
Deferred Neighboring Radiance Transfer Master Thesis

Deferred Neighboring Radiance Transfer

Salvatore Giuffrida
Utrecht University

ICA - 4300300

Figure 1. A classic Cornell Box scene showing the effect of DNRT
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Abstract

This paper introduces Deferred Neighboring Radiance Transfer, a new precomputation-based
Global Illumination technique. DNRT modifies pre-existing light solutions for static environ-
ments enhancing them with reflections and occlusions from dynamic objects. DNRT is par-
ticularly well suited for integration with lightprobing techniques as it can exploit light probes
data to achieve faster performance. Prior to execution, DNRT computes a set of radiance
transfer coefficients. At run-time, working in screen-space, these coefficients are combined
with data from the light probes and the G-buffer to generate a new radiance solution. This
approach allows DNRT to maintain a low computational cost, with relatively high quality
results. DNRT’s computational cost grows linearly with the number of dynamic objects in
the environment. For scenarios with a single dynamic object, DNRT is 10 times more effi-
cient than current videogame industry state of practice methods like SSAO and HBAO. On
high-end GPUs DNRT’s time cost is below 0.1 ms per dynamic object.

1 Introduction

When trying to build a convincing virtual environment, employing a good illumina-
tion model is crucial, as a scene that is badly lit can look dull and lifeless. The digital
worlds presented to us by modern videogames, although astonishingly detailed, still
show in many instances signs of struggle with this particular aspect of their compo-
sition. Many techniques have been developed in recent years to tackle this problem,
with varying levels of success, both in terms of performance and quality. Among
these techniques, is here presented Deferred Neighboring Radiance Transfer, a new
method developed to enrich existing lighting technologies adding to their output one
bounce of indirect light from dynamic objects onto neighboring geometry.

1.1 Local and Global Illumination models

Figure 2. Local Illumination (left) vs Global Illumination (right) [Sidefx 2016].

In computer graphics the problem of correctly simulating light propagation within
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an environment is often deconstructed by distinguishing between direct and indirect
illumination. The first refers to a source directly shining on a target, while the latter
incorporates the phenomenon of a source reaching a target through multiple bounces
within the scene.

Local models only simulate direct light. This enables them to be very efficient, as the
only complex operation that they have to solve is visibility between the source and the
target, for which shadowmapping [Williams 1978] has long been a reliable solution.

Global Illumination models, differently from their local counterpart, try to correctly
simulate both direct and indirect light. This yields far more realistic results, which
come, however, at a high cost in terms of performance. The computational gap be-
tween the two models, global and local, is due to the higher dimensionality of the
problem the former is trying to solve. As illustrated in Figure 2, while for each shad-
ing point, local models need to consider only the directions that stretch towards the
light sources, global models have to account for all possible directions in the upper
hemisphere of the interested point. The situation is worsened by the fact that for
these additional directions a light value is not readily available and has to be com-
puted through a recursive process. This, in turn, leads to a far higher computational
complexity, thus the lower performance.

1.2 Videogames and Illumination Models

Gaming applications have always presented peculiar constraints that make the de-
velopment of a convincing illumination model particularly difficult. For an optimal
user experience, videogames have to run at a framerate that maintains a consistent
level of performance over 30 FPS. This is fundamental as it conveys a sense of flu-
idity and helps minimizing input latency. Furthermore, the resources available for
rendering are limited, as they have to be shared with other modules, like physics,
AI and networking. Given these constraints, the high level of performance offered
by local models has made them for many decades the de facto method of choice for
videogames. However, this has led to an overall underwhelming visual fidelity.

On the other end of the spectrum, classic Global Illumination methods, like raytracing
[Whitted 1979], photon mapping [Jensen 1996] and radiosity [Goral et al. 1984], still
present prohibitive performance for gaming applications. Their unsuitability derives
from the fact that these methods were initially designed to produce results that would
look as photo-realistic as possible, pushing on image fidelity over performance.

To bridge the gap between the resources currently available in consumer machines
and the computational complexity of the aforementioned methods, researchers have
developed different approximated Global Illumination models that try to offer a good
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compromise between performance and quality. Numerous are the assumption and
simplifications behind these techniques, like the discretization of the environment
in voxels [Crassin et al. 2011; Kaplanyan and Dachsbacher 2010], the light sources
reduction to Virtual Point Light [Keller 1997; Dachsbacher and Stamminger 2005],
or the (partial) precomputation of the lighting calculations [Sloan et al. 2002]. In
the crowded scenario of approximated Global Illumination Techniques finds now its
place DNRT, a new entry in the category of precomputation based methods.

1.3 Paper Overview

The remaining part of this paper will start with an analysis of related work in Section
2. Various Global Illumination techniques will be classified in different groups; their
strengths and weaknesses will be highlighted. Section 3 will provide an overall view
on DNRT. This will then be expanded upon in more detail in Section 4 and 5, which
will, respectively, present the mathematical basis on which DNRT is built and describe
its current implementation. Section 6 will introduce the method and scenarios used to
test DNRT. Results will then be analyzed and discussed in Section 7. Final remarks
on DNRT and an outlook on possible future work will be provided in Section 9.

2 Related Work

This Section gives a brief overview of the approximated Global Illumination tech-
niques that are most relevant to DNRT. These techniques have been organized in cat-
egories, each representing a different approach to real-time Global Illumination.

2.1 Precomputed Radiance Transfer Methods

Precomputed Radiance Transfer techniques aim to provide a time efficient Global Illu-
mination solution by transferring part of the computational load to an offline process.
In other words, PRT techniques split GI-related calculations between a precomputa-
tion phase and a run-time phase.

PRT techniques work with non-deformable objects that maintain their material prop-
erties (albedo and glossiness) through time. With these assumptions, during the pre-
computation phase, it is possible to calculate a radiance transfer operator for each
shading point in the scene. In most PRT applications, the objects’ vertices are se-
lected as shading points [Slomp et al. 2006]. The radiance transfer operator is then
used at run-time to transform incoming radiance into outgoing radiance.

Initially, PRT techniques focused on shading each object of the scene separately, in
isolation from all others, managing to simulate only phenomena like self-reflections
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and self-shadowing [Sloan et al. 2002; Lehtinen and Kautz 2003].

To support interaction among objects, Neighboring Radiance Transfer [Sloan et al.
2002] has been developed. This technique works adequately when objects influence
each other in couples, but not does merge well the effect of more than two objects
acting on a single point. NRT’s limitations have been partially overcome by more
modern techniques employing a Radiance Transfer Field approach [Pan et al. 2007;
Iwasaki et al. 2007]. However, these techniques still present evident limitations in
terms of performance.

2.2 Screen Space Methods

Screen Space Global Illumination methods use information available from different
rendering buffers (frame-buffer, depth-buffer and normal-buffer) to approximate the
3D composition of a scene and enrich it with Global Illumination lighting. As a
consequence, the level of performance offered is dependent on the screen resolution,
rather than on the geometric complexity of the scene.

Screen Space Ambient Occlusion [Shanmugam and Arikan 2007; Mittring 2007]
modifies a rendered image adding to it close proximity shadows. Each pixel’s neigh-
borhood is examined with samples from a spherical volume to detect the presence
of occluders. The result is an occlusion factor used to darken the pixel’s color. The
use of a spherical volume for sampling causes SSAO to present visual artifacts, such
as edges being excessively bright or dark based on their convexity. The problem is
aggravated by the fact that the sphere’s radius is calculated in screen-space and is
constant for every pixel.

Horizon Based Ambient Occlusion [Bavoil et al. 2008] improves on SSAO by using
a hemispherical sampling volume. The hemisphere is centered around the pixel’s
normal and has a radius dependent on the pixel’s view position (bigger the distance
from the view origin, smaller the hemisphere). This helps reducing the visual artifacts
that characterize SSAO.

Screen Space Directional Occlusion [Ritschel et al. 2009], differently from SSAO and
HBAO, takes into consideration the lighting direction to generate more realistic shad-
ows. SSDO is also capable of simulating one bounce of indirect light exploiting the
information gathered from the occlusion samples. In its basic form, SSDO generates
occlusions and indirect light only for objects appearing in the framebuffer. To over-
come this limitation SSDO uses renderings from multiple camera angles and depth
peeling [Everitt 2001]. This, however, has a strong negative impact on performance.
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2.3 Dynamic Real-time Methods

Global Illumination lighting can be dynamically recalculated at each frame with real-
time performance when using a discretized representation of the environment. This
approach is adopted by methods like Light Propagation Volumes [Kaplanyan and
Dachsbacher 2010] and Voxel Cone Tracing [Crassin et al. 2011].

The Light Propagation Volumes method partitions the environment in a series of cas-
cated 3D grids. At each frame, radiance is injected into the grid cells that contain a
light source and then propagated to the surrounding cells of the grid. The light con-
tained in each cell is represented using a Spherical Harmonics approximation [Green
2003]. LPV can offer real-time performance, but suffers from visual artifacts like
light leaking.

The Voxel Cone Tracing technique discretizes the scene using a sparse voxel octree
data structure that, for each point to shade, is queried using a limited number of cones.
This process enables VCT to offer accurate results, especially when confronted with
LPV. However, this comes at high cost in terms of performance and memory require-
ments.

2.4 Radiosity-based Methods

Radiosity based techniques produce view-independent solutions. This characteris-
tic is very useful in the context of gaming applications, as these often feature cam-
eras characterized by continuous and unpredictable movements. The classic radiosity
method [Goral et al. 1984], however, yields non-interactive framerates when applied
to complex scenarios like the ones presented in modern games. This is due to the
recursiveness of its formulation and to the cost of visibility and form-factor calcula-
tions.

In [Cohen and Greenberg 1985] an iterative gathering approach is used instead of
recursion, but performance is still capped by its low convergence rate. Progressive
Refinement [Cohen et al. 1988] ensures a faster convergence rate by replacing the
radiosity gathering approach with a shooting approach.

Incremental Radiosity [Chen 1990] computes the radiosity solution of a given frame
as a modification of the solution from the previous frame. This is done using Progres-
sive Refinement to shoot redistribution radiosity, which serves to account for changes
in the scene’s geometry in-between frames. Cross-Redistribution [Van De Hoef 2013]
improves the redistribution process’ performance by making it solely dependent on
moving patches.

Anti-radiance [Dachsbacher et al. 2007] eliminates visibility computations by shoot-
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ing negative radiance from the occluding patches’ back-face. The radiance direction
has to be preserved, hence directional bins are used. This produces blurrier shadows.

While the above mentioned techniques vastly improve on the performance of the orig-
inal radiosity method, they are still not efficient enough to be used in gaming appli-
cations. This is caused, among other reasons, by the high cost of calculating the
form-factors among patches. The middleware Enlighten [Geomerics 2016] addresses
this problem calculating the form-factors in a precomputation phase. This grants an
important boost in performance, that allows Enlighten to reach real-time framerates.
However, precomputation can only be used for static patches. Enlighten employs
Irradiance volumes [Greger et al. 1998], or analogous light probing techniques, to
implement radiance transfer from static patches onto dynamic meshes. It does not
currently simulate, however, the converse phenomenon, i.e. the influence of moving
meshes onto static geometry (and onto other moving meshes).

3 Deferred Neighboring Radiance Transfer

This section gives a high level overview of DNRT. Its goals and application domain
are defined. Its connections to the techniques examined in Section 2 are underlined.
The intuitive explanation of the method provided here will be reinforced with a solid
theoretical derivation in Section 4.

3.1 Radiance Redistribution

Light within a scene propagates based on the geometric relationships between ob-
jects. When a dynamic object changes its position it affects these geometric relation-
ships raising the necessity for a new lighting solution. In many Global Illumination
techniques [Crassin et al. 2011; Kaplanyan and Dachsbacher 2010], this problem is
tackled by recomputing all light interactions at each frame. This approach can lead
to the execution of unnecessary calculations since the geometric relationship between
static objects remains unchanged and the only modified light interactions are the ones
passing through dynamic objects [Van De Hoef 2013].

The Cross-redistribution [Van De Hoef 2013] method defines a redistribution pro-
cess that updates at each frame the current light solution (rather than recalculating it
from the beginning) solely depending on positional changes of the dynamic objects.
This approach allows Cross-redistribution to offer better performance than previous
radiosity-based techniques. Nonetheless, it is not capable of maintaining a real-time
framerate for complex environments like the ones featured in modern high-profile
videogames.
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3.2 Real-time Radiance Redistribution

DNRT combines the observations at the base of Cross-redistribution with a PRT-based
approach with the goal of achieving real-time performance in high-poly environments.
DNRT limits its scope to only one bounce of indirect light and relies on a set of
approximations presented in the rest of this paper.

As base of its redistribution process, at each frame, DNRT takes a pre-existing ra-
diance solution calculated for a static environment and modifies it by adding reflec-
tions and occlusions from dynamic objects. In the current DNRT implementation, the
pre-existing radiance solution is computed using Enlighten [Geomerics 2016]. This
technology subdivides the environment in large static patches and precomputes the
form-factor between them. At run time, this allows for fast radiance redistribution
among static geometry.

To model reflections and occlusions from dynamic objects, knowing the incoming ra-
diance at their respective positions is necessary. Computing this radiance at run-time
is, however, computationally expensive. To solve this problem with higher efficiency,
DNRT relies on light probing technologies inspired by Irradiance Volumes [Greger
et al. 1998]. Incoming radiance is transformed in reflected radiance and subtractive
radiance using a precomputed radiance transfer operator, similarly to Neighboring
Radiance Transfer techniques (see next Subsection).

3.3 DNRT Framework

Analogously to previous NRT methods, DNRT is built on a theoretical framework
that categorises the environment in (see Figure 3):

– O, the dynamic object whose effect on the scene’s geometry needs to be simu-
lated

– S, the set of infinitesimal area elements si that make up O’s surface.

– P , a dense set of samples pi surrounding O.

– R, the set of infinitesimal area elements ri that make up the surface of any
object in the scene that is affected by O.

DNRT works in two phases. First is the precomputation phase, an offline process
in which a radiance transfer operator is associated to each sample pi. This linear
operator will be later used at run-time to transfer incoming radiance at O’s position
into outgoing radiance from O toward all the elements in R. During this process the

8



Deferred Neighboring Radiance Transfer Master Thesis

Figure 3. si in yellow; ri in blue; pi in red

samples pi work as aliases for the actual area elements ri, since these are not known
during the precompute phase (for further details see Subsection 4.1.3).

At run-time, given the position of a certain element ri, the closest sampling point pi
is retrieved from O’s neighborhood and its transfer operator is selected. The transfer
operator is applied to the incoming radiance in O. The resulting value represents one
bounce of indirect light and is used to modify ri’s final color. Note that, differently
from previous PRT methods, in DNRT, when applying the transfer operator, a negative
value may be obtained. This way occlusions are simulated.

3.4 Contributions

While sharing its framework and two phases approach with already existing PRT
techniques [Sloan et al. 2002; Pan et al. 2007], DNRT presents a substantial set of in-
novations that set it apart from previous methods. More specifically, DNRT provides:

1. A new radiance transfer operator that replaces previous matrix multiplications
[Sloan et al. 2002] with a simple dot product.
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2. An anti-radiance approach for occlusions that enables the method to effectively
work as a post-process effect on an already existing solution.

3. An integration with light probing technologies which now benefit from an ad-
ditional bounce of indirect light from dynamic objects.

4. A screen space solution powered by a deferred-rendering based, full GPU im-
plementation.

Notice that, while in previous methods [Sloan et al. 2002] the incoming radiance
function for the dynamic object O was obtained at run-time by rendering a cubemap
at its position, DNRT’s integration with light probing technologies enables the method
to forgo this process and fetch the radiance directly from the probes, thus raising the
potential for better performance (see Section 5).

Finally, it is important to highlight the value of DNRT’s integration within the Unity
Engine, which is presented in detail in Section 5. This particular aspect shows that
the method is suitable and ready to be used in actual videogame production.

4 From the Rendering Equation to DNRT

As introduced in Subsection 3.4, DNRT modifies a preexisting Global Illumination
solution, generated for a static environment, adding the influence of dynamic objects.
The initial static GI solution will be referenced in the rest of this paper as Linit.

When a dynamic object O is inserted into the scene, Linit has to be modified in two
ways:

– Radiance reflected by O from any surface element rj ∈ R toward a specific
element ri has to be added. This additional radiance will be referenced as
Lrefl.

– Radiance received by ri from any surface element rj prior to O’s inclusion
in the scene has to be subtracted if rj is no longer directly visible from ri’s
position. This subtractive radiance will be referenced as Loccl.

Notice that, as previously stated, DNRT limits its scope to only one bounce of indi-
rect light. When applying the above listed modifications to Linit, the change operated
should initiate a ripple effect that influences the solution for multiple bounces there-
after. These contingent effects are not currently simulated by DNRT.

The next two subsections give, respectively, a formal definition of Lrefl and Loccl.
From their initial definition, a reformulation that is prone to (partial) precalculation is
derived. Subsection 4.3 puts everything together giving a final equation for DNRT.
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4.1 Precomputing Lrefl

In order to be able to express Lrefl in a form that is fit for precomputation, it is first
necessary to provide a strict mathematical definition for such function. This is done
using an adapted formulation of the classic rendering equation [Kajiya 1986]:

Lrefl(ωo, ri) =

∫
D
Lrefl(ωsi , ri)ρri(ωs, ωo)h(ri, ai)(ωs · nri)+dωsi (1)

The equation above models the radiance reflected by a dynamic object O towards an
area element ri. The symbol ρri represents the BRDF function in ri, while nri is the
normal for that specific area element. D is the solid angle projected by O onto ri and
is used as the integration domain instead of the entire hemisphere Ω. This ensures
that only radiance coming fromO’s surface elements si is captured. To highlight this,
the incoming radiance direction is represented with the symbol ωsi , rather than the
usual ωi. Cases where an intruding object partially covers O’s projection onto ri’s
upper hemisphere, are handled using a visibility function h. This function returns 1
if the first area element ai in direction −ωsi is part of O’s surface S, 0 otherwise.
The (ωs ·nri)+ dot product is used to weight incoming radiance based on its angle of
incidence. Negative values are clamped to 0, as indicated by the + subscript.

Notice that Equation 1 cannot be directly used to modifyLinit at run-time: it is simply
too computationally expensive due to the integral calculations involved. However,
with the right set of assumptions and approximations, it can be reformulated in a way
that gives ample opportunities for precomputation, making the final computation far
more efficient.

Since DNRT considers only completely diffuse reflectors, the BRDF function ρri can
be replaced with ρri

π , where ρri is the reflectivity factor (albedo) in ri. Furthermore,
given that the dynamic object O is also diffuse, the radiance Lrefl(ωsi , ri) coming

onto ri from any of the area elements si can be expressed as I(si)ρsi
π , where I repre-

sents the irradiance function and ρsi is the albedo at si. This leads to the following
equation:

Lrefl(ri) =

∫
D

I(si)ρsi
π

· ρri
π
h(ri, ai)(ωsi · nri)+dωsi

= ρri

∫
D

I(si)ρsi
π2

h(ri, ai)(ωsi · nri)+dωsi
(2)

Notice that while ρri has been factored out of the integral operator, 1
π2 is still within

its scope. This will allow to execute the division during precomputation, rather than
at run-time, which slightly improves DNRT’s efficiency.
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By assuming that the irradiance does not vary around the objectO, I can be expressed
as a function of the normal at si, rather than as a function of si itself. Notice that this
same assumption is used in most systems that employ irradiance maps [Ramamoorthi
and Hanrahan 2001]. In mathematical terms, this means that I(si) is now replaced
with I(nsi):

Lrefl(ri) = ρri

∫
D

I(nsi)ρsi
π2

h(ri, ai)(ωsi · nri)+dωsi (3)

While this equation is simpler than the one presented at the beginning of this section,
it is still not precomputable: I(nsi), nri and h(ri, ai) are all unknown prior to run-
time; ri’s relative position to O, which influences the domain D, is also not known.

4.1.1 Removing the I dependency

Figure 4. Spherical Harmonics basis functions are organized in bands, shown above up to the
5th level. The use of more bands gives a more accurate approximation [Green 2003].

The dependency on I during the precompute phase can be removed by substituting
this irradiance function with its Spherical Harmonics [Green 2003] representation:

I(nsi) =
n∑
j=1

ciYj(nsi)

=⇒ Lrefl(ri) = ρri

n∑
j=1

cj

∫
D

Yj(nsi)ρsi
π2

h(ri, ai)(ωsi · nri)+dωsi

(4)

By using I’s SH representation, Equation 4 has been split into a sum of n integrals,
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where n is the number of basis functions Yj used for the projection in the frequency
domain. In most applications that make use of SH projection, DNRT included, this
number is equal to 4 or 9, corresponding, respectively, to a 2-bands approximation
and a 3-bands approximation (see Figure 4).

4.1.2 Removing the h dependency

Currently, the problem of handling the possible intrusion of objects between O and
a certain receiving area ri does not have a solution at the precompute stage. For this
reason, h is simply disregarded during precomputation. At run-time, differently from
[Sloan et al. 2002], DNRT offers an approximated solution to the intrusion problem
based on omnidirectional shadowmapping. This, however, has a substantial negative
impact on performance. A more in-depth description of this solution is presented in
Subsection 5.2.3, while a breakdown of its performance is given in Subsection 7.1.

4.1.3 Removing the ri dependency

To overcome the lack of knowledge in regards to ri’s position during the precom-
putation stage, a sample-based approach is used. As introduced in Subsection 3.3,
each dynamic object O is surrounded by a dense set of samples pi. A reflected ra-
diance value is calculated and assigned to each sample. Mathematically, this means
substituting ri with pi, as follows:

Lrefl(pi) = ρri

n∑
j=1

cj

∫
D

Yj(nsi)ρsi
π2

(ωsi · nri)+dωsi (5)

Samples basically work as placeholders for real receivers during the precomputation
phase. At run-time, a receiver ri examines O’s neighborhood and selects the samples
pi whose relative position to O is the closest to ri’s own relative position to O. The
radiance transfer operators of the selected samples pi are then interpolated. The re-
sulting radiance transfer operator is finally used to calculate the reflected radiance in
ri.

4.1.4 Removing the nri dependency

Most NRT techniques approach the problem of not knowing the receiver’s normal at
the precompute stage using convolution (see Appendix A) or by applying SH pro-
jection to the function (ωsi · nri)+. DNRT, instead, during precomputation, replaces
nri , the normal at the receiving area element ri, with no, an intermediate normal vec-
tor pointing towards the dynamic object O’s centroid. This substitution leads to the
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Figure 5. During precomputation each sampling point is directed toward the dynamic object’s
center following the normal direction no.

following equation:

Lrefl(pi) = ρri

n∑
j=1

cj

∫
D

Yj(nsi)ρsi
π2

(ωsi · no)+dωsi (6)

To account for the actual orientation of the each receiving area element ri, at run-time,
Lrefl(·) is scaled by the dot product of no and nri :

Lrefl(pi) = ρri(no · nri)+
n∑
j=1

cj

∫
D

Yj(nsi)ρsi
π2

(ωsi · no)+dωsi (7)

Equation 7 has a simple, intuitive explanation. During the precomputation phase,
DNRT reduces the dynamic object O to a point light source emitting (reflected) radi-
ance from O’s centroid o. This radiance is captured in its full intensity by orientating
each sampling point in direction no. Classic lambertian lighting [Klett et al. 1760]
is then used at run-time to scale the radiance intensity based on the receiving area
element normal nri and the light direction represented by no.

The use of the intermediate normal no constitutes an approximation in DNRT’s light-
ing model. This approximation works particularly well for convex models with uni-
form albedo, while can bias the solution in the case of concave models with highly
varying albedo, especially when positioned at short distances (see Figure 6).
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Figure 6. Left: no and nri are equal and no approximation error is introduced due to the
intermediate normal approach. Middle and Right: no and nri differ; the radiance stored
during precomputation is equally blue and yellow; at run-time both the blue and the yellow
color channel are scaled equally based on (no · nri)+ instead of raising the blue channel and
lowering the yellow channel (middle) or vice versa (right).

4.1.5 Precomputing the Radiance Transfer Operator

Examining Equation 7 it can be noticed that, thanks to the derivation in the previous
subsections, every quantity within the integral operator is known at the precompute
stage. This allows to simply evaluate each of the n integrals, assigning them a single
scalar value:

tj =

∫
D

Yj(nsi)ρsi
π2

(ωsi · no)+ (8)

Considering Equation 7 as a whole, only the irradiance SH coefficients cj and the
normal nri are unknown while offline. At run-time, the former need to be computed
on-the-fly has detailed in Subsection 5.2.1, while the latter can be simply retrieved
from the normal-buffer. Given the definition in Equation 8, Equation 7 can now be
rewritten as follows:

Lrefl(pi) = ρri(no · nri)+
n∑
j=1

cjtj (9)

It is necessary to highlight that each coefficient tj is specific to a single sample pi.
This means that radiance transfer coefficients are available only for a discrete number
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of positions. However, DNRT should be able to provide a set of coefficients for any
position surrounding the dynamic object O. This is achieved by interpolating for
each point in space among the coefficients tj of the closest samples pi. Formally,
this is expressed defining a set of functions Tj that take as argument an arbitrary area
element ri and return the corresponding interpolated coefficients tj . Effectively, each
function Tj can be imagined as a spatial scalar field for the corresponding coefficient
tj . This leads to the final reflected radiance equation:

Lrefl(ri) = ρri(no · nri)+
n∑
j=1

cjTj(ri) (10)

4.2 Precomputing Loccl

DNRT models indirect light occlusions using an anti-radiance approach [Dachsbacher
et al. 2007]:

– first, incoming radiance at a receiving area element ri is computed without
considering occlusions from dynamic objects.

– second, the amount of radiance that should have been occluded by dynamic
objects is calculated and subtracted from the non-occluded incoming radiance.

Notice that a classic visibility-based approach for occlusions would require direct
adjustments to the way the initial solution Linit is computed. More specifically, a
modification of the visibility function used for each receiving area element ri would
be necessary. By using anti-radiance, DNRT can, instead, take Linit as-is and simply
modify its value, rather than changing the calculations that lead to it.

As already introduced at the beginning of this Section, in this paper the anti-radiance
function (also referred as subtractive radiance) is indicated with the symbol Loccl.
Loccl can be defined as the sum of all the original radiance Linit that reaches a re-
ceiving area element ri passing through an area element si, with si being part of the
dynamic object O’s surface. This translates to the following equation:

Loccl(ri) = ρri

∫
D

Linit(ωsi)

π
h(ri, si)(ωs · nri)+dωsi (11)

A new derivation is necessary to present Equation 11 in a precomputable form. As
Linit(ωsi) is not known during precomputation, the scaled irradiance function I(ωsi )

π

is used in its place:

Loccl(r) = ρri

∫
D

I(ωsi)

π2
h(ri, si)(ωs · nri)+dωsi (12)
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Notice that the two functions I(ωsi )

π andLinit(ωsi) are not perfectly equivalent. This is
because the irradiance function not only captures radiance coming onto ri from all oc-
cluded area elements rj , but it may also mistakenly capture radiance from unoccluded
area elements rk (see Figure 7). A possible solution to this problem is presented in
Appendix B.

Figure 7. Only radiance from the blue area should be occluded. However, radiance from the
orange area is captured as well.

Using an analogous derivation to the one provided for Lrefl in Subsection 4.1, a
specific set of radiance transfer coefficients kj can be calculated for Loccl:

kj =

∫
D

Yj(ωsi)

π2
(ωsi · no)+dωsi (13)

Notice that each coefficient kj is specific to a single sampling point pi. To associate a
set of occlusion coefficients to any position in O neighborhood another field function
Kj is defined. This leads to the following final equation for subtractive radiance:

Loccl(ri) = ρri(no · nri)+
n∑
j=1

cjKj(ri) (14)
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4.3 Final Equation

The results from Subsection 4.1 and Subsection 4.2 can be now put together in the
following equation for DNRT:

Lfinal(ri) = Linit(ri) + Lrefl(ri)− Loccl(ri)

= Linit(ri) + ρri(no · nri)+
n∑
j=1

cjTj(ri)− ρri(no · nri)+
n∑
j=1

cjKj(ri)

= Linit(ri) + ρri(no · nri)+
n∑
j=1

cj(Tj(ri)−Kj(ri))

(15)

Lfinal is the function representing the radiance at each area element ri after DNRT
has been applied to the initial solution Linit. Since, for each j, Tj and Kj are both
known during precomputation, they can be combined in a single function Mj , giving
the following final equation:

Lfinal(ri) = Linit(ri) + ρri(no · nri)+
n∑
j=1

cjMj(ri) (16)

As further explained in Section 5, this combination will allow to lower DNRT’s stor-
age requirements and will also grant a performance improvement. In the rest of this
paper, the difference between Lrefl and Loccl will be referenced as LDNRT , hence:

Lfinal(ri) = Linit(ri) + LDNRT (ri) (17)

5 Implementing DNRT

The following is a brief description of how the theoretical results obtained in Section
4 have been used to develop an implementation for DNRT. As already introduced,
the technique can be divided in two steps, precomputed and real-time. These are
analyzed, respectively, in Subsection 5.1 and Subsection 5.2.

5.1 Precompute Step

The task of the precomputation step is to calculate the radiance transfer coefficients
defined in Equation 8 and Equation 13. A different set of coefficients tj and kj has to
be calculated for each sampling point pi around each dynamic object O.
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Listing 1: DNRT Precomputation Step

O← Load(Obj,Tex);
o← ComputeBoundingSphere(O).center;
grid← BuildGrid(o);
foreach pi ∈ grid.vertices do

for j ← 0 to n do
Tj(pi)← MonteCarloIntegration(O, j, reflection);
Kj(pi)← MonteCarloIntegration(O, j, occlusion);
Mj(pi)← Tj(pi)−Kj(pi) ;
StoreToBitmaps(Mj(pi));

end
end

While DNRT’s run-time module has been integrated within the Unity Engine, the
precomputation step has been developed as a standalone C++ application. The appli-
cation’s inner-working can be summarized as follows:

1. A dynamic object O is loaded into the program along with its albedo texture.

2. O’s centroid is determined. The centroid is defined as the object’s bounding
sphere’s center.

3. The position of each sample pi in O’s neighborhood is fixed. Currently, a sim-
ple, regular grid is built around O. Each vertex of the grid constitutes a sam-
pling point.

4. For each sampling point pi, the corresponding set of radiance transfer coeffi-
cients tj and kj is calculated.

5. The coefficients of each sample are finally compressed and stored, ready to be
loaded and used at run-time.

Operations (4) and (5) are particularly complex and deserve a more in-depth descrip-
tion, provided respectively in the Subsection 5.1.1 and Subsection 5.1.2. For a more
formal rendition of the algorithm described above refer instead to Listing 1.

5.1.1 Coefficients Calculation

As seen in Equation 8 and Equation 13, to calculate each coefficient tj and kj of each
sampling point pi, an integral operation has to be solved. In the implementation here
described, this has been done employing Monte-Carlo integration [Robert and Casella
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1999]. In order to compute a given integral, Monte-Carlo integration requires a set
of samples from its domain. In DNRT’s case, the value of each sample is retrieved
using raytracing [Whitted 1979]. Notice that, given a point pi, to compute each of its
coefficients tj and kj a separate Monte-Carlo integration process is necessary. How-
ever, exploiting the similarities in the coefficients’ definitions, for a given sampling
direction, a single raytracing query can be used to fetch the value of each coefficient’s
Monte-Carlo sample in that specific direction. This vastly reduces the number of
raytracing queries necessary, granting a shorter processing time.

While efficiency is not the main priority during precomputation, minimizing the pro-
cessing time associated with this phase is important; an extremely long waiting time
(in the order of days) would make DNRT effectively unusable in actual videogame
production. On this note, to further reduce the time cost associated with the precom-
putation step, both raytracing and Monte-Carlo integration have been implemented on
the GPU using CUDA. Raytracing has been accelerated using a BVH data structure
built following the model proposed in [Karras 2012].

5.1.2 Compression and Storage

Once the radiance transfer coefficients have been computed, they have to be com-
pressed and stored for later usage during the run-time phase.

Compression is important as it lowers DNRT’s memory requirements. Since, as seen
in Equation 16, the coefficients tj and kj will ultimately be subtracted to each other,
it is possible to directly store their difference mj = tj −kj . This not only reduces the
amount of memory required by DNRT, but also improves performance by anticipating
the subtraction operation to the precompute stage and, more importantly, by reducing
the necessary data bandwidth. Furthermore, while coefficients mj are represented
using a float data type during their calculation, prior to storage they are cast to a
char format. This can be done with only a minor loss in precision as, accordingly
with the definitions in Equation 8 and Equation 13, the value of each coefficient mj

falls within a limited range (see Table 1).

Notice that, for a 32x32x32 sampling grid, storing coefficients tj and kj separately
and in float format would take up to 4.72 MB of memory. Coefficients mj repre-
sented in a char format have instead a memory footprint of 884.74 KB.

Finally, particular attention has been given to the layout used to store the coefficients
mj , as data organization can have a considerable impact on performance. For each
slice of the grid surrounding the dynamic objectO, 7 images are saved to disk memory
(a bitmap format is currently used). The first 6 have a 32bits format (RGBA), while
the last uses only 24bits (RGB). Table 2 shows the coefficients layout for each pixel.
The image slices are assembled into 7 Texture3D volumes, representing the grid in its
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mj index Range
0 [-0.2820, 0.0000]
1 [-0.9772, 0.9772]
2 [-0.9772, 0.9772]
3 [-0.9772, 0.9772]
4 [-2.1850, 2.1850]
5 [-2.1850, 2.1850]
6 [-1.2615, 1.2615]
7 [-2.1850, 2.1850]
8 [-1.0925, 1.0925]

Table 1. Value range for each coefficient mj

entirety, when DNRT’s run-time module is first booted (see Subsection 5.2.1).

Image Index Pixel.Red Pixel.Green Pixel.Blue Pixel.Alpha
0 m0.red m1.red m2.red m3.red

1 m0.green m1.green m2.green m3.green

2 m0.blue m1.blue m2.blue m3.blue

3 m4.red m5.red m6.red m7.red

4 m4.green m5.green m6.green m7.green

5 m4.blue m5.blue m6.blue m7.blue

6 m8.red m8.green m8.blue @

Table 2. Coefficients layout per image

Notice that this particular data disposition has been chosen to minimize, at run-time,
the number of texture fetch operations and the number of GPU instructions overall.
In particular, when a 4 SH coefficients approximation is used, the computation of the
sum

∑n
j=1 cjmj from Equation 16 is reduced in DNRT’s run-time shader (see Sub-

section 5.2.2) to 3 texture sampling operations and 3 dot product operations (one for
each color channel). For a 9 SH coefficients approximation, 7 texture fetch operations,
6 dot product operations, 1 vector multiplication and 2 vector sums are necessary.

5.2 Real-time Step

DNRT’s run-time module has been developed as a post-processing effect for the
Unity Engine’s deferred rendering pipeline. This highlights the simplicity with which
DNRT can be integrated with existing light probing technologies. Furthermore, it
helps showing that DNRT is ready for use in actual videogame production.

DNRT’s rut-time module can be divided in three components: CPU setup, GPU
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shader and visibility shadowmapping. The following subsections provide a brief de-
scription of each of these components.

5.2.1 CPU setup

DNRT’s impact on the CPU is minimal, as the only role of the central processor
is to send to the GPU the data necessary for the execution of DNRT’s shader (see
Subsection 5.2.2).

When the Unity application is first launched, the image slices generated during the
precomputation stage (see Subsection 5.1.2) are merged into 7 Texture3D volumes,
which are then readily set as shader resources on the GPU.

At each frame and for each shader pass, the SH irradiance coefficients cj at the dy-
namic object O’s position are retrieved. More specifically, they are obtained by sam-
pling and interpolating the coefficients of the light probes closest to O. If O has been
subject to any rotation, the coefficients cj are rotated accordingly using an SH rota-
tion matrix [Green 2003]. This is necessary to ensure that coefficients cj andmj have
the same coordinate system. Coefficients cj are finally set on the GPU memory along
with O’s position, scale and rotation matrix.

5.2.2 GPU shader

On the GPU side, DNRT is implemented using a single pixel shader. This shader is
applied on the framebuffer as a multi-pass post-processing effect. To each dynamic
object corresponds one shader pass. Each pass modifies the previous solution adding
reflections and occlusions from the corresponding dynamic object. This particular
implementation has been chosen for the simplicity with which it can be integrated
within the Unity Engine. In the future, however, a more direct integration within
Unity’s deferred lighting pass should be investigated, as it may remove unnecessary
overhead.

The task of DNRT’s shader is to combine the data generated during the precompute
stage, the data set by the CPU (see Subsection 5.2.1) and the data from the G-buffer
to compute Equation 16, here repeated for convenience:

Lfinal(ri) = Linit(ri) + ρri(no · nri)+
n∑
j=1

cjMj(ri) (16)

The equation is calculated for each fragment fi in the frame buffer, or better for each
corresponding area element ri. Notice that most of the parameters in Equation 16 are
readily available to the shader. In particular:

– Linit(ri) can be fetched from the framebuffer, as it is simply the color of fi
before the shader is applied.
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Listing 2: DNRT Shader (4 SH coefficients version)

ri← GetAreaElement(fj);
nri ← G-Buffer(fj).normal;
o← GetCentroid(O);
Linit(ri)← Framebuffer(fj);
if IsInside(ri, OuterV olume) then

uvwri ← GetTex3dCoords(ri, o);
// Using texture clamping, the value at the inner

volume’s boundary is automatically fetched when

u, v, or w is greater than 1.

m0,1,2,3 .red← Sample (Texture3dVolume0, uvwri);
m0,1,2,3 .green← Sample (Texture3dVolume1, uvwri);
m0,1,2,3 .blue← Sample (Texture3dVolume2, uvwri);
lamb← dot (nri , no);
LDNRT (ri).red← lamb × dot (m0,1,2,3 .red, c0,1,2,3 .red);
LDNRT (ri).green← lamb × dot (m0,1,2,3 .green, c0,1,2,3 .green);
LDNRT (ri).blue← lamb × dot (m0,1,2,3 .blue, c0,1,2,3 .blue);
if NotInside(ri, InnerV olume) then

ApplyQuadraticFalloff(LDNRT(ri), ri, o);
end
return Linit(ri) + LDNRT (ri) ;

else
return Linit(ri) ;

end

– ρri and nri , which represents, respectively, ri’s albedo and normal vector, can
be fetched from the G-buffer.

– The irradiance coefficients cj are available in the shader’s constant buffer, as
they have been previously set by the CPU.

To determine the value of Mj(ri) a few passages are necessary. First, ri’s relative po-
sition to the dynamic object O is computed. This position is then converted to a set of
uvwri coordinates. Using uvwri , the coefficients mj = Mj(ri) are sampled from the
7 Texture3D volumes generated during precomputation. Notice that, as anticipated in
Subsection 4.1.5, the value of each coefficient mj is the result of an interpolation pro-
cess that involves the coefficients of the samples pi closest to ri. As these coefficients
are stored in a voxel from the above mentioned Texture3D volumes, DNRT can in-
terpolate among them implicitly by simply enabling hardware texture filtering. After
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retrieving the coefficients mj , DNRT’s shader has available all the data necessary to
compute Equation 16. See Listing 2 for further details.

Figure 8. A dynamic object surrounded by an inner and an outer volume.

It should be noted that, in most cases, the influence of a dynamic object O on the
environment is very subtle and is perceivable only for its immediate surroundings.
This is used to boost DNRT’s performance. More specifically, the dynamic object O
is surrounded with two volumes (see Figure 8):

– if ri is within the inner volume the shader is applied.

– if ri is outside both volume, the shader skips ri’s corresponding fragment fi.

– if ri is within the outer volume, but outside the inner one, it receives ”scaled
radiance”.

The last point refers to the fact that the outer volume is used as a buffer zone neces-
sary to avoid abrupt chromatic changes. Throughout the outer volume, the radiance
calculated by DNRT at the inner volume’s boundary is gradually scaled to zero with
the inverse of the squared distance.

5.2.3 Handling the Intrusion Problem

As seen in Subsection 4.1.2, during the precomputation step is not possible to handle
situations in which an intruding object positions itself between the reflector O and
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a receiver. This means that given two area elements ri and rj in O’s neighborhood,
they are both always influenced by O even in cases when, because of their respective
positions, one should obstruct the other.

To address this problem, DNRT provides the option to enable an omnidirectional
shadowmap for each dynamic object. The current implementation uses a cubemap,
rendered at each frame. The cubemap’s origin is positioned at the corresponding dy-
namic object’s centroid and DNRT is applied to an area element ri only if it survives
the depth test. This solution presents two problems: (1) it reduces the dynamic object
to a single point, while it should be handled as an area reflector; (2) it has a consider-
able impact on performance (see Subsection 7.1). More sophisticated techniques like
Imperfect Shadowmapping [Ritschel et al. 2008] and Percentage-Close Soft Shadows
[Fernando 2005] will be examined in the future to address this issues (see Section 9).

6 Method

Figure 9. Cornell Box (left); Corridor Lighting Example (middle); Sponza (right)

To analyze DNRT’s performance and the quality of its output, four different tests have
been designed. These tests have been executed in three different environments: the
classic Cornell Box [Cornell 2016] (Test 1 and Test 2), the Corridor Lighting Example
scene from Unity’s Asset Store [Unity 2016] (Test 3), and the Sponza environment
from Crytek [Crytek 2016] (Test 4).

Notices that, as DNRT only handles diffuse reflection, all environments’ materials
have been changed to fully diffuse. Subsections 6.1, 6.2, and 6.3 provide further
details about each scenario and the associated tests. Table 3 gives instead a brief
summary of the scenarios’ polygonal complexity along with the dynamic objects’
complexity.

In order to give context to DNRT’s performance and to the quality of its output, the
results from each test have been compared with the results from a set of competing
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Scene Polygons Vertices
Cornell Box 38 72
Corridor 243.975 275.461
Sponza 279.105 153.635

(a) Scenes’ Polygonal complexity

Model Polygons Vertices
Model 1 1.572 1.509
Model 2 1.532 1.209
Model 3 2.598 1.947
Model 4 777 983
Model 5 1.534 1.416
Model 6 1.510 1.536
Model 7 1.496 1.670
Model 8 728 795
Model 9 1.593 1.770
Model 10 1.502 1.139

(b) Models’ Polygonal complexity

Table 3. Polygonal complexity of scenes and models.

technologies. Further details in regards to these technologies and the reasoning behind
their choice are provided in Subsection 6.4.

Finally, Subsection 6.5 gives a brief run down of all the different hardware configu-
rations on which the aforementioned tests have been executed. Performance on each
different configuration has been measured using Unity’s built-in profiling tools.

6.1 Cornell Box

The Cornell Box scenario has been used as background for two different tests.

Test 1 aims to determine which of DNRT’s possible configurations offers the best
compromise between quality and performance. Two factors have been taken into ac-
count: the number of SH coefficients used to represent the radiance transfer operator
and the resolution of the Texture3D volumes containing such coefficients. Based on
these parameters Test 1 has been split in 6 different instances, each representing a dif-
ferent configuration (see Table 4). In all testing instances, the Cornell Box has been
populated with 10 different dynamic objects.

The goal of Test 2 is to study how DNRT’s performance scales with respect to the
number of dynamic reflectors present in the scene. From a qualitative standpoint,
this test helps analyzing how well DNRT combines the influence of different dynamic
objects on the environment. To achieve these objectives, Test 2 has been split into
three instances, in which the Cornell Box has been populated, respectively, with 1, 5
and 10 dynamic objects.

Note that the Cornell Box used in Test 1 and 2 is a slightly modified version of the
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Instance Resolution SH coefficients
1 16x16x16 4
2 32x32x32 4
3 64x64x64 4
4 16x16x16 9
5 32x32x32 9
6 64x64x64 9

Table 4. Cornell preliminary tests configurations

classic scene. For convenience reasons, the usual area light has been approximated
with a bright point light. Furthermore, to maximize the amount of indirect light within
the scene, the Cornell Box has been closed off with a back wall.

6.2 Corridor Scene

Figure 10. Top view of the modified Corridor Lighting Example Scene.

The Corridor Lighting Example [Unity 2016], populated with a single dynamic object
(Model 3), is host of Test 3. This test has the goal of examining DNRT’s performance
and output quality when the technique is applied to an indoor scenario. Of particular
interest are situations in which the only illumination available is indirect light gen-
erated by a high number of bounces. A secondary objective is to show that DNRT
can maintain a convincing level of performance in scenes with a certain geometric
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complexity, that resemble more closely actual videogames levels.

To better suit the aforementioned objectives, the Corridor Scene has been subject to
minor adjustments: all light sources have been disabled and replaced with a single,
bright spherical emitter, positioned at the center of the environment (see Figure 10).
Note that this emitter can illuminate the environment’s corners only through multiple-
bounces of indirect light.

6.3 Sponza

The Sponza environment, populated with one dynamic object (Model 1), has been
chosen to host Test 4. The objective of this test is to analyze DNRT’s output quality
when the method is applied to outdoor scenarios, characterized by complex inter-
actions between direct and indirect light. Furthermore, Test 4 shares the secondary
objective of Test 3, i.e. proving that DNRT can deliver a solid level of performance in
high-poly environments.

Given its use in many Global Illumination papers, the Sponza scenario grants also
the possibility to compare DNRT, albeit indirectly, with other techniques like Light
Propagation Volumes [Kaplanyan and Dachsbacher 2010] and Voxel Cone Tracing
[Crassin et al. 2011].

6.4 Competing Technologies

To better contextualize DNRT’s results, the method has been tested against two com-
peting techniques: SSAO [Shanmugam and Arikan 2007] and HBAO [Bavoil et al.
2008]. These techniques have been chosen since, similarly to DNRT, they apply oc-
clusions in screen space using information from the G-buffer (for further details see
2). Furthermore, since they are often employed in high-profile games, a favorable
comparison may prove DNRT’s suitability for actual use in videogame production.

As a point of reference, a ground-truth solution is provided for each test. This solution
has been generated using Unity’s lightmaps’ baking functionality. Enlighten’s starting
solution is also provided to highlight, by contrast, DNRT’s contributions.

6.5 Hardware Configurations

Four different hardware setups have been used to test DNRT’s performance. These
hardware configurations are listed in Table 5. Their choice aims to provide a good bal-
ance, spanning from low-tier GPUs to more advance ones. Both desktop and mobile
hardware configurations are included. GPUs from multiple hardware manufacturers
(Nvidia, AMD and Intel) are represented.
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CPU GPU
Intel i7 4720HQ 2.60 GHz (3.60 GHz Turbo) Intel HD Graphics 4600
Intel i7 4720HQ 2.60 GHz (3.60 GHz Turbo) NVIDIA GTX 960M 4 GB
Intel i5 2500k 3.30 GHz (3.70 GHz Turbo) AMD ATI HD 6950 2GB
Intel Xeon E5-1620 v3 3.50 GHz (3.60 GHz Turbo) NVIDIA GTX 970 4GB

Table 5. Hardware configurations used for testing.

7 Results

The results from the four tests described in Section 6 are here presented. Performance
and visual quality are analyzed separately in Subsection 7.1 and Subsection 7.2.

7.1 Performance

This Section gives an analysis of DNRT’s performance in Test 1 to 4, comparing
the method with the chosen competing techniques, SSAO and HBAO. Note that all
measurements indicate average values over a 10 seconds span. All tests have been
executed at a 1366×768 resolution. Unity’s built-in profiling tools have been used to
measure the overall time duration of each frame. The execution time of DNRT, SSAO
and HBAO within a frame (referred as Method’s Cost) has been measured using the
Intel GPA software.

7.1.1 Intrusion Problem and time efficiency

Cornell Box - Test 2 - 10 Models
Frametime (ms) Method’s Cost (ms)

Intel HD
4600

Unity 34.482
DNRT Basic 58.823 29.712

DNRT Intrusion 76.923 33.078

AMD HD
6950

Unity 2.747
DNRT Basic 4.219 1.450

DNRT Intrusion 7.663 1.618

NVIDIA
GTX960M

Unity 2.398
DNRT Basic 4.608 2.236

DNRT Intrusion 8.695 2.538

NVIDIA
GTX970

Unity 0.940
DNRT Basic 1.661 0.800

DNRT Intrusion 7.042 1.151

Table 6. Time comparison between Unity’s base performance (Unity) and DNRT with the
intrusion detection option enabled (DNRT Intrusion) and disabled (DNRT Basic).
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As introduced in Subsection 5.2.3, DNRT addresses the intrusion problem, i.e. the
problem of dealing with an object positioned between the dynamic reflector O and
a receiver ri, using cubic shadowmapping. During testing this approach has yielded
underwhelming results both in terms of quality and performance. Visual artifacts are
analyzed in Subsection 7.2.1. In regards to the time cost, Table 6 compares DNRT’s
performance with cubic shadowmapping disabled (DNRT Basic) and enabled (DNRT
Intrusion). Configuration 2 from Table 4 has been used (32x32x32 resolution with 4
SH coefficients).

The cost of DNRT’s shader is only marginally higher when the intrusion detection op-
tion is enabled. This is because the only additional operation is a depth test for each
considered fragment. However, the overall frametime (1/framerate) is considerably
longer due to the current cubic shadowmapping approach to the intrusion problem.
For each frame, this solution requires to render the environment 6 times per dynamic
object. This results in low performance, especially when multiple objects are within
the scene. In the future more performant solutions may be explored (see Subsec-
tion 9.4). At the moment, all remaining tests have been executed with the intrusion
detection option disabled.

7.1.2 Cornell Box - Test 1

In order to find which of DNRT’s possible configurations offers the best compromise
between quality and performance, in Test 1, six different combinations of its input
parameters have been examined (see Table 4). Performance results for different Tex-
ture3D resolutions have been omitted, as no measurable impact on DNRT’s time cost
related to this parameter was detected. The number of SH coefficients used, instead,
significantly influences DNRT’s time cost, as depicted in Table 7.

Cornell Box - Test 1
Frametime

(ms)
Method’s Cost

(ms)
Intel HD
4600

DNRT 4 SH 62.500 29.712
DNRT 9 SH 83.333 53.693

AMD HD
6950

DNRT 4 SH 4.219 1.450
DNRT 9 SH 4.608 1.800

NVIDIA
GTX960M

DNRT 4 SH 4.608 2.236
DNRT 9 SH 6.622 4.302

NVIDIA
GTX970

DNRT 4 SH 1.661 0.800
DNRT 9 SH 2.375 1.546

Table 7. DNRT’s 4 SH coefficients configuration compared against the 9 SH coefficients
configuration.

Using the 9 SH coefficients configuration leads to a time cost growth that goes from a
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24.14% increase registered for the AMD ATI HD 6950 GPU up to a 93.25% mea-
sured on the NVIDIA GTX970. This loss in performance is due to the fact that
DNRT’s shader is bandwidth bound, with the sampling operations to fetch data from
the Texture3D volumes constituting a bottleneck. Figure 11 presents several occu-
pancy parameters of DNRT’s shader, in a 9 SH coefficients configuration, across 10
passes (1 per object, Cornell Box - Test 2) for a rendering frame captured on the Intel
HD 4600 GPU using the Intel GPA software. Due to the sampler bottleneck, DNRT’s
pixel shader function is forced to an idling state for 60% of its execution time.

Figure 11. DNRT shader occupancy parameters. PS EU is the pixel shader execution unit.

The lower performance given by a 9 coefficients configuration would be acceptable
only if matched by considerable gains in visual quality. However, this is not the case,
as argued in Subsection 7.2.2. Therefore, the 4 coefficients configuration has been
chosen as DNRT’s standard setup and used for the remaining tests (Test 2, 3 and 4).

7.1.3 Cornell Box - Test 2

From a performance analysis of the results from Test 2, it emerges that DNRT’s time
cost is linearly dependent on the number of dynamic objects on screen. This trend
is consistent across all 4 considered hardware configurations, as shown in Table 8.
SSAO and HBAO, as expected, do not show any dependence on this factor.

While DNRT is 10 times faster than SSAO and HBAO in scenarios featuring only one
dynamic object, its performance aligns with the results from its two competitors when
10 dynamic objects are present in the environment.

Notice that the linearity of DNRT’s performance is not surprising given the current
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Cornell Box - Test 2
1 Model 5 Models 10 Models

Frametime
(ms)

Method’s
Cost (ms)

Frametime
(ms)

Method’s
Cost (ms)

Frametime
(ms)

Method’s
Cost (ms)

Intel HD
4600

Unity 30.303 31.250 34.482
DNRT 33.333 2.708 43.478 14.417 58.823 29.712
SSAO 50.000 19.371 52.631 20.340 52.631 20.232
HBAO 62.500 31.387 62.500 31.901 62.500 31.213

AMD HD
6950

Unity 2.739 2.739 2.747
DNRT 2.754 0.191 3.412 0.746 4.219 1.450
SSAO 4.651 1.646 4.672 1.665 4.651 1.682
HBAO 4.807 2.021 4.830 1.994 4.878 2.021

NVIDIA
GTX960M

Unity 2.325 2.380 2.398
DNRT 2.398 0.202 3.333 1.092 4.608 2.236
SSAO 4.166 1.821 4.166 1.825 4.273 1.825
HBAO 4.291 1.966 4.255 1.969 4.524 2.105

NVIDIA
GTX970

Unity 0.842 0.903 0.940
DNRT 0.914 0.077 1.322 0.395 1.661 0.800
SSAO 1.633 0.743 1.658 0.746 1.760 0.750
HBAO 1.607 0.734 1.683 0.759 1.607 0.741

Table 8. Results from Test 2. DNRT exhibits a linear dependency on the number of dynamic
objects.

implementation. DNRT’s shader is to the applied in multiple passes, with one pass
per dynamic objects. Each pass is likely to a similar time cost, hence the linear growth
with respect to the number of dynamic objects. A future single-pass implementation
directly integrated within Unity’s deferred rendering pass, may present a sublinear
growth.

7.1.4 Corridor Scene and Sponza - Test 3 and Test 4

Table 9 presents the results from Test 3 and Test 4. Although the scenarios on which
these tests have been executed, respectively the Corridor Scene and Sponza, have a
much higher polygonal complexity than the Cornell Box (see Table 3a), DNRT’s per-
formance is mostly unchanged. This shows that DNRT’s time complexity is geometry
independent.

It should be noted that the time costs for Test 3 are consistently higher than the ones
regarding Test 4. This is because the model used in Test 3 is larger than the one used
in Test 4. A higher scale means wider inner and outer volumes surrounding the dy-
namic object and, therefore, a higher number of fragments on which DNRT’s shader
is applied (see Subsection 5.2.2). In other words, due to the surrounding volumes
optimization, DNRT exhibits a dependency on the dynamic objects’ scale.
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Corridor Scene - Test 3 Sponza - Test 4
Frametime (ms) Method’s Cost

(ms)
Frametime (ms) Method’s Cost

(ms)

Intel HD
4600

Unity 27.027 50.000
DNRT 30.303 3.827 52.631 3.281
SSAO 50.000 26.921 76.923 23.414
HBAO 55.555 32.181 83.333 32.691

AMD
HD 6950

Unity 2.487 4.065
DNRT 2.604 0.239 4.132 0.179
SSAO 5.714 2.942 6.756 2.302
HBAO 4.716 1.972 5.681 1.985

NVIDIA
GTX960M

Unity 2.364 4.255
DNRT 2.398 0.296 4.484 0.266
SSAO 4.672 2.229 7.299 2.328
HBAO 4.587 2.200 7.142 2.226

NVIDIA
GTX970

Unity 0.889 1.760
DNRT 0.956 0.112 1.785 0.098
SSAO 1.915 0.980 3.067 1.109
HBAO 1.798 0.812 2.724 0.822

Table 9. Results from Test 3 and Test 4.

7.1.5 Performance Summary

A measurable effect of the Texture3D resolution on DNRT’s performance has not
been detected. The number of SH coefficients used, instead, changes substantially
DNRT’s time cost. This is because DNRT is bandwidth bound and the usage of more
SH coefficients entails a higher number of sampling operations.

DNRT runs 10 times faster than SSAO and HBAO when a one single dynamic object
is present in the scene. However, the method’s time complexity has exhibited a linear
dependency on the number of dynamic objects. This means that DNRT’s matches
SSAO and HBAO’s performance when 10 dynamic objects are part of the environ-
ment. Furthemore, DNRT performance is dependent on the dynamic object’s scale,
as this affects the size of the surrounding volumes (see Subsection 5.2.2) and therefore
the number of considered fragments.

Finally, by presenting similar performance in all environments, DNRT has not shown
a dependency on the geometric complexity of the scene.
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7.2 Visual Quality

This Section gives an analysis of DNRT’s results from a qualitative point of view. The
output of each experiment is analyzed in a dedicated Subsection.

7.2.1 Intrusion Artifacts

DNRT solves the intrusion problem described in Subsection 5.2.3, by rendering a
cubic shadowmap at each dynamic object’s position. A receiver ri is affected by
a dynamic object O only if visible from its centroid. This constitutes a substantial
simplification, as basically each dynamic object is treated as a point light, rather than
an area reflector.

During experimentation, this approach has led to noticeable visual artifacts in the
form of hard chromatic edges, as visible in Figure 12. Considering also the under-
whelming performance shown in Subsection 7.1.1, it is clear that the adoption of a
more sophisticated solution will be necessary in the future. A selected number of
possible options are presented in Subsection 9.4.

Note that, because of the aforementioned limitations, the results described in the up-
coming Subsections have been generated with the intrusion detection feature disabled.
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Figure 12. The cubic shadowmapping solution to the intrusion problem leads to hard chro-
matic edges.
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7.2.2 Cornell Box - Test 1

(a) DNRT 4 SH coefficients, 32x32x32 (d) DNRT 9 SH coefficients, 32x32x32

Figure 13. DNRT’s output using 4 and 9 SH coefficients.

Each instance of Test 1 is distinguished by resolution and number of SH coefficients
used; these parameters have a subtle, but noticeable effect on DNRT’s output.

Although the use of 9 SH coefficients allows to strengthen certain details (see Figure
13), overall, the advantages in terms of quality over a 4 SH coefficients configuration
are only minor and do not justify the considerable loss in performance caused by the
use of a higher number of coefficients (see Subsection 7.1.2).

In regards to the Texture3D resolution, Figure 14 shows that this parameter affects
the sharpness of DNRT’s reflections and occlusions. The 16x16x16 configuration
gives overly blurry results, yielding a considerable loss of detail. While the 64x64x64
configuration gives the sharpest effects, its difference from the 32x32x32 setup is not
substantial. The latter, therefore, constitutes the better choice, given its much lower
memory requirements (393.216 KB vs 3.145 MB per object).

Putting together the considerations on the coefficients number and the resolution made
above, along with the performance analysis from Subsection 7.1.2, configuration 2
(see Table 4), which uses a 32x32x32 resolution and 4 SH coefficients, emerges as
the one providing the best compromise between quality, performance and storage
requirements. For this reason it has been selected as the standard configuration.
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(a) DNRT 4 SH coefficients, 16x16x16 (b) DNRT 4 SH coefficients, 32x32x32

(c) DNRT 4 SH coefficients, 64x64x64

Figure 14. DNRT’s using different Texture3D resolutions.

7.2.3 Cornell Box - Test 2

Test 2 is comprised of three separate instances, each featuring a different number
of dynamic objects. Here a qualitative analysis of the third instance, in which 10
dynamic objects populate the Cornell Box, is provided. The results from instance 1
and 2 are presented in Appendix C along with other DNRT’s output images.

Figure 16 presents a comparison between the ground-truth, Enlighten, DNRT, SSAO
and HBAO. It is immediately noticeable that all techniques present important differ-
ences with the ground-truth.
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As expected, the Enlighten’ solution ignores the dynamic objects, and therefore lacks
all the reflections and occlusions casted by these objects onto the environment.

SSAO and HBAO operate on an approximation of the environment that is solely based
on the data available in the frame-buffer and the depth-buffer. As seen in Subsection
2.2, this leads to visual artifacts, like the incorrect darkening of concave edges due to
the inaccurate detection of an occluder. This is particularly evident in Figure 16e and
16f. Furthermore, SSAO and HBAO simulate only close proximity shadows, hence
their respective solutions do not feature any reflection effect.

DNRT is capable of representing both occlusions and reflections, although they lack
intensity when compared with the ground-truth. This may be caused by the anti-
radiance approximation discussed in Subsection 4.2. Nonetheless, DNRT represents
a clear improvement over the Enlighten’s solution, enhancing it with complex light
interactions from dynamic objects onto the static environment and onto other objects.
This is highlighted in Figure 16d that shows how neighboring objects clearly affect
each other.

(a) Ground-Truth (b) Enlighten (c) DNRT (d) SSAO (e) HBAO

Figure 15. Test 2 - Detailed comparison.
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(a) Ground-truth (b) Enlighten

(c) DNRT (d) Difference b/w Enlighten and DNRT 8x

(e) SSAO (f) HBAO

Figure 16. Test 2 results.
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7.2.4 Corridor Scene - Test 3

(a) Grond-Truth (b) Enlighten

(c) DNRT (d) Difference b/w Enlighten and DNRT 8x

(e) SSAO (f) HBAO

Figure 17. Test 3 results.

In the scenario selected for Test 3, the Corridor Scene, indirect light has an overall
direction, going from the environment’s center towards the peripheries of its two cor-
ridors. When placing a big object midway through a corridor, radiance is bounced
back toward the center and the latter part of the corridor is darkened as a result. This
phenomenon is evident when comparing the ground-truth with the Enlightens’ out-
put (see Figure 17). In the Enlightens’ solution light fades uniformly throughout the
corridor. The ground-truth instead shows a clear jump in brightness caused by the
presence of the dynamic object. In particular, the object occludes radiance, darken-
ing the rest of the corridor. It also reflects radiance forward giving a pink tint to the
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(a) Ground-Truth (b) Enlighten (c) DNRT (d) SSAO (e) HBAO

Figure 18. Test 3 - Detailed comparison.

corridor in that direction.

Since SSAO and HBAO only model close proximity occlusions, they cannot replicate
the phenomena described above. DNRT gives instead a better approximation of the
ground-truth, replicating both the pink reflection and the darkening of the latter part
of the corridor. This approximation is not perfect: the overall chromatic tone of
the scene is slightly different and fine shadowing details at the object’s feet are lost
(see Figure 18). The former is likely caused by the one-bounce limitation, while
the latter may depend on the intermediate normal approximation and/or on the anti-
radiance approximation. Furthermore, the end of the corridor in DNRT’s solution
is brighter than in the ground-truth. This could be a drawback of the surrounding
volumes optimization 5.2.2: the corridor’s end likely falls outside the inner volume,
but inside the outer volume, where DNRT’s effect is gradually diminished with a
quadratic falloff.

It should be noted that by redistributing an pre-existing light solution (for static ge-
ometry) characterized by multiple-bounces of indirect light, DNRT effectively over-
comes one of the limitations that characterize fully dynamic techniques like LPV
[Kaplanyan and Dachsbacher 2010] and VCT [Crassin et al. 2011]. These techniques
only simulate up to two bounces of indirect light.
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7.2.5 Sponza - Test 4

(a) Ground-Truth (b) Enlighten

(c) DNRT (d) Difference b/w Enlighten and DNRT 8x

(e) SSAO (f) HBAO

Figure 19. Test 4 results.

Test 4 examines DNRT’s behavior in an outdoor environment (Sponza) characterized
by a mix of bright direct light and indirect light. DNRT’s output is illustrated in
Figure 19 along with the ground-truth and the output from the considered competing
techniques.

Of particular interest is the interaction between the red cloth and the white marble
pillar in the image’s center (see Figure 20). In the ground-truth, the red indirect light
coming from the cloth is dominated, midway toward the top of the pillar, by the
green reflection coming from the dynamic object. DNRT replicates this phenomenon,
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(a) Ground-Truth (b) Enlighten (c) DNRT (d) SSAO (e) HBAO

Figure 20. Test 4 - Detailed comparison.

which is instead missing in the Enlightens’ output (the pillar has a red tint from top
to bottom). The reflected light is, however, less intense. SSAO and HBAO simulate
only close proximity occlusions, therefore this detail is missing from their output.

7.2.6 Visual Quality Summary

DNRT enriches a pre-existing radiance solution for static geometry with reflections
and occlusions from dynamic objects. Results resemble the ground-truth, although
a substantial difference is still present. This is mostly due to a lack of intensity,
especially concerning indirect occlusions. The current anti-radiance approximation
may be the root of this problem. Chromatic differences with the ground-truth are also
caused by DNRT’s one-bounce limitation.

When compared against SSAO and HBAO, DNRT shows several advantages: (1) it is
capable of simulating reflections; (2) as shown in Subsection 7.2.4, it is not limited to
close proximity occlusions; (3) it does not present artifacts like the typical darkening
of concave edges; (4) it is capable of more accurate results by taking into account
the radiance direction (it does not assume that the environment is illuminated by an
ambient light).
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8 Conclusion

This paper has introduced DNRT, a precomputation-based method capable of enrich-
ing the output of light probing technologies with one additional bounce (or occlusion)
of indirect light from dynamic objects.

Thanks to its redistribution approach, inspired by incremental radiosity techniques,
and its deferred rendering implementation, DNRT is capable of offering a level of per-
formance in orders of magnitude higher than previous PRT-based neighboring tech-
niques [Sloan et al. 2002; Lehtinen and Kautz 2003; Pan et al. 2007]. When applied
in scenes with a limited number of dynamic objects, DNRT is also more efficient than
current screen-space techniques.

Given the low time cost, DNRT may be used with success in actual videogame pro-
duction. The method could be particularly effective for genres of games that, by
design, present a limited number of dynamic objects, like fighting games and racing
games. It may also be used selectively on the player’s avatar in third person games
and in a much wider breadth of applications.

In terms of image fidelity, DNRT gives perceptually convincing results. The addition
of indirect light reflection and occlusion from dynamic objects onto static geome-
try and other dynamic objects enhances the output of technologies that solely simu-
late static-to-static and static-to-dynamic interactions (e.g. Enlighten). However, the
gap from the ground-truth is still substantial. In the future, an extension to multiple
bounces of indirect light and arbitrary normal directions, may help close this distance.

9 Future Work

While in its current state DNRT is capable of generating qualitatively satisfying re-
sults at a low computational cost, the method still offers ample space for numerous
improvements. Here is provided a brief description of the ones that could benefit
DNRT the most. For a full account, see Appendix B.

9.1 Multiple-bounces DNRT

As seen in Subsection 7.2, DNRT’s output presents a notable difference from the
ground-truth. This discrepancy is likely tied, at least in part, to the fact that DNRT
simulates only one bounce of indirect light. Therefore, overcoming this limitation,
may allow DNRT to generate far more accurate results.

A promising approach for a multiple-bounces extension could be based on an iterative
solution, in which DNRT is applied numerous times per frame. The method would

44



Deferred Neighboring Radiance Transfer Master Thesis

intuitively work as follows:

1. Irradiance coefficients cj are sampled from the light-probes.

2. Given a dynamic object O, the environment surrounding this object is rendered
in a cubemap E0.

3. Using the coefficients cj as input, DNRT is applied to E0 (rather than to the
framebuffer). The result is a modified cubemap E1.

4. E1 is convolved [Ramamoorthi and Hanrahan 2001] and projected into SH co-
efficients e1j .

5. DNRT is applied on E1 using e1j as input, rather than cj . The result is a new
cubemap E2.

6. The process is repeated from step 4 for a predetermined number of iterations n.

7. Finally, DNRT is applied to the framebuffer using enj as input.

The process described above employs, however, expensive operations, like the cube-
map rendering and its convolution. Better performance could theoretically be achieved
by modifying directly the irradiance coefficients, bypassing the cubemap and using
instead an analytical function q defined as follows:

q(cj ,mj) = e0j

q(eij ,mj) = ei+1j

(18)

Function q would, at each iteration, output a new set of irradiance coefficients based
on the coefficients from the previous iteration and on the precomputed coefficients.
However, at the moment, the existence of this function is only hypothetical. There-
fore, part of the future work on DNRT will be spent on trying to give a concrete
definition of function q.

9.2 Supporting Animating Objects

In its current form, DNRT only supports rigid objects. This means that objects can
be scaled, rotated and translated within the environment, but cannot be deformed, nor
animated. In the future, two strategies could be applied to overcome this limitation.
First, the adoption of a partitioning approach, in which a dedicated sampling volume
is associated to each of the object’s sub-meshes, should constitute a simple exten-
sion that may enable rigid animations. For actual deformations, or more complex
animations, a promising solution is to generate a set of Texture3D volumes for each
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key-frame of the object’s animation. At run-time, for each frame of animation, the
radiance transfer coefficients would be obtained by interpolating between the Tex-
ture3D volumes of the two closest key-frames.

9.3 Supporting arbitrary normal directions

Figure 21. A set of normal directions nj ∈ N is preselected (left). For each normal nj , a
dedicated 3d sampling grid is built (right).

As seen in Subsection 4.1.4, DNRT employs during precomputation an intermediate
normal direction no. This enables DNRT to use a vector representation for its radi-
ance transfer coefficients, differently from other PRT-based techniques [Sloan et al.
2002], which instead utilize a matrix representation. Using a vector representation
has numerous advantages: it lowers the storage requirements and the amount of data
to be fetched from (texture) memory during the shader execution; it allows to apply
the radiance transfer operation using a simple dot product, rather than a matrix mul-
tiplication. However, the use of an intermediate normal direction can have a negative
impact on image fidelity, especially for situations like the one depicted in Figure 6.
To solve this problem, in the future, two different approaches will be examined.

The first approach is to go back to a more classic matrix representation of the ra-
diance transfer coefficients, using the derivation provided in Appendix A. However,
eventual improvements in image quality may be out-weighted by the loss in perfor-
mance and by the higher storage requirements, making the current version of DNRT
still preferable.

An alternative approach is to extend the current DNRT implementation to support a
predetermined set of normal directions nj ∈ N (see Figure 21). A precomputation
iteration should be executed for each nj , resulting in multiple sets of 7 Texture3D
volumes. During the shader execution, the set whose associated normal nj resembles
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more closely the fragment’s normal is selected. Except for this initial selection pro-
cess, the shader would remain identical to the current implementation. This should
minimize any loss in performance, while yielding an improvement in image quality.
Storage would, however, be negatively affected, growing linearly with the cardinality
of N .

9.4 Improved Solutions to the Intrusion Problem

In its current incarnation, DNRT provides a solution to the intruding object prob-
lem (see Subsection 5.2.3) based on omnidirectional shadowmapping. This solu-
tion is, however, lacking both in terms of performance and quality. In the future,
more complex shadowing techniques should be examined. The use of methods such
as Percentange-Close Soft Shadows [Fernando 2005] and Imperfect Shadowmaps
[Ritschel et al. 2008] will likely bring substantial improvements in regards to both
quality and performance. Even better results may be yielded by the more experimen-
tal technology of Precomputed Shadow Fields [Zhou et al. 2005].
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Appendix A – Arbitrary Normals and Convolution

This appendix provides an additional mathematical derivation that shows how to precompute
Lrefl without the use of an intermediate normal vector no. The starting point for this new
derivation is Equation 5, here repeated for convenience:

Lrefl(pi) = ρri

n∑
j=1

cj

∫
D

Yj(nsi)ρsi
π2

(ωsi · nri)+dωsi (5)

The contents of the integrals in Equation 5 are grouped under the following functions:

g(ωsi) = (ωsi · nri)+ (19)

fj(nsi) =
Yj(nsi)ρsi

π2
(20)

Notice that nri is not part of g’s arguments. The reason behind this is that nri is initially
treated as a constant with value +y, i.e. is the vector pointing upwards. This assumption is
only temporary as the Spherical Harmonics convolution property will allow to account for all
other possible directions of nri .

Function g is then projected onto the frequency domain:

g(ω) =

r∑
t=1

gtYt(ω) (21)

Each distinct function fj is also projected into the frequency domain:

fj(ω) =

r∑
t=1

fjtYt(ω) (22)

At run-time function g is used as a convolution kernel upon each function fj . The result is
a new composite function that is evaluated in direction nri . Since g is a circular symmet-
ric function, the convolution operation resolves into a simple application of the convolution
theorem [Sloan 2008]:

(fj ? g)ml =

√
4π

2l + 1
g0l f

m
jl (23)

Notice that the general theorem uses a double index notation, which has been avoided so far in
order for simplicity purposes. Equation 23 can be rewritten in single index notation by using,
in regards to function g, the index t′ as a replacement for the combination l = k,m = 0, with
k ∈ [0,

√
n] (the ? symbol indicates function composition):

(fj ? g)t =

√
4π

2l + 1
gt′fjt (24)

Finally, the definition from Equation 24 is used in Equation 5 to obtain the following:

Lrefl(pi) = ρri

n∑
j=1

cj

r∑
t=1

√
4π

2l + 1
gt′fjtYt(nri) (25)

Using Equation 25 a higher accuracy in DNRT’s output should be possible. However, the ne-
cessity to deal with a matrix rather than a vector of coefficients makes this approach inherently
slower and perhaps less preferable.
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Appendix B – Additional Future Work

In Section 9 the most critical ways to improve DNRT in the future have been investigated.
However, there are many other smaller adjustments that could help raising DNRT’s quality
and efficiency.

B.1 Quadratic Samples Distribution

DNRT currently uses a regular grid to build a set of samples pi around each dynamic object
O. This means that the points pi are distributed linearly in the space around O. However, the
influence of a dynamic object on its surrounding is not linear, but rather decreases proportion-
ally to the squared distance from the object itself. To better capture this behavior, a quadratic
distribution, in which the sampling set is denser in the object’s vicinity and more sparse at
growing distances, could be used. This may improve DNRT’s visual fidelity. It may also
enable the coverage of a wider spacial range around the object, while using the same number
of samples.

B.2 Improved Anti-Radiance

In the current DNRT implementation, anti-radiance is represented using the irradiance func-
tion at the occluder’s back-face. As illustrated by Figure 7, this leads can lead to a substantial
approximation error. Using the radiance at the occluder’s back-face may grant better results.
This would, however, yield the problem of obtaining the SH radiance coefficient from the ir-
radiance coefficients cj . A possible solution could be based on employing an opposite process
to the one described in [Ramamoorthi and Hanrahan 2001].

B.3 PRT Preliminary Step

Rather than directly sampling the dynamic object’s albedo during precomputation, better re-
sults may be achieved by first applying PRT on the model. This would enrich the object with
local effects like self-shadowing and self-reflections. Once these effects are applied, sampling
would be executed.

B.4 Texture Compression

While DNRT employs already a certain degree of compression to store the radiance coeffi-
cients in RGBA32 and RGB24 textures (see Subsection 5.1.2), memory requirements could be
further reduced using texture compression methods such as S3 [Berillo 1997]. This, however,
may also introduce visual artifacts.
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Appendix C – Screenshots

Figure 22. DNRT 1 dynamic objects

Figure 23. DNRT 5 dynamic objects
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