
UNIVERSITEIT UTRECHT

MASTER THESIS

Credit risk modeling using a weighted
support vector machine

Author:
Jesper DE GROOT

Supervisor:
Prof. Dr. Jason FRANK

Dr. Diederik FOKKEMA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in MATHEMATICS

at the

Mathematical Institute

combined with an internship at

September 23, 2016

Keywords: machine learning, stochastic gradient descent, support vector
machine, weighted support vector machine, credit risk modeling, probability

of default

http://www.uu.nl
http://www.jamessmith.com
http://www.jamessmith.com
http://www.uu.nl/en/organisation/mathematical-institute

iii

UNIVERSITEIT UTRECHT

Abstract
Faculty Name

Mathematical Institute

Master of Science in MATHEMATICS

Credit risk modeling using a weighted support vector machine

by Jesper DE GROOT

The modeling of credit risk is traditionally based on approaches such as linear regres-
sion or multiple discriminant analysis. There are several limitations to these methods,
in particular their inability to adapt to new data and the assumption of a certain (linear)
relation between the dependent and independent variables. In this thesis we will use a
new machine learning technique called weighted support vector machine combined with
averaged stochastic gradient descent. Using this approach, we create a classification of a
data set containing mortgage loans of Freddie Mac into several groups with increas-
ing probabilities of default. This method shows promising results, both in terms of
predictive and discriminatory power, especially when information about the monthly
performance of these loans and the macro-economic situation is included. If the per-
formance on other data sets is similar, the technique can be implemented for credit risk
modeling.

HTTP://WWW.UU.NL
http://faculty.university.com
http://www.uu.nl/en/organisation/mathematical-institute

v

Acknowledgements
At first, I would like to thank my project advisor Prof. Dr. Jason Frank of the Depart-
ment of Mathematics at the Utrecht University for his continuous support and valuable
comments to my master thesis.

My sincere thanks also goes to Dr. Diederik Fokkema, who was my daily advisor at
EY and provided me the opportunity to join the FS Risk management team as an in-
tern. I thank my EY colleagues, who really gave me some helpful insights and made
my internship a perfect time.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem definition . 3
1.2 Set-up of this thesis . 4

2 Credit risk regulation and modeling 5
2.1 Financial terms . 5
2.2 Regulations regarding credit risk and credit risk modeling 7
2.3 Traditional credit rating approaches . 8
2.4 Multivariate credit scoring models . 9
2.5 Summary . 12

3 Data properties 13
3.1 Properties of the data set . 13
3.2 Variables . 14
3.3 Conversion of variables . 17
3.4 Selection of variables . 17
3.5 Data quality . 22

4 Support vector machines 23
4.1 Definition of machine learning . 23
4.2 Set-up . 24
4.3 Primal and dual problem . 28
4.4 Extensions . 32
4.5 Summary . 32

5 Gradient descent techniques 33
5.1 Introduction of the gradient descent algorithm 33
5.2 Convergence of the gradient descent algorithm 35
5.3 Subgradient descent . 39
5.4 Stochastic (sub)gradient descent . 41
5.5 Summary . 44

6 Weighted SVM and averaged SGD 47
6.1 Weighted SVM . 47
6.2 Convergence of averaged SGD . 52
6.3 Summary . 58

viii

7 Model development, results and testing 59
7.1 Model development . 59
7.2 Performance measure . 60
7.3 Results for a single model . 63
7.4 Overall results . 69
7.5 Comparison with other models . 73

8 Conclusion 75
8.1 Opportunities . 76

Bibliography 77

A Optimization Theory 81
A.1 Duality principle . 81
A.2 Convex optimization . 82
A.3 Farkas Lemma . 83
A.4 Strong Duality Theorem . 86
A.5 Convex dual problem . 87
A.6 Karush-Kuhn-Tucker Theorem . 87

ix

List of Figures

1.1 U.S. Household debt to GDP ratio . 1
1.2 Number of mortgages and average credit score in FHLMC data set (yearly

observations) . 2
1.3 Default percentages of FHLMC data set and U.S. mortgage delinquency

rate (yearly observations) . 3

2.1 Schematic illustration of multiple discriminant analysis 11

3.1 CDFs of Student’s t-distributions with different degrees of freedom ν . . 20

4.1 Linear support vector machine . 25
4.2 Nonlinear support vector machine . 27

5.1 Gradient descent . 34
5.2 Stochastic gradient descent vs. gradient descent 42
5.3 Convergence of (S)GD algorithm . 45
5.4 Graph of hinge loss function . 45
5.5 Convergence rate of (stochastic) subgradient descent 46

6.1 Plot of g(t) for α = 0.3 . 55
6.2 Plot of g(t) for α = 0.7 . 56
6.3 Convergence rates of exponential decay averaging scheme for different

values of c . 58

7.1 Schematic overview of the splitting of the data set 60
7.2 Different ROC curves . 62
7.3 CAP curves without monthly performance data 65
7.4 CAP curves with monthly performance data 67
7.5 CAP curves with macro-economic variables 68
7.6 AUC values for different time horizons 69
7.7 AUC for PD-horizon of 1 year using different training set sizes 71

xi

List of Tables

3.1 Variable definitions and types . 16
3.2 Correlation between macro-economic variables 18
3.3 Correlation between numeric variables in the origination file of 1999Q1 . 18
3.4 Results of mean differences test for 1999Q1 21
3.5 Valid values for five variables in the origination file as determined by

Freddie Mac . 22

5.1 Convergence rates of gradient descent algorithms 44

7.1 Contingency table of binary classification 61
7.2 Classification table for PDs . 62
7.3 1-year PD prediction . 63
7.4 3-year PD prediction . 63
7.5 5-year PD prediction . 64
7.6 10-year PD prediction . 64
7.7 1-year PD prediction with monthly performance variables 65
7.8 3-year PD prediction with monthly performance variables 66
7.9 5-year PD prediction with monthly performance variables 66
7.10 10-year PD prediction with monthly performance variables 66
7.11 1-year PD prediction with macro-economic variables 67
7.12 3-year PD prediction with macro-economic variables 68
7.13 5-year PD prediction with macro-economic variables 68
7.14 Test results for different data sets and intermediate time periods 70
7.15 Coefficients of the 3 hyperplanes for a 1-year PD prediction 72
7.16 Coefficients of the 4 hyperplanes for a 3-year PD prediction 72
7.17 Coefficients of the 4 hyperplanes for a 5-year PD prediction 72
7.18 Coefficients of the 4 hyperplanes for a 10-year PD prediction 72
7.19 Performance results of the credit scores method and linear regression . . 73

xiii

List of Abbreviations

ANN Artificial Neural Network

AUC Area under Curve

BCBS Basel Committee on Banking Supervision

BIS Bank for International Settlements

CAP Cumulative Accuarcy Profile

CDF Cumulative Distribution Function

CLTV Combined Loan-to-Value

DTI Debt-to-Income

EAD Exposure at Default

EL Expected Loss

FHLMC Federal Home Loan Mortgage Corporation

FPR False Positive Rate

GD Gradient Descent

IASB International Accounting Standards Board

KKT Karush-Kuhn-Tucker

LGD Loss Given Default

LTV Loan-to-Value

PD Probability of Default

ROC Receiver Operator Characteristics

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TPR True Positive Rate

UPB Unpaid Principal Balance

1

Chapter 1

Introduction

One of the main businesses of a bank is lending money to its customers, in particular to
firms and individuals. For individuals, the loans mostly consist of mortgages that are
used to buy a house. As a future house owner, one would like to choose the bank that
offers a loan with the best agreements, i.e. with the smallest interest rate. On the other
hand, a bank (or another financial institution issuing loans) needs to deal with the risk
that a borrower cannot fulfill the repayment agreements and wishes to cover this with
a risk premium. To assess this ‘credit risk’, a bank usually collects a huge amount of
information on borrowers and the underlying property of the loan, which is the house.
In most cases this results in a so called credit score, which is used to determine if a
borrower will receive a mortgage loan or not. If a bank sets the interest rate too high, a
customer will turn to another bank that is offering a lower interest rate. However, the
downside of consistently setting the interest rate too low is that defaults may not be
covered properly and the bank can obtain a serious loss on the entire portfolio of loans.

In the period 1955-2005 the U.S. household debt (which consists for a large part of
mortgages) as percentage of the GDP has raised from 40% to a record high 130% (see
Figure 1.1). Due to this enormous increase, it has become more and more important
to assess and manage the risk of the household debt, as problems with repayment of
these debts can cause bankruptcies that influence the entire economy of a country. The
high number of defaults of house owners in the U.S. was one of the main reasons for
the downfall of several financial institutions in September 2008 and the worldwide fi-
nancial crisis of 2007-2009 (Mian and Sufi, 2014).

FIGURE 1.1: U.S. Household debt to GDP ratio

2 Chapter 1. Introduction

Since the 1970s regulators have required financial institutions to hold certain capital
reserves to cover unexpected losses. These minimum capital requirements are specified
in the frameworks known as Basel I (1988), Basel II (2004) and Basel III (expected im-
plementation in 2019), and motivate banks to use more advanced models for predicting
the default probability of a certain loan. Regulators such as the ECB perform stress tests
for credit risk, in order to assess how banks and their outstanding loans perform under
certain ‘bad’ scenarios. Under the new financial accounting standards (IFRS 9) financial
institutions will also be required to adopt a forward-looking approach, that is based on
(macro-)economic predictions, when determining credit risk.

In this thesis we are using a data set from the Federal Home Loan Mortgage Cor-
poration (FHLMC), also known as Freddie Mac. This set contains mortgage loans orig-
inated between January 1999 and June 2015. In Figure 1.2 we see a graph with the
number of mortgages issued in a certain year and the average credit scores given to
these mortgages. In the period 2001-2007, prior to the crisis, we see a slight increase in
the average credit scores given to the borrowers that successfully applied for a loan in
these years. One would therefore predict that the default percentages for these loans
are slightly smaller.

FIGURE 1.2: Number of mortgages and average credit score in FHLMC
data set (yearly observations)

However, in Figure 1.3 on the next page we see in blue a drastic increase in the
default rate during the period 2001-2007. Note that the defaults are assigned to the
year of the origination of the defaulted loan, and are determined over the entire lifetime
of the loan. Therefore we see the highest default percentage in the period 2006-2007,
whereas in Figure 1.31 we observe in red that the period 2009-2012 contains the most
actual defaults in the U.S.

We can conclude a few things from these graphs. At first we see that the slightly
increasing trend in the credit scores does not coincide with the decrease in default per-
centage, i.e. the credit scores before the financial crisis were not correctly predicting the
decreasing creditworthiness of the customers during the crisis. Furthermore, after the
crisis, credit scores have increased a lot, as obtaining a mortgage is much more difficult
than before.

1All (macro-)economic data used in this thesis is obtained from the data base of the Fred (Federal
Reserve Bank of St. Louis) Economic Research.

1.1. Problem definition 3

FIGURE 1.3: Default percentages of FHLMC data set and U.S. mortgage
delinquency rate (yearly observations)

1.1 Problem definition

As we have seen, the credit rating system in use by Freddie Mac before the financial
crisis was totally incapable of predicting the increased number of defaults after 2007.
Therefore, there is need for another model for the prediction of default rates on this data
set. Since the increase in the number of defaulted loans coincided with the worldwide
crisis, it seems worthwhile to look at the possibility of including macro-economic vari-
ables in our model. In this thesis we will develop such a model using machine learning.

Machine learning is essentially teaching a computer to learn from training data and
to make predictions on other data, using certain algorithms. As the amount of accessi-
ble data and computing power has increased over the past 25 years, machine learning
techniques have been implemented widely and have shown many promising results,
including the field of credit risk modeling.

In this thesis we look at the so called multiclass support vector machine (SVM). This
is a classification problem, i.e. it classifies mortgage loans into multiple classes, with
different default probabilities, The classes are developed using historical data and de-
fault information. The unique feature of this technique is that it creates rating classes by
itself, i.e. it does not need to have a ranking of the training data into different classes,
such as AAA, AA+ etc. The optimization will be performed using a stochastic gradient
descent technique. This optimization algorithm is capable of handling a large training
set, and has also gained a lot of attention over the last two decades.

To summarize, the goal of this thesis is to develop a credit risk model using machine
learning techniques and including macro-economic variables.

4 Chapter 1. Introduction

1.2 Set-up of this thesis

Chapter 2 consists of the definition of credit risk and some information about credit risk
regulation and modeling. Furthermore also some very important financial terms are ex-
plained. Chapter 3 contains an introduction and analysis of the data set of FHLMC. We
also perform some statistical analysis on the variables that are available in this data set.
Chapter 4 consist of a description of machine learning and in particular the support
vector machine. The fifth chapter introduces the gradient descent and the stochastic
gradient descent and several other related methods. It also includes some statements
on the convergence of these different optimization technique. Chapter 6 focuses on
three new theorems that are developed and proven in this thesis, regarding a modifica-
tion of the support vector machine and the averaged version of the stochastic gradient
descent. Finally, Chapter 7 contains the results that are obtained after the develop-
ment of a model. Also, the performance results and comparisons with other traditional
models can be found in this section. Chapter 8 contains the conclusion and some oppor-
tunities for further research. For some mathematical background that is in particular
needed for chapters 4 and 5, we refer to Appendix A. Especially chapters 5 and 6 are
mathematically more complex, whereas chapter 2 and 3 are more based on statistics
and finance.

5

Chapter 2

Credit risk regulation and modeling

The Bank for International Settlements (BIS) states the following about credit risk in the
Principles for the Management of Credit Risk (BIS, 2000)

“Credit risk is most simply defined as the potential that a bank borrower or counter-
party will fail to meet its obligations in accordance with agreed terms. The goal of credit
risk management is to maximize a bank’s risk-adjusted rate of return by maintaining
credit risk exposure within acceptable parameters. Banks need to manage the credit
risk inherent in the entire portfolio as well as the risk in individual credits or transac-
tions. Banks should also consider the relationships between credit risk and other risks.
The effective management of credit risk is a critical component of a comprehensive
approach to risk management and essential to the long-term success of any banking
organization.”

In our concrete situation, credit risk is the potential that a borrower of a mortgage
loan cannot fulfill the scheduled payments agreed on.

During the last 50 years regulators have issued different capital requirements for
financial institutions to manage in particular their credit risk. They are mainly set by
the Basel Committee on Banking Supervision (BCBS), which is part of the BIS, or by the
International Accounting Standards Board (IASB). We will give a quick overview of these
regulations in this chapter, but first we start with some important definitions of finan-
cial terms. Additionally, several traditional approaches are discussed that are used for
modeling credit risk.

2.1 Financial terms

2.1.1 Defaults

This entire thesis is about defaults and the probability that they occur. A default is an
event that a borrower cannot meet his contractual obligations. The exact definition
of what this means differs from institution to institution. In the Basel II and Basel III
framework every loan that is 3 months past due, is considered a default. The probability
that a certain loan defaults in some time horizon (usually one year or the lifetime of a
loan) is called the probability of default (PD). The recovery rate denotes the percentage of
the borrowed amount that can be recovered by the lender in case of a default of the
borrower, e.g. by organizing an auction for the house. The loss given default (LGD)
equals 1 minus the recovery rate, i.e. the percentage of the amount we lose in case of
a default. Finally, the parameter exposure at default (EAD) denotes the amount that the
borrower is expected to owe the lender at the time of a default. Then the expected loss

6 Chapter 2. Credit risk regulation and modeling

(EL) is defined as follows

EL = PD ∗ LGD ∗ EAD (2.1)

Essentially, in the case of a default we expect to lose LGD ∗ EAD and in the other
case we do not lose anything. The unexpected loss is the loss that is realised above the
expected loss, which is caused by a default rate higher than the probability of default
or an unexpected increase in LGD or EAD. Note that an unexpected loss can also be
negative, if the actual loss is smaller than an expected loss.

2.1.2 Mortgage-specific terms

We also introduce some terms that are used in our data set of mortgages. This data
set will be introduced in more detail in Chapter 3. The date when the mortgage loan
is initiated is called the origination date and the date of the originally appointed last
payment is called the maturity date. In this thesis we work with a data set with only
fully amortized mortgages, which means that at the maturity date the debt is fully paid
off, in contrary to mortgages with interest-only payments. We use the term collateral for
the underlying property (house or building) that serves as a security for the repayment
of a loan, i.e. if a borrower goes into default, the lender can regain at least a part of the
borrowed amount by selling the collateral.

Ratios

There are four different ratios in the data set that are of high importance.
At first we have the unpaid principle balance (UPB). This is the amount of the loan that

has not yet been paid off to the lender. The original UPB is the amount that is initially
borrowed by the borrower. In the case of an amortized mortgage, each monthly pay-
ment consists of two parts, an interest payment and a principal payment. The interest
payment is the amount of interest over the last month and the principal payment the
amount of the original loan that is paid off in this particular month. After this payment
the UPB is decreased with only the principal payment. In the case of a fully amortized
mortgage, the UPB equals zero at the maturity date of the loan.

Two also very important elements of the data set are the loan-to-value (LTV) and the
combined loan-to-value (CLTV). The precise definition of these terms differs from data set
to data set. The CLTV ratio is the ratio of all loans that are secured by the property
and the value of the underlying collateral. This happens for example if the borrower
receives a second mortgage loan to improve a certain part of the house. The LTV ratio
is the ratio of the primary mortgage loan, i.e. only the loan with the highest value, and
the value of the underlying collateral.

Finally we have the debt-to-income (DTI) ratio, which is (at the origination date) sim-
ply the ratio of the monthly debt payments by the borrower to the lender divided by
the total monthly income of the borrower specified at the date of the origination.

2.2. Regulations regarding credit risk and credit risk modeling 7

2.2 Regulations regarding credit risk and credit risk modeling

2.2.1 Basel I

In 1988 the BCBS, a committee of international banks, created the Basel Capital Accord
(Basel I), which requires banks to divide their outstanding loans into classes with simi-
lar types of borrowers. Each class has its own fixed risk, i.e. corporate loans pose 100%
risk to a bank, where mortgage loans only pose 50% risk to a bank, as there is an under-
lying collateral. There is no differentiation in creditworthiness of customers in the same
class, which is one of the weaknesses of the Basel I framework. Basel I basically requires
financial institutions to hold enough capital reserves such that their capital ratio exceed
8%, with the capital ratio defined as

capital ratio =
total capital

total credit risk
(2.2)

In the Basel I framework, the total credit risk is defined as the sum of the current
UPB over all classes of borrowers weighted with the risk weights for the different types
of classes. The minimum capital requirement K is defined as

K = 0.08 ∗ total credit risk (2.3)

2.2.2 Basel II

As Basel I was not (sufficiently) distinguishing between borrowers with a high and a
low creditworthiness, new regulations were developed. In 2004 the New Basel Capital
Accord (Basel II) was issued. In this case the capital ratio is defined as

capital ratio =
total capital

total credit risk + market risk + operational risk
(2.4)

Market risk and operational risk are also included in the capital ratio, but they are
not in the scope of this thesis. Therefore we ignore these from now on in the expres-
sions of the minimum capital requirement. To calculate the capital ratio, banks are now
allowed to use their own best approaches to determine their capital requirements for
credit risk, if these approaches are approved by the regulator. We can divide these
methods into two different categories, the standardized approach and the internal ratings-
based (IRB) approach, which relies on the developed experience from the bank itself in
determining credit risk. There are also two types of IRB approaches, namely the foun-
dation IRB and the advanced IRB approach. They differ in the fact that the foundation
IRB approach only allows banks to provide estimates for the PD and requires them use
estimates for the LGD and EAD that are provided by the BCBS, as when using the ad-
vanced IRB approach a bank is also allowed to provide its own estimates for the LGD
and EAD.

In the case of the standardized approach the minimum capital requirements are
given by

K = 0.08 ∗
∑
i

EADi ∗ RWi (2.5)

where EADi and RWi are the exposure at default and the risk weight of class i respec-
tively. This approach is basically as before in the Basel I framework. The risk weight

8 Chapter 2. Credit risk regulation and modeling

is set to 35% for the class of mortgage loans and 75% for the class of other retail credit,
such as credit card loans.

In the case of the IRB approach the minimum capital requirements for credit risk
only on mortgage loans is given by

K = LGD ∗ Φ

(√
1

0.85
Φ−1(PD) +

√
0.15

0.85
Φ−1(0.999)

)
(2.6)

Note that the EAD is not included in this expression, but it is in the capital require-
ments for credit risk on other loans. The IRB approach is favored and adopted by many
banks, as it generally leads to less conservative, i.e. smaller, values for the minimum
capital requirements. It now basically comes down on which method to use to com-
pute the PDs. The approaches to estimate the LGD and EAD are not in the scope of this
thesis.

2.2.3 IFRS 9

The new international standard for financial reporting (IFRS 9), developed by the Inter-
national Accounting Standards Board (IASB), will become active in 2018. In the report
“Financial Instruments: Expected Credit Losses” (IFRS, 2013), it is proposed to measure
lifetime credit risk based on a forward-looking approach, measuring expected credit
losses, instead of a backward-looking approach (based on historical data and statis-
tics) that was in use before. To fulfill this requirement, financial institutions have to
adapt their credit models, and include forecasts for several macro-economic variables
to predict default events. One of the main goals for this thesis is to also include these
variables in the SVM and use them to correctly predict default probabilities.

2.3 Traditional credit rating approaches

The traditional approaches to estimate the PD of a borrower can be divided into two dif-
ferent systems, namely expert systems and credit scoring models (Saunders and Allen,
2002 & Allen, DeLong, and Saunders, 2004).

Expert systems were initially based on the expertise of humans. As they might be
inconsistent and subjective in their judgments on the creditworthiness, artificial neural
networks (ANN) have been introduced to forecast PDs based on the specifications of
the borrower, using historical observations of defaulted and non-defaulted loans. A
neural network continuously adapts itself when new default data is passing through
the network. Therefore it can incorporate changing conditions.

In the training process an ANN tries to determine coefficients for every (useful)
variable in the historical data set. However, an ANN can grow very large as more and
more data is presented, and therefore it can be very costly to implement and maintain
it. Also, due to the fact that it can have many hidden intermediate connections, it can
be very intransparent. Since the intermediate steps do not have any clear economic
interpretation, these steps cannot be checked for plausibility and accuracy.

Nonetheless, the overall performance of a neural network can be very good. In
1991 a supervised version of an ANN is used for predicting bankruptcies (Kim and
Scott, 1991). The system performs well for the prediction of bankruptcies in one year
(87% of the defaults are predicted), but its performance declines over time to 47% over
3 years.

2.4. Multivariate credit scoring models 9

Secondly we have the credit scoring models. The most famous (external) rating sys-
tems are obviously those of Moody’s, Standard & Poor’s and Fitch, which make a
judgement on the creditworthiness of countries and corporations. However, many
banks develop their own internal rating system to classify a certain loan in a certain
category, such as AAA or AA+.

The most widely used credit risk approaches are the classical multivariate credit
scoring methods. We will investigate the following four traditional methods in the next
section.

• Linear regression

• Logit model

• Probit model

• Multiple discriminant analysis model

The essential goal of these models is to identify which variables have the most dis-
criminatory power in differentiating the defaulted loans from the non-defaulted loans.
Based on this analysis, model parameters are estimated and PDs of loan applicants can
be obtained.

As these credit scoring methods are relatively easy concepts, they are both easy to
check for plausibility and accuracy. In the U.S., Fair Isaac and Co. Inc. (FICO) devel-
oped a credit scoring system that is widely used, also by Freddie Mac. On myfico.com a
personal credit score between 300 and 850 can be obtained, based on various indicators,
such as credit card debts and payment history. However, personal information, such
as salary, race or religion, which can also be valuable for predicted creditworthiness,
is excluded. Furthermore, another shortcoming of credit scoring models is that they
usually assume some kind of linearity of the independent variables, which may be not
valid.

2.4 Multivariate credit scoring models

In this section we discuss the different traditional approaches to obtain a credit score.

2.4.1 Linear regression

First we look at the multiple linear regression with ordinary least squares (OLS). In this
case we want to predict a variable yi ∈ {1, ..., d}, which is the number of the rating class
to which a certain loan belongs, with a vector xi ∈ Rn containing information about the
borrower. This regression fits the following model to the training data.

yi = wTxi + b+ ε (2.7)

where w is a vector in Rn containing the coefficients, b is a scalar and ε is the residual.
We know from statistics that the best estimators for this model are obtained from ordi-
nary least squares. The following key assumptions are done when considering linear
regression as a valid model.

• Linear relationship: The relation between xi and yi certainly needs to be (close to)
linear, to obtain a useful model.

10 Chapter 2. Credit risk regulation and modeling

• Multivariate normality: Regression requires the independent variables to be mul-
tivariate normally distributed. Non-normally distributed variables can distort
relationships and tests for significance.

• Little or no multicollinearity: The independent variables are not allowed to be too
much correlated.

• No auto-correlation: The value of yi may not depend on yi−1 or other observa-
tions.

• Homoscedasticity: The error term ε should be independent identically distributed.
The expected value of ε2 is constant, equal to σ2 and does not depend on the value
of xi, i.e. the characteristics of a single observation does not influence the residual.

There is another problem with the use of this model for assessing credit risk. The
dependent variable is an ordinal variable, with values between 1 and d, whereas a linear
regression requires a continuous target variable. One could propose that all values
between two certain values, e.g. yi − 0.5 and yi + 0.5, belong to class i. This is still
not an ideal situation, as the ‘risk’ difference between two classes will be equal, i.e. the
difference in PD between class 1 and 2 will be the same as the difference in PD between
class d − 1 and d. This certainly need not be the case. More information on multiple
linear regression can be found in Kutner et al., 1974.

2.4.2 Ordered logit and probit regression

Both in a logit and a probit regression we fit the following model to the training data

y∗i = wTxi + ε (2.8)

where ε is assumed to beN (0, 1)-distributed in the case of a probit regression and in the
case of a logit regression ε is assumed to be distributed following the standard logistic
distribution. In both regressions we have y∗i as a continuous indicator for yi, i.e.

yi =

{
0 if yi ≤ 0

1 else
(2.9)

In this simple case, yi can only take the values 0 and 1, or ±1 in other definitions. Since
we want a classification in d different classes, this is not suitable.

Therefore we look at an ordered logit or probit regression. In this case we take d − 1
values µj for 1 ≤ j ≤ d− 1 and we set

yi =

1 if yi ≤ µ1
2 if µ1 < yi ≤ µ2
...
d if µd−1 < yi

(2.10)

In a logit or probit regression model we assume that the target variable is ordinal, so
we do not have a problem here with our categorization. However, still a few significant
assumptions are made.

• Logistic/probit relationship: The relationship between the target variable and
the independent variables should be following the logistic distribution (in the
ordered logit) or the inverse normal distribution (in the ordered probit).

2.4. Multivariate credit scoring models 11

• Independent error terms: The error terms ε should be independent identically
distributed.

• Little or no multicollinearity: The independent variables are not allowed to be too
much correlated.

• Large sample size: We need a large sample size to compute the coefficients using
the maximum likelihood function.

More information on ordered probit and logit regression can be found in Draper
and Smith, 1998

2.4.3 Multiple discriminant analysis

The main idea of multiple discriminant analysis (MDA) is to identify the variables that
have the most discriminatory power in separating the classes. The procedure attempt
to construct so called discriminatory functions, which can be seen as ‘axes’, from linear
combinations of the original variables. Each axis is constructed such that it maximes
the differences between groups and such that they are mutually orthogonal. Therefore,
we first obtain the functions with a high discriminatory potential. In a sense, it is very
similar to a principal component analysis. The following illustration shows how these
functions can separate the different groups.

FIGURE 2.1: Schematic illustration of multiple discriminant analysis

In this case, two discriminatory functions (DF 1 and DF 2) turn out to be good in
separating the three different classes.

We assign an observation xi to class j if we have for all k ∈ {1, ..., d} \ j

fj(xi)

fk(xi)
>
πjl(j, k)

πkl(k, j)
(2.11)

In the above expression, fj and fk are the probability density functions of class j and
k respectively. Furthermore, πj and πk are simply the probabilities of a certain element
to be in class j and k, and l(·, ·) is a so called loss function, which gives the cost of
misclassification, i.e. the cost of classifying one object in the first class, while it actually
belongs to the second class. For example we can classify a certain package of loans in a

12 Chapter 2. Credit risk regulation and modeling

low-risk class, whereas they are actually high-risk loans. This can result in a loss when
a series of default occurs.

It now comes down on the choice of the probability density functions and the loss
function. Usually, normal density functions are used. Again, there are several quite
strong assumptions made on the data in order to perform an MDA.

• The independent variables are close to multivariate normally distributed.

• There should be little or no multicollinearity between the independent variables.

• The covariance matrices for each class should be close to equal.

• (Multivariate) linear functions should be possible to discriminate between the dif-
ferent classes.

More information on multiple discriminant analysis can be found in Duda, Hart,
and Stork, 2001.

2.5 Summary

In all credit risk approaches that are described in the previous section, we have to make
assumptions on both the relations between the independent variable and the target
variables and the mutual relations between the independent variables. In the first case
we have seen linear, logistic or inverse normal relations, whereas in the latter case the
approaches required independence or at least little multicollinearity. This can be a huge
shortcoming of these methods. In machine learning there are several approaches that
do not assume any clearly defined pattern, such as the dual version of the support
vector machine that we will see in Chapter 4.

13

Chapter 3

Data properties

The data for this thesis is acquired from the Federal Home Loan Mortgage Corporation
(FHLMC), better known as Freddie Mac, which is a financial services corporation acting
on the secondary market for mortgages. This means that Freddie Mac buys mortgages
from other banks and sells them to investors as a mortgage-backed security (MBS), which
consists of a single mortgage or a package of mortgages. An MBS is essentially a way
for smaller banks to lend money to home buyers without having to worry if the clients
are able to repay the loan, as it is sold as a package to investment banks or other private
investors, with the object as collateral. Such a smaller bank then acts as an intermediary
between a home buyer and the investment market. Two specific types of MBS are col-
lateralized mortgage obligations (CMOs) and collateralized debt obligations (CDOs).
In the previous decade, especially for the latter type, credit ratings turned out to be
completely overestimated, leading to the U.S. subprime mortgage crisis of 2007-2009
and the federal takeover of Freddie Mac in September 2008.

In this chapter we will examine the properties of the data set, particularly the vari-
ables that can be used for our model. We also deal with variables that have to be con-
verted to numeric values and the selection of the most significant variables. Finally, we
look briefly at the quality of the Freddie Mac data set.

3.1 Properties of the data set

In this thesis we use the Single Family Loan-Level Dataset, which is split into sets for each
calender quarters, starting with the first quarter of 1999 and ending with the second
quarter of 2015.1 For each quarter there exists an origination file. This contains the
initial available information for all mortgage loans originating in this quarter. There is
also a monthly performance file available, containing the data on the performance of
the loan, such as payments and interest rates, until the termination of the loan or the
Performance Cutoff Month. The Performance Cutoff Month is the last month for which
there is data available. As of August 2016, this is December 2015. The origination file
consists of 25 entries for each mortgage and the monthly performance file consists of 22
entries for each month of the lifetime of a mortgage. In both files, the mortgages can be
identified by their mortgage sequence number.

The data set consists of mortgages with a fixed interest rate (although the rates still
can change due to a modification of the loan) and a duration of 15, 20 or 30 years.

1as of August 2016

14 Chapter 3. Data properties

3.2 Variables

We obtain our variables from three different files, i.e. the origination file, the monthly
performance file (as explained in the previous section) and the file of macro-economic
variables. The origination file contains variables obtained or measured at the origi-
nation date of the mortgage, which is only one date. Since the monthly performance
contains observations for each month, we have to specify for each quarterly data set
from which month we want to take the information. In the case that this defined month
is after the month of termination, we use the information at the month of termination,
since for a loan that has (or has not) gone into default, this event happened on the
termination date.

We distinguish three types of variables, numeric, boolean and nominal. Numeric vari-
ables are variables that only take on numeric values, boolean variables only take on
boolean values (±1) and nominal variables can take on categorical values such as names
or postal codes. Ordinal variables are in this thesis considered as a numeric variable, as
they attain numeric values.

3.2.1 Dependent variable

The dependent variable (also called target variable) in our model is the default indi-
cator yi. We set yi = −1 if client i has gone into default and yi = +1 if this has not
happened (yet). In the data set of Freddie Mac this indicator can be obtained from the
zero balance code in the monthly performance file at the month of termination, which is a
number indicating the reason for the termination of the loan. The following values can
be observed in the data set.

• 01: Prepaid or matured - This indicates that the current loan has been paid off by the
client before the initial maturity date or the loan has been ended in a normal way.
Note that the latter event has rarely occurred in this data set, as all mortgages
have a duration of at least 15 years.

• 03: Foreclosure alternative group - This indicates that the loan is terminated before
the maturity date, due to the fact that the client is unable to make (full) payments,
and sold to a party that is not the original seller of the mortgage.

• 06: Repurchase prior to Property Disposition - This indicates that the loan is delin-
quent and is repurchased from Freddie Mac by the original seller. In this case
Freddie Mac is compensated by the seller.

• 09: REO Disposition - This indicates that the loan is delinquent and the underlying
collateral is sold.

• ‘Space’: Not applicable - This indicates that no termination event happens in this
month. If a loan is still active at the Performance Cutoff Month, we see a space in
the entry for the zero balance code.

The events denoted by 03 and 09 only occur for a delinquent status of the loan and
are identified as defaults by Freddie Mac. Therefore we call these events ‘defaults’ and
set yi = 1 for these events. The events denoted by 01, 06 or ‘Space’ are denoted by
yi = +1, since no loss occurs for Freddie Mac in these cases.

Most of the times we look at a certain time horizon for the probability of default. For
example, if we look at a 5-year PD with an observation period of 2 years, we mean that
we first observe the loan for 2 years to gain some monthly performance information.

3.2. Variables 15

After these 2 years we do a prediction on the probability of default of a loan happening
in 5 years. Using the monthly performance file we can find out if a default has occurred
or not.

3.2.2 Independent variables

From the origination file and the monthly performance file we can extract several vari-
ables that can be used as a predictor for the default indicator. Furthermore we can
use several macro-economic variables to include possible influences of the economic
situation on the probability of default.

Not every column of the first two files can be used as variables, such as the credit
score, which is a number indicating the creditworthiness of a borrowers at the initiation
of the mortgage. As the creditworthiness (or the probability of default) is essentially the
variable that we would like to predict, we cannot use this as an independent variable
in our model. Clearly, information obtained about a termination event, such as actual
losses due to a default, cannot be used either.

Table 3.1 contains a list of all variables that can be used in our model. Variables from
the origination files are starting with an O, variables from the monthly performance
files with a P and macro-economic variables with an M .

Code Variable name Variable definition Type

O1 First payment date Number of months between end of the
quarter and first scheduled payment

Numeric

O2 First time homebuyer
flag

Indicates whether the borrower is purchas-
ing the property, will reside in the prop-
erty as a primary residence and was not
an owner of a property over the last three
years

Boolean

O3 Maturity date Number of months between end of the
quarter and last scheduled payment

Numeric

O4 Metropolitan Sta-
tistical Area (MSA)
or Metropolitan
Division

MSA or MD code of the area in which the
property is located

Nominal

O5 Mortgage insurance
percentage

Percentage of the loan, that a mortgage in-
surer is providing to pay back if there are
any losses due to a default of the client (the
percentage is set at the time of the purchase
by Freddie Mac)

Numeric

O6 Number of units Indicates how many units a property con-
tains

Numeric

O7 Occupancy status Indicates whether the property is occupied
by the owner, is acquired as a second-home
or as an investment

Nominal

O8 Original combined
loan-to-value (CLTV)

See Section 2.1.2 Numeric

O9 Original debt-to-
income (DTI)

See Section 2.1.2 Numeric

O10 Original unpaid prin-
cipal balance (UPB)

See Section 2.1.2 Numeric

O11 Original loan-to-
value (LTV)2

See Section 2.1.2 Numeric

2Due to a high collinearity with variable O8 we defined O11 after Section 3.4.1 as CLTV - LTV.

16 Chapter 3. Data properties

Code Variable name Variable definition Type

O12 Original interest rate The initial (fixed) interest rate on the mort-
gage

Numeric

O13 Channel Indicates whether a broker, correspondent or
not specified third party was involved in the
origination of the mortgage loan

Nominal

O14 Prepayment penalty
mortgage (PPM) flag

Indicates whether there is a penalty on pre-
paying part of the mortgage loan

Boolean

O15 Property state U.S. State where the property is located Nominal

O16 Property type Indicates the type of property (e.g. a man-
ufactured home or a condominium)

Nominal

O17 Postal code Postal code of the mortgage property Nominal

O18 Loan purpose Indicates of a mortgage is used to buy the
underlying property or for other specified
reasons

Nominal

O19 Number of borrow-
ers

Indicates whether the amount is borrowed
by one person or more than one

Boolean

O20 Seller name Name of the company selling the mortgage
to Freddie Mac

Nominal

O21 Servicer name Name of the company to which a borrower
pays his mortgage loan payments as of the
last observed period

Nominal

P1 Ratio actual UPB and
original UPB

Ratio of actual unpaid principal balance
and original unpaid principal balance

Numeric

P2 Maximum loan
delinquency

Maximum number of months a borrower
has been delinquent up to and including
the observed month

Numeric

P3 Loan age Number of months since the origination
month of the mortgage

Numeric

P4 Current interest rate Current interest rate on mortgage, taking
into account any loan modifications

Numeric

M1 Real GDP Percent change of the U.S. Real Gross Do-
mestic Product from preceding period, sea-
sonally adjusted annual rate

Numeric

M2 Consumer Price In-
dex (CPI)

A measure of the price of a basket of com-
mon goods for urban consumers in the U.S.

Numeric

M3 10-year treasury con-
stant maturity rate

The yield of the most recently auctioned 10-
year U.S. Treasury notes

Numeric

M4 Industrial Production
Index (IPI)

Measures the amount of output from the
manufacturing, mining, electric and gas in-
dustries in the U.S.

Numeric

M5 Civilian unemploy-
ment rate

A measure of the number of people that are
jobless and looking for a job in the U.S.

Numeric

M6 Dollar \ Euro ex-
change rate

Exchange rate between U.S. Dollar and
Euro

Numeric

TABLE 3.1: Variable definitions and types

3.3. Conversion of variables 17

Macro-economic variables

In our model we use 6 indicators of the macro-economic situation. The choice of these
indicators is quite arbitrary, but these indicators give a good view on different parts
of the economy (Smith, 2011). They are all so called lagging indicators, variables that
do not tell us where the economy is heading, but how the economy is performing at
the current moment. We explicitly exclude any indicators of the housing market, as
we know that there is already a high correlation between declining house prices and
increasing default probabilities. It is interesting if we can do the prediction also without
this indicator.

3.3 Conversion of variables

In principle, variables that are of the numeric type can be directly used as input for
the model, since a support vector machine works with continuous or discrete ordered
input. Nonetheless, all numeric variables are scaled such that the maximum for each
variable equals +1 and the minimum equals −1. This is useful, since a variable that
takes very high (or low) values, tend to dominate the gradient in the stochastic gradient
descent. If all variables approximately take values in the same range, this effect is not
observed.

Including boolean variables in our data set is therefore also not a huge difficulty,
since we can set one value to equal +1 and one value equal to −1. Finally, to also
include variable with a nominal (categorical) type, we use a ranking method. Using
a not too large part of the training set, we calculate for each value (category) of this
variable, the default percentage of the set of mortgages having this value. As numeric
value for this category we take this default percentage. All categories of this variable
that are not attained in the part of the training set, but occur in the other part of the
training set or test set, will obtain a standard numeric value, such as zero or an average
default probability. If certain categories continue to have a significantly higher or lower
PD on the training set, it will be useful to include this variable in our model. After
this conversion, the values for the nominal variable are again scaled to values with
maximum +1 and minimum −1.

3.4 Selection of variables

As there are 31 variables available, it is useful to make a selection of the most significant
variables to include in the model.

3.4.1 Multicollinearity

At first we need to observe if there are any high correlations between independent
variables present in the data, to avoid multicollinearity between these variables. If two
individual variables (predictors) are highly correlated, such that one depends linearly
on the other, large standard errors in the estimated coefficients can appear in the case
of a regression. Also, small changes in the data can lead to large changes in the model.
This problem is often encountered in regression analysis and also poses a threat for our
model, since it can lead to large (absolute) and dominating coefficients for the corre-
lated variables in the support vector machine. More information on the effect of high
correlation on predictors can be found in Mela and Kopalle, 2002.

18 Chapter 3. Data properties

In Table 3.2 below we see the correlation coefficients between the different macro-
economic variables on the set of monthly observations between January 1999 and De-
cember 2015, which is the time period in scope of this thesis. We obtain a high negative
correlation between the CPI and the 10-year treasury interest rate. As all correlations
are in absolute value below the thresholds of 80% or 90% that are used a lot, we can
include all macro-economic variables in our SVM.

R
ea

lG
PD

C
PI

10
-y

ea
r

in
te

re
st

IP
I

U
ne

m
pl

oy
m

en
t

D
ol

la
r

\
Eu

ro

Real GDP 100.0% -20.3% 23.9% 1.8% -18.7% -16.8%

CPI -20.3% 100.0% -78.3% 58.0% 56.0% 67.3%

10-year interest 23.9% -78.3% 100.0% -37.3% -63.3% -51.3%

IPI 1.8% 58.0% -37.3% 100.0% -26.6% 37.1%

Unemployment -18.7% 56.0% -63.3% -26.6% 100.0% 52.1%

Dollar \ Euro -16.8% 67.3% -51.3% 37.1% 52.1% 100.0%

TABLE 3.2: Correlation between macro-economic variables

In Table 3.3 below we see the correlation coefficients for the different variables of
the numeric type in the origination file of the first quarter of 1999. We see approxi-
mately the same correlation coefficients for other origination files. The only variables
that are definitely highly correlated are the original CLTV (O8) and the original LTV
(O11). Therefore we can substitute O11 by the difference between the original CLTV
and the original LTV, to still capture some effect of the differences between these vari-
ables. As we can see in the table, this newly defined variable has only a little correlation
with all other variables, as it has probably many values close to zero.

Fi
rs

tp
ay

m
en

td
at

e

M
at

ur
it

y
da

te

M
Ip

er
ce

nt
ag

e

N
um

be
r

of
un

it
s

C
LT

V

D
TI

U
PB

LT
V

In
te

re
st

ra
te

C
LT

V
-L

TV

First payment date 100.0% 11.7% -2.1% -0.3% -1.6% 1.2% 2.2% -1.6% -0.2% 0.0%

Maturity date 11.7% 100.0% -0.2% 0.4% 0.2% 3.0% 1.1% 0.1% -1.3% 0.0%

MI percentage -2.1% -0.2% 100.0% -4.2% 69.5% 8.7% 0.7% 69.6% 12.5% -0.1%

Number of units -0.3% 0.4% -4.2% 100.0% -4.3% 1.3% 4.5% -4.3% 8.7% 0.0%

CLTV -1.6% 0.2% 69.5% -4.3% 100.0% 11.3% 10.7% 99.9% 7.7% 0.1%

DTI 1.2% 3.0% 8.7% 1.3% 11.3% 100.0% 9.4% 11.4% 3.5% 0.0%

UPB 2.2% 1.1% 0.7% 4.5% 10.7% 9.4% 100.0% 10.5% -13.7% 0.2%

LTV -1.6% 0.1% 69.6% -4.3% 99.9% 11.4% 10.5% 100.0% 7.8% -0.1%

Interest rate -0.2% -1.3% 12.5% 8.7% 7.7% 3.5% -13.7% 7.8% 100.0% -0.1%

CLTV - LTV 0.0% 0.0% -0.1% 0.0% 0.1% 0.0% 0.2% -0.1% -0.1% 100.0%

TABLE 3.3: Correlation of numeric variables in the origination file of
1999Q1

For all other variables, the values for the correlation is complete depending on the
choice of the set determining the numeric values for the nominal variables or on the
observation period that is set, so we cannot do such a general analysis.

3.4. Selection of variables 19

3.4.2 Test of mean differences

However, since we have not excluded any variables from our set in the previous sec-
tion, we need another selection criterion. This selection is done again during every
development of the model, as the significance of a variable may change over time. We
perform a so called test of mean differences between the two labels. This means that we
divide our data set into two different sets, one with all defaulted loans and one with
all non-defaulted loans. We use a part of the training set to calculate the mean and
variance of the different variables for these two sets, and choose the variables for which
the means are significantly different, i.e. the variables that seem to have the largest
predictive value for our model. Preferably the training set is much larger than or not
including the set used for classifying the nominal variables, to avoid the influence of
the already present ranking of the categorical values.

A test of mean difference on a variable is performed as follows (Whitley and Ball,
2002). Let µ−1 be the mean of this variable on the set of defaulted loans and µ+1 on the
set of non-defaulted loans. The null hypothesis is that the two means are not statisti-
cally different from each other, i.e.

H0 : µ−1 = µ+1 (3.1)

with alternative hypothesis

Ha : µ−1 6= µ+1 (3.2)

For a set with observations that are i.i.d. with mean µ and standard deviation s,
sample mean x and sample size m, we know from the central limit theorem that z
defined as below follows a standard normal distribution.

z =
x− µ
s/
√
m

(3.3)

We can convert this to our case with two samples. Denote the size of the sets by
m−1 and m+1 and the sample means by x−1 and x+1. If the standard deviation of both
sets is known (and denoted by σ−1 and σ+1, we know that z has a standard normal
distribution, where z is defined as follows.

z =
(x−1 − x+1)− (µ−1 − µ+1)√

σ2
−1

m−1
+

σ2
+1

m+1

(3.4)

The value of the z-statistic is used to compute the two-sided p-value, i.e.

p = P (|z′|> |z|) = P (z′ > |z|) + P (z′ < −|z|)
= 1− Φ(|z|) + Φ(−|z|) = 2Φ(−|z|) (3.5)

where z′ assumes a standard normal distribution with CDF Φ. The two-sided p-value
indicates the probability that the absolute value of z′ exceeds the absolute value of z un-
der the standard normal distribution. It is essentially the probability that, given that the
two means µ−1 and µ+1 are equal, the absolute difference between the sample means
x−1 and x+1 is larger than the difference we have observed. If this probability is smaller
than some specified significance level α (usually 1, 5 or 10 %), the null hypothesis that
the two means are equal, is rejected.

However, we are dealing with the case that the standard deviations of the sets are

20 Chapter 3. Data properties

unknown, just as the means. Therefore we have to switch to the so called t-statistic,
which is defined as follows

t =
(x−1 − x+1)− (µ−1 − µ+1)√

s2−1

m−1
+

s2+1

m+1

(3.6)

where s−1 and s+1 denote the population standard deviations of the sets. This is called
the two-sample t-statistic. For the one-sample t-statistic, defined as

t =
x− µ
s/
√
m

(3.7)

we know that t by definition follows a Student’s t-distribution with m − 1 degrees of
freedom.

The two-sided t-statistic does not exactly follow a Student’s t-distribution, as there
are two (and not one single) estimated standard deviations in the statistic. However,
since for x ≥ 0 we see in Figure 3.1 that for a smaller number for the degrees of freedom,
the cumulative t-distribution attains smaller values, we obtain a conservative p-value
when setting the degrees of freedom ν equal to the minimum of m−1 − 1 and m+1 − 1.

FIGURE 3.1: CDFs of Student’s t-distributions with different degrees of
freedom ν

The value of the two-sample t-statistic is used to compute the two-sided p-value,
i.e.

p = P (|t′|> |t|) = P (t′ > |t|) + P (t′ < −|t|) = 2P (t′ < −|t|) (3.8)

where t′ follows a Student’s t-distribution with min{m−1 − 1,m+1 − 1} degrees of free-
dom. Again, we reject the null hypothesis that the two means µ−1 and µ+1 are equal if
the p-value is smaller than some significance level.

We would like to only select the most significant variables for our model. Clearly,
that would be the variables for which the mean of the set of the defaulted loans differs
statistically most from the mean of the set of the non-defaulted loans, i.e. for which
the two-sided p-value is the smallest. We can now select the variables in two different
ways, either by only taking the variables that have a p-value below a certain significance
level, or by the taking the n variables with the smallest p-values. In the first case we
have an initially unknown number of variables, which may lead to unpleasant results,
for example when no variables are selected. In the latter case the number of variables is
fixed. Due to the high number of observations of our set, the values for m−1 and m+1

are very high, such that the t-statistic will also tend to go further away from zero, thus

3.4. Selection of variables 21

resulting in a p-value very close to zero. Therefore, in our case we select the variables
that have the largest absolute t-statistics. Again we stress the importance that the vari-
ables are selected using a different set than the set scoring the nominal variables, as the
set of defaulted loans will clearly have a higher mean for a certain nominal variable on
the scoring set, so this variable is more easily selected.

Below we find in Table 3.4 the statistics of the different variables for the 1999Q1 data
set, considering a 5-year default horizon after a 2-year observation period. For both the
defaulted (negative) and the non-defaulted (positive) class we display the mean (upper
cell) and standard deviation (lower cell) of each variable and for the test of mean dif-
ferences the value of the t-statistic and the p-value. Observe that only variables from
the origination and the monthly performance file are included, since the values of the
macro-economic variables are the same for an entire (quarterly) data set.
If we, for example, want to have the 10 most significant variables for 1999Q1, we se-
lect the variables in the following order (with t-statistic): O8(−48.076), P2(−30.584),
O10(28.624), O5(−26.204), P4(−22.761), O11(21.407), O12(−21.400), O19(−18.646),
O9(−16.229) and O20(−14.936). Observe that for any data set this selection can be dif-
ferent, as some variables could have more significance in other periods.

+ class - class t-statistic p-value

O1

1.1210 1.1147
0.293 0.770

1.8162 1.0833

O2

-0.5270 -0.5125
-1.125 0.260

0.6569 0.6775

O3

359.957 360.018
-1.860 0.063

2.1509 1.6762

O4

0.0075 0.0083
-10.529 0.000

0.0030 0.0039

O5

6.7820 13.6113
-26.204 0.000

11.5917 13.3324

O6

0.0075 0.0075
0.006 0.995

0.0002 0.0002

O7

0.0075 0.0074
10.683 0.000

0.0002 0.0002

O8

75.1207 83.9616
-48.076 0.000

15.0002 9.3440

O9

30.0802 33.7682
-16.229 0.000

12.6683 11.6069

O10

126885 101035
28.624 0.000

54459 46089

O11

0.0449 0.0057
21.407 0.000

0.3632 0.2440

O12

6.9125 7.0914
-21.400 0.000

0.3252 0.4281

O13

0.0075 0.0076
-7.821 0.000

0.0006 0.0006

+ class - class t-statistic p-value

O14

-0.9551 -0.9567
0.312 0.754

0.2570 0.2348

O15

0.0070 0.0075
-11.330 0.000

0.0022 0.0025

O16

0.0075 0.0075
-8.332 0.000

0.0003 0.0002

O17

0.0075 0.0088
-5.805 0.000

0.0048 0.0118

O18

0.0075 0.0074
2.865 0.004

0.0002 0.0002

O19

0.0075 0.0076
-18.646 0.000

0.0004 0.0004

O20

0.0075 0.0081
-14.936 0.000

0.0022 0.0022

O21

0.0075 0.0079
-12.213 0.000

0.0016 0.0017

P1

1.1179 0.9750
12.049 0.000

0.7234 0.6046

P2

0.1124 1.9749
-30.584 0.000

0.4448 3.1240

P3

24.5947 24.5969
-0.057 0.954

3.0894 1.9224

P4

6.8126 7.0746
-22.761 0.000

0.8838 0.5855

TABLE 3.4: Results of mean differences test for 1999Q1

22 Chapter 3. Data properties

3.5 Data quality

Freddie Mac indicates in their FAQ (FHMLC, 2016) that there are some data anomalies
present, due to the fact that there are many data files combined into one data set, which
may result in mismatches. Three other reasons are given why there may be errors in
the data.

• Reporting errors by the seller or servicer - The data set relies on the information given
by the seller and servicer of a mortgage.

• Evolving of data quality controls - The last 16 years the control on data quality may
have been improved, such that more errors are detected and removed.

• Loan delivery requirements - The requirements set by Freddie Mac to a seller of a
mortgage have changed over time, which can result in some missing values.

Freddie Mac already applied some analysis on invalid values for five different vari-
ables in the origination file, i.e. if the values are below or above some reasonable thresh-
olds. The examples with the invalid values are not filtered out, but the values are set
to three spaces. The values are given in the next table. Also, the percentage of ‘invalid’
observations in the first and last available data set are included in Table 3.5 below.

Variable Valid values Invalid in 1999Q1 Invalid in 2015Q2

Credit score 301 ≤ CS ≤ 850 0.4% 0.0%

MI percentage (O5) 1% ≤MI ≤ 55% or 0 25.8% 0.0%

Original CLTV (O8) 0% ≤ CLTV ≤ 200% 0.0% 0.0%

Original DTI (O9) 0% < DTI ≤ 65% 0.6% 0.0%

Original LTV (O8 +O11) 6% ≤ LTV ≤ 105% 0.0% 0.0%

TABLE 3.5: Valid values for five variables in the origination file as deter-
mined by Freddie Mac

Since the observations with these values are identified by Freddie Mac using three
spaces in the entry of the corresponding variable, we could easily exclude these ob-
servations from our transformed data set. However, the other variables of such an
observation do not need to be invalid and therefore a filter is not preferred. A better
solution is to set the value of an invalid entry to a value that does not influence the co-
efficient for this variable in the support vector machine. Because of the fact that before
the model is developed a rescaling of all variables takes place, we can set these invalid
values to the average of the minimum and the maximum. Since the value is essentially
(after modification) set to zero, it does not influence the value of the objective function
given by Equation 6.29, hence it does not influence the gradient used for the update of
the target variable.

Besides the mortgages that are only in the origination file and not in the monthly
performance file (which should clearly be excluded, since we have no default informa-
tion), there are mortgages for which the monthly performance file misses some report-
ing months between the start and termination date. In the case that we need an obser-
vation in a certain missing month, we take the last month before the missing month
that is available in the data set. Since the monthly performance set contains some ob-
servations after the missing month, we certainly know that the loan has not yet gone
into default. Therefore we can at least be certain about the value of the default indicator
yi.

23

Chapter 4

Support vector machines

During the first decades of this century machine learning became one of the most im-
portant branches of information technology and it influences an ever increasing part of
our life. Self-driving cars, recommendations on Google and spam filters are all products
of machine learning. As the size of data sets increase more rapidly than the computa-
tion speed, it is a challenge to find algorithms that can still handle the available data
efficiently.

The principle idea of machine learning is to use training data to let the computer
develop a model that can make predictions about other data. Probably the best known
examples of this are linear and logistic regression (see Section 2.4). In this thesis we will
look at classification problems, where the goal is to classify our data points correctly, i.e.
to put them in the ‘right’ categories.

One of the most frequently used machine learning techniques is the so called sup-
port vector machine (SVM). It belongs to the classification problems and is a supervised
learning method. The goal of a support vector machine is to build a model, based on
training examples, that assigns a category to each new example. In its simplest form, it
separates two clusters of points by a gap, that is as large as possible.

In this chapter we will first introduce machine learning and then focus on the tra-
ditional set-up of an SVM, the so called hard-margin linear SVM. The soft-margin lin-
ear SVM and nonlinear SVM are introduced afterwards as generalizations of the hard-
margin linear SVM. Then we switch to the primal and dual formulation of the nonlinear
SVM, as the dual problem is often far more easy to solve. This chapter ends with an
brief overview of some extensions, such as an unsupervised SVM and multiclass SVM.

4.1 Definition of machine learning

We cannot start our discussion of machine learning without two famous, widely quoted
definitions of machine learning. The first one is by Arthur Samuel (Simon, 2013).

“Machine learning is the field of study that gives computers the ability to learn
without being explicitly programmed.”

The second one is a more formal definition by Tom Mitchell (Mitchell, 1997)

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E”

24 Chapter 4. Support vector machines

Machine learning can basically be divided into three categories: supervised learning,
unsupervised learning and reinforcement learning. For supervised learning, the output of
all training examples is given, whereas for unsupervised learning, the output is un-
known for all training examples. Finally, in the case of reinforcement learning, a com-
puter has to perform a certain task and reach a certain goal without being told whether
it has actually come close to the goal.

Another categorization of machine learning is based on the goal of the programs.
At first we have a classification problem. For this problem the output consists of labels
(± 1, or 1 up to n) and the goal is to predict the label of a data point based on its
input. This can be both supervised and unsupervised. In a regression, the goal is to
predict a continuous output, rather than a discrete (labeled) output. This is a supervised
problem. In clustering, the goal is to split a given set into k different clusters, which is
unsupervised most of the times.

Famous machine learning approaches are decision tree learning, which uses deci-
sion trees as a predictive model, (artificial) neural networks, which are algorithms that
are inspired by the neural networks observed in bodies, used to model complex rela-
tions between inputs and outputs, and support vector machines. The support vector
machine will be the main approach to our problem of rating the creditworthiness of
mortgage loans.

4.2 Set-up

We are given a data set of training examples (xi, yi) for i = 1, . . . ,m, with xi ∈ Rn and
we assume for the moment that yi can only attain two values. We denote these values
by ±1. The jth coefficient of xi is denoted as xi,j . The main idea of a support vector
machine is to separate the data points xi with yi = −1 from the data points with yi = 1.

4.2.1 Hard-margin linear SVM

We first look at linearly separable data, where we have the so called hard-margin linear
support vector machine. The goal is to find a vector w ∈ Rn and a scalar b ∈ R such that

wTxi + b ≥ 1 for all i with yi = 1 (4.1)

wTxi + b ≤ −1 for all i with yi = −1 (4.2)

We can rewrite the above equations to one single constraint

yi(w
Txi + b) ≥ 1 for 1 ≤ i ≤ m (4.3)

If we can find a vector w such that the above equation hold, the (n−1)-dimensional
hyperplane given by

{x ∈ Rn : wTx+ b = 0} (4.4)

separates the data points. Actually we can find infinitely many separating hyperplanes,
i.e. there are infinitely many of such vectors w, if the data is linearly separable. We call
two sets linearly separable, if there exists n + 1 real numbers w1, ..., wn, b such that∑n

j=1wjxi,j < b for all data points xi in the first set and
∑n

j=1wjxi,j > b for all data
points xi in the second set. The question is now which w is the ‘best’ to use. Clearly,
looking at Figure 4.1, we would prefer the red lineH3 to the blue lineH2, although both
lines are feasible for separating the data.

4.2. Set-up 25

FIGURE 4.1: Linear SVM with multiple separating hyperplanes.

We can accomplish this by looking at the support vectors of a hyperplane. These
are the points xi such that Equation 4.3 holds with equality, i.e. the points closest to
the hyperplane in normal direction. We want the Euclidean distance between the two
hyperplanes wTx + b = 1 and wTx + b = −1 going through the support vectors, to be
as large as possible. From linear algebra we recall that the Euclidean distance between
two parallel hyperplanes equals |c|‖w‖ , where c is the difference between the two numbers
after the equal signs, which equals 2 in this case. Maximizing this quantity is equivalent
to minimizing the norm ‖w‖ or the squared norm ‖w‖2, which is a convex function. We
can now formulate the optimization problem for hard-margin linear SVM.

min
w∈Rn,b∈R

‖w‖2 (4.5)

s.t. yi(w
Txi + b) ≥ 1 for 1 ≤ i ≤ m

4.2.2 Soft-margin linear SVM

Before we turn to algorithms for solving Problem 4.5 we take a look at the soft-margin
linear support vector machine. This is a generalization to the hard-margin linear SVM,
where the data may not necessarily be linearly separable. In this case we need to in-
troduce a cost function, which penalizes the data points that are misclassified by the
hyperplane. There are many possibilities, but the most common used is the so called
hinge loss function, which is a convex function given by

fi(w, b) = max{0, 1− yi(wTxi + b)} (4.6)

26 Chapter 4. Support vector machines

This function equals 0 if and only if Equation 4.3 holds. In this case xi is correctly
classified and ‘far’ enough from the separating hyperplane. For xi close to or on the
wrong side of the hyperplane, the function is positive and proportional to the Euclidean
distance from the hyperplane going through the support vector(s) with the same clas-
sification as the data point (xi, yi). We will add the value of the hinge loss function
averaged over all m training examples to our optimization objective, since we want to
minimize our loss from misclassifying the training examples. We allow some of the
training examples to be misclassified, so the inequality constraints do not need to hold
anymore. The optimization problem changes to the following

min
w∈Rn,b∈R

λ

2
‖w‖2+ 1

m

m∑
i=1

max{0, 1− yi(wTxi + b)} (4.7)

The parameter λ controls the trade-off between maximizing the margin, which is
achieved by minimizing ‖w‖2, and classifying as many data points xi as possible cor-
rectly, which is achieved by minimizing the averaged hinge loss function. For small
values of λ and linearly separable data we see that soft-margin SVM works almost iden-
tically to hard-margin SVM, and we will still obtain a separating hyperplane between
the two classes.

4.2.3 Nonlinear SVM

Fortunately the use of support vector machines is not limited to the linear case. This is
can be achieved by introducing a function φ : Rn → Rd, where usually d > n, which
maps xi to the vector φ(xi). One simple example of φ is the mapping that maps x to all
monomials up to a certain degree k. For example, if n = k = 2 this mapping is

φ(xi) = φ

xi,1
xi,2

 =

x2i,1

x2i,2

xi,1xi,2

xi,1

xi,2

(4.8)

Sometimes the constant function 1 is also listed as monomial. In our case we do not
include this expression, since we already have a constant intercept b that we can vary.
We call φ the monomial kernel mapping. The following lemma shows that the dimension
d of φ(x) rapidly increases with both n and k.

Lemma 4.1. The number of monomials of n variables of at most degree k equals
(
k+n
k

)
.

Proof. We prove this statement using the combinatorial method of stars and bars. We
will first show that there are

(
m+n−1

m

)
monomials of degree m. Consider the m powers

as m stars in a line. Every power (star) can be assigned to only one variable. Then we
can insert n−1 bars between these stars, to indicate which powers correspond to which
variable. Each bar marks a cut-off, i.e. the first variable goes to the power of the number
of stars before the first bar, etcetera. Obviously multiple bars can be subsequent, as a
variable can be absent in a monomial. Essentially there are n + m − 1 spots, where we
have to place m stars and n− 1 bars. The number of ways that this can be done equals(
m+n−1

m

)
, since after putting m stars into place, the other spaces are filled up with the

n− 1 bars.

4.2. Set-up 27

For k = 1 the lemma is clearly satisfied, since the number of monomials d =
(
n
1

)
= n of

degree 1 equals the number of monomials up to degree 1. Now assume that the lemma
is satisfied for degree k − 1. Then the number of monomials up to degree k equals
the sum of number of monomials up to degree k − 1 and the number of monomials of
degree k.

d =

(
k − 1 + n

k − 1

)
+

(
k + n− 1

k

)
=

(k + n− 1)!

(k − 1)!n!
+

(k + n− 1)!

k! (n− 1)!

=
k(k + n− 1)! +n(k + n− 1)!

k!n!
=

(k + n)!

k!n!
=

(
k + n

k

)
(4.9)

This closes the proof.

For example, if we have 5 variables, the number of monomials of degree up to
5 equals 252, which is already tremendously increases the computation time that is
needed.

Obviously we can think of many more difficult expressions φ, but the idea stays the
same: φ effectively maps the data points xi to a (higher) dimension, on which we hope
to be able to apply the soft- or hard-margin linear SVM, to find some hyperplane that
is separating (most of) the data linearly, as we see in Figure 4.2.

Example 4.1. Consider a set of data points (xi, yi) = (xi,1, xi,2, yi) ∈ R3 where xi,1 and xi,2
are randomly generated with mean 0, for example from a normal distribution, and yi = 1 if and
only if (xi,1)

2 + (xi,2)
2 < 1 (see the left part of Figure 4.2 below, where the red points have

yi = 1). Generally, when we have enough data points, this data is not linearly separable, but
only with a quadratic polynomial.

FIGURE 4.2: Transformation of the data set by φ

If we define the feature mapping φ by

φ(xi) = (xi,1, xi,2, (xi,1)
2 + (xi,2)

2 − 1)T (4.10)

we map the data points to a higher dimension (R3 or R4 if one includes the labels yi). In this
higher dimension, the data is clearly separable, since a point has a red label (yi = 1) if and only
if the third coordinate of φ(xi) is smaller than 0. Therefore the plane y3 = 0 separates the data
points.

It is now easy to adapt our optimization problem 4.7

min
w∈Rd,b∈R

λ

2
‖w‖2+ 1

m

m∑
i=1

max{0, 1− yi(wTφ(xi) + b)} (4.11)

28 Chapter 4. Support vector machines

4.3 Primal and dual problem

Our goal is to find the solution to Problem 4.11. We focus only on this general nonlinear
case, since both Problem 4.7 (soft-margin linear SVM) and Problem 4.5 (soft-margin
linear SVM) can be solved by setting φ(x) = x (for both cases) and λ ≈ 0 (for the latter
case).

4.3.1 Primal problem

We can return to an optimization problem with constraints by introducing a new scalar
variable ζi for 1 ≤ i ≤ m, and observe that Problem 4.11 is equivalent to the following
convex primal problem

min
w∈Rd,ζi∈R,b∈R

λ

2
‖w‖2+ 1

m

m∑
i=1

ζi (4.12)

s.t. yi(w
Tφ(xi) + b) ≥ 1− ζi for 1 ≤ i ≤ m

ζi ≥ 0 for 1 ≤ i ≤ m

Observe that both the objective function and the constraint functions are convex and
continuously differentiable. The set that we are minimizing our objective function on
is also clearly convex.

4.3.2 Dual problem

It is common to look at the corresponding dual problem.1 The Lagrangian for our opti-
mization problem is given by

L(w, b, ζ, α, β) =
1

2
‖w‖2+C

m∑
i=1

ζi −
m∑
i=1

βiζi −
m∑
i=1

αi
(
yi(w

Tφ(xi) + b)− 1 + ζi
)

(4.13)

where ζ, α, β ∈ Rm are the vectors containing all ζi, αi, βi respectively and we defined
C = 1

λm to simplify notation for later. The minus sign in front of the last terms are
due to the fact that both inequality constraints in the primal problem are of the type
g(z) ≥ 0. To find the dual problem of this convex optimization problem, we need to
minimize the Lagrangian L(w, b, ζ, α, β) with respect to our minimization variables of
the primal problem w, b and ζ, while fixing α and β. We obtain

0 = ∇wL(w, b, ζ, α, β) = w −
m∑
i=1

αiyiφ(xi) (4.14)

0 =
∂

∂b
L(w, b, ζ, α, β) = −

m∑
i=1

αiyi (4.15)

0 =
∂

∂ζi
L(w, b, ζ, α, β) = C − βi − αi (4.16)

1For a detailed explanation of duality and convex optimization we refer to Appendix A.

4.3. Primal and dual problem 29

From these equations we obtain the following useful expressions

w =
m∑
i=1

αiyiφ(xi) (4.17)

m∑
i=1

αiyi = 0 (4.18)

αi + βi = C for all 1 ≤ i ≤ m (4.19)

When we insert Equation 4.19 into the Lagrangian of Equation ?? we see that the
second term cancels out against the other terms containing ζi. Also, due to Equation
4.18, we observe that the last term simplifies and we obtain

(4.20)L(w, b, ζ, α, β) =
1

2
‖w‖2 −

m∑
i=1

αi
(
yi(w

Tφ(xi))− 1
)

Now we substitute Equation 4.17 for w in the term of the Lagrangian containing
φ(xi)

m∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj) (4.21)

We now define the kernel K : Rd × Rd → R, which in fact is an inner product

K(xi, xj) = φ(xi)
Tφ(xj) (4.22)

Typically φ(xi) has a very high dimension, and it can even be infinite. Since the ker-
nel is essentially only a number for each pair of (i, j), it is often much more convenient
to only calculate the kernel values. Combining Equations 4.21 and 4.22 we obtain

m∑
i,j=1

αiαjyiyjK(xi, xj) (4.23)

We can also substitute the expression for w in ‖w‖2

‖w‖2 =

 m∑
j=1

αjyjφ(xj)

T (
m∑
i=1

αiyiφ(xi)

)

=
m∑

i,j=1

αiαjyiyjφ(xi)
Tφ(xj)

=

m∑
i,j=1

αiαjyiyjK(xi, xj) (4.24)

We can simplify the notation still by introducing a m × m-matrix Q with Qij =
yiyjK(xi, xj). Then we can rewrite Equation 4.24 as follows

‖w‖2=
m∑

i,j=1

αiQijαj = αTQα (4.25)

30 Chapter 4. Support vector machines

Therefore the Lagrangian takes the following form

L(w, b, ζ, α, β) =
1

2
αTQα−

m∑
i=1

αi (4.26)

We can now formulate the dual problem. We take the Lagrangian from Equation 4.26
and minimize it with respect to α. Minimizing with respect to β makes no sense, since
it does not appear anymore in this expression. As usual when dealing with the dual
problem, we have the constraints αi, βi ≥ 0. Combining with Equation 4.19 we can
express these constraints as 0 ≤ αi ≤ C for this particular case. Together with the
constraint of Equation 4.18 we arrive at the following optimization problem

max
α

m∑
i=1

αi −
1

2
αTQα (4.27)

s.t. 0 ≤ αi ≤ C for all 1 ≤ i ≤ m
m∑
i=1

αiyi = 0

4.3.3 Kernels

We can use different kernels for our dual problem of the support vector machine. If we
for example consider the mapping φ of Equation 4.8, we see that the kernel K(xi, xj) is
given by

K(xi, xj) = (xi,1xj,1)
2 + (xi,2xj,2)

2 + xi,1xi,2xj,1xj,2

+ xi,1xj,1 + xi,2xj,2 (4.28)

Obviously, one can think of kernels that are much more difficult. We list the most
famous kernels:

• Homogeneous polynomial kernel: K(xi, xj) = (xTi xj)
d with d ∈ N

• Inhomogeneous polynomial kernel: K(xi, xj) = (xTi xj + c)d with d ∈ N, c ≥ 0

• Gaussian kernel: K(xi, xj) = exp
(
‖xi−xj‖2

2σ2

)
with 0 6= σ ∈ R

For both polynomial kernels it is possible, but for large d very tedious, to construct
the mapping φ explicitly. Calculating K(xi, xj) costs O(n), whereas the computation
time of φ(xi) goes as nd, since φ(xi) contains all monomials up to degree d, consisting
of the products of elements xi,1, xi,2, . . . , xi,n. Therefore it is more convenient (if nd > m)
to only keep track of the kernel values.

For the Gaussian kernel it seems impossible to construct this so called feature map-
ping φ explicitly. Such a mapping φ nonetheless exists, but it maps a data point xi to an
infinite dimensional space. Therefore, it is a big problem if we have to solve the primal
problem, and we have to turn to the dual problem, where only the matrix Q appears,
which can be calculated using this so called Mercer kernel K. Mercer’s Theorem (4.2)
shows which kernels satisfy this property (Khardon, 2008).

Theorem 4.2 (Mercer). Let K : Rn × Rn → R be given. Then K is a Mercer kernel
(also called a positive definite kernel) if and only if for any {x1, . . . xm} with m < ∞ the
corresponding kernel matrix K is symmetric positive semi-definite (PSD), where the (i, j)-
entry of K is given by Kij = K(xi, xj).

4.3. Primal and dual problem 31

4.3.4 Duality gap

As usual, when we are considering the dual problem, we look at the duality gap, which
is defined as the difference between the solution of the primal problem and the dual
problem. If there is no duality gap present (i.e. we have strong duality), solving the dual
problem is equivalent to solving the primal problem and in some cases much easier. In
this case we have strong duality, which we can prove using the Strong Duality Theorem
(Theorem A.4). If we look at the primal problem 4.12, we see that the objective function
is convex in both w and each component ζi. Furthermore, all inequality constraints are
linear and therefore convex in w, b and ζi. Also the set of feasible w, b and ζ is convex,
because this is essentially Rd+m+1. Finally, the Slater condition holds, i.e. we can find
w, b, ζi such that the constraints hold with strict inequality, just by setting ζi as large
as needed for every 1 ≤ i ≤ m. By the Strong Duality Theorem A.4 we obtain that the
optimal value of the primal problem p∗ equals the optimal value of the dual problem
d∗.

4.3.5 KKT conditions

By the Karush-Kuhn-Tucker Theorem A.5 and the following Corollary A.6 we know
that if a point (w∗, b∗, ζ∗, α∗, β∗) satisfies the KKT conditions, then (w∗, b∗, ζ∗) is a solu-
tion to the primal problem and (α∗, β∗) is a solution to the dual problem. So it seems to
be a good idea to look for points satisfying these conditions. In this particular case the
first condition of Equation A.6 can be represented as the following system of equations

0 = ∇wL(w∗, b∗, ζ∗, α∗, β∗) = w∗ −
m∑
i=1

(α∗)iyiφ(xi) (4.29)

0 =
∂

∂b
L(w∗, b∗, ζ∗, α∗, β∗) = −

m∑
i=1

(α∗)iyi (4.30)

0 =
∂

∂ζi
L(w∗, b∗, ζ∗, α∗, β∗) = C − (β∗)i − (α∗)i (4.31)

The second condition of Equation A.6 can be represented likewise.

0 =
m∑
i=1

(
(α∗)i(1− (ζ∗)i − yi(w∗φ(xi) + b∗)− (β∗)i(ζ

∗)i

)
(4.32)

Furthermore (w∗, b∗, ζ∗) and (α∗, β∗) have to be feasible for the primal and dual
problem respectively, so we have another set of constraints

yi(w
∗φ(xi) + b∗) ≥ 1− (ζ∗)i for 1 ≤ i ≤ m (4.33)

(ζ∗)i ≥ 0 for 1 ≤ i ≤ m (4.34)
(α∗)i ≥ 0 for 1 ≤ i ≤ m (4.35)
(β∗)i ≥ 0 for 1 ≤ i ≤ m (4.36)

Together, Equations 4.29-4.36 define the KKT conditions for the problem.

32 Chapter 4. Support vector machines

4.4 Extensions

There are many extensions to the three support vector machines discussed above. At
first we have support vector clustering (SVC), which is in fact a technique that uses kernels
to cluster unlabeled data, and therefore it is an unsupervised learning technique. The
choice of the so called Gaussian kernel K(x, x′) = exp{−‖x − x′‖2/σ2} results in non-
linear boundaries between the different categories. (Ben-Hur et al., 2001)

Support vector machines can also be used for linear regression. (Drucker et al., 1996)
The minimization problem of a support vector regression (SVR) is given by

min
w∈Rn,b∈R

1

2
‖w‖2 (4.37)

s.t. |yi − (wTxi + b)|≤ ε for 1 ≤ i ≤ m

where ε > 0 can be arbitrarily chosen. In this way all predictions will be in a range of ε
around the realized values yi. Observe that yi does not need to equal ±1 in this case.

4.4.1 Multiclass SVM

All types of SVMs discussed above are only capable of handling two different labels,
one negative and one positive. However, in many situations one would like to separate
the data in three or many more different categories. There are several different methods
to achieve this.

The most frequently used method is to reduce the multiclass problem into single
SVMs (Hsu and Lin, 2002). This can be done in two different ways, one-versus-all or
one-versus-one. The one-versus-all method consists of support vector machines that dis-
tinguish between one class (that is classified as +1) and all other classes together (that
are classified as −1). The one-versus-one method consists of support vector machines
for each pair of classes and the class of an observation is determined by a max-wins vot-
ing strategy. We say that a class wins a vote, if the data point is assigned to that class in
an SVM. In this case a data point belongs to the class that has the most votes.

There are also some different methods that can directly classify observations in more
than two groups using a single optimization problem, see for example Crammer and
Singer, 2001.

4.5 Summary

In this section we have seen the three basic versions of a support vector machine, the
hard-margin linear SVM, the soft-margin linear SVM and nonlinear SVM. These can all
be used to classify data into two different groups, under different circumstances. The
nonlinear SVM is the most general one, as it can handle both nonlinear boundaries and
not separable data. If the boundary is nonlinear, it can be computationally much less
expensive to look at the dual optimization problem of the SVM instead of the primal
problem. The dual problem makes use of kernels that modify the observations in the
data set. These kernels have to satisfy the Mercer Theorem which means that they are
positive definite. There are also some extensions that can generalize the nonlinear SVM.

In the next two sections we are considering which technique to use to find the mini-
mum of the primal or dual objective function of the support vector machine. Gradually
we turn to the weighted SVM, which is a modification that can handle data sets with a
large size difference between the positive and the negative class.

33

Chapter 5

Gradient descent techniques

Before we turn our attention to the stochastic gradient descent, it is good to first have
a look at the regular (batch) gradient descent (GD). The idea of the GD is to take steps
in the direction of the negative of the gradient, i.e. to the place where the value of the
values decreases. It is also known as the method of steepest descent. We will make this
more formal. There are essentially three different types of gradient descent, depending
on the way how the size of the steps is chosen. We will first look at gradient descent
with fixed or predetermined step size and thereafter introduce the concepts of backtracking
line search and exact line search.

The rest of this section will consist of several convergence results for in particular
convex functions. Also the subgradient descent, which can be used for non-differentiable
continuous convex functions and stochastic subgradient descent technique are intro-
duced.

The goal of this section is to develop some insight on the different gradient descent
techniques that can be used and come to the conclusion that the stochastic subgradient
descent algorithm is the method that is the best suitable for our problem.

5.1 Introduction of the gradient descent algorithm

5.1.1 Gradient descent with fixed step size

Let f : Rn → R be the objective function that we want to minimize. If f is continuously
differentiable in a neighborhood of some point x1 that is not a local optimum (i.e. the
gradient is nonzero), we can always take a sufficiently small step in the direction of the
negative of the gradient and end up in a point x2 for which f(x2) < f(x1). In this case
x2 is given by

x2 = x1 − γ1∇f(x1) (5.1)

for some γ1. Again, if x2 is not a local optimum, we can apply the same trick to find
a new point x3 for which f(x3) < f(x2). We hope to find a sequence {xk}∞k=1 that
converges to a local minimum, or even better, to a global minimum of the function f .
The procedure is visualized in Figure 5.1 on the next page, only with x0 as the starting
point.

The parameter γk is called the learning rate. Of course in the fixed step size-variant,
it is set to be a constant γ. It is important to look for a good learning rate, as setting γ
too high can result in overshooting a minimum, and it can even cause the series {xk}
to diverge. Setting γ too small, can result in a very long convergence time, and for
complicated functions the algorithm can get stuck in a relatively bad local minimum.

Obviously, since we only have finite computation time, we will generally not end
up exactly in the desired minimum. There are essentially three ways to determine the
‘end’ of the optimization algorithm. The first option is to abort the algorithm if for

34 Chapter 5. Gradient descent techniques

FIGURE 5.1: Gradient descent

some number of consecutive steps the function value f(xk) has decreased with at most
a small ε > 0. The second option is to terminate the algorithm after a fixed number of
observations. Finally, for some specific functions f we know when we are ε-close to the
optimum, so we can directly abort the algorithm in that case.

Example 5.1. We can use the gradient descent algorithm to find the minimum value of f(x) =
x2. Note that this function is convex, so by Theorem 5.1 of the next section we know that for a
small enough learning rate the sequence {xk}k∈N will converge to the global minimum 0.

Let us take x1 = 2 as starting point, and take as learning rate η = 0.1. Since f ′(x1) = 4,
one iteration of the gradient descent algorithm will result in x2 = 2− 0.4 = 1.6. After another
step we will end up in x3 = 1.6 − 0.32 = 1.28, and the sequence {xk} will converge to the
global minimum 0.

Now take a learning rate η = 0.25. One iteration of the gradient descent algorithm will
result in x2 = 2 − 1 = 1. After another step we will end up in x3 = 0.5, converging to the
global minimum 0, but at lot faster than in the previous case.

If we take a learning rate η = 0.75, our position after the first iteration will be x2 = 2−3 =
−1. The second point is x3 = 0.5 and we will still end up in the global minimum, but now the
values of xk are alternating in signs, and the convergence speed is the same as with η = 0.25.

For a learning rate η ≥ 1, we end up with a problem. If we take η = 2, our first two
positions are x2 = 2 − 8 = −6 and x3 = −6 + 24 = 18, and therefore the sequence of xk is
divergent. This shows that choosing the right learning rate is very important, to guarantee both
convergence and a short computation time.

5.2. Convergence of the gradient descent algorithm 35

5.1.2 Step sizes

There are numerous ways to choose a step size rule. The step sizes that are chosen the
most can basically be divided in the following classes.

• Constant step size: γk = γ independent of k.

• Constant step length: γk = γ
‖∇f(xk)‖ and therefore ‖xk+1 − xk‖= γ with γ constant.

• Square summable but non-summable:
∑∞

k=1 γ
2
k < ∞ but

∑∞
k=1 γk = ∞, for example

γk = 1
k .

• Nonsummable diminishing: limk→∞ γk = 0 but
∑∞

k=1 γk =∞.

• Backtracking or exact line search: see Section 5.2.2.

5.2 Convergence of the gradient descent algorithm

Under certain conditions, we can get some nice guarantees for convergence of the gra-
dient descent algorithm. We call a function g : Rn → R K-Lipschitz if we have for all
x, y ∈ Rn

|g(x)− g(y)|≤ K‖x− y‖ (5.2)

where ‖·‖ is the Euclidean norm on Rn. We denote this by g ∈ CK . The gradient ∇g(x)
is in this case also bounded byK. We can see this by dividing both sides by ‖x−y‖ and
taking the limit y → x.

For some specific functions, with a K-Lipschitz gradient, we have the following
convergence result.1

Theorem 5.1. If ∇f ∈ CK and f∗ := minx∈Rn f(x) > −∞, then the gradient descent algo-
rithm will converge to a stationary point using a fixed learning rate 0 < η < 2

K . Furthermore

T∑
k=1

‖∇f(xk)‖2≤
f(x1)− f∗

η
(

1− Kη
2

) <∞ (5.3)

When f is a convex function, any local optimum is also a global minimum, so con-
vergence to a global minimum is guaranteed. Observe that η = 1

K minimizes the frac-
tion in Equation 5.3 and therefore it is the optimal step size to choose. Then we have

T∑
k=1

‖∇f(xk)‖2 ≤ 2K(f(x1)− f∗) (5.4)

If we define gT = min1≤k≤T ‖∇f(xk)‖2, we have Tg2T ≤ 2K(f(x1)− f∗) and therefore

gT ≤
√

2K(f(x0)− f∗)
T

(5.5)

This at least shows that the minimum value of the gradient up to iteration T has a
bound that is decreasing with T−

1
2 . But unfortunately this tell us nothing about how

fast the algorithm converges to a stationary point. For (locally) convex functions this is
however possible.

1The proofs of the lemma and theorems in this section can be found in Gordon and Tibshirani, 2012

36 Chapter 5. Gradient descent techniques

Theorem 5.2. Let f be convex with∇f ∈ CK and x∗ be the optimal point. If γk < 1
K , we have

‖xk+1 − x∗‖≤ ‖xk − x∗‖ (5.6)

This is a nice property, but it does not tell us anything about how fast xk goes to x∗

and its rate of convergence can be arbitrarily slow. Luckily, this only depends on the
choice of our learning rate γk.

Theorem 5.3. Let f be convex with ∇f ∈ CK and x∗ be the optimal point. If γk ≤ 1
K for all

k ≤ T we have

f(xT)− f(x∗) ≤ ‖x1 − x∗‖2∑T
k=1 γk

(
1− Kγk

2

) (5.7)

We see that the denominator of Equation 5.7 is maximized if γk = 1
K and in this case

f(xT)− f(x∗) ≤ 2K‖x1−x∗‖2
T . So we need at most

T =
2K‖x1 − x∗‖2

ε
(5.8)

iterations to obtain an ε-accurate solution, i.e. such that f(xT)− f(x∗) ≤ ε.

5.2.1 Strong convexity

It would seem nice, if we could also say something about how good the T th estimate
xT already is, i.e. we would like to have some estimate of f(xT) − f∗ or ‖xT − x∗‖,
independent of our choice of x1. Unfortunately, convexity alone is not strong enough
to guarantee some bound. Therefore we need the concept of strong convexity. We call f a
strongly convex function onX if there is a constantm > 0 such that∇2f(x)−mI is PSD
for all x ∈ X . We denote this by ∇2f(x) � mI . A direct implication of this definition
is that every eigenvalue of the Hessian of f is at least m. A useful consequence is the
following

Lemma 5.4. If f is strongly convex on X , we have for all x, y ∈ X

f(y) ≥ f(x) + (∇f(x))T (y − x) +
m

2
‖y − x‖2 (5.9)

Proof. By the generalized version of the mean value theorem we have for every x, y ∈ X

f(y) = f(x) + (∇f(x))T (y − x) +
1

2
(y − x)T∇2f(z)(y − x) (5.10)

where z is some point on the line segment [x, y]. Since f is strongly convex on X we
have (y − x)T∇2f(z)(y − x) ≥ m‖y − x‖2. Therefore Equation 5.9 holds.

The independent upper bound for f(xk) − f∗ and ‖xk − x∗‖ can be obtained using
the previous lemma.

Lemma 5.5. If f is strongly convex on X with parameter m we have for every x ∈ X

f(x)− f∗ ≤ 1

2m
‖∇f(x)‖2 (5.11)

‖x− x∗‖ ≤ 2

m
‖∇f(x)‖ (5.12)

5.2. Convergence of the gradient descent algorithm 37

The previous lemma has an interesting consequence. For every x ∈ X holds that
the solution x∗ is located within a ball of radius 2

m‖∇f(x)‖ around x.
We can also obtain an upper bound on f(y), if we also have an upper bound M on

the largest eigenvalue of ∇2f(x) for each x ∈ X , which we denote by ∇2f(x) � MI .
The following property then holds.

Lemma 5.6. For f with∇2f(x) �MI and all x, y ∈ X holds

f(y) ≤ f(x) + (∇f(x))T (y − x) +
M

2
‖y − x‖2 (5.13)

Proof. As in Lemma 5.5 we have by the generalized version of the mean value theorem
for every x, y ∈ X

f(y) = f(x) + (∇f(x))T (y − x) +
1

2
(y − x)T∇2f(z)(y − x) (5.14)

where z is some point on the line segment [x, y]. Since ∇2f(x) � MI we have (y −
x)T∇2f(z)(y − x) ≤M‖y − x‖2. Therefore Equation 5.13 holds.

Therefore, the condition number, which is the ratio of the largest eigenvalue and the
smallest eigenvalue of ∇2f(x), has an upper bound k = M

m . If k is close to 1 we call
the matrix well-conditioned. However, if k is much larger than 1, we call the matrix
ill-conditioned.

Most of the times m and M are not known. Therefore we cannot use them for a
termination criterion of the algorithm. But the idea is that if the gradient of f at x
is small enough, the difference between f(x) and f∗ is small. More formally, if we
stop the algorithm when ‖∇f(xT)‖≤ η, for η <

√
mε, then we have by Equation 5.11,

f(xT)− f∗ < ε.
We now arrive at the next theorem, which gives an upper bound on f(xT) − f∗ in

terms of f(x1)− f∗ using exact or backtracking line search.

Theorem 5.7. Let f satisfy for every x ∈ X

mI � ∇2f(x) �MI (5.15)

Then, using gradient descent with step size determined by exact or backtracking line search,
we have for some c < 1

f(xT)− f∗ ≤ cT−1(f(x1)− f∗) (5.16)

5.2.2 Gradient descent with line search

The idea of both backtracking line search and exact line search is to find an ideal learning
rate γk for each step. For exact line search, we choose γk along the line xk − γ∇f(xk)
such that f is minimized, i.e.

γk = arg min
γ>0

f(xk − γ∇f(xk)) (5.17)

Then we do the update xk+1 = xk − γk∇f(xk). We keep on repeating this until
‖∇f(xk)‖< ε. However, this algorithm is only useful if we can compute this minimum
analytically, which is not possible for most functions.

38 Chapter 5. Gradient descent techniques

When it is not possible to use exact line search, we can turn our attention to back-
tracking line search, which is in general much more effective and simple. We choose
two parameters 0 < α < 0.5 and 0 < β < 1. Then we start with γk = 1 and as long as

f(xk − γk∇f(xk)) > f(x)− αγk‖∇f(x)‖2 (5.18)

we keep on doing the update γk = βγk. Eventually, depending on the function f and
the parameters α an β, we have for γk small enough by a Taylor expansion

f(xk − γk∇f(xk)) ≈ f(xk)− γk‖∇f(xk)‖2

< f(xk)− αγk‖∇f(xk)‖2 (5.19)

since−∇f(x) is a direction in which f decreases and−‖∇f(xk)‖2< 0. After performing
the update xk+1 = xk − γk∇f(xk) we compute ∇f(xk+1) and repeat all steps for k =
k + 1, until ‖∇f(xk)‖< ε.

The condition that ∇f is Lipschitz is a quite realistic one, however, our strong con-
vexity condition is not easily attained. Therefore, many of the derivations on conver-
gence bounds are not that useful in practice.

Example 5.2. Let f(x) = 1
2‖z−Ax‖

2, which can be an objective function for linear regression.
Therefore

∇f(x) = −AT (z −Ax) (5.20)

∇2f(x) = ATA (5.21)

Observe that for any x, y ∈ X we have

‖∇f(x)−∇f(y)‖= ‖ATA(x− y)‖≤ λmax‖x− y‖ (5.22)

where λmax is the largest eigenvalue of ATA, which is a PSD matrix. Therefore ∇f(x) is
Lipschitz, with parameter λmax < ∞. Observe that this is equivalent to ∇2f(x) � λmaxI
for all x ∈ X . However, the strong convexity condition for f requires the existence of some
λmin > 0 such that

∇2f(x) � λminI (5.23)

which is only the case if ATA is PD, i.e. if A is non-singular.

5.2.3 Gradient descent algorithm

We can summarize the gradient descent technique into three simple algorithmic schemes.
Note that the while-condition only works if the function f is strongly convex. In all
other cases we execute line 3 and 4 of the algorithm a fixed number of times.

Algorithm 5.1 Gradient descent algorithm
1: Start with an initial guess x1, set k = 1 and choose a positive tolerance ε.
2: while ‖∇f(xk)‖<

√
ε do

3: Compute γk , either using the step size rules of Section 5.1.2 or determined by Algorithm 5.2 or 5.3.
4: Update xk+1 = xk − γk∇f(xk) and set k = k + 1.
5: end while
6: return f(xk)

5.3. Subgradient descent 39

Algorithm 5.2 Exact line search
1: return γk = argminγ>0 f(xk − γ∇f(xk))

Algorithm 5.3 Backtracking line search
1: Choose 0 < α < 0.5 and 0 < β < 1 and set γk = 1.
2: while f(xk − γk∇f(xk)) > f(xk)− αγk‖∇f(xk)‖2 do
3: γk = βγk
4: end while

5.3 Subgradient descent

Observe that the gradient descent method can only be used for differentiable convex
objective functions. We can drop the differentiability assumption by looking at the so
called subgradient. Let f : X 7→ R be a convex function for X ⊂ Rn convex, then we call
v ∈ Rn a subgradient of f at x0 if

f(x)− f(x0) ≥ vT (x− x0) (5.24)

for all x ∈ X . If n = 1, this means that the straight line y = v(x− x0) is everywhere un-
der the graph of f . In the case that f is not differentiable at the point x0, we clearly can
have multiple vectors v that satisfy Equation 5.24 and we call the set of all subgradients
at x0 the subdifferential at x0, which is denoted by ∂f(x0). The following lemma holds.2.

Lemma 5.8. Let f : X 7→ R be a convex function with X ⊂ Rn a convex set. Then we have
the following properties for x0 ∈ int(X)

• The subdifferential of f at x0 is a non-empty convex set.

• x0 is a global minimum of the function f if and only if 0 is contained in the subdifferential
of f at x0.

If f is differentiable at x0, ∇f(x0) satisfies the subgradient property. As is stated in
the next theorem, this is the only element of the subdifferential at x0.

Theorem 5.9. Let f : X → R be a convex function with X ⊂ Rn a convex set. Then f is
differentiable at x0 if and only if ∂f(x0) = {∇f(x0)}.

Furthermore, strong convexity is also defined for convex functions without differ-
entiability. Analogous to Lemma 5.5, a convex function f is m-strongly convex on X if
we have for all x, y ∈ X and all subgradients g of f at x

f(y) ≥ f(x) + gT (y − x) +
m

2
‖y − x‖2 (5.25)

In the gradient descent algorithm we have the update xk+1 = xk − γk∇f(xk). Since
∇f(xk) may not be defined if we drop the differentiability assumption, we replace this
by a subgradient gk of f at xk, i.e.

xk+1 = xk − γkgk (5.26)

2The proofs of the lemma and theorems in this section can be found in Boyd, Xiao, and Mutapcic, 2003
and Balder, 2010

40 Chapter 5. Gradient descent techniques

There is a possibility that gk is not a descent direction, for example if we have f(x) =
(|x1|+|x2|). At xk = 0 we can take gk = (0.5, 0)T . Clearly gk ∈ ∂f(xk), but f(xk−γkgk) =
|0.5γk|> 0 = f(xk) for any γk > 0. Therefore, after every step we set

f (best)
k = min{f (best)

k−1 , f(xk)} (5.27)

to keep track of the minimal value achieved up to that moment. Clearly this will be a
decreasing sequence with a limit, possibly equal to −∞.

5.3.1 Convergence results for the subgradient descent algorithm

Also, in the subgradient method we can look at the convergence properties. Since we
have dropped the differentiability assumption, we cannot adopt the arguments of the
previous section, since we cannot assume that∇f(xk) ∈ CK . Instead of this we assume
that the subgradients are uniformly bounded in norm, i.e. if for all k,

‖gk‖2:= sup{g|f(x)− f(xk) ≥ g(x− xk) ∀x ∈ X} < G (5.28)

This for example happens if f is K-Lipschitz, since for all x, y ∈ X we then have

K‖x− y‖≥ |f(x)− f(y)|≥ ‖g‖‖x− y‖ (5.29)

i.e. ‖g‖2≤ K.

Theorem 5.10. Let f be convex and assume that there is a G <∞ such that ‖gk‖2≤ G for all
k. Then we obtain the following bound

f
(best)
T+1 − f

∗ ≤
‖x1 − x∗‖2+G2

∑T
k=1 γ

2
k

2
∑T

k=1 γk
(5.30)

Depending on the chosen step size we get different convergence bounds. If we
consider a constant step size γk = γ we obtain

f
(best)
T+1 − f

∗ ≤ ‖x1 − x
∗‖2+G2Tγ2

2γT
→ G2γ

2
(5.31)

The optimal bound for this expression is attained at γk = ‖x1−x∗‖
G
√
k

. In that case we
obtain according to Tibshirani, 2012

f
(best)
k − f∗ ≤ ‖x0 − x

∗‖G√
k + 1

(5.32)

However, this learning rate is not realistic, as we do not know ‖x0−x∗‖ in advance.
Therefore we propose γk = 1

λG
√
k+1

. This results in, for small λ,

f
(best)
k − f∗ ≤

λ‖x0 − x∗‖+ 1
λ

2
√
k+1
G

→ G

2λ
√
k + 1

(5.33)

Finally, we call a function f strongly convex with parameter m if

f(y) ≥ f(x) + gT (y − x) +
m

2
‖y − x‖2 (5.34)

holds for all x, y ∈ X and all subgradients g ∈ ∂f(x).

5.4. Stochastic (sub)gradient descent 41

5.3.2 Subgradient descent algorithm

We also summarize the subgradient descent technique in an algorithmic scheme. Again,
the while-condition is working if we are dealing with a strongly convex function f . In
all other cases we execute lines 5-7 a fixed number of times.

Algorithm 5.4 Subgradient descent algorithm
1: Start with an initial guess x0 and set k = 0, and choose a positive tolerance ε.
2: Choose a step size rule and calculate the value η such that f(xk)− f∗ < ε if ‖gk‖< η.
3: Set f (best)0 = f(x0).
4: while ‖gk‖< η do
5: Choose a subgradient gk of f at xk and compute γk .
6: Update xk+1 = xk − γkgk and set f (best)k+1 = min{f(xk+1), f

(best)
k }

7: Set k = k + 1.
8: end while
9: return f

(best)
k .

5.4 Stochastic (sub)gradient descent

While the (sub)gradient descent algorithm is quite efficient for small data sets and
smooth convex functions, things can get really nasty if the size of the data set gets
huge or the function has non-global extremal points. One of the solutions to these is-
sues is the stochastic gradient descent. Instead of computing the gradient of the objective
function with respect to all observations, we choose one observation at random and
compute the gradient with respect to this observation. Therefore the method is called
stochastic.

We will make this idea more formal. Consider an objective function based on m
(training) observations, which we can write as

f(x) = f0(x) +
1

m

m∑
i=1

fi(x) (5.35)

where fi only depends on the value of observations i and f0 is independent of the
observations. Then the stochastic gradient restricted to observation i equals

∇(i)f(x) = ∇f0(x) +∇fi(x) (5.36)

We call this an individual gradient. As in the gradient descent algorithm (Equation 5.1),
the target variable x is updated using this gradient, given by

x1 = x0 − γ0∇(i)f(x0) (5.37)

The choice of the learning rate γk is important, as it highly influences whether or not
the stochastic gradient descent converges, especially when the function has many local
extremal points. For a gradient descent algorithm, as the objective function approaches
its global minimum, the (total) gradient obviously converges to zero. However, this
does not need to happen with the individual gradients. Therefore, choosing a constant
learning rate for the stochastic gradient descent is not favorable, as the objective func-
tion will continue to fluctuate a lot around the optimal value. This problem can be
fixed by taking a diminishing learning rate, which causes this fluctuation to disappear
eventually. As we see in Figure 5.2 on the next page, the GD algorithm proceeds a lot
smoother to the optimal value than the SGD algorithm.

42 Chapter 5. Gradient descent techniques

FIGURE 5.2: Stochastic gradient descent (red) vs. gradient descent
(black)

There are several advantages of the stochastic gradient descent compared to the
normal GD. If we have a function with many local minima, once a gradient descent
algorithm has come close to a local minimum, it will stay there, since the gradient up-
date generally forces the objective function to go the nearby minimum. The stochastic
gradient descent algorithm can iterate between the differnt local minima, because the
individual gradients do not need to direct the objective function to a local minimum.
Depending on the characteristics of the function and the chosen learning rate, the SGD
algorithm will usually end up in one of the ‘better’ local minima. Besides that, since the
individual gradient is far more easy to compute if m is large, one iteration of the SGD
algorithm is far less costly than a GD algorithm. Of course, the SGD algorithm needs
many more iterations than the GD algorithm, but it is shown that for large data sets, a
value close to the optimal value can be reached in a much shorter time period.

There exists also a subgradient version of the stochastic gradient descent. In this
case, instead of taking a v ∈ Rn such that for fixed x0 ∈ X we have

f(x)− f(x0) ≥ vT (x− x0) (5.38)

for all x ∈ X ⊂ Rn, we take a random vector v̂ ∈ Rn such that E[v̂] = v and v satisfies
the above equation. The update rule for the subgradient descent algorithm stays the
same as before, except that we do not take a minimum such as in Equation 5.27, since
the stochastic (sub)gradient descent algorithm does not requires the objective function
to decrease with every iteration. Furthermore the convergence rates, as given in the
next section are the same for the stochastic subgradient descent algorithm as for the
stochastic gradient descent algorithm, in contrary to the non-stochastic case.

In Section 6.2 the so called averaged stochastic gradient descent is introduced. Using
that technique the output of the model is not simply the final iterate of the algorithm,
but some sort of average over the previous iterations.

5.4. Stochastic (sub)gradient descent 43

5.4.1 Convergence results of SGD algorithms

There are several studies discussing the convergence and convergence rate of the stochas-
tic (sub)gradient descent algorithm. They all require some kind of convexity for the ob-
jective function f and some constraint on the norm of the (sub)gradients. The following
theorem, including a proof, can be found in Shamir and Zhang, 2013 (Theorem 1).

Theorem 5.11. Suppose f is λ-strongly convex and E[‖v̂t‖2] ≤ G2 for all iterates t. Consider
SGD with step sizes ηt = 1/λt. Then for any number of iterations T > 1 we have

E[f(xT)− f(x∗)] ≤ 17G2(1 + log T)

λT
(5.39)

This theorem assures us that, at least in expectation, the objective function will con-
verge to the optimal value with rate log T/T , whereas for certain strongly convex func-
tions the gradient descent algorithm obtains a much faster looking convergence rate
1/cT (Theorem 5.7). However, taking into account that the time needed for one itera-
tion of the SGD algorithm is independent of the number of observations, whereas the
time needed for one iteration of the GD algorithm grows linearly with the size of the
data set, we see that the SGD algorithm may still converge faster at first. Therefore the
SGD algorithm is a good alternative when the amount of time is the limiting factor.
Nonetheless, as time continues, because of the exponential convergence rate, the GD
algorithm will outperform the SGD algorithm regardless of the size of the data set.

The SGD algorithm is also useful for objective functions that are convex but not
strongly convex, as the following theorem shows. This only works if the size of the set
X of feasible x is small enough, i.e. at least bounded. The proof of this theorem can also
be found in Shamir and Zhang, 2013 (Theorem 2).

Theorem 5.12. Suppose f is convex and for some constants D,G it holds that E[‖v̂t‖2] ≤ G2

for all iterates t, and for all x, x′ ∈ X we have ‖x − x′‖ < D. Consider SGD with step sizes
ηt = c/

√
t where c > 0. Then for any number of iterations T > 1 we have

E[f(xT)− f(x∗)] ≤
(
D2

c
+ cG2

)
2 + log T√

T
(5.40)

5.4.2 Stopping criteria

For the (sub)gradient descent method, we can set a stopping criterion based on size
of the norm of the (sub)gradient. However, for the stochastic gradient method, we
cannot do such a thing as the norm of an individual gradient will generally not tend
to zero close to a local minimum and the total gradient should not be calculated in
the SGD algorithm. At first we can define a stopping criterion for the algorithm by
setting a maximum number of iterations or a maximum amount of time. This is quite
straightforward and does not lead to unexpected situations. Secondly, we can base
our stopping criterion on some improvement threshold, i.e. the algorithm stops if the
objective function f has not decreased by at least ε% in the past τ iterations of the
algorithm. The idea is that we have come so close to a local minimum, such that it is
not that useful to perform any more updates. For a gradient descent algorithm with a
strongly convex function, this would be a perfect stopping criterion, since convergence
always takes place. However, since for a SGD algorithm we only have convergence
in expectation, this can lead to situation in which we are getting even further away
from a local minimum, but the algorithm is stopped due to the improvement threshold.
Therefore, in the case of the SGD algorithm, it is better to use the stopping criterion
based on a maximum number of iterations or a maximum amount of time.

44 Chapter 5. Gradient descent techniques

5.4.3 Stochastic gradient descent algorithm

Below we see a formal scheme for the simple stochastic gradient algorithm, with a
stopping criterion based on a maximum number of iterations. Note that this maximum
is not bounded by the number of observations, as an observation can be used multiple
times in the algorithm.

Algorithm 5.5 Stochastic gradient descent algorithm
1: Start with an initial guess x0, set k = 0, take a diminishing learning rate γk and choose a maximum number of

iterations T .
2: for 0 ≤ k ≤ T − 1 do
3: Take i between 1 and m randomly.
4: Compute the learning rate γk and the individual gradient∇(i)f(xk).
5: Update xk+1 = xk − γk∇(i)f(xk) and set k = k + 1.
6: end for
7: return f(xT)

The version with a subgradient is quite similar to this scheme, with the exception of
line 4. For the stochastic subgradient descent algorithm, a subgradient is computed in
this line.

5.5 Summary

In this chapter we have seen several algorithms to perform an optimization of some
objective function, namely the (sub)gradient and the stochastic (sub)gradient descent
algorithm. All algorithms are based on computing a (sub)gradient, which points into
a direction of fastest increase. The algorithm consists of performing an update of the
target variable into the direction of fastest decrease, i.e. in the direction of the nega-
tive gradient. If the objective function is (locally) convex, we can usually obtain some
convergence rate for the objective function to go to a (local) minimum. The stochastic
(sub)gradient descent algorithm is preferred over the (sub)gradient descent algorithm
in the case of a function with many local minima, since the GD algorithm easily gets
stuck in a non-optimal local minimum. However, the SGD algorithm only converges in
expectation, where the GD algorithm converges absolutely.

Also many results about convergence (rates) were stated for all these algorithms.
We summarized these results in Table 5.1 below. Note that for a comparison of the SGD
algorithm and the GD algorithm, we have to take into account that one iteration of the
GD algorithm involves calculating m individual gradients, whereas the SGD algorithm
only calculates one gradient per iteration. If we use an ‘easy’ learning rate, such as
γk = 1/(λk+ λ0), the computation of the gradients will be the main contribution to the
total time used. Therefore we display the convergence rate in terms of calculations of
individual gradients.

Algorithm Convex Strongly convex

Gradient descent m/T -

Gradient descent with exact line search - 1/cT/m

Gradient descent with backtracking line search - 1/cT/m

Subgradient descent
√

m/T
√

m/T

Stochastic (sub)gradient descent log T/
√
T log T/T

TABLE 5.1: Convergence rates of gradient descent algorithms

5.5. Summary 45

As we have seen, the gradient descent algorithm will turn out to perform much
faster (and also converges not only in expectation) in the limit T → ∞, but for small T
and large m, using the stochastic gradient descent can result in an important improve-
ment. This is illustrated in Figure 5.3 below for a λ-strongly convex function.

FIGURE 5.3: Convergence of SGD algorithm (red) and GD algorithm
(blue)

On the x-axis we see the number of iterations, i.e. the number of computations for
the individual gradients and on the y-axis we see the (expected) loss. Generally we do
about 100,000 to 10,000,000 iterations for the development of our model, so if we have
a λ-strongly convex differentiable function it is not clear which algorithm to use.

FIGURE 5.4: Graph of hinge loss function

However, since the objective function f is non-differentiable, due to the hinge loss
term (see Figure 5.4 above), we definitely have to choose between the subgradient
method and the stochastic subgradient method. The asymptotic convergence rate of
the subgradient method equals G

2λ
√
T/m

, with learning rate γk = 1
λG
√
k

. For the stochas-

tic version with learning rate γk = 1
λk we have a convergence rate of 17G2(1+log(T))

λT . If
we put in reasonable values for G, λ, T and m (100, 10−6, 106 and 106 respectively), we
observe a value of 5 ∗ 107 for the convergence rate of the subgradient method and a
value of 2.52 ∗ 106 for the stochastic subgradient method. In Figure 5.5 below, we also
show a plot of both convergence rates as a function of G (for T = m = 1

λ = 106).

46 Chapter 5. Gradient descent techniques

FIGURE 5.5: Convergence rates of stochastic subgradient descent (blue)
and subgradient descent (red) as a function of G

In this figure above we see G on the x-axis, and the (expected) loss on the y-axis
of the (stochastic) subgradient descent algorithm. Experience shows that G is between
1 and 1000, so the stochastic subgradient descent algorithm is preferred over the non-
stochastic version.

Throughout the rest of the thesis we will mostly use the term stochastic gradient de-
scent algorithm or SGD algorithm instead of the stochastic subgradient descent algorithm,
as this is common in literature.

47

Chapter 6

Weighted SVM and averaged SGD

During the developmental period of this thesis, we have tried many different ways
to implement an SVM to the data set of FHLMC, in particular the dual version with
kernels. However, the so called weighted support vector machine (wSVM), a modification
that we initially conceived ourselves (however the idea is also present in a few other
papers that can be found in Section 6.1), showed by far the most promising results.

In this chapter we will focus on this weighted SVM combined with the technique
of the averaged stochastic gradient descent. We have found a proof for three new the-
orems concerning the performance of these two topics. They all should give us an
intuition why this technique works.

6.1 Weighted SVM

For a general non-linear support vector machine, the objective function is given by

f(w, b) =
λ

2
wTw +

1

m

m∑
i=1

max{0, 1− yi(wTφ(xi) + b)} (6.1)

In the case that the data is not (non-linearly) separable and one class has significantly
more data points than the other, we can introduce a weighted version of SVM. This can
be done by multiplying the hinge-loss function if yi = −1 by a weight z > 0 and if
yi = +1 by a weight 1

z . The objective function for weighted SVM is therefore

f(w, b, z) =
λ

2
wTw +

1

m

m∑
i=1

(
1

z

)yi
max{0, 1− yi(wTφ(xi) + b)} (6.2)

Clearly as z → 0, the minimum value of the mapping (w, b) 7→ f(w, b, z) is attained
at (0, 1), since the contribution of the data points in the positive class to the cost function
will dominate the contribution of the data points in the negative class, i.e. all loans are
predicted not to go into default. For the same reason, as z →∞, the minimum value of
this mapping is attained at (0,−1), i.e. all loans are predicted to go into default. These
outcomes are not interesting to us, since they do not give us any division of the data
in two groups with a different PD. Theorem 6.1 shows that under very mild conditions
there exists some z∗ for which we obtain a non-trivial solution that actually divides the
data in two different groups.

48 Chapter 6. Weighted SVM and averaged SGD

We use the following definitions

PD =
1

m

m∑
i=1

1{yi = −1} (6.3)

m− = m · PD =
m∑
i=1

1{yi = −1} (6.4)

m+ = m · (1− PD) =
m∑
i=1

1{yi = +1} (6.5)

G1 = {(xi, yi) : (w∗)Tφ(xi) + b < 0} (6.6)

G2 = {(xi, yi) : (w∗)Tφ(xi) + b > 0} (6.7)

PD1 =
1

|G1|
∑

i:(xi,yi)∈G1

1{yi = −1} (6.8)

PD2 =
1

|G2|
∑

i:(xi,yi)∈G2

1{yi = −1} (6.9)

Theorem 6.1. Let {(xi, yi)}mi=1 be a data set with 0 < PD < 1 and φ : Rn → Rd be any
feature mapping. Assume that for at least one coordinate j between 1 and d the total sum of
(φ(xi))j over all data points with yi = −1 is different from the total sum over all data points
with yi = +1, i.e.∑

i:yi=−1
(φ(xi))j 6=

∑
i:yi=+1

(φ(xi))j (6.10)

Then there exists z∗ ≥ 0, w∗ ∈ Rd, b∗ ∈ R and λ > 0 such that

f(w∗, b∗, z∗) < min{f(0, 1, z∗), f(0,−1, z∗)} (6.11)
G1 6= ∅ 6= G2 (6.12)

i.e. we have a non-trivial global minimum of (w, b) 7→ f(w, b, z∗) and the separating equation
(w∗)Tφ(xi) + b separates the data in two non-empty groups.

Proof. Observe that 0 < PD < 1 implies that there exists at least one data point in each

of the two classes, so m ≥ 2. Let z∗ =
√

1−PD
PD . Then we see for b ∈ [−1, 1]

f(0, b, z∗) =
z∗

m

m∑
i=1

1{yi = −1, b ≥ −1}(1 + b)

+
1

z∗m

m∑
i=1

1{yi = +1, b ≤ 1}(1− b) (6.13)

=
z∗

m

m∑
i=1

1{yi = −1}(1 + b) +
1

z∗m

m∑
i=1

1{yi = +1}(1− b)

=
z∗

m
m−(1 + b) +

1

z∗m
m+(1− b)

=

√
1− PD
PD

m

m
· PD(1 + b) +

√
PD

1− PD
m

m
· (1− PD)(1− b)

= 2
√
PD(1− PD) (6.14)

6.1. Weighted SVM 49

Clearly, this is independent of b. By convexity of the function (w, b) 7→ f(w, b, z), we
know that we must have for b ∈ [−1, 1]

f(0, b, z∗) = min
b′∈R

f(0, b′, z∗) (6.15)

Our goal is to prove the existence of a vectorw∗ ∈ Rd (that is necessarily non-zero by
the above argument) and b∗ ∈ R such that f(w∗, b∗, z∗) < 2m

√
PD(1− PD). Now we

use the total sum-condition of the theorem. Assume without loss of generalization that
the LHS of Equation 6.10 is less than the RHS. For notational convenience we use xi,j =
(φ(xi))j and w∗i = wi as we set w∗j = 0 for all coefficients j 6= i. We can also assume
that we have 0 ≤ xi,j ≤ 1 for all i, otherwise we can modify our feature mapping φ
to achieve this. By the same reasoning we can assume the existence of i, i′ such that
xi,j < 0.5 and xi′,j > 0.5, since m ≥ 2. Therefore, by taking w∗ = 2 and b∗ = −1, we
obtain −1 ≤ w∗xi,j + b∗ ≤ 1 for all 1 ≤ i ≤ m. Observe that we have in that case

f(w∗, b∗, z∗) =
λ

2
(w∗)2

+
z∗

m

m∑
i=1

1{yi = −1, w∗xi,j + b∗ ≥ −1}(1 + (w∗xi,j + b∗))

+
1

z∗m

m∑
i=1

1{yi = +1, w∗xi,j + b∗ ≤ 1}(1− (w∗xi,j + b∗))

= 2λ+
z∗

m

m∑
i=1

1{yi = −1}2xi,j

+
1

z∗m

m∑
i=1

1{yi = +1}(2− 2xi,j)

= 2λ+
2m+

z∗m
− 2m+

z∗m

∑
i:yi=+1

xi,j +
2z∗m−
m

∑
i:yi=−1

xi,j

= 2
√
PD(1− PD) + 2λ

− 2
√
PD(1− PD)

 ∑
i:yi=+1

xi,j −
∑

i:yi=−1
xi,j

< 2
√
PD(1− PD) = f(0,−1, z) = f(0, 1, z) (6.16)

by choosing λ such that

0 < λ <
√
PD(1− PD)

 ∑
i:yi=+1

xi,j −
∑

i:yi=−1
xi,j

 (6.17)

This is possible since 0 < PD < 1 and because of the total sum-condition of xi,j .
This proves that there is a non-trivial minimum of the function (w, b) 7→ f(w, b, z) for
z = z∗, w∗i = 2 and b = −1. By the existence of some indices i, i′ for which xi,j < 0.5
and xi′,j > 0.5, we also obtain G1, G2 6= ∅.

50 Chapter 6. Weighted SVM and averaged SGD

Theorem 6.1 is nice in the sense that our weighted SVM is guaranteed to have a

nontrivial division of the data into two groups for z∗ =
√

1−PD
PD . One would assume

that PD1 > PD2 by the definition of G1 and G2. However, a very simple example
shows us that this is not the case.

Example 6.1. Consider the data set {(0, 1), (0.95, 1), (1, 1), (0.55,−1), (0.6,−1)}, where the
final coordinate as usual is the positive or negative label. Clearly PD = 0.4 and we have∑

i:yi=−1
xi = 1.15 < 1.95 =

1

m+

∑
i:yi=+1

xi (6.18)

Therefore, all conditions of Theorem 6.1 are satisfied and we have for w∗ = 2 and b = −1

G1 = {(0, 1)} (6.19)
G2 = {(0.95, 1), (1, 1), (0.55,−1), (0.6,−1)} (6.20)

Therefore the PD of the first set equals 0, whereas the PD of the second set equals 0.5.

Nonetheless, if the conditions of Theorem 6.1 hold, we can find a w∗ and a b∗ such
that PD1 < PD2.

Theorem 6.2. Let the conditions of Theorem 6.1 hold. Then there exist w∗ ∈ Rn, b∗ ∈ R such

that for z∗ =
√

1−PD
PD we have G1, G2 6= ∅ and PD1 > PD2.

Proof. We use the same assumptions and notational convenience as in Theorem 6.1,
preceding Equation 6.16.

Now assume to the contrary that there does not exist a w∗ > 1 and b∗ = −1 for
which G1, G2 6= ∅ and PD1 < PD2. Sort the data points {(xi, yi)} on the value of the
coordinate xi,j , such that xi,j ≤ xi′,j for i < i′ and if xi,j = xi′,j we have yi ≥ y′i, i.e. in
the case of a tie the elements of the positive class come first in the sorted list. We still
denote the sorted data points by {(xi, yi)}mi=1. Also let {(ξ−i , yi)}

m−
i=1 and {(ξ+i , yi)}

m+

i=1 be
a sorted list of the negatively and positively classified data points respectively.

Take somew∗ > 1, thenG1 = {(xi, yi) : xi,j <
1
w∗ }. For somew∗ ∈ [1,∞) this set and

G2 are non-empty, for example for w∗ = 2. Denote W = {w∗ ∈ [1,∞) : G1 6= ∅ 6= G2}.
For every w∗ ∈W we have PD1 ≥ PD2, i.e. PD1 ≥ PD. By definition we then have

|G1|≥
1

PD

∑
i:(xi,yi)∈G1

1{yi = −1} (6.21)

Define s = 1
PD . Observe that, since in case of a tie the positively classified points

are listed first, at least the first dse − 1 elements of the sorted list must have yi = +1,
otherwise Equation 6.21 does not hold for the set G1 containing all elements of the
list up to and including the first negatively classified point. Therefore the first dse − 1
elements of the sorted list have an average value for xi,j that is at most the value of the
jth coordinate of the first negatively classified data point, i.e.

1

dse − 1

dse−1∑
i=1

ξ+i,j ≤ ξ
−
1,j (6.22)

6.1. Weighted SVM 51

Moreover, using the same argument, if we have k negatively classified data points in
G1 we must have at least dkse − k positively classified data points in G1 to let Equation
6.21 be satisfied. By induction we see that for K ≤ m−

K∑
k=1

1

ωk

dkse−k∑
i=d(k−1)se−(k−2)

ξ+i,j ≤
K∑
k=1

ξ−k,j (6.23)

where the coefficient ωk is defined as

ωk = (dkse − k)− (d(k − 1)se − (k − 1)) = (dkse − d(k − 1)se)− 1

=

{
dse − 1 if (k − 1)s ∈ Z
dse − 2 if (k − 1)s 6∈ Z

(6.24)

To obtain a contradiction with the average-value condition, we want to obtain

1

m−

m−∑
k=1

ξ−k,j ≥
1

m+

m+∑
i=1

ξ+i,j (6.25)

Observe that dm− · se − m− = m+, since dm− · se − m− 6= m+ would imply that
m = m+ + m− 6= dm−PDe = dme = m, which leads to a contradiction. Therefore we can
simply takeK = m− in Equation 6.23 and divide bym− to obtain the desired inequality.

The only problem we have to deal with now are the coefficients 1
ωk

. Write s = p
q

where p and q do not have a common prime factor. Then clearly (k − 1)s ∈ Z if and
only if (k− 1) | q. First assume q = 1. Then s ∈ Z so ωk = s− 1 for all k. If we insert this
into Equation 6.23 and divide both sides by m− = (1 − PD)m = s−1

s m = (s − 1)m+

and we directly obtain Equation 6.25. For q ≥ 2 we let r = q − p(mod q), such that
dse − s = r

q . Now we obtain the following series of (in)equalities.

q∑
i=1

ξ−i,j ≥
q∑

k=1

1

ωk

dkse−k∑
i=d(k−1)se−(k−2)

ξ+i,j

=
1

dse − 1

dse−1∑
i=1

ξ+i,j +
1

dse − 2

qs−q∑
i=dse

ξ+i,j

=
1

s− 1

q(s−1)∑
i=1

ξ+i,j +
(1

dse − 1
− 1

s− 1

) dse−1∑
i=1

ξ+i,j

+
(1

dse − 2
− 1

s− 1

) q(s−1)∑
i=dse

ξ+i,j

=
1

s− 1

q(s−1)∑
i=1

ξ+i,j +
s− dse
s− 1

1

dse − 1

dse−1∑
i=1

ξ+i,j

+
s− dse+ 1

s− 1

1

dse − 2

q(s−1)∑
i=dse

ξ+i,j

52 Chapter 6. Weighted SVM and averaged SGD

q∑
i=1

ξ−i,j ≥
1

s− 1

q(s−1)∑
i=1

ξ+i,j −
r

q(s− 1)

1

dse − 1
(dse − 1)ξ+dse,j

+
1− r

q

s− 1

1

dse − 2
(dse − 2)(q − 1)ξ+dse,j

=
1

s− 1

q(s−1)∑
i=1

ξ+i,j +
1

q(s− 1)
((q − 1)(q − r)ξ+dse,j − rξ

+
dse,j)

≥ 1

s− 1

q(s−1)∑
i=1

ξ+i,j (6.26)

The second inequality comes from the fact that {ξ+i,j}
m+

i=1 is a sorted list, so ξ+i,j ≤ ξ+dse,j
for all i ≤ dse−1 and ξ+i,j ≥ ξ

+
dse,j for all i ≥ dse. The third inequality comes from the fact

that q − 1 ≥ r and q − r ≥ 1. Since PD = 1
s = q

p we have m− = m · PD = qmp . Clearly
m
p ∈ Z since p and q do not have a common factor. Therefore we obtain by induction

from Equation 6.26

1

m−

m−∑
i=1

ξ−i,j ≤
1

m−(s− 1)

m+∑
i=1

ξ+i,j =
PD

m−

1

1− PD

m+∑
i=1

ξ+i,j

=
1

m+

m+∑
i=1

ξ+i,j (6.27)

This closes the proof of the theorem.

The ideal situation would be that we can calculate a z∗, so essentially a PD, such
that we can control either the sizes of the sets G1 and G2 or the values of PD1 and PD2.
However, since these depend entirely on the internal structure of the data, such as the
clustering of points, we cannot give general results on these matters. Our solution
for this problem is to split your training set into two different sets, a building set and a
validation set. Using the building set we develop different models with different values
for z∗, where the validation set chooses the model that obtains the value for G1 (or PD1

etc.) that is closest to our desired value.
The idea of a weighted SVM is not entirely new, but also proposed and investigated

in some other articles (Yang, 2005 & Huang, 2005 & Qiao and Zhang, 2015 & Lapin,
Hein, and Schiele, 2014). The focus of these articles is mostly to put weights on those
observations that are labeled as more important, or more significant for the prediction.
In some sense this model also acts the same way, i.e. the (rare) defaulted loans are
regarded as more important than the non-defaulted loans, if we set z high enough.

6.2 Convergence of averaged SGD

To obtain a solution for the weighted SVM problem we use the averaged stochastic gradi-
ent descent. We perform an averaging over all or a subset of the iterations of w. This is
needed because of the use of the weighted SVM, as a sequence of negatively labeled ex-
amples (with large weight) at the end of the development can lead to a huge deviation
in the coordinates of w. This causes the SVM to predict that all examples are negatively
labeled. By using an averaging scheme (with the right weights), this unfavorable event
is ruled out.

6.2. Convergence of averaged SGD 53

As is done in most articles about SGD, we slightly modify our objective function of
Equation 6.2, to remove the parts containing a b from the equation. Define φ′ : Rn 7→
Rd+1 for any φ : Rn 7→ Rd as φ′(x) = (φ(x), 1). Also define wb ∈ Rd+1 as wb = (w, b).
Then we obtain

wTφ(xi) + b = wTb φ
′(xi) (6.28)

As we see, for m large and λ small (a value of 10−5 or 10−6 is often used) the second
term of Equation 6.2 will dominate the expression, even for large values of w and b,
since the second term is an average over a set of positive values. Therefore, replacing
wTw with wTb wb in the second term will not do much harm, as they only differ a term
bT b from each other. Using this we obtain a new objective function (where we renamed
wb to w and φ′ to φ)

f(w, b) =
λ

2
wTw +

1

m

m∑
i=1

(
1

z

)yi
max{0, 1− yiwTφ(xi)} (6.29)

There are several types of averaging schemes proposed in Shamir and Zhang, 2013.
At first we can look at the α-suffix averaging, which essentially takes the average value
of w over the last αT iterates, where α ∈ (0, 1), i.e.

w̄αT =
1

αT

T∑
t=(1−α)T+1

wt (6.30)

However, this is not pleasant if we do not know the total number of iterates T in
advance, as we have to store all values of w in our memory. Therefore we could also
choose to average all iterates on-the-fly, such that for all t

w̄t =

(
1− 1

t

)
w̄t−1 +

1

t
wt (6.31)

We essentially compute the average of all iterates of w. This is proven to be subop-
timal in Rakhlin and Shamir, 2012, but at least it is easy to compute.

We now analyze a new averaging scheme called exponential-decay averaging, which
puts more weight on recent observations, but can also be computed on-the-fly, without
having to store the values of w. For a given α ≥ 0 we define

w̄T =

∑T−1
t=0 α

twT−t∑T−1
t=0 α

t
=

1

C

(
wT + αwT−1 + ...+ αT−1w1

)
(6.32)

If α → 0, then w̄T → wT , i.e. only the final observation of w is taken int account. If
α = 1, we see that we exactly obtain Equation 6.31 again.

It is interesting if this averaging scheme leads to a converging result, at least for λ-
strongly convex functions. Observe that our objective function f given by Equation 6.29
is λ-strongly convex, according to the strongly convex definition for non-differentiable
convex function in Equation 5.25 (see Rakhlin and Shamir, 2012). Also observe that
indeed w̄T can be computed only using w̄T−1 and wT , since

54 Chapter 6. Weighted SVM and averaged SGD

w̄T =

∑T−1
t=0 α

twT−t∑T−1
t=0 α

t
=
α
∑T−2

t=0 α
tw(T−1)−t + wT∑T−1
t=0 α

t
=
αw̄T−1

∑T−2
t=0 α

t + wT∑T−1
t=0 α

t

=

∑T−2
t=0 α

t∑T−1
t=0 α

t
αw̄T−1 +

1∑T−1
t=0 α

t
wT = α

1− αT−1

1− αT
w̄T−1 +

1− α
1− αT

wT (6.33)

using the property of the geometric sum that
∑n−1

i=0 r
i = (1− rn)/(1− r) for r 6= 1. The

following theorem now gives us a convergence rate for our objective function f using
this exponential averaging scheme. The proof of the next theorem is partially based on
the proof of Theorem 4 in Shamir and Zhang, 2013.

Theorem 6.3. Let f be λ-strongly convex and assume E[‖gt‖2] ≤ βT c for some β ≥ 0 and
c < 1. Consider SGD with step size ηt = 1/(λt). Let 0 ≤ α < 1 be the exponential averaging
factor. Then we obtain an O(log(T)/T 1−c) convergence rate for E[f(w̄t)− f(w∗)].

Proof. Observe that for any T ≥ 1 we can write, using the properties of a geometric
sum

w̄T =

T−1∑
t=0

αk
1− α

1− αT
wT−t (6.34)

Denote the coefficient in front of wT−t by at. Note that we have
∑T−1

t=0 at = 1 using the
definition of w̄t in Equation 6.32. Define f ′(w) = E[f(w) − f(w∗)] where w∗ again is
the optimal value for w. Since f is a convex function we can use Jensen’s inequality to
obtain

f ′(w̄T) = E[f(w̄T)− f(w∗)] ≤
T−1∑
t=0

E[atf(wT−t)− f(w∗)] =

T−1∑
t=0

atf
′(wT−t) (6.35)

Define S′k as the unweighted sum of the function f ′ over the last k + 1 iterates, i.e.

S′k =
T∑

t=T−k
f ′(wt) (6.36)

Combining Equations 6.35 and 6.36 we see

f ′(w̄t) ≤ aT−1S′T−1 + (aT−2 − aT−1)S′T−2 + ...+ (a0 − a1)S′0

=
T−1∑
t=0

(at − at+1)S
′
t + aTS

′
T−1 (6.37)

In Theorem 3 of Shamir and Zhang, 2013 there is an upper bound presented on S′k,
given by

1

k + 1
S′k ≤

17βT c
(

1 + log(1
min{(k+1)/T,(1+1/T)−(k+1)/T})

)
λT

=
17β log(Te

min{k+1,T−k})

λT 1−c (6.38)

6.2. Convergence of averaged SGD 55

Observe that at − at+1 = αt

1−αT (1− α)2 and therefore

f ′(w̄t) ≤
17β(1− α)2

λT 1−c(1− αT)
(

bT/2c∑
t=0

αt(t+ 1) log

(
Te

t+ 1

)

+
T−1∑

t=dT/2e

αt(t+ 1) log

(
Te

T − t

)
) +

17β log(Te)

λT 1−c
αT (1− α)

1− αT

≤ 17β(1− α)2

λT 1−c(1− αT)

T−1∑
t=0

αt(t+ 1) log(Te)

+
17β log(Te)

λT 1−c
αT (1− α)

1− αT
(6.39)

We now try to find a bound on the sum in the first term of Equation 6.39. Observe
that for any 0 < α < 1 we see that limt→∞ α

t(t + 1) = 0. Also the maximum of
g(t) := αt(t+ 1) is attained at t∗ = − 1

log(α) − 1, for which we have

g(t∗) = αt
∗
(t∗ + 1) = − 1

α
1

log(α)
+1

log(α)
> 0 (6.40)

since α < 1 so log(α) < 0. Hence we see that for 0 ≤ t ≤ t∗ the function g is monotone
increasing and for t ≥ t∗ the function g is decreasing. Now consider two cases: α ≤ 1

e
and α > 1

e . In the first case, we see that t∗ ≤ 0, so g is monotone decreasing on the
entire interval [0,∞), as we see in Figure 6.1 below.

FIGURE 6.1: Plot of g(t) for α = 0.3

Therefore we can upper bound the sum of g as follows

T−1∑
t=0

g(t) ≤ g(0) +

∫ T−1

0
g(t)dt = 1 +

[
αt((t+ 1) log(α)− 1))

log2(α)

]T−2
t=0

= 1 +
αT−2(T log(α)− 1)

log2(α)
− log(α)− 1

log2(α)

= Cα + αT−2
T log(α)− 1

log2(α)
(6.41)

56 Chapter 6. Weighted SVM and averaged SGD

If we plug the estimate from Equation 6.41 into Equation 6.39 we obtain

f ′(w̄t) ≤
17β(1− α)2 log(Te)

λT 1−c(1− αT)

(
Cα + αT−2

T log(α)− 1

log2(α)

)
+

17β log(Te)

λT 1−c
αT (1− α)

1− αT

=
17β(1− α) log(Te)

λT 1−c(1− αT)

(
(1− α)Cα + (1− α)αT−2

T log(α)− 1

log2(α)
+ αT

)
(6.42)

=
17β(1− α)(1 + log(T))

λT 1−c(1− αT)

(
(1− α)Cα +O(TαT−2)

)
(6.43)

so we obtain a convergence rate of O(log(T)/T 1−c), just as in the case without averag-
ing, since the TαT−2-term will tend to go much faster to zero as T →∞.

Now assume that α > 1
e , so g attains its maximum g(t∗) on the interval [0,∞), as we

see in Figure 6.2 below.

FIGURE 6.2: Plot of g(t) for α = 0.7

We therefore split the sum in Equation 6.39 in three parts, i.e.

T−1∑
t=0

g(t) =

bt∗c−1∑
t=0

g(t) + g(bt∗c) +
T−1∑
t=dt∗e

g(t) (6.44)

Observe that in the case that t∗ ≥ T (for α very close to 1), only the first sum remains.
The first sum of 6.44 is a sum on the interval where g is monotone increasing, hence we
can find an upper bound

bt∗c−1∑
t=0

g(t) ≤
∫ bt∗c
1

g(t)dt (6.45)

The second sum of 6.45 is a sum on the interval where g is monotone decreasing,
hence we can again find an upper bound as in Equation 6.41

T−1∑
t=dt∗e

g(t) = g(dt∗e) +

∫ T−2

dt∗e
g(t)dt (6.46)

6.2. Convergence of averaged SGD 57

Combining Equations 6.44, 6.45 and 6.46 we see

T−1∑
t=0

g(t) ≤
∫ bt∗c
1

g(t)dt+

∫ T−2

dt∗e
g(t)dt+ g(bt∗c) + g(dt∗e)

≤
∫ T−2

0
g(t)dt+ g(t∗) (6.47)

as min{g(bt∗c), g(dt∗e)} = minbt∗c≤t≤dt∗e g(t) ≤
∫ dt∗e
bt∗c g(t)dt. From Equation 6.47 we

obtain the following upper bound as before

T−1∑
t=0

g(t) ≤ − 1

α
1

log(α)
+1

log(α)
+
αT−2(T log(α)− 1)

log2(α)
− log(α)− 1

log2(α)

= Cα + αT−2
T log(α)− 1

log2(α)
(6.48)

Therefore we obtain Equation 6.43, also for α > 1
e . Summarizing, we obtain the

following bound for all 0 < α < 1

f ′(w̄t) ≤
17β(1− α)(1 + log(T))

λT 1−c(1− αT)

(
(1− α)Cα + TαT−2Dα

)
(6.49)

where we define

Cα =

1 + 1−log(α)
log2 α

if α ≤ 1
e

− 1

α
1

log(α)
+1

log(α)
+ 1−log(α)

log2 α
if α > 1

e
(6.50)

Dα =
(1− α) log(α)− 1

log2(α)
+ 1 (6.51)

The last term in the definition of Dα is added to also include the single αT of Equa-
tion 6.42 in the TαT−2-term, which dominates the αT already if T = 1. This closes the
proof of the theorem.

Therefore, it is indeed not unfavorable to use the exponential averaging scheme
instead of the last iterate wT , looking at the performance in terms of the convergence
rate.

The uniform bound on the subgradients may not seem realistic, but choosing a large
β and c close to one, this should not be a problem, as we initialize our model develop-
ment with w = 0, so that the gradients are not that large.

For β = λ = 1 and α = 0.5 we see in Figure 6.3 on the next page the convergence
rates for c = 0 (red), c = 0.25 (blue) and c = 0.5 (green), with the number of iterations
on the x-axis. Obviously, as c increases the amount of time to reach some specified level
of expected loss is larger.

Finally, there are some averaging schemes for the stochastic gradient descent that
have a better convergence rate ofO(1/T 1−c), such as the polynomial averaging scheme
proposed in Shamir and Zhang, 2013. However, we see for T < 107, there is no extreme
difference between this scheme and our proposed exponential averaging scheme, as the
polynomial averaging scheme is at most twice as ‘fast’ as our averaging scheme.

58 Chapter 6. Weighted SVM and averaged SGD

FIGURE 6.3: Convergence rates of exponential decay averaging scheme
for different values of c

6.3 Summary

We summarize our weighted SVM combined with the averaged SGD in the next scheme.
For simplicity of the algorithm we set ∇(i)f(wk) = ∇f0(wk) + 0 if yiwTφ(xi) = 1,
i.e. where the graph of the hinge loss function is not differentiable, since already
∇(i)f(wk) = ∇f0(wk) if yiwTφ(xi) > 1. As we removed b from the initial objective
function, such as described in Section 6.2, we at least do the mapping φ(xi) = (xi, 1).
Also, more complex feature mappings can be used that have a value of 1 for the final
coordinate, e.g. if we are looking at a polynomial kernel.

Algorithm 6.1 Weighted SVM combined with averaged SGD
1: Start with w0 = 0, specify a number of iterations T , a regularization parameter λ, a weight z, an exponential

averaging factor α and set γk = 1
λk

.
2: Modify the data points xi using a specified feature mapping φ.
3: Define f(w) = wTw + 1

m

∑m
i=1

(
1
z

)yi max{0, 1− yiwTφ(xi)}.
4: for 0 ≤ k ≤ T − 1 do
5: Take i between 1 and m randomly.
6: Compute the individual gradient∇(i)f(wk).
7: Update wk+1 = wk − γk+1∇(i)f(wk).

8: Set wk+1 = α 1−αk

1−αk+1wk + 1−α
1−αk+1wk+1 and k = k + 1. (averaging step)

9: end for
10: return wT

We will use this scheme as a basis for the model development described in the next
chapter.

59

Chapter 7

Model development, results and
testing

This is the main chapter of this thesis, as it describes how a model development takes
place. Furthermore, we will look at the results that we obtain using a model. The
chapter ends with a model performance test and a comparison with the results obtained
by the FICO credit scoring model and a linear regression model based on these credit
scores.

7.1 Model development

The model is developed as follows. First we potentially modify the data using a fea-
ture mapping φ. Then we define some specified number of iterations T , usually around
1,000,000. We take a regularization parameter λ of around 10−5 or 10−6 and an expo-
nential averaging factor α between 0 and 1. The learning rate γk equals 1

λk . The next
step is to define a weight set Z that contains several weights z, which are usually pow-
ers of 2, 4 or 8, for example all powers of 4 between 1/16 and 16384, i.e.

Z = {16384, 4096, 1024, 256, 64, 16, 4, 1, 1/4, 1/16} (7.1)

Now we split the training set into three different parts. With the first part we assign
values to the nominal variables. The second part is used to determine which variables
are most significant. Then we perform the weighted SVM with averaged stochastic
gradient descent as described in Algorithm 6.1 for all weights in the weight set z, using
the first and the second part of the training set, which we call the building set. We now
obtain for each weight z a division of the data into two groups G1 and G2 with two
default probabilities PD1 and PD2. Generally, PD1 < PD2 and G1 is a smaller set
if the weight z is larger. For each weight z we also obtain the coefficients of w, the
hyperplane that is separating the two groups.

Finally using the third part, called the validation set, we determine which weight is
the best suitable for our needs. We can choose the weight that, for the validation set,
splits the data into a group G1 containing approximately 20% of the data and group G2

containing 80%. Another option is to choose the weight that splits the data into a group
G1 with a PD1 close to some specified value and another group G2. However, these
methods require human judgment to set the goal values. The approach that is used in
this thesis takes the weight for which G1 is non-empty and has the smallest PD. This
will be class number 1.

In the case that we want to have d > 2 groups, we then remove the observations (of
the validation set) in G1 from our model. Then we look at all weights z ∈ Z smaller
than this specified weight, since all sets G1 for a larger weight are generally smaller
than the set with this specified weight. Again we choose the weight for which the set

60 Chapter 7. Model development, results and testing

G1 (without these excluded observations) that is non-empty and has the smallest PD.
We continue to do this until we have obtained d−1 groups. The remaining observations
are in the final group, that generally has the largest probability of default. Clearly we
should have |Z|≥ d− 1, as we are taking a smaller weight in each step.

Usually the split of the training set is 10% - 60% - 30%. A schematic overview of this
split can be found in Figure 7.1 below.

FIGURE 7.1: Schematic overview of the splitting of the data set

As we have now obtained d groups with usually an increasing probability of de-
fault on the validation set, we can apply the model with these groups, which are iden-
tified using the different created hyperplanes (so, by the values of w obtained from the
weighted SVM), to our test set, to obtain also a classification in d groups there.

7.2 Performance measure

The accuracy of the developed models is tested in three ways. At first we look at the
correctness of the ranking, i.e. if for the test set we obtain also a ranking of groups with
an increasing probability of default. Furthermore we assess the discriminatory power
of the model using a modified version of a AUC (area-under-curve) test, i.e. how good is
this model in separating the ‘good’ loans from the ‘bad’ loans. Finally, we check if the
predicted probabilities of default are in the order of the actual obtained probabilities of
default. We discuss these testing methods further in this section.

7.2.1 Correctness of ranking

From our weighted SVM model we obtain a ranking into d different groups. The rank-
ing of these groups are based on the PDs of the validation set. For the test set we
observe if for each pair of successive groups indeed the group with the smaller number
has a smaller PD. After these d−1 comparisons, we can conclude if the ranking is either
correct or incorrect.

7.2.2 AUC technique

The AUC test is based on so called ROC (receiver operator characteristics) curves. It essen-
tially measures the performance of binary classification functions. These are functions
that classify elements as positive or negative, just as the standard SVM. For example it
decides if a patient is predicted to have a certain disease or not. If an element is clas-
sified into the positive class and indeed belongs to the positive class, we call it a true
positive. If instead the element belongs to the negative class, we call it a false positive. In
the same way, an element from the positive class that is classified as negative is called

7.2. Performance measure 61

a false negative and a true negative is an element classified as negative from the negative
class. This is summarized in Table 7.1 below.

Predicted class

Positive Negative

True class
Positive True positive False negative

Negative False positive True negative

TABLE 7.1: Contingency table of binary classification

Two important ratios are the true positive rate (TPR), which is the ratio of the true
positives and the total number of positive elements, and the false positive rate (FPR),
which is the ratio of the false positives and the total number of negative elements. The
idea is to obtain as much true positives and true negatives as possible. In our case with
mortgage loans, we would like to have as much defaults as possible in the last group(s).
If we have different test sets for the binary classifier we can create an ROC curve, which
essentially connects the points (xi, yi) where xi and yi are the FPR and the TPR of test set
i respectively. The ideal situation would be that xi is low when yi is already high. Both
xi and yi can attain values between 0 and 1. Obviously, if all observations are classified
as negative we obtain xi = yi = 0. Likewise, if all observations are classified as positive
we obtain xi = yi = 1. The linear line connecting (0, 0) and (1, 1) corresponds to a
random guess, i.e. if we have a model where each element is classified as positive
with probability equal to the relative frequency of positive elements in the data set
and likewise for the negative elements. A model is performing better if it is farther
above this diagonal line. The performance of models is then compared using the area
under curve (AUC). This means that the area under the constructed curves is computed,
assuming that the curves start in (0, 0) and end in (1, 1). The AUC of the diagonal
‘guessing’ line equals 0.5. The model with the perfect discriminatory power has a FPR
of 0 and a TPR of 1, and therefore it has an AUC of 1. In Figure 7.2 on the next page we
see a few ROC curves.

Now we switch to our case with multiple classes. For each model with d groups
we can create a curve with for every group a point (xi, yi) where xi is the ratio of the
(cumulative) number of defaults in group 1 up to i and the total number of defaults in
the test set (FPR), and yi is the ratio of the (cumulative) number of non-defaulted loans
in group 1 up to i and the total number of non-defaulted loans in the test set (TPR). In
this way we create a sequence {(xi, yi)}ni=0 where (x0, y0) = (0, 0) and the sequence is
increasing in both variables. In this way we create a curve just as in the situation above,
for which we can compute the AUC. This is called a cumulative accuracy profile (CAP)
curve.

There is no universal consensus on which AUC values are precisely classified as
good or bad, since the (maixmum) performance of models also highly depends on the
structure of the data. For (linearly) separable data, it is possible to construct an ideal
model with an AUC of 1. However, for less structured data, an AUC of 0.7 can already
be considered as good. For our case we consider an AUC of 0.8 or higher as good, an
AUC of 0.7 or higher as moderate and an AUC of smaller than 0.7 as bad.

62 Chapter 7. Model development, results and testing

FIGURE 7.2: Different ROC curves

7.2.3 Predicted PDs

The predicted PDs are based on the number of defaults in the entire training set. We
compare the predicted PD of a group with the PD of the test examples belonging to
this group, based on the absolute and relative difference. The absolute difference of
two PDs is simply calculated as the absolute value of the subtraction of the realized PD
from the predicted PD. The relative difference of two PDs is calculated as the absolute
difference divided by the maximum of the realized and the predicted PD. If both PDs
are equal to zero, we also set the relative difference equal to zero. In short,

absolute difference = | predicted PD− realized PD | (7.2)

relative difference =
absolute difference

max{predicted PD, realized PD}
(7.3)

We call a predicted PD good if the absolute difference is smaller than 0.05% or the rela-
tive difference is smaller than 20%. It is ranked as moderate if the prediction is not good,
but the absolute difference is smaller than 0.15% or the relative difference is smaller
than 50%. If a prediction does not meet either of these conditions, it is classified as bad,
as we see in the next table.

Absolute difference Relative difference

Good < 0.05% or < 20%

Moderate < 0.15% or < 50%

Bad > 0.15% and > 50%

TABLE 7.2: Classification table for PDs

7.3. Results for a single model 63

7.3 Results for a single model

We have applied our algorithm to several parts of the data set, first without monthly
performance variables and macro-economic variables, to see how our model performs
using only the origination file variables. This is the same situation as for the FICO
credit scores. Secondly, we added the monthly performance variables and investigated
how the model performs for different time periods between the origination date of the
loan and the observation date for the performance variables. Finally we also added
macro-economic variables to investigate the performance of the model using external
data.

7.3.1 Without monthly performance variables

In this section we look at the results obtained with a training set containing all loans
in the data sets of 2000Q1 until 2000Q4, and a test set containing some of the loans in
the data sets of 2001Q1 until 2001Q4. We only use the original data set and look at the
PD at a 1-, 3-, 5- and 10-year horizon. This results in the following classification of the
199,642 observations in our test set, given in Table 7.3-7.6.

1 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 195843 46 0.011% 0.023% Good 98.1% 74.2%

Class 2 2506 9 0.020% 0.359% Bad 99.4% 88.7%

Class 3 1293 7 0.040% 0.541% Bad 100.0% 100.0%

TABLE 7.3: 1-year PD prediction

Looking at the classification for the 1-year probability of default in Table 7.3, we
see a classification in only three classes. The majority of the test set belongs to class 1
which has a relatively small actual PD of 0.023%. Nonetheless we filter already 2% of
the ‘bad’ loans out, as we have a default rate that is 15-20 times as large in class 2 and
class 3. This results in an AUC of 0.62. Furthermore we observe that the predicted PDs
are really underestimating the actual PDs, which can be a serious problem.

3 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 52925 54 0.043% 0.102% Moderate 26.5% 6.9%

Class 2 122146 374 0.078% 0.307% Bad 87.6% 55.0%

Class 3 17239 160 0.166% 0.928% Bad 96.2% 75.6%

Class 4 7332 162 0.376% 2.209% Bad 99.8% 96.4%

Class 5 478 28 2.032% 5.858% Bad 100.0% 100.0%

TABLE 7.4: 3-year PD prediction

Looking at the classification for the 3-year probability of default in Table 7.4, we see
a classification in five classes. The majority of the test set belongs to class 2, which has
a PD of 0.307%. This is nice, as we see that we already obtain a class with less risk,
containing over 25% of the data, and a default rate that is 3 times as small as the default
rate of class 2. We also obtain three classes with the ‘bad’ performing loans, containing
also 10% of the data. The AUC has increased to a value of 0.712. Again we observed
that the predicted PDs are far too low.

64 Chapter 7. Model development, results and testing

5 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 17154 9 0.083% 0.052% Good 8.6% 0.7%

Class 2 102121 234 0.173% 0.229% Moderate 60.0% 17.9%

Class 3 50740 433 0.206% 0.853% Bad 85.4% 49.7%

Class 4 26794 533 0.554% 1.989% Bad 98.6% 89.0%

Class 5 2833 150 2.658% 5.295% Bad 100.0% 100.0%

TABLE 7.5: 5-year PD prediction

Looking at the classification for the 5-year probability of default in Table 7.5, we see
again a classification in five classes. The majority of the test set still belongs to class 2,
with an even smaller default rate compared to the default rate of class 2 in Table 7.4.
This is caused by the migration of elements from the low-risk class 1 to class 2 and
from class 2 to class 3, etc. Therefore all actual default rates in Table 7.5 are smaller
than in Table 7.4, however the overall default rate should obviously be higher as we
are considering a longer period. This is caused by the fact that the classes with a high
PD contain many more elements. This has also caused the AUC to increase to 0.76.
However, the predicted PDs are again too low compared to the actual PDs (expected
for class 1).

10 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 58607 59 0.068% 0.101% Good 29.6% 2.9%

Class 2 100555 731 0.294% 0.727% Bad 80.1% 39.1%

Class 3 35278 905 0.502% 2.565% Bad 97.5% 84.0%

Class 4 5202 323 3.260% 6.209% Bad 100.0% 100.0%

TABLE 7.6: 10-year PD prediction

Looking at the classification for the 10-year probability of default in Table 7.6, we
see a classification in four classes. The majority of the test set still belongs to class 2.
We observe again the same pattern as in the previous tables, i.e. there are significant
differences between the predicted and actual PDs for most classes and also between the
PDs of different classes, such that two classes are really different. In this case the AUC
equals 0.757, which is slightly smaller than for the 5-year PD classification.

Using the TPR and FPR of all four time horizons, we can construct the CAP curves,
which are displayed in Figure 7.3 on the next page.

7.3. Results for a single model 65

FIGURE 7.3: CAP curves without monthly performance data with PD
horizons of 1 year (orange), 3 year (green), 5 year (red) and 10 year (pur-

ple)

7.3.2 Monthly performance variables

Now we have added the monthly performance variables to the set of accessible vari-
ables. The training and the test set are still the same as before. Since there is no perfor-
mance of the loan known at the time of the origination, we have to add a time period,
which is two years in this case, between the origination of the loan and the observation
of the variables P1 up to P4. The results are again displayed in Table 7.7-7.10 below.
Note that a PD prediction horizon of 1 year involves the 12 months after the obser-
vation date of the performance variables, not after the origination date. Therefore we
have to exclude the loans from the training and test set for which we already know how
they are terminated, i.e. both the defaulted loans as the prepaid loans. This results in a
smaller data set.

1 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 50522 22 0.011% 0.044% Good 63.1% 4.1%

Class 2 18472 41 0.093% 0.222% Moderate 86.2% 11.9%

Class 3 7567 33 0.141% 0.436% Bad 95.6% 18.1%

Class 4 3961 435 4.956% 10.982% Bad 100.0% 100.0%

TABLE 7.7: 1-year PD prediction with monthly performance variables

66 Chapter 7. Model development, results and testing

3 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 13949 22 0.116% 0.158% Good 17.5% 2.0%

Class 2 40467 133 0.059% 0.329% Bad 68.3% 14.1%

Class 3 14534 171 0.266% 1.177% Bad 86.4% 29.6%

Class 4 6041 91 0.542% 1.506% Bad 93.9% 37.8%

Class 5 4298 231 0.911% 5.375% Bad 99.0% 58.8%

Class 6 1233 454 26.479% 36.821% Moderate 100.0% 100.0%

TABLE 7.8: 3-year PD prediction with monthly performance variables

5 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 2611 1 0.000% 0.038% Good 3.3% 0.1%

Class 2 55432 275 0.158% 0.496% Bad 73.0% 20.2%

Class 3 9981 143 0.306% 1.433% Bad 85.4% 30.7%

Class 4 9291 280 0.610% 3.014% Bad 96.8% 51.2%

Class 5 1948 181 1.112% 9.292% Bad 99.0% 64.5%

Class 6 1259 484 25.297% 38.443% Bad 100.0% 100.0%

TABLE 7.9: 5-year PD prediction with monthly performance variables

10 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 14740 64 0.138% 0.434% Bad 18.7% 3.1%

Class 2 31108 330 0.344% 1.061% Bad 58.0% 18.8%

Class 3 25491 645 0.336% 2.530% Bad 89.6% 49.7%

Class 4 4763 211 0.634% 4.430% Bad 95.4% 59.8%

Class 5 3074 323 1.461% 10.507% Bad 98.9% 75.2%

Class 6 609 137 1.918% 22.496% Bad 99.5% 81.7%

Class 7 737 382 45.448% 51.832% Good 100.0% 100.0%

TABLE 7.10: 10-year PD prediction with monthly performance variables

We basically have the same observations as before for the different time horizons.
However, there is one big difference between the two models. The PD (in particular the
actual) of the final classes with the highest risk is much higher, i.e. there are far more
defaults captured. This results in much better CAP curves and excellent AUC values of
0.926, 0.855, 0.824 and 0.774 respectively. This is also reflected in Figure 7.4 on the next
page, containing the CAP curves of the four time horizons.

7.3. Results for a single model 67

FIGURE 7.4: CAP curves with monthly performance data and PD hori-
zons of 1 year (orange), 3 year (green), 5 year (red), 7 year (purple) and

10 year (brown)

7.3.3 Macro-economic variables

Finally the six macro-economic variables are included in the data set. The macro-
economic variables are observed at the same date as the monthly performance vari-
ables. Obviously, as for many loans the observation date is the same, and some macro-
economical variables only have a quarterly update, we will get many values that are
(approximately) equal, which in particular can harm the performance if all examples
with the same value are passed through the algorithm in succession. To avoid this, we
extend our training set such that it contains loans from 2000 to 2007, such that it in-
cludes also some extreme observed values. Next, the test set equals some of the loans
originating in 2008. Again we use a time period of 2 years between origination and ob-
servation of the P - and M -variables. We only consider a 1-, 3- and 5-year PD horizon,
as no data is available for many loans to construct a 10-year PD horizon, as this horizon
lies in our future.

1 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 72622 223 0.192% 0.307% Moderate 48.4% 4.1%

Class 2 17181 116 0.308% 0.675% Bad 59.8% 11.9%

Class 3 14094 127 0.727% 0.901% Moderate 69.1% 18.1%

Class 4 47231 974 2.195% 2.062% Good 100.0% 100.0%

TABLE 7.11: 1-year PD prediction with macro-economic variables

68 Chapter 7. Model development, results and testing

3 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 15139 26 0.193% 0.172% Good 10.3% 0.6%

Class 2 72708 727 0.813% 1.000% Moderate 59.3% 17.8%

Class 3 56274 1580 1.580% 2.808% Bad 96.5% 55.3%

Class 4 7007 1887 30.430% 26.930% Good 100.0% 100.0%

TABLE 7.12: 3-year PD prediction with macro-economic variables

5 year # elements # defaults PD predicted PD actual Performance TPR FPR

Class 1 23 0 0.230% 0.000% Bad 0.0% 0.0%

Class 2 1543 4 0.490% 0.259% Bad 1.1% 0.1%

Class 3 47455 735 1.277% 1.549% Moderate 33.4% 11.3%

Class 4 86717 2879 2.895% 3.320% Good 91.4% 55.2%

Class 5 15390 2935 21.037% 19.071% Good 100.0% 100.0%

TABLE 7.13: 5-year PD prediction with macro-economic variables

Observe that the observed PDs are now much closer to the predicted PD, especially
for the larger classes, and the individual ranking still remains correct. However, we
obtain fewer groups than in the case without macro-economic variables, resulting in
AUC values of 0.707, 0.783 and 0.712 respectively and the following CAP curves.

FIGURE 7.5: CAP curves with macro-economic variables and PD hori-
zons of 1 year (orange), 3 year (green) and 5 year (orange)

7.4. Overall results 69

7.4 Overall results

The Table 7.14 on the next page consists of various results obtained from training and
testing with different parts of the FHLMC data set. Note that the first column denotes
the origination year of the loans in the training set and the next column of the loans
in the test set. Furthermore, in the third column one can find the intermediate period
between the origination of the loan and the observation of the monthly performance
variables. If this equals 0 years, it means that the monthly performance and macro-
economic variables are excluded from the analysis. In column 4 up to 8 we find the
AUC values for different values of the PD time horizon (see Section 7.2.2). The column
with name ‘Rankings’ gives the percentage of class rankings for which the order of
the classes is correct (see Section 7.2.1), and the next columns display for every devel-
oped model which percentage of the predicted PDs are ‘good’ compared to the actual
observed PDs of the classes etc. (see Section 7.2.3). We performed four tests with a
polynomial kernel that can be identified in the final column. The final eight tests were
performed using a data set over a larger period and the final five also included macro-
economic variables.

We observe a few things that are quite similar compared to the observation done in
the previous section. We clearly see that the AUC for the PD with a 1-year horizon is
much higher if we include monthly performance data, i.e. the model has high discrimi-
natory power if we use a short period and information on monthly performance. This is
also visible in Figure 7.6 below. Whereas the performance (in terms of the AUC) of these
models decreases over time, as is expected by the fact that defaults over a longer pe-
riod are more difficult to predict, we see that the performance of the models using only
origination data does not change significantly over time and roughly stays between
0.55 and 0.7. However, even for a 7-year horizon including monthly performance data
seems a good option.

FIGURE 7.6: AUC values for different time horizons for a data set with-
out (red) or with (green) monthly performance data and with both per-

formance and macro-economic data (blue)

Furthermore, for the five tests with macro-economic variables, we see an increase
in the percentage of good and moderate classified classes compared to all other mod-
els. However, it seems to go hand in hand with a loss of discriminatory power of the
models.

70 Chapter 7. Model development, results and testing

AUCs for different horizons
Rankings

PD Prediction
Kernel

1 y 2 y 3 y 5 y 7 y 10 y Good Moderate Bad

2000 2001 0 y 0.620 0.712 0.760 0.757 100% 18% 12% 71%

2000 2005 0 y 0.507 0.602 0.575 0.518 75% 13% 0% 88%

2000 2008 0 y 0.527 0.642 0.601 0.590 75% 0% 7% 93%

2000 2011 0 y 0.500 0.557 0.691 33% 33% 56% 11%

2002 2004 0 y 0.593 0.654 0.687 0.717 75% 19% 5% 76%

2002 2008 0 y 0.538 0.553 0.523 0.541 75% 11% 6% 83%

2002 2011 0 y 0.598 0.588 0.634 67% 13% 13% 75%

2005 2006 0 y 0.672 0.666 0.642 0.619 75% 28% 17% 56%

2005 2008 0 y 0.709 0.670 0.696 0.659 100% 19% 5% 76%

2005 2011 0 y 0.500 0.582 100% 60% 20% 20%

2008 2011 0 y 0.532 0.643 100% 33% 0% 67%

2000 2001 2 y 0.926 0.855 0.824 0.774 100% 14% 7% 79%

2000 2001 5 y 0.932 0.864 0.795 0.747 100% 24% 0% 76%

2000 2001 5 y 0.939 0.877 0.788 0.740 100% 19% 5% 76% Degree: 2

2000 2001 5 y 0.918 0.857 0.784 0.744 100% 19% 5% 76% Degree: 3

2000 2005 2 y 0.821 0.692 0.600 0.619 75% 5% 5% 90%

2000 2005 2 y 0.830 0.701 0.597 0.583 75% 5% 5% 90% Degree: 2

2000 2005 2 y 0.833 0.696 0.615 0.616 100% 5% 5% 90% Degree: 3

2000 2005 5 y 0.862 0.787 0.689 67% 8% 0% 92%

2000 2008 2 y 0.878 0.784 0.748 67% 23% 15% 62%

2005 2006 2 y 0.671 0.740 0.687 0.679 100% 23% 14% 64%

2005 2006 5 y 0.576 0.820 0.777 100% 0% 15% 85%

2005 2008 2 y 0.877 0.764 0.669 67% 9% 36% 55%

2005 2011 2 y 0.840 0.853 100% 29% 29% 43%

2000 2011 2 y 0.955 0.860 100% 38% 25% 38%

2000-2005 2 y 0.798 0.767 0.755 0.698 100% 13% 4% 83%

2000-2005 5 y 0.831 0.717 0.693 100% 31% 0% 69%

2000-2008 2 y 0.855 0.807 0.717 67% 15% 15% 69%

Macro 2 y 0.707 0.783 0.712 100% 38% 31% 31%

Macro 2 y 0.739 0.861 0.825 100% 29% 21% 50%

Macro 2 y 0.771 0.748 0.698 100% 23% 23% 54%

Macro 5 y 0.751 0.737 0.773 100% 43% 14% 43%

Macro 5 y 0.770 0.809 0.760 100% 33% 17% 50%

TABLE 7.14: Test results for different data sets and intermediate time
periods

7.4. Overall results 71

Also, we do not see an increase in the performance of the model using a polynomial
kernel of degree 2 or 3. As the amount of time used for the development of a model
increases drastically when we use second or third order monomials of the variables, it
seems to be better to use only the linear version without any feature mappings.

Finally, we also did some research on the size of the training set. Certainly, if we
use too few observations, we do not obtain a good model. However, in the previous
case, using the loans of 2000 as training set and those of 2001 as test set, if we use
only 25% of the training data, we obtain quite similar results (in terms of AUC of the
1-year PD horizon), as we can see below in Figure 7.7. Therefore, considering T =
800, 000 observations is not entirely necessary, as we can also proceed with T = 200, 000
observations and therefore reduce the amount of time that is used. Clearly, we also
observe the linear relationship in the graph between the number of observations and
the time used.

FIGURE 7.7: AUC for PD-horizon of 1 year using different training set
sizes

7.4.1 Coefficient analysis

It is also interesting to look at the values of the coefficients of w in the hyperplanes and
the offset b separating the different groups. Again we use the training set consisting of
the loans originating in 2000. We include the monthly performance variables, but not
the macro-economic variables, as before, and select 15 variables out of the 25 available.
On the next page we see four tables (Table 7.15-7.18) with the 15 coefficients and the
offset for each hyperplane.

72 Chapter 7. Model development, results and testing

O1 O4 O5 O8 O9 O12 O15 O16

Plane 1 210.7 261.1 41.8 -199.4 -202.6 -117.5 15.1 -528.6

Plane 2 96.7 66.5 0.7 -44.9 2.1 -11.1 -41.9 -67.3

Plane 3 32.2 33.6 1.5 -20.4 3.1 -7.8 -8.8 1.6

O17 O19 O20 O21 P2 P3 P4 b

Plane 1 176.6 6.2 117.2 122.3 -516.8 294 -106.6 164.2

Plane 2 8.6 -4.8 92.5 46.5 -137.1 183.9 -17.4 46.2

Plane 3 1.4 -7.7 42.8 -9 -27.1 88.7 -5.1 22.4

TABLE 7.15: Coefficients of the 3 hyperplanes for a 1-year PD prediction

O1 O4 O5 O8 O9 O12 O13 O15

Plane 1 8.9 -81.6 -124.3 -119 -67 -200.6 -41.8 -121.7

Plane 2 46.4 6.8 4.6 -69.8 -20.5 -80.7 11.1 -30.8

Plane 3 8 3.3 -6.6 -15.2 0.6 -19.7 0 -5.7

Plane 4 3.2 1.5 -0.5 -5.4 -0.4 -6.3 -2 -2

O16 O17 O19 O20 O21 P2 P4 b

Plane 1 -171.9 -117.2 -113.9 19 157.1 -313 48.6 -87.7

Plane 2 -58.3 -73.7 -33.1 39.9 -21.4 -98.8 41.9 48.6

Plane 3 -14.2 -0.3 4.3 0.8 4.8 -28.3 12.7 55

Plane 4 1.4 4.3 -0.1 -1.5 4.6 -5 3.3 28.5

TABLE 7.16: Coefficients of the 4 hyperplanes for a 3-year PD prediction

O1 O4 O5 O8 O9 O10 O12 O15

Plane 1 155.3 -115.1 -6.1 -310.6 -95.9 50.9 -231.9 -86.9

Plane 2 6 21.6 0.9 -70.8 9.9 1.7 -75.3 -21.5

Plane 3 0 -5.9 -2.7 -14.1 -1.9 11.4 -30.6 -3.2

Plane 4 3.4 1.7 -0.4 -6.5 -0.7 5.5 -4.5 -2.8

O16 O17 O19 O20 O21 P2 P4 b

Plane 1 -717.6 -106 -43.2 -12.5 120.4 -295 181 -104

Plane 2 -119.3 -101.2 -26.6 -58.6 0.9 -112.3 35.8 16.2

Plane 3 -15.2 -16.9 -7.1 5.6 -16.1 -23 17.4 50.3

Plane 4 0.3 1 -1.3 -0.6 3.9 -6.9 3.2 28.7

TABLE 7.17: Coefficients of the 4 hyperplanes for a 5-year PD prediction

O1 O4 O5 O8 O9 O10 O12 O15

Plane 1 95.4 234.6 -103.1 -154.8 70.73 92.9 -34.2 -282.2

Plane 2 -15.2 0.2 -13.6 -62.9 19.1 37.4 -73.1 -15.6

Plane 3 -5.3 -3.4 1.1 -17 0.6 5.6 -29.5 -3.7

O16 O17 O19 O20 O21 P2 P4 b

Plane 1 -783.4 -567.7 -147.1 29.6 -247.8 -410.5 -1.6 -395.1

Plane 2 -40.5 -28.4 -25.7 -30.6 -26.9 -119.9 32.1 35.4

Plane 3 -14.4 7.5 -5.3 -6 4.3 -27.3 20.6 37.1

TABLE 7.18: Coefficients of the 4 hyperplanes for a 10-year PD prediction

The first thing we observe is that the coefficients of plane 1 are much larger in abso-
lute value than those of plane 3 and plane 4. This is caused by the use of larger weights
to compute group G1 as is described in the first section of this chapter, which results

7.5. Comparison with other models 73

in larger gradient values. Furthermore we see that the selected variables slightly differ
over the time horizons, but not that much.

We can also look at the variables that consistently have the largest absolute values
for the coefficients, such as O8 (CLTV), O12 (original interest rate), O16 (property type),
O17 (postal code), O19 (number of borrowers), O21 (servicer name) and P2 (maximum
loan delinquency). These variables appear to have the most predicting power. As all
variables are scaled between −1 and 1, there is no influence of the absolute size of the
variables itself.

7.5 Comparison with other models

It is also useful to compare the performance of this model with some other (traditional)
credit risk models as described in Chapter 2. Since the calculation of the FICO scores,
which are used in the Freddie Mac database, is not transparent, we cannot directly use
this model with the inclusion of macro-economic or monthly performance variables.

We have performed two comparisons with another model, again using the data set
as in Secton 7.3. The first model is solely based on the FICO credit scores provided by
Freddie Mac, whereas the second model uses a multiple linear regression, which can also
include macro-economic variables. For both models we divide the training set in five
different non-empty groups, based on their initial credit score:

• Class 1: credit score ≥ 800

• Class 2: 750 ≤ credit score ≤ 799

• Class 3: 700 ≤ credit score ≤ 749

• Class 4: 650 ≤ credit score ≤ 699

• Class 5: credit score ≤ 649

For the first comparison, using only the credit scores, we divide the test set using
the same procedure, and look at the default rates of these classes. For the second com-
parison, we perform a linear regression, as described in Section 2.4.1, using all available
variables, and based on the classification of the training examples. In the second model
we also include monthly performance data. The results are given in the table below.

AUC
Ranking

PD Prediction

1 y 3 y 5 y 10 y Good Moderate Bad

Credit scores 0.756 0.733 0.701 0.693 100% 20% 20% 60%

Linear regression 0.871 0.809 0.743 0.742 100% 33% 0% 67%

TABLE 7.19: Performance results of the credit scores method and linear
regression

74 Chapter 7. Model development, results and testing

Both models perform well on a 1-, 3-, 5- and 10-year PD horizon. For the first model
based on the FICO credit scores we obtain AUC values of 0.756, 0.733, 0.701 and 0.693
respectively. For the second model, the AUC values are significantly better for the
first two time horizons, i.e. 0.871, 0.809, 0.743 and 0.742. However, when monthly
performance data is included, the weighted SVM model introduced in this thesis has
a much better discriminatory power. Both comparison models correctly predict the
rankings for the test set, i.e. class 1 has a smaller PD than class 2 etc.. Nonetheless, for
these models we see that the predicted PDs are in 60% and 67% of the cases classified
as bad, therefore performing not significantly better than the support vector machine.

Overall we can conclude that the weighted SVM might have better discriminatory
power, especially for short time horizons, but does not performs better in ranking the
classes or predicting the PDs than the existing models.

75

Chapter 8

Conclusion

In this thesis we investigated the possibility of applying a support vector machine to a
data set of mortgage loans by Freddie Mac, in order to develop a model for classifying
these loans in classes with a successive probability of default. Furthermore this model
should to be able to provide an estimate of the probability of default for the loans in
these classes.

A modified version of the support vector machine (SVM) has been used in this the-
sis. We introduced a method called weighted SVM, which consists of assigning certain
(higher) weights to defaults. This is motivated by the fact that defaults are fairly out-
numbered by non-defaulted loans. Therefore, applying a non-weighted version of the
SVM results in a model that predicts every loan to go not in default. The weighted
SVM creates several different classes, such that the loans with a higher PD should be in
a different class than the loans with a smaller PD. By varying the value of the weights,
we can also change the size of the these classes.

Together with a weighted SVM, we use the averaged stochastic (sub)gradient descent
to minimize the objective function obtained from the SVM. The stochastic gradient de-
scent is a technique that minimizes the objective function by going in the direction of the
negative gradient, which results in the fastest descent. The stochastic component comes
from the fact that the gradient is computed with respect to one single, randomly picked
observation. As a high number of successive defaults (with large weights), could cause
the stochastic gradient descent to end up in a model that predicts all loans to go into
default, it turned out to be better to use the averaged stochastic gradient descent. This
essentially consists of averaging the iterations obtained from the model, using a partic-
ular scheme.

Our weighted SVM has turned out to be a good model to discriminate between
classes of different PDs. We have built our model using different training sets and dif-
ferent sets of variables. Including information on the monthly performance of the loans
turns out to be a big improvement in discriminatory power, as the model is able to put
up to 40% of the defaults in the final class, containing less than 2% of the observations.
Also, adding macro-economic variables increases the predictive power of the model.

The model is unique in the sense that it does not need an initial ranking of the train-
ing set in different credit classes. Traditional models based on linear regression or probit
or logit need a classification of the training set in order to estimate the coefficients of
the model. The performance with respect to the existing scoring models is comparable,
however, the possibility of including both monthly performance and macro-economic
data makes this new technique interesting to use in the future. The results (in terms
of predictive power) are not that spectacular, as we have used a typical classification
problem to predict a continuous variable. However, the discriminatory power of the
model of this thesis is still quite impressive.

76 Chapter 8. Conclusion

8.1 Opportunities

Clearly, before the model is suitable for its intended use in credit risk modeling, it has
to be tested and further developed. In the next years it will be possible for this data
set to look at lifetime probabilities of default, as many mortgage loans that are still
need to terminate, will end after their specified 15-, 20- and 30-year period. Due to the
short period that the data was available this was not possible yet. Also, if more actual
(monthly performance) data is present, such as current debt-to-income ratio, we could
possibly improve the model. Obviously, testing on another data set, is also necessary
before we could use the weighted SVM in practice.

Also the dual version of the problem, that turned out to be much more complex than
the linear weighted SVM, may deserve some attention, as it shows some promising
results in credit risk. A great disadvantage of the dual version is that we can only
have a small data set, since we have to store all kernel values in our memory. It would
be worthwhile to investigate if the dual problem combined with some clustering, that
sets all kernel values to zero for two elements from unequal clusters, can lead to good
results.

Also, there are some other methods to deal with a disbalance in the number of ele-
ments in the two classes. It is worthwhile to test if these also can be used for a multiclass
SVM.

77

Bibliography

Allen, L., G. DeLong, and A. Saunders (2004). “Issues in the Credit Risk Modeling of
Retail Markets”. In: Journal of Banking & Finance 4, pp. 727–752. URL: http://
papers.ssrn.com/sol3/papers.cfm?abstract_id=412520.

Balder, E. J. (2010). "On subdifferential calculus". Notes for Ph.D. course on Convex
Analysis for Optimization. URL: http://www.staff.science.uu.nl/~balde101/
cao10/cursus10_1.pdf.

Ben-Hur, A. et al. (2001). “Support vector clustering”. In: Journal of Machine Learning
Research 2, pp. 125–137. URL: http://www.jmlr.org/papers/volume2/
horn01a/rev1/horn01ar1.pdf.

Benzin, A., S. Trück, and S. T. Rachev (2003). “Approaches to Credit Risk in the New
Basel Capital Accord”. In: Credit Risk: Measurement, Evaluation and Management. URL:
http://www.pstat.ucsb.edu/research/papers/benzin_trueck.pdf.

BIS (2000). "Principles for the Management of Credit Risk". Report Basel Committee on
Banking Supervision. URL: http://www.bis.org/publ/bcbs75.pdf.

Boyd, S. and L. Vandenberghe (2004). "Convex Optimization". Cambridge Press.
Boyd, S., L. Xiao, and A. Mutapcic (2003). "Subgradient Methods". Notes for EE392o,

Stanford University. URL: https://web.stanford.edu/class/ee392o/
subgrad_method.pdf.

Crammer, K. and Y. Singer (2001). “On the Algorithmic Implementation of Multiclass
Kernel-based Vector Machines”. In: Journal of Machine Learning Research 2, pp. 265–
292. URL: http://jmlr.csail.mit.edu/papers/volume2/crammer01a/
crammer01a.pdf.

Dikkers, H. J. (2005). “Support vector machines in ordinal classification: A revision of
the ABN AMRO corporate credit rating system”. MA thesis. TU Delft.

Dobbs, R. et al. (2015). "Debt and (not much) deleveraging". Report McKinsey Global
Institute. URL: http://www.mckinsey.com/global-themes/employment-
and-growth/debt-and-not-much-deleveraging.

Draper, N. R. and H. Smith (1998). "Applied Regression Analysis (Wiley Series in Prob-
ability and Statistics)". John Wiley & Sons, Inc.

Drucker, H. et al. (1996). “Vector Regression Machines”. In: Advances in Neural Informa-
tion Processing Systems 13, pp. 155–161. URL: https://papers.nips.cc/paper/
1238-support-vector-regression-machines.pdf.

Duda, R. O., P. E. Hart, and D. G. Stork (2001). "Pattern Classification". John Wiley &
Sons, Inc.

FHMLC (2016). "Single-Family Loan-Level Dataset Frequently Asked Questions".
Gordon, G. and R. Tibshirani (2012). "Lecture 5: Gradient Descent Revisited". Notes for

10-725: Optimization, Carnegie Mellon University. URL: https://www.cs.cmu.
edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf.

Hsu, C. and C. Lin (2002). “A comparison of methods for multiclass support vector
machines”. In: IEEE Transactions on Neural Networks 13, pp. 415–425. URL: https:
//www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf.

Huang, Y. (2005). “Weighted support vector machine for classification with uneven
training class sizes”. In: International Conference on Machine Learning and Cybernet-
ics 7, pp. 4365–4369.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=412520
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=412520
http://www.staff.science.uu.nl/~balde101/cao10/cursus10_1.pdf
http://www.staff.science.uu.nl/~balde101/cao10/cursus10_1.pdf
http://www.jmlr.org/papers/volume2/horn01a/rev1/horn01ar1.pdf
http://www.jmlr.org/papers/volume2/horn01a/rev1/horn01ar1.pdf
http://www.pstat.ucsb.edu/research/papers/benzin_trueck.pdf
http://www.bis.org/publ/bcbs75.pdf
https://web.stanford.edu/class/ee392o/subgrad_method.pdf
https://web.stanford.edu/class/ee392o/subgrad_method.pdf
http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf
http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf
http://www.mckinsey.com/global-themes/employment-and-growth/debt-and-not-much-deleveraging
http://www.mckinsey.com/global-themes/employment-and-growth/debt-and-not-much-deleveraging
https://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
https://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf
https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf

78 BIBLIOGRAPHY

IFRS (2013). "Financial Instruments: Expected Credit Losses". Exposure Draft ED /
2013 / 3. URL: http://www.hkicpa.org.hk/file/media/section6_
standards/standards/FinancialReporting/ed-pdf-2013/ed_crlost.
pdf.

Khardon, R. (2008). "Lecture 18". Notes for 150 AML: Advanced Topics in Machine
Learning. URL: http://web.iitd.ac.in/~sumeet/CLT2008S-lecture18.
pdf.

Kim, K. S. and J. R. Scott (1991). “Prediction of Corporate Failure: an Artificial Neural
Network Approach”. Southwest Missouri State University.

Kutner, M. et al. (1974). "Applied Linear Statistical Models". McGraw-Hill/Irwin.
Lapin, M., M. Hein, and B. Schiele (2014). “Learning using privileged information:

SVM+ and weighted SVM”. In: Neural Networks 53, pp. 95–108. URL: http://www.
sciencedirect.com/science/article/pii/S0893608014000306.

Mela, C. F. and P. K. Kopalle (2002). “The impact of collinearity on regression analysis:
the asymmetric effect of negative and positive correlations”. In: Applied Economics
34, pp. 667–677. URL: https://faculty.fuqua.duke.edu/~mela/bio/
papers/Mela_Kopalle_2002.pdf.

Mian, A. and A. Sufi (2014). "House of Debt: How They (and You) Caused the Great
Recession, and How We Can Prevent It from Happening Again". The University of
Chicago Press.

Mitchell, T. (1997). "Machine Learning". McGraw-Hill/Irwin, p. 2.
Ng, A. (2016). "Machine Learning". Lectures on Machine Learning (CS 229), Stanford

University. URL: http://cs229.stanford.edu/.
Qiao, X. and L. Zhang (2015). “Distance-weighted Support Vector Machine”. In: Statis-

tics and Its Interface 8, pp. 331–345. URL: https://arxiv.org/abs/1310.3003.
Rakhlin, A. and O. Shamir (2012). “Making Gradient Descent Optimal for Strongly Con-

vex Stochastic Optimization”. In: ICML. URL: https://arxiv.org/pdf/1109.
5647.pdf.

Saunders, A. and L. Allen (2002). "Credit Risk Management: New Approaches to Value
at Risk and Other Paradigms". John Wiley & Sons, Inc.

Shamir, O. and T. Zhang (2013). “Stochastic Gradient Descent for Non-smooth Opti-
mization: Convergence Results and Optimal Averaging Schemes”. In: Journal of Ma-
chine Learning Research 28. URL: http://jmlr.csail.mit.edu/proceedings/
papers/v28/shamir13.pdf.

Simon, P. (2013). "Too Big to Ignore: The Business Case for Big Data". Wiley, p. 89.
Smith, K. (2011). "List of 16 Major Leading & Lagging Economic Indicators".
Still, G. (2015). "Continuous Optimization". Lectures on continuous optimization at

Universtiy of Utrecht. URL: http://wwwhome.math.utwente.nl/~stillgj/
conopt/.

Tape, T. G. "Interpreting Diagnostic Tests". Univeristy of Nebraska, Medical Center.
URL: http://gim.unmc.edu/dxtests/Default.htm.

Tibshirani, R. (2012). "Lecture 7: September 18". Notes for 10-725: Optimization, Carnegie
Mellon University.

Whitley, E. and J. Ball (2002). “Statistics review 5: Comparison of means”. In: Crit Care
6, pp. 424–428. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC137324/.

Yang, X. (2005). “Weighted support vector machine for data classification”. In: IEEE
International Conference on Neural Networks 2, pp. 859–864.

Yashtini, M. (2015). “On the global convergence rate of the gradient descent method for
functions with Hölder continuous gradients”. In: Optimization Letters 9. URL: http:

http://www.hkicpa.org.hk/file/media/section6_standards/standards/FinancialReporting/ed-pdf-2013/ed_crlost.pdf
http://www.hkicpa.org.hk/file/media/section6_standards/standards/FinancialReporting/ed-pdf-2013/ed_crlost.pdf
http://www.hkicpa.org.hk/file/media/section6_standards/standards/FinancialReporting/ed-pdf-2013/ed_crlost.pdf
http://web.iitd.ac.in/~sumeet/CLT2008S-lecture18.pdf
http://web.iitd.ac.in/~sumeet/CLT2008S-lecture18.pdf
http://www.sciencedirect.com/science/article/pii/S0893608014000306
http://www.sciencedirect.com/science/article/pii/S0893608014000306
https://faculty.fuqua.duke.edu/~mela/bio/papers/Mela_Kopalle_2002.pdf
https://faculty.fuqua.duke.edu/~mela/bio/papers/Mela_Kopalle_2002.pdf
http://cs229.stanford.edu/
https://arxiv.org/abs/1310.3003
https://arxiv.org/pdf/1109.5647.pdf
https://arxiv.org/pdf/1109.5647.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v28/shamir13.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v28/shamir13.pdf
http://wwwhome.math.utwente.nl/~stillgj/conopt/
http://wwwhome.math.utwente.nl/~stillgj/conopt/
http://gim.unmc.edu/dxtests/Default.htm
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137324/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137324/
http://people.math.gatech.edu/~myashtini3/assets/publication/pdf/GDHolderGrad.pdf
http://people.math.gatech.edu/~myashtini3/assets/publication/pdf/GDHolderGrad.pdf

BIBLIOGRAPHY 79

//people.math.gatech.edu/~myashtini3/assets/publication/pdf/
GDHolderGrad.pdf.

http://people.math.gatech.edu/~myashtini3/assets/publication/pdf/GDHolderGrad.pdf
http://people.math.gatech.edu/~myashtini3/assets/publication/pdf/GDHolderGrad.pdf
http://people.math.gatech.edu/~myashtini3/assets/publication/pdf/GDHolderGrad.pdf

81

Appendix A

Optimization Theory

A.1 Duality principle

In this section we will have a closer look at the so called duality principle, the idea that
an optimization problem can be viewed from two perspectives, the primal or the dual
problem. The solution of the dual problem provides a lower bound for the solution of
the primal problem. The generally non-zero difference between these solutions is called
the duality gap.

We are given the following optimization problem:

inf
x∈X⊂Rn

f(x) (A.1)

s.t. gi(x) ≤ 0 for all 1 ≤ i ≤ m
hj(x) = 0 for all 1 ≤ j ≤ p

Here we do not pose any restrictions on the functions f , gi and hj , like linearity or
convexity.

In many cases we consider the minimum instead of the infimum of f . In this general
case we take the infimum because we want to include the possibility that the optimal
value is −∞. Switching to the supremum (or maximum) can be done by considering
the infimum (minimum) of the function −f(x).

We now define the Lagrangian L : Rn × Rn × Rn → R

L(x, α, β) = f(x) +
m∑
i=1

αigi(x) +

p∑
j=1

βjhj(x) (A.2)

Here we introduced the vectors α and β, which are called the dual variables or Lagrange
multiplier vectors. Then we can write the primal problem as follows

inf
x∈X⊂Rn

sup
αi≥0,βj∈R

L(x, α, β) (A.3)

Note that supαi≥0 αigi(x) = ∞ if and only if gi(x) > 0 and it equals 0 if gi(x) ≤ 0.
Therefore also supβj∈R βjhj(x) = ∞ if and only if hi(x) 6= 0. Therefore the constraints
of problem A.1 hold if and only if

sup
αi≥0,βj∈R

f(x) +
m∑
i=1

αigi(x) +

p∑
j=1

βjhj(x)

 = f(x) (A.4)

82 Appendix A. Optimization Theory

Now we can introduce the so called dual problem by switching the infimum and the
supremum

sup
αi≥0,βj∈R

inf
x∈X⊂Rn

L(x, α, β) (A.5)

It is a general result that taking the supremum after an infimum yields a value that it
smaller than or equal to the infimum of a supremum. We denote the optimal value of
the primal problem by p∗ and of the dual problem by d∗. We always have weak duality,
i.e. d∗ ≤ p∗. However, there are some conditions under which d∗ = p∗. These conditions
are given by the Strong Duality Theorem. Before we state this theorem, we need to obtain
some knowledge about convex optimization.

A.2 Convex optimization

We call Problem A.1 a convex optimization problem if the set X is convex, the objective
function f and constraint functions gi are convex and the constraint functions hj are
affine, so both −hj and hj are convex. A convex optimization problem has the nice
property that a local minimum is also directly a global minimum.

Another interesting property of convex optimization deals with the so called Karush-
Kuhn-Tucker (KKT) conditions. A point x ∈ Rn is said to be feasible if it satisfies the
constraints of the (primal) optimization problem A.3. A feasible x∗ (also denoted by
(x∗, α∗, β∗)) satisfies the KKT conditions if there are α∗, β∗ such that α∗i ≥ 0 for all i
such that

∇f(x∗) = −
m∑
i=1

α∗i∇gi(x∗)−
p∑
j=1

β∗j∇hj(x∗) (A.6)

α∗i gi(x
∗) = 0 for all 1 ≤ i ≤ m (complementary slackness)

We also introduce the so called Slater condition. We say that an optimization problem
satisfies the Slater condition if there exists a Slater point, i.e. if there exists an x̂ in the
relative interior of X such that

gi(x̂) < 0 for all i with gi nonlinear (A.7)
gi(x̂) ≤ 0 for all i with gi affine (A.8)
hj(x̂) = 0 for all j (A.9)

The relative interior of a convex set is defined as relint(X) := {x ∈ X| for all y ∈
X there exist λ > 1 s.t. λx+ (1− λ)y ∈ X}. A Slater point x̂ ∈ X is called an ideal Slater
point if

gi(x̂) < 0 for all i ∈ Jr (A.10)

where Jr := {1 ≤ i ≤ m|gi(x) < 0 for some x ∈ F}, where F is the set of feasible
points. This set is called the set of regular constraints. We also define Js := J\Jr =
{1 ≤ i ≤ m|gi(x) = 0 for all x ∈ F}, the set of singular constraints. Note that for a con-
vex optimization problem satisfying the Slater condition, the set of singular constraints
can only consist of linear constraints. Two important properties are stated in the next
lemma.

A.3. Farkas Lemma 83

Lemma A.1. If the convex optimization problem A.1 satisfies the Slater condition, it has an
ideal Slater point x̂ ∈ F , which is in the relative interior of X .

Proof. Let x ∈ F be a Slater point of the problem. Clearly gi(x) < 0 for all nonlinear
functions. Now let gj(x) = 0 for some affine regular constraint. Let y ∈ F be a point
such that gj(y) < 0. Clearly, by convexity of the problem we have λx+ (1−λ)y ∈ F for
λ ∈ (0, 1) and

gj(λx+ (1− λ)y) ≤ λgj(x) + (1− λ)gj(y) < 0 (A.11)

Repeat doing this until gj(x) < 0 for all affine regular constraints. Then we see that
we found an ideal Slater point x̂.

Note that x̂ ∈ relint(F) if and only if for all y ∈ F there exists a z ∈ F and a λ > 1
such that λx̂ + (1 − λ)y = z, i.e. x̂ = 1

λz + (1 − 1
λ)y. Define µ = 1

λ . Then we see
x̂ ∈ relint(F) if and only for every y ∈ F there exists µ ∈ (0, 1) and z ∈ F such that

x̂ = µz + (1− µ)y (A.12)

By construction, x̂ is in the relative interior of X , since it is defined as a strictly
convex combination of an element of the relative interior of X and elements of F ⊂
X .

A.3 Farkas Lemma

As a preparation for the Strong Duality Theorem we prove Farkas Lemma.

Lemma A.2 (Farkas). Let Problem A.1 be convex and satisfy the Slater condition, without any
equality constraints. Then for a ∈ R the inequality system

f(x) < a (A.13)
gi(x) ≤ 0 for all 1 ≤ i ≤ m

x ∈ X

has no solution if and only if there is a vector α such that

αi ≥ 0 for all 1 ≤ i ≤ m (A.14)

f(x) +

m∑
i=1

αigi(x) ≥ a for all x ∈ X

Proof. First, assume that both system A.13 and A.14 have a solution. Then, there is an
x ∈ X and α ≥ 0 such that

a ≤ f(x) +
m∑
j=1

αigi(x) ≤ f(x) < a (A.15)

which yields a contradiction. Therefore at most one of the system can have a solution.
Let us therefore assume that system A.13 has no solution, and show that system A.14
must have a solution. Consider the following modified system

84 Appendix A. Optimization Theory

f(x) < a+ u0 (A.16)
gi(x) ≤ ui for all i ∈ Jr
gi(x) = ui for all i ∈ Js

x ∈ X

Let u = (u0, ..., um) and define U to be the set of u which are feasible for system
A.16. Then clearly 0 6∈ U . One can check that U is non-empty, by taking ui → ∞ for
all i ∈ Jr and using that the singular constraints are linear. It is also convex, since
convex combinations of solutions are still clearly feasible. Observe that it is therefore
possible to separate 0 and U by a hyperplane (due to the Separation Theorem), given by
{x|αTx+ b = 0}, where

αTu ≥ b ≥ αT 0 for all u ∈ U (A.17)

αT û > b for some û ∈ U

for some α = (α0, . . . , αm) and b ≥ 0. Now take u ∈ U and some i ∈ {0} ∪ Jr. Clearly
u + ei is still feasible, where ei is the ith unit vector. Therefore yT (u + ej) ≥ 0 by A.17
and we see yT ej = yj = 0, for all i ∈ {0} ∪ Jr.

Let ux = (f(x) − a + λ, g1(x), . . . , gm(x)) with λ > 0. Clearly ux ∈ U for all x ∈ X .
Therefore αTux ≥ b ≥ 0. By taking the limit λ→ 0 we obtain

α0(f(x)− a) +

m∑
i=1

αigi(x) ≥ 0 for all x ∈ X (A.18)

We now show that α0 > 0, so that we can set α0 = 1 and obtain our desired result
from Equation A.18. Assume to the contrary that α0 = 0. Then for all x ∈ X

0 ≤
m∑
i=1

αigi(x) =
∑
i∈Jr

αigi(x) +
∑
i∈Js

αigi(x) (A.19)

If we take an ideal Slater point x̂, we have gi(x̂) < 0 for all i ∈ Jr and
∑

i∈Jr αigi(x) ≥
0. Using αi ≥ 0 we obtain αi = 0 for i ∈ Jr. Therefore for all x ∈ X∑

i∈Jr

αigi(x) ≥ 0 (A.20)

Now let û ∈ U be such that αT û > b ≥ 0. By definition of U we can find an x̄ ∈ X
such that û = gi(x̄) for i ∈ Js. Therefore

αT û =
∑
i∈Js

αigi(x̄) > 0 (A.21)

Because x̂ is an ideal Slater point, it is in the relative interior of X by Lemma A.1.
As is shown in the proof of that lemma, there exists a z ∈ X and a µ ∈ (0, 1) such that
x̂ = µx̄+ (1− µ)z. Since gi(x̂) = 0 for i ∈ Js. Therefore

A.3. Farkas Lemma 85

0 =
∑
i∈Js

αigi(x̂) =
∑
i∈Js

αigi(µx̄+ (1− µ)z)

= µ
∑
i∈Js

αigi(x̄) + (1− µ)
∑
i∈Js

αigi(z) > (1− µ)
∑
i∈Js

αigi(z) (A.22)

where the third equality follows from the fact that all singular constraints are linear for
a convex optimization problem satisfying the Slater condition. The inequality is due to
Equation A.21. Using 1− µ > 0 we see∑

i∈Js

αigi(z) < 0 (A.23)

This is a contradiction with the inequality in Equation A.20. Therefore we obtain
α0 > 0 and we can assume α0 = 1. Note that we have now proven the lemma in the
case that there are no singular constraints.

The final part of the proof is showing that αi ≥ 0 for i ∈ Js. First assume that we
have only one singular constraint function gm(x). Consider the following optimization
problem

gm(x) < 0 (A.24)
gi(x) ≤ 0 for all i ∈ Jr

x ∈ X

We have now made our singular constraint the objective function and we are only
left with regular constraints. It is still a convex optimization problem satisfying the
Slater condition, since we only have fewer constraints than in the original problem. We
can already apply Farkas Lemma to this inequality system, and see that this system has
no solution if and only if the following system has a solution

gm(x) +
∑
i∈Jr

α̂igi(x) ≥ 0 (A.25)

where α̂i ≥ 0 for all i ∈ Jr. We already obtained

f(x)− a+
∑
i∈Jr

αigi(x) ≥ 0 (A.26)

where αi ≥ 0 for all i ∈ Jr. By adding Equation A.25, possibly multiplied with a
constant αm ≥ 0, to Equation A.26 we obtain

f(x)− a+
∑
i∈Jr

(αi + αmα̂i)gi(x) + αmgm(x) (A.27)

By redefining αi = αi +αmα̂i ≥ 0 we obtain again an equation in the shape of A.26.
By induction on the cardinality of the set Js we find αi ≥ 0 for all i ∈ Js, which closes
the proof.

It is easy to generalize Farkas Lemma to the case with equality constraints hj(x) = 0.
Each equality constraint can be written as two inequality constraints hj(x) ≤ 0 and

86 Appendix A. Optimization Theory

−hj(x) ≤ 0 and we can apply Farkas Lemma to the entire system of inequality con-
straints including the new ones. Since we obtain positive coefficients for both the in-
equality constraint with hj and with −hj , the (total) coefficient βj for hj can be any real
number, instead of a positive real number. This gives the following corollary.

Corollary A.3. Let Problem A.1 be convex and satisfy the Slater condition. Then for a ∈ R the
inequality system

f(x) < a (A.28)
gi(x) ≤ 0 for all 1 ≤ i ≤ m
hj(x) = 0 for all 1 ≤ j ≤ p

x ∈ X

has no solution if and only if there are vectors α and β such that

αi ≥ 0 for all 1 ≤ i ≤ m (A.29)

f(x) +
m∑
i=1

αigi(x) ≥ a for all x ∈ X +

p∑
j=1

βjhj(x)

A.4 Strong Duality Theorem

The Strong Duality Theorem can now be proven using Farkas Lemma.

Theorem A.4 (Strong Duality Theorem). Given the optimization problem A.1. Let X ∈ Rn
be non-empty convex, let f : X → R and each gi : Rn → R be convex functions and each
hj : Rn → R be affine functions, i.e. the optimization problem is convex.
If the Slater condition holds, and 0 ∈ int (h(X)) where h(X) = {h(x) : x ∈ X}, then

p∗ = d∗ (A.30)

Proof. Note that the Slater condition holds, i.e. there is at least one feasible point, so
p∗ <∞. since the infimum over a set is∞ if and only if the set is empty. If p∗ = −∞, we
clearly have d∗ = −∞ = p∗ by weak duality. Therefore consider the case that p∗ > −∞.
Then let a = p∗ and apply the generalized version of Farkas Lemma (Corollary A.3).
Since a equals the infimum of f obtained from the optimization problem, we see that
the first system A.28 has no solution and therefore there exists a vector α ≥ 0 and a
vector β such that

f(x) +

m∑
i=1

αigi(x) +

p∑
j=1

βjhj(x) ≥ a for all x ∈ X (A.31)

Clearly, we recognize the term before the inequality sign as the LagrangianL(x, α, β).
Therefore infx∈X L(x, α, β) ≥ a. Clearly

d∗ = sup
α≥0,β∈R

(
inf
x∈X
L(x, α, β)

)
≥ a = p∗ (A.32)

By weak duality we have, as usual, d∗ ≤ p∗. Therefore we have d∗ = p∗ and strong
duality holds.

A.5. Convex dual problem 87

A.5 Convex dual problem

In general, when X = Rn the infimum of L(x, α, β) is either −∞ or attained at some
local minimum. At the local minimum we must have∇xL(x, α, β) = 0, i.e. the gradient
with respect to the primal variable x has to equal 0.

For a convex optimization problem, it is guaranteed that any local minimum is also
the global minimum, since we are minimizing a convex function f on the convex set
defined by convex constraint functions. When the objective function and the constraint
functions are continuously differentiable (C1), the dual problem A.5 can be made much
easier by first calculating the gradient of the Lagrangian with respect to the primal
variable x and setting it to zero. This gives in fact a new optimization problem

sup
αi≥0,βj∈R

L(x, α, β) (A.33)

s.t. ∇xL(x, α, β) = 0

A.6 Karush-Kuhn-Tucker Theorem

In Section A.2 we have introduced the KKT conditions. For a convex optimization
problem satisfying the Slater condition, it is very useful to find a point satisfying the
KKT conditions, since this will also be a minimizer of the problem. To prove this, we
will make use of the Karush-Kuhn-Tucker Theorem. Note that we have to assume from
now on that both the objective function f and the constraint functions gi and hj are
differentiable functions of x, otherwise the KKT conditions do not make sense.

A point (x̂, α̂, β̂) ∈ Rn+m+p is called a saddle point of the Lagrangian L if

L(x̂, α, β) ≤ L(x̂, α̂, β̂) ≤ L(x, α̂, β̂) (A.34)

for all x ∈ X , α ≥ 0 and β ∈ Rp. So a saddle point is a minimum of the Lagrangian
with respect to x and a maximum with respect to α and β. Observe that by writing out
the Lagrangian we obtain

f(x̂) +
m∑
i=1

αigi(x̂) +

p∑
j=1

βjhj(x̂) ≤ f(x̂) +
m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂)

≤ f(x) +
m∑
i=1

α̂igi(x) +

p∑
j=1

β̂jhj(x)

By the first inequality we have for all α ≥ 0 and β ∈ Rp.

m∑
i=1

αigi(x̂) +

p∑
j=1

βjhj(x̂) ≤
m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂) (A.35)

The second inequality gives us for all x ∈ X

f(x̂) +
m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂) ≤ f(x) +
m∑
i=1

α̂igi(x) +

p∑
j=1

β̂jhj(x) (A.36)

We are now ready to introduce the KKT Theorem.

88 Appendix A. Optimization Theory

Theorem A.5 (Karush-Kuhn-Tucker). Let the convex optimization problem given by Problem
A.1 satisfy the Slater condition. Then x̂ is a solution of this problem if and only if there exist
α̂ ≥ 0 and β̂ ∈ Rp, such that (x̂, α̂, β̂) is a saddle point of the Lagrangian.

Proof. First we assume that (x̂, α̂, β̂) is a saddle point. Therefore Equation A.35 holds.
Observe that the right hand side of this equation is fixed. If gi(x̂) > 0 or hi(x̂) 6= 0 for
some i we can take αi → ∞ or βj → ±∞ and let the left hand side go to infinity. This
is not possible, so gi(x̂) ≤ 0 or hj(x̂) = 0 for all i and j, i.e. x̂ is feasible. Furthermore,
observe that by taking α and β both equal to 0, we see that the left hand side equals 0.
Therefore we must have

∑m
i=1 α̂igi(x̂) = 0, using hj(x̂) = 0 and gi(x̂) ≤ 0. Therefore,

we can rewrite Equation A.36

f(x̂) ≤ f(x) +
m∑
i=1

α̂igi(x) +

p∑
j=1

β̂jhj(x) (A.37)

For feasible x the second term is at most 0 and the third term equals 0. Therefore we
see that x̂ is a minimizer of the optimization problem

f(x̂) ≤ f(x) for all x ∈ F (A.38)

Now assume that we have a solution x̂ of the optimization problem. We introduce
the following system

f(x) < f(x̂) (A.39)
gi(x) ≤ 0 for all 1 ≤ i ≤ m
hj(x) = 0 for all 1 ≤ j ≤ p

x ∈ X

Clearly, by assumption this system has no solution. By Farkas’ Lemma (see Corol-
lary A.3), we see that there has to exist α̂ ≥ 0 and β̂ ∈ Rp such that for all x ∈ X

f(x) +
m∑
i=1

α̂igi(x) +

p∑
j=1

β̂jhj(x) ≥ f(x̂) (A.40)

If we take x = x̂ in the above inequality, we obtain
∑m

i=1 α̂igi(x̂)+
∑p

j=1 β̂jhj(x̂) ≥ 0.
Together with the fact that x is feasible for the problem we have

m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂) = 0 (A.41)

Therefore f(x̂) = L(x̂, α̂, β̂). Observe that for all α > 0 and β ∈ Rp

L(x̂, α, β) = f(x̂) +
m∑
i=1

αigi(x̂) +

p∑
j=1

βjhj(x̂)

≤ f(x̂) = L(x̂, α̂, β̂) (A.42)

since x̂ is a feasible point for the optimization problem. Also by Equation A.40 we have
for all x ∈ X

L(x, α̂, β̂) ≥ f(x̂) = L(x̂, α̂, β̂) (A.43)

A.6. Karush-Kuhn-Tucker Theorem 89

Combining Equations A.42 and A.43 we see that (x̂, α̂, β̂) is a saddle point, which
closes the proof of the theorem.

We can use the KKT Theorem to prove the following useful corollary

Corollary A.6. Let the convex optimization problem given by Problem A.1 satisfy the Slater
condition. Then x̂ is a solution of this problem if and only if there are α̂ ≥ 0 and β̂ ∈ Rp such
that (x̂, α̂, β̂) satisfies the KKT conditions.

Proof. By the KKT Theorem, x̂ is a solution of the problem if and only if there exist
α̂ ≥ 0 and β̂ ∈ Rp such that (x̂, α̂, β̂) is a saddle point of the Lagrangian.

Now assume that (x̂, α̂, β̂) satisfies the KKT conditions. From the first condition of
Equation A.6 we have ∇xL(x̂, α̂, β̂) = 0, i.e. (x̂, α̂, β̂) is a minimizer of the Lagrangian
with respect to x. Therefore L(x̂, α̂, β̂) ≤ L(x, α̂, β̂) for all x ∈ X . Using the fact that
x̂ is feasible, we see gi(x̂) ≤ 0 for all i and hj(x̂) = 0. Then for all α ≥ 0 we have∑m

i=1 αigi(x̂) ≤ 0, and therefore the following holds

L(x̂, α, β) = f(x̂) +
m∑
i=1

αigi(x̂) +

p∑
j=1

βjhj(x̂)

≤ f(x̂) = f(x̂) +
m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂)

= L(x̂, α̂, β̂)

for all α ≥ 0 and β ∈ Rp, using the second condition of Equation A.6. Therefore (x̂, α̂, β̂)
is a saddle point of the Lagrangian.

Now assume that (x̂, α̂, β̂) is a saddle point of the Lagrangian. Clearly, since x̂ is a
solution, it is feasible. Using the fact that x̂ minimizes the Lagrangian with respect to x
we see that ∇xL(x̂, α̂, β̂) = 0, thus giving the first condition of Equation A.6. Assume
that for some iwe have α̂igi(x̂) 6= 0. Since x̂ is feasible and α̂ ≥ 0 we have gi(x̂) < 0 and
αi > 0. Note that then there exists an α ≥ 0 such that α̂igi(x̂) ≤ αigi(x̂) = 0, namely if
αi = 0. If we take all other elements of α equal to the elements of α̂ we see

m∑
i=1

α̂igi(x̂) ≤
m∑
i=1

αigi(x̂) (A.44)

If we take βj = β̂j for all j we have

m∑
i=1

α̂igi(x̂) +

p∑
j=1

β̂jhj(x̂) ≤
m∑
i=1

αigi(x̂) +

p∑
j=1

βjhj(x̂) (A.45)

which is a contradiction with Equation A.36. Therefore (x̂, α̂, β̂) satisfies the KKT con-
ditions.

	Abstract
	Acknowledgements
	Introduction
	Problem definition
	Set-up of this thesis

	Credit risk regulation and modeling
	Financial terms
	Regulations regarding credit risk and credit risk modeling
	Traditional credit rating approaches
	Multivariate credit scoring models
	Summary

	Data properties
	Properties of the data set
	Variables
	Conversion of variables
	Selection of variables
	Data quality

	Support vector machines
	Definition of machine learning
	Set-up
	Primal and dual problem
	Extensions
	Summary

	Gradient descent techniques
	Introduction of the gradient descent algorithm
	Convergence of the gradient descent algorithm
	Subgradient descent
	Stochastic (sub)gradient descent
	Summary

	Weighted SVM and averaged SGD
	Weighted SVM
	Convergence of averaged SGD
	Summary

	Model development, results and testing
	Model development
	Performance measure
	Results for a single model
	Overall results
	Comparison with other models

	Conclusion
	Opportunities

	Bibliography
	Optimization Theory
	Duality principle
	Convex optimization
	Farkas Lemma
	Strong Duality Theorem
	Convex dual problem
	Karush-Kuhn-Tucker Theorem

