositional equality _≡_.

An interesting pair of properties involving equality would be the preser-
vation of meaning by embedDTX. Concretely, we would like extendType and
extendValue to have the same effect for a given extension and any embedding
of that extension. Assuming we have some flexible enough equality _≋_, these
properties can be expressed as follows:

embedDTX-preserves-type : {t₁ t₂ t : DT} {s : Select t t₁} →
(s' : Select t₁ t₂) → (tx : DTX₄ t₁ t s) →
extendType₄ tx ≋ extendType₄ (embedDTX₄ s' tx)

embedDTX-preserves-value : {t₁ t₂ t : DT} {s : Select t t₁} →
(s' : Select t₁ t₂) → (tx : DTX₄ t₁ t s) →
(d₁ : ⟦ t₁ ⟧) → (d₂ : ⟦ t₂ ⟧) → CanSelect s' d₁ d₂ →
(d : ⟦ t ⟧) →
extendValue₄ tx d₁ d ≋ extendValue₄ (embedDTX₄ s' tx) d₂ d

In fact, it is not possible to even write the latter property in terms of _≡_,
because not even the types of the left and right argument are equal and that
equality is homogeneous. These two issues (the lack of functional extensionality
and the requirement that the types be equal) imply that propositional equality is
too strong. In cases like these, it is common (see the standard library) to define
a weaker equality. The first attempt is to define a per-constructor equality, such
as this:

data _≣′_ : DT → DT → Set₁ where
leaf : {A : Set} → leaf A ≣′ leaf A
_×_ : {l₁ l₂ r₁ r₂ : DT} →

l₁ ≣′ l₂ → r₁ ≣′ r₂ → (l₁ × r₁) ≣′ (l₂ × r₂)
Σ : {c₁ c₂ : DT} {d₁ : ⟦ c₁ ⟧ → DT} {d₂ : ⟦ c₂ ⟧ → DT} →

c₁ ≣′ c₂ → {!!} → Σ c₁ d₁ ≣′ Σ c₂ d₂

As usual, the hard case is the equality of second (dependent) components:
we need to state the property that d₁ and d₂ are pointwise equal, but their
argument types are not the same...

One solution is to introduce an (implementable) function ≣′-coerce : {t₁
t₂ : DT} → t₁ ≣′ t₂ → ⟦ t₁ ⟧ → ⟦ t₂ ⟧, name the equality of the first (constant)
components eqc and write the required equality of the second (dependent) com-
ponents as (x : ⟦ c₁ ⟧) → d₁ x ≣′ d₂ (≣′-coerce eqc x). This solution is
asymmetrical, and that asymmetry leads to serious complications when trying
to prove that _≣′_ is an equivalence relation (and most likely also when trying
to use any property involving _≣′_ in another proof).

A better solution is to quantify over both c₁ and c₂ and then require those
values to be equal according to some other equality. The equality of second
components then becomes (dc₁ : ⟦ c₁ ⟧) → (dc₂ : ⟦ c₂ ⟧) → dc₁ ≋ dc₂ → d₁ dc₁
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≣′ d₂ dc₂. This leaves us with the question of which value equality to use for
dc₁ ≋ dc₂. As their types differ, the obvious candidate is standard heterogenous
equality (Relation.Binary.HeterogeneousEquality), but that leads to similar
proof problems, as we are (rightfully) unable to prove the types equal in the
second component case. These problems can be fixed by using a per-constructor
definition similar to _≣′_, namely data _≊′_ : {t₁ t₂ : DT} → ⟦ t₁ ⟧ → ⟦ t₂ ⟧
→ Set. The final hurdle is that because ⟦_⟧ is a function, Agda cannot infer the
values of t₁ and t₂, so we need a notation in which those are made explicit:

data ⟨_∋_⟩≊⟨_∋_⟩ :
(t₁ : DT) → ⟦ t₁ ⟧ → (t₂ : DT) → ⟦ t₂ ⟧ → Set₁ where

leaf : {A : Set} {x : A} → ⟨ leaf A ∋ x ⟩≊⟨ leaf A ∋ x ⟩
_,′_ : ∀ {l₁ l₂ r₁ r₂ : DT} {dl₁ dl₂ dr₁ dr₂} →

⟨ l₁ ∋ dl₁ ⟩≊⟨ l₂ ∋ dl₂ ⟩ →
⟨ r₁ ∋ dr₁ ⟩≊⟨ r₂ ∋ dr₂ ⟩ →
⟨ l₁ × r₁ ∋ dl₁ P., dr₁ ⟩≊⟨ l₂ × r₂ ∋ dl₂ P., dr₂ ⟩

_,_ : ∀ {c₁ c₂ : DT} {d₁ : ⟦ c₁ ⟧ → DT} {d₂ : ⟦ c₂ ⟧ → DT}
{dc₁ dc₂ dd₁ dd₂} →
⟨ c₁ ∋ dc₁ ⟩≊⟨ c₂ ∋ dc₂ ⟩ →
⟨ d₁ dc₁ ∋ dd₁ ⟩≊⟨ d₂ dc₂ ∋ dd₂ ⟩ →
⟨ Σ c₁ d₁ ∋ dc₁ P., dd₁ ⟩≊⟨ Σ c₂ d₂ ∋ dc₂ P., dd₂ ⟩

Finally, we can define a useful variant of _≣′_:
data _≣_ : DT → DT → Set₁ where

leaf : {A : Set} → leaf A ≣ leaf A
_×_ : {l₁ l₂ r₁ r₂ : DT} →

l₁ ≣ l₂ → r₁ ≣ r₂ → (l₁ × r₁) ≣ (l₂ × r₂)
Σ : {c₁ c₂ : DT} {d₁ : ⟦ c₁ ⟧ → DT} {d₂ : ⟦ c₂ ⟧ → DT} →

c₁ ≣ c₂ →
((dc₁ : ⟦ c₁ ⟧) → (dc₂ : ⟦ c₂ ⟧) →

⟨ c₁ ∋ dc₁ ⟩≊⟨ c₂ ∋ dc₂ ⟩ → d₁ dc₁ ≣ d₂ dc₂) →
Σ c₁ d₁ ≣ Σ c₂ d₂

Both these relations are equivalence relations (which is moderately difficult
to prove), and we can define a number of useful functions and properties:

≊-to-≡ : {t : DT} {d₁ d₂ : ⟦ t ⟧} →
⟨ t ∋ d₁ ⟩≊⟨ t ∋ d₂ ⟩ → d₁ ≡ d₂

≣-coerce : {t₁ t₂ : DT} →
t₁ ≣ t₂ → ⟦ t₁ ⟧ → ⟦ t₂ ⟧

≊-≣-coerce : {t₁ t₂ : DT} → (eq : t₁ ≣ t₂) →
(d : ⟦ t₁ ⟧) → ⟨ t₁ ∋ d ⟩≊⟨ t₂ ∋ ≣-coerce eq d ⟩

In short, it turns out that the appropriate equalities for both values and
types are per-constructor equalities, and the most usable value equality is het-
erogeneous.

The aforementioned properties of embedding can be proved, albeit quite
onerously, with the appropriate equalities: embedDTX-preserves-type using _≣_
and embedDTX-preserves-value using _≊_. One useful application of these
properties is that we can easily derive the following property of IsLowLevel:

ill-coerce : {t₁ t₂ : DT} →
t₁ ≣ t₂ → IsLowLevel t₁ → IsLowLevel t₂
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Combining this property with embedDTX-preserves-type, we are able to
transform an instance of IsLowLevel for the target type of an extenion into an
instance for any embedding of it, increasing reusability.

3.9 Simultaneous construction
Tervoort [20] explored many different protocol description languages in the con-
text of (concurrency-related) testing. He distilled a format description language
in which fields are declared with their types directly alongside with codecs, which
describe how those types should be transformed into a low-level representation.
For example, he describes an archived file [20, p. 15] using, in part, the following
definition:

record ArchivedFile with
size is Integer(min=0, max=2^64-1)

as BigEndian(length=64, signed=false)
file_data is Binary(length=size*8)

as FixedLengthBinary
end

The downside of DT and DTX in this regard is that “codecs” (convert val-
ues) are not specified textually close to the corresponding fields, which harms
readability for large records. We can define a data type DT&X which allows si-
multaneous construction of a DT and a corresponding DTX, along with a function
to extract said values:

mutual
data DT&X : Set₁ where

leaf : (A : Set) → DTX₃ₛ (leaf A) → DT&X
_×_ : DT&X → DT&X → DT&X
Σ : (c : DT&X) → ((x : ⟦ P.proj₁ (fromDT&X c) ⟧) → DT&X) →

DT&X

fromDT&X : DT&X → P.Σ DT DTX₃ₛ

The implementation of fromDT&X is involved but uninteresting. Assuming
that we have an encoding extension bigEndianConversion : {l : ℕ} → DTX₃ₛ
(leaf (Fin (2^ l))) (perhaps defined in a library), this construct allows us to
define the same format as ArchivedFile as follows:

archivedFile : DT&X
archivedFile = Σ

(leaf (Fin (2^ 64)) bigEndianConversion)
(λ len → leaf (Vec Bool (toℕ len)) copy₃)

Note that DT&X only allows self-extensions (DTXₛ), which means the extension
for any field can only use the value of that field in any calculations inside it. This
of course prevents the description of checksums and other common constructs,
but it is a limitation that is strongly implied by Agda’s basic capabilities: we
would need a form of laziness that would allow us to refer to the resulting top-
level type during the simultaneous DT&X-construction, but it contains no such
thing (nor is it obvious that such a mechanism would have consistent semantics
or would be implementable).
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Chapter 4

Case Study: IPv4

Equipped with the universe and extension as defined in the previous chapter,
we are ready to define the format of IPv4 packets. A distinction should be
made between the end-user-facing high-level “IPv4 format” that is a high-level
description of a packet’s data and the actual low-level IPv4 format that has
an IsLowLevel instance. As powerful extension steps can be taken to translate
between the two formats, the former is not bound by the order or even concepts
of the latter, and we should start by designing the end-user-facing format to be
as user-friendly as possible.

4.1 The end-user-facing type
Summarising the tabular representation of the specification on page 10, there
are six categories of fields in the IPv4 format:

Constants The Version field must contain the constant value 0100.

Bounded natural numbers The Internet Header Length, the Total Length,
the Identification, the Fragment Offset, the Time to Live, the Header
Checksum, and the Addresses are fields that contain simple bounded nat-
ural numbers without limitations that should be encoded using big-endian
binary encoding. Since they have no limitations and any special meaning
must be assigned to them at a higher level, they can be represented as
Fin (2^ n), where n is the length of the field in bits.

Enumerations The Explicit Congestion Notification and the Protocol can
be seen as enumerations. They can be implemented as simple (non-
dependent) Agda data types, and functions that encode and decode them
to boolean vectors can be written manually or derived using Agda’s re-
flection features. If desired, an unknown constructor can be added to the
Protocol data type to cover protocols that are too uncommon to list.

Flags The Differentiated Services Code Point (DSCP) and the Flags are flag
structures. Because each flag is usually described by exactly some number
of bits (the flags are “orthogonal”), these can be implemented as multiple
enumeration fields.
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Options These have a more complex underlying structure, but we will assume
that has been dealt with (perhaps by a separate, smaller format descrip-
tion), and just encode them as a boolean vector. This vector has length
32 * l, where l is a number between 0 and 10, inclusive: the IHL field is
only four bits long, which means the header is at most 15 words long, and
the fixed fields span 5 words.

Data Although not part of the header, data is part of the packet, and so a
description of packets must encompass it. Data is a boolean vector, the
length of which is constrained in a complex way – see below.

The Version is a constant value, and as explained in the description of prob-
lem 3 on page 12, the Internet Header Length and Total Length are inconvenient
for end users. Consequently, we aim to insert those into the data by applying
extensions; all other fields will need to be present in the end-user-facing type.

Fixed-length fields
Although we developed a complete description of IPv4 during this project, hav-
ing discussed these categories, we think it suffices to present the implementation
of only a single example: an enumeration, the Explicit Congestion Notification.

data ECN : Set where Non-ECT ECT0 ECT1 CE : ECN

ECN→Bool : ECN → Vec Bool 2
ECN→Bool Non-ECT = false V.∷ false V.∷ V.[]
ECN→Bool ECT0 = true V.∷ false V.∷ V.[]
ECN→Bool ECT1 = false V.∷ true V.∷ V.[]
ECN→Bool CE = true V.∷ true V.∷ V.[]

Bool→ECN : Vec Bool 2 → ECN
Bool→ECN (false V.∷ false V.∷ V.[]) = Non-ECT
Bool→ECN (true V.∷ false V.∷ V.[]) = ECT0
Bool→ECN (false V.∷ true V.∷ V.[]) = ECT1
Bool→ECN (true V.∷ true V.∷ V.[]) = CE

ECN↔Bool : (x : ECN) → Bool→ECN (ECN→Bool x) ≡ x
ECN↔Bool Non-ECT = refl
ECN↔Bool ECT0 = refl
ECN↔Bool ECT1 = refl
ECN↔Bool CE = refl

Similar definitions were developed for the other simple fields.

Variable-length fields
We are left with the two more complex variable-length fields. As discussed in
section 3.1, the ability to contain high-level types is present in our universe de-
scription precisely for fields that second (dependent) components’ types depend
upon. We have two variable-length fields, Options and Data, for which lengths
need to be placed somewhere. Suppose we use two natural numbers for these
lengths: OL (Option Length), which counts 32-bit words, and DL (Data Length),
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which counts bytes. The combined upper bound of these values is given by
the Total Length field: the total number of bytes cannot equal or exceed 216
– which, using the identifiers chosen, translates to the property 4 * (5 + OL) +
DL < 2^ 16. Considering that we already had the restriction that OL ≤ 10, the
type of a pair of numbers that satisfies exactly the appropriate conditions can
be expressed as follows:

Lengths = P.Σ
(ℕ P.× ℕ)
(λ { (DL P., OL) → OL ≤ 10 P.× 4 * (5 + OL) + DL < 2^ 16 })

This type is regrettably complex, but a direct consequence of the IPv4 speci-
fication. We could get a simpler type by letting DL be a bounded natural number
whose upper bound is chosen such that even the greatest OL would not make the
Total Length exceed 216. Although the low-level output of such a type would be
valid and thus “downwards correctness“ would be preserved, this sacrifices “up-
wards correctness”: there would be low-level packets that are valid according to
the specification, but cannot be parsed into the high-level type.

Now the following data type definition approximating the IPv4 packet for-
mat can be constructed. We define the two components of the dependent pair
are defined as separate named bindings for ease of manipulation. The first
(constant) component contains the lengths and three fields: the Explicit Con-
gestion Notification and the Addresses. We omit the other fields – they can be
implemented as described above and added before and after the Explicit Con-
gestion Notification. The second (dependent) component contains the Options
and Data vectors.

IPv4TypeCons : DT
IPv4TypeCons =

leaf Lengths ×
(leaf ECN ×

(leaf (Vec Bool (2^ 32)) × leaf (Vec Bool (2^ 32))))

IPv4TypeDep : ⟦ IPv4TypeCons ⟧ → DT
IPv4TypeDep (((DL P., OL) P., _) P., _) =

leaf (Vec Bool (32 * OL)) × leaf (Vec Bool (8 * DL))

IPv4Type : DT
IPv4Type = Σ IPv4TypeCons IPv4TypeDep

4.2 Extensions
To bring the end-user-facing type down to low-level, we apply three extensions;
we will discuss each separately. For brevity, we omit the code of the extensions.
Furthermore, we will use DTX₃ instead of the newest iteration (DTX₄), as it leads
to less cluttered definitions, and the compositionality of the DTX₄ is not needed.
Naturally, our actual implementation does use DTX₄.
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4.2.1 First extension: mixing
The first extension has two responsibilities: adding the constant Version field,
and transforming the convenient Lengths into the protocol-mandated fields.

The former is easily carried out by insert, but the latter is a different
story. Not only do the two fields have to be calculated from the Lengths, they
also have to be inserted into the fields during pretty-printing – and extracted
during parsing. To ensure we get a general solution, we designed a new “smart
constructor” to produce a DTX for situations similar to this. The idea is to reuse
the insertion mechanism already present in DTX for calculating and inserting the
data (“mixing”) into the fields during pretty-printing. For extraction, we have
no features to reuse, and we require an explicit recovery function to extract and
calculate the high-level values.

mix : {l r : DT} {ttop : DT} →
(tx : DTX₃ (l × r) r) →
(rf : ⟦ extendType₃ tx ⟧ → Maybe ⟦ l ⟧) →
((d₁ : ⟦ l ⟧) → (d₂ : ⟦ r ⟧) →

rf (extendValue₃ tx (d₁ P., d₂) d₂) ≡ just d₁) →
DTX₃ ttop (l × r)

As this type is rather daunting, we clarify the intended implementation as
follows:

×

l r

r′

On the left we see the source type of the extension – the pair l × r – and
on the right the result type. The result type is the result of extending r along
the extension tx, as represented by the solid arrow. That extension’s top-level
type is not ttop, but l × r, and information from that pair’s value can be
used by insertion functions in insert; this is what the dotted arrow represents.
Finally, the dashed arrow represents the recovery function rf, whose job it is to
extract the data from the extended second (right) component and recover the
first (left) component of the pair. Of course, a proof of the round-trip property
is also required.

With this smart constructor in our toolbox, we can define this first extension:
adding in the IHL and the TL proceeds by the use of insert, performing the
required arithmetic on OL and DL; recovery involves pattern-matching on the
right component’s value, but is not difficult. The first (constant) component of
the result type of this extension is the following:

IPv4TypeCons1 : DT
IPv4TypeCons1 = (leaf ECN ×
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(leaf (Fin (2^ 4)) {- IHL -} × leaf (Fin (2^ 16)) {- TL -})) ×
(leaf (Vec Bool (2^ 32)) × leaf (Vec Bool (2^ 32)))

The dependent type is processed only using the identity extension copy.

4.2.2 Second extension: binary encoding
The second extension brings all fields that are not yet low-level down to low-
level. The just-added IHL and TL are processed using using big-endian binary
encoding, while ECN→Bool and the two related functions are used for the ECN.
Again, the second (dependent) component is simply copied, and the first (con-
stant) component is now as follows:

IPv4TypeCons2 : DT
IPv4TypeCons2 = (leaf ECN ×

(leaf (Vec Bool 4) {- IHL -} × leaf (Vec Bool 16) {- TL -})) ×
(leaf (Vec Bool (2^ 32)) × leaf (Vec Bool (2^ 32)))

4.2.3 Third extension: checksum insertion
The third extension calculates the checksum and inserts it at the appropriate
location. Now that the data type is low-level, the checksum calculation it-
self is conceptually easy. The only serious hurdle is that because of the first
two extensions, the type of the second (dependent) component (which we need
to pattern-match on to extract the Options) is no longer the friendly func-
tion at the start: the definition of extendType has added two applications of
retractValue on top, as described at the end of section 3.3. The solution is to
add with-patterns matching on those applications of retractValue, recovering
the original Lengths and allowing easy access to Options. After the checksum
is inserted, the first (constant) component contains all necessary values:

IPv4TypeCons3 : DT
IPv4TypeCons3 = ((leaf ECN ×

(leaf (Vec Bool 4) {- IHL -} × leaf (Vec Bool 16) {- TL -})) ×
leaf (Vec Bool 16) {- Checksum -}) ×

(leaf (Vec Bool (2^ 32)) × leaf (Vec Bool (2^ 32)))

4.2.4 IsLowLevel instance
The final piece of the puzzle is the instance of IsLowLevel for the result type of
the third extension. Because of the presence of retractValue in the type of the
second component as described above, this is not entirely trivial. Fortunately,
the second component was already low-level in the end-user-facing type descrip-
tion. With the use of the from-⊥ constructor of IsLowLevel, we can write a
function that shows that IsLowLevel is preserved for a second component of a
dependent pair whose first component is extended while the second component
is just copied.

The instance for the first component, on the other hand, can be found by
instance search, and this completes our implementation: we now have a con-
venient end-user-facing type, a series of extensions that transform it into the
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low-level representation, and an instance that allows users to pretty-print and
parse values to and from lists of booleans.

4.3 Testing
We were curious to see whether the packets produced by our pretty-printer
would be recognised by “official” parsers. Although there is a surprising scarcity
of Haskell IPv4 parsers that can handle the entire protocol (including, for ex-
ample, options), the least we could do was test the checksum calculation. The
checksum implementation of the network-house Haskell library was used for test-
ing our implementation. Unfortunately, one defect was discovered: it turns out
that we had overlooked the endianness of IPv4 and used a little-endian encod-
ing where a big-endian encoding was expected! In this situation, the round-trip
property is of no use: certainly, round-trips are also possible if most of the
packet’s fields are reversed. Careful reading is therefore still highly advisable.

During testing, we discovered that the space and time efficiency of the type-
checker’s evaluator appears to be significantly worse than the efficiency of the
same code compiled to Haskell using the GHC backend, then executed using
GHCi. We later received the advice that this is most likely caused by excessive
laziness in our own checksum function and we could improve this by using a
recently added forcing primitive.
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Chapter 5

Discussion and Variants

Both designing a language and exploring its capabilities are processes that in-
volve decisions between more or less equally preferable alternatives. In this
chapter, we justify some design decisions, compare the expressive power of our
system to that of others, and consider the relevance of some unfinished work.

5.1 Comparison with features of record types
Although we claimed in section 3.1 that our universe approximates Agda’s
records, a few features are still missing. Most prominently absent are field
names and the ability to self-reference (induction and coinduction).

5.1.1 Field names
Field names could actually be added for simple products with relative ease,
yielding the “Data Type with Name” (DTₙ) universe:

open import Data.String
data DTₙ : Set₁ where

leaf : String → (A : Set) → DTₙ
_×_ : DTₙ → DTₙ → DTₙ

We need to define a proof object stating that a type really contains a field
with a given name:

data HasLeaf (f : String) : DTₙ → Set₁ where
instance

leaf : {A : Set} → HasLeaf f (leaf f A)
left : {l r : DTₙ} → HasLeaf f l → HasLeaf f (l × r)
right : {l r : DTₙ} → HasLeaf f r → HasLeaf f (l × r)

It is then possible to define functions that look up types and values by field
name:

lookupType : (f : String) → (t : DTₙ) →
(h : HasLeaf f t) → DTₙ

lookupValue : (f : String) → (t : DTₙ) →
(h : HasLeaf f t) → ⟦ t ⟧ₙ → ⟦ lookupType f t h ⟧ₙ
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Instances of HasLeaf can be found by Agda’s instance search via the it
pattern (as described on page 18). Although name uniqueness is enforced neither
in DTN nor in HasLeaf, instance search refuses to return an instance if it is not the
unique instance for that type, which ensures that lookups using the it pattern
only succeed when unique names are used.

This structure could be extended further to allow naming entire subtrees by
also requiring a name in the _×_ constructor; names could be made optional by
using Maybe String instead of String; and so on.

We still chose to omit field names from our main universe DT for several
reasons. First of all, field names add some clutter to the development without
providing significant functionality; they are advantageous for usability, so it
would be wise to include them in a production-quality EDSL. Second, they
introduce a dependency on String and rely heavily on instance search, both of
which slow down type checking and increase the system’s complexity. Third,
field names in dependent products are harder to work with, as they lead to types
of which some values do contain a given field and others do not. This calls for
the introduction of a value-based HasLeaf, further complicating the system.

More important than all those reasons, however, is that field names inside
the universe are not relevant to end users: it is much more important to be
able to convert between values of type ⟦ t ⟧ and the corresponding record type.
Automating those conversions is discussed in section 5.3.

5.1.2 Self-reference
Undoubtedly, self-references in data types (inductive and coinductive positions),
are a basic feature of the type system, necessary for the definition of even com-
mon types like List. The usual solution for adding this feature to a universe
is the introduction of an “inductive position” constructor, which is applied by
many of the generic programming frameworks in [13].

One must keep in mind, however, that for inductive record types, “naked”
self-references (a field of type A inside the – parameterless – record type A) are
useless: it is impossible to construct a value of such a record, because any such
construction must continue infinitely. A deeper self-reference such as a field
of type Maybe A can be useful, but that requires a more complex self-reference
constructor that allows the application of another type constructor.

Oury and Swierstra [16, section 3.6] hint at the most likely candidate in
more concrete terms:

The more general solution, however, would be to extend our uni-
verse with variables and a least-fixed point operation. [...] We have
refrained from doing so as the resulting universe must deal with vari-
able binding. Although the solution is not terribly complex (Morris
et al. 2004), we felt the technical overhead would distract from the
bigger picture.

The usefulness of these constructs is related to the presence or absense of
choice in the format description, which we will discuss in the next section.
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5.2 Choice and backtracking
Almost all format description languages, including ours, offer some form of
choice: at a given point, a data type may contain either one group of fields or
another. The EDSL introduced in section 1.3, for example, offers additional
constructors not discussed there, most importantly plus : FT₃ → FT₃ → FT₃. Its
semantics are defined as follows:

The plus constructor introduces left-biased choice. A parser for
plus f₁ f₂ will try to parse the format determined by f₁. Only
when that fails, will it try to parse f₂.

Accompanying this are constructors for explicit failure (bad) and explicit
success (end). The effect of these semantics is that a parser needs to perform
potentially very costly backtracking: a certain low-level element (bit) might
have to be read multiple times, first in the process of trying f₁, then when
trying f₂. (For certain classes of grammars, such as regular expressions, one
can instead write a more efficient parser by precomputing an automaton. We
hypothesise that our dependent product makes this impossible, because trying a
subformat might require executing arbitrary Agda code, which could probably
take too long to precompute.) We decided to focus on formats that do not
require backtracking.

Note that the lack of plus does not imply that no variant of choice is present
in our language. The dependent product allows for any finite number of choices
for the second (dependent) component. Even an infinite number of choices can
be represented, such as in Σ ℕ (Vec Bool). Because of the pigeonhole principle,
however, there is no way to construct a semipartial isomorphism between a type
with an infinite number of inhabitants (such as ℕ) and Vec Bool n for some n,
which is required to turn it into a low-level type.

The only requirement for choices represented by a dependent product is that
the choice is made based solely on data that precedes the second (dependent)
component. Nonetheless, there are formatting constructs that contain some
kind of “inherent end”, for which parsing does not require backtracking, yet
the choice – most commonly, the choice of length – must be made by reading
data for the second (dependent) component. The most prominent example are
null-terminated strings, which should be read exactly until a null character is
encountered. Such cases can be added, at the cost of some complexity, to our
language by adding a constructor to the IsLowLevel data type:

special : (t : DT) →
(aToList : ⟦ t ⟧ → List Bool) →
(aFromList : List Bool → Maybe (⟦ t ⟧ P.× List Bool)) →
(a-left-inv :

(rest : List Bool) → (d : ⟦ t ⟧) →
aFromList (aToList d L.++ rest) ≡ just (d P., rest)) →

IsLowLevel′ t

Just like convert represents treewise compositionality of semipartial iso-
morphisms in DTX, special represents treewise compositionality of the pretty-
printing and parsing algorithms: the types of the three arguments aToList,
aFromList, and a-left-inv match those of toList, fromList, and left-inv
from section 3.2, respectively.
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5.3 Conversion from and to record types
The reader might have noticed that one kind of conversion, which is quite im-
portant for usability, is missing: the conversion between values of actual record
types and values of their DT-based representations. The implementations of
these conversion functions are completely determined by the shape of the record
type, which means leaving it up to format designers to implement them is not
optimally user-friendly.

Agda offers reflection for inspecting the shape of types, including record
types, and for generating functions based on these shapes; this enables the
automatic generation of conversion functions. This is explored in depth by
Sijsling [19]: not only the value-level conversion functions, but even the value of
DT describing a given record type can be generated automatically. The opposite,
generating a record declaration from a DT value, is harder because declaring field
names seems to be unsupported at the moment.

We decided not to implement automatic generation of conversion functions
because we deemed the insight that could be gained by that (mainly engineering)
process to be less than the cost of the required amount of programming. Ad-
ditionally, Agda’s reflection interface is not yet stable (according to the change
log, it received a “massive overhaul” in a version released during the project),
meaning we would risk producing a comparatively large software component
that could very well break completely due to a new release.

5.4 Expressiveness: power of extension
Considering that we want each extension step to be a semipartial isomorphism,
and the convert constructor allows the use of any semipartial isomorphism, ex-
tension is maximally powerful within the constraints we placed on our system.
In practice, its power as perceived by format developers is limited by the ex-
pressiveness of Agda, as well as the library of “language primitives” (functions,
since this is an EDSL) available to them.

During this project – especially during the implementation of the IPv4 pro-
tocol description – the expressiveness of Agda was not a limiting factor. The
greatest inconvenience was the common clash between efficient implementations
and those that are easy to reason about, as well as the performance of type-
checker’s evaluator. Having to prove termination and totality was never an
issue. The majority of the IPv4 code consists of (equational) proofs regarding
equalities and inequalities involving natural numbers.

Few language primitives are currently implemented. Extensions implement-
ing big-endian and little-endian binary encoding, as well as unary encoding
are provided. We looked at implementing string encoding algorithms such as
UTF-8 and decided that their recursion structure and termination is simple and
the majority of the work would be numerical calculations and related proofs.
Automatically deriving extensions that translate between simple enumerations
(characterised as parameter- and indexless data types with only nullary con-
structors) is another candidate for implementation using reflection.

Finally, as mix demonstrates, extension itself is extensible: common patterns
of extension can be implemented in terms of convert.
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Chapter 6

Conclusion

In this thesis, we surveyed existing format description languages, comparing
their relative advantages and disadvantages and the extent to which their related
algorithms have been proven correct. We then identified an example, the IPv4
packet format, that is particularly resistant to formal description. We set out
to create a user-friendly, verified, embedded domain-specific language in Agda
that is capable of describing this format.

The central idea that underlies our solution is the separation between the
universe, which describes the shape of a type to be processed, and extension,
a transformation that translates between high-level and low-level types with an
attached proof of correctness. Universe-described types containing only low-
level fields can easily be pretty-printed and parsed, and extension is constructed
so as to enable adding data calculated from the high-level value to the low-level
representation. By ensuring that both the low-level pretty-printer and parser
and the transformation described by extensions are semipartial isomorphisms,
we receive a proof of correctness of the entire system.

Furthermore, we recognised a lack of compositionality that hindered reuse
and adjusted our design to fix this, and we developed appropriate concepts of
equality to allow more general proofs of properties related to our algorithms.

Finally, we discussed many of our design decisions, explaining how and at
which cost features missing from our final design could be added.

We have fulfilled both goals stated in chapter 2: our language is powerful
enough to describe IPv4, as demonstrated in our case study, and its pretty-
printing and parsing algorithms are verified to have a strong round-trip property.
In addition to the central case study, we showed (in section 3.9) how our language
partially subsumes a language powerful enough to describe various real-world
protocols. In short, we have achieved our stated goals and developed a system
with promising potential.

6.1 Future work
Throughout this thesis, we identified many different ways in which our work
could be extended. A short summary follows.

• Automatic conversion functions. Agda’s reflection capabilities should be
powerful enough to derive conversion functions that can translate between
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values of record types and values in our universe, eliminating the final
usability hurdle for end users.

• A library of common types and extensions. Binary coded decimal, Chen-
Ho encoding, IEEE 754 floating point numbers, and UTF string encodings
are just a few examples of types and encodings for which representations
could be made available in our language.

• Backtracking. As explained in section 5.2, our current language does not
allow the description of formats that positively require backtracking.

• Additional case studies. Besides IPv4, we briefly looked at WebSocket,
concluding its implementation would mainly be an Agda coding exercise
rather than a good demonstration of this EDSL.

• Improved Haskell interface. As the power of Haskell’s type system grows
and more and more features approximating dependent types are added,
it might be interesting to try to connect the Agda-based algorithms to
Haskell data types.

• Arbitrary value generation for testing. Haskell’s QuickCheck library is ca-
pable of generating arbitrary instances of data types for testing purposes.
Tervoort [20] notes that naive generation of instances leads to underrep-
resentation of certain values; Yorgey [21] recently provided an algorithm
for fixing this problem.
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