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Abstract

We implement and evaluate methods to infer the phylogeny of Variable
Number of Tandem Repeats (VNTR) isolates of tuberculosis through Bayesian
inference andMarkov ChainMonte Carlo, using an existing transition rate mat-
rix [Sai+04]. By also inferring the phylogeny through the model of Hasegawa,
Kishino and Yano (HKY) using nucleotide data of the same isolates, we are able
quantitatively and qualitatively compare the phylogenies obtained through
both models. By simulating data, we assess how well the true phylogeny can
be inferred for both the Sainudiin and HKY model, for di�erent levels of muta-
tional saturation in the data. We show how both the Sainudiin and HKYmodel
can be combined to yield a phylogeny that is better resolved and more accurate
than by the use of either model. By changing the model for the mutation rate
proportionality in the Sainudiin model, we are able to use the estimates of the
model parameters to speculate on the mechanisms by which VNTR mutates.
The developed methods have been made available in the package BEASTvntr
for BEAST2.
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Introduction

1.1 Tuberculosis

Tuberculosis (TB) is an infectious disease caused byMycobacterium tuberculosis. Even
though preventable and curable, each year approximately 10 million people fall ill
with tuberculosis and approximately 2 million die from having the disease (WHO).
In order to improve the control the disease, the epidemiology has to be better
understood.

One way to achieve this goal is to analyse the genetic data of TB. For example,
understanding the genetic diversity helps in the development of novel antibiotics for
TB, as some of the lineages of TB can be associated with drug resistance [Kös+12].
Another example is the identification of new clonal lineages and understanding
which mutations suddenly make them successful, an important step in the control
and eradication of TB [Smi+09].

1.2 Phylogenetics

In order to make progress in these areas, one has to study the hereditary relationships
between lineages. The field of research that studies these genetic relationships using
molecular data (i.e. data about DNA or protein sequences), is called phylogenetics.
Reconstruction of the evolutionary history is especially relevant for infectious
diseases since it also gives insight into the spread of it.

The goal of these reconstruction methods is to find the phylogenetic tree that
shows the evolutionary relationship between species. Following the assumption that
evolution is made up of bifurcating events, this tree is assumed to be a bifurcating
tree. However, if the reconstruction method fails to distinguish between these
events, it can also yield a multifurcating tree. [HRW92]. The root of a phylogenetic
tree is interpreted as the most recent common ancestor (MRCA) of the leaves of
the tree.

If the branch lengths of the tree have no interpretation, the phylogentic tree
only represents topology. Otherwise, the branch lengths can be interpreted as
evolutionary distance, which can also be scaled to represent time.

The data that is taken as input for these methods are isolates (data sequenced
from the DNA of members) from a population. Many di�erent ways of sequencing
the DNA exist: what is important is that the resulting data captures the mutations
that di�erentiate the members of the population.
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1.2.1 Genome Sequencing
Such data can be obtained by Whole Genome Sequencing (WGS), whereby the
whole genome is sequenced, or by Multilocus Sequence Typing (MLST), whereby
a set of genes is sequenced. One type of mutations of the genome captured in these
data, are substitutions, otherwise known as point mutations. A substitution occurs
when any of the four bases A, C, T and G transforms into another. For molecular
reasons, transformations A↔ G and C↔ T, called transitions, are more likely to
happen than transformations {A,G} ↔ {C,T}, called transversions.

Almost all of the genome remains unchanged by these mutations. Therefore,
other ways to assess changes in the DNA have been developed: so-called genetic
markers focus on the parts of the DNA known to exhibit much genetic variation
between samples.

1.2.2 Variable Number of Tandem Repeat
One such marker is called Variable Number of Tandem Repeat (VNTR). It captures
the mutations which occur by the process of slippage, which is treated more
extensively in chapter 2. Slippage duplicates or removes entire sections of strands.

VNTR focusses on locations on the genome where particular stretches of DNA
are repeated stretches that are between 10 and 100 base pairs long. Since the
stretches which are repeated are likely identical, only the numbers of repeats for
each location (or locus) are measured when typing VNTR. The standard typing
method for TB is Mycobacterial Interspersed Repetitive Unit VNTR (MIRU-
VNTR), which comprises the typing of VNTR on 24 pre-defined loci on the
DNA.

WGS used to be a time-consuming, expensive and tedious task. However, the
recent development of cheaper next-generation sequencing (NGS)means thatWGS
is a viable candidate to replace VNTR in the future for providing the identifying
information on TB samples. However, some of these NGS techniques have a limited
read length (between 35 and 700 base pairs) [GMM16], which means that a very
high number of repeats or very long repeats, might not be observed with WGS,
but could possibly still be found using VNTR.

1.2.3 Methods for inferring phylogenies
Two of the most common phylogenetic inference methods are Minimum Spanning
Tree (MST) and Neighbour Joining (NJ). NJ is a greedy algorithm which seeks
to produce the minimum evolution tree, i.e. at each iteration of the algorithm it
connect nodes such that evolutionary distance is as small as possible. MST is the
tree that connects all vertices (i.e. samples) such that the sum of the length of the
edges is minimal. Both methods are based on evolutionary distance data, i.e. for
any two samples i, j some (genetic) distance d(i, j) between them must be defined.

These two methods are heuristics. They give quick (and sometimes) satisfactory
solutions, but are certainly not guaranteed to be the most truthful trees that we
could infer based on the data. By solely looking at distance for any two samples we
can not possibly capture all information that is present in the data. Furthermore,
the distance between samples is ambiguously defined. For example, for VNTR it is
common to define the distance as the proportion of loci that are unequal (Jaccard
distance) or as the sum of the di�erence in repeats for each locus (Manhattan
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distance). It has also been shown that NJ produces trees of insu�cient quality,
meaning only major lineages can be identified, for VNTR, compared to trees
based on the nucleotide data [Com+09]. This shows that the current methods for
inferring the phylogeny for VNTR are inadequate.

Bayesian inference

By using an evolutionary model, in contrast to the above methods, we define
the probabilities by which the VNTR pattern mutates from one state to another.
At the heart of such a model lies the definition of a matrix Q which specifies
the instantaneous rate of mutations of one state into another, i.e., the number of
mutations that take place per time unit. This enables us to compute the likelihood
of finding some data D in the tips of the tree, given that the data D are the result
of mutations along some single bifurcating tree τ . This can be done using the
Felsenstein algorithm [Fel73]. A tree for which the likelihood function is maximized
is called the maximum-likelihood tree, which can also be used as the phylogeny.
But this is not the proper criterion for finding the most truthful tree. To find the
most truthful tree, we are actually interested in the posterior probability of a tree,
instead of the likelihood of finding data.

This posterior probability can be computed using Bayes’ theorem. In the process
of transforming the likelihood of data given a tree into the posterior probability of
a tree given the data, we must normalize over all possible trees. Since the number
of all possible trees grows very fast with the size of the tree, this is infeasible.
This problem can be circumvented by sampling trees and parameters from this
posterior distribution via Markov Chain Monte Carlo (MCMC), which is explained
in section 2.5.

1.3 Aim

To expand upon the current insu�cient heuristic methods for the inference of
phylogeny using VNTR for TB, our goal in this thesis is to explore a new method
for the inference of phylogeny by making use of the MCMC method, employing
an existing evolutionary model for VNTR. We will implement this method in
BEAST2, which is software for phylogenetic analysis.

In addition, using this inference method, we will provide an answer to the
following related issues:

• What is the most parsimonious, i.e. simplest version of this method, that can
still accurately infer the phylogeny?

• How does this method compare to existing, well-established methods that
can infer the phylogeny for nucleotides, in terms of being able to accurately
recover the true phylogeny?

• Subsequently, can information from both VNTR and nucleotide data be
combined, and does this improve the accuracy of the obtained phylogeny?

• Can we use the model of the inference method to shed light on the mechan-
isms by which VNTR mutates?
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The evolution of VNTR and the use of MCMC

In this chapter we will specify the evolutionary model which we will use in the
MCMC method to infer the phylogeny. As said in the previous chapter, these
MCMC methods will sample the posterior probability distribution of trees and
parameters. To calculate this posterior probability, we must first compute f(D|τ,θ),
which is the likelihood of data D given tree τ and model parameters θ. This is
done using the Felsenstein algorithm.

The first step in calculating the likelihood f(D|τ,θ) is the specification of
the transition rate matrix Q of the VNTR states, for which we need a model for
the evolution of these states. By solving a linear di�erential equation involving
Q, via matrix exponentiation, we can find P(t) which gives the probability of a
transition between any two states in time interval t. Matrix P(t) in conjunction
with Felsenstein’s algorithm allows us to calculate likelihood f(D|τ,θ).

2.1 A model for the evolution of VNTR

Microsatellites are tandem repeats where the repeat is between 2 and 5 base pairs
in length. Minisatellites (such as VNTR) are tandem repeats of which the repeated
sequence is 10 to 100 base pairs in length. For the former, an extensive evolutionary
model given by Sainudiin exists in the literature [Sai+04]. This model combines all
the previously known models for Microsatellites into one ‘supermodel’. We have
no reason to assume that the mechanisms of mutations would be any di�erent for
minisatellites compared to microsatellites, therefore we shall use this model to infer
the phylogeny for VNTR.

In this model it is assumed that the alleles can either gain or lose repeats by the
process of replication slippage, described in [Ell04]. During replication, the code of
the DNA, consisting of base-pairs A,C and T,G, gets replicated in another strand
which consists of the opposite bases. Any base on one strand only ‘fits’ with its
paired base on the other strand, which makes it a fail-safe feature of the DNA
to correct any misalignments. However, when parts of the DNA are repeated,
this feature may fail to recognise the misalignments of any repeated stretch that
is aligned to another repeated stretch, thus forming a loop in the DNA (also see
figure 3.10).

The simplest model which describes the misalignment is the stepwise mutation
model (SMM). In the SMM, a repeated stretch on the VNTR locus can either
gain or lose 1 repeat per mutation event. This model can be extended to allow
for mutations of step size ≥ 1, where the distribution of step sizes is taken to be
geometric. This distribution arises by assuming that in a mutation event, each extra
change in the number of repeats, happens with equal probability.
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If gaining or losing a repeat would be equally likely, this would lead to un-
constrained growth of the number of repeats, which is not observed in nature.
Therefore an extension to this model exists, where upon mutation a bias in the
probability for expansion β and contraction 1− β is introduced, which controls
the growth of the repeats. This bias may depend on the number of repeats. One
can think of several mechanisms which cause this bias. For example, higher repeats
are more likely to shorten due to the point mutations. There may also be a lower
fitness of bacteria carrying unnecessary DNA.

Finally, it is possible that alleles with more repeats mutate at higher rate, which
can be modelled by letting the underlying mutation rate increase proportionally
with the number of repeats. The idea of this is that more repeats o�er more
opportunities for a slippage event [Kru+98].

The 3 ingredients discussed have an e�ect on the transition rate of a mutation
from state i to j. The dependency of the rate proportionality on the number of
repeats is captured in α, the mutational bias in β, and the step-size distribution in
γ. All the e�ects of the 3 ingredients are assumed to be independent of each other.
Furthermore, we have a mutation rate µ which scales all these factors. Thus, the 4
factors can be multiplied to give a rate associated with a mutation from state i to j.
Using these rates directly we can only calculate the probability of instantaneously
mutating, i.e. for an infinitesimal small time interval. To calculate the probability
of a mutation from state i to j on a longer time interval, the theory of continuous
time Markov Chain is used. By specifying rate matrix Q = (qi,j)i,j=imin,...,imax

we describe the rate of the transitions from state i to state j, limited on the state
space {imin, . . . , imax}. It can be used to compute the probabilities of transitioning
between states i, j in time interval t, with (constant) mutation rate µ:

P(t) = e
Q
||Q||µt (2.1)

Here P(t) is a solution to P′(t) = P(t) Q
||Q||µ. Quantity ||Q|| means the net

mutation rate that can be associated with rate matrix Q, and will be defined in
section 2.3.

In our case, Q is specifically defined as

qi,j =


α(a0, i)β(rb, θb, i)γ(g, i, j) if j ≥ i+ 1

α(a0, i)(1− β(rb, θb, i))γ(g, i, j) if j ≤ i− 1

−
∑
k 6=i qi,k if j = i

(2.2)

The diagonals are defined such that the rate of probability flowing out of a state is
equal to the sum of the rates of probabilities flowing into other states. The formulas
used in the definition of Q are explained below.

Mutation rate proportionality α

We assume that the mutation rate is linearly dependent on the number of repeats,
consisting of a ‘baseline’ rate µ0, and a rate µ1 that increases with the repeats:

α̃(µ0, µ1, i) = µ0 + µ1(i− imin) (2.3)

This expression can be normalized using µ0, to arrive at

α′(a1, i) = 1 + a1(i− imin) (2.4)
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which is the model used in [Sai+04]. In our practical implementation of the model,
we normalized using µ1 to yield

α(a0, i) = a0 + i− imin (2.5)

Here we have parameter 1/a1 = a0, representing the o�set of the rate for i = imin,
instead of a1. The reason for this is that if the mutation rate of repeat imin is far
lower than the others, a1 will grow to very large values, while a0 conveniently
remains bounded. Since rate matrix Q is normalized with net rate ||Q|| as explained
in section 2.3, both parametrizations are equivalent.

Mutational bias β

A mutation event might have a preference for a certain direction, in the sense
that given this event it is an expansion with probability β and a contraction with
probability 1− β. As the number of repeats i grows, the probability of contraction
increases, while the probability of expansion decreases. This behaviour of the
mutational bias in favour of expansion, can be modelled with a logistic formula,
proposed by Wu and Drummond [WD11]

β(b0, b1, i) =
1

1 + exp(−(b0 + b1(i− imin)))
, (2.6)

whilst the bias of contraction is modelled with factor (1 − β(b0, b1, i)). Here, b0
is the parameter that determines the o�set of β at i = imin, while larger negative
values for b1 mean that β reaches a probability of 0 for lower i. An example graph
of β, 1− β is shown in figure 2.1.

β

1-β

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i0.0

0.2

0.4

0.6

0.8

1.0

probability

Figure 2.1: An example of a possible mutational bias: graph of β, 1− β for b0 =
1, b1 = − 1

2 , imin = 1.

Preliminary results of the MCMC algorithm showed us that b0, b1 are linearly
correlated. To investigate the reason for this correlation, we looked at the equilib-
rium states of the mutational bias. Equilibrium states are alleles i = ieq for which
the following condition is satisfied.

β(b0, b1, i) = 1− β(b0, b1, i) (2.7)
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Solving equation (2.7) for i yields the solution

ieq = −b0/b1 + imin (2.8)

Assuming there exists such an equilibrium state for a locus, we would expect b0, b1
to be linearly correlated.

To increase the number of e�ective samples from our MCMC output, we
used polar coordinates: ((b0, b1) = (rb cos(θb), rb sin(θb))) which were then un-
correlated. Observe that in this parametrization, θb uniquely determines the focal
point

ieq = −
1

tan(θb)
+ imin, (2.9)

while rb determines the slope of functions β, 1− β and can thus be thought of as
the ‘force’ pointing to this state. It is only natural to rewrite θb in terms of ieq, via

θb = arctan

(
−1

ieq − imin

)
,

foremost because it is likely that we would have prior information on ieq and not
(directly) on θb. This saves us the extra work of calculating the PDF of the prior of
θb using the prior of ieq. This re-parametrisation yields

β(b0(rb, ieq), b1(rb, ieq), i) =
1

1 + e−(b0+b1(i−imin))
(2.10)

b0(rb, ieq) =
rb√

1 + 1/(ieq − imin)2
(2.11)

b1(rb, ieq) =
−rb√

(ieq − imin)2 + 1
(2.12)

If rb = 0, then the probability of expansion is always equal to that of contraction.
This is called the unbiased model. Otherwise we have a biased model where the
probability of expansions is not equal to that of contraction.

Step-size distribution γ

The distribution of step sizes |i − j| is modelled using a geometric distribution
γ(g, i, j), where g is the parameter such that 1 − g reflects the probability that a
mutation would be a single step mutation. The distribution is normalized on the
left and right side of i, such that the surface area there is equal to 1. This is done
to ensure that β indeed means the probability of expansion given a mutation. For
0 < g < 1, we have multi-step mutations, given by the two-phase model (TPM):

γ(g, i, j) =

{
(1−g)g|i−j|−1

1−gimax−i if i < j
(1−g)g|i−j|−1

1−gi−imin if i > j
(2.13)

For the case g = 0, only 1 repeat can be gained or lost. This modelled with
the stepwise mutation model (SMM) or the one-phase model, where we only allow
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mutations to and from adjacent states:

γ(0, i, j) =

{
1 if |i− j| = 1

0 otherwise
(2.14)

Note that γ(0, i, j) is a limiting case of γ(g, i, j), by taking g → 0.
The parameters a0, rb, ieq, g, µ are contained in θ.

2.1.1 State space bounds
For our purposes we will set imin = 1, imax = 15, ns = imax − imin + 1 = 15, where
ns is the number of states. Even though setting imin ≤ 0 is mathematically possible
in the model, it is not biologically realistic since replication slippage cannot explain
how a repeat can grow in size from ‘nothingness’. An upper bound imax = 15 was
chosen since in the data we used in chapter 3, the maximum observed repeat was 14.
We choose the upper bound near the maximum observation, since we do not want
to allow any repeat from existing in the model, that is far above what is observed
in the data.

All the e�ects of the model, the parameters, and the corresponding allowed
ranges, are shown in table 2.1.

E�ect Parameters Range Parameter meaning

Mutation rate
proportionality a0 ∈ [0,∞)

O�set of
proportional rate

at i = imin.

Mutational bias rb ∈ [0,∞) Magnitude of bias.
ieq ∈ [imin, imax] Focal point of bias.

Multi-step
mutations g ∈ [0, 1]

Success probability,
1− g = probability of

mutation being single-step.

Table 2.1: All e�ects in the Sainudiin model and their parameters.

2.2 Stationary distribution of the Sainudiin model

In the theory of continuous time Markov chains, the stationary distribution is a
distribution of states π defined such that

πQ = 0

holds. If Q is primitive, i.e., there is some k > 0 such that Qk has no entries equal
to 0, this distribution is unique, and can always be found via

lim
t→∞

pi,j(t) = πj

We are interested in this distribution, since it is necessary for the definition of a net
mutation rate, which is used for normalizing Q in section 2.3.
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2.2.1 Calculating the stationary distribution
In case of the stepwise mutation model, the stationary distribution can be calculated
in a very straightforward manner, by considering it as the stationary distribution
of a birth-death chain. The states which represent the repeats, can undergo births,
i.e., a transition to a higher state or upward mutation, or deaths, i.e., a transition to
a lower state or downward mutation. For a state i the upward transitions happen
with (birth) rate bi and the downward mutations with (death) rate di. Then, the
stationary distribution is the state π for which the relation biπi = di+1πi+1 holds,
i.e., the inflow in a state is equal to outflow. For the stepwise model, this means
that the stationary distribution must be given by

πi ∝
i−1∏
j=imin

bj
dj+1

=

i−1∏
j=imin

β(b0, b1, j)α(a1, j)

(1− β(b0, b1, j + 1))α(a1, j + 1)

Computing the stationary distribution for the general case

The above expression can only compute the stationary distribution for the special
case of the stepwise model. In order to compute it for all other cases - without any
significant additional computational cost - we will use the eigendecomposition of
Q. This approach does not come at the cost of extra computation, since in BEAST2
the eigendecomposition is already constructed to compute P = eQµt.

In order to perform matrix exponentiation of Q, BEAST2 first decomposes Q in
a matrix of eigenvectors U and a diagonal matrix of eigenvalues Λ

Q = UΛU−1.

By observing that Qn = UΛnU−1, it follows from the definition of matrix expo-
nential that

eQµt = UeΛµtU−1.

Thus P can very easily be computed by decomposing Q in eigenvectors and
eigenvalues, exponentiating the values on the diagonal matrix, and performing two
matrix multiplications.

The stationary distribution by definition is a left eigenvector of P, correspond-
ing to eigenvalue 1. We see that this eigenvector is also an eigenvector of Q,
corresponding to eigenvalue 0, by looking at the derivative with respect to t of P

πP = π

πQµP = 0

Since P is always invertible (its inverse being e−Qµt), P cannot have eigenvalue 0.
Therefore, it always holds that

πQ = 0

To express π in terms of U, note that πᵀ must be a right eigenvector of Qᵀ, and
that

Qᵀ = (UΛU−1)ᵀ = (U−1)ᵀΛᵀUᵀ.

Therefore, (un-normalized) πᵀ can be found in the column of (U−1)ᵀ correspond-
ing to eigenvalue 0.
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2.3 Mutation rate

Note that in equation (2.1) we are inherently dealingwith an ambiguity: if changing
any of the parameters rb, ieq, g causes the net mutation rate associated with Q to
increase, then such an increase is also caused by an increase in the mutation rate µ.

In this section, we will define a mutation rate ν∗ that can be associated with
Qµ. Normalizing Q using this rate, via qi,j → qi,j/(ν

∗/µ) (we divide by µ, since
in the normalization of Q we are only interested in the rate contribution coming
from Q, not µ), allows us to capture the net mutation rate of Qµ in parameter µ.

2.3.1 Defining the net mutation rate
When defining a net mutation rate, it is possible to weigh a mutation from state i
to j in di�erent ways. In our first definition of the net mutation rate that follows,
we will weigh the mutations according to their step size.

When a mutation i→ j takes place, we can weigh the change in repeats σij as

σij := |i− j| (2.15)

The expected change for a certain repeat i is then given by

〈σ〉i (t) =
imax∑
j=imin

σijpij(t) (2.16)

where we measure the change in repeats at time t relative to t = 0. Since we
are interested in the rate of this (mutational) change, we take the derivative with
respect to time to arrive at

d

dt
〈σ〉i (t) =

imax∑
j=imin

σij
d

dt
pij(t) =

imax∑
j=imin

σij(P(t)Q)ijµ (2.17)

Observe that this quantity is independent of any normalization of the rate matrix
Q, since it depends on the product of both Q and µ. Since we are interested in the
instantaneous rate of change, we arrive at

d

dt
〈σ〉i (0) =

imax∑
j=imin

σijqijµ =: νi (2.18)

where we have defined νi to be the expected mutational change per time unit at
this instant for repeat i.

These rates per state have to be weighted into a single mutation rate, which
can be done using the stationary distribution π. This leads to

ν∗ =
∑
i

πiνi (2.19)

In the second definition of the net mutation rate, instead of measuring it by the
number that the repeats change, it can also be measured disregarding this number,
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and solely noticing a repeat that has changed. In that case, we weigh any change
from state i to j (i 6= j) as 1, which leads to the definition

δi,j =

{
1 if i 6= j

0 else
(2.20)

Substituting δi,j for σi,j in equation (2.18), we have νi = −qi,iµ (recall that qi,i =
−
∑
k 6=i qi,k), and ν

∗ = −
∑
i πiqi,iµ. Normalizing Q to this rate is the exact same

normalization used by Wu in [WD11]. Therefore, ||Q|| = −
∑
i πiqi,i is the

normalization we will use in our implementation of the Sainudiin model in BEAST2.

The relation with Sainudiin’s average rate

In addition to the previous two definitions, Sainudiin provides an ‘average rate’,
which only holds for the stepwise model, given by∑

i

πiµα(a0, i) (2.21)

Looking at equation (2.18), we note that in case of the stepwise model (i.e g = 0)
Q is zero except on the lower, middle and upper diagonal. Furthermore, σ (or δ)
is zero on the middle diagonal, which means that for the stepwise model, νi can be
rewritten as:

νi =


µα(a1, i)β(b0, b1, i) if i = imin

µα(a1, i)(1− β(b0, b1, i)) + µα(a1, i)β(b0, b1, i) if imin < i < imax

µα(a1, i)(1− β(b0, b1, i)) if i = imax

(2.22)

Thus, for imin < i < imax we have

νi = µα(a0, i) (2.23)

Note that the weighted average
∑
i πiνi, is almost equal to equation (2.21) used

by Sainudiin. For the first and last terms i = imin, imax the rate of Sainudiin misses
respectively a factor β < 1, 1−β < 1. It makes sense that the mutation rates on the
boundary of our state space is less than inside of it: on the boundary we can mutate
in only 1 direction, whilst inside we can mutate into 2 directions. This is exactly
the reason why the β’s do not cancel out on the boundaries in equation (2.22).

2.4 Computing the likelihood

For a given tree τ and parameters θ, we can calculate the likelihood f(Dl|τ,θ) of
finding data Dl on locus l in the tips of the tree, using P(t) and the algorithm of
Felsenstein. It works by summing over possible ways of assigning states i to the
internal nodes. For each term in that sum, it subsequently computes the product of
pi,j(b) for all branch lengths b of the branches in the tree.

We can have a prior belief about the distribution of states at the root node in the
tree. For example, we might believe they have uniform distribution, the empirical
distribution of the states that we see in the tips of the tree, or are that they are



CHAPTER 2. THE EVOLUTION OF VNTR AND THE USE OF MCMC14

distributed according to the stationary distribution. In addition, instead of having
a prior belief about this distribution, this distribution can also be considered as
extra (to be estimated) parameters to the model. This means that in the algorithm
of Felsenstein, we can weigh each way of assigning states, according to these
distributions, to incorporate these beliefs.

2.4.1 Connecting the likelihoods across sites
To compute the likelihood on all 24 sites, we consider them to be independent, and
the parameters a0, rb, ieq, g to be identical on the 24 loci:

f(D|τ,θ) =
24∏
l=1

f(Dl|τ,θ) (2.24)

However, it might be the case that some loci mutate faster than others. BEAST2 has
built-in an extension to the algorithm of Felsenstein to accommodate this e�ect. It
allows the mutation rate to be distributed according to a Gamma distribution with
mean µ and shape parameter α. It numerically integrates the likelihood f(Dl|τ,θ),
this time with the rate parameter µ in θ replaced by r, over all possible rates r. Thus,
the likelihood f(Dl|τ,θ) computed with the Felsenstein algorithm is readjusted to
give

f(Dl|τ,θ, α) =
∫
f(Dl|τ,θ)f(r|α)dr (2.25)

2.5 Markov Chain Monte Carlo

Converting this likelihood in a posterior probability f(τ,θ|D), is where MCMC
and Bayes’ theorem come into play. The MCMC is a necessity to keep all compu-
tations feasible. It relies on Bayes’ theorem:

f(τ,θ|D) =
f(D|τ,θ)f(τ,θ)

f(D)
(2.26)

This expression equals the posterior probability of finding some tree τ and para-
meters θ given the data D incorporated with the prior information f(τ,θ).

The denominator is the sum of the enumerator over all possible trees and
parameters. Computing this sum for large trees is almost impossible: we would
need to consider too many possibilities.

A solution is given by the Metropolis-Hastings algorithm: we generate a chain
of states such that its stationary distribution reaches the posterior distribution we are
interested in. If at state (τ,θ), we accept a proposed state (τ ′,θ′) with probability

min

(
1,
f(D|τ ′,θ′)f(τ ′,θ′)
f(D|τ,θ)f(τ,θ)

f(τ,θ|τ ′,θ′)
f(τ ′,θ′|τ,θ)

)
(2.27)

then the sequence of states sampled forms a Markov Chain with the posterior as
stationary distribution [RC13]. Quantity f(τ,θ|τ ′,θ′)/f(τ ′,θ′|τ,θ) is the proposal
ratio, and is usually set by the user to create a balanced acceptance rate. As can be
seen in equation (2.27), no computation of the denominator of equation (2.26) is
needed for the generation of this chain.
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2.5.1 Monte Carlo algorithm used in BEAST2
The MCMC algorithm used by BEAST2 works as follows

1. Start with some initial tree τ and parameters θ with corresponding prior
information.

2. Propose some update τ ′,θ′ of the tree or parameters.

3. For the proposed parameters, createQ and computeP. Then use Felsenstein’s
algorithm to calculate the likelihood.

4. Accept the proposed update with probability given by equation (2.27). Else,
reject it. Go back to 2.

Each iteration in the above MCMC algorithm will output a tree with parameters
which are sampled according to the posterior distribution. Even though we are also
sampling the posterior distribution when the MCMC run starts, we definitely do
not want our results to depend on the starting values chosen in step 1. Therefore, all
the MCMC runs discussed in the next chapter will consist of 100.000.000 samples,
of which we discarded the first 10%, which we considered by viusal inspection to
be a good threshold reach a convergent MCMC chain.

Initially, BEAST2 was not capable of using the Sainudiin model described in this
chapter, nor was it capable of handling VNTR data. Therefore we amended BEAST2
with a package, which implements the Sainudiin model. It is available through the
package manager of BEAST2 as the package BEASTvntr, and can also be retrieved
from github.com/arjun-1/BEASTvntr

https://github.com/arjun-1/BEASTvntr


3

Experiments

In this chapter we will design and perform 5 experiments on the Sainudiin model.
In experiment 3.1, we will check whether the model of Sainudiin yields trees

that are similar to trees yielded by another well-established model. To this end,
we first infer phylogeny for VNTR data of TB that were published before. In that
publication, nucleotide data were also provided for the same samples. This means
we can also infer a (reference) phylogeny using the model of Hasegawa, Kishino
and Yano (HKY) for nucleotide substitutions [HKY85]. The trees obtained with
the models of Sainudiin and HKY can then be compared to each other.

In experiment 3.2, we will find out whether simpler sub-models of the Sainudiin
model, thus the single-step model (i.e. g = 0) and the unbiased model (i.e. rb = 0),
and more complex versions of the model, are also able to correctly infer the phylo-
geny and the parameters. If we can simplify the Sainudiin model, and still be able to
get phylogenies with the same accuracies as for the fully featured Sainudiin model,
we would prefer to use the simplified version, since that model can accurately find
the phylogeny with the least amount of assumptions on the underlying mutation
processes. To this end we will simulate data, and check how well we can correctly
infer the original phylogeny for di�erent versions of the model.

After finding this most parsimonious version of the Sainudiin model, we will
show in experiment 3.3 how information from nucleotides and VNTR data can be
combined and how this leads to a phylogeny that is better resolved than by the use
of either model.

In experiment 3.4, we will compare the performance of the Sainudiin and HKY
model independently by simulating data as in experiment 3.2 via an input tree and
looking at how well the inferred phylogenies resembles the input trees. In this
experiment, we will also investigate the e�ect of mutation rate on the performance
of the models.

In experiment 3.5, we use a changed model for the mutation rate proportionality
the results of which allow us to speculate on the mechanisms by which VNTR
mutates.

Before all this can be addressed, we first need to establish how to generate a
single tree from many samples from the posterior distribution of trees, and how to
quantitatively (and qualitatively) compare such a tree with a reference tree.

Methods to summarise trees

For summarizing many trees into one, a lot of possibilities exist. When considering
which topology is ‘best’ from an output of many trees, we might first look at the
topologies which occur most often in the output. However, when dealing with
very large trees or phylogenies that remain unresolved in the output, it might very

16
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well be that every sampled tree is unique, making this approach useless. Another
possibility would be considering the tree which has the largest sampled posterior
probability. But such a tree can have large posterior probability due to many other
reasons than its topology (e.g. branch lengths). A solution might be to consider
the posterior probabilities of topologies which are averaged over all the other
parameters, but this again is useless when dealing with many unique topologies.

To find the tree with the best topology, we explore another solution: the
maximum clade credibility tree. For every clade (this is a sub-tree that consists of
an ancestor together with all its descendents) that is sampled, we can compute its
support by calculating the proportion of all the samples of trees in which it occurs.
For a sampled tree, the clade credibility (CC) score is given by the logarithm of
the products of these proportions for all clades:

CC score = log

( ∏
all clades c in τ

pc

)
(3.1)

pc =
number of trees in which clade c occurs

total number of trees
(3.2)

The maximum clade credibility (MCC) tree is then defined as the tree for which
the CC score is maximum. In the case of the 4 sampled trees in figure 3.1, tree (1)
has the highest CC score of log( 12 ·

3
4 ) ≈ −0.98.

A higher CC score of the MCC tree implies a tree that is inferred with higher
confidence according to the model, since the clades in that particular tree must
have been sampled more often. This is explained in more detail in section 3.3.

A program which can perform this summary of trees is TreeAnnotator and is
included in BEAST2.

Methods to compare trees

When visually comparing trees, note that even identical trees can be represented
in such a way that they would appear dissimilar by simply rotating the clades
around their branches. A visual comparison of two trees, represented so that they
would appear most similar, can be performed by the dendextend [Gal15] package in
R. It produces so-called tanglegrams: two opposed dendrograms whose leaves are
connected. The tanglegrams connect corresponding tips in colour if they belong
to the same sub-tree. Furthermore, nodes which contain some tips, which the node
in the other tree does not contain, are highlighted with a dashed line.

A B C D

(1) (A,B); (A,B,C)

A B C D

(2) (B,C); (A,B,C)

A C B D

(3) (A,C); (A,B,C)

A B C D

(4) (A,B); (C,D)

Figure 3.1: An Example of 4 sampled trees, with their clades listed. Clades consisting
of the entire tree, or only a single leave, are omitted.
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We use the Robinson-Foulds (RF) metric [RF81] to quantitatively compare
trees. For two trees τ1, τ2 it is defined as dRF(τ1, τ2) = A + B where A is the
number of clades in τ1 but not in τ2 and B is the number of clades in τ2 but not in
τ1. Observe that we measure the di�erence between trees using clades, just as we
did when summarizing trees using the clade credibility score of equation (3.1). for
trees τ1, τ2 which have n tips, we always have that 0 ≤ dRF(τ1, τ2) ≤ 2n− 4.

3.1 Comparing the phylogenies of the Sainudiin and the
HKY model

In this experiment we will check whether the phylogeny obtained with the
Sainudiin model resembles a reference phylogeny, obtained from the HKY model.

The HKY model is a substitution model for the evolution of nucleotides, and
specifies the relative rates of mutations per site. Furthermore, the rates for transitions
A↔ G and C↔ T are di�erentiated with a factor κ, leading to the definition of
rate matrix

QHKY =

T C A G


T −
∑
j 6=T qT,j κπC πA πG

C κπT −
∑
j 6=C qC,j πA πG

A πT πC −
∑
j 6=A qA,j κπG

G πT πC κπA −
∑
j 6=G qG,j

The diagonals are defined such that the rate of probability flowing out of a state is
equal to the total inflow to other states.

Since nucleotide data is not constrained to 24 sites, it is expected to contain
much more information than VNTR and can therefore serve to generate a reference
tree.

3.1.1 Methods
The data we use comes from a collection of 97 MTBC strains, and was published
in a study by Comas [Com+09].

For these isolates, both nucleotide and VNTR data were made available in this
study. The VNTR data consists of 24 loci, and was sampled specially for this study.
The nucleotide data was obtained from a previous study of Hershberg [Her+08],
and consisted of 339 chosen bases which showed di�erence among the 97 (such
di�erences are called single-nucleotide polymorphism, or SNP). In the study of
Hershberg, the DNA of several genes of 108 MTBC strains (including the 97
sampled in the Comas study) was sampled using MLST.

Of these 108 strains, 99 included human-adapted strains from a global collection
of 875, and 7 were selected to represent animal-adapted strains. From the VNTR
strains of the Comas study, we removed any strains with missing data, or containing
i = 0 < imin, leaving 92 strains. Of these 92 strains, only 5 were animal-adapted
strains. The distribution of the states in the data is shown in figure 3.5.

We reconstructed the entire original nucleotide sequences of the samples, using
the 339 SNPs. To this end, we created a dataset which consists of the 339 SNPs
from the Comas dataset, filled to its original sequence length of 65.829 bases, by
randomly drawing nucleotides from the sequences of the genes that were originally
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sampled. These genes were listed in the study of Hershberg [Her+08], and were
obtained from [Gal+10].

The settings of BEAST2 to create the MCMC runs are explained below.

Set-up of BEAST2

The priors for the parameters a0, rb, ieq, g of the Sainudiin model, are chosen such
that they reflect no prior knowledge on the parameters. For the HKY model, we
use the default log-normal prior for κ. All the priors are shown in table 3.1.

A parameter in table 3.1 not yet discussed is population size. BEAST2 assumes
the tree to be the result of some population model, which in turn puts a prior
probability f(τ) on tree τ . We used the Wright-Fisher model which assumes a
constant e�ective population size (a common choice), which means that the number
of reproducing individuals in a population remains constant.

Note that our data has no time information. This means that estimating either
µ or the tree height is impossible, as µ and t appear together in equation (2.1). For
that reason, we set µ = 1.0, so that we implicitly estimate quantity µ×tree height,
instead of tee height.

We furthermore assume that the states at the root node are distributed according
to the stationary distribution of matrix Q.

Parameter Prior

a0 U(0.0, 10.0)
rb U(0.0, 10.0)
ieq U(1.0, 15.0)
g U(0.0, 1.0)
κ lnN (1.0, 1.25)
Population size 1/x1

Gamma shape Exp(1)
µ 1.0

Table 3.1: Priors used on the parameters of the HKY and Sainudiin model, for
inferring the phylogeny of the Comas data.

We use the output of trees to generate an MCC tree for both models and
subsequently use a tanglegram to compare them.

3.1.2 Results
The posteriors of the parameters of the Sainudiin model are shown in table 3.2. We
notice that the obtained value for a0 closer to 0 than to 1. If it were the case that
a0 = 1, then for imin = 1, it follows from equation (2.5) that the mutation rate of
repeat i is proportional to the number of repeats i:

α(1, i) = iα(1, 1) (3.3)

1For the population size, 1/X is a Je�rey’s prior [DB15], meaning it is a ‘good’ non-informative
prior, i.e. the posterior produced from it, best reflects the information that is in the data.
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Figure 3.2: Tanglegram of the inferred phylogenies of the Comas dataset. Left: the
nucleotide tree, CC score = -71.21. Right: the VNTR tree CC score = -93.38. The
parts marked in blue are where the clades in the VNTR tree have a higher CC
score than the nucleotide tree.

If however a0 = 0, it follows that the mutation rate of repeat i is proportional to
the number of repeats− 1.

α(0, i) = (i− 1)α(0, 2), (3.4)

in which case state i = 1 is an absorbing state. Thus it appears the rate is more
proportional to the rate of i− 1, which we will investigate further in experiment
3.5.

The generated tanglegram for the MCC trees obtained using the model of
Sainudiin and the HKY model are shown in figure 3.2. At first sight, the two
trees appear to be similar quite similar, but not identical. There are parts in the
VNTR tree marked in blue, where the clades have a higher CC score, than in
the nucleotide tree, even though the overall CC score of the VNTR tree is lower
than that of the nucleotide tree. This suggests these parts of the tree are better
determined in the VNTR tree, which will be further explained and investigated in
experiment 3.3.

The Robinson-Foulds distance between the two trees is dRF = 104. In Exper-
iments 3.2 and 3.4 we will investigate the performance of the Sainudiin model
together with another model, on simulated data, which will help to interpret this
obtained value.
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Parameter Posterior

Median 95% HPD Interval

a0 0.11 [5.35 · 10−6, 0.45]
rb 0.35 [0.16, 0.72]
ieq 1.88 [1.00, 2.79]
g 0.36 [0.31, 0.42]
Population size 2.47 [1.65, 3.45]
Gamma shape 1.71 [0.94, 2.50]
Tree height 0.91 [0.57, 1.36]

Table 3.2: Posteriors of the parameters in the Sainudiin model, foundwhen inferring
the phylogeny of the Comas data.

3.2 The performance of simpler and more complex versions
of the Sainudiin model

In this experiment we will investigate whether simpler versions of the Sainudiin
model can still correctly infer the trees and parameters, and whether a more complex
locus model will increase the accuracy of the found phylogeny. For example, the
model is capable of modelling mutational bias via parameters rb, ieq, but it might
be possible that such an e�ect is not necessary when inferring the phylogeny. To
make the bias for expansion and contraction is always the same, we can set rb = 0.
To investigate such possible simplification, we have simulated data and inferred the
phylogenies using di�erent model settings.

Also, until now we have implicitly assumed that all model parameters θ are the
same on all 24 loci, only allowing for rate variation via equation (2.25). Because
in our data, the number of repeats on the di�erent loci showed a large variation
in distributions, it is possible that estimating the model parameters, µl, ileq, gl for
each locus l separately, increases the accuracy of the found phylogeny. Also,
knowing the model parameters for each locus separately allows us to simulate data
with larger variation, thus more realistically. Adding heterogeneity for the other
parameters rb, a0 as well resulted in too many parameters being estimated which
caused numerical instability in the MCMC chain in BEAST2.

The likelihood that is used in this way in the updating algorithm of section 2.5.1,
is given by the product of the likelihood for all loci

f(D|τ,θ1, . . . ,θ24) =

24∏
l=1

f(Dl|τ,θl) (3.5)

3.2.1 Methods
We will first estimate the model parameters of the Comas dataset for each locus
separately, using settings as described in section 3.1, but with di�erent parameters
µ, ieq, g on all loci, and rb, a0 the same.

To simulate data, we use the tree obtained from nucleotide data in section 3.1.
Since the tree obtained from nucleotide data is of di�erent height than the tree
obtained of VNTR data, for µ = 1, the nucleotide tree is rescaled to have length
identical to the VNTR tree obtained in section 3.1.
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Using the median of the parameters µl, ileq, gl and rb, a1, shown in table 3.3, we
construct Q for each of the 24 loci, having states i for2 imin = 0 ≤ i ≤ imax = 14.

Before we can start simulating data, we must first specify a sequence for the
root node. For this sequence we choose the repeats that occur most frequently on
each locus in the data D.

BEAST2 then simulates data in the following way:

• For each branch in τ , calculate the probability transition matrix P(b) from
Q where b is the corresponding branch length. Descending from the root
node, we can calculate from P, for each locus l, the distribution of the repeats
for the children of that node. By taking a draw from that distribution we
simulate some sequence for the children of that node.

• Descending through all the nodes, we generate sequences for all the nodes in
the tree, and ultimately for the tips. The sequence data on the tips of the tree
constitutes the simulated data.

The above procedure is repeated 32 times, to generate 32 datasets. These simulated
data are analysed in the following ways:

• using the same model parameters for each locus (homogeneous)

• using separate model parameters µ, ieq, g for each locus (inhomogeneous)

Combined with:

• using no mutational bias, i.e. rb = 0, or

• using mutational bias.

Combined with:

• using the single step model, i.e. g = 0, or

• using the multi step model.

Thus in total each dataset is analysed in 8 di�erent ways. From the generated
posteriors, we will compare the Robinson-Foulds distances between the MCC
trees and the tree used for simulating. We will also compare the posteriors of the
parameters with the parameters used for simulating.

3.2.2 Results
The posteriors of the estimated parameters used of the most heterogeneous and
complex model (the results of which were used for simulating data) are shown in
figure 3.4 and their median values in table 3.3.

In figure 3.3, the Robinson-Foulds distance between the MCC tree and the
tree used for simulating is plotted for each dataset. By looking at the mean of the
di�erent analyses in this figure, we can see that from all versions of the model only
the multi-step model yields a significant decrease in Robinson-Foulds distance, since
the di�erence in results for the multi step model and single step model are greater
than the standard error. When the mutational bias is modelled in the analysis, the

2This is equivalent to setting imin = 1 ≤ i ≤ imax = 15, as done when analysing the Comas data.
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inferred phylogenies do not substantially become more accurate. Also, we can see
that using inhomogeneous parameters for the loci does not yield a significant better
result compared to using homogeneous parameters. Thus we can conclude, that
for inferring the phylogeny, it is not necessary to model the mutational bias, or use
site heterogeneity.

For each simulated dataset for the analysis with bias, the multi-step model, and
inhomogeneous parameters, the 93.75%3 confidence interval of the mean of the
posteriors, and the average of the mean of the posteriors were also calculated. They
are also shown in table 3.3. As can be seen, parameter g can be quite accurately
determined, and parameter µ somewhat less, but the confidence intervals show that
the precision is quite low for all obtained parameters.

In table 3.4, we show the same parameters of the analysis of the model that was
deemed most parsimonious, i.e., using homogeneous parameters and the multi-step
model without bias. For completion, we have also listed results for the model with
bias. As can be seen, a0 is less accurately determined for the case of unbiased model,
compared with the biased model. A possible explanation is that without the extra
rate coming from the bias as in equation (2.10), on repeat i = 1, the missing rate
might get compensated by an increase in a0.

Re-inferring the phylogeny of the Comas data using the most
parsimonious model

When we re-infer the phylogeny as done in Experiment 3.1, using a version of
the Sainudiin model which was deemed most parsimonious, (i.e., with homo-
geneous parameters and without bias), we obtain posteriors of the parameters as
shown in table 3.5. The Robinson-Foulds distance to the phylogeny inferred using
nucleotides (as done in Experiment 3.1), amounted dRF = 104.

From now on, whenever we infer the phylogeny using the Sainudiin model,
we always use this most parsimonious model.

3.3 Joining information in VNTR and nucleotides

As suggested in section 3.1, and shown in figure 3.2, with VNTR data we can
infer the phylogeny of di�erent parts of the tree with di�erent results. In this
experiment, we shall combine the information coming from both VNTR and
nucleotide data, and find out whether the phylogeny obtained with the HKY
model using nucleotide data can benefit from the VNTR data.

Since there is no reference tree available beside the tree generated from nucle-
otide data, we have no comparison for evaluating the MCC trees obtained from
both models. Instead we will look at the precision or variability of the obtained
trees from the MCMC output. More variability being present in the obtained
trees, indicates less information being present in the data. A natural candidate for
measuring this information content is the clade credibility score, discussed at the
beginning of this chapter. If the genetic data would be void of any phylogenetic
information, we would expect the MCMC algorithm to sample each possible tree
with the same probability. Since number of possible trees is very large, this would
result in the MCC tree having a very low clade credibility score. If in contrary the
data is very rich in phylogenetic information, we would imagine that the MCMC

3Since we are dealing with 32 datasets, 30/32 = 93.75%
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VNTR g µ ieq

True Mean 93.75% CI True Mean 93.75% CI True Mean 93.75% CI

1 0.21 0.41 [0.25,0.59] 0.25 0.07 [0.02,0.11] 7.07 6.98 [6.09,7.81]
2 0.51 0.47 [0.28,0.67] 1.01 0.89 [0.51,1.36] 2.40 3.47 [1.06,7.61]
3 0.16 0.17 [0.06,0.29] 1.26 0.83 [0.48,1.42] 3.11 3.52 [1.52,5.31]
4 0.15 0.22 [0.11,0.46] 0.73 1.62 [0.80,2.65] 0.45 1.58 [0.50,4.47]
5 0.52 0.48 [0.22,0.75] 0.50 0.92 [0.26,1.47] 0.56 2.63 [0.77,5.79]
6 0.40 0.39 [0.21,0.63] 0.30 0.07 [0.04,0.12] 8.75 7.34 [4.07,9.36]
7 0.52 0.53 [0.40,0.65] 0.22 0.34 [0.19,0.63] 5.82 6.27 [5.35,6.76]
8 0.42 0.40 [0.16,0.61] 0.73 1.28 [0.76,1.89] 0.92 1.92 [0.76,3.39]
9 0.32 0.42 [0.22,0.65] 0.20 0.06 [0.02,0.15] 6.48 6.88 [4.31,8.37]
10 0.27 0.24 [0.09,0.41] 0.83 1.14 [0.64,1.55] 1.47 2.43 [1.03,3.98]
11 0.08 0.18 [0.07,0.37] 0.56 0.50 [0.26,0.76] 2.04 4.09 [1.73,6.38]
12 0.07 0.19 [0.08,0.36] 2.00 2.28 [1.62,3.52] 1.17 1.62 [0.90,2.87]
13 0.32 0.37 [0.18,0.56] 2.19 2.30 [1.05,3.27] 1.60 2.32 [1.13,4.56]
14 0.22 0.24 [0.13,0.44] 0.28 0.12 [0.05,0.21] 4.64 6.50 [3.63,9.30]
15 0.30 0.29 [0.16,0.42] 2.46 1.40 [0.98,2.14] 4.02 5.04 [3.26,6.68]
16 0.52 0.54 [0.37,0.69] 2.42 1.49 [1.02,2.19] 3.88 4.58 [1.67,7.37]
17 0.38 0.31 [0.17,0.46] 1.10 1.29 [0.73,2.09] 2.06 3.44 [1.87,5.64]
18 0.37 0.37 [0.15,0.63] 0.20 0.10 [0.05,0.22] 3.95 6.04 [2.69,8.67]
19 0.64 0.59 [0.22,0.78] 0.34 0.56 [0.36,0.89] 1.10 2.37 [0.97,6.60]
20 0.34 0.43 [0.23,0.68] 1.20 1.68 [0.98,2.43] 0.90 2.17 [0.86,4.28]
21 0.24 0.29 [0.10,0.59] 0.48 0.59 [0.33,0.95] 1.75 2.74 [1.24,5.28]
22 0.39 0.42 [0.27,0.62] 1.86 1.27 [0.82,1.76] 3.49 3.97 [2.77,6.23]
23 0.45 0.39 [0.21,0.58] 1.55 1.23 [0.79,1.62] 3.33 4.96 [3.03,7.25]
24 0.52 0.48 [0.24,0.71] 1.32 1.97 [0.82,3.90] 0.84 2.00 [0.98,4.86]

(a) The inhomogeneous model parameters.

rb a0

True Mean 93.75% CI True Mean 93.75% CI

0.89 1.11 [0.59,1.45] 0.16 0.22 [0.07,0.43]

(b) The homogeneous model parameters.

Table 3.3: The true parameters are the medians of the found posterior of the
parameters of the Sainudiin model (using inhomogeneous and homogeneous para-
meters), for simulated VNTR data. Listed are also the average of the mean of the
parameters and their confidence interval.

algorithm only samples a few, obvious trees. This in turn would result in a MCC
tree with a very high clade credibility score.

3.3.1 Methods
In BEAST2, combining the twomodels can be done in a very straightforward manner.
The trees inferred from the HKY and the Sainudiin model can be linked: this means
that the same tree is being used for updating the state in the MCMC algorithm.
The MCMC algorithm still looks as described in section 2.5.1, except that for the
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g rb ieq a0

Analysis Mean 93.75% CI True Mean 93.75% CI Mean 93.75% CI True Mean 93.75% CI

bias 0.33 [0.25,0.38] 0.89 0.51 [0.30,0.90] 1.83 [1.38,2.36] 0.16 0.25 [0.09,0.43]
no bias 0.27 [0.20,0.34] 0.16 0.46 [0.24,0.75]

Table 3.4: The true parameters are the medians of the found posterior of the para-
meters of the most parsimonious Sainudiin model, using homogeneous parameters,
for simulated VNTR data. Listed are also the average of the mean of the parameters
and their confidence interval.

Parameter Posterior

Median 95% HPD Interval

a0 0.23 [0.00011, 0.87]
g 0.31 [0.26, 0.37]
population size×µ 2.44 [1.51, 3.54]
gamma shape 1.6577 [0.92, 2.47]
tree height×µ 0.71 [0.41, 1.12]

Table 3.5: Posteriors of the parameters in the Sainudiin model without mutational
bias, found when inferring the phylogeny of the Comas data.

updating of trees and parameters, it uses a likelihood that is the product of the tree
likelihoods for the HKY and Sainudiin model:

f(DHKY,DSai|τ,θHKY,θSai) = f(DHKY|τ,θHKY)f(DSai|τ,θSai)

3.3.2 Results
We compare to the MCC tree inferred with solely nucleotide data to the MCC
trees inferred to any dataset of {VNTR,VNTR and nucleotide} in figure 3.6. The
nodes of the trees are highlighted with their respective clade credibility score.

As can be seen in figure 3.6a, the clade credibilities of the nucleotide tree are in
general higher than those of the VNTR tree, which is confirmed by the nucleotide
tree having a higher CC score than the VNTR tree. However, it is also clear that
there are some parts of the nucleotide tree with low clade credibility, marked in
blue, that are clearly better inferred (i.e. with higher clade credibility) in the VNTR
tree.

Looking at figure 3.6b, it becomes clear that in the tree where information
of nucleotides and VNTR is combined, those parts where VNTR outperformed
nucleotides, are still present. In addition, those parts where the nucleotide tree was
more certain about the phylogeny, are still determined by the nucleotides tree. If
the information in VNTR and nucleotides was contradictory, we would expect the
CC score to decrease, since the MCMC algorithm would sample more, di�erent
trees. Since the CC score of the combined tree is higher than that of both the
nucleotide and the VNTR tree, this means the information in both the VNTR and
nucleotides data is complementary.
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3.4 The e�ect on mutation rate on the inferred phylogeny
and the performance of the Sainudiin model compared
to the HKY model

In this section, we will investigate the e�ect of λ = µt on the performance of the
Sainudiin model, and also perform a comparison with the performance of the HKY
model. Large values of λ, cause the rows of P(λ) = eQλ to reach the stationary
distribution. Therefore, λ is a parameter which models the mutational saturation of
the data. Since VNTR practically only occupies a limited number of states, having
too much saturation could mean we lose the discriminatory power that the repeats
have to infer the phylogeny. To investigate this e�ect, we will simulate VNTR
data and see how the dRF between the inferred and true phylogeny behaves for
di�erent λ (or equivalently, for di�erent µ and fixed t).

Another reason for varying λ, is that we can simulate di�erent scales of an
outbreak. For example, smaller values of λ represent data of outbreaks on a local
scale, while as λ increases, it represents data sampled across lineages, and finally
across di�erent TB species.

By also simulating nucleotide data for di�erent µ, and seeing how dRF behaves
for this data, we can see how much worse or better the Sainudiin model perform-
ances compared to the HKY model. We can also infer the phylogeny using the
HKY and Sainudiin model combined, and using nucleotide and VNTR data, as
done in section 3.3. Then, by again looking at dRF between the inferred and
true phylogeny, we can see how beneficial the VNTR data is compared to solely
nucleotides.

3.4.1 Methods
We simulate VNTR data as described in section 3.2.1. However, we will transform
the mutation rate: µl → mµl, and vary m when simulating.

We will also simulate nucleotide data. Using the Comas data and the HKY
model in BEAST2, we can infer the phylogeny and the model parameters as done in
section 3.1. For this tree and parameters, simulated data can be generated in the
same way as described in section 3.2.1. Also, when simulating nucleotide data, we
will transform µ→ mµ, and vary m.

3.4.2 Results
In figure 3.7a we show the resulting computed values of dRF for di�erent λ of
simulated VNTR data. For very low and very high mutation rate, the computed
distance dRF is high which means that the model performs badly. Of special interest
is the minimum that appears. Apparently there is an optimal amount of (mutational)
change that can happen to a tree, such that this change is optimal in the sense that
it is most ‘helpful’ for the inference of the phylogeny.

Compared to the case of simulated nucleotide data in figure 3.7b, we can see
dRF decreases with increasing µ. Furthermore, at λ = λcomas, we can see that we
obtain dRF ≈ 50 for nucleotide data, and dRF ≈ 100 for VNTR data. This means
that using HKY on the Comas dataset will yield a phylogeny which is twice as
close to the true phylogeny compared to using the Sainudiin model.

In figure 3.7b, we can also see that for saturation levels λ of that of the Comas
data, having the phylogeny inferred using both VNTR and nucleotide yields
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phylogenies that have substantially less distance to the true phylogeny, than solely
using nucleotides. This means that VNTR in combination with nucleotides has
substantially more information on the phylogeny, than solely nucleotides, for this
level of saturation. We also see that around 1000 SNPs, nucleotides become so
rich in information, that VNTR no longer contributes any information not already
contained in the nucleotides.

To further investigate the possible criteria which can be associated with an
optimal mutational change for VNTR data, we look at the inferred phylogenies
of the red, green and blue dot of figure 3.7a, and compare them with the original
phylogeny using tanglegrams.

Closer inspection of the trees

We compare the inferred phylogenies of the red, green and blue dot in figure 3.8.
It can clearly be seen that the inferred phylogeny of the green dot in figure 3.8b
is the best. Although the inferred phylogeny of the red dot in figure 3.8a has not
found the neighbours of the tips very well, it has been quite capable of finding
the structure that defines the clades, when compared to the inferred phylogeny of
the blue dot in figure 3.8c. Looking at the inferred phylogeny of the blue dot in
figure 3.8c, the many colours indicate that many sub-trees, i.e. the neighbours of
the tips have been found. However, the many crossings of lines between the tips
indicate that the clades of larger size could not correctly be inferred.

Looking at the original tree in the left of figures 3.8a to 3.8c, we can see that
longer branches are present higher up in the tree, whereas the branches closest to
the tips are clearly shorter.

If µ is large, as is the case with the blue dot, what happens is that the larger
branches will become over-saturated with mutations. However, along the short
branches near the tips, only a few mutations happen, which will be enough to
discriminate the closest family members in the tree. This is why we can clearly see
close neighbours are correctly identified for the inferred phylogeny of the blue dot
in figure 3.8c, whereas the more distant clades, which are separated by the longer
branches, are not.

If µ is small, as is the case with the red dot, what will happen is exactly the
opposite: only along the long branches a few mutations will happen, whereas
along the short branches no mutations will happen at all. This is why the inferred
phylogeny of the red dot in figure 3.8a correctly identifies the larger clades, but
not the neighbours.

Summarizing, it is important that branch length times mutation rate µ is not
too small, but not too big either. Thus we could say that is essential that as many
branches as possibles become not over-saturated and not under-saturated.

Quantifying a criterion for optimal mutational change

We want to count the number of branches that are ‘helpful’ in inferring the phylo-
geny. For a branch of (time) length b, the number of mutations along it is given by
µb. The mutations are only helpful when there are not too few, and not too many
of them. This means that only branches for which

λlower ≤ µb ≤ λupper (3.6)
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holds, are helpful in inferring the phylogeny. To find the bounds λlower, λupper, we
will look (for a given µ) at the arrival times t, t of the mutations between which
they are still ‘helpful’.

If we assume that only a single mutation along a branch is helpful for the
inference of the phylogeny, the values t, t can be chosen to reflect this assumption.
Our choice is to look at the arrival time, of the first mutation on any locus, defined
by Tmin, and at the arrival time, of the mutation on the last locus to receive its first
mutation, defined by Tmax. Of course Tmin, Tmax are random variables, and depend
on T l1, the arrival time of the first mutation on locus l, via:

Tmin = min
l
T l1 (3.7)

Tmax = max
l
T l1 (3.8)

We will now proceed to find the 5% and 95% percentiles of these distributions,
and subsequently use these values in determining tµ, tµ.

The distribution of the time of the k-th arrival Tk is Erlang:

fT (x; k, µ) =
µkxk−1e−µx

(k − 1)!

Assuming independence of the 24 loci, we can easily find the CDF of Tmin, Tmax by
computing

FTmin(x;µ) = 1−
24∏
l=1

(1− FT (x; 1, µ))

FTmax(x;µ) =

24∏
l=1

FT (x; 1, µ)

We then choose t, t such that

FTmin(t;µ) = 5%

FTmax(t;µ) = 95%

holds. These values reflect the percentiles, such that with 95% probability the first
mutation on the 24 loci has already arrived, and with 95% probability the event
that the last locus to receive its first mutation has not yet occurred. Note that we
need to specify µ to solve this equation, but since tµ and tµ are always constant for
di�erent choices of µ, this is no issue. Using the FindRoot routine of Mathematica
[Wol16] we find

t = 0.0021 (3.9)
t = 6.1493 (3.10)

We can then count the loci satisfying criterion equation (3.6):

|{b : t ≤ bµ ≤ t}| (3.11)

In figure 3.7c we have plotted the number of branches satisfying equation (3.11)
with the above values. As can be seen, this quantity can indeed reflect the pattern
of the dRF distance in figure 3.7a.
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3.5 Investigating the mutation rate proportionality

Recall that the mutation rate in equation (2.5) is modelled to be linearly dependent
on the number of repeats i, where the rate proportionality of imin is a0:

α(a0, i) = a0 + i− imin

The low values for a0 in table 3.2 from the results of experiment 3.1, indicated
that the mutation rate is (almost) proportional to the number of repeats− 1, since
a0 = 0 implies

α(0, i) = (i− 1)α(0, 2) (3.12)

The biological interpretation of this is that the mutation rate is proportional to
the number of edges between the repeats (i − 1). Note however, that an exact
proportionality to i − 1, implies a mutation rate of 0 for state i = imin = 1, i.e.,
it becomes an absorbing state. For this reason, the rate that repeat i = 1 has, is
reflected in a0, and can cause a0 to increase.

This experiment will serve the purpose to determine whether the mutation
rate is proportional to either the number of repeats (i), or the number of edges in
between them (i− 1). The current model for the mutation rate proportionality,
cannot answer this since it forces a0 > 0, otherwise state i = 1 would become an
absorbing state. Therefore, we will use a changed model for the mutation rate
proportionality α to circumvent the issue of i = 1 becoming an absorbing state
whenever there is proportionality to i− 1. We start by giving an explanation for
the mutation mechanism of VNTR below, and subsequently design an experiment
to verify the proportionality that this mechanism implies.

The mutation rate proportionality is modelled after the proportional slippage
model of the repeats. During the replication of a DNA strand, either the original
or new strand might slip, causing the repeats to misalign. This mechanism requires
at least two repeats, and it could be reasonable to assume that each pair of repeats
has an independent probability to mutate.

If we believe that a larger stretch of DNA o�ers (proportionally) more oppor-
tunity to mutate, we can model the mutation rate to (linearly) increase with the
number of edges between the repeats (i− 1), as was done by Kruglyak [Kru+98]:

α̃(µ1, i) = µ1(i− 1) (3.13)

To still allow the number of repeats to increase from i = 1 to another state, an
additional constant term might be added:

α̃(µ1, i) = µ0 + µ1(i− 1) (3.14)

This expression is equivalent to equation (2.3), since they only di�er by a constant,
which is captured in µ0.

Even though this expression models the proportionality of the rate to the num-
ber of repeats, it is yet unclear what makes it proportional. For convenience, let’s
only consider single step mutations. A possible explanation then is that each of
the repeats of one string, might misalign and map to the nearest neighbour of the
opposing string, as shown in figure 3.10. Considering all possible opportunities of
misalignment, by looking at figure 3.11, we can see that the rate must become pro-
portional to i−1. If a0 is (almost) 0, then by equation (2.5) state i = 1must (almost)
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be an absorbing state. This makes sense in the explanation of figure 3.11, since (for
the mechanisms shown in this figure) there is no possible way of misalignment of
state i = 1.

To still allow state imin = 1 to mutate, implies a separate rate for repeat i =
1, while the rate of repeat ≥ 2 would be given by equation (3.12). To verify
whether the mutation rate is proportional to either the number of repeats i, or the
number of edges in between them i− 1, we change the model of the mutation rate
proportionality as in 2.3, to

α̃(µ′0, µ0, µ1, i) =

{
µ′0 if i = 1

µ0 + µ1(i− 1) if i ≥ 2

Which can be normalized to

α(a′0, a0, i) =

{
a′0 if i = 1

a0 + i− 1 if i ≥ 2
(3.15)

One expects a0 = 0 in the posterior, since then α(a′0, 0, i) = (i− 1)α(a′0, 0, 2) ∝
(i− 1), for i ≥ 2. If in contrary, it were the case that the mutation rate of state i
would be proportional to i, we would expect to find a0 = 1.

When we perform the MCMC run with this changed model for the Comas
dataset, using uniform wide priors on a′0, a0, and further settings as described in
section 3.1, we find posteriors for a′0, a0 as shown in figure 3.9a. The median and
95% HPD interval for a0 are 0.02 and [−0.55, 0.97]. The found values for a0 do
indeed suggest that in nature, the mutation rate of the repeats is proportional the
number of edges between them. Also, a0 = 0 implies equation (3.12). This means
the parametrization as in 2.5 has su�cient parameters to model the mutation rate
dependency on repeat length, i.e. there is no need for separate parametrisation for
the proportional rate of i = 1.
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(b) Analysis using inhomogeneous parameters.

Figure 3.3: Robinson-Foulds distance between input tree and the MCC tree,
obtained from 4 di�erent versions of the Sainudiin model that were used for
inferring the phylogeny of simulated VNTR data. The solid line represents the
mean of a type of analysis, the dashed lines represent the standard error.
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Figure 3.4: Posterior of the parameters µl, gl, ileq (di�erent on loci l), and paramet-
ers rb, a0 (the same on loci l) of the Sainudiin model, found when inferring the
phylogeny of the Comas data.
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Figure 3.5: Distributions of the repeats i− imin on the 24 VNTR loci of the Comas
dataset (with imin = 1).
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(a) Left: nucleotide tree, CC score = −71.21. Right: VNTR tree, CC score = −89.64. The
parts marked in blue are where the clades in the VNTR tree have a higher CC score than
the nucleotide tree.

(b) Left: nucleotide tree. Right: nucleotide and VNTR tree, CC score = −40.80. The parts
marked in blue are where the clades in the VNTR and nucleotide tree have a higher CC
score than the nucleotide tree.

Figure 3.6: Tanglegrams of the inferred phylogenies of the Comas dataset.
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(a) Plot of dRF between the inferred and true phylogeny for simulated VNTR data, using
the Sainudiin model.

(b) Plot of dRF between inferred and true phylogeny for simulated VNTR data, using the
HKY model, and both the HKY and Sainudiin model. Also shown are the number of SNPs
in the simulated nucleotide data.
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(c) Plot of the the number of informative branches in the tree used for simulating VNTR
data, defined by equation (3.11).

Figure 3.7: Results of simulated data, for di�erent levels of mutational saturation
λ(= µt).
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Figure 3.8: Inferred trees of simulated VNTR data, belonging to the red, green
and blue dots of figure 3.7a. Left: the original phylogeny. Right: the inferred
phylogeny.
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Figure 3.9: Posteriors of the parameters of the changed rate proportionality model
equation (3.15), when inferring the phylogeny of the Comas data.
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Figure 3.10: Schematic of some of the possible ways state i = 3 of the VNTR can
increase or decrease.
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Figure 3.11: Schematic of possible misalignments of repeats for di�erent states i of
the VNTR during duplication. Each arrow depicts a possible way of misalignment.
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Conclusion

Before starting this project, there was no capability of inferring the phylogeny
based on VNTR data in BEAST2. By implementing the Sainudiin model in BEAST2
as an add-on, we extended its capabilities.

Some of the parameters originally used in this model, b0, b1 had no intuitive
interpretation. In chapter 2 they were transformed into rb, ieq, which can be
interpreted in an intuitive way as the magnitude of the bias and the focal point of
the bias.

In experiment 3.1 and experiment 3.4 we compared the performances of the
Sainudiin and the HKY model. From experiment 3.1 we saw that the phylogenies
obtained from both models resemble each other.

In experiment 3.2, we showed that from all analyses of the VNTR data with
di�erent model settings, using homogeneous parameters on the loci, without
any mutational bias, is su�cient for inferring the phylogeny. Concerning the
parameters, only g could be quite accurately determined, while the precision of all
obtained parameters was quite low.

In experiment 3.3, we combined the information that was present in the nucle-
otide and VNTR data. In case of the data from the Comas study, we were able to
better infer the phylogeny in terms of consistency of the MCMC output for the
combination of both models.

We showed in experiment 3.4 using simulated data, that for levels of saturation
of that of the Comas data, the Sainudiin model can infer phylogenies that are about
twice as far from the true phylogeny, compared to the HKY model. However,
combining both models yields a phylogeny that is substantially closer to the true
phylogeny, than solely using HKY.

This result together with the result of experiment 3.3 indicates that VNTR
contains information not contained in nucleotides, at least for the case of the Comas
data. This could imply that with the introduction of WGS for sequencing TB, it
might still be necessary to also type VNTR, to be able to infer the phylogeny more
accurately.

We also showed in this experiment 3.4 using simulated data, that the mutations
can be both beneficial and detrimental when it comes to inferring the phylogeny:
too little mutations, and there is not enough information present to say anything
about the phylogeny, while too much mutations diminish the information about
the phylogeny. Furthermore, we showed that the branch lengths in the tree play
a role together with the mutation rate, in the overall capability of inferring the
phylogeny.

In experiment 3.5, we showed by using a di�erent model for the mutation
rate proportionality, that the MCMC output suggests that the rate is directly

39
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proportional to the number of edges between the repeats.

Discussion

Even though we gave a possible explanation for the way that slippage can occur
in experiment 3.5 for i ≥ 2, it is still not clear how state i = 1 is able to mutate.
Clearly, with only 1 repeat being present, there is no possible way of misalignment.
Even more puzzling, is how it is possible that states i = 0 occur in the data, which
are repeats of zero length. For our purposes, we threw away any samples that
contained states i = 0, even though it is still possible to infer the phylogeny in
those cases by setting imin = 0. We saw no significant di�erences in the obtained
phylogenies for the Comas data for the cases imin = 0, 1. The reason for discarding
samples with states i = 0 in our research, was that the model of Sainudiin was never
intended to be able to explain repeats of zero length.

Even though we did not use samples which contained missing data for our
research, BEAST2 has capabilities to handle such cases. Whenever the state of a
locus of a sample is unknown, BEAST2 assumes that any of the possible states in the
model could have occurred with equal probability on that locus. For the Sainudiin
model, BEAST2 would thus assign equal probability to, for example, state i = 1 and
i = 15, even though the latter is very rare in the data compared the former. This
can be solved by implementing in BEAST2 the assumption that any missing state is
distributed according to, for example, the stationary distribution of the model.

We recommend that the methods developed for this research be used, whenever
accurate phylogenies are wanted for VNTR samples of TB. Concerning the com-
puting power needed for these methods: during our research we achieved a per-
formance of approximately 1.000.000 MCMC samples per 5 minutes, using about
100 isolates. Whenever inferring the phylogeny for a number of VNTR isolates
that would exceed any available computing time or computing power, a solution
might be to split the set of isolates into subsets, for which the phylogeny can be
inferred separately. BEAST2 also has capabilities to perform computations in parallel
when used in combination with the beagle1 library, which can give a significant
speed boost. For other cases where computational power is still an issue, it is possible
to fall back on Minimum Spanning Tree and Neighbour Joining, even though
these methods can only discriminate major lineages.

As was shown in figure 3.7a, for approximately 1/3 of the level of mutational
saturation as that for the Comas data, the Sainudiin model is still quite capable of
accurately inferring the phylogeny. This means that for other pathogens which
have a mutation rate which is between 1/3 and 1 of the mutation rate of TB
(approximately), we still expect to be able to accurately infer the phylogeny, when
their isolates are sampled on the same (global) scale as the Comas data. In general,
the ability of the Sainudiin model to infer the phylogeny for isolates of other
pathogens depends the level of mutational saturation, or the variability in samples
that the data has.

The added value of VNTR to nucleotides, depends on the amount of SNPs that
the nucleotides capture. Whenever an amount of nucleotides comparable to that of
the Comas data is sampled (approximately 66.000), we recommend that VNTR is
also sampled in order to be able to more accurately determine the phylogeny. As
more nucleotides are sampled, the added value of VNTR decreases.

1https://github.com/beagle-dev/beagle-lib

https://github.com/beagle-dev/beagle-lib
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