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Abstract

This thesis investigates the performance of corporate bond funds. In the first part of
this thesis, a mathematical equilibrium model is derived to estimate the return of cor-
porate bond funds. The abnormal rate of return of a fund in excess of what would be
predicted by this equilibrium model is called the alpha of a fund. This alpha is used as
a performance measure for corporate bond funds. In the second part of this thesis, we
use a large dataset to fit this model to the data. We show that on average, corporate
bond funds manage to obtain a positive alpha. Furthermore, it is shown that funds
that performed strongly (weakly) in the past continue to perform strongly (weakly) in
the future. Various investment strategies are suggested that exploit this persistence in
performance. It is shown a portfolio of past winners can obtain an alpha of 1.77% per
year, whereas a strategy of buying past winners and selling past losers can even result
in an alpha of 2.77% per year. Investing in the single fund with the highest past alpha
can even lead to an alpha of 2.93% per year.

Keywords: corporate bond mutual funds, persistence in performance, equilibrium
model, family-wise error rate
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Chapter 1

Introduction

Mutual funds are professionally managed investment programs that pool money from
investors and invest this money in stocks, bonds, money-market instruments and other
securities. There are two main reasons for investors to invest their money in mutual
funds. The first one is risk reduction. Holding a diversified portfolio reduces risk, how-
ever, individual investors might not have enough budget for a fully diversified portfolio.
The second one is performance. Because mutual funds are professionally managed, one
would expect that the performance of these funds is superior to the performance of
amateurs. Academic literature agrees that mutual funds do a good job in reducing the
risk of investing by diversification (M. C. Jensen (1968)). It is less clear however if
actively managed funds also achieve superior performance.

Mutual funds emerged in the 18th century in The Netherlands (Rouwenhorst (2004))
and with over $30 trillion worth of assets under management at the end of 2014 it is
arguably the largest financial industry worldwide.1 Mutual funds can be subdivided
into several groups, depending on the assets they invest in. One can for example speak
about equity funds, funds investing in stocks, or about fixed income funds, funds in-
vesting in corporate or government bonds. This thesis deals with corporate bond funds,
a subclass of fixed income mutual funds investing in corporate bonds.

It is not without good reason that we investigate corporate bond funds. One of the
dominant trends in the financial industry of today is the growth of the assets under
management by these corporate bond funds. The ICI reports that the annual geometric
growth rate of assets under management by corporate bond funds from 2000 to 2013
was 14% , which let them to quadruple in size. Comparing this with data reported by
Feroli et al. (2014), it can be concluded that corporate bond funds have attracted far
greater inflows than equity and money market funds combined. I. Goldstein, Jiang, and
Ng (2015) estimate that as much as 23% of all corporate bonds outstanding in 2013
are owned by corporate bond funds. Observing this, one would expect that there is a

1Data reported by Statistica. Obtained from: http://www.statista.com/statistics/235553/assets-
managed-in-mutual-funds-worldwide/. Retreived on February 28, 2016.
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vast literature on the performance of corporate bond funds. It turns out however that
surprisingly little research has been done on this topic. Most of the academic research
still concentrates on equity funds. This thesis contributes to the academic literature by
filling this gap. Several questions related to the perfrmance of corporate bond funds
are answered.

First, the average performance of corporate bond funds is investigated. How does the
average corporate bond fund perform? Many empirical studies (see for example Duffie,
Saita, and Wang (2007), Collin-Dufresne, R. Goldstein, and Martin (2001)) show that
the return of corporate bonds is driven by many factors that are difficult to predict.
Therefore, one might expect that it is impossible for corporate bond funds to possess
a superior corporate bond picking skill and hence that the value added by corporate
bond funds is only minor. This thesis shows the opposite, namely that on average,
funds generate positive risk adjusted returns in all subsamples.

Next, we turn to the question of persistence. In other words, are some funds able
to systematically obtain a higher risk-adjusted return than others? This question is
of crucial importance, because persistence in performance indicates that professional
managers can add value and a high return is not sheer luck. It is therefore not surpris-
ing that much economic literature has been focused on this question. However, most
of the papers exclusively focus on equity funds. Evidence from papers that do focus on
corporate bond fund is mixed, Gutierrez, Maxwell, and Xu (2008) find persistence in
performance for US corporate bond funds, whereas Dietze, Entrop, and Wilkens (2009)
do not find any for German corporate bond funds. Our study clearly speaks in favor
of active management of corporate bonds; when funds are ranked on their performance
over the last 12 months, the top performing funds continue to outperform the worst
performing ones in all our subsamples.

The first two research questions are concerned with the performance of bond funds
and are very interesting in itself. This new understanding on the existence of skilled
fund managers can also be used to form a new investment strategy. We propose an
investment strategy where we create a portfolio of corporate bond funds by selecting
all the skilled managers, but exclude the non skilled or lucky ones. Differentiating the
skilled managers from the non-skilled managers is by no means a trivial task. A man-
ager is considered skilled if a certain performance measure is statistically positive. But
by design of statistical tests, there is a a% chance of a Type I error, where a is chosen
by the statistician (usually this is set to 5%). In this case a Type I error means that a
manager gets classified as skilled, while it is actually not. When selecting skilled man-
agers out of a dataset of S funds, S tests needs to be performed and one would expect
that a% ∗ S funds get wrongly classified as skilled. As there are many corporate bond
funds to choose from, this number can be quite substantial. To minimize the amount
of bond fund managers that wrongly get classified as skilled, the algorithm developed
by Romano and Wolf (2005) is used. It is shown that the resulting portfolio of funds
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not only performs excellent, but also reduces risk.

In short, this thesis answers the following three main research questions:

1. How do corporate bond funds perform on average?

2. Is there persistence in the performance of corporate bond funds?

3. Can we construct a profitable investment strategy to exploit this persistence in
performance?

The structure of this thesis is as follows. First, the related academic literature is
reviewed in Chapter 2. In Chapter 3, the mathematical model we will be working with
is derived in detail. Furthermore, it is explained how to estimate this model using a
dataset. It is proven that our performance estimator is consistent and asymptotically
normal under some assumptions. Afterwards, we describe the dataset. In Chapter
5, the average performance of bond funds is investigated, whereas the persistence in
performance of bond funds is explored in Chapter 6. In Chapter 7, a portfolio of skilled
fund managers is created. It is shown that this portfolio performs well in our dataset.
Finally, in Chapter 8, we conclude and some recommendations for further research are
given.
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Chapter 2

Literature Review

In this section we will review the literature on corporate bond fund performance. The
most common measure assessing a fund manager’s performance is called the alpha of
a fund. First we review some important results in asset pricing theory that led to this
method of evaluating fund performance. Afterwards, the literature on the performance
of funds is reviewed. Finally, the literature related to creating a portfolio of funds is
reviewed.

As mentioned in the introduction, mutual funds have existed for centuries. However,
it wasn’t until the 1960s that the first academic studies were conducted on how these
mutual funds actually perform. Before this time, academics did not find a suitable
method to measure the performance of a mutual fund. One could of course simply look
at the return of the fund. However, asset pricing theory tells us risky assets have a
higher expected return. A mutual fund can therefore obtain a higher expected return
just by holding a portfolio of risky assets. This should be taken into account when
evaluating the performance of a fund. Before the 1960s researchers didn’t know how to
deal with this concept of risk. To take into account this risk, Sharpe (1966) introduced
the Sharpe Ratio, which is simply the ratio of expected excess return and volatility, as
a risk adjusted performance measure. This simple measure is only based on two statis-
tics. Although the Sharpe Ratio is still used very frequently as performance measure,
it is not very suitable for assessing the performance of funds. The reason is that the
Sharpe Ratio does not make a difference between active and passive management. One
can obtain a high sharp ratio by a passive strategy; for example buying an index and
just hold this index. However, every individual can do this and the fund manager does
not add any value when doing so. Furthermore, Bayley and López de Prado (2012)
show that Sharpe Ratio’s often overstate fund performance. The writers show that this
is especially a problem in datasets with a smaller return history.

The main breakthrough that made it possible to assess the performance of funds was
the CAPM model (Sharpe (1964),Lintner (1965a) and Lintner (1965b)). The model
states that investors should only be compensated for risk that cannot be avoided, risk
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that cannot be diversified away. This type of risk is called systematic risk. An ex-
ample of systematic risk is the financial crisis of 2008. Anyone saw the value of their
investments change because of a worldwide economic crisis, regardless of how many or
what types of securities they held. Another type of risk is idiosyncratic risk. This is
the risk that affects a single asset or industry, but does not influence every asset in a
well diversified portfolio. An example of ideosyncratic risk is one company suffering
losses due to a fire. This fire affects the stock price of this single company, but the
stock price of other companies is unaffected by this. If an investor has a well diversified
portfolio, the drop of the stock price from this one company is offset by a possible rise
in value of other securities in the portfolio. Hence, losses due to ideosyncratic risk can
be avoided by diversification and the CAPM stipulates that investors should not be
reimbursed for bearing such risks. The CAPM model states that securities that have a
high systematic risk should have a higher expected return to compensate investors for
this risk. In the CAPM, this exposure to systematic risk is measured as the exposure
to the market (this makes sense as the whole market is effected by systematic risk).
Therefore, in the CAPM framework, the expected return of a security is a function
of the return of a portfolio that includes every type of asset available in the financial
market, which is called a market portfolio. To be more precise, the expected return of
a security i ∈ 1, . . . , N is modelled as follows:

ERi = rf + βi,MKT (E(RMKT − rf )). (2.1)

Here, Ri is the return of stock i, rf is the return of a risk-free asset, RMKT is the
return of the market portfolio and βi,MKT the sensitivity of the return of security i to
the overall market. It is the extent to which ERi is influenced by ERMKT (and thus
by systematic risk). If βi,MKT = 1, the return of security i moves with the market. If
βi,MKT > 1, systematic risks greatly affect the return of this security; when the return
of the market portfolio is expected to drop, the expected return of security i drops even
further. If βi,MKT < 1 it indicates that the return of security i is less volatile than
the market. Systematic risks do not influence the return of security i as greatly as the
return of the market portfolio.

This simple model gave rise to a whole new stream of literature in asset pricing theory,
even resulting in a Nobel Prize in 1990. M. C. Jensen (1968) was the first one to use the
CAPM model to create a measure evaluating portfolios. The portfolio of an investor is
the set of all its investments. The performance measure of a portfolio is then defined
as the constant term in the following time-series regression:

Rp,t − rf = αp + βp,MKT ((RMKT,t − rf )) + εp,t. (2.2)

where Rp,t equals the return of the portfolio at time t, βp,MKT the exposure of the port-
folio to the market and εp,t the error term. Note that Equation (2.1) tells us something
about the expected return, whereas Equation (2.2) can only be estimated after the
data has been collected. Therefore, the expectation sign drops out. Assuming that the
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CAPM indeed accurately describes stock returns, the αp in the above regression is the
return which can be attributed to the portfolio managers, the rest of the return comes
from exposure to the market. When the CAPM model is correct, an investor can only
increase its expected return by taking more systematic risk (exposure to the market).
The easiest method to do this is to buy a market index such as the EAX index in The
Netherlands or The Dow Jones index in The United States. Every investor can do this
and the return gained from this exposure should not be accounted to the skill of a fund
manager. However, to obtain a better αp, one must obtain return in excess of the return
that comes from the exposure to the market, which is the only risk factor in the CAPM
model. Therefore, it can be seen as the added value by the portfolio manager.

To use this alpha as a performance measure, the CAPM model must of course be
valid. If there are more risk factors than the market factor driving the returns on
assets, then Equation (2.1) is wrong and the return of a stock is given by

ERi = rf + βi,MKT (E(RMKT − rf )) + β′iF. (2.3)

Here, F is a K × 1 vector of the remaining factors influencing the return of a stock and
βi a K × 1 vector of factor sensitivities and β′i is its transpose. The entries of βi are
defined in a similar matter as βi,MKT . Hence, the k-th entry of βi is the extent to which
factor Fk influences ERi. Thus, if the returns of assets are generated as in Equation
(2.3), but one still uses Equation (2.2) to calculate α, a higher α can be obtained by a
passive investment strategy. One can for example invest in the factor Fk and just hold
this factor. If βi,k > 0 this increases the expected return, but one is also exposed to more
risk. The return from this passive exposure should again not be seen as the value added
by a fund manager as the risk of this portfolio also increased. Besides, individuals can
invest in this factor themselves and do not need a portfolio manager for this. There-
fore, α is not a good performance measure if the model used to estimate it does not hold.

For this reason, it is not surprising that many empirical studies were performed in-
vestigating the validity of the CAPM model. The majority of these studies however
firmly reject the CAPM model and suggest that there are more risk factors besides the
market factor influencing stock returns, see for example Black, M. Jensen, and Scholes
(1972) and Fama and MacBeth (1973). This caused more and more researchers to
model the return on assets as a statistical factor model, where the return on assets is a
linear function of an arbitrary number of risk factors

Ri = ai + β′iF + εi. (2.4)

Here, F is a K × 1 vector of risk factors and βi is a K × 1 vector of factor sensitivities,
β′i is its transpose. The constant term ai is chosen such that E(εi) = 0 ∀ i. In this
framework, the return of an asset is modelled as a function of various risk factors.
Factor models do not a priori state what these factors should be. Unlike the CAPM,
they do not model the expected return of financial products, but it models the return
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of assets directly. However, to evaluate the performance of funds, an expression for the
expected return is essential, because α is defined as the return that is earned above the
return one would expect from exposure to these risk factors. Remember that the αp in
Equation (2.2) was defined as the return in excess of the return one would expect from
exposure to the market factor, which is the only risk factor in the CAPM framework.
Ross (1976) developed an equilibrium model, in which the expected returns of assets
whose returns are generated by Equation (2.4) are given by

ERi = rf +
K∑
k=1

βi,k(EFk − rf ). (2.5)

Here, Fk and βk are the k-th entry of F and β respectively. Because this is the model
we use in this study to evaluate bond performance, we prove Equation (2.5) formally
in Chapter 3. However, the proof is different than the proof of Ross (1976). Whereas
Ross (1976) starts from preferences from investors, we derive this equation from a non
arbitrage point of view, this makes the underlying assumptions more easy to verify
(investor’s preferences are not observed). It is important to stress that this model not
only holds for stocks, but also for other types of financial assets and portfolios thereof.
For that reason, it is very suitable to evaluate the performance of corporate bond funds.
As is the case for the CAPM, the expression for the expected return can be used to
create a measure evaluating portfolios. The return of a portfolio can be disentangled in
a part that can be attributed to skill (αp) and a part that can be attributed to exposure
to risk factors (∑K

k=1 βp,k(Fk,t − rf )). Therefore, the constant term in the regression

Rp,t − rf = αp +
K∑
k=1

βp,k(Fk,t − rf ) + εp,t. (2.6)

can now be used as a performance measure of a portfolio. Because a fund holds a port-
folio of securities, it can also be used to assess the performance of a fund. If the αp in
this regression is used to measure the performance of a fund, it is normally referred to
as the alpha of a fund. Therefore, calculating the risk-adjusted performance of a fund
simply boils down to estimating the constant term in the above regression. Again, it is
important that Equation (2.4) is the right model, i.e. that the factors indeed sufficiently
explain the return of assets.

Therefore, a large stream of financial literature was devoted to defining what these
risk factors exactly should be. This research in building adequate factor models be-
came, and still is, empirical in nature. If the vector F is a vector of random variables
that needs to be estimated, it is called a statistical factor model. In order to estimate
this vector of factors, one usually uses maximum likelihood or principal component
based factor analyses. For more information on how to estimate these models, one
can consult Chapter 8 and 9 of Johnson and Wichern (2006). Many early studies on
asset returns use statistical factor models, see for example Roll and Ross (1980) for an
application of the return of stocks. In a study by Litterman and Scheinkman (1991)
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statistical factor analysis is used to find that three factors are enough to explain the
return of bonds. The main problem with statistical factor models is however that the
estimated factors have no intuitive meaning; they are just vectors of estimates. Conse-
quently, the popularity of these statistical factor models decreased and the majority of
recent studies use macroeconomic or fundamental factor models. In these models the
factors are macroeconomic variables or company attributes that possibly influence as-
set prices. The factors either come from economic theory or from empirical observations.

For stocks, the market factor is still viewed as the most important factor, but over
the years many factors have been added. Fama and French (1992) and Fama and
French (1993) found that small firms consistently perform better than big firms and
that firms with a high book to market ratio consistently outperform firms with a low
book to market ratio, even when taking into account the stocks exposure to the market
(i.e. the difference in these returns could not be explained by the CAPM model). The
writers therefore argue that stocks of small firms and firms with a high book to mar-
ket ratio must carry more systemetic risk with them and exposure to this type of risk
increases the expected return of a stock. In line with these findings, the authors put
forward a model explaining stock returns with three factors: the market factor as in the
CAPM model, the size factor capturing excess return of smaller firms relative to big
firms and the value factor capturing the excess returns of high book to market stocks
(in models we will abbreviate these factors as SMB and HML). Later on Cahart
(1997) discovered that firms with stronger performance in the recent past tend to do
better in the future than stocks that have been performing poorly in the recent past,
even when taking the beforementioned factors into account. The factor capturing this
excess return is called the momentum factor (MOM). These four factors have now
become the most popular factors to model stock returns and plugging in these factors
in Equation (2.6) gives us the following time series regression:

Rp,t − rf = αp + βp,MKT (RMKT,t − rf ) + βp,SMB(SMBt − rf ) + βp,HML(HMLt − rf )
+ βp,MOM(MOMt −Rf ) + εp,t.

(2.7)

The estimate of αp in this equation is currently one of the most popular performance
measures of portfolio’s. To evaluate fund performance, the academic literature usually
investigates whether funds that obtained a high (low) alpha in the past, also obtain a
high (low) alpha in the future. Hence, one investigates if past winners (losers) are also
future winners (losers). The reasoning is that one can obtain a high alpha over a cer-
tain period by luck, however repeatedly obtaining a high alpha requires skill. Academic
evidence on the added value of equity funds is mixed; Cahart (1997), Fama and French
(2010) and Busse, Goyal, and Wahal (2010) find little to no evidence of persistence in
fund performance. In contrast, Vidal-García (2013) and Huij and Verbeek (2007) show
that fund performance can be predicted by past fund performance.
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The most popular factor model describing the return of bonds and bond portfolios
was introduced by Blake, Elton, and Gruber (1993). Just as in the earlier mentioned
study by Litterman and Scheinkman (1991), three factors are used to model the return
of bond and bond portfolios. One factor is the market factor, which just as in the
CAPM model captures that part of the return of a bond that comes from exposure to
systematic risk. Blake, Elton, and Gruber (1993) found that high-yield bonds (bonds
with a low credit rating and thus a higher probability of default) and mortgage-backed
securities (a special type of bond with an uncertain maturity date1), even when taking
into account the market factor. The second factor captures the excess return of bonds
with a higher probability of default (DEF ) and the third factor captures the excess
return of mortgage-backed securities (MOR). These can be plugged into Equation (2.6)
to obtain the following equation for the return of a bond portfolio:

Rp,t−rf = αp+βp,MKT (RMKT,t−rf )+βp,DEF (DEFt−rf )+βp,MOR(MORt−rf ). (2.8)

The αp in this equation is often used to investigate the performance of bond funds.
Huij and Derwall (2008) found that corporate bond funds generate a positive alpha
on average. Moreover, they find that the performance of bond funds persists; strong
performing bond funds are more likely to do well in the future. They create a portfolio
of ’past winners’ and ’past losers’ and find the alpha of the winner portfolio exceeds
the one of the loser portfolio by more that 3.5 percent per year.

In our study corporate bond funds are investigated, Fama and French (1993) show
that for corporate bond funds and portfolios of corporate bond funds two factors are
enough; one factor that captures interest rate risk (TERM) and one factor that cap-
tures default risk (DEF ). As explained before, many factors in Equation (2.9) and
(2.8) came from empirical observations. It is for example not clear why small firms
perform better than big firms, however it was observed from actual stock returns. The
TERM and DEF factor have a clear economic interpretation. It is clear why they
determine the return of corporate bond funds. This is explained in detail in Section
3.2. As was the case for equity and bond portfolios, these factors can be plugged into
(2.6) to obtain the following time series regression:

Rp,t − rf = αp + βp,TERMTERMt + βp,DEFDEFt + εp,t. (2.9)

The αp in this equation can now be used to estimate the performance of corporate bond
funds. However, this has never been done until now. This study exactly closes this gap
by investigating the performance of corporate bond funds.

A summary of the literature on factor models and performance persistence can be
found in Table 1. In the academic literature, fund performance is usually evaluated by
the constant term in a time series regression, where the return of the funds is regressed

1When an investor buys a bond, it is lending money to a company. The maturity date is the date
at which the company pays off this debt. This will be explained in detail in Section 3.2
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on risk factors. For each fund type these risk factors are different. Performance per-
sistence has been found in the academic literature for bond funds. For equity funds
some papers do find persistence in performance, whereas others do not. Performance
persistence is not yet researched for corporate bond funds. One of the contributions of
this thesis is that we find strong evidence of persistence of corporate bond funds.

Fund Type Factors Persistence in Performance
Equity MKT, SMB, HML, MOM Mixed
Bond DEF, TERM Yes
Corporate Bond DEF, TERM ?

Table 1: Different types of funds require different factor models. This table gives an
overview of the factors used to model returns of various types of funds in the aca-
demic literature, as well as of the performance persistence of various fund types. The
performance persistence of corporate bond funds is not yet investigated in the current
academic literature

Another way in which this thesis contributes to the academic literature is that it
considers several investment strategies to exploit this persistence in performance of
corporate bond funds. An investor can select a fund with a good past performance,
and because performance persists, this fund is likely to perform well in the future too.
However, as Chevalier and Ellison (1997) notice, there are incentives for fund managers
to take excessive risks. Therefore, investing in a single fund might be risky. To reduce
this risk, one can also invest in a portfolio of funds, in the literature this is called a
Fund of Funds (FoF). One strategy often considered in the literature is to invest in a
portfolio of well performing funds and go short a portfolio of under performing funds.
Huij and Verbeek (2007) and Huij and Derwall (2008) show that these strategies can
be profitable for stock and bond funds. A more advanced strategy is proposed by Wolf
and Wunderli (2009). They create a portfolio of all funds with a statistically significant
alpha, i.e. they select all the skilled managers. This is done by estimating the alpha
for each fund s (denoted by αs) and then performing the following hypothesis test for
all s = 1, . . . , S:

H0 : αs ≤ 0 vs. H1 : αs > 0.
Let δ denote the significance level of the statistical test. Then, as Wolf and Wunderli
(2009) notice, by construction of this test, there is an δ% chance of a Type I error
for each test; i.e. for every statistical test there is an δ% chance a fund manager is
incorrectly classified as skilled. Because in total S statistical tests need to be performed,
the chance that at least one fund manager is wrongly classified as skilled is given by

1− P (no type one error) = 1− (1− δ%)S.

Denote the set of managers that are classified as skilled by I, so I = {s : αs > 0}.
If S is as low as 50 and δ = 10%, the probability that the set I is too large (i.e. the
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probability of at least one fund being wrongly classified as skilled) is as high as 99.48%.
One possible solution to this is applying the Bonferroni correction (as introduced by
Bonferroni (1935)), where the significance level of the individual statistical tests would
be adjusted to δ

S
. This correction makes sure that the chance that at least one fund

is wrongly classified as skilled is smaller or equal to δ%. However, the Bonferoni in-
equality is too strict. If it is applied in this context, the set I would be too small. An
algorithm developed by Romano and Wolf (2005) is used to exclude all the fund with
managers that have been wrongly classified as skilled from I, without excluding the
funds with skilled managers. This method is applied on equity funds and it is found
that their portfolio achieves a high return and positive alphas. In this study, we apply
this investment strategy to corporate bond funds and show how investors can make use
of the persistence in performance.
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Chapter 3

The Model

This study is concerned with the performance of corporate bond funds. In order to
compare the performance of fund managers, a method is needed to quantify the perfor-
mance of funds. It was mentioned in Chapter 2 that if the expected return of securities
is influenced by K risk factors, the performance of fund i ∈ 1, . . . , N can be evaluated
by the αi in the following regression

Ri,t − rf = αi +
K∑
k=1

βk,i(Fk,t) + εi,t. (3.1)

Where rf denotes the risk free rate and Fj,t is the return of the j-th risk factor at time
t and εi,t is the error term in the regression. ∑K

j=1 βj,i(Fj,t) is the part of the even-
tual realized return that comes from the exposure to K risk factors, αi is the return
earned in excess of. In this chapter we will mathematically give a mathematical deriva-
tion of this model. In Section 3.3 the alpha is introduced as a performance measure
for portfolios. Afterwards, in Section 3.2, we list all the factors we use in our model.
Finally, in Section 3.5, econometric techniques to estimate Equation (3.1) are discussed.

Before we continue to the mathematical derivation, we will give an economic inter-
pretation of Equation (3.1). It tells us that high returns might not only be the result of
a skilled fund manager, but it can also be the result of exposure to common risk factors.
The part of the retun in (3.1) that should be attributed to the exposure to risk factors
is ∑K

j=1 βj,i(Fj,t). As exposure to risk factors can be achieved by a passive strategy (just
buy an index mimicking the risk factor), this part of the return should therefore not
be attributed to the skill of the fund manager. One can therefore interpret the alpha
as the part of the return that is not explained by exposure to risk factors, but by the
skill of the fund manager.

3.1 Derivation of The Model
Many papers on fund performance just start from Equation (3.1) without giving a
mathematical model, they only present the intuition of this equation as given in the
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introduction of this chapter. In this Chapter, we present a mathematical model in
which we mathematically derive Equation (3.1). In the derivations, we partly rely on
the approach of Cochrane (2005) and that of Back (2010). In our derivations some
standard theorems and notions in mathematical finance are used, such as absence of
arbitrage, the stochastic discount factor and the first theorem of asset pricing. Those
concepts will first be reviewed in subsection 3.1.1. These notions will then be used in
subsection 3.1.2 to formally derive our model of performance of a corporate bond fund.

3.1.1 Basic Concepts in Mathematical Finance
Let (Ω,F ,P) be a probability space. For deriving the model, we assume that there are
only two relevant time instances, t and t+ 1. Let Xt+1 ∈ R be a payoff defined on this
space. Note that Xt is a random variable, more formally Xt+1 is a Borel measurable
function Xt+1 : Ω → R. All random variables we encounter are real valued and are
defined on the same probablity space. This is not explicitely stated in the remainder
of this thesis. The expectation of a random variable Y is denoted by E(Y ). The condi-
tional expectation of a variable Y , given the information available at time t is denoted
by Et(Y ). Hence, Et(Y ) = Et[Y |Ft]. These expectations are under the measure P.

Let pt denote the price of this payoff Xt+1 at time t. The payoff space, the set of
all possible payoffs that investors can obtain is denoted by X, hence Xt+1 ∈ X. We
assume that investors can freely form portfolios to generate new payoffs, i.e.

X1, X2 ∈ X ⇒ aX1 + bX2 ∈ X ∀a, b ∈ R.

We also use the notion of a pricing function, p : X → R, assigning a price to the payoff
Xt+1. Hence pt = p(Xt+1). Hence, if the payoff of a stock at time t+ 1 is given by St+1,
then the price of this stock at time t is given by p(St+1).

The (gross) return of a payoff Xt+1 is defined as:

Rt+1 = Xt+1

pt
.

The return of a risk-free asset is denoted by rf . In the remaining, it is assumed that
rf > 1. In the field of mathematical finance, it is often assumed that the market is
free of arbitrage. This assumption basically tells us that if a portfolio will certainly not
payoff negatively, but might generate a positive payoff, you cannot get this portfolio
for free. More formally:

Definition 1 (Absence of Arbitrage). ∀Xt+1 ∈ X : If Xt+1 ≥ 0 a.s. and P(Xt+1 >
0) > 0 then p(Xt+1) > 0.
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Absence of arbitrage is a very standard assumption in the academic literature. If
an arbitrage opportunity does exist, it normally only exists for a very short time as
many investors will instantly buy such strategy, driving up its price, thereby removing
the arbitrage opportunity. Another standard concept in mathematical finance is the
stochastic discount factor (also referred to as the pricing kernel).

Definition 2 (Stochastic Discount Factor). The stochastic discount factor (SDF) is a
random variable Mt,t+1 such that for any Xt+1 ∈ X the price of this payoff is given by

pt = p(Xt+1) = Et(Mt,t+1Xt+1). (3.2)

Hence, the SDF is a random variable generating prices from payoffs. Note that the
expectation in (3.2) is defined under the measure P. Harrison and Kreps (1979) proved
that the stochastic discount factor always exists in an arbitrage free world. Moreover, he
proved that this variable is positive with probability one. This theorem is so important,
that it has been called the first fundamendal theorem of asset pricing:

Theorem 1 (First Fundamental Theorem of Asset Pricing). Let Xt+1 ∈ X. There
exists an Mt,t+1 > 0 a.s. such that pt = Et(Mt,t+1Xt+1) if and only if there is absence
of arbitrage.

Proof. It easy to proof that the existence of anMt,t+1 > 0 implies no arbitrage. Indeed,
let Xt+1 ≥ 0 a.s. and Xt+1 > 0 for some w ∈ Ω. Then pt = Et(Mt,t+1Xt+1) =∫
w∈Ω:Xt+1>0Mt,t+1Xt+1dP(w) > 0. The reverse part of he proof is lengthy and can be
found in many books. Therefore, we will not prove it here. One can for example refer
to Spreij (2014). Here, a seperating-hyperplane argument is used to prove that the SDF
exist in absense of arbitrage.

Using Theorem 1, it is easy to prove that absence of arbitrage implies that the
pricing function p is linear, this is often called the law of one price:

Theorem 2 (Law of One Price). Assume there is no arbitrage, then ∀X1,t+1, X2,t+1 ∈ X
and ∀a, b ∈ R : p(aX1,t+1 + bX2,t+1) = ap(X1,t+1) + bp(X2,t+1).

Proof. Assume absence of arbitrage. Then by Theorem 1 there exists an M > 0,
such that prices all X ∈ X. Using that X is linear and the linearity of conditional
expectations we have that p(aX1,t+1 + bX2,t+1) = Et(Mt,t+1(aX1,t+1 + bX2,t+1)) =
aEt(Mt,t+1(X1,t+1)) + bEt(Mt,t+1(X2,t+1)) = ap(X1,t+1) + bp(X2,t+1).

Until now, we introduced some basic notions and theorem in mathematical finance.
These notions will be used in the next section to derive APT. The remaining of this
subsection will be used to provide a link between the risk-neutral probability measure
and the stochastic discount factor. Furthermore, we will give an example of a pricing
function to make the above definitions and theorems more clear.

As mentioned earlier, every expectation in this section is defined under the measure
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P. This is not the risk-neutral measure (denoted by P∗), which is frequently used in
mathematical finance (especially in continuous-time finance). The risk-neutral measure
is a probability measure such that the price of each payoff is exactly equal to the dis-
counted expectation of the payoff under this measure. Under the assumption of absense
of arbitrage, it can be proven that such a measure exists. Hence, another version of
Theorem 1 is the following:

Theorem 3 (First Fundamental Theorem of Asset Pricing II). Let Xt+1 ∈ X. There
exists a probability measure P∗, such that pt = 1

rf E∗(Xt+1) if and only if there is absence
of arbitrage.

Proof. Assume absence of arbitrage. Then by Theorem 1, the price of a risk-free payoff
xt+1 is given by

p(xt+1) = Et(Mt,t+1x) = xEt(Mt,t+1).

And thus we have that
rf = xt+1

p(xt+1) = 1
Et(Mt,t+1) . (3.3)

By Theorem 1, the price of a payoff Xt+1 ∈ X is given by

p(Xt+1) = Et(Mt,t+1Xt+1) =
∫
w∈Ω

Mt,t+1(w)Xt+1(w)dP(w|F0)

=
∫
w∈Ω

Mt,t+1(w)
Et(Mt,t+1)Et(Mt,t+1)Xt+1(w)dP(w|F0)

= 1
rf

∫
w∈Ω

Xt+1(w)d Mt,t+1(w)
Et(Mt,t+1)P(w|F0)

= 1
rf

∫
w∈Ω

Xt+1(w)dP∗(w)

= 1
rf

E∗(Xt+1).

And thus P∗(w) = Mt,t+1(w)
Et(Mt,t+1)P(w|F0). It is straightforward to prove that P∗ is a proba-

bility measure. Note that P∗(w) > 0 because Mt,t+1 > 0 almost surely by Theorem 1
and because P(w|F0) > 0. Furthermore we have that∫

w∈Ω
dP∗(w) =

∫
w∈Ω

Mt,t+1(w)
Et(Mt,t+1)dP(w|F0) = 1

Et(Mt,t+1)

∫
w∈Ω

Mt,t+1(w)dP(w|F0) = 1.

Therefore, P∗ is a probability measure. This completes the first part of the proof.

Now assume that there exists a probability measure P∗, such that pt = 1
rf E∗t (Xt+1).

Then, by reversing the derivation above, we have that

pt = 1
rf

E∗t (Xt+1) = Et(Mt,t+1Xt+1).

Then absence of arbitrage follows by Theorem 1.
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The proof of Theorem 3 shows there is a close link between the stochastic dis-
count factor and the risk neutral probability measure. We have that P∗(w|F0) =
Mt,t+1(w)
Et(Mt,t+1)P(w|F0).

In the last part of this section, the concepts that we introduced in this subsection
are used in the conctext of option pricing. The purpose is not to derive the price of
an option, but to use the definitions and theorems introduced in this subsection in a
widely known example. A call option gives an investor the right, but not the obligation,
to buy a stock for a given price K at time t+ 1. Let the price of the underlying stock
at time t be given by St. In this case CO ≡ Xt+1 = (St+1 − K)1(St+1−K>0). Black
and Scholes (1973) developed a pricing function for this payoff. They derived that the
arbitrage free price of a call option is given by

p(CO) = N(d1)St −N(d2)Ke−rf

, (3.4)

d1 = 1
σ

(ln(St
K

) + (rf + σ2

2 )),

d2 = d1 − σ.

Here, σ is the volatity of the underlying stock (normally this is measured by the standard
deviation of this stock) and N(y) =

∫ y
−∞

1
2πe

y2
2 dy the cumlative distribution function of

a standard normal distribution. Note that this function does not depend on the future,
the price of the payoff C can be calculated at time t. Therefore, according to Theorem
1 the price of the call option also should be equal to p(CO) = Et(Mt,t+1C). Cochrane
(2005) derived that p(CO) = Et(Mt,t+1C) is indeed equal to Equation (3.4).

3.1.2 Arbitrage Pricing Theory
Using the framework introduced in 3.1.1, we can now state and prove the model. As
in previous section, there are two relevant time periods, t and t + 1. Furthermore,
there are N basic assets in this economy. The payoffs of these N assets are denoted
by Xi,t+1, i = 1, . . . N . As in Chapter 2, there are k factors influencing the return of
these assets, denoted by Ri,t+1. These factors are bundled in the vector Ft+1, hence
F = [F1,t+1, . . . , FK,t+1]′. These basic assets can be used to form portfolios with weights
[w1, . . . , wN ]. The return of a portfolio p is denoted by Rp,t+1.

Theorem 4 (Arbitrage Pricing Theory). If the following assumptions hold:

1. The returns of a set of assets are generated by the following linear model:

Ri,t+1 = ai +
K∑
k=1

βi,kFk,t+1 + εi,t+1. (3.5)
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where,

E(Ri,t+1), V ar(Ri,t+1) <∞ ∀i (3.6a)
E(εi,t+1) = 0 ∀ i (3.6b)
E(εi,t+1Fk,t+1) = 0 ∀ i, k (3.6c)
εi,t+1 ⊥ εj,t+1 ∀ j 6= i (3.6d)

2. For a portfolio with return Rp,t+1, one of the following holds (or both):

• Rp,t+1 is the return on a well diversified portfolio in a large market.
• V ar(Rp,t+1) = V ar(β′pFt+1).

3. The market is free of arbitrage.

4. No trading costs or taxes.

Then the unconditional expected return of this portfolio, E[Rp,t+1] is given by:

E(Rp,t+1) = rf + β′

pλ, (3.7)

where λ = −rfp(Ft+1 − E(Ft+1)).

Before a mathematical proof of Theorem 4 is given, some economic intuition behind
this theorem is provided. APT’s core assumption is that the return of securities are
determined by three components. A constant term that is specific to each security (ai).
This ai should not be confused with α, the performance measure that was introduced in
Chapter 2. This notation can be somewhat confusing, but it is standard in mathemat-
ical finance. The second component comes from exposure to a few systematic factors
(βi,jFk,t+1, k = 1, . . . , K). The third term are idiosyncratic shocks (εi,t+1) that affect
the return on securities. Every security is influenced by these shocks in a different
manner; hence negative shocks to certain securities can be offset by positive shocks to
other securities. From this statistical characterization of realized returns, APT derives
a mathematical expression for expected returns and prices. APT predicts that idiosyn-
cratic shocks should not be priced as investors can hold portfolios to diversify these
risks away. To achieve this diversification, one must hold a well diversified portfolio or
the factors must explain all the variation in the asset returns (Assumption 2). There-
fore, the price and expected returns of a group of assets should depend on the same
common factors. However, not all assets and portfolios perform identically, because
different assets and portfolios have different sensitivities to these factors, as captured
by the βi,k’s in Equation (3.5).

Proof. We can subtract expectations from both sides of Equation (3.5) to obtain

Ri,t+1 = E(Ri,t+1) +
K∑
j=1

βi,kF̃k,t+1 + εi,t+1, (3.8)
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where F̃k,t+1 = Fk,t+1 − EFk,t+1. Or in vector notation:

Ri,t+1 = E(Ri,t+1) + β′iF̃t+1 + εi,t+1, (3.9)

where F̃t+1 = [F̃1,t+1, F̃2,t+1 . . . , F̃K,t+1]′. and βi = [βi,1, βi,2, . . . , βi,K ]′. Therefore, for a
portfolio [w1, . . . , wN ], the following holds:

Rp,t+1 =
N∑
i=1

wiRi,t+1

=
N∑
i=1

wiE(Ri,t+1) +
N∑
i=1

wiβ
′

iF̃t+1 +
N∑
i=1

wiεi,t+1

= E(Rp,t+1) + β′pF̃t+1 + εp,t+1 (3.10)

Because of Theorem 2 prices can be taken at both sides of Equation (3.10) to obtain1

p(Rp,t+1) = p(E(Rp,t+1) + β′pF̃t+1 + εp,t+1)
= p(E(Rp,t+1)) + p(β′pF̃t+1) + p(εp,t+1)
= E(Rp,t+1)p(1) + β′pp(F̃t+1) + Et(Mt,t+1εp,t+1). (3.11)

The structure of the remaining part of the proof is as follows. First, we prove that for
any Mt,t+1 > 0, Mt,t+1εp,t+1 → 0 under Assumption 2 of Theorem 4, then by continuity
of the pricing function, also p(εp,t+1) = Et(Mt,t+1εp,t+1) → 0 as N → ∞. Afterwards,
E(Rp,t+1)p(1) + β′pp(F̃t+1) is evaluated.

First, assume that V ar(Rp,t+1) = V ar(β′pFt+1). Because of the assumptions (3.6b)
and (3.6c), we also have that

V ar(Rp,t+1) = V ar(β′

pF̃t+1) + V ar(εp,t+1). (3.12)

It follows that V ar(εp,t+1) = 0. Because we assumed E(εi,t+1) = 0 for all i, E(εp,t+1) = 0
too. Hence, we have that εp,t+1 = 0 almost surely. Because 0 < Mt,t+1 < ∞, it must
now be the case that Mt,t+1εp,t+1) = 0.

Now take the return of a well-diversified portfolio in a market where the number of
securities are large (the number of assets having a positive portfolio weight must tend
to infinity to be precise). Let again wi denote the portfolio weight of asset i and let N∗
denote the number of weights in this portfolio that are larger than 0. The variance of
εp,t+1 is now given by

V ar(εp,t+1) = V ar(
N∑
i=1

wiεi,t+1)

=
N∑
i=1

(wi)2V ar(εi,t+1)→ 0 as N∗ →∞. (3.13)

1By p(f̃) we mean [p(f1), p(f2), . . . , p(fn)]′. The notation (even though it is clear), is somewhat
sloppy because p was defined as p : X → R.
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Here we used the independence of εi,t+1 and that V ar(εi,t+1) < ∞. Hence, under As-
sumption 2 of Theorem 4, we have that εp,t+1 → 0. Because 0 < Mt,t+1 < ∞, also
Mt,t+1εp,t+1 → 0 and by the dominated convergence theorem for conditional expecta-
tions it follows that

p(εp,t+1) = Et(Mt,t+1εp,t+1)→ 0 (3.14)
when p is either a diversified portfolio in a large market or the variation in the return
of this portfolio is fully determined by the variation in the factors. This should be no
surprise. When variations in the return of a payoff are fully determined by the variation
in the risk factors, shocks have no influence on this payoff and should therefore not be
priced. Furthermore, idiosyncratic shocks also have no influence on the return of a
large, diversified portfolio as a positive shock to one asset is offset by a negative shock
to another asset.

Therefore, Equation (3.11) can now be reduced to:

p(Rp,t+1) = E(Rp,t+1)p(1) + β′

pp(F̃t+1)
= E(Rp,t+1)Et(M) + β′

pp(F̃t+1). (3.15)

All returns have a price of one, thus the price of Rp,t+1 is also one:

p(Rp,t+1) = p
(

Xp,t+1

p(Xp,t+1)

)
= Et

(
Mt,t+1

Xp,t+1

p(Xp,t+1)

)
= 1
p(Xp,t+1)Et(Mt,t+1Xp,t+1)

= p(Xp,t+1)
p(Xp,t+1) = 1. (3.16)

Furthermore, from Equation (3.3) we get that the risk-free return, rf can be written as

rf = 1
Et(Mt,t+1) . (3.17)

Plugging Equation (3.16) and (3.17) in Equation (3.15) we get that

1 = E(Rp,t+1) 1
rf

+ β′

pp(F̃t+1). (3.18)

Solving for E(Rp,t+1) gives the desired result

ERp,t+1 = rf + β′

p[−r
fp(F̃t+1)]

= rf + β′

pλ, (3.19)

where λ = −rfp(F̃t+1).
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Equation (3.7) will be used to evaluate the performance of bonds. In this equation,
β

′

p is the vector of factor exposures of the bond portfolio and λ is the vector of factor
premiums. Indeed, a small change in the exposure to factor k, dβk, increases the ex-
pected return by dβkλk, ceteris paribus.

As explained in the literature review, in most practical applications of APT, the factors
are taken to be excess returns. Excess returns are the returns of one payoff minus the
return of another payoff. In the Fama-French three factor model for example, the SMB
and HML factor were all constructed as excess returns. Also in this thesis, all the factor
for corporate bonds are excess returns. The next theorem tells us that when factors are
returns, λ = EFt+1. In the proof of the next theorem, we use that the price of excess
returns are zero. Indeed, let Re

t+1 = Ri,t+1 − Rj,t+1 be any excess return. Because
returns have a price of 1; the price of this excess return is

p(Re
t+1) = p(Ri,t+1 −Rj,t+1)

= p(Ri,t+1)− p(Rj,t+1)
= 1− 1 = 0. (3.20)

This result will be used in the proof of the following theorem.

Theorem 5. If the factors are excess returns, then

λ = EFt+1 (3.21)

and hence Equation (3.7) reduces to

ERp,t+1 = rf + β′p(EFt+1). (3.22)

Proof.

λ = −rfp(F̃t+1)
= −rfp(Ft+1 − E(Ft+1))
= −rfp(Ft+1) + rfp(E(Ft+1))
= rfE(Ft+1)p(1)
= rfE(Ft+1)Et(Mt,t+1)
= rfE(Ft+1)Et(Mt,t+1)

= rfE(Ft+1) 1
rf

= EFt+1. (3.23)

In this derivation Theorem 2 was used in the third step. In the fourth step we used that
the prices of excess returns are zero. Plugging Equation (3.23) into Equation (3.19)
yiels Equation (3.22) and completes the proof.
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Because this thesis (as most academic papers) uses excess returns as factors, we
use Equation (3.22) in the remaining part of this work. In this section, there were two
relevant time periods, t and t + 1. Of course, the exact same analysis could also be
done for a two period model with periods t− 1 and t to obtain:2

ERp,t = rf + β′p(EFt). (3.24)

This model will be used in this thesis to describe expected bond returns. The remainder
of this chapter will be devoted to the content of the vector Ft (i.e. we explain which
factors we use to model the return of a corporate bond portfolio) and it is explained
how to fit this model to real life data.

3.2 Factors
In our model, the expected return of a portfolio, Rp,t, depends linearly on several
risk factors. However, this model does not tell us exactly which or how many risk
factors to use. The assumptions of Theorem 4 do give us some clues. Assumption 2 of
Theorem 3.1.2 tells us that in order for Equation (3.24) to hold exactly the following
two conditions must hold:

1. Rp,t+1 is the return on a well diversified portfolio in a large market.

2. V ar(Rp,t+1) = V ar(β′pFt+1), i.e. the variation in the return of the portfolio should
be explained by variation in the factors.

This study is concerned with modeling portfolios of corporate bonds. We will follow
the approach of Fama and French (1993), who use two factors to model the return of
corporate bond portfolios. A term factor (TERM) related to interest rate risk and a
default factor (DEF ) related to default risk.

Corporate bond funds normally hold a broad portfolio of corporate bonds; which is
an enourmous market. Furthermore, in Fama and French (1993) a big econometric
study is performed. They conclude that these two risk factors indeed explain most of
the variation in bond returns. Therefore, both conditions of Assumption 2 of Theo-
rem 4 are likely to hold when we use this two factor model. As a result, it is likely
that Equation (3.24) holds for most portfolios held by bond funds. In this section, an
economical and mathematical explanation is given of why these factors influence bond
returns. Furthermore, it is explained how to construct a proxy for these risk factors
from the data.

To mathematically see why these risk factors influence the returns of corporate bond
2In mathematical finance it is unusual to call two periods in a model t− 1 and t, because it is more

intuitive to call a future period t + 1 and to condition on the information at time t.
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funds, we first give a pricing formula for corporate bonds. Investors buying a corporate
bond at time t are lending money to a company. In return, the company returns the
principal plus a coupon payment at time t+ 1, the maturity date of the bond.3 Denote
the payoff of a bond in time t + 1 by Ct+1. By using Equation (3.2), we get that the
price at time t of a corporate bond is given by

pt = p(Ct+1)
= Et(Mt,t+1Ct+1)
= Et(Mt,t+1)Et(Ct+1) + Cov(Mt,t+1, Ct+1)

= 1
rf

Et(Ct+1) + Cov(Mt,t+1, Ct+1). (3.25)

In the last step, Equation (3.17) was used. Note that if the payoff is certain (i.e. no
default risk), the covariance term in this equation drops out and we are left with a more
familiar pricing equation for corporate bonds:

pt = Ct+1

rf
.

The risk of default decreases Et(Ct+1) as there will be a probability that the company
cannot fully fulfill its obligations. Therefore, it is clear from Equation (3.25) that a
higher default rate risk will decrease the price of a corporate bond. This is to be ex-
pected, as investors require a higher return for a higher risk.

Higher interest rates increase rf , which in turn leads to a decrease of pt. The eco-
nomic reasoning behind the inverse relation of interest rates and corporate bond prices
is the following: if interest rates are higher, other economic products become more
attractive (for example saving accounts). This drives down the demand for corporate
bonds and thus the price of bonds will be lower.

It is clear by now that the risk of changing interest rates and the default probabil-
ity have an influence on the return of corporate bonds and thereby on the return of
corporate bond funds. As explained before, the factors need to capture the extra return
investors require for taking those risks. Therefore, the TERM factor should capture
the extra return investors require for exposure to interest rate risk and the DEF fac-
tor should capture the extra return investors require for exposure to default risk. The
construction of such factors is widely documented in the academic literature (see for
example Fama and French (1992) and Fama and French (1993)). The most common
method to construct a factor (say Fk), is to find two portfolios which are influenced
differently by this factor Fk, but are influenced in the same manner by the other factors.
The difference in the returns of these two portfolios should be caused by the difference
in exposure to this factor.

3The analysis in this section can also be done in a multi-period model, where a corporate bond
makes multiple coupon payments over time. This analysis can be found in Appendix A
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As an estimate for the TERM factor, the difference between the monthly return on
a portfolio of long term government bonds and the return on a portfolio of monthly
government bonds is used. Government bonds are bonds with the lowest default proba-
bility and therefore are hardly influenced by default risk. However, they are differently
affected by the TERM factor. The economic reasoning behind this is that the longer
the bond’s maturity, the more time there is for the interest rate to change and thereby
affect the return of a bond. To compensate for this, long term bonds offer a higher
return than short term bonds of the same credit quality. As government bonds are rel-
atively riskless, the difference in the return is not a compensation for default risk. The
most used proxy for the default risk term is difference between a portfolio of long term
risky bonds and a portfolio of long term government bond. It is important that both
portfolios contain bonds with the same maturity. Then, the difference in the returns
of these two portfolios is not caused by exposure to the TERM factor. A detailed ex-
planation of the construction of these factors can be found in Fama and French (1992).
Note that both factors are defined in terms of excess returns; the return of one portfolio
over another.

The proxy for the term structure risk is denoted by TERM and the proxy for de-
fault risk is denoted by DEF . Plugging these variables in Equation (3.24) gives us the
following:

E(Rp,t) = rf + βp,TERME(TERMt) + βp,DEFE(DEFt). (3.26)

This has become the most used factor model for the returns of portfolios of corporate
bonds in the literature. In this section, we argued that the second assumption of
Theorem 4. In the next section, it is explained how to use this model to measure the
performance of corporate bond funds.

3.3 Using the model to measure performance
In this chapter, an expression of the expectation of the return on securities was formally
derived. In this section it is explained how this expectation can be used to define a
performance measure of a portfolio, called the alpha of a portfolio. In this section, it is
assumed that there are S corporate bond funds in our economy.

In the previous sections, it was explained that the expected return from a portfolio
comes from the exposure to two risk factors, TERM and DEF . Note that the deriva-
tion of the model, does not depend on the specific time instances t and t + 1. The
derivation could be done for any two subsequent period in t ∈ [0, . . . , T ]. Therefore, for
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the return of a corporate bond fund s ∈ [0, . . . , S], the following holds:

E(Rs,1)
...

E(Rs,t)
...

E(Rs,T )

 =



rf

...
rf

...
rf

+ βs,TERM



E(TERM1)
...

E(TERMt)
...

E(TERMT )

+ βs,DEF



E(DEF1)
...

E(DEFt)
...

E(DEFT )

 . (3.27)

From (3.27) it can be seen that if one wants to estimate the βs of a portfolio s, one can
collect data of realized returns of this portfolio and run the following regression:

Rs,t − rf = αs + βTERM,sTERMt + βDEF,sDEFt + εs,t, t = 1, . . . , T. (3.28)

Or in vector notation:

Rs,1 − rf
...

Rs,t − rf
...

Rs,T − rf

 = αs



1
...
1
...
1

+ βs,TERM



TERM1
...

TERMt
...

TERMT

+ βs,DEF



DEF1
...

DEFt
...

DEFT

+



εs,1
...
εs,t
...
εs,T

 (3.29)

It is however not the β, but the αs in Equation (3.29) where we are most interested
in. This is because this αs is a performance measure for corporate bond fund s. The
idea of alpha is that if a fund manager manages to capture a return in addition to the
return gained from exposure to these risk factors, this can be attributed to the skill of
the fund manager. Hence, this alpha indicates how the portfolio performed after taking
into account the risk involved:

• αs > 0: portfolio s has obtained a return in excess of the reward for the risk it
took

• αs = 0: portfolio s has obtained a return that is adaquate for the risk taken

• αs < 0: portfolio s has obtained a return that is too little for the risk it took

This also explains why alpha is the most popular performance measure in the academic
literature. One can easily boost ones return by investing bonds with a high default
probability (junk bonds) or bonds that are prone to interest rate risk, thereby increasing
its β. But this should off course not be accounted to the skill of manager. A good fund
manager manages to obtain a high return without investing in an overly risky portfolio.

3.4 Estimation of The Model
In this chapter, we came up with our final model. Of course, to put this model into
practice, it needs to be fitted to the data. This paragraph is concerned with the
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estimation of Equation (3.29), or more general with the estimation of equations of the
form

Yt = βtXt + εt, t = 1, . . . T (3.30)
where Yt and Xt are defined on (Ω,F ,P). From Equation (3.29) it follows that in
our case Yt = Rs,t and Xt = [1, TERMt, DEFt]. However, the proofs in this chapter
hold for all equations of the form Yt = βtXt + εt. The goal is to prove that the OLS
estimator is consistent under some assumptions. In usual proofs, one assumes that
Xt is independent and stationary over time. In our case however, the assumption of
independence is not reasonable to make. The default probabily in a certain period is
very unlikely to be completely independent of the default probability in the past. News
that a certain company might default can lead to this company having troubles to find
investors in the near future, leading to an even higher probability of default. Instead,
we assume our variables to be ergodic. A process is said to be ergodic, if after averaging
it is asymptotically independent. In the first part of this section, an important result
in ergodic theory is derived. Later we use this result to prove that the OLS estimator
is indeed consistent when we assume ergodicity.

In the first part of this section, the approach of Dajani and Dirksin (2008) is followed.
From this section onwards it is assumed that Xt stationary and ergodic. A stationary
stochastic process defined on this space is a series of random variables X = {Xt, t ∈ N}
taking values in (X,X ) for which the joint distribution of (Xt1 , . . . ,Xtk) is the same as
that of (Xt1+t, . . . ,Xtk+t) for any k ≥ 1 and t, t1, . . . , tk ∈ N. To derive our limiting re-
sult it is convenient to model our stochastic process as a dynamical system (Ω̃,B,Q, T ),
where Ω̃ = XN and B = X⊗N . Furthermore, T : Ω̃ → Ω̃ is the left shift operator, i.e.
if ω̃ ∈ Ω̃ is a sequence (ω̃1, ω̃2, . . .), then T (ω̃1, ω̃2, . . .) = (ω̃2, ω̃3, . . .). Note that by
the Kolmogorov Existence Theorem, one can indeed construct a measure Q on the
countable product space XN for which

Q(A) = P((X1, X2, X3 . . .) ∈ A).

Furthermore, the following theorem tells us that the stationary stochastic process
Xt, t ∈ N is equivalent to the measure preserving dynamical system (Ω̃,B,Q, T ).

Theorem 6. Let (Ω̃,B,Q, T ) be a dynamical system as defined above. The forward
shift T is measure preserverving with respect to Q if and only if Xt is a stationary
process on (Ω,F ,P).

Proof. Assume Xt is stationary. Now for all A ∈ B

Q(T−1(A)) = Q((T−1(X̃1, X̃2, . . .)) ∈ A)
= Q((X̃2, X̃3, . . .) ∈ A)
= P((X2, X3, . . .) ∈ A)
= P((X1, X2, . . .) ∈ A)
= Q(A).
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And hence T is measure preserving with respect to Q.
Conversely, let (Ω̃,B,Q, T ) be a measure preserving dynamical system. Let Y : Ω̃→ X.
Then the stochastic process defined as {Y ◦ T t : t ∈ N} is stationary. Indeed, for every
k and t, t1, . . . , tk ∈ N and cylinder A ∈ X⊗k we have

Q((Y ◦ T t1+t, . . . , Y ◦ T tk+t) ∈ A) = Q(((Y ◦ T t1 , . . . , Y ◦ T tk) ◦ T t) ∈ A)
= Q((Y ◦ T t1 , . . . , Y ◦ T tk) ∈ A).

Hence, this process is stationary.

We are now ready to give the definition of an ergodic process. A process is ergodic
if

Definition 3 (Ergodicity). A measure preserving dynamical system (Ω̃,B,Q, T ) is er-
godic if and only if for two events A,B ∈ X

lim
n→∞

1
n

n∑
k=1

Q(T kA ∩B) = Q(A)Q(B). (3.31)

A stochastic process {Xt, t ∈ N} is called ergodic if the corresponding dynamical system
(Ω̃,B,Q, T ) is ergodic.

Heuristically, a process is called ergodic when after averaging, it is assymptotically
independent. This is of course a much weaker assumption to make than independence.
It is not likely that the default probability of tomorrow is independent of the default
probability today. It is much more likely that, after averaging, the default probability
far in the future is independent of today’s default probability. Now, an important
theorem is stated that will be used in the second part of this section

Theorem 7. Let {Xt, t ∈ N} on (Ω,F ,P) be an stationary and ergodic process with
E[Xt] = µ <∞. Then

1
T

T∑
t=1

Xt
a.s.−−→ µ. (3.32)

Proof. As shown before, this stochastic process is equivalent to the dynamical system
(Ω̃,B,Q, T ), where T is the shift operator. By Theorem 6, stationarity of {Xt, t ∈ N}
implies T is measure preserving with respect to Q. Furthermore, as T is assumed to
be ergodic with respect to Q, The Ergodic Theorem (Birkhoff (1931)) now tells us that
for the following holds almost surely:

lim
k→∞

1
k

t=k−1∑
t=0

X̃ ◦ T t =
∫

Ω̃
X̃dQ = µ. (3.33)

Hence, for the stochastic process {Xt, t ∈ N}, Equation (3.32) holds.
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Now, we are ready to state the assumptions under which the OLS time estimator
is consistent and prove this consistency of the OLS estimator. The proof is similar to
other proofs of consistency of the OLS estimator, only where in those proofs the law of
large numbers is applied, the ergodic theorem is applied in our proof.

Theorem 8. Let Yt = Xtβ + εt, t = 1 . . . T , where Xt is a K-dimensional vector of
regressors, β is a vector of coefficients and εt is an unobservable error term. Then the
OLS estimator is consistent under the following assumptions.

1. The K dymensional process {Xt, t ∈ N} is stationary and ergodic.

2. E(Xtkεt) = 0 for all i and k = 1, 2, . . . K.

3. The matrix ΣXX := E[XtX′t] is nonsingular.

This assumption of ergodicity is much weaker than the usual textbook assumption
that Xt is an independent series of random variables. Note that the second assumption
is actually already present in our financial model, see Assumption 3.6c. The proof of
the previous theorem is very simple. It just follows standard proofs of consistency of
the OLS estimator (see for example Wooldridge (2013)), but in stead of The Law of
Large Numbers, The Ergodic Theorem is used.

Proof. Denote Y = [Y1, . . . , YT ]′, X = [1, [X1, . . .XT ]′] and ε = [ε1, . . . , εT ]′. It is widely
known that the OLS estimator is given by β̂ = (XX)−1X′Y and thus we obtain that

β̂ − β = (X′X)−1X′(Xβ + ε)− β
= (X′X)−1X′ε

= ( 1
T

T∑
t=1

XtX′t)−1( 1
T

T∑
t=1

Xtεt).

As we assumed Xt to be ergodic stationary, XtXt is ergodic stationary too. Therefore
by the Ergodic Theorem ( 1

T

∑T
t=1 XtX′t)

a.s.−−→ ΣXX . This matrix is nonsingular by
assumption, so it follows that ( 1

T

∑T
t=1 XtX′t)−1 a.s.−−→ Σ−1

XX by the continuous mapping
theorem. Similarly 1

T

∑T
t=1 Xtεt

a.s.−−→ E(Xtεt) = 0 by assumption. Hence β̂ a.s.−−→ β.

In order to perform T-tests, we need more than consistency. It is also necessary
that β̂ is asymptotically normal. In order to prove asymptotic normality, we use the
ergodic stationary martingale difference CLT by Billingsley (1961). He proved that if
gt is a martingale difference sequence that is stationary and ergodic with E(gtg

′
t) = S,

then
1√
T

T∑
t=1

gt
d−→ N(0,S). (3.34)

Proving asymptotic normality of the estimator is straightforward using this result.
First, define gt ≡ Xtεt.
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Theorem 9. Assume that

1. The assumptions of Theorem 8 hold.

2. gt is a martingale difference sequence and the matrix E(gtgt) is non sigular.

Then when T →∞ we have that
√
T (β̂ − β) d−→ N(0,Σ−1

XXSΣ−1
XX), (3.35)

where S = E(gtg
′
t).

Proof. Let ḡ ≡ 1
T

∑T
t=1 gt. In the proof of Theorem 8 it was derived that β̂ − β =

( 1
T

∑T
t=1 XtX′t)−1ḡ. Multiplying both sides with

√
T gives us

√
T (β̂ − β) = ( 1

T

T∑
t=1

XtX′t)−1(
√
T ḡ). (3.36)

As gt is asummed to be a martingale difference series, we have that
√
T ḡ d−→ N(0,S)

by the ergodic stationary martingale difference CLT. Therefore, by Slutzky’s theorem
we have that

√
T (β̂ − β) d−→ N(0,Σ−1

XXS(Σ−1
XX)′). As ΣXX is symmetric, this is equal

to Equation (3.35).

Hence, the estimotor has a normal distribution in the limit. This defends the use of
T-tests to test whether a certain coefficient is statistically different from zero.

3.5 Asymptotics
In this chapter, our model was mathematically derived. In the derivation of the mathe-
matical model, one assumption was that Rp,t is the return of a well diversified portfolio
in a large market. To be precise, it was necessary that N∗ → ∞, where N∗ are the
number of assets in the portfolio. Of course, this also means that the number of assets
in our economy needs to tend to infinity; N →∞. Furthermore, it was shown that the
parameters of this model can be consistently estimated using ordinary least squares.
To consistently estimate the model, it was necessary that T → ∞. The goal of this
section is to shortly discuss these assumptions.

The assumption that N∗ → ∞ was made, such that Et(Mt,t+1εp,t+1) → 0. The in-
tuition why this holds is in line with our earlier discussion. The term Et(Mt,t+1εp,t+1) is
the price of ideosyncratic risk. In a large portfolio, this type of risk can be diversified
away; if an investor holds enough assets, negative shocks to one asset are offset by posi-
tive shocks to other assets. Therefore, this type of risk should not be priced. Corporate
bond funds normally use very large portfolios of corporate bonds and therefore, this
assumption is likely to hold in our case (see also Fama and French (1993)).
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The assumption that T →∞ is not necessary for our model to hold. If T is finite,
the expected return on a portfolio is still given by Equation (3.24) as long as the as-
sumptions of Theorem 4 are satisfied. The goal of this thesis is to estimate the alpha
of corporate bond funds and this must be estimated from real life data. Here, the data
consists of the return of a portfolio of corporate bonds over a period of time. The
number of parameters we want to estimate in the model is 3 (αs, βs,TERM and βs,DEF ).
Hence the minimum number of observations to theoretically estimate the model is 4.
However, using such a small sample might lead to imprecise estimates. The condition
that T →∞ ensures that we have enough data to consistently estimate the model.

There is not an exact answer to how big T exactly should be, but the bigger the
dataset, the more precise the estimate. However, in reality, sample sizes are rarely
determined by scientific goals; many datasets are still limited in size. Also datasets
of fund returns are limited in size. There are many reasons for this; some funds are
relatively new and therefore do not have such a long return history, other funds do not
report their results and some funds shut down. In the fund performance literature, one
normally uses a minimum of 2 years of monthly data (see for example Huij and Derwall
(2008)). Also in this thesis, a minimum sample size of 24 months is used to estimate
the alpha of individual funds.
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Chapter 4

Data

In this study, performance of bonds is measured by the αs in Equation (3.28). How-
ever, to actually run this regression, we must obtain the variables Rs,t, Rf , TERMt and
DEFt from actual data. This data is obtained from various databases. In this section,
the data we use is described.

This study is the first study on fund performance that fully utilizes the two largest mu-
tual fund databases; the CRSP mutual fund database and the Morningstar database.
Both databases report monthly gross total returns of a large number of share classes
in the United States and Europe.1 Besides the monthly returns, also data on fund size
and fund expenses are included in these databases. Brown et al. (1992) warns that
many datasets suffer from a survivorship-bias. This is a bias that arises when datasets
do not include defunct funds and therefore average performance measures are too high
(the reason for many funds to go defunct is because they are not successfull). However,
as our datasets also include defunct funds, our data is without survivorship-bias. We
use return data over the period 1999 to 2014.

All shareclasses that CRSP and morningstar classify as corporate bond mutual funds
are selected and combined into one dataset. Double entries arising from this merging
of dataset are of course removed. Afterwards, we take the size weighted average over
the shareclasses belonging to one fund in order to get the fund return. In total, we
are left with 2156 funds over the period 1999-2014. Afterwards, funds with less than
24 observations are deleted. Also, funds with an R2 lower that 0.6 in the time series
regression 3.26 are removed from the dataset. This is because corporate bond returns
are highly influenced by these two factors. If the R2 of a certain fund is low, it is very
likely that this fund is investing in other securities than corporate bonds and therefore
wrongly classified as corporate bond fund. Excluding funds with a low R2 is common in

1Many funds offer different kind of shares, known as share classes. Each shareclass invests in the
same securities. But each class has different kind of distribution arrangement and fees. Investors
that invest a big sum of money might for example pay lower management fees. By offering different
shareclasses of the same fund an investor can choose the fee and structure that fits their goals best.
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2156 fundsCRSP 4425
shareclasses

Morningstar
2600 shareclasses

1434 funds

1150 funds

Exclude funds with:
-fewer than 24 observations

-R2 < 0.4

Exclude funds which are not clas-
sified as corporate by Bloomberg

Figure 1: Overview of the data selection process.

the academic literature (see for example Huij and Derwall (2008)). However, we found
that, even after excluding funds with a low R2, still many funds were wrongly classified
as corporate bond fund. To battle this issue, we further filtered the dataset by linking
our data to the Bloomberg database. Those funds that are not classified as Corporate
by Bloomberg are removed from the sample. In the end, we are left with 1150 corporate
bond funds. A scemetic overview of the data selection process can be found in Figure 1.

Our dataset consists of funds that invest in corporate bonds traded in the United
Stated (US funds) and funds that invest in corporate bonds traded in Europe (EU
funds). It is common in the academic liteture to analyze US funds and EU funds seper-
ately because they operate on different markets and therefore their risk factors are also
different. We also make a distinction between Investment Grade funds (IG) and High
Yield funds (HY). High Yield funds are funds that mainly invest in high risk bonds
wheras Investment Grade funds invest in bonds that are considered to be somewhat
safer. It is a market convention to treat these market segments as two different asset
classes. This can be seen from the availability of market indexes, which normally cover
either Investment Grade or High Yield. Also in the academic literature this segmenta-
tion is made. Evidence that High Yield funds and Investment Grade funds are indeed
different asset classes can be found in Chen et al. (2014). Therefore, as is normally
done in academic literature, we perform our analysis for four different subsets; Euro-
pean Investment Grade funds (EUIG), European High Yield funds (EUHY), American
Investment Grade funds (USIG) and American High Yield funds (USHY).
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As explained in the previous section, the TERM factor is usually calculated as the
return on a long term government bond over a monthly government bond. In this
thesis, the TERM is calculated as the return over the U.S. Barclays 7-10 year index
minus the one month treasury bill return. This return is obtained from the website
of Fama-French.2 The DEF factor is calculated as the difference between a portfolio
of long term corporate bonds minus the long term government bond return. As the
risk free rate we take the one month treasury bill rate from Ibbotson Associates, again
obtained from the Fama French website.

Our dataset contains data of 1150 corporate bond funds, of which 372 are EUIG funds,
158 are EUHY funds, 248 are USIG funds and 372 are USHY funds. Figure 2 plots
the sample size over time of our different subsamples. It can be seen that in 1999,
our sample size is not that large yet, this is especially the case for EUIG and EUHY
funds. But along with the rising popularity of corporate bond funds, our sample size
grows over time. At the end of 2013, every subsample contains a decent amount of funds.

Figure 2: Sample Size over time

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Chapter 5

Performance of Corporate Bond
Funds

The goal of this chapter is to answer the first research question: How do corporate bond
funds perform on average? As explained in the previous sections, performance of funds
will be measured by the alpha of a fund. Therefore, we investigate if corporate bond
funds can generate a positive alpha on average. If this is the case, the average corporate
bond fund obtained a return in excess of the reward for the risk it took and this then
suggest corporate bond funds are a valuable investment instruments. Furthermore, it is
also investigated how many percent of the corporate bond funds managed to generate
a significantly positive alpha.

In order to tell something about the average performance of corporate bond funds,
the average alpha in each of our four universes is calculated. Hence, we run Regres-
sion (3.26) for each fund s, to obtain α̂s for every s. Then, if a universe contains
S funds, the average alpha is simply given by α̂ = ∑S

s=1 α̂s. Table 2 reports the av-
erage annualized alpha, excess return and sharpe ratio for each of our four subsamples.

Excess Return Sharpe Ratio α̂

EUIG 2.07 0.67 0.16%

EUHY 3.72 0.39 -0.07%

USIG 3.61 0.70 0.58%

USHY 4.77 0.65 -0.06%

Table 2: Average performance measures for each subsample are shown. Averages are
taken over the funds. Sharpe ratio, alpha and return are all annualized.
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Table 2 shows that the average excess return for each subsample is positive. The
average alpha in both investment grade universes are positive, whereas the average al-
pha in both high yield universes are negative. Therefore, the average investment grade
fund obtained a reward in excess of the risk they took, whereas the average high yield
fund obtained a return that is too small for the risk they took.

The average alpha tells us about the average performance of of corporate bond funds.
However, it does not tell the whole story. Even if the average alpha is negative for the
high yield universes, it is still possible that within these universes there are many funds
that obtained a positive alpha. The ratio of funds that obtained a positive alpha is
shown in Table 3. This table also shows the ratio of alphas that are significant at the
95% confidence level. In other words, these are the funds for which the p-value of the
α was smaller than 0.05.

% α > 0 % pα < 0.05
EUIG 0.72 0.56

EUHY 0.64 0.56

USIG 0.76 0.58

USHY 0.62 0.44

Table 3: The fraction of funds that obtained a positive alpha over the sample period
is reported in the first column. The last column reports the fraction of funds that
obtained a significantly positive alpha

From this table it can be seen that in every universe, a large percentage of the funds
managed to obtain a positive alpha. This result is especially interesting in the light of
next chapter. In the next chapter we show that performance of corporate bond funds
persists. In other words; funds that did well in the past, continue to do well in the future.

The above analysis was concerned with the performance of funds over the whole sample
period. Now, the average performance for each year is investigated seperately. To do
this, we first estimate alpha over each year seperately for each fund. Afterwards, the
cross-section average is taken to obtain the average alpha for each of the 12 years in our
dataset. More precisely, every december, Equation (3.26) is estimated using the data
of that year. Therefore, for tk = {tk|k = 1, . . . , 12}, we run the following regression

Rs,t − rf = αs,k + βs,TERMTERMt + βs,DEFDEFt + εs,t t = tk − 11, . . . , tk. (5.1)
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for each fund s = 1, . . . S. Where αs,k is the alpha of fund i over year k. Then the
average alpha over year k is given by α̂k = ∑N

s=1 α̂s,k. In Figure 3 the average yearly
alpha is plotted for the EUIG and EUHY funds. Figure 4 shows the yearly alpha for
the USIG and USHY universes.

Figure 3: Annualized Alpha per year for the EU universe

Figure 4: Annualized Alpha per year for the US universe

It can be seen that on average, the investment grade funds performed better than the
high yield funds in most of the years, which is in line with our earlier results. Fur-
thermore, it can be seen that US funds performed poorest in 2008, during the financial
crisis. The EU funds performed bad in 2009. Investment grade funds performed the
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best after the 2008 financial crisis, wheras high yield funds performed well in 2003.

This chapter investigated the performance of corporate bond funds. New insights on
the performance of corporate bond funds were found. First of all, the average alpha
of investment grade funds is positive for both EU and US funds. A negative average
alpha was found for the USHY and EUHY universes. However, in all universes, a large
fraction of the funds managed to obtain an alpha significantly greater than 0. This
means that all our subsamples include funds that on obtained a positive risk adjusted
return.
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Chapter 6

Persistency of Corporate Bond
Funds

In this section the persistency of bond funds is investigated. Simply put, are past
winners also future winners? This question is important for several reasons. First
of all, this is the most important method in literature to investigate whether fund
managers possess superior bond picking skill. However, untill now this is mostly done
for stock mutual funds, not for corporate bond funds. From an investor’s point of
view this question is also interesting; if persistency in bond fund performance is found,
an investment strategy based on buying past winners and selling past losers can be a
profitable strategy.

The structure of this chapter is as follows. In Section 6.1 the statistical tests we use
to test for persistency are described. In Section 6.2 the empirical results of these tests
are discussed.

6.1 Persistency Tests
In this study, three statistical methods to test for persistency are used; a Fama MacBeth
regression, a Chisquare test and a method that ranks funds according to past perfor-
mance. All these methods are famous statistical methods that are frequently used in
fund performance studies. However, there is no consensus which of these is the best
method for testing performance persistence. In all the methods an evaluation period
and a post-evaluation period are used. We basically ask the question if the performance
in the evaluation period can predict the performance in the post-evaluation period, i.e.
if past performance can predict future performance.

The first method we use to test for persistency in performance is a Fama MacBeth
regression. This method was first suggested by Fama and MacBeth (1973). First, for
each fund s, a measure of recent performance is calculated at every time period t. As a
measure of recent performance of fund s at time t, the alpha over the last 24 months is
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used. This 24-month alpha at time t is denoted by α24
s,t. Afterwards, it is investigated

if α24
s,t is correlated with α24

s,t+1, i.e. if good (bad) past performance in correlated with
good (bad) future performance.

To be more precise, at each point of time t = 24, . . . , T , the following regression equation
is estimated by OLS:

Rs,u − rf = α24
s,t + βs,TERMTERMu + βs,DEFDEFu + εs,u, u = t− 24, . . . , t (6.1)

for each fund s = 1, . . . , S. The OLS estimate of α24
s,t is denoted by α̂24

s,t. Now we are
interested in estimating the β1 in the following regression

α̂24
s,t = β0 + β1α̂

24
s,t−1 + εs,t (6.2)

for s = 1, . . . , S and t = 24, . . . , T . Note that, as is common in panal data estimation,
the β1 is the same for each fund s. A positive β1 indicates that a high alpha in the
previous period generally lead to a high alpha in the current period and that low alphas
in the previous period are likely to be followed by a low alpha in the current period.
Therefore, if the performance of bond fund managers is indeed persistent, we expect a
significantly positive β1.

Fama and MacBeth (1973) suggest a two step procedure to estimate this β1. First,
Regression (6.2) is estimated at each t ≥ 24. Hence, T − 23 cross-sectional regressions
are estimated to obtain βt for every t ≥ 24 and then the average of these estimates
is taken as an estimator of the β1 in Regression 6.2. Therefore, the Fama MacBeth
estimator, β̂FM is given by

β̂FM = 1
T

T∑
t=24

β̂t = 1
T

T∑
t=24

(X′tXt)−1(X′tYt), (6.3)

where Yt = [α̂s,t, . . . , α̂S,t]′ and Xt = [α̂s,t−1, . . . , α̂S,t−1]′. Fama and MacBeth (1973)
prove that this estimator is consistent and asymptotically normal under mild regularity
conditions. Hence, a simple T-test can be used to statistically test if β1 > 0.

The second method used to test for persistency are contingency tables. Based on
their alpha relative to the median, funds are assigned to one of the following cells in
a two-by-two contingency table: past winner/future winner , past winner/future loser,
past loser/future winner, past loser/future loser. A fund is a past (future) winner if its
alpha in the preceding (subsequent) year is above the median. A fund is a past (future)
loser if its alpha in the preceding (subsequent) year is below the median.
Let pWW , pWL, pLW , pLL denote the probability of each cell, NWW , NWL, NLW , NLL

denote the number observations in each cell and N the total number of observations.
We are interested in testing the following hypotheses:

H0 : pWW = pWL = pLW = pLL = 0.25 vs. H1 : H0 is not true.
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It can be proven (see for example section 2.5 of van der Vaart (1995)) that under the
H0

C2 = (NWW − 0.25N)2 + (NWL − 0.25N)2 + (NLW − 0.25N)2 + (NLL − 0.25N)2

0.25N
(6.4)

has a χ2 distribution with 3 degrees of freedom. The null hypothesis is rejected for
high values of C2. Therefore, high values of the test statistic indicates persistence in
performance of corporate bond funds.

Our third method was first described by Hendricksson and Merton (1981). It has
become the most widely used method to check for performance persistence. We form
mutually exclusive portfolios based on past performance and evaluate the return of
these portfolios over an evaluation period. Every month, we seperate our 4 universes
of funds into quintiles, using the fund’s alpha over the last 24 months.
Hence, at every time period t ≥ 24, α̂24

s,t is calculated by estimating Equation (6.1) for
each fund s. Afterwards, the funds are ranked based on their α̂24

s,t and divided into
five equal groups. Therefore, the top quintile consists of the 20 percent top performing
funds over the last 24 months. All the portfolios are equally weighted and if a fund
disappears the weights are adjusted. After one month, at time t+ 1, the portfolios are
sold and new quintile portfolios are constructed based on α̂24

s,t+1, the 24-month alpha at
time t+ 1. This is repeated until time T − 1. The portfolios formed at time T − 1 are
sold at time T .
In this way, 5 dynamic portfolios are obtained, which are each updated every month.
These 5 portfolios can then be evaluated by calculating their average return, sharpe
ratio and alpha. If corporate bond funds indeed display persistence in performance,
then the alpha, return and sharpe ratio of the quintile portfolios should be decreasing
over the quintile portfolios.

6.2 Empirical Results
In this section, the results of the empirical tests described in the previous section are
reported. Table 4 reports the Fama MacBeth estimators for all universes. It shows
the relation between past and future alphas as in Equation (6.2). The corresponding
t-values are reported in brackets. The slope coefficient of the full sample is 0.19 with
a t-statistic of 2.99 and is therefore statistically significant at the 1% level. This indi-
cates that there exists a positive association between past and future performance of
corporate bond funds.
The analysis is also performed for different subsets of corporate bond funds. We see
that the observed results are the same. For every universe, a positive slope coefficent
is found. Moreover, all these coefficients are statistically significant at the 1% level.
Hence, our Fama MacBeth regressions indicate that there exists a strong positive cor-
relation between past and future performance.
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α̂ β̂FM R2

All funds 1.12 0.19*** 0.09
(0.20) (2.99)

EUIG 1.02 0.28*** 0.07
(0.40) (3.23)

EUHY 0.50 0.17*** 0.03
(0.08) (3.40)

USIG 2.84 0.23*** 0.20
(0.96) (2.63)

USHY 0.71 0.21*** 0.07
(0.18) (3.67)

***p < 0.01, **p < 0.05, *p < 0.1

Table 4: Fama MacBeth regressions

Table 5 presents the contingency tables for the complete sample and the four differ-
ent subsamples considered in this study. Columns 2 to 5 represent the fraction of the
observations in a certain subsample that is assigned to the corresponding cell. For ex-
ample, 28% of the overall funds are in the LL cell. Furthermore, the C2 test statistic
(calculated as in Equation (6.4)) and its P-value are reported.
The null hypothesis, which as explained in Section 6.1 indicates no relation between
past and future performance, is strongly rejected for the full sample and for each sub-
sample. Our results thus provide clear evidence of a relation between past and future
performance. From Table 5 it can be seen that a significant portion of funds that are
classified as losers (winners) in the past are also classified as losers (winners) in the
future.
Also when contingency tables are used, strong evidence is found in favor of persistence
in performance of corporate bond funds.

LL LW WL WW C2 P-value

All Funds 0.28 0.22 0.22 0.28 8391.00*** 0.000
EUIG 0.28 0.22 0.22 0.29 38.48*** 0.000
EUHY 0.29 0.22 0.22 0.28 16.93*** 0.001
USIG 0.28 0.22 0.21 0.29 43.58*** 0.000
USHY 0.28 0.22 0.23 0.28 36.54*** 0.000

***p < 0.01, **p < 0.05, *p < 0.1

Table 5: Contingency tables
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Our final analysis concerns sorting funds into quintile portfolios based on their alpha
over the last 2 years. In this way, 5 portfolios are created which are updated each month
as described in Section 6.1. Table 6 presents the post-ranking performance of the five
portfolios for each of our subsets. It displayes the yearly return and the annualized
Sharpe ratio. Furthermore, the yearly alphas and T-statistics are shown (these are ob-
tained by running regression Equation (3.26) on the returns of the quintile portfolios).
For completeness, βTERM and βDEF are also displayed.

One important observation is that we find positive alphas for about half of the portfo-
lios. Investment Grade funds do particularly well; in the USIG subsample, 4 out of 5
portfolios earn positive and statistically significant alphas. The USIG quintile portfolios
perform worst, 4 out of 5 quintile portfolios earn negative alphas. However, only one of
these alphas is significantly smaller than 0 at the 10% level. This further strengthens
our finding that many corporate bond funds are earning a positive risk adjusted return.
This is consistent with our findings in Chapter 5, where we found that over 60% of the
funds earn a positive alpha in each of our 4 universes.

Another striking observation is that the out of sample performance of the quintile
portfolios decreases almost monotonically over the quintiles. No matter if this per-
formance is measured by yearly return, annualized Sharpe Ratio or yearly alpha, the
top quintile portfolio performs better than the bottom portfolio and the decrease is
surprisingly monotonical for each of the samples. This is very strong evidence in favor
of persistence in performance of corporate bond funds. Winners of the past continue
to perform well in the future and past losers continue to underperform in the future.

There is no clear pattern in factor loadings across the quintile portfolios. It seems
however that for successful funds, the exposure to the TERM factor is lower. An ex-
ception is the top portfolio in the USHY universe. For the EUHY universe, better
performing funds have less exposure to both the TERM factor and the DEF factor,
but the top quintile portfolios in other universes load quite strongly on the DEF factor.
In short, the results reported in Table 6 strongly indicate persistence in performance.
Although the sensitivities to the factors vary from one quintile to another, the general
pattern is that for more successfull funds, the exposure to the TERM factor is lower.

We experimented with different portfolio formation periods and holding periods. Fur-
thermore, we also made portfolios by sorting on return and Sharpe ratio. The results
for these different settings remain similar; an almost monotonic decrease in performance
is found over the quintile portfolios. To save space, these results are not reported here,
but these can be requested if one is interested.
In this section, our second research question was answered. We used three statistical
methods to analyze persistency of corporate bond funds and no matter which method
was used, strong evidence of persistence in performance was found.
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Excess Return Sharpe Ratio α̂ T(α̂) β̂TERM β̂DEF

EUIG D1 2.67% 0.77 0.76% 2.87 0.74 1.09
D2 2.54% 0.70 0.17% 1.08 0.84 1.00
D3 2.69% 0.74 0.35% 2.08 0.83 1.00
D4 2.46% 0.63 0.01% 0.04 0.86 1.06
D5 1.97% 0.37 -0.58% -0.98 0.81 1.47

EUHY D1 5.28% 0.55 1.03% 1.12 0.43 0.69
D2 4.49% 0.44 0.16% 0.14 0.41 0.72
D3 4.01% 0.40 -0.24% -0.30 0.37 0.72
D4 4.41% 0.41 -0.50% -0.77 0.56 0.78
D5 3.68% 0.32 -1.73% -2.37 0.66 0.85

USIG D1 4.23% 0.83 1.44% 2.74 0.75 1.04
D2 3.75% 0.77 0.97% 3.55 0.80 0.77
D3 3.50% 0.76 0.64% 3.00 0.82 0.81
D4 3.42% 0.76 0.62% 3.01 0.87 0.81
D5 3.23% 0.62 0.08% 0.26 0.90 0.91

USHY D1 4.14% 0.82 0.09% 0.19 1.19 0.44
D2 3.60% 0.83 -0.01% -0.02 1.13 0.33
D3 3.77% 0.82 -0.01% -0.03 1.18 0.34
D4 3.79% 0.77 -0.11% -0.17 1.20 0.36
D5 3.35% 0.61 -1.00% -1.45 1.30 0.45

***p < 0.01, **p < 0.05, *p < 0.1

Table 6: Running portfolios, alpha’s and returns are reported in percentage per year.
Sharpe ratio is also annualized.
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Chapter 7

Investment Strategies

In Chapter 5 and Chapter 6, the performance of corporate bond funds was analyzed.
It was found that many corporate bond funds are able to earn a positive risk adjusted
return. Furthermore, it was found that this performance is persistent. Past recent per-
formance of fund s at time t is again measured by α̂24

s,t, as given by the constant term
in Regression (6.1). The previous chapter suggests that it might be a good strategy to
invest in bond funds with a high α̂24

s,t at time t. In this chapter the performance of four
of such strategies are investigated.

The first strategy we investigate is investing in the fund with the highest α̂24
s,t at time

t. As performance is shown to persist, we expect that this fund continues to do well in
the future. Investing in a single fund however brings along some risks, even if the past
performance of this fund is good. The return of this investment depends on the choices
of a single portfolio manager. This manager is only human and might make mistakes.
A fund can also change manager. This new manager might not have such a good track
record.
Hence, investment strategies which consists of holding a portfolio of funds have become
increasingly popular. Therefore, this chapter also suggests three investment strategies
that invest in a portfolio of funds, rather than in a single fund. The first strategy is one
that goes long in the top quintile portfolio and goes short in the bottom quintile port-
folio. The second and third strategy both invest in funds with a significantly positive
alpha over the last 24 months.

7.1 Strategy 1: Highest Alpha Fund
In Chapter 6, strong evidence of persistence of corporate bond funds was found. Funds
with a high alpha over the last two year, continued to do well over the next month.
If an investor faces the task of selecting one corporate bond fund based on its past
track record, a logical choice would therefore be to select the fund with the highest
alpha over the last two years. The investment strategy in this section selects the fund
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with the highest α̂24
s,t for each t, t ≥ 24 (to estimate this alpha, a minimum of 24 past

observations are necessary). We invest It > 0 in this fund and hold this fund for one
month. Denote the return of this highest alpha strategy over month t as RHA

t . At
time t+ 1, the fund is sold for ItRHA

t and an amount of It+1 > 0 is invested in the the
fund with the highest 24-month alpha at time t + 1. We continue doing so untill time
T − 1. To be precise, this investment strategy consists of the following steps for each t,
t = 24, . . . , T − 1:

• Calculate α̂24
s,t for each fund s = 1, . . . , S.

• Invest It > 0 in the fund with the highest α̂24
s,t.

• Sell this fund at time t+ 1 (for a price of ItRHA
t ).

Notice that for this strategy, an investor needs to invest an amount It at every t.
Some investors might prefer a self-financing strategy (a strategy that needs no infu-
sion or withdrawal of money after the initial investment). To do so, one can just put
It = ∏t

u=1 I24R
HA
u . However, as our performance measures are not defined in absolute

terms, the exact value of It does not influence the result (as long as It > 0).

Excess Return Std. Dev. Sharpe Ratio α̂

EUIG 3.54% 2.34% 0.44 1.77%

EUHY 4.46% 3.31% 0.39 0.19%

USIG 5.74% 2.15% 0.77 2.93%

USHY 5.51% 2.53% 0.63 2.00%

Table 7: Average performance measures for each subsample are shown. Averages are
taken over the funds. Sharpe ratio, alpha and return are all annualized.

This strategy is tested with our own data and Table 7 displays the annualized av-
erage excess return, the standard deviation of the return, annualized Sharpe ratio and
the annualized alpha for this strategy. In every subsample, a positive alpha is obtained.
Furthermore, if we compare the alphas of this strategy with the results in Table 6, it
can be seen that, except for the EUIG universe, the α of this highest alpha portfolio
surpasses the α of the top quintile portfolio.

The investment strategy of the this section picks only one fund out of the universe
of corporate bond funds. However, as explained in the introduction of this chapter, this

47



can be somewhat risky. This can also be seen from the results in Table 7; the standard
deviation of the return is large, which leads to a Sharpe ratio that is lower than for
example the Sharpe ratio of the top quintile portfolios in Table 6. One can reduce risk
by investing in a portfolio of funds. In the remainder of this chapter, we discuss three
strategies that invest in a diversified portfolio of funds.

7.2 Strategy 2: Top Minus Bottom Portfolios
In Chapter 6 funds were placed in quintile portfolios based on their 24-month alpha.
It was found that the funds in the top quintile continue to outperform funds in the
bottom quintile. The investment strategy proposed in this section exploits this find-
ing by buying the funds in the top portfolio and selling the funds in the bottom portfolio.

This strategy buys an equally weighted portfolio of the funds in the top quintile and
finances this by going short in an equally weighted portfolio of the funds in the bottom
quintile. If the funds in the top quintile keep outperforming the funds in the bottom
quintile, one can obtain a profit. Just as in the previous chapter, at each point of
time t funds are divided into quintile portfolios based on their 24-month alpha at this
point of time, α̂24

s,t. We denote the number of funds in the top quintile at time t with
NT
t and the number of funds in the bottom quintile at time t with NB

t . NT
t and NB

t

are not necessarily equal when the total number of funds cannot be divided by 5. At
every point in time t ≥ 24, we invest It

NT
t

in each fund in the top portfolio and − It

NL
t
in

every fund in the bottom portfolio. The total costs of this portfolio is thus zero. This
portfolio is sold at time t + 1. In summary, this investment strategy consists of the
following steps for each t, t = 24, . . . , T − 1:

• Calculate α̂24
s,t for each fund s = 1, . . . , S.

• Rank funds by α̂24
s,t and divide the funds into quintile portfolios based on this

ranking.

• Invest It

NT
t
in every fund in the top portfolio and − It

NL
t
in every fund in the bottom

portfolio.

• The portfolio is sold at time t+ 1.

This strategy is again tested on our own data. The results are found in Table 8. As
can be seen from Table 8, this strategy leads to a positive alpha in all our four universes.
Comparing this to the results to the results from the highest alpha strategy in Table
7, we see that the highest alpha strategy leads to better alphas, except for the EUHY
universe. The reason that this strategy performs so well for EUHY funds is because
there is a large difference in performance between the top and bottom portfolio, as can
be seen from Table 6.
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Excess Return Std. Dev. Sharpe Ratio α̂

EUIG 1.00% 0.71% 0.40 1.34%

EUHY 1.60% 0.98% 0.47 2.77%

USIG 1.01% 0.84% 0.35 1.35%

USHY 0.80% 0.65% 0.35 1.10%

Table 8: Average performance measures for each subsample are shown. Averages are
taken over the funds. Sharpe ratio, alpha and return are all annualized.

Although this strategy performs very well, there is one serious disadvantage of this
strategy. It is not always possible to short sell a fund and if it is possible there might
be some serious transaction costs involved in doing so. These costs of course have a
negative impact on the return and alpha of this strategy. The next two strategies do
not have these shortcomings.

7.3 Strategy 3: Positive Alpha Portfolios
In this section, two investment strategies are proposed that select all the well-performing
funds over the last 24 months. As it was shown in Chapter 6 that performance persists,
it is expected that this portfolio of funds will continue to do well in the future. A fund
manager of fund s is considered well-performing if it obtained a positive alpha over the
last 24 months.

At every time period t, we want to select all corporate bond funds with a positive
α24
s,t. Of course, α24

s,t is not observed directly, but is estimated by α̂24
s,t. A positive es-

timated alpha does not necessarily correspond to a positive actual alpha. Therefore,
only the funds with a statistically significant alpha are selected. To be more precise, at
every t = 24, . . . , T , the following hypothesis test is performed for every fund s:

H0 : α24
s,t ≤ 0 vs. H1 : α24

s,t > 0. (7.1)

Therefore, at every time period t, one calculates the t-statistic for each fund. If the
t-statistic is bigger than a critical value chosen by the investor, the fund is included in
the portfolio. The critical value, which we denote by d, is chosen to limit the chance of
a Type I error. Hence, at every time period t, a fund manager is classified as skilled if

ts,t =
α̂24
s,t

σ̂s,t
> d. (7.2)
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The set of funds that are classified as well-performing at time t is denoted by It. Hence,

It = {s : ts,t =
α̂24
s,t

σ̂s,t
> d}. (7.3)

A famous result in statistics is that, when H0 is true, the test statistic follows a T
distribution with v degrees of freedom, where v is the number of observations in the
regression minus the amount of explanatory variables. Therefore, in our case ts,t has a
T-distribution with 24 − 3 de degrees of freedom. For now, d is set to be t21,0.90, the
90-th quantile of the T -distribution with 21 degrees of freedom. Hence, for each fund,
there is a 10% chance of wrongly rejecting H0. The number of funds in It is denoted by
N I
t . This leads to an investment strategy with the following steps at time t = 24, . . . , T :

• Calculate ts,t = α̂24
s,t

σ̂s,t
for each fund s.

• Invest It

NI
t
in every fund in It, i.e. in every fund for which ts,t > t21,0.90.

• The portfolio is sold at time t+ 1.

As before, this investment strategy can easily be turned into a self-financing strategy
by setting It = ∏t

u=1 I24R
PA
u , where RPA

u is the return of this Positive Alpha Portfolio
at time u. This strategy is applied on our data. The results can be found in Table 9.

Excess Return Std. Dev. Sharpe Ratio α̂

EUIG 2.27% 1.02% 0.76 0.48%

EUHY 5.03% 2.78% 0.52 0.89%

USIG 3.82% 1.44% 0.77 0.85%

USHY 5.12% 2.22% 0.67 1.05%

Table 9: Average performance measures for each subsample are shown. Averages are
taken over the funds. Sharpe ratio, alpha and return are all annualized.

As can be seen from Table 9, this investment strategy results in a positive alpha for
each subsample. However, the obtained alphas are lower than those from the Highest
Alpha Portfolio and from the Top Minus Bottom Portfolio, i.e. the alphas reported in
Table 7 and in Table 8.

In the remainder of this section, a method is introduced to improve upon this Posi-
tive Alpha Portfolio. This method is called the Family-Wise Error approach and is
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introduced by Wolf and Wunderli (2009). As noted in Chapter 2, there is a chance
that unskilled managers are classified as skilled by chance. For each hypothesis test
performed, this chance of a Type I error is as small as 10%. However, when performing
multiple hypothesis tests, the chance of falsely rejecting one H0 increases. Because at
every time period t, t ≥ 24, testing problem (7.1) is performed for each fund s, there
is a big probability that some unskilled managers are wrongly classified as skilled. Our
EUIG universe contains for example over 300 funds in 2013. Therefore, the chance that
at least one manager is incorrectly classified as skilled in 2013 in this universe is almost
1:

1− P (no type one error) = 1− (0.9)300 ≈ 1.
Let F denote the number of tests for which the H0 is wrongly rejected. The familywise
error rate (FWE) is defined as the probability of wrongly rejecting at least one H0, i.e.
the probability of classifying one or more unskilled fund manager as skilled:

FWE ≡ P (F > 0) = P (Reject at least one H0 while H0 is true). (7.4)

The goal of the FWE-approach is not to control the chance of falsely rejecting the H0
of an individual test, but to control the chance that at least one H0 gets falsely rejected
instead. In other words, the goal of this approach is to make individual decisions about
each testing problem (7.1), while controling for the FWE.

Hence, we again calculate t∗s,t for each fund s as in Equation (7.2), but the d is now
chosen such that

FWE ≤ δ. (7.5)
By controlling this FWE, we control the probability that even one unskilled fund man-
ager gets classified as skilled. Therefore, with a high probability, our portfolio will only
contain skilled managers.

There are many ways to accomplish Equation (7.5). One could for example set δ =∞,
such that no fund manager is classified as skilled. Another method is to apply a Bonfer-
roni correction. These methods are too strict; too few fund managers would be classified
as skilled. Naturally, we would like to select as many genuinely skilled managers as pos-
sible, i.e. we want to determine d in such a way that the power of the test is as high as
possible. Romano and Wolf (2005) show that the ideal value of d is given by the 1− δ
quantile of

max
s=1,...,S

α̂24
s,t − α24

s,t

σ̂s,t
. (7.6)

The distribution of this random variable is however not known. Therefore, this value of
d needs to be estimated. A consistent estimator of d can be obtained by the bootstrap
method. This value, denoted by d̂ is obtained as the 1 − δ quantile of the following
random variable

max
s=1,...,S

α̂24,∗
s,t − α̂24

s,t

σ̂∗s,t
. (7.7)
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Here, α̂24,∗
s,t and σ̂∗s,t denote the bootstrap estimators of α24

s,t and σs,t respectively. Romano
and Wolf (2005) prove that by setting d̂ as in Equation (7.7)

lim sup
T→∞

FWE ≤ δ.

However, simulation studies by Romano and Wolf (2005) and Romano, Shaikh, and
Wolf (2008) show that the FWE is also controlled well for practically relevant sample
sizes. How the bootstrap method exactly works in case of regression models is described
in Appendix B. In this study, we use δ = 10%.

Therefore, this investment strategy has the following step at time t = 24, . . . , T :

• Calculate ts,t = α̂24
s,t

σ̂s,t
for each fund s.

• Calculate d̂ as in Equation (7.7) by the bootstrap method.

• Invest It

NI
t
in every fund in It, i.e. in every fund for which ts,t > d̂.

• The portfolio is sold at time t+ 1.

Again, by setting It = ∏t
u=1 I24R

FWE
u , where RFWE

u is the return of this Familywise
Error Portfolio at time u, this strategy becomes self-financing. This strategy is applied
on our data, the results can be found in Table 10.

Excess Return Std. Dev. Sharpe Ratio α̂

EUIG 2.86% 0.93% 0.90 0.85%

EUHY 5.37% 2.68% 0.57 1.42%

USIG 3.86% 1.46 % 0.76 0.88%

USHY 5.22% 2.21% 0.68 1.17%

Table 10: Average performance measures for each subsample are shown. Averages are
taken over the funds. Sharpe ratio, alpha and return are all annualized.

As can be seen from Table 10, the Familywise Error Portfolio leads to positive al-
phas in all our four universes. Furthermore, when comparing these results with the
results of our Positive Alpha Portfolio (see Table 9), it can be seen that the Familwise
Error Portfolio generates higher returns, higher Sharpe ratios and higher alphas. These
results therefore indicate that the Familywise Error approach indeeds improves upon
the Positive Alpha approach. The returns and alphas of the Familywise Error strategy
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are not as high as those of the Highest Alpha strategy (as reported in Table 7). How-
ever, the standard deviation of the returns are much lower for the Familywise Error
strategy, leading to higher Sharpe ratios.
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Chapter 8

Conclusion

Despite the enormous size of the corporate bond fund market, research on the per-
formance of corporate bond funds is almost non-existent. In this thesis, a rigorous
investigation into the performance of corporate bond funds is provided. The perfor-
mance of funds is measured by the alpha of a fund, which is defined as the excess
return of what a two factor equilibrium model would predict. Although this way of
measuring performance is nothing new, this thesis provides a rigorous mathematical
derivation of this two factor equilibrium model. The alpha is then estmited by utilizing
a large dataset of both European and American corporate bond funds over the period
1999-2013.

We find that the average alpha of funds is positive for investment grade funds, but
negative for high yield funds. However, even though the average alpha of high yield
funds is negative, we show that many high yield funds are still able to obtain a positive
alpha. This indicates that corporate bond funds are valuable investment vehicles that
earn a high return for the risk they take.

Furthermore, strong evidence of performance persistence of corporate bond funds is
found. Three statistical methods are used to investigate persistence in performance
and all of these methods consistently show that future performance can be predicted
by past performance. Corporate bond funds with a strong performance record continue
to perform well in the subsequent period, whereas funds with a poor performance record,
repeat their poor performance in the following period. This persistence in performance
is found in all of our four subsamples. This persistence in performance indicates that
there exist professional fund managers with superior bond selecting skill.

Finally, three investment strategies were introduced that exploit this relation between
past and future returns. All these investment strategies earn a high risk adjusted re-
turn. Therefore, investors can earn money by investing in corporate bond funds that
report strong past performance.
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Appendix A

A pricing formula for corporate
bonds in a multi-period economy

In Section 3.2, the price of a corporate bond fund was derived in a one period economy.
It is possible to generalize this result for a multi-period economy. Let (Ω,F ,P) be a
probability space and Ft is the filtration at time t, where t = 0, . . . , T .

In this multi-period setting, the issuer of a corporate bond pays a sum of money to
the buyer of a bond in every period t until the bond matures. The payment the com-
pany makes to the investor at time t is denoted by Ct. At the maturity date, T , the
company also pays back the principal. The payments Therefore CT consists of a coupon
and a principal. We are interested at pricing the bond at t = 0. At t = 1, the company
makes the first payment to the investor.

The risk free rate, rf is again defined as the return on a risk free payoff after one
period. Hence, if currently t = 0, then the risk free rate is the return on a risk free
payoff at t = 1, X1 = x. It is again assumed that rf > 1. Furthermore, p(Xt) denotes
the price of payoff Xt at t = 0. In this multi-period setting, the definition of arbitrage
and the stochastic discount factor must be adjusted to this multi-period setting. The
idea of both concepts remains the same.

Definition 4 (Absence of Arbitrage in a Multi-Period Economy). Let X = (X1, . . . , XT )
be a stream of payoffs. If there exists at least one t∗ ∈ [1, . . . T ] for which, Xt∗ ≥ 0 a.s.
and P(Xt∗ > 0) > 0 and for all other t 6= t∗ it holds that Xt∗ = 0 a.s., then it must be
the case that p(Xt) > 0.

Absense of arbitrate tells us that there is no free lunch; one can’t make money out
of nothing.

The first fundamental theorem of asset pricing tells us that there exists a stochastic
discount factor pricing this payoff if and only if there is absense of arbitrage.
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Theorem 10 (First Fundamental Theorem of Asset Pricing). Let Xt be a payoff at
time t ∈ (1, . . . T ). Then there exists a random variable M0,t > 0 a.s. such that

p(Xt) = E0(M0,tXt) (A.1)

if and only if there is absence of arbitrage. This random variable M0,t is called the
stochastic discount factor.

The proof of the multi-period version of the First Fundamental Theorem of Asset
pricing can be found in Föllmer and Schied (2011). The authors furthermore show that
this pricing formula is a gain linear, i.e. if Xt is a payoff at time t and Xt∗ is a payoff
at time t∗, then p(Xt +Xt∗) = p(Xt) + p(Xt∗).

By using Equation (A.1), we get that the price of a payoff of a corporate bond at
time t is given by p(Ct) = E0(M0,tCt) and by using the linearity of the pricing function
it is obtained that the price of a bond at t = 0 is given by the sum of the price of its
payoffs:

p(
T∑
t=1

Ct) =
T∑
t=1

p(Ct)

=
T∑
t=1

E0(M0,tCt)

=
T∑
t=1

E0[(M0,t)]E0[(Ct)] +
T∑
t=1

[Cov0(M0,t, Ct)], (A.2)

where it was used that for two random variables X and Y , E[XY ] = E[X]E[Y ] +
Cov(X, Y ). To rewrite this equation in a way such that the effect of interest rate risk
on the bond price becomes more clear, the following theorem is used:

Theorem 11. Let 1 < k ≤ T . If the market is free of arbitrage

E0[M0,k] =
[

1
rf

]k
(A.3)

Proof. This is proven by induction. For k = 1 it is true (see Equation (3.17)). Now

assume E0[M0,k] =
[

1
rf

]k
holds for all k. We show it will also hold for k + 1. Consider

two strategies:

• At time 0, buy a product that pays 1 at time k + 1 with certainty.

• At time k, buy a product that pays 1 at time k + 1 with certainty. This product
costst 1

rf at time k. Finance this by buying a product at time 0 with a certain
payoff of 1

rf at time k.
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Both strategies have a certain payoff of 1 at time k+ 1. Therefore, they must have the
same price by the law of one price. The price of strategy 1 is E0[M0,k+1]. The price of

strategy 2 is E0[M0,k] 1
rf =

[
1
rf

]k
1
rf . Hence E0[M0,k+1] = 1

rf

k+1.

Therefore, we can rewrite the bond price as

pt =
T∑
t=1

[
1
rf

]t
E0(Ct) +

T∑
t=1

[Cov0(M0,t, Ct)]. (A.4)

Note that if the payoff is certain, i.e. no default risk, the covariance term in this
equation drops out and we are left with a more familiar pricing equation for bonds:

pt =
T∑
t=1

( 1
rf

)t
Ct. (A.5)

The influence of the term structure risk and the risk of default remains the same as in
Section 3.2. Indeed, if the other variables in (A.5) remain unchanged, an increase in
the probability that a company will default lowers E0(Ct) and the price of the bond
will also drop. In a similar way, an increasing interest rate leads to a decrease in

(
1
rf

)
,

thereby decreasing the price of the bond.
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Appendix B

Bootstrapping Regression Models

Bootstrapping is an approach to estimate the distribution of a statistic. The bootstrap
method is based on building a sampling distribution for a statistic by resampling from
the original data. The method was first introduced by Efron (1979). In the bootstrap
method, one uses the sample data as a population from which samples are drawn.

Suppose that S = {Y1, . . . , YN} is a sample from a population P = {y1, . . . , yP}, where
P > N . Furthermore, suppose that we are interested in a statistic T = t(S) as an
estimate of θ = t(P). The traditional approach in statistics is to make assumptions
about the population structure, for example by assuming the population follows a cer-
tain distribution, and then to use these assumptions to estimate the distribution of T .
If the distribution of T cannot be derived, the traditional approach is to try to derive
its asymptotic distribution.

The bootstrap method allows us to estimate the sample distribution of T without
making assumptions of the underlying population. This is done by drawing a sample
of size NB from the sample S with replacement. The resulting bootstrap sample is
denoted by S∗. This sampling procedure is repeated B times and the bth boothstrap
sample is denoted by S∗b . Then, for each bootstrap sample, the statistic T is computed;
T ∗b = t(S∗b). Then, the distribution of T ∗b around T is analogous to the sampling distri-
bution of the estimator T around θ. For example, let G(t) = P(T ≤ t) denote the CDF
of T . Then the bootstrap estimation of G is given by

Ĝ∗(t) = 1
B

B∑
b=1

I(T ∗b ≤ t), (B.1)

where I is the indicator function.

In Section 7.3, we want to use the bootstrap method in a regression framework. In
this framework, we have the following relation for each Yi, i ∈ {1, . . . , N}:

Yi = a+ β′Xi + εi (B.2)
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From this sample, we want to generate a bootstrap sample S∗ = {Y ∗1 , . . . , Y ∗N}. There
are many procedures to generate such a bootstrap sample. Almost all procedures start
with calculating the fitted values, Ŷ = [Ŷ1, . . . , ŶN ]′, from the model, i.e.

Ŷi = âi + β̂′xi, (B.3)

where âi and β̂ are the OLS estimates of ai and β respectively. We sample NB values
with replacement from Ŷ to obtain Ŷ∗ = [Ŷ ∗1 , . . . , Ŷ ∗NB ]′ .

Adding a random error term to each Ŷi produces a bootstrap sample. The errors could
be generated from a normal distribution if we assume our errors are IID. However, as
discussed in Section 3.5, this is not appropriate in our case. Therefore, errors are sam-
pled from the estimated residuals from the original regression. Hence, from our vector
of estimated residuals ε̂ = [ε̂1, . . . , ε̂N ]′, a random sample of NB estimated residuals is
taken. This sample is denoted by ε̂ = [ε̂1, . . . , ε̂NB ]′ Then, the bootstrapped values can
be calculated as

Y ∗i = Ŷ ∗i + ε̂i (B.4)

for i = 1, . . . , NB.
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Appendix C

Matlab Code

function out2 = FactorRegression(Data, Settings, returns)
T = length(Data.Dates);
X = ones(T,1);
for f=1:length(Settings.FACTORS)

X = [X Data.(Settings.FACTORS{f})’];
end

% conduct regression per return series
for n=1:size(returns, 1)

Y = returns(n,:)’;

if Settings.WINDOW == 0
select = ~isnan(Y) & ~any(isnan(X),2);
if sum(select) < Settings.MIN_OBS

continue;
end
out(n,1) = nwest(Y(select), X(select,:), Settings.NR_LAGS);

else
for t=(Settings.WINDOW+1):T

Y2 = Y(t-Settings.WINDOW+1:t);
X2 = X(t-Settings.WINDOW+1:t, :);
select = ~isnan(Y2) & ~any(isnan(X2),2);
if sum(select) < Settings.MIN_OBS

continue;
end
out(n,t) = nwest(Y2(select), X2(select,:), Settings.NR_LAGS);

end
end

end
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fields = setdiff(fieldnames(out), {’meth’, ’y’, ’yhat’, ’resid’, ’covbeta’});
for f=1:length(fields)

for t=1:size(out,2)
for n=1:size(out,1)

values = [out(n,t).(fields{f})];
if isempty(values)

continue;
end
out2.(fields{f})(n,t,:) = values;

end
end

end

end

function [Results]=AlphaPortfolio(Data,Settings,GrossReturn,Startdate,s,k)
%Startdate is the date from which you want the Evaluation to begin.
%k is the number of portfolios. For quintile portfolios, k=5.
Settings.WINDOW=s;
if s==0 | s>24

Settings.MIN_OBS=24;
else

Settings.MIN_OBS=s;
end;

StartDate=datenum(Startdate);

if StartDate<datenum(Data.Dates(1))
StartDatenum=1;

else
StartDatenum=find(Data.Dates==StartDate);
end
HelpStart=StartDatenum+s-1;
out2=FactorRegression2(Data,Settings,GrossReturn);
Alpha=out2.beta(:,(HelpStart:end),1)*10000;
GrossReturn=GrossReturn(:,(HelpStart:end));
N=size(Alpha);
O=length(Data.Dates);
AlphaPortReturn=NaN(k,O);
for i=1:(N(2)-1)

Alpha1=Alpha(:,(i));
Alpha2=Alpha1;
AlphaIndex=(1:length(Alpha1))’;
AlphaIndex(Alpha1==0)=[];
Alpha1(Alpha1==0)=[];
F = ceil(k * tiedrank2(Alpha1) / length(Alpha1));
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for j=1:k
AlphaBuckets{j,i}=AlphaIndex(F==k+1-j);
AlphaExposures{j,i}=Alpha2(AlphaIndex(F==k+1-j));
AlphaPortReturn(j,HelpStart+i)=nanmean(GrossReturn([AlphaBuckets{j,(i)}],(i+1)));
end

end
[QuantileResults,HMLresults]=PortfolioEvaluation(Data,Settings,AlphaPortReturn,k);
Results.QuantileResults=QuantileResults;
Results.HMLresults=HMLresults;
end

function [Results]=SignificantAlphaPortfolio(Data,Settings,GrossReturn,Startdate,s)
%Startdate is the date from which you want the Evaluation to begin.
Settings.WINDOW=s;
if s==0 | s>24

Settings.MIN_OBS=24;
else

Settings.MIN_OBS=s;
end;

StartDate=datenum(Startdate);

if StartDate<datenum(Data.Dates(1))
StartDatenum=1;

else
StartDatenum=find(Data.Dates==StartDate);
end
HelpStart=StartDatenum+s-1;
out2=FactorRegression2(Data,Settings,GrossReturn);
tstatmatrix=out2.tstat(:,(HelpStart:end),1);
GrossReturn=GrossReturn(:,(HelpStart:end));
N=size(tstatmatrix);
B=[1:N(1)]’;
O=length(Data.Dates);
Critvalue=tinv(0.90,21)
TstatPortReturn=NaN(1,O);
for i=1:(N(2)-1)

tstatvector=tstatmatrix(:,(i));
tstatfunds=tstatvector>Critvalue;
C=B(tstatfunds);
%TstatPortReturn(1,HelpStart+i)=nanmean(GrossReturn(tstatfunds,(i+1)));
TstatPortReturn(1,HelpStart+i)=nanmean(GrossReturn(C,(i+1)));
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end
ReturnsPort=nanmean(TstatPortReturn,2);
YearlyReturns=ReturnsPort*12;
StdPort=nanstd(TstatPortReturn,0,2);
Settings.WINDOW=0;
SharpRat=sqrt(12)*ReturnsPort./StdPort;

outport=FactorRegression2(Data, Settings, TstatPortReturn);
alphaout=outport.beta(:,:,1)*100*12;
termout=outport.beta(:,:,2);
defout=outport.beta(:,:,3);
tstatout=outport.tstat(:,:,1);

Results=[YearlyReturns,StdPort,SharpRat,alphaout,tstatout, termout, defout];
end
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