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Abstract

In this thesis, we will use network theory to model some of the mechanisms that influ-
ence the economic development of countries. In the Economic Complexity framework
of Hausmann & Hidalgo [10], the production of any product requires a combination
of specific capabilities, representing different skills and other non-tradable inputs. The
relatedness between products in terms of their capability requirements can then be in-
ferred from country-product export data [12], [2].
This leads to a network representation of the economy called the product space [13]. In
this network, products are connected if they are produced by the same (type of) coun-
tries, suggesting they require similar capabilities for their production. It has been shown
empirically that countries tend to develop products that are ’nearby’ in the product
space, building upon capabilities that are already present. This leads to the interesting
perspective of viewing economical development as a diffusion process on a complex net-
work.
Here we take a theoretical approach and instead of starting from the data, try to capture
the mechanisms that govern this diffusion process in a simple theoretical model that de-
scribes how the accumulation of capabilities can lead to economic growth. We construct
a network model of the product space as the one-mode projection of a randomly gener-
ated bipartite country-capability network that indicates the capability requirements of
every product. We then describe economic development as a percolation process on this
product network. We also incorporate in the model the effects of knowledge spillovers, in
which exchange of capabilities between industries enables economic growth. The model
can explain the sudden ’take-off’ of some countries’ economies and stagnant development
of others, and provides insight in how the distribution of capabilities can affect economic
growth.
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1. Introduction

Despite great technological development enabling increased mobility and communication
in the past century, the world’s economies remain divided into poor and rich. Some
countries like the Asian tigers have managed to make the transition from the poor
to rich within a few decades by going through a phase of explosive economic growth
and industrialization. Other countries lag behind and remain underdeveloped. What
separates the rich, poor and developing countries and what drives this economic growth?
Why do some countries’ economies appear stagnant, while others experience explosive
growth?
Classic economic theory uses productive factors such as capital an labour and technology
to explain economic growth, and most policy is reliant on aggregate variables such as
GDP or the level of education in a country. These theories however cannot explain what
drives the divergence of countries’ incomes and development. Recently, a new framework
has been proposed that takes a new perspective and aims to elucidate the mechanisms
of economic growth using non-aggregate data.

1.1. Economic Complexity

This Economic Complexity framework [2], [4], [10], [11], [12], [13], [21], [23] states that
the economic development of countries is determined, or at least constrained, by the
specific skills and knowhow that are present in a country rather than capital, labor and
technology as in the classical theories of economic growth. Instead of using classical
economic theory to explain economic growth, economic complexity uses a data-driven
approach to reveal drivers of economic growth. In this approach, the products produced
by a country serve as an indicator for the knowledge present in that country. Measures
of economic complexity have been developed that aim to infer the knowledge present in
a country and the knowledge needed for production of specific products from countries’
export data.
The main subject of study in economic complexity is the country-product matrix Mcp,
which is constructed using international trade data. The Mcp matrix tells whether a
country c exports a certain product p with revealed comparative advantage (RCA) or
not:

Mcp =

{
1 if product p is exported with RCA ≥ 1
0 otherwise.

One way to interpret this data is by considering Mcp to define a bipartite network
connecting countries and the products they produce. This leads to a network with
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two classes of nodes, namely countries and products, where there is an edge between a
country c and a product p if and only if Mcp = 1.
Two quantities of interest are product ubiquity kp and country diversity kc, which are
given by the degree in the bipartite network or written in terms of the Mcp matrix as

kp =
∑
c

Mcp

kc =
∑
p

Mcp.

It has been shown that there is an inverse relation between these two quantities, i.e.
highly diversified countries (countries that export many different products) tend to ex-
port on average more exclusive products that are less ubiquitous, arguably because these
products require the combination of a greater variety of different inputs for production
and hence a more developed economy. Less developed countries are seen to produce only
ubiquitous products that are easier to produce, such as raw materials and agricultural
products [12].
The key insight is that developed countries seem to be diversified rather than special-
ized, meaning that the countries that produce highly sophisticated products tend to
produce a wide variety of products, including simple products that are also produced
by less developed countries [10], [12]. In other words, it seems that countries produce
all the products they can produce, given the productive inputs that are available in a
country. This means that the country-product network has a nested structure, and the
Mcp matrix has a triangular structure when sorted according to country diversity.
The relation between product ubiquity and country diversity suggests that the Mcp ma-
trix holds information on the level of development of a countries’ economy, and the level
of sophistication of products. This has lead to development of measures of economic
complexity, leading to the concepts of country fitness Fc and product complexity Qp [4].

1.2. Measures of economic complexity

The fitness-complexity algorithm computes from the Mcp matrix metrics of countries’
fitness (an estimate for the level of development of a countries’ economy) and products’
complexities (an estimate for the level of sophistication of a product) [4], [12]. The
iterative scheme is given by

F̃ (n+1)
c =

∑
p

McpQ
(n)
p , F (n+1)

c =
F̃

(n+1)
c∑
c F̃

(n+1)
c

Q̃(n+1)
p =

1∑
cMcp

1

F
(n)
c

, Q(n+1)
p =

Q̃
(n+1)
p∑

p Q̃
(n+1)
p

Intuitively, a countries’ fitness is determined by the mean complexity of the products
it exports. This causes the fitness of a country to grow as it either diversifies into
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production of more products and even more so if these products are more complex.
The complexity of a product is inversely proportional to a measure of how ’easy’ it is
to produce a product: a product is thought to be easily produced if many countries
produce it, where countries with low fitness have a larger contribution. If a product is
produced only by a few high-fitness countries, it will have high complexity. On the other
hand, if a product is also produced by many countries with low fitness, this implies low
complexity.
Each time step, both quantities are normalized. Starting from some initial condition the
fitness-complexity algorithm converges to a measure of economic complexity of a country
Fc and a measure for the complexity of a product Qp. These measures produce rankings
of the state of countries’ economies, where the economies with highest complexities
are the highly industrialized and diversified countries [4]. The fitness measure for the
complexity of a countries’ economy has been shown to correlate with GDP, and is even
thought to be predictive of future growth: countries with high fitness but low GDP have
been shown to be among the fastest growing economies [5].

1.3. The Product Space

The structure of the Mcp matrix also holds information about the relatedness between
products in terms of their input requirements. If two products often co-occur in the
export basket of a country, this suggest they require roughly the same inputs in terms of
specific skills or technical knowledge needed, other products or resources involved in the
value chain or quality of the institutions needed for production. Without specifying how
product are related, co-occurrences indicate similarity of products in one or more of the
above mentioned dimensions. This leads to a measure of proximity between products,
which tells how close products are in terms of their input requirements.
Formally, the proximity φ(p, p′) between two products p and p′ is given by the minimum
of the pairwise conditional probability that a country produces p or p′ given it also
produces the other product [13]:

φ(p, p′) = min{(P (Mcp = 1|Mcp′ = 1), P (Mcp′ = 1|Mcp = 1)}

= min{
∑

cMcpMcp′∑
cMcp′

,

∑
cMcpMcp′∑

cMcp

}

One can use the proximity measure to construct a network of products in which prod-
ucts with high proximity are connected by edges, called the product space [13]. Products
that are adjacent in the product space (i.e. have close proximity) are thus thought to
require approximately the same inputs, meaning that production of one product could
naturally lead to the other, since it indicates the presence of most required inputs in a
country for the adjacent product.
Figure 1.1 shows a network representation of the product space as given in [13]. The

network shows a complex structure, with a dense core of products that are related to
many other products, and a more sparse periphery with less interrelated products such
as oil, raw materials and agricultural products. Furthermore the network shows distinct
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Figure 1.1.: A network representation of the product space by [11]. Nodes are colored
according to product classification and node sizes are proportional to world
trade.

clusters of related products that largely coincide with the used product classification
(node color). For example, the bottom shows a clear garments cluster and on the top
right one can find the electronics industry.
In [23], a variant of the product space was developed, called the taxonomy network.
Using a different measure of product relatedness, the taxonomy network is a directed
network which incorporates a notion of causality in the network, so that one product
leads to the other in a specific order.
The product space and the taxonomy space reveal the pathways of economic devel-
opment of countries in the sense that when countries diversify, they do so in related
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industries. This way, the network shows which products a country is likely to diversify
into, given its current position in the network. This process of related diversification
has also been shown to operate at the level of regions looking at regional entry in new
products [15].
In the framework of the product space and the taxonomy space, one can think of eco-
nomic growth as a country ’spreading through’ the product space, where development of
adjacent industries may in turn lead to production of products that are adjacent to the
newly developed ones. The position of a country in the product space shows the current
productive structure of a country, and reveals opportunities for future growth. Coun-
tries that produce products that are in relatively isolated, sparse parts of the product
space have little opportunity to diversify, whereas production of products in dense parts
of the network, with many neighbors, give many opportunities for diversification [13].
This way the product space can also function as a policy tool to see which industries are
feasible for a country to develop given their current position in the network [11].

1.4. Contribution

The methods discussed above are purely empirical: data on product exports is used to
infer information about how products are related in terms of their input requirements
and which of these are available in different countries. These methods have been proven
a useful tool in policy making and economic analysis, and give insight in the develop-
ment of countries’ economies.
Less work has been done however on developing appropriate theoretical models that
describe economic growth of individual countries within this framework. This thesis will
aim for a theoretical approach and instead of starting from the data, try to capture eco-
nomic development of individual countries as a diffusion process on the product space
in a theoretical model. In particular, we are interested in the implications of seeing
economic development as a diffusion process on a network.
We propose to model economic development as a percolation process on a complex net-
work. Percolation was first introduced in Physics as a model to describe the flow of a
liquid through a porous material. It has been applied in more settings, such as the mod-
eling of forest fires and infectious diseases, but recently also in the modeling of diffusion
of information through social networks [20] and the adoption of new technologies [24].
Here we propose to model economic development as a percolation process on the product
space.
Depending on the structure of the network and the initial conditions, diffusion on a net-
work may stop and remain restricted to a small fraction of the network, or propagate and
lead to wide-spread diffusion. These two regimes are separated by a phase transition.
The aim of this thesis is to use percolation theory to describe dynamics observed in the
data, such as the stagnant growth of underdeveloped countries and the sudden take-off
of countries that go through periods of rapid economic development [5]. This way we
hope to capture some of the implications of economic growth as a network phenomenon
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in a simple theoretical model, which will be extended to fit the economic complexity
framework.
The rest of this thesis is structured as follows. Chapter 2 will describe the basic percola-
tion model and shortly discuss its implications when applied to the setting of economic
development. This chapter also contains a derivation of the percolation threshold and
percolating cluster sizes for the case of random graphs. In Chapter 3 we will construct
a network model of the product space starting from the theory of capabilities as intro-
duced in [12]. We describe properties of the constructed network and derive the degree
distributions and connectivity properties of the model product space. Chapters 4 and 5
discuss the percolation properties of the model product space for different initial condi-
tions. Chapter 6 introduces a model in which economic growth is driven endogenously by
individual industries acquiring new capabilities, and explores the the effect of knowledge
spillovers within this framework. We use this model to investigate the time evolution of
economic diversification. We conclude with a discussion.
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2. Percolation

In this chapter we will study the dynamics of the basic percolation model on random
networks with a given degree distribution. Firstly, the model is formalized and notation
introduced. The mathematical methods to describe the basic properties of the model
are shortly introduced. In Section 2.4 results for the case of infinite random graphs with
given degree distributions are derived.

2.1. Economic diversification as a percolation

process

In the model, a country is given a global parameter v that stands for the general level of
development of its economy. One can think of this parameter as describing the general
conditions in a country that are needed for the production of increasingly sophisticated
products, such as the general level of education and quality of institutions.
The economic state of a country is represented by its position in a network that resembles
the product space. The nodes in the network represent products, that are connected by
edges that indicate that two products are related in terms of their required conditions
for production. If a country produces a certain product, we say the node representing
that product in the network is in an active state.
Furthermore, every product p in the network is assigned a certain level of sophistication
xp, which resembles the ’difficulty’ of production of that particular product. Simple
products like raw materials and agricultural products will have low xp as they do not
require a high general level of development. More sophisticated products like electronics
and machinery however would require a higher basic level of coordination in the form of
institution and knowledge for example, and would therefore have higher xp. A country
can only be active in production of a product if the general conditions have been met,
i.e. v ≥ xp. If this condition has been met, a product will be activated when a related
(neighboring) product is already being produced, indicating the presence of industry-
specific knowledge. This models the mechanism of related diversification.
One can then ask the question how the number of products a country can activate in
the network given a number of initial seed products depends on the level of development
v. From percolation theory we know this is a highly nonlinear relationship, marked by
a sharp increase in diffusion size when v passes some critical threshold value vc. These
properties depend strongly on the network structure and properties.
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2.2. Model setup

Let us model the above mentioned product space as an unweighted, undirected graph
consisting of p = 1, . . . , Np vertices. The degree d(p) of a randomly sampled vertex p
is given by the degree distribution P (k) = P (d(p) = k). Vertices also get assigned a
parameter xp ∈ [0, 1] which represents the difficulty of an industry. The xp are sampled

from a probability distribution f(y) = P (xp = y), with
∫ 1

0
f(y)dy = 1. The global

parameter v determines which vertices are operational, meaning that they are accessible
given the level of development of a country. A vertex p is operational if xp ≤ v. The
operational network is the network that is left by only considering operational vertices.
Every vertex can be in two states - active or inactive. In every time step, active vertices
activate all their inactive neighbors in the operational network. Hence a vertex gets
activated in time step t under two conditions:

• the vertex is in the operational network (xp ≤ v)

• at least one neighbor is active at time t.

Suppose that we start with one active vertex p, which we call the seed node. Every
time step all active nodes activate all their operational neighbors. The next time step
these neighbors will in turn activate all their operational neighbors, eventually causing
all operational vertices with an (indirect) connection to the seed node to be active at
the end of the process.
This way a country will eventually develop all industries that are in the connected
component of the operational network of an industry in which it was initially active,
and the diffusion size is determined by the connectedness of the operational network.
The probability for a randomly sampled vertex p to be in the operational network is
given by

P (vertex p operational) = P (xp ≤ v) = F (v),

where F (v) =
∫ v
0
f(y)dy. This can also be interpreted as the fraction of vertices in the

original network that are operational. The number of vertices Nv in the operational
network is thus given by Nv = F (v)Np. The parameter v determines the network’s ca-
pability to spread the activation of nodes. For low values of v, the operational network
will consist of multiple finite connected components, since nodes with xp > v fragment
the operational network. As v increases, more nodes become operational and larger con-
nected components will form. For some critical value vc, a large enough fraction of the
nodes is operational, causing all connected components in the operational network to
’merge’ into a giant connected component, that allows for wide-spread diffusion through
the network.
In the following sections we will determine analytically under which conditions the for-
mation of a giant connected component takes place, and how this depends on the global
parameter v in the case of infinite random graphs with given degree distribution. For
real, finite networks, the percolation properties highly depend on the specific structure
of the network.
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2.3. Generating functions and the tree ansatz

In order to study percolation on random networks, we will make some extensive use
of generating functions [17]. This Section provides a short introduction, following [17].
A generating function is a function that contains all information about the probability
distributions we are dealing with, and provides a practical way of representing and
deriving them. Some aspects are particularly useful, as we will discuss below.
Firstly, we introduce the probability generating function for the degree distribution P (k),
which gives the probability that a randomly chosen vertex has degree k. We define the
generating function for the degree distribution as

G(x) =
∞∑
k=0

P (k)xk.

Since we assume that P (k) is normalized to unity, we have that

G(1) =
∞∑
k=0

P (k) = 1.

This definition allows extraction of information about de probability distribution P (k)
through simple manipulations of G(x):

• The probabilities P (k) are given through the kth derivative of G0(x) in x = 0,
divided by k!, since [

dkG(x)

dxk

]
x=0

= k! · P (k).

• The nth moment of the distribution P (k) is given by[(
x

d

dx

)n
G(x)

]
x=1

=
∞∑
k=0

knP (k).

• In particular, the expected degree 〈k〉 for a random vertex i is given by[
x

dG(x)

dx

]
x=1

=
∞∑
k=0

kP (k).

• The probability that m independently randomly sampled vertices have total degree
k is given by

1

k!

[
dk

dxk
(G(x)m)

]
x=0

.
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The last property follows from the fact that the mth power of G(x) gives the probability
generating function of the total degree of m randomly sampled vertices being k. For
example, we have

G(x)2 =

[
∞∑
k=0

P (k)xk

]2
=

∞∑
j,l=0

plpjx
l+j

= p0p0 + (p0p1 + p1p0)x+ (p0p2 + p1p1 + p2p0)x
3

+ (p0p3 + p1p2 + p2p1 + p3p0)x
3 + . . . ,

from which we can see that this gives exactly the right probabilities for every j + l = k.
We can use generating function to derive results on the structure of the network for
given v under certain assumptions, called the tree ansatz [6]. Firstly, we assume that
the only prescribed property of the network is its degree distribution. Hence we assume
no degree-degree correlations or other structure. Second, we assume that the network
does not contain finite loops, i.e. starting from a random vertex, one cannot return to
that vertex through a finite number of edges. In particular, this means that we assume
the network has no clustering. This has been shown to hold true for infinite sparse ran-
dom networks without degree-degree correlations. In this case, we say that the network
is locally tree-like [6].

2.4. Cluster sizes and the percolation threshold

This section follows the derivations in [3] and [17] for the distributions of finite cluster
sizes, the percolation threshold vc and the size of the percolating cluster Sv. Firstly, we
define the generating functions of some quantities of interest. Recall that P (k) gives the
probability that a randomly chosen vertex p has degree k, and F (v) = P (xp ≤ v) is the
probability that a vertex is operational. Then P (k)F (v) is the probability of a random
vertex having degree k and being operational, and the probability generating function
for this distribution is given by

G0(x) =
∞∑
k=0

P (k)F (v)xk. (2.1)

The overall fraction of operational vertices Pv is then given by Pv = G0(1) =
∑

k P (k)F (v) =
F (v) since the xp are distributed independent of degree k. The mean degree of an oper-
ational vertex 〈kv〉 can also be retrieved by

〈kv〉 = G′0(1) =
∞∑
k=0

kP (k)F (v).

In order to study diffusion, we are interested in the number connections a nearest neigh-
bor of a random vertex has. This is given by the degree distribution of a vertex at the
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end of a random edge. Following a random edge, one will more likely encounter a vertex
with high degree than one with low degree. In fact, the probability of the end of an edge
having degree k is proportional to kP (k) [6]. Hence, after normalization the generating
function for the probability of a random neighbor having degree k and being operational
is given by ∑

k kP (k)F (v)xk∑
k kP (k)

.

Since we are interested in the capability of neighbors to activate other vertices, we are
interested in the number of outgoing edges, excluding the edge along which we arrived.
Thus by subtracting one edge from the degree, the probability Q(k) of having remaining
degree k is given by [16]

Q(k) =
(k + 1)P (k + 1)F (v)∑

k kP (k)
. (2.2)

We define G1(x) to be the probability generating function of the remaining degree

G1(x) =
∞∑
k=0

Q(k)xk =

∑∞
k=0(k + 1)P (k + 1)F (v)xk∑

k kP (k)

=

∑∞
k=1 kP (k)F (v)xk−1∑

k kP (k)
=
G′0(x)

〈k〉
. (2.3)

Hence G1(x) gives the probability that a vertex on the end of a random edge is oper-
ational and has remaining degree k. G0 gives the probability that a random vertex is
operational and has degree k. Note that G1(x) ≥ G0(x) in general. These two generating
functions allow us to determine how diffusion on the network will take place.

2.4.1. Subcritical regime

We will start by deriving the distribution for finite size clusters in the operational net-
work. We define a finite cluster as a finite set of vertices that are all (indirectly) connected
to each other.
Define H1(x) to be the generating function for the distribution of the sizes of components
that can be reached by following the end of a randomly chosen edge. If all operational
clusters in the graph are finite, we have H1(1) = 1. If the end of the sampled edge is not
operational, the cluster size is zero. This happens with probability 1 − G1(1) since the
probability of the end of an edge being operational is given by G1(1). The edge will lead
to an operational vertex with k outgoing edges with probability Q(k) given by (2.2).
All operational vertices at the end of these k edges are part of the same cluster of size
s. Hence the probability generating function of them being part of a cluster of size s is
also given by H1(x). This leads to the relation [17]

H1(x) = 1−G1(1) + xQ(1)H1(x) + xQ(2)[H1(x)]2 + xQ(3)[H1(x)]3 . . . ,
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where the first two terms account for the probability of a cluster of size 0 (not oper-
ational), and the power in the Q(k)H1(x)k terms represent the probability generating
functions for the probability that the sum of k ends of edges are part of a cluster of size
s and the operational vertex has k remaining edges. Note that we can write this relation
as

H1(x) = 1−G1(1) + xG1[H1(x)]. (2.4)

Doing the same but for a random vertex as opposed to the end of a random edge, we
obtain the probability generating function for the size of an operational cluster of a
random vertex:

H0(x) = 1−G0(1) + xG0[H1(x)]. (2.5)

Hence the mean operational cluster size 〈s〉 is given by

〈s〉 = H ′0(1) = G0[H1(1)] +G′0[H1(1)]H ′1(1) (2.6)

= G0(1) +G′0(1)
G1(1)

1−G′1(1)
= G0(1) +

G′0(1)2

〈k〉 −G′′0(1)
, (2.7)

where 〈k〉 is the average degree of all vertices (including non-operational vertices) in the
network and we used that H1(1) = 1, i.e. we assumed finite cluster sizes [3].

2.4.2. Percolation threshold

It can be seen that the average cluster size diverges for G′′0(1) = 〈k〉, or G′1(1) = 1. In
other words, the mean cluster size diverges if the expected number of second nearest
neighbors of a random vertex in the operational network is greater or equal than 1,
meaning every random vertex is expected to activate at least one more vertex that is not
its direct neighbor. As this point is approached, finite clusters grow and eventually merge
into one giant (infinite) connected component, indicating the percolation threshold. This
transition indicates the formation of a giant connected operational network of infinite
size. The condition for divergence can also be written as

G′′0(1) =
∑
k

k(k − 1)P (k)F (v) = 〈k〉.

This means that the percolation threshold is given by vc such that

F (vc) =
〈k〉

〈k2〉 − 〈k〉

In particular, for an Erdös-Renyi random graph we have 〈k〉2 = 〈k2〉 − 〈k〉 so the perco-
lation threshold is given by F (vc) = 1/〈k〉 [17].
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2.4.3. Supercritical regime

The percolation threshold gives us the the critical value v = vc for which a giant com-
ponent forms. For v > vc we thus know that there exists a giant connected component
of operational vertices, through which wide-spread diffusion can occur. The size of this
giant component can be measured by the fraction of operational nodes that belong to
the giant component, expressed by Sv.
In the derivation above we had that H0(1) = 1 since the probabilities of being in a
finite operational cluster summed to 1. Note however that we defined H0(x) and H1(x)
to generate the probabilities for vertices and respectively ends of edges to belong to a
finite operational cluster. Therefore vertices belonging to the giant component should
be excluded from this quantity, and we have that H0(1) = 1 − Sv rather than 1. Thus
we can express the size of the giant component (using (2.5)) as

Sv = 1−H0(1) = 1− (1−G0(1) +G0(H
∗
1 (1)) = G0(1)−G0(H

∗
1 (1)) = F (v)−G0(H

∗
1 (1)),

where H∗1 (1) satisfies (from (2.4))

H∗1 (1) = 1−G1(1) +G1(H
∗
1 (1)),

which can now have a nontrivial solution. Below the percolation threshold the only
solution is H∗1 (1) = 1, leading to Sv = 0.
Note that since Sv gives the fraction of operational nodes that are in the giant component,
this also gives the probability that activating a random operational node leads to wide-
spread diffusion in the network.

2.5. Percolation on a random graph

Figure 2.1 shows the percolation process in an Erdös-Renyi random graph with Np =
1000 nodes and mean degree 〈k〉 = 4 for different values of v. Here the xp values are
uniformly distributed between 0 and 1, and the diffusion starts with 10 randomly selected
seed nodes that are initially active.
The red line denotes the expected number of activated products for a given v for a fully
connected network, which equals the number of operational nodes for a given v:

n∑
i=1

P (xp < v) = Np · v.

The case of a fully connected network corresponds to a situation in which all products
are related to each other and every product in the operational network will be activated.
For networks that are not fully connected, operational nodes may remain unactivated if
they are not connected to another active product. The operational nodes that are not
a part of the same connected component as the seed products are not activated, even
though they could be, given the level of development v.
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In economic terms, a country in the subcritical regime may increase its level of devel-
opment v but experience a minimal increase in the products it produces, since many
operational nodes (products it is potentially capable of making) are disconnected from
currently active industries. This results in a seemingly stagnant economy, with low re-
turns on an increase in v. Figure 2.1 shows that for low values of v diffusion does not
spread and the number of active products remains far below the number of operational
nodes.
The critical value vc equals 1

〈k〉 = 1/4 for this particular network (see Section 2.4.2). For
this value a phase transition occurs and there is a strong increase in the number of acti-
vated products as the operational network forms a giant connected component, enabling
wide-spread diffusion. This could explain the sudden ’take-off’ of some economies, in
which a period of stagnant economic growth in the subcritical regime is followed by a
period of rapid diversification and economic growth as v passes the percolation threshold
and a giant connected component emerges in the operational network. Hence passing vc
would mean an escape from the poverty trap. This mechanism may also contribute to
the divergence of rich and poor countries: underdeveloped, poor countries have limited
growth options since their operational network is in a subcritical state. More developed
countries have access to a large fraction of the network, and have many opportunities
for diversification, enabling economic growth.

(a) 50 individual simulation runs. Most
runs enter the supercritical regime
around v = 0.25, with the exception
of some outliers for which the seeds do
not hit the giant connected component
until v is larger.

(b) Averages over the 50 simulation runs.
There is a clear sharp increase in diffu-
sion size around the theoretical thresh-
old value vc = .25. Error bars indicate
minimum and maximum values over
the 50 simulations.

Figure 2.1.: Diffusion sizes in an ER random graph with mean degree 4, Np = 1000 for
different values of v. Diffusion was initiated with 10 random seed nodes.

2.6. Discussion

In the above we have discussed the properties of the basic percolation model and how
it can be applied to model the diversification of a country as a diffusion process in the
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product space. We have seen that the nonlinear dependence of diffusion size on param-
eter v can possibly explain some phenomena observed in the economic development of
countries, where the development of underdeveloped countries seems to be stagnant, and
more developed countries experience a sudden ’take-off’ in the number of products they
produce. The model shows that we can use the idea of the product space to explain
these phenomena as a network effect.
We have modeled the product space as an Erdös-Renyi random graph. The product
space however has a highly structured topology, with closely connected dense parts and
more sparse parts [13]. We can then ask the question how the structure of the product
space influences the diversification process. Different network topologies and network
properties like clustering, degree-degree correlations and correlated values of the xp can
have a big effect on the diffusive properties of the network [24], [19], [6].
Furthermore we have drawn the xp values for products from a uniform distribution. It
seems likely that related industries will also be related in how difficult they are to pro-
duce, i.e. the xp values of neighboring products will be correlated. This motivates the
construction of a model product space that is based on a micro foundation, in which
the network structure and the xp values are related. This space will be constructed as
a projection of the bipartite capability-product matrix, which was introduced as part of
the binomial model in [10].
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3. The model product space

3.1. The theory of capabilities

One attempt to quantify the knowledge and know-how needed to produce certain prod-
ucts as discussed in the previous chapter is given by the theory of capabilities [12].
Capabilities are defined as non-tradeable inputs that are required for the production of
a product. The idea is that in order to engage in any economic activity, one has to
have all the required complementary skills and inputs needed for production. In order
to produce T-shirts for example, one would need the appropriate machinery and skilled
labour, but also access to services like accountants, factory space and infrastructure. Of
course, the capabilities needed for production of T-shirts will be very similar to those
needed for the production of sweaters. Other more complex product like airplanes may
require many more capabilities, including appropriate norms and regulations.
An analogy used to describe this mechanism is that of the game of Scrabble. The capa-
bilities are represented by letters, and different words stand for different products that
can be made by combining these letters. A country with many letters (capabilities), is
able to combine these letters into many different words of different lengths. A country
with few letters however can only make a few short words, representing simple products
that require few inputs.
Hence economic growth is driven by the accumulation of capabilities (letters) in a coun-
try, and conditioned by the capability requirements of different products. Countries that
have access to more capabilities will be able to make not only more different but also
more complex products (longer words). Obtaining new capabilities will allow countries
to diversify into producing new products that require a combination of the new and old
capabilities. Since these products only differ in at most the newly obtained capabil-
ity, these new products will be similar to the products that where already produced in
terms of their input requirements. This way, economic development is explained as a
path-dependent process, in which countries develop new products that are close to their
current productive structure.
Seeing development of industries as a combinatorial process in which capabilities are
recombined implies that there are increasing returns in the number of products that can
be produced as extra capabilities are acquired [10]. Countries that already have many
capabilities will be able to combine these with the newly acquired capability, enabling the
production of many more products. This means more developed countries will diversify
easily as acquisition of a new capability will lead to many more growth opportunities.
A less developed country however will not have as many existing capabilities to combine
the new capability with, therefore only being able to produce a few extra products if any.
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Thus countries with few capabilities benefit less from the acquisition of new capabilities,
leaving them trapped in a state of underdevelopment. This could explain the (growing)
inequality in the development of nations, and the sudden take-off of some economies
that reach a point in which acquiring capabilities starts paying off and leading to even
more growth opportunities [10].
A theoretical model describing this mechanism is the Binomial model [10]. The model
explicitly deals with capabilities and aims to explain the possible mechanisms through
which the Mcp matrix obtains its structure. The idea is that the observable Mcp matrix
is a product of two bipartite networks: the product-capability network defined by the
matrix Tap, and the country-capability network defined by the matrix Cca.
We can describe the capabilities that are present in every country with the country-
capability matrix Cca, setting Cca = 1 if capability a is present in country c and Cca = 0
if it is not. Likewise, the product-capability matrix Tap dictates which products require
which capabilities. Thus we have

Tap =

{
1 if product p requires capability a
0 otherwise.

and

Cca =

{
1 if country c has capability a
0 otherwise.

The binomial model is based on three assumptions:

1. Every product requires a specific combination of capabilities given by the vector
Tp

2. Every country has a certain set of capabilities given by the vector Ca

3. A country will produce a product if it has all the required capabilities.

Under the above assumptions, the Mcp matrix can be thought of as the outcome of the
matrix operation [10], [21]

Mcp = Cca � Tap =
∏
a

(1− Tap(1− Cca)),

for which Mcp is exactly 1 if country c has all the necessary capabilities to produce
product p. The operator � is referred to as the Leontief operator, as it resembles a
Leontief production function in binary form [10]. It states that the production of a
product requires at least all necessary inputs as dictated by the Tap matrix.
Note that the matrices Tap and Cca are not considered observable in practice since there

is no clear way of measuring capabilities, and the only data is available on Mcp in the
form of product exports. Extracting information on Tap and Cca has been the objective
of the measures of economic complexity as discussed in Section 1.2 [12], [4].

21



Figure 3.1.: Schematic representation of the bipartite country-product network as the
outcome of a tripartite network, in which countries are connected to capa-
bilities and capabilities are connected to products. Figure taken from [21].

Factorizing the Mcp matrix as a product of two bipartite networks in which we deal with
capabilities explicitly, allows us to study how the Tap network conditions the development
of individual countries. Instead of inferring information from the Mcp matrix to construct
an empirical product space based on the output of different countries, we will assume
a fixed structure of the Tap matrix, which we then use to define a theoretical product
space. We then study the development of individual countries on this space.
In the following sections we will construct this model product space from the bipartite
capability-product network. In particular, we investigate properties of this product
space when we model the bipartite capability-product network as a random network, as
in previous work [10]. We explore analytically and numerically the in- and out-degree
distributions of products conditioned on the complexity of a product and derive the
joint degree distribution. In Chapter 4 we will simulate the percolation process on this
network and discuss the results.

3.2. The capability-product network and its

projection

The model assumes a finite number of products Np that each require at most Na ca-
pabilities for production. Every product p requires a certain combination of specific
capabilities to be produced, given by the binary vector Tp. The capability requirements
of all products is given by the bipartite capability-product network which is defined by
the Na by Np capability-product matrix Tap, for which

Tap =

{
1 if product p requires capability a
0 otherwise.
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We think of this network as the recipe book that defines for all products what their input
requirements are. Every column Tp represents the capability requirements for a single
product. These requirements need not be unique, since there can be multiple (different)
products that require the same set of capabilities.
As an example, consider a world in which we only distinguish four different capabilities
(Na = 4), and there are 6 possible products (Np = 6). Then one possible form of the
Tap matrix is

T =


1 1 0 0 1 0
0 1 0 1 0 0
0 0 0 0 1 1
0 0 1 1 1 1

 , (3.1)

meaning the product represented in the last column requires the third and fourth capa-
bilities in order to be produced. Furthermore we note that the number of capabilities
required by a product p is given q(p) =

∑
a Tap, which gives us a measure for product

complexity.
The total number of possible combinations of Na capabilities is given by 2Na . Hence Na

can be seen as a measure of the complexity of the product space. The quantity Np

2Na gives
the fraction of combinations of capabilities that leads to a viable product.
Since the bipartite network has a fixed number of edges and nodes, the number of edges
coming from nodes in class P must equal the number of edges coming from class A. This
means that we have the constraint

Np · 〈q〉 = Na · 〈r〉,

where 〈q〉 and 〈r〉 denote the average degree of all products and capabilities respectively.
We construct a product space by projecting this bipartite capability-product network
onto a product-product network, putting a link between product p and p′ in the product-
product network if they share at least one capability. The number of capabilities shared
by p and p′ is then given by the edge weight

Wpp′ =
∑
a

TapTap′ .

The symmetric weight matrix W = T TT with entries Wpp′ counts the number of shared
neighbors in the original bipartite network, i.e. the number of capability requirements
that p and p′ share. The diagonal elements Wpp =

∑
a TapTap =

∑
a Tap = q(p) are the

product complexities, and are given by the original degree of nodes from class P in the
bipartite network.
The matrix Wpp′ defines an undirected, weighted network. In the product space however
we are interested in the distance between products p and p′ in terms of the capabilities
one would have to learn extra to be able to produce product p′ given you can produce
product p. We define the distance as

δ(p, p′) = q(p′)−
∑
a

TapTap′ = Wp′p′ −Wpp′ ,
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which gives explicitly how many capabilities have to be obtained to go from p to p′. This
results in a directed, weighted network where the weights indicate the distances between
products.
Lastly, we introduce a threshold parameter α which defines what the maximum distance

Figure 3.2.: Distance network constructed for example matrix given in (3.1)

is for two products to be connected. The model product space is the unweighted network
in which there is a directed edge from p to p′ if δ(p, p′) ≤ α. This way the parameter
α defines how many capabilities can be learned in one step, so that a country can move
from one product to the other. We denote the thresholded network with P(α).
Here we are interested in the structure of P(α) and how it depends on our choices of
Tap, Na and Np. In particular we are interested its degree distribution and connectivity
properties, as these are the main determinants of diffusion properties of the network.
In the following sections, we will investigate these properties for the simple case of a
random Tap matrix.

3.3. The Binomial case

To construct Tap we sample Np binary vectors of length Na that represent the combi-
nations of capabilities that are needed for the production of those products. How these
vectors are sampled determines the structure of Tap and hence the structure of the prod-
uct network.
In the remainder of the thesis we will consider the case where entries of Tap are i.i.d.
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Binary random variables with parameter ρ, modeling the maximally random case. The
capability-product matrix is then given by

Tap =

{
1 with probability ρ
0 with probability 1− ρ

with ρ ∈ [0, 1]. Parameter ρ equals the probability of an edge being present between a
random pair (a, p) in the bipartite network.
This assumption is motivated by the fact that we have very limited information on ca-
pability requirements of products in the real world since they are not easily measured
or even defined. We simply assume products are combinations of capabilities, without
knowing anything about which capabilities are used more often, and how many capabil-
ities are needed for a product. Hence we make no further assumptions and model the
capability-product network as a random network. This binomial assumption is also used
in related literature in similar ways [10], [9]. Furthermore, taking Tap to be random does
not lead to trivial dynamics since we project the network, leading to a nontrivial struc-
ture of the model product space. Lastly, the assumption of a binary capability-product
matrix allows to describe the system with a single parameter ρ and allows the derivation
of analytical results.
Under this assumption, the distribution of product complexities q(p) is given by the
distribution of the column sums:

P (q(p) = k) = P

(∑
a

Tap = k

)
=

(
Na

k

)
ρk(1− ρ)Na−k, (3.2)

which is the probability to have k successes out of Na trials, with success probability
ρ. Here a success corresponds to having an entry 1 in one of the Na possible entries of
column Tp, indicating product p requires a capability. Hence (3.2) gives the probability
of a product requiring exactly k capabilities, and the product complexities are Bin(Na, ρ)
distributed. As a consequence, the mean product complexity in the system is given by
Naρ, and each capability is required by on average Npρ products.

3.3.1. Deriving distributions

How do the in- and out-degree of a product in the product network relate to its complex-
ity q(p)? The in-degree of a product will directly affect the chances of it being activated,
since a product with high in-degree will have many possible activators. Likewise, a
product with high out-degree has high potential of leading to further development of
products. One expects high complexity products to be hard to make, hence having low
in-degree. On the other hand, since being able to produce a high complexity product
means one has many capabilities, high complexity products are expected to have high
out-degree, with many links pointing to lower complexity products that require a subset
of their capability requirements.
Denote with dαin(p) and dαout(p) the in- and out degree of a node p for a given threshold
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α. The in-degree of a product p′ is given by

dαin(p′) =
∑
p 6=p′

1{δ(p,p′)≤α},

which simply counts the number of nodes p ∈ P that are at distance than less or equal
α to p′.
The probability of a product p′ with complexity k′ having j in-edges is given by

P (dαin(p′) = j|q(p′) = k′) =

(
Np − 1

j

)
ηin(k, α))j(1− ηin(k, α)Np−1−j (3.3)

where

ηin(k′, α) = P (δ(p, p′) ≤ α|q(p′) = k′) (3.4)

is the probability that node p′ has an incoming edge given q(p′) = k′.
Similarly, we have for a node p with q(p) = k that the out-degree is given by

P (dαout(p) = l|q(p) = k) =

(
Np − 1

l

)
ηout(k, α)l(1− ηout(k, α))Np−1−l (3.5)

with

ηout(k, α) = P (δ(p, p′) ≤ α|q(p) = k).

From 3.4 we can also derive the probability of a random pair of nodes having a given
distance P (δ(p, p′) ≤ α), which is Bin(Na, ρ−ρ2) distributed (see Section A.2). Further-
more we can find the unconditional degree distributions by summing over all possible
complexities k′:

P (dαin(p′) = j) =
Na∑
k′=0

P (dαin(p′) = j|q(p′) = k′)P (q(p′) = k′). (3.6)

and

P (dαout(p) = l) =
Na∑
k=0

P (dαout(p) = l|q(p) = k)P (q(p) = k). (3.7)

These are the probabilities that a random node in the product network has in-degree j
or out-degree l. In the following we will derive ηin(k′, α) and ηout(k, α) for the case of a
random bipartite network with edge probability ρ.
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3.3.2. Deriving ηin(k
′, α) and ηout(k, α) for the Binomial case

To compute the probability of a product with given complexity k′ having an incoming
edge, we first derive the weight probabilities, conditioned on product complexity q(p′).
This is the probability that a given node with complexity q(p′) = k′ shares w capability
requirements with another node p:

P (Wpp′ = w|q(p′) = k′) = P

(∑
a∈A

TapTap′ = w|
∑
a∈A

Tap′ = k′

)

= P

∑
a∈Ap′

Tap = w|q(p′) = k′

 =

(
k′

w

)
ρw(1− ρ)k

′−w, (3.8)

where Ap′ is the set of all a such that Tap′ = 1. Here |Ap′ | = q(p′) = k′ and k′ ≥ w.
Since the weight is symmetric, i.e. Wpp′ = Wp′p it does not matter if we condition on the
target node p′ or the source node p. For further derivations of the weight distribution
see Section A.1.
From the weight matrix we can infer the distance measure from the product complexities
as δ(p, p′) = q(p′) −Wpp′ . The distribution of distances for given complexity of target
node p′ is easily found by using (3.8) as follows:

P (δ(p, p′) = d|q(p′) = k′) = P (q(p′)−Wpp′ = d|q(p′) = k′) (3.9)

= P (Wpp′ = k′ − d)

=

(
k′

k′ − d

)
ρk

′−d(1− ρ)d

=

(
k′

d

)
(1− ρ)dρk

′−d.

We find that the distance of a random node p towards a target node p′ with q(p′) = k′ is
given by a Bin(k′, 1− ρ) distribution. Intuitively this makes sense, since the probability
of finding a node p that has distance d to node p′ is exactly the probability of finding
that Tap = 0 in one of the k′ entries where Tap′ = 1 for d capabilities. Also, the distance
is in a way the complement of the weight distribution: the distance counts exactly how
many of the capabilities that p′ requires are not also required by p (compare (3.9) to
(3.8)).
We find that

ηin(k′, α) = P (δ(p, p′) ≤ α|q(p′) = k′)

=
α∑
d=0

(
k′

d

)
(1− ρ)dρk

′−d.

The probability of a random node p′ having distance d from a source node p with
q(p) = k. This is the probability that the target node p′ has d entries Tap′ = 1 on the
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Na − k available remaining entries where Tap 6= 1, giving

P (δ(p, p′) = d|q(p) = k) =

(
Na − k
d

)
ρd(1− ρ)Na−k−d. (3.10)

Then

ηout(k, α) = P (δ(p, p′) ≤ α|q(p) = k)

=
α∑
d=0

(
Na − k
d

)
ρd(1− ρ)Na−k−d.

This gives us the in- and out-degree distributions of random products, conditional on
their complexities for the binomial case.
In the remainder we will set α = 1. This entails the assumption one can only ’learn’ a
single capability at a time, and diffusion does not occur between products at a distance
greater than 1. This can be interpreted as a ’local search’ constraint. Economically,
this assumption is justified by the fact that in order to make a ’jump’ in the network
over a distance greater than 1, one would first have to acquire a capability which would
be of no use until combined with another (yet to learn) capability, so there would be
no incentive to learn any of these capabilities individually. Hence we assume there are
only edges in the model product space between products that are at most one capability
away. Setting α = 1, we obtain

ηin(k′, 1) = ρk
′
+ k′(1− ρ)ρk

′−1 (3.11)

ηout(k, 1) = (1− ρ)Na−k + (Na − k)ρ(1− ρ)Na−k−1. (3.12)

The observed and expected in- and out degrees for products with given complexity are
shown in Figure 3.6 for different values of ρ. Here the dots represent the observed degree
of a product for one instance of Tap. The lines are the expected values following from
conditional distributions (3.3) and (3.5) derived above. The green line shows

E[din|q(p′) = k′] = (Np − 1)ηin(k′, 1)

= (Np − 1)(ρk
′
+ k′(1− ρ)ρk

′−1)

and the red line shows

E[dout|q(p) = k] = (Np − 1)ηout(k, 1)

= (Np − 1)((1− ρ)Na−k + (Na − k)ρ(1− ρ)Na−k−1).

Figure 3.6 shows the expected monotonic behavior of product degrees depending on their
complexity. Furthermore it shows that our derivations are correct.
By setting α = 1, the remaining parameters of the model are Np, Na and ρ. The
connectivity of the product network can be studied by looking at how the distance
between a random pair of nodes depends on ρ. The distribution of the distances is
given by a Bin(Na, ρ− ρ2) distribution (see Section A.2), so the mean distance between
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two products is given by Na(ρ − ρ2), which is symmetric in ρ, takes its maximum at
ρ = .5 and approaches 0 as ρ approaches 0 or 1. Notice also the dependence of the mean
distance on Na. As Na grows, products are on average further apart. This means that
the network becomes more poorly connected for larger values of Na and moderate values
of ρ.

(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.5

Figure 3.3.: In- and out-degree distributions conditional on product complexity for Np =
1000, Na = 20 and α = 1.

3.3.3. Joint degree distribution and percolation condition

From the economic perspective, we are interested in for which parameter values the prod-
uct network allows wide-spread diffusion through the existence of a giant component,
and for which parameter values the network consists of multiple disconnected compo-
nents. A disconnected network would imply that poorly diversified countries could be
’stuck’ in one of the components, and have minimal development opportunities as other
products are unrelated in terms of their capability requirements.
In this section we will derive the conditions for which a significant fraction of the network
can be reached from a given product, allowing wide-spread diffusion from a random seed
product. We can measure this by looking at the expected out-component for a random
node p, which is defined as all the nodes in the network that can be reached starting
from node p. Likewise, one defines the in-component by all nodes from which one can
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reach product p [17].
Using similar techniques as in Chapter 2, one can derive the condition for the emergence
of a giant connected out-component for uncorrelated infinite random directed networks.
The percolation condition for a giant out-component to arise is given by [17]∑

jl

(2jl − j − l)P (din = j, dout = l) ≥ 0, (3.13)

where P (din = j, dout = l) is the joint degree distribution of the network. If the percola-
tion condition is met, the expected size of the out-component of a random node diverges
and covers a fraction of the infinite network. Although the product network does not
satisfy the tree ansatz, we will derive the percolation condition for a random network
with the same degree distribution.
To derive the percolation condition we must first derive the joint degree distribution in
the product network. The joint degree distribution gives the probability that a given
node has in-degree j and out-degree l. In the product network, these are not indepen-
dent. Products with high out-degree are likely to have a low in-degree and vice versa,
since these are determined by the product complexities. High complexity products will
have an edge towards all products that require a subset of their own capability require-
ments, and only have incoming edges from higher complexity products or products that
require one less capability. We will derive the joint degree distribution by assuming
that the in- and out-degree of a node are independent conditioned on their complexity.
Assuming this conditional independence, we obtain

P (din = j, dout = l|q(p) = k) = P (din = j|q(p) = k)P (dout = l|q(p) = k).

The unconditional joint degree distribution is then given by

P (din = j, dout = l) =
Na∑
k=0

P (din = j|q(p) = k)P (dout = l|q(p) = k)P (q(p) = k),

which we can compute using equations (3.3), (3.5) and (3.2).
The percolation condition (3.13) reduces to (see Appendix A)

(Np − 1)
Na∑
k=0

ηin(k, α)ηout(k, α)P (q(p) = k) ≥ P (δ(p, p′) ≤ α).

Figure 3.4 shows for which parameter values the percolation condition is satisfied. For
values of ρ above and below the area demarcated by the lines corresponding to a value
of Np, the percolation condition is satisfied and we can expect a giant out-component. It
is clear that as Na increases, a larger variety of products is possible and distances grow,
causing the space to be poorly connected for low values of Np or moderate values of ρ.
Parameter ρ decreases the variety in products as it approaches 0 or 1. For Np = 1000 and
Na = 20, a giant component exists for any value of ρ. For larger value of Na however, the
number of possible combinations increases and the distances between products increases.
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This means that ρ would have to be increased or decreased, thereby changing the mean
product complexity and decreasing the variety in capability requirements. This reduces
distances between products and allows a giant out-component to form.

Figure 3.4 tells us for which parameters we can expect a giant out-component for

Figure 3.4.: The percolation condition for different values of Na, Np and ρ. The center
right area in between each two lines is the part of parameter space for which
the percolation condition is not satisfied.

a random product. As we have seen however, high complexity nodes have a high out-
degree, whereas low complexity nodes have few outgoing links. This means that although
on average we might expect a giant out-component, we expect this to happen only for
high complexity products, meaning wide-spread diffusion is still not possible starting
from low complexity products. We will further investigate this in the next section.

3.3.4. Up-edges

Thinking of the diffusion process, we are specifically interested in diffusion that goes
from low to high complexity products. This ’upward’ diffusion can only happen through
edges that point in the direction of increasing complexity. We will call such edges ’up-
edges’ and we call ζ the probability that we find an up-edge (an out-edge pointing to a
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higher complexity node) between a random pair of nodes:

ζ = P (δ(p, p′) = 1, q(p′) > q(p))

=
Na∑
k=0

k

(
Na

k′

)
ρ2k−1(1− ρ)2Na−2k+1. (3.14)

This equals the probability of finding a product p′ such that it has exactly one nonzero
entry Tap′ = 1 in the Na−k entries where Tap = 0 and furthermore has k nonzero entries
Tap′ = 1 for all a where Tap = 1, so that q(p) < q(p′). For a derivation of (3.14) see
Section A.3.
Figure 3.5 shows how the fraction of up-edges in the network depends on ρ for different
values of Na. We see that up-edges only occur for low or high values of ρ, i.e. if products
require on average either very few or almost all of the available Na capabilities. For
Na = 20, we only expect up-edges for ρ ≤ 0.2. As ρ approaches 0.5, the probability of
finding up-edges in the network decreases.

The absence of up-edges for moderate values of ρ means that it is very hard to have

Figure 3.5.: Dependence of up-edges on Na and ρ. The dots are the observed fraction of
up-edges and the lines are the analytical prediction.

development from low to high complexity products since product of approximately the
same complexity are expected to differ greatly in terms of which combinations of capa-
bilities they require. As a consequence, we expect a small diffusion size when starting
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with low complexity seeds in the binomial case with α = 1 for moderate values of ρ.
For Na = 20, Np = 1000 and ρ = .5, the expected number of up-edges from a random
product is given by (Np − 1) · ζ = 9.53 · 10−3, which means the expected number of up-
edges in the whole network is given by Np · 9.53 · 10−3 = 9.53. For ρ = 0.3 the expected
number of up-edges in the network is 134, thus allowing some spread towards higher
complexity products, but the number of up-edges is still very moderate compared to the
total number of possible edges in the network (given by Np(Np−1)). This tells thus that
although we might expect a giant out-component for a random node, it is unlikely this
will be the out-component of a low complexity product, making wide-spread diffusion
starting from low complexity products impossible.

33



(a) ρ = 0.1 (b) ρ = 0.2

(c) ρ = 0.3

Figure 3.6.: Product networks with only the up-edges and nodes connected by them,
showing paths of increasing complexity in the product network for Np =
1000, Na = 20 and α = 1. As ρ approaches 0.5, the network becomes
increasingly sparse and disconnected. Node size represents product com-
plexity.

3.4. Conclusions

In this chapter we have constructed a product network as the one-mode projection of the
country-capability network Tap. By defining a distance measure and setting a threshold
α = 1, this results in a directed network in which there is a link from p to p′ if either p′

requires a subset of the capabilities that p requires, or p′ requires at most one capability
p does not require. This construction is based on the assumption that countries only
learn a single capability at a time, and that capabilities are only acquired if they lead to
a product. For example, one will only make an effort in acquiring the skill of shoemaking
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if this enables the production of shoes. On the other hand, all products for which the
capability requirements have been met will be produced, meaning that production of
a product p will enable a country to produce all products that require a subset of the
capability requirements of p.
As a consequence, high complexity nodes have high out-degree since there is an outgoing
edge to every product that requires subset of its capability requirements. This means
most of the outgoing edges of a high complexity product point towards a low complexity
product. Low complexity products have low out-degree, as there are not many products
that have exactly one extra capability requirement. This leads to a network in which a
majority of the edges point from high to low complexity products.
The percolation condition and distribution of up-edges shows that in order for the net-
work to be connected and allow for upward diffusion, we require low values of Na, either
low or high values of ρ, and high values of Np. This can be understood through the
binomial distribution of product complexities. The number of possible products with
capability requirements (i.e. strings with 1’s and 0’s) with a complexity k is given by(
Na

k

)
, which attains its maximum for k ≈ Na/2 and decreases fast as k approaches 0 or

Na. The mean product complexity is given by E[q(p)] = Naρ, so for values of ρ around
0.5 we expect many products of complexity q(p) ≈ Na/2. These products are not nec-
essarily close to each other in terms of distance as they may require many different
combinations of capabilities, and thus the probability of two products being identical
except for a single capability (which would lead to an up-edge between them) is very
low. For low and high values of ρ, products will mainly have 0 or 1 entries, making it
more likely they are similar and thus close to each other in terms of distance. Hence
the observed properties of the distribution of up-edges is a direct consequence of our
assumption that the entries Tap are binary random variables with equal probability ρ.
This leads to the question whether a random Tap matrix is a reasonable assumption. As
discussed, the binomial assumption implies a binomial distribution of product complex-
ities but also of capability ’usefulness’, i.e. how often a capability is used for a product.
The mean usefulness of a capability is given by Npρ. The binomial assumption implies a
relatively low diversity of product complexity and product usefulness. When one thinks
of capability usefulness however, one would expect high heterogeneity as some capabili-
ties will be used much more often than others. For example, almost every industry will
require the use of electricity, whereas very few industries will require the industry-specific
knowledge of a watchmaker. What the structure is of the ’recipe book’ is an interesting
question in itself and is inherently difficult as capabilities cannot be measured.
Nevertheless, the network we created gives a micro-founded model of a theoretical prod-
uct space, allowing to model mechanisms of economic growth for individual countries.
We wish to emphasize the difference between the model product network and the empir-
ical product space from [13]. As discussed in Section 1.3, the empirical product space is
constructed by using export data to obtain information on the relatedness of products in
terms of their capability requirements, and this can be mapped into the product space.
The approach taken here is reversed: we assume an underlying structure of all products
(the Tap matrix) and see what the resulting structure of the product network is. Hence,
the empirical product space can be considered as an attempt to proxy the network that
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we assume here. With the current model we try to reconcile the product space logic of
preferred paths of economic development and the binomial model in which each product
requires several specific inputs, and these inputs are modeled by a random matrix. In
the following chapter we will run the percolation model on the created product network
and investigate its properties for different parameter values.
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4. Percolation on the model
product space

In this section we will simulate the percolation process on the model product space
constructed in Section 3. Note that there are some key differences with the case of the
Erdös-Renyi random graph in Section 2.5. Firstly, the constructed network is directed,
and has a given structure that is dictated by the shape of the Tap matrix. Every product
p has a directed edge to any product p′ requiring a subset of the capabilities required by
p plus at most one extra capability. Second, we now have information on the number of
capabilities required by each product.
Recall from Section 2.5 that xp denotes the difficulty of making a product, and a prod-
uct can only be produced if the level of development of a country is high enough, i.e.
v > xp. In the standard percolation model we assumed the xp values where uniformly
distributed between 0 and 1. Here, following our explicit representation of products
and capabilities, we propose that the difficulty of making a product corresponds to the
number of capabilities it requires, thus setting

xp =
q(p)

Na

=
1

Na

∑
a

Tap.

This means that the level of development of a country can now be interpreted as how
many capabilities a country is able to combine, assuming that combining many different
capabilities in order to produce a given product requires a higher level of development.
We thus assume all capabilities are available to a country, but the number of capabilities
that can be combined is restricted by the level of development v.
The fraction of nodes that are in the operational network for given v is now given by
the cumulative distribution function of a binomial distribution, since q(p) is Bin(Na, ρ)
distributed (see (3.2)):

P (xp ≤ v) =
1

Na

bNavc∑
k=0

(
Na

k

)
ρk(1− ρ)Na−k.

This brings an additional effect to the diffusion size, as the fraction of nodes in the
operational network does not depend linearly on v as is the case in the standard per-
colation model in Section 2.5. Since most products will have a complexity close to the
mean complexity Naρ, there is a sharp increase in the fraction of operational nodes as
v approaches ρ. Thus even if the product network is fully connected, the fraction of
operational nodes does not increase until v comes close to ρ, as there are not many low
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Figure 4.1.: Fraction of operational nodes for Na = 20 and different values of ρ and v,
with xp given by products complexities.

complexity products. The same holds for values of v that are close to one: since there
are not many high complexity products, all nodes are operational before v = 1.
Figure 4.1 shows the fraction of operational nodes for given different values of ρ. The
dashed lines indicate how the fraction of operational nodes depends on parameter v.
From the green line corresponding to ρ = 0.5, one can see that there are no products
with complexity lower than 0.2 or higher than 0.8. This also means that parameter v
only affects diffusion size for v ∈ [0.2, 0.8]. For other values of ρ, we see that the mean
complexity Naρ shifts, and the dependence of v shifts accordingly. In effect, parameter
v can be seen to eliminate all columns from the Tap matrix for which

∑
a Tap > v. The

operational network is the network resulting from the projection of the Tap matrix with-
out those columns.
In the following we will run every simulation with Np = 1000 products, as this is of the
order of magnitude of the number of products in datasets used in [13], [23]. Furthermore,
we set Na = 20 so that we expect a giant out-component (see Figure 3.4) for any value
of ρ. For higher values of Na, the distances between products grow as their capability
requirements become more diverse, leading to a disconnected network unless many more
products are sampled (Np is increased).

4.1. Percolation on the model product space

Figure 4.2 shows the results of the percolation process on the model product space with
the xp set equal to the product complexities. The diffusion is initialized by selecting 10
random seeds products. The red dashed line indicates the fraction of operational nodes
in the network. As expected, the diffusion size decreases as ρ is increased. For ρ = 0.1,
almost all nodes are activated as the network consists only of relatively simple products,
causing distances to be small and the network being connected. As ρ increases, the
diffusion size decreases as operational nodes are disconnected due to larger distances
between products. For ρ = 0.3 and ρ = 0.7 there is a clear percolation threshold visible,
for which a giant component emerges in the operational network as higher complexity
nodes enter the operational network.
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Varying ρ has two effects: it changes the number of operational nodes for given v (as

(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.4 (d) ρ = 0.5

(e) ρ = 0.7 (f) ρ = 0.9

Figure 4.2.: Diffusion sizes over 50 simulation runs on the model product space for Np =
1000, Na = 20 for different values of v and ρ with xp values given by the
product complexities. Diffusion is initiated with 10 random seed products.

shown in Figure 4.1), and alters the structure of the product network, influencing how
many operational nodes can actually be activated. Here we are interested in studying
how ρ affects the network structure without the additional effect of the non-uniform
distribution of product complexities. In other words, we wish to isolate the effect of the
nonlinear dependence of the fraction of operational nodes on v caused by the binomial
distribution of product complexities.
In Figure 4.3 the xp values are sampled from a uniform distribution, but ranked according
to product complexities, so the product with largest complexity q(p) gets assigned the
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largest xp, etc. This allows us to only see the effect of the network structure on the
relationship between diffusion size and v, since the fraction of operational nodes now
depends linearly on v, but the order in which products of given complexity enter the
network as v is increases is maintained. In this case, v can be interpreted as the fraction
of total products that a country could potentially produce and we have P (xp < v) = v.
Products of equal complexity enter the operational network in random order.

(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.4 (d) ρ = 0.5

(e) ρ = 0.7 (f) ρ = 0.9

Figure 4.3.: Diffusion sizes over 50 simulation runs on the model product space for
Np = 1000, Na = 20 for different values of v and ρ with xp values drawn
from a uniform distribution and ranked according to product complexities.
Diffusion is initiated with 10 random seed products.

From Figure 4.3 we can see no percolation threshold for ρ = 0.4 and ρ = 0.5, and
there seems to be no transition in the network for moderate values of ρ. For ρ = 0.1,
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a percolation threshold appears as simple products form a connected component as v
in increased. Note that in Figure 4.2a, all products of complexity 1 become operational
at once as v becomes larger than 1/Na, so that there is no percolation effect visible.
In Figure 4.3a, these nodes are added to the network one by one, gradually building a
network that percolates as soon as it connects to a seed node.
For ρ = 0.3, we expect the relatively simple products to connect to each other, and
hence we observe an early percolation threshold. For ρ = 0.7 a connected component is
formed by high complexity products, so the percolation threshold is observed for higher
values of v since only then higher complexity products enter the operational network.
For ρ = 0.7, the transition is stronger and the whole network becomes active, whereas
for ρ = 0.3 the maximal diffusion size is around 500. This is because low complexity
nodes are in the out-component of high complexity nodes, high complexity nodes are
not in the out-component of low complexity nodes. Thus when a high complexity con-
nected component forms (e.g. in the case of ρ = 0.7), the low complexity nodes are also
activated since they are in the out-components of high complexity products. When a
low complexity connected component forms however (e.g. for ρ = 0.3), high complexity
nodes remain unactivated.
For ρ = 0.9 we again observe an early percolation threshold which may seem contra-
dictory, but one must keep in mind that for this parameter value all products require
almost all capabilities and are thus connect to each other. Also each of these nodes has a
high probability of activating the few lower complexity nodes that enter the operational
network for low values of v.

4.2. Conclusions

We conclude that reaching the whole product space starting from few random seeds
is only possible for extremely small or high values of ρ, such that products are close
together and the space in densely connected. For values of ρ close to 0.5, the network
is poorly connected and no wide-spread diffusion takes place. For ρ = 0.3 and ρ = 0.7
giant connected components form but there is an asymmetry in percolation effects be-
cause the network is directed: low complexity products are in the out-component of high
complexity products, but high complexity products are not in the out-component of low
complexity products. This explains the difference in diffusion sizes for low and high
values of ρ. One should note however that the connected component for ρ = 0.7 exists
of high complexity products, so diffusion can only take place with a high complexity
seed. We will discuss this in more detail in Chapter 5.
Here we have initiated the diffusion by taking random seeds. If these seeds are of high
complexity, they will activate all products that require a subset of their capability re-
quirements, which can be a lot of products. This is why the diffusion sizes in Figure 4.3
are still reasonable for ρ = 0.5. From an economic perspective however it seems unreal-
istic to initiate diffusion this way; product exports have been shown to go from simple
to increasingly complex products as a country develops its economy [12]. Therefore we
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will consider in the next section the diffusion sizes when seeds are chosen to be of low
complexity, modeling a country that starts with few capabilities.
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5. Percolation as economic
development

In this chapter, we initiate diffusion on the product network with low complexity prod-
ucts, modeling a country which only produces few low complexity products. We select
the 10 seed products randomly from the 30 lowest complexity products. This way, wide-
spread diffusion can only take place by developing products of increasing complexity. We
again use values of Np = 1000 and Na = 20. From Section 3.3.4 we expect very limited
diffusion for moderate values of ρ as almost no up-edges are present in the network,
whereas for ρ = 0.3 diffusion can take place, although of moderate size. For ρ = 0.7
we expect as many up-edges, but between higher complexity products since the mean
product complexity is higher.

5.1. Percolation with low complexity seeds

Indeed, Figure 5.1 shows that for ρ = 0.7 no diffusion takes place as the high complexity
nodes are not in the out-component of the low complexity seed nodes. For low complex-
ity seeds we see no diffusion for ρ ∈ [0.4, 0.5, 0.7]. For ρ = 0.1, diffusion takes place as
there is a connected component of low complexity nodes. For ρ = 0.9 we also find diffu-
sion, since even the lowest complexity nodes are of high complexity, and thus connected
to the connected component. For ρ = 0.3 we observe an increase in the number of active
products up to v ≈ 0.35 in Figure 5.1, showing that the highest complexity product
that can be made is of complexity q(p) = Naxp = 7. Apparently, products of higher
complexity cannot be reached from lower complexity products. In this case, diffusion
size is not bounded by v but by the structure of the product network.
We also observe that all 50 simulations where identical. This can be explained by the
fact that since all seeds are sampled from the 30 lowest complexity products, they have
high probability of being connected and thus being part of the same connected compo-
nent. Hence for this value the product network is such that starting from random low
complexity products, every country would be able to diversify into the same products,
independent of initial conditions.
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(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.4 (d) ρ = 0.5

(e) ρ = 0.7 (f) ρ = 0.9

Figure 5.1.: Diffusion sizes over 50 simulation runs on the model product space for Np =
1000, Na = 20 for different values of v and ρ with xp values given by the
product complexities. Diffusion is initiated with 10 seed products selected
randomly from the 30 lowest complexity products.
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(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.4 (d) ρ = 0.5

(e) ρ = 0.7 (f) ρ = 0.9

Figure 5.2.: Diffusion sizes over 50 simulation runs on the model product space for
Np = 1000, Na = 20 for different values of v and ρ with xp values drawn
from a uniform distribution and ranked according to product complexities.
Diffusion is initiated with 10 seed products selected randomly from the 30
lowest complexity products.
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5.2. Conclusions

In Chapter 4 and 5 we applied the percolation model to the constructed product net-
work. We considered if the network structure influences the development opportunities
for countries through the network, in particular if we can find a sudden growth in diffu-
sion size for small changes of parameter v.
Setting the required level of development equal to the complexity of a product, i.e.
xp = q(p), we first notice that the distribution of product complexity in itself determines
a nonlinear relationship between the number of products that can be made and param-
eter v.
Correcting for this by sampling xp uniform and assigning them in order of product com-
plexity allowed us to study only the network effect of parameter v. This showed that
for values of ρ that away from 0.5, there is a percolation effect in the case of random
seed products. The differences in diffusion sizes for ρ larger and ρ smaller than 0.5 can
be explained through the directedness of the network.
To investigate if the network allows for development from low to high complexity prod-
ucts, we simulated diffusion starting from low complexity nodes. This showed that only
for small or very large values of ρ diffusion can take place, since for moderate to high
values the low complexity products are not in the in-component of the rest of the net-
work.
We conclude that for binomially distributed product complexities, the assumption of
’local search’, i.e. that countries only develop products that are at most one capabil-
ity away from the products they currently produce, is very restrictive. The probability
of being able to diversify into increasingly complex products when starting from simple
ones is very low, which can be explained through the number of up-edges in the network.
Here we applied percolation to model the development properties of a country having
access to all capabilities but being restricted in the number of capabilities it can com-
bine. We have seen that if the network is poorly connected, parameter v is no longer a
restriction of diffusion size, but rather the structure of the network itself restricts diffu-
sion. The parameter v removes all the products from the network that have difficulty
xp > v, but if these are not in the out-component of the seed products, there is no effect
on diffusion size.
In the following chapter we extend the model to study the time evolution of the diversi-
fication process, and diffusion is no longer restricted by a global parameter v, but driven
by acquisition of new capabilities. We also implement the effect of spillovers, relaxing
the assumption of local search. This also allows us to connect the model to existing
literature.
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6. Capability-driven diffusion and
spillovers

In this chapter we consider the time evolution of the diversification process. In the
previous chapters we assumed all capabilities that lead to an adjacent product in the
network could be learned, and growth was constrained by the number of capabilities a
country can combine, given by parameter v. The diffusion size then gives an indication of
how many products can be reached for a given level of development v once all capabilities
have been learned.
Here we model the diversification process in time, and see how the diversification process
unfold in time as capabilities are learned. We suppose that every active product is being
produced by an industry that has the necessary capabilities (given by Tp) to produce
that product. Every time step a single industry can learn one additional capability,
that in combination with the already present capabilities can enable production of new
products, leading to a new industry in the following time step.
We will first introduce the model, and relate it to the percolation model discussed in
Chapter 4. Then we relax the assumption of local search, and implement a mechanism
of knowledge spillovers, allowing industries to recombine capabilities in order to make
products that are not adjacent in the product network (i.e. are at distance more than
one). This mechanism also relates the model to the Binomial model presented in [10]
and other related work in the dynamics of innovations [7].

6.1. Model setup

Consider again the product network defined by the projection of the Tap matrix. Every
active product p is thought of to be produced by an industry. Since p is being produced,
we assume all capabilities needed for production of p are available to that specific in-
dustry. We say that the ’capability basket’ Ap of the industry producing p is given by
Tp. Industries can add capabilities to their baskets through learning. One can imagine
a new capability becoming available to an industry through internal processes such as
research and development.
In the model, every time step a random industry learns a random new capability a which
it does not already have. If adding this new random capability to the currently used
ones leads to a new product, i.e. there is a ’recipe’ for a product p′ that requires a
combination of a subset of the capabilities given by Ap, product p′ is activated. This
means that in the following time step, there is a new industry that is producing p′.
We keep track of active products through the vector M t

p, where M t
p = 1 if product p
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is produced at time t and zero otherwise. Summarizing, the model in implemented as
follows:

Algorithm 1 Diversification process

Select (low complexity) seed node
for every time step t do

Select a random active product p
Set capability basket of the industry producing p to Ap = Tp
Add to Ap a random new capability: choose an a for which Aap = 0 and set Aap = 1
Activate all products that can be produced given Ap:
for all inactive products p′ do

if
∑

a Tap′Aap = q(p′) then
Set M t

p′ = 1
end if

end for
end for

Note that industries can only activate other industries at distance 1, just like in the
percolation model. The difference here is that diversification occurs through trial and
error: not all neighbors of an active product are activated every time step , but only the
ones that become accessible through learning a random new capability. The outcome of
the percolation model for v = 1 and the current model however are the same: as t goes
to infinity, every active industry will have tried combining every possible new capability
with its capability basket and will have activated all its neighbors. The process stops
when the number of active products equals the size of the connected components of
the seed product. It may take a very long time to reach this limit however, as many
activation attempts fail as they do not lead to a new product.
As in the percolation model, products that are close to many other products will have a
high probability of activating new products when a random capability is learned, lead-
ing to new industries. For more isolated products however, exactly the right capabilities
must be learned in order to activate a nearby product, which happens with low proba-
bility since new capabilities are learned at random.
Figure 6.1 shows 20 simulation runs of the diversification process in time. It is clear that
the diversification rate goes down as time progresses. This can be explained by the fact
that as diversification increases, the probability of selecting a random product that does
not lead to a new product increases. As the process unfolds, more products will have
activated all their neighbors and will be unable to activate new products. Furthermore,
as more neighbors become active, the probability of acquiring exactly the right capabil-
ity to activate the remaining neighbors becomes smaller.
From the previous chapter, we know that the diversification process will continue until
up to 400 products are active for ρ = 0.3 (see Figure 5.1). In the following we will extend
the model and ask the question what happens to diffusion size and speed if we relax the
assumption of local search, and allow industries to learn from each other and combine
their capabilities, enabling them to activate products at distances greater than 1.
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Figure 6.1.: 20 simulation runs of the diversification process for Np = 1000, Na = 20 and
ρ = 0.3. Diffusion was initialized by a single seed product selected randomly
from the 30 lowest complexity products.

6.2. Spillovers

Here we implement knowledge spillovers in the system by assuming industries may learn
from other industries to the extent that they use the same combinations of capabilities.
The idea here is that knowledge is easily shared between industries that produce related
products, as they combine capabilities in similar ways. One might even think of big
firms producing multiple products, and hence having access to all capabilities required
for production of those products.
How similar industries must be for knowledge transfer to take place in the model is
determined by the parameter β. For β = 1, industries only share knowledge if their
capability requirements are identical and learning new capabilities from other industries
is not possible. For β = 0, industries share their knowledge with any other industry.
For intermediate values, an industry producing product p can learn the capabilities from
all other industries producing products p′ for which s(p, p′) ≥ β, where s(p, p′) is the
similarity between two products in terms of their capability requirements.
We define the similarity between two products as [2]

s(p, p′) = 2
〈Tp, Tp′〉

q(p) + q(p′)
.

This quantity equals 1 if products require the same capabilities, and 0 if they share none.
The numerator counts the number of capability requirements that both products share.
The denominator is the sum of the product complexities, and causes the similarity to
have small values if the two products only share a small fraction of their total capability
requirements. As an example, consider the two products

p = (00011)

p′ = (10011).
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Then s(p, p′) = s(p′, p) = 4/5. For

p = (0000011)

p′ = (1110011)

we have s(p, p′) = 4/7. Note that although in the second example the two products share
the same number of capability requirements, the similarity goes down as p′ becomes
more complex. The similarity measure thus takes into account the number of shared
capabilities and the number of capabilities that are not shared.
Introducing spillovers in the model, the scheme looks as follows:

Algorithm 2 Diversification process with spillovers

Select (low complexity) seed nodes
for every time step t: do

Select a random active product p
Set capability basket of the industry producing p to Ap = Tp
Add to Ap all capabilities from similar industries:
for all p′ such that s(p, p′) ≥ β do

If A′p = 1 and Ap = 0, set Ap = 0
end for
Add to Ap a random new capability: choose an a for which Aap = 0 and set Aap = 1
Activate all products that can be produced given A:
for all inactive products p′ do

if
∑

a Tap′Aap = q(p′) then
Set M t

p′ = 1
end if

end for
end for

6.2.1. The β = 0 case

Let us first consider the case where β = 0. In that case, all industries are considered
similar and thus share their capabilities with each other. Every time step, the selected
industry learns the capabilities of every other active industry. As a consequence, it is
no longer relevant which industry is chosen per time step, since the capability basket
of every industry will be identical after they learn capabilities from each other. This
means we can consider in this case the capability basket of a country, as in the binomial
model [10].
If we now consider the diversification process, two things can happen every time step:
the newly added capability leads to the activation of one or more new products, or there
is no product that can now be activated and we move on to the next time step without
any changes. Let us assume for the moment that in every time step a new product
activation takes place. This means that every time step, a capability is added to the
countries’ capability basket. Starting with no capabilities, a country will have exactly t
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capabilities at time step t. The expected number of active products for a given number
of capabilities is derived in [10]. The probability of producing a product of complexity
k given a country has l capabilities is given by ( l

Na
)k. Assuming that at time t we have

t capabilities, the expected number of active products at time t is given by

〈dtc〉 ≈
Na∑
k=0

P (M t
p = 1|q(p) = k)NpP (q(p) = k)

=
Na∑
k=0

(
t

Na

)k
Np

(
Na

k

)
ρk(1− ρ)Na−k

= Np

(
ρ
t

Na

+ (1− ρ)

)Na

. (6.1)

This equation is increasing in t and convex, hence the rate of diversification is increasing
in the number of capabilities a country has. This means there are increasing returns in
the number of active products to the number of capabilities obtained. Hence countries
with many capabilities will diversify faster than countries with few capabilities. Coun-
tries with few capabilities will experience low returns on acquiring a capability, leading
to the equivalent of a poverty trap for countries. Furthermore it is shown in [10] that
this effect increases when Na or ρ are increased. Also, this result is independent of the
assumption that the product complexities are binomially distributed, since P (q(p) = k)
is by definition independent of the number of capabilities a country has.
Figure 6.2 shows 20 simulation runs of the diversification process with β = 0, and shows
the expected number of active products according to equation (6.1). Since in the present
model there are some time steps in which no capability is learned (which happens espe-
cially when not many products are active yet), we observe that on average diversification
occurs slower than dicatated by equation (6.1). Nevertheless, we see that the simula-
tions produce the same type of curves as the expected diversification, showing a clear
increasing rate of diversification in time. In the case of no spillovers, where β = 1, the
process is equivalent to the algorithm introduced in Section 6.1, where we observed that
the rate of diversification decreases in time (see Figure 6.1).
In the general model we propose, a country does not possess a number of capabilities

that enables it to produce products, but rather the individual industries learn new capa-
bilities that may lead to production of a similar product. This means that although some
industries may have access to certain capabilities, these capabilities are not necessarily
available to other industries. This weakens the assumption of the Binomial model [10]
that capabilities are either present or not to all industries in a country. Parameter β
allows us to transition between two models extreme cases of the model.

6.2.2. Intermediate cases

In this section we will compare simulations for different values of β and see how spillovers
affect diversification rates and final diffusion size. We have already seen that for β = 0,
all products can be produced at the end of the process for most simulations.
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Figure 6.2.: 20 simulation runs of the diversification process for Np = 1000, Na = 20,
ρ = 0.3 and β = 0. Diffusion was initialized by a single seed product selected
randomly form the 30 lowest complexity products. The blue dots show the
expected diversification for a given time step.

Figure 6.3 shows the diversification process for different values of β, where time is plotted
on a logarithmic scale. We observe that also for values of β greater than 0, there is a
point in which a state of stagnant growth is overcome and all products are activated at
the end of the process for all simulations. As β increases and there is less sharing of
capabilities, the time until ’take-off’ is increased. For β = 1, this take-off does not occur
at all, since the results in Chapter 5 tell us that the number of active product is around
400 at the end of the process for ρ = 0.3. Hence there is a value of β for which the
qualitative behavior of the diversification process changes from decreasing innovation
rates and no wide-spread diffusion to a situation in which every product can be reached
and there is an increasing rate of diversification.
Figure 6.4a shows the diversification process for values of β between 0.7 and 0.8, where

the transition from a decreasing to an increasing rate takes place. For β = 0.7 we find
explosive growth within the first 2000 time steps. For β = 0.73 however, we find that
first there is a regime where the diversification rate is decreasing, until a point is reached
where the effect of spillovers takes over and the diversification rate increases in time.
In Figure 6.4b the same simulations are shown, but time is plotted on a logarithmic
scale. This makes clear that at the start of the process, diversification rates are the
same for different values of β, indicating that spillovers have a minimal effect in when
not many products are active and their complexity is low. Only when there are many
active products with approximately the same complexity such that their similarity is
high, spillovers start having an effect. This point is reached earlier for lower values of β.
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Figure 6.3.: 20 simulation runs of the diversification process for Np = 1000, Na = 20,
ρ = 0.3 different values of β. Time steps are given on a logarithmic scale.
Diffusion was initialized by a single seed product selected randomly from
the 30 lowest complexity products.

(a) (b)

Figure 6.4.: 20 simulation runs of the diversification process for Np = 1000, Na = 20,
ρ = 0.3 different values of β, on a normal and on a logarithmic time scale.
Diffusion was initialized by a single seed product selected randomly from
the 30 lowest complexity products.

6.3. Discussion

From the current model, we have seen that spillovers increase the opportunity of ac-
tivating nodes by enabling product activations over distances greater than 1. In the
absence of spillovers, products can only be activated through neighbors in the product
network. The rate of diversification is decreasing in time as it becomes increasingly hard
to activate new products every time step. Diffusion size is bounded by the size of the
out-component of the seeds, which we have seen in Chapter 5 is very limited.
For β = 0 capabilities are exchanged between any industry, and we see explosive growth
that can be explained through a combinatorial process as previously shown in [10]. As
a consequence, countries with many capabilities can more easily engage in production
of new products by acquiring a new capability than countries which have only few ca-

53



pabilities, which leads to a poverty trap.
The model here relaxes the assumptions of the binomial model in two ways: capabil-
ities are only learnt if they lead to new products, and capabilities are introduced into
the economy by individual industries, and may not spread to all other industries. The
spillover parameter β determines how easily capabilities are transferred between indus-
tries. For intermediate values of β, the ’poverty trap’ grows as β approaches 1 (less
knowledge spillovers). We can identify two regimes: at first, there is a decreasing rate
of diversification and spillovers have minimal effect. When there are enough products
active that are approximately of equal complexity, spillovers occur and the rate of di-
versification increases in time, leading to an explosive growth of the number of active
products, and enabling countries to activate all products in the network. For the bi-
nomial distribution of product complexities we expect the transition between these two
regimes to be particularly sudden, as most products have complexity Naρ. Since prod-
ucts of equal complexity are likely to be similar, the effect of spillovers will suddenly be
big once a country starts producing products of average complexity. For more dispersed
product complexity distributions the effect of spillover may be less prominent. Note
however that the result of increasing returns for β = 0 holds for any distribution of
product complexities, so we always expect to end up in a regime of increasing return for
β = 0.
We interpret parameter β as a measure of how easy know-how spreads in the economy.
Not surprisingly, the model shows that economies in which capabilities are shared be-
tween industries are more effective of engaging in production of new products. One
could argue that parameter β takes different values over time and space. In big cities
for example, capabilities may be more easily transferred between industries as they are
closer together and have more interactions. Historically, β may have decreases through
globalization and urbanization. Also the codification of knowledge through for example
patents, increased mobility of people and accessibility of knowledge through internet can
contribute to the exchangeability of capabilities between industries.

54



7. Discussion

In this thesis, we have attempted to model the mechanisms by which economic growth is
driven by accumulation of knowledge, and how this growth is restricted by the concept of
related diversification. We have proposed to model these dynamics as a percolation pro-
cess on a complex network. In this, we built on the framework of economic complexity
to create a theoretical product space that countries explore as they develop economically.
We have modeled the product space as the one-mode projection of the bipartite capability-
product network Tap, that dictates which products use which specific capabilities. We
assumed the Tap matrix to be random, with the probability of a product using a certain
capability given by parameter ρ. As a consequence, the distribution of product complex-
ities is given by a binomial distribution. In Chapter 3 we investigated the connectivity
properties of this network for different parameter values, and concluded that connectiv-
ity decreases as Na increases and ρ approaches 0.5.
In Chapter 4 and 5 we modeled economic growth as a percolation process in which growth
is restricted by the general level of development of a country. Here we were interested
in how the total number of reachable products depends on the level of development v.
Modeling development by initiating diffusion with low complexity seeds, we conclude
that diffusion is only possible for relatively small values of ρ, well below ρ = 0.5. For
higher values of ρ, most products are not accessible by low complexity products, and for
values of ρ close to 0.5 the network is not well connected, hindering diffusion. We find
that the structure of the network and the assumption of local search is in many cases
more restrictive than the level of development v. When diffusion is initiated with low
complexity seeds, there is no percolation threshold due to the structure of the network.
In Chapter 6 we considered how the diversification process unfolds in time. We propose
that diffusion is driven by accumulation of capabilities by individual industries. After
infinitely many time steps, the number of active nodes is given by the diffusion size in
the percolation model. In the model, the rate of diversification is decreasing in time,
as it becomes less likely that exactly the right industries add exactly the right capabili-
ties to their capability baskets as time unfolds. By implementing spillovers, we relaxed
the assumption of local search and allowed industries that use similar combinations of
capabilities to recombine their capabilities in order to make new product at further dis-
tances. How similar industries must be for them to exchange capabilities is given by
parameter β. For β = 0, the case of full spillovers, we can related the model to the
binomial model in [10] and find increasing returns in the accumulation of capabilities,
leading to a poverty trap for countries with few capabilities. As β is increased, the
poverty trap grows, and a regime in which the diversification rate is decreasing is clearly
visible for early stages of the process. Once products reach a level of complexity for
which spillovers take effect, the system shows an increasing rate of diversification where
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the whole network is accessible.
The modeling approach taken in this thesis has severe limitations - it assumes a finite
product space, does not model de-activation of products and does not consider interac-
tions between countries. Hence we do not expect the model to have any predictive or
even descriptive value of dynamics of economic development. Nevertheless, the model
can help to understand the dynamics of the diversification process as proposed by the
economic complexity framework. In this thesis we have tried to connect concepts of re-
lated diversification, accumulation of capabilities and knowledge spillovers into a simple
model that shows how they can affect the diversification process.
How does the model relate to the real world? Considering the capability-product net-
work Tap, we could ask what would be a reasonable value for ρ. In the product network,
ρ determines on average how many capability are used per product. For values of ρ > 0.5
products would use on average more than half of the available capabilities which seems
unrealistic as we consider products in the real world to require very specific combina-
tions of capabilities, and most large combinations of capabilities do not lead to a viable
product. Also, the fact that for large values of ρ the distances in the product network
decrease seems artificial, as it is a consequence of assuming a finite number of capabili-
ties Na. We therefore think of ρ taking values below 0.5, but not too small as in general
products do require multiple capabilities.
Whereas ρ is considered a fixed value in the model, parameter v and β are considered con-
trollable to some extent. Parameter β is a measure of how easily capabilities are shared
between industries. It is clear from the model that if capabilities are easily shared, this
can have a huge effect on economic development, overcoming disconnectedness from the
product network a country is exploring. The most interesting question perhaps is what
the structure of the product-capability network is in the real world, and how it evolves
in time under the influence of innovation.
In general, the assumption that Tap is a random matrix is a crucial one: it determines
the product complexity distribution and the distances between products. The fact that
the capability requirements of products are independent of each other is in contradic-
tion with the idea that production of one product leads to the discovery of how to make
another. This would suggest that the capability requirements of products are very de-
pendent of each other. In the current model, we assume a fixed recipe book Tap and the
network of viable products is ’discovered’ as diffusion unfolds. The resulting network of
active products at the end of the process are related to each other in a hierarchical way.
A different approach to model the product network, that also overcomes the limitations
of the assumption of a finite product network is one in which the network is generated
as diversification takes place. This way, the product network is created by industries as
they innovate and create new products, extending the network (see [18] for an example).
Adding some hierarchical structure to the product network Tap may give very different
results and a more realistic model, more appropriate for modeling the time evolution
of the diversification process. Other product complexity distributions are considered in
e.g. [1] and [7] in a slightly different context. Note that the increasing returns result
of equation (6.1) holds for any product complexity distribution, and thus any product
complexity distribution.
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An alternative way to think about the structure of the Tap matrix in given in [22], where
the distribution of the usefulness of capabilities is considered as opposed to the product
complexity distribution. In the current model, the number of products a capability uses
(the degree of the capabilities in the bipartite Tap network) is binomially distributed
with mean value Npρ. Hence all capabilities are considered to be approximately equally
useful. Thinking of capabilities however it seems obvious that some general capabilities
such as access to electricity are used in many more products than very specific capabili-
ties such as the skill to process leather. Hence it seems reasonable that the distribution
of capability usefulness is given by a distribution with high variance such as a power-law.
Implementing this leads to results that captures the structure of export data better than
the binomial model [22].
Another limitation is that the model only describes whether a product is being pro-
duced or not, but does not quantify products nor capabilities. For an extension of the
binomial model in this direction see [8]. Furthermore the model proposed here does not
incorporate interactions between countries and the disappearance of products from a
countries’ export basket. For an example of a model incorporating creative destruction
see [14]. The approach taken here however can be generalized to other systems that
deal with creation of new entities that are built of components. See for example [7] for
an application to gastronomy, technology and language. In [7], the conclusion is that
front-loaded product complexity distributions bring forth higher innovation rates, and
innovation rates are fully determined by the product complexity distribution. Using the
network approach proposed here on other systems than capabilities and products has the
advantage that in some cases the building blocks (which where capabilities here) become
tangible: in gastronomy for example, the recipe book Tap is literally available, connecting
ingredients to dishes. This allows to directly assess the product complexity and capa-
bility usefulness distributions for different systems. Understanding the structure of the
product network may then shed light on the dynamics of innovation for specific systems.
Other examples to bring the model to data include datasets that describe which skills
are used for which occupations, or which patents are used in other new technologies.
What the current model does incorporate which is not present in other models men-
tioned above, and in particular in the binomial model [10], is the notion of local search,
thereby addressing a central issue in the dynamics of economic development or innova-
tion: how are new capabilities (components) introduced to the system? We proposed
here that acquisition of capabilities occurs through invention of new products - and thus
capabilities only enter the system when they lead to a new product. Why would one
learn a capability if not all its complementary capabilities were already present? And
once a capability is learned in order to produce a specific product, how does it diffuse
to other industries? In [10] it is suggested that the challenge in economic development
is to minimize this coordination problem, and related diversification is a result of this
minimization. Here we have combined the combinatorial aspects of the theory of capa-
bilities, and the restrictive aspect of related diversification into a single model, that may
provide grounds for further theoretical and empirical investigation to how these forces
are balanced in the economy.
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A. Derivations

A.1. Derivation of distribution of weights

The probability of two products sharing a given number of capabilities, i.e. that an
entry of the weight matrix attains a certain value,

P (Wpp′ = w)

is given by a Bin(Na, ρ
2) distribution. Here we will derive this result in two different

ways, to verify the result and also check the methodology. We will first derive the results
directly from the Tap matrix, and then use conditional probabilities and the law of total
probability to get the same results.
Since the Tap are independent for all a, p,

TapTap′ =

{
1 with probability ρ2

0 with probability 1− ρ2

which indicates whether two products share a capability or not. The random variable

Wpp′ =
∑
a∈A

TapTap′

gives the probability of finding an edge weight in the one-mode projection and is given
by

P (Wpp′ = w) =

(
Na

w

)
(ρ2)w(1− ρ2)Na−w. (A.1)

This gives the distribution of the weight matrix Wpp′ .
We can check (A.1) by deriving the unconditional probability that two random products
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share w capability requirements using (3.8):

P (Wpp′ = w) =
Na∑
k′=0

P (Wpp′ = w|q(p′) = k′)P (q(p′) = k′)

=
Na∑
k′=0

(
k′

w

)
ρw(1− ρ)k

′−w
(
Na

k′

)
ρk

′
(1− ρ)Na−k′

=
Na∑
k′=0

k′!Na!

w!(k′ − w)!k′!(Na − w)!
ρw+k

′
(1− ρNa−w)

=
Na∑
k′=0

Na

w!(Na − w)!
· (Na − w)!

(k′ − w)!(Na − k′)!
ρw+k

′
(1− ρ)Na−w

=
Na∑
k′=0

(
Na

w

)(
Na − w
k′ − w

)
ρw+k

′
(1− ρ)Na−w.

We now set l = k − w ≥ 0 and obtain

P (Wpp′ = w) =
Na−w∑
l=0

(
Na − w

l

)
ρl
(
Na

w

)
ρ2w(1− ρ)Na−w

= (1 + ρ)Na−w
(
Na

w

)
ρ2w(1− ρ)Na−w

=

(
Na

w

)
ρ2w(1− ρ2)Na−w,

where we used the binomial theorem in the second equality. This tells us that the Wpp′

are Binomially distributed with parameters (Na, ρ
2), consistent with (A.1).

A.2. Derivation of the distribution of distances

We can use these conditional probabilities (3.9) and (3.10) to compute the probability of
finding two nodes at distance δ(p, p′) from each other, or in other words the probability
that an entry in the weight matrix takes a given value. We find that this quantity is
Bin(Na, ρ− ρ2) distributed.
Using (3.9) we obtain the probability of finding a random node with distance d to a
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given target node p′ as

P (δ(p, p′) = d) =
Na∑
k′=0

P (δ(p, p′) = d|q(p′) = k′)P (q(p′) = k′)

=
Na∑
k′=0

(
k′

d

)
(1− ρ)dρk

′−d
(
Na

k′

)
ρk

′
(1− ρ)Na−k′

=
Na∑
k′=0

k′!

d!(k′ − d)!
· Na!

k′!(Na − k′)!
ρ2k

′−d(1− ρ)Na−k′+d

=
Na∑
k′=0

Na!

d!(Na − d)!
· Na − d!

(k′ − d)!(Na − k′)!
ρ2k

′−d(1− ρ)Na−k′+d

=

(
Na

d

)
ρd(1− ρ)d

Na−d∑
l=0

(
Na − d

l

)
ρ2l(1− ρ)Na−d−l

=

(
Na

d

)
ρd(1− ρ)d · (ρ2 + 1− ρ)Na−d

=

(
Na

d

)
(ρ− ρ2)d(1− (ρ− ρ2))Na−d

where we used l = k− d ≥ 0 and the binomial theorem. Thus we find a Bin(Na, ρ− ρ2)
distribution, which gives the probability that a random entry in the distance matrix
equals d. We verify this result by computing it using (3.10), finding

P (δ(p, p′) = d) =
Na∑
k=0

P (δ(p, p′) = d|q(p) = k)P (q(p) = k) (A.2)

=
Na∑
k=0

(
Na − k
d

)
ρd(1− ρ)Na−k−d

(
Na

k

)
ρk(1− ρ)Na−k

=

(
Na

d

)
ρd(1− ρ)d

Na−d∑
k=0

(
Na − d
k

)
ρk(1− ρ)2Na−2k−2d

=

(
Na

d

)
(ρ− ρ2)d · (ρ+ (1− ρ)2)Na−d

=

(
Na

d

)
(ρ− ρ2)d(1− (ρ− ρ2))Na−d.

Here we used that k ≤ Na − d and the binomial theorem.

A.3. Derivation of distribution of up-edges

Here we derive the probability of finding an up-edge in the network. Furthermore we
assume α = 1, such that products are only connected if δ(p, p′) ≤ 1.
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Firstly, note that an up-edge never occurs between nodes with distance 0 since the target
node can have at most one capability requirement that the source node does not have,
which means that it must also have all capabilities the source node has in order to have
a higher complexity. In other words, in order to go to higher complexity products one
must learn a new capability.
So an up-edge only occurs for δ(p, p′) = 1. We call ζ(k) the probability that a random
node p with complexity q(p) = k has an out-edge pointing to a higher complexity node:

ζout(k) = P (δ(p, p′) = 1, q(p′) > q(p)|q(p) = k).

This equals the probability of finding a product p′ such that it has exactly one nonzero
entry Tap′ = 1 in the Na−k entries where Tap = 0 and furthermore has k nonzero entries
Tap′ = 1 for all a where Tap = 1, so that q(p) < q(p′). So the probability of an up-edge
given q(p) = k is

ζout(k) = P (δ(p, p′) = 1, q(p′) = k + 1|q(p) = k)

= ρk
(
Na − k

1

)
ρ(1− ρ)Na−k−1

= (Na − k)ρk+1(1− ρ)Na−k−1.

Thus the probability that a random node has an outgoing up-edge is given by

ζ =
Na∑
k=0

ζout(k)P (q(p) = k)

=
Na∑
k=0

(Na − k)ρk+1(1− ρ)Na−k−1
(
Na

k

)
ρk(1− ρ)Na−k

=
Na∑
k=0

(Na − k)

(
Na − 1

k

)
ρ2k+1(1− ρ)2Na−2k−1

=
Na∑

k+1=0

(k + 1)

(
Na

k + 1

)
ρ2k+1(1− ρ)2Na−2k−1

=
Na∑
l=0

l

(
Na

l

)
ρ2l−1(1− ρ)2Na−2l+1.

To check, we also compute the probability that a random node has an incoming up-edge
(coming from a lower complexity node). This is given by

ζin(k′) = P (δ(p, p′) = 1, q(p) = k′ − 1|q(p′) = k′)

=

(
k′

k′ − 1

)
ρk

′−1(1− ρ)(1− ρ)Na−k′

= k′ρk
′−1(1− ρ)Na−k′+1.
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Again summing over all possible k′ we get

Na∑
k′=0

ζin(k′)P (q(p′) = k′) =
Na∑
k=0

k′ρk
′−1(1− ρ)Na−k′+1

(
Na

k′

)
ρk

′
(1− ρ)Na−k′

=
Na∑
k′=0

k′
(
Na

k′

)
ρ2k

′−1(1− ρ)2Na−2k′+1

= ζ

which gives the desired result.
The quantity ζ probability that a random node has an up-edge, or the fraction of all
possible edges that will have an up-edge. This distribution is shown in Figure 3.5. The
quantity (Np − 1) · ζ gives the expected number of up-edges from a random node. The
quantity Np · (Np − 1) · ζ gives the expected number of up-edges in the network.

A.4. Derivation of percolation condition

The mean in-degree in given by

〈j〉 = E[dαin(p′)] =
∑
p 6=p′

E[1{δ(p,p′)≤α}]

= (Np − 1)P (δ(p, p′) ≤ α).

We know the distribution of δ(p, p′) is Bin(Na, ρ− ρ2). So

〈j〉 = (Np − 1)((1− (ρ− ρ2))Na +Na(ρ− ρ2)(1− (ρ− ρ2))Na−1).

Likewise, for the mean out-degree 〈l〉 we have

〈l〉 = E[dαout(p)] = (Np − 1)P (δ(p, p′) ≤ α)

= (Np − 1)((1− (ρ− ρ2))Na +Na(ρ− ρ2)(1− (ρ− ρ2))Na−1)
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For the expectation of the product we use conditional independence:

〈jl〉 =

Np−1∑
j=0

Np−1∑
l=0

jlP (din = j, dout = l)

=

Np−1∑
j=0

Np−1∑
l=0

jl

Na∑
k=0

P (dαin = j|q(p) = k)P (dαout = l|q(p) = k)P (q(p) = k)

=
Na∑
k=0

Np−1∑
l=0

lP (dαout = l|q(p) = k)

Np−1∑
j=0

jP (dαin = j|q(p) = k)P (q(p) = k)

=
Na∑
k=0

Np−1∑
l=0

lP (dαout = l|q(p) = k)E[dαin(p)|q(p) = k]P (q(p) = k)

=
Na∑
k=0

Np−1∑
l=0

lP (dαout = l|q(p) = k)(Np − 1)ηin(k, α)P (q(p) = k)

= (Np − 1)2
Na∑
k=0

ηin(k, α)ηout(k, α)P (q(p) = k).

The condition for a giant in- or out- component to exist is given by [17]

2〈jl〉 − 〈j〉 · 〈l〉 ≥ 0,

leading to the model-specific condition

(Np − 1)
Na∑
k=0

ηin(k, α)ηout(k, α)P (q(p) = k) ≥ P (δ(p, p′) ≤ α).
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