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Abstract

In this thesis we extend the Vehicle Routing Problem with Time Windows
by adding time-dependent and stochastic travel times. By allowing any
probability distribution to represent our stochastic travel times at any point
of time, we allow great flexibility in defining these travel times. Feasibility
of a route is defined using reliabilities; the probability that the vehicle will
arrive on time at the customer.

This problem is solved using a column generation heuristic. To solve
the pricing problem, we define four methods; two mixed integer programs,
a local search heuristic and a dynamic programming heuristic. We will
compare these methods to find out which performs best on our problem.

Taking the new feasibility criterion for routes into account, we will cal-
culate the latest possible departure time from the depot for a given route.
This can be done using different methods, which we will explore.
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Chapter 1

Introduction

The Traveling Salesperson Problem (TSP) consists of minimizing the total
travel cost of a salesperson, while traversing a set of cities and returning
to the original city. The travel cost can be connected to travel duration,
monetary costs, route length, a quantification of comfort on the road, or
any other measurement imaginable.

The Truck Dispatching Problem is formulated by Dantzig and Ramser
[4]. This would later be known as the first Vehicle Routing Problem (VRP).
They proposed a method to solve this problem to near-optimality. It can
be solved manually or by using an ‘automatic digital computing machine’.
The classical VRP can be seen as a TSP with multiple salespersons. All
salespersons are originally located in a single city (depot) and every other
city should be visited by one of the salespersons. In VRP the cities are
described as customers and the salespersons as vehicles. Besides minimizing
travel cost, some instances also aim to minimize the number of resources,
like drivers, trailers and trucks used. We must note that another definition
of the VRP can be found in literature. According to some authors, capacity
constraints on the vehicles are also part of the VRP definition. As described
by Bektas [1], the capacity constraints are the only difference between VRP
and the Multiple Traveling Salesperson Problem (mTSP).

1.1 Variations

The Pickup and Delivery Problem (PDP) is a close sibling of the VRP. It
adds precedence constraints to the problem, by specifying that a vehicle
should pickup a package at one customer before delivering it to the other.
The Dial A Ride Problem (DARP) extends the PDP by allowing only one
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CHAPTER 1. INTRODUCTION 6

package in the vehicle at a given time. This problem is often found in
taxi services, with passengers as packages. Many more variations exist, as
listed below. This list is certainly not exhaustive, but it contains the most
commonly described variations.

CVRP In the Capacitated Vehicle Routing Problem, every customer has
a non-negative demand for commodities. Every vehicle has a non-
negative capacity of these commodities. The combined demand of all
customers in a route may not surpass the capacity of the vehicle that
services them.

VRPB The Vehicle Routing Problem with Backhauls allows negative cus-
tomer demands in the CVRP. This means that vehicles can also pickup
goods and deliver these to the depot. Usually vehicles are only allowed
to pickup goods after they have delivered all their goods from the de-
pot.

MDVRP The Multi-Depot Vehicle Routing Problem allows for more than
one depot. Vehicles can return to any depot, but the number of ve-
hicles returning to a given depot should be equal to the number of
vehicles departing from it.

VRPTW In the Vehicle Routing Problem with Time Windows, customers
can specify a time window in which the vehicle should arrive. This
variation can be subdivided into soft and hard time windows. The
difference is that by violating a soft time window a penalty cost is
calculated, while hard time windows may not be violated.

DVRP The Dynamic Vehicle Routing Problem is different from the VRP
due to the fact that it has to be able to handle changes. During the
day new customers arrive which have to be incorporated in the sched-
ule, while minimizing the travel cost. Algorithms that solve changing
problems are called on-line, since they are reacting to changes in real-
time.

1.2 Formal problem definition

The Time Dependent Stochastic Vehicle Routing Problem with Time Win-
dows consists of a set of customers C, a depot δ, a set of vehicles V and a
set of time periods P . Every customer should be serviced exactly once by
one of the vehicles in V . To service a customer, a vehicle has to travel to
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the customer. When a vehicle arrives at customer c ∈ C, it takes sc time to
service the customer. The service time sc is independent of the vehicle that
services the customer. Every customer c ∈ C has a time window [two

c , tw
c
c].

The vehicle servicing this customer should arrive before twc
c and after two

c .
If the vehicle arrives at the customer before two

c it has to wait until two
c to

service the customer.
The vehicles in V are homogeneous, meaning every vehicle in V is iden-

tical. In this thesis we assume that sufficient vehicles are available, so the
amount of vehicles will never be the bottleneck. Using a vehicle costs vc,
independent of the amount of customers served. The objective of our prob-
lem is to create a set of routes, minimizing their combined costs, thereby
satisfying all constraints below. A route r is an ordering of customers; ri is
the ith customer visited in the route and as we start and end at the depot,
we define r0 = r|r|+1 = δ.

By combining the depot δ and the customers in C we get the set of
nodes N . The travel time from node i ∈ N to node j ∈ N is dependent
on the departure time d from node i and is stochastically defined by the
function Tij(d), which returns a random variable. The function Tij(d) uses
an interpolation technique described in Section 2.1 to combine the random
variables T p

ij , which represent the travel time between node i and j in every
time period p ∈ P . Every time period p ∈ P is defined by its starting time
tpop and its ending time tpcp. The time periods in P connect to one another.
This means that for every p ∈ P either there is a q ∈ P such that tpop = tpcq
or there is no q ∈ P such that tpop > tpoq. There are no p, q ∈ P such that
tpop = tpoq or tpcp = tpcq.

Traveling from node i ∈ N to node j ∈ N costs cij , which is a combina-
tion of the travel distance and the average travel duration. Since we are
using stochastic travel times, we are uncertain if a vehicle will be on time
at the customer. Therefore for every route r we define the reliability ryrc
for customer c ∈ r as the ratio of on time services if the route was driven
infinitely many times. Unless stated otherwise, we assume that the vehicle
departs from the depot as early as possible. Every customer c ∈ C has a
minimum reliability mc, with 0 ≤ mc ≤ 1. A route r is feasible if ryrc ≥ mc

for every customer c ∈ r. Only feasible routes are allowed in our solution.

1.3 Literature review

The VRP is NP-hard, which means that it is not easier than the hardest
problem in NP. Therefore it may take a lot of resources (time and memory)
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to find an optimal solution. Heuristics and local search algorithms have
been deployed to find good solutions. Ten different algorithms to solve
the Vehicle Routing Problem are reviewed by Laporte [15]. Four of these
algorithms use heuristics to find a good solution, while the other six use
dynamic programming, direct tree search and integer linear programming
to solve the problem to optimality. Hard time windows were accounted
for in the three-index vehicle flow formulation by Fisher and Jaikumar [7].
Column generation was used by Sol [18] to solve the pickup and delivery
problem with time windows; this solution is then adjusted to allow on-line
scheduling.

1.3.1 Stochastics

A deterministic world is often assumed, while most planning decisions in
logistics are based on non-deterministic data. Algorithms were proposed by
Stewart and Golden [20] to account for stochastic demands in the vehicle
routing problem. When a VRP has stochastic demands, the demand of each
customer is uncertain before arrival. More than 30 years later, a solution
that takes stochastic demands and time windows into account was proposed
by Zhang, Lam and Chen [22].

Another stochastic variable in logistics is the travel time, as in our prob-
lem. Travel times between two locations vary due to traffic jams, traffic
lights, etc. Taking the average travel time to calculate the duration of a
route will often result in violated time windows. Using discrete cumulative
distribution functions to represent the travel times between customers, Fast-
ing, Firat, Boon and Twist [6] propose a method to find a robust solution
for the Vehicle Routing Problem with Hard Time Windows and Stochastic
Travel Times. To find an optimal solution for problems with up to 25 cus-
tomers, the method uses column generation with a dynamic programming
algorithm to solve the pricing problem. Their method does not take time
dependent travel times into account, which our method will. A local search
approach and some heuristics to solve this problem are proposed by Conijn
and Nuijten [3].

The time it takes to get from one customer to another is also highly
dependent on the time of day. During rush hour it is likely that it will
take longer than at midnight. Besides time of day, day of the week can also
be an important factor. Traffic is different during the weekends and there
is a lot of variety from day to day. Column generation combined with an
evolutionary algorithm was used by Koning, van den Akker and Hoogeveen
[14] to solve the PDP with Time Windows and Disturbances. Their method
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uses normal distributions for stochastic travel times and a separate delay
function for time dependency.

Our method incorporates the time dependent nature of travel times
within the distributions, allowing great flexibility in the definition of time
dependent stochastic travel times. We will adapt multiple approaches for
the VRPTW to account for these time dependent stochastic travel times.
Finally we explore methods to determine the latest possible departure time
from the depot, such that the route is feasible.

This thesis is organized as follows. In Chapter 2 we will explain some
principles which will be used throughout the thesis. Chapter 3 presents the
method that we will use to solve the problem. In Chapter 4 we explore
three methods to compute the latest departure time from the depot for a
given route, while taking the minimum reliability constraint into account.
In Chapter 5 we present the results of our experiments and we summarize
our discoveries in Chapter 6.



Chapter 2

Preliminaries

2.1 Stochastic representation

In our problem we define the travel time between nodes i, j ∈ N at depar-
ture time d using the stochastic variable returned by the function Tij(d).
To define this function, we use the stochastic variables T p

ij for every time
period p ∈ P . The stochastic variable T p

ij is characterized by the quantile
function Qp

ij(q), with q a cumulative probability between 0 and 1. Using this
function, we find that for an arbitrary cumulative probability q, the travel
time between nodes i and j in time period p is at most Qp

ij(q). In Figure 2.1
an example of a quantile function is shown.

2.1.1 Traversing over time periods

The quantile functions only make sense when both the departure time and
the arrival time are within the same time period. For instance, suppose
that we have two time periods p1 and p2 with two

p1 = 0, twc
p1 = 4, two

p2 =
4, twc

p2 = 8. For given nodes i, j and cumulative probability q we find that
Qp1

ij (q) = 2 and Qp2
ij (q) = 1. Assume the earliest departure time from i is

at time 3.5, so this is within time period p1. If we were to depart at time
3.5, we would arrive at 5.5, while if we would wait for time 4 to depart, we
would arrive at time 5. This is an undesirable behavior, as this is never the
case in reality. In Figure 2.2 this is visualized.

So we need to define a method to combine the quantile functions when
the time period of the arrival time is not equal to the time period of the
departure time. Our time-dependent travel times should behave according
to the first in first out (FIFO) assumption. This means that when two

10
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Figure 2.1: The quantile function between Den Bosch and Zeist between
6AM and 10AM plotted on logarithmic x-axis.
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Figure 2.2: Using travel time function (left) and arrival time function (right)
for a given probability we sketch the problem in our model that by departing
later, we can arrive earlier.
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identical trucks drive the same route, the one that departed earlier than the
other should arrive first.

Ichoua, Gendreau and Potvin [11] present a speed model to represent
time-dependent travel times which behaves according to the FIFO assump-
tion. We will combine their model with our stochastic representation, to
create a model with time-dependent stochastic travel times. We use mul-
tiple quantile functions to construct the travel time for a given cumulative
probability q and departure time d. First we find the time period p with
tpop ≤ d < tpcp. In our example d = 3.5 and therefore we find time period
p1. Our travel time will be Qp1

ij (q) = 2 if d + Qp1
ij (q) < tpcp1 ; otherwise we

will travel until tpcp1 in time period p1 and the remainder of the trip in the
next time period. Unfortunately 3.5 + 2 < 4 does not hold, so we have to
continue our calculation. We will travel in time period p1 until time tpcp1 ,
therefore the part of the trip we travel in time period p1 can be calculated
using

γ =
tpcp1 − d

Qp1
ij (q)

=
4− 3.5

2
= 0.25

This means we still have to travel β = 1−γ = 0.75 part of the trip in the next
time period. Now we set the departure time d to tpcp1 = 4 and we perform
these steps again, taking into account that we have traveled 0.25 part of the
total trip. This results in traveling 0.25 part in time period t1 and 0.75 part
in time period t2. Our combined travel time is now 0.25Qp1

ij (q)+0.75Qp2
ij (q) =

0.25 · 2 + 0.75 · 1 = 1.25. When departing at time 3.5, we arrive at time
4.75. Algorithm 1 shows this method more abstractly. In Figure 2.3 we
show the impact this algorithm has on the travel times and arrival times in
the example presented in Figure 2.2.

We define
−→
tij(q, d) as the travel time at departure time d between origin-

destination pair i, j for cumulative probability q. This can be calculated
using Algorithm 1. Similarly we define

←−
tij(q, a) as the travel time given ar-

rival time a between origin-destination pair i, j for cumulative probability q.
We can create an algorithm very similar to Algorithm 1, which will calcu-
late the travel time given the arrival time at j. Figure 2.4 shows the three-
dimensional plot of the travel time function

−→
tij(q, d) between Den Bosch and

Zeist, with the departure time d on the x-axis, the travel time on the y-axis
and the cumulative probability q on the z-axis.

2.1.2 Simulations

In our algorithm we will not use the stochastic travel time functions directly,
instead we will create simulation worlds in which we realize a value from the
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Procedure CalculateTravelTime(i,j,q,d)
β ← 1
T ← 0
while β > 0 do

p← time period p ∈ P with tpop ≤ d < tpcp

γ ← min(β,
tpcp − d

Qp
ij(q)

)

T ← T + γQp
ij(q)

d← tpcp
β ← β − γ

end
return T

Algorithm 1: Calculating the travel time between two nodes, given the
departure time d. Variable β stores the part of the trip we still need to do
and T stores the combined travel time.
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Figure 2.3: Using Algorithm 1 to calculate travel times for a given probabil-
ity, we obey the FIFO assumption.
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Figure 2.4: Three-dimensional plot of the travel time function between Den
Bosch and Zeist for every cumulative probability 0.01, 0.02, etc.

travel time functions. The set S contains the simulation worlds we use. In a
simulation world s ∈ S, we take a value qsij from X ∼ U(0, 1) for every node
combination i, j ∈ N . The travel time between node i and j in simulation
world s at departure time d is

−→
tsij(d) =

−→
tij(q

s
ij , d). Similarly, the travel time

between these nodes in simulation world s given the arrival time a at node
j is
←−
tsij(a) =

←−
tij(q

s
ij , a).

We approximate the reliability ryrc using these simulation worlds. Unless
stated otherwise, the departure time from the depot is −∞. We define
the arrival time at the customers in a route using the following recursive
function.

Ars
ri =

{
−∞ if i = 0

max{Ars
ri−1

+ sri−1 +
−−−→
tsri−1ri(A

rs
ri−1

+ sri−1), tw
o
ri} otherwise

Now we can approximate the reliability of a customer by dividing the number
of simulation worlds in which we arrive on time by the total number of
simulation worlds. More formally,

ryrri ≈
|{s|s ∈ S ∧Ars

ri ≤ twc
ri}|

|S|
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Figure 2.5: The piecewise-linear quantile function between Den Bosch and
Zeist between 6AM and 10AM on logarithmic x-axis.

2.2 Data

Besides using distributions like the lognormal and gamma distributions, we
can also create a new distribution using measurements. TomTom was kind
enough to provide us with such distributions. However, only limited infor-
mation is provided by them in the form of the average travel time and the
travel times for the cumulative probabilities in the set {0.05, 0.1, 0.15, ...,
0.95}. We can use this information to create a piecewise-linear quantile
function. In Figure 2.5 we show the piecewise-linear function between Den
Bosch and Zeist between 6AM and 10AM.

When we calculate the expected value of the piecewise-linear quantile
function we notice that this is not equal to the average value sent by Tom-
Tom. First of all this is due to the fact that we only obtained a compressed
version of their dataset, but mostly it is because we miss data between cu-
mulative probabilities [0, 0.05] and [0.95,1].

To counter this problem, we will compute values for cumulative proba-
bilities 0 and 1, such that the average obtained by TomTom is equal to the
expected value from the distribution. We obtained n data points (ti, qi) ∈ Q
from TomTom with cumulative probability qi and maximum travel time ti.
We know that qi < qi+1 and therefore ti ≤ ti+1, as a quantile function can
never decrease. The expected value of the piecewise-linear quantile function
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is equal to

E(Q) =
1

2

n−1∑
i=1

(qi+1 − qi)(ti + ti+1)

In our case qi+1 − qi = 0.05 for every 1 ≤ i < n.
We can use this formula to define the travel time for the last quantile,

such that the average of the raw data is equal to the expected value of
the quantile function. First we add two new points to the set; (t0, q0) and
(tn+1, qn+1) with q0 = 0 and qn+1 = 1. Then we define t0 and tn+1 using the
following formulas.

µ = E(Q)

µ =
1

2

n∑
i=0

(qi+1 − qi)(ti + ti+1)

µ− 1

2

n−1∑
i=0

(qi+1 − qi)(ti + ti+1) =
1

2
(qn+1 − qn)(tn + tn+1)

2µ−
n−1∑
i=0

(qi+1 − qi)(ti + ti+1)

qn+1 − qn
= tn + tn+1

2µ−
n−1∑
i=0

(qi+1 − qi)(ti + ti+1)

qn+1 − qn
− tn = tn+1

2µ−
n−1∑
i=0

(qi+1 − qi)(ti + ti+1)

1− qn
− tn = tn+1

Similarly we find that the value for t0

t0 =

2µ−
n∑

i=1
(qi+1 − qi)(ti + ti+1)

q1
− t1

Now we have a circular calculation for t0 and tn+1, as we need the value of
t0 to calculate tn+1 and vice versa. We choose to set t0 = t1 to find tn+1,
as this results in the function with the lowest variance. When applying this
technique to the example of Figure 2.5, we get the piecewise-linear quantile
function shown in Figure 2.6.
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Figure 2.6: The piecewise-linear quantile function between Den Bosch and
Zeist between 6AM and 10AM with computed values for cumulative proba-
bility 1, assuming t0 = t1 plotted on logarithmic x-axis.



Chapter 3

Column Generation

Toth and Vigo [21] compare three basic modeling approaches for the VRP,
the vehicle flow formulation, the commodity flow formulation and the set-
partitioning formulation. While the vehicle flow formulation and the com-
modity flow formulation use arcs to construct the optimal routes, the set-
partitioning formulation takes the optimal routes from the set containing
every feasible route. When ranked on the flexibility of the constraints and
objective function, the set-partitioning formulation is the clear winner, as
it can handle every constraint and objective function that is on the level
of a single route. The only constraint our problem has that does not fit
this description is that every customer should be visited once. Toth and
Vigo show that this constraint can be incorporated in the set-partitioning
formulation. The drawback of this formulation is that the number of vari-
ables grows exponentially to the number of customers. They propose using
column generation to counter this.

Column generation is a commonly used technique for solving problems
similar to ours [2, 5, 6, 14, 16, 17, 18]. The method is about generating
columns, which are building blocks of the solution. The method divides a
problem into two problems; the master problem and the pricing problem.
In the master problem we assume that we have generated at least every
column that should be in the optimal solution and we select them to create
this solution. To make sure our assumption about the master problem holds,
we relax the master problem to a linear problem. By solving the relaxed
master problem, we obtain valuable information, allowing us to generate
columns that should be in the solution. In the pricing problem we check if
we have generated every column that should be in the solution. If we have
not, we generate at least one and run the relaxed master problem again,

18
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until we are unable to generate any more columns that improve the current
solution using the pricing problem. Now we have every column we need to
solve the relaxed master problem to optimality, but we may not have every
column to solve the master problem to optimality. We can solve the master
problem to optimality by using a technique called branch-and-price, which
is a variant of branch-and-bound. With this technique we create branches
using some branching rule that preferably does not complicate the solution
of the pricing problem. By solving the relaxed master problem we can find
the lower bound of a solution in a branch. We explore the branch with the
lowest lower bound, as this one has the potential to contain the best solution.
When we explore a branch, we use the pricing problem to find additional
columns, while enforcing the result of the branching rule.

To solve our problem we decide to use column generation without branch-
and-price, as the latter is often a performance bottleneck. This means we
cannot guarantee to find an optimal solution for our problem and therefore
our approach is a heuristic. We use routes as our columns, as they are the
top level building blocks of our problem. First we will describe our master
problem, then we define four methods to solve the pricing problem and
finally we will explain how we solve our problem.

3.1 Master Problem

For every route we know its cost and which customers are visited. These
attributes are formally defined as

cr = costs of route r

acr =

{
1 if route r visits customer c

0 otherwise

Given the set of all feasible routes R, we can solve our problem using the
following set partitioning based ILP formulation. Here we use the decision
variables

xr =

{
1 if route r is in the solution

0 otherwise

min
∑
r∈R

crxr (3.1a)

s.t.
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r∈R

acrxr = 1 ∀c ∈ C (3.1b)

xr ∈ {0, 1} ∀r ∈ R (3.1c)

In 3.1a the objective function is defined. The goal is to minimize the
combined costs of the routes in the solution. We impose that every customer
should be visited once in 3.1b. A binary variable is defined for every route
in 3.1c.

3.1.1 Number of possible routes

Assuming no feasibility restrictions on the routes, we can obtain every pos-
sible route by permuting every combination of customers. The amount of
routes with n = |C| ≥ 1 is equal to

|R| =
n∑

k=1

k!

(
n

k

)

=
n∑

k=1

n!

(n− k)!

= n!

n∑
k=1

1

(n− k)!

= n!

n−1∑
i=0

1

i!

We may be able to generate every route for a problem with n = 10,
which would mean |R| = 9864100, but generating every route for a problem
with n = 15 results in |R| = 3554627472075. Generating every route for a
problem with 15 customers is impractical, as we would need approximately
3.23TB storage space assuming we are able to store every route in a single
byte.

lim
n→1

n−1∑
i=0

1

i!
= 1 lim

n→∞

n−1∑
i=0

1

i!
= e

Using these limits, we find the that the number of possible routes is bounded
by n! ≤ |R| ≤ en!. Every new customer might cripple the algorithm, as the
jth customer makes the route set grow by at least a factor j.
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3.1.2 Relaxations

We can see that a solution only contains a small fraction of the total amount
of generated routes. As every customer can only be serviced in one route, we
can have at most n routes in a solution. This means an enormous amount
of routes is generated that will not be in the solution, which is a waste of
computational power. Therefore we should only create promising routes.
We store these routes in R ⊆ R. Problem 3.2 is our new Master Problem.

min
∑
r∈R

crxr (3.2a)

s.t.∑
r∈R

acrxr = 1 ∀c ∈ C (3.2b)

xr ∈ {0, 1} ∀r ∈ R (3.2c)

In Section 3 we will describe methods to create promising routes. By
relaxing Problem 3.1c to 0 ≤ xr ≤ 1, we get a linear program. The linear
program is rather restrictive. Assuming that for every route r ∈ R, its cost
cr is positive, we can relax 3.2b and 3.2c to 3.3b and 3.3c respectively. Since
we try to minimize 3.2a, and acr is either 0 or 1, xr will never be larger than
1. This will get us the final form of our Relaxed Master Problem

min
∑
r∈R

crxr (3.3a)

s.t.∑
r∈R

acrxr ≥ 1 ∀c ∈ C (3.3b)

xr ≥ 0 ∀r ∈ R (3.3c)

3.1.3 Initialization

The Restricted Master Problem requires that every customer should be vis-
ited at least once. To be able to find a feasible solution, we should make
sure that this constraint is met. Route set R is initialized as the set that
contains |C| routes; for every customer c ∈ C, there is a route r ∈ R that
services only customer c.
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3.1.4 Adding new columns

Domination

When we add a route r to R, we may have another route r′ ∈ R in the
master problem with the following properties:

• The costs of r are lower than the costs of r′

• Route r visits at least the same customers as r′

Given these properties, the master problem will always prefer r over r′;
therefore r′ will never be selected in the solution. We can remove route r′,
as it is redundant. More formally, we will remove every route r′ ∈ R if there
is a route r ∈ R with cr′ ≤ cr ∧ r′ ⊆ r.

Managing columns

The number of columns may grow very fast and as we have seen in Sec-
tion 3.1.1, creating every possible route is impractical. Therefore we set
a maximum number of columns for the master problem. When we add
columns, we first check for the domination criterion defined in Section 3.1.4,
then we solve the relaxed master problem. Then we select the columns with
a reduced cost larger than 0 which were not created in the initialization
step described in Section 3.1.3 and we remove these columns in descending
order of their reduced cost until the number of columns is equal to the max-
imum number of columns. This means we may solve the relaxed master
problem with more columns than the maximum number of columns for the
master problem, however, we chose to do so to obtain a better solution in
the relaxed master problem.

3.2 Pricing problem

The Master Problem is a linear program. When we solve it, we get a dual
value for every constraint. The dual values of Constraints 3.3c will always
be 0, but the dual values of Constraints 3.3b may not. In Constraints 3.3b
we have one constraint for every customer, so we get a dual value of πc for
every customer c ∈ C. We can use the dual values to compute the reduced
cost cr of a route r [17].

cr = cr −
∑
c∈C

acrπc
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From LP-theory we know that adding a route to the LP-relaxation can only
decrease the current solution value if the reduced cost is negative. This
means that we can use this formula as an objective to find routes that are
worth adding to R. In the next sections we present four methods that use
this formula to find promising routes. Their objective is to find at least one
route r with cr < 0, to add to the master problem.

3.2.1 Mixed Integer Programming

Fasting et al. [6] formulate a MIP model to solve the VRPTW. In this
section we will adapt their model to account for time-dependent stochastic
travel times. To estimate the reliabilities we use simulations. We simulate
every origin-destination pair a number of times. The set S contains all
simulation worlds.

We found that combining both stochasticity and time dependency in the
travel times is significantly more difficult than implementing one of these
features. Therefore we will first present a model that solves the pricing
problem without time dependency, taking the worst travel time from all
time periods. Then we show the variables and constraints we need to add
to the model to allow time dependency.

Formulation

A solution can be described by the order in which customers are serviced.
Therefore we create a variable for every pair of nodes.

xij =

{
1 if we go from customer i to customer j

0 otherwise

Besides this set of main decision variables, we have some additional decision
variables that help create a feasible solution.

xi =

{
1 if we service customer i

0 otherwise

As
i = the arrival time at customer i in simulation s

Ds
i = the departure time from customer i in simulation s

ysi =

{
1 if we are on time for customer i in simuation s

0 otherwise



CHAPTER 3. COLUMN GENERATION 24

The benefit of servicing customer c ∈ C is its dual value πc. The travel time
from node i ∈ N to node j ∈ N in simulation world s ∈ S in time period
p ∈ P is represented in tspij = Qp

ij(q
s
ij)

We will discuss the formal MIP formulation 3.4. We try to find a route
that minimizes the reduced cost, using Objective 3.4a. Constraints 3.4b, 3.4c,
3.4d and 3.4e make sure the time windows are satisfied. Together with the
flow conservation Constraints 3.4f they ensure that a single route is cre-
ated. Constraints 3.4c makes sure that the model takes the travel time
between two nodes into account. The service time at a customer is ensured
by Constraints 3.4d. The opening of the time window is maintained by Con-
straints 3.4e. Constraint 3.4g guarantees the route visits the depot and that
we only create a single route. The variable xi is set in Constraints 3.4h, so
we can use this as a shorthand in other constraints. Constraints 3.4b allow
the vehicle in some of the simulation worlds to arrive after the time window
has closed, while Constraints 3.4i makes sure the minimum reliability of the
customers are respected.

Some constraints are only used if a certain boolean decision variable is
equal to 1. These constraints are modeled as indicator constraints. We
present them as-is to the solver. We could also model it using the big-
M formulation. A constraint ax ≤ b if y = 1 can be rewritten as ax ≤
b+ (1− y)M , with M bigger than the upper bound of ax. The downside of
the big-M formulation is that it can cause numerical instability of the model,
as described by Klotz and Newman in 2013 [12].

Time dependency

To implement time dependency we create three additional decision vari-
able sets. These variables will work together to implement time-dependent
stochastic travel times.

uspi =

{
1 if the trip to customer i in simulation s is (partly) in period p

0 otherwise

pspi = the ratio of the trip to customer i in simulation s that is in period p

tsi = the travel time to customer i in simulation s

The travel time between two nodes is calculated using the time periods in
which the travel takes place. The set of decision variables pspi is the leading
force behind the calculation, as it keeps track of how much of the trip takes
place in a specific time period. They are aided by the set of decision variables
uspi , which can be defined as uspi = ⌈pspi ⌉.
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min
∑
i,j∈N

cijxij −
∑
i∈C

πixi (3.4a)

s.t.

Ds
i ≤ twc

i + si ∀i ∈ C, s ∈ S if ysi = 1 (3.4b)

Ds
i +max

p∈P
tspij ≤ As

j ∀i, j ∈ N, s ∈ S if xij = 1 (3.4c)

As
i + sixi ≤ Ds

i ∀i ∈ C, s ∈ S (3.4d)

(two
i + si)xi ≤ Ds

i ∀i ∈ C, s ∈ S (3.4e)∑
j∈N

xij =
∑
j∈N

xji ∀i ∈ N (3.4f)

∑
j∈C

xδj = 1 (3.4g)

xi =
∑
j∈N

xij ∀i ∈ N (3.4h)

1

|S|
∑
s∈S

ysi ≥ mixi ∀i ∈ C (3.4i)

xij ∈ {0, 1} ∀i, j ∈ N (3.4j)

As
i ≥ 0 ∀i ∈ N, s ∈ S (3.4k)

Ds
i ≥ 0 ∀i ∈ N, s ∈ S (3.4l)

ysi ∈ {0, 1} ∀i ∈ N, s ∈ S (3.4m)
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Constraint 3.4c will be replaced by constraint 3.5a, as the travel time
between two nodes is now time-dependent. The other constraints are needed
to compute the travel time given the departure time.

Ds
i + tsj ≤ As

j ∀i, j ∈ N, s ∈ S if xij = 1 (3.5a)

tpopu
sp
j + tspij p

sp
j ≤ As

j ∀i, j ∈ N, s ∈ S, p ∈ P if xij = 1 (3.5b)

Ds
i + tspij p

sp
j ≤ tpcp ∀i, j ∈ N, s ∈ S, p ∈ P if xij = 1 ∧ uspj = 1

(3.5c)∑
p∈P

tspij p
sp
j = tsj ∀i, j ∈ N, s ∈ S if xij = 1 (3.5d)

pspi ≤ uspi ∀i ∈ N, s ∈ S, p ∈ P (3.5e)∑
p∈P

pspi = xi ∀i ∈ N, s ∈ S (3.5f)

0 ≤ pspi ≤ 1 ∀i ∈ N, s ∈ S, p ∈ P (3.5g)

uspi ∈ {0, 1} ∀i ∈ N, s ∈ S, p ∈ P (3.5h)

tsi ≥ 0 ∀i ∈ N, s ∈ S (3.5i)

Constraints 3.5f ensures that if we visit a customer, then we compute the
complete travel time to this customer. Using Constraints 3.5e we set the
binary decision variable that stores whether we travel in a given time period.
The travel time to a node is set using Constraints 3.5d. Constraints 3.5c
make sure that the model departs at the correct departure time, so we
do not spend more time in the departure time period than possible. Con-
straints 3.5b guarantee that the arrival time at a node is at least equal to
part of the travel time of the time period we arrive in combined with the
opening of this time period.

3.2.2 Incremental Mixed Integer Programming

The MIP model shown in the previous section was very complex. Even
without the time dependency, the model was quite tricky as the reliabilities
had to be calculated using simulation worlds. Another approach we could
take is to leave the simulations out of the model, and check the solution the
model finds. If the model finds a solution that is not feasible, we change
a few parameters of the model and re-execute it. We now present a more
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simplistic model than the model in Section 3.2.1. First we define the decision
variables.

xij =

{
1 if we go from customer i to customer j

0 otherwise

xi =

{
1 if we service customer i

0 otherwise

Ai = the arrival time at customer i

Di = the departure time from customer i

Note that the arrival time decision variables Ai and departure time decision
variables Di do not use simulations, as they did in Section 3.2.1. The arc
decision variables xij and xi are exactly as in Section 3.2.1. Since we do
not use simulations, we need to aggregate the simulated travel times into a
single estimated travel time value. We estimate the travel time tij between
nodes i, j ∈ N using the simulations. We define the estimated travel time tij
equal to the average simulated travel time. More formally, we can compute
it using the probability qsij in simulation world s as described in Section 2.1.2
in the quantile function Qp

ij(q) as described in Section 2.1. When taking the
average travel time in all simulation worlds in all time periods we get

tij =

∑
p∈P

∑
s∈S

Qp
ij(q

s
ij)

|P ||S|

The model is formally represented in MIP 3.6. This model is similar
to MIP 3.4, without the time dependency. The major difference is that we
aggregate the travel times from the simulation worlds in MIP 3.6, while in
MIP 3.4 we use them individually. The constraints in this model are very
similar to the constraints of Problem 3.4. We try to find a route that mini-
mizes the reduced cost, using Objective 3.6a. The time windows are satisfied
due to Constraints 3.6b, 3.6c, 3.6d and 3.6e. The travel time is taken into
account due to Constraints 3.6b. Constraints 3.6c ensure that the service
time at a customer is incorporated in the timing mechanism of the model.
Constraints 3.6d enforce that the vehicle cannot service customers before
their time windows open. Constraints 3.6e make sure the vehicle services
the customers before their time window closes. The flow conservation Con-
straints 3.6f ensure that a single route is created. The route must visit the
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min
∑
i,j∈N

cijxij −
∑
i∈C

πixi (3.6a)

s.t.

Di + tij ≤ Aj ∀i, j ∈ N if xij = 1 (3.6b)

Ai + sixi ≤ Di ∀i ∈ C (3.6c)

(two
i + si)xi ≤ Di ∀i ∈ C (3.6d)

Di ≤ twc
i + si ∀i ∈ C (3.6e)∑

j∈N
xij =

∑
j∈N

xji ∀i ∈ N (3.6f)

∑
j∈C

xδj = 1 (3.6g)

xi =
∑
j∈N

xij ∀i ∈ N (3.6h)

xij ∈ {0, 1} ∀i, j ∈ N (3.6i)

Ai ≥ 0 ∀i ∈ N (3.6j)

Di ≥ 0 ∀i ∈ N (3.6k)
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depot, as is specified in Constraint 3.6g. In Constraints 3.6h the variable xi
is set, so we can use this as a shorthand in other constraints.

When we find a route r using this model, we will simulate it. Based
on the results of the simulation, we determine the set V ⊆ C containing
all customers in r for which the reliability is lower than their minimum
reliability. If V = ∅, we have successfully created a new route to add to
the master problem. Otherwise we will add constraints so the model will
evaluate r as infeasible. When we re-execute the model, it should find
the next best route. One must pay attention when defining these banning
constraints, as it should only ban infeasible routes, without the side effect
of banning a feasible route. We propose the following methods, which we
will test in Chapter 5. Remember we defined ri as the ith customer visited
in route r.

Ban by time window

In stead of increasing the travel duration of an arc, we lower the time window
at the violated customer for the given arc. We do so by adding the following
constraints on the departure times at the violated customers.

Dri ≤ D∗
ri − ϵ if xri−1ri = 1 ∀ri ∈ V

The scalar D∗
ri is the lowest possible departure time from customer ri in the

MIP, given the selected order of customers visited in r. We can calculate
D∗

ri using the following recursive definition.

D∗
ri = max(D∗

ri−1
+ tri−1ri , tw

o
ri) + sri

The scalar ϵ is a small time interval; a second would be sufficient. Using this
new set of constraints we make all possible solutions with a departure Dri

time equal or larger than D∗
ri infeasible if we go from node ri−1 to customer

ri. The impact this new set of constraints has on the solutions that can be
found is minor, as it is only enforced if we go from node ri−1 to node ri.
This means that we will ban the infeasible solution, but we will most likely
not ban any feasible solution.

Ban by route

We can also ban the entire route up until the first violation. To do so we
take the first violation rm ∈ V and we add the following constraint to the
MIP.

m−1∑
i=0

xriri+1 ≤ m− 1
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Using this constraint we will only ban this route and every other route that
starts with the same sequence of customers that results in a violation. With
this banning method we are guaranteed that we do not ban any feasible
routes. However, this comes at the cost of a constraint that uses many
binary variables.

3.2.3 Local Search Heuristic

Conijn and Nuijten [3] use a local search approach to find a solution to the
stochastic vehicle routing problem with hard time windows. While they use
local search to solve the problem, we will use it to solve our pricing problem
to create at least one route for the master problem.

We use the proprietary local search heuristic framework called POA,
which is developed by Quintiq. POA is an abbreviation for Path Optimiza-
tion Algorithm. We will first describe the operations we use to improve a
given solution and then we will describe how we create the initial solution.

Improving the solution

If the reduced cost of the initial solution is larger than or equal to 0, we
start improving the solution with the following operations.

construction The construction operation tries to improve the solution by
taking up to 7 unplanned customers and adding them at a random
position in the solution.

destruction The destruction operation tries to improve the solution by
taking planned customers and removing them from the solution.

single-improvement The single improvement operation tries to improve
the solution by taking a random customer and (re)planning it at the
best possible position in the solution.

Initial solution

We try to find a good solution in little time. First we perform the I1 heuris-
tic as described by Solomon [19]. This often results in a good starting
solution. However, we will try to improve this solution, by using the single-
improvement operation on every node as described in Section 3.2.3. If the
reduced cost of this solution is lower than 0, we add this solution to the
master problem. If not, we continue improving the solution as described in
the Section 3.2.3.
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3.2.4 Restricted Dynamic Programming

Held and Karp [10] create a dynamic programming algorithm to solve the
TSP. As the algorithm enumerates all routes in a clever way, it can prove op-
timality of the solution it finds. Gromicho et al. [9] transform this algorithm
in a heuristic framework for the VRP. Their framework can be adjusted to
solve most of the VRP variants. Gromicho uses the Giant-tour representa-
tion, as introduced by Funke et al. [8], to represent multiple salespersons in
the TSP. We will not need this representation as our objective is to create
a single route.

We define the state (S, x) as the cheapest feasible route that visits all
customers in S and ends at customer x. All states can be created using the
following recursive definition.

G(S, x) = min
y∈S\{x}

(G(S\{x}, y) + cyx − πx) (3.7)

G({x}, x) = cδx − πx (3.8)

H(S) = min
x∈S

(G(S, x) + cxδ) (3.9)

In this definition G(S, x) is equal to the feasible route with the lowest cost
starting at the depot, visiting all customers in S and ending at customer
x. The time window constraints are not modeled in the recursive definition,
but implicitly specified by the fact that a state must be the cheapest feasible
route; feasibility is checked using simulations when a new state is created.
The function H(S) computes the lowest cost of the feasible route that visits
all customers in S and starts and ends at the depot. We can compute G
using a bottom-up approach. We start the algorithm by setting G(S, x) =∞
for all S ⊆ C and x ∈ S. Then we create a state ({c}, c) for every c ∈ C,
with cost equal to cδx−πx as defined in Formula 3.8. For every iteration after
this one we take the states S we created in the previous iteration. We can
now create the states {(S ∪ {y}, y)|(S, x) ∈ S, y ∈ C\S}, using Formula 3.7.
Only feasible states should be created. To check this we simulate every route
we create a fixed number of times. If we exceed the minimum reliability at
a customer we deem it infeasible and remove it.

With this approach we will create all routes using O(n22n) time com-
plexity and O(n2n) space complexity [10]. The method is too complex,
so we will only expand the most promising states. For every iteration
that is not the first one, we take the set X ⊆ S containing the m states
with the lowest value in function G. Now we will only create the states
{(S ∪ {y}, y)|(S, x) ∈ X, y ∈ C\S}, using Formula 3.7.
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We will have exactly n iterations, as we add one customer to every state
we expand in every iteration. In every iteration we expand m states with
every customer that we can expand it with. This means we create at most
O(nm) states every iteration. Combining this information, we can see that
we create at most O(mn2) states using this algorithm.

3.3 Integer transformation

The decision variables of the Master Problem do not necessarily obtain in-
teger values. If xr = 0 we do not take the route, if xr = 1 we take it, but if
0 < xr < 1 it is undefined. To create a solution that can be used, we have
to make sure that xr is either 0 or 1.

Techniques like branch-and-price are developed to find the missing columns
for the optimal integer solution. This technique requires a pricing problem
method that can prove that we have found every column that we need. The
only pricing problem method we defined that can do this is the mixed in-
teger program from Section 3.2.1. As the other pricing problem methods
are heuristics, we will not use branch-and-price to find the optimal integer
solution; in stead we will heuristically create extra columns for Master Prob-
lem 3.2. We will perform these operations when we are unable to find any
more routes with negative reduced cost.

3.3.1 Second rank columns

We alter the objective of the pricing problems from cr < 0 to cr < x, for some
given value x > 0. This gives us second rank columns; routes with positive
reduced cost which we may need to find a better solution to the master
problem. We must pay attention to which columns we add, as we could
find routes which we found before or create routes that are dominated by
routes already in the solution. We will use the dominance criterion defined
in Section 3.1.4 to filter out undesirable routes.

We must note that we expect to only find routes with reduced cost non-
negative, but if the pricing problem method we have used to populate the
master problem with the routes with negative reduced cost is a heuristic,
we might find other routes with negative reduced cost using this method, as
we have no guarantee that we have found every route with negative reduced
cost.
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3.3.2 Perturbations

We select the set S containing all routes in R with reduced cost equal to 0.
For every route r ∈ S we create |r| new routes; each leaving out one customer
from r. We take the set of new routes and we do this one more time. This
means for every route in S we create new routes by removing every possible
combination of 2 customers from it. We will use the dominance criterion
defined in Section 3.1.4 to filter out undesirable routes.



Chapter 4

Departure time from depot

For a given route r, we would like to find the optimal departure time from
the depot. We define Dr as the latest departure time from the depot in route
r, such that for every customer c ∈ r the reliability is equal to or larger than
the target reliability mr

c. Usually mr
c is equal to the minimum reliability mc.

However, due to characteristics of a route, a reliability of at least mc can be
infeasible, independent of Dr. An example of such a characteristic is a route
r that serves the two customers. If difference between the opening of the
time window at customer r1 and the closing of the time window of customer
r2 is small, it is likely that we will not be able to get a high reliability. This
is due to the fact that the vehicle cannot depart earlier from customer r1
than after the opening of its time window combined with its service time,
independent of the departure time from the depot. If it is impossible to get a
reliability of mc at customer c in route r, we set mr

c as the largest reliability
of c possible. This value can be calculated by calculating the reliabilities
assuming Dr is equal to −∞.

In this chapter we will discuss three unique methods to calculate Dr.
First we will introduce a generally applicable heuristic, using binary search.
Then we define an exact method to compute the best Dr for the problem
sketched. Finally we use a MIP to solve the problem.

4.1 Binary search

By using binary search, we can find Dr. Binary search is a method to find
an element in an ordered set. We will use this approach to search the set of
all possible departure times. However, binary search will not terminate on
an infinite set, so we will add two types of boundaries to this set. The first

34
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boundary we add is a horizontal limit; we need to specify a range to search
in. The following range will do, as any earlier departure time will result in
more waiting time at the first customer of r and any later departure time
will definitely result in a reliability of 0 at every customer in r. Remember
that we defined

←−
tsij(a) in Section 2.1.1 as the travel time from node i to arrive

at node j at time a in simulation world s.

[two
r1 −max

s∈S

←−−
tsr0r1(tw

o
r1),max

i∈r
{twc

ri −min
s∈S

←−−−
tsri−1ri(tw

c
ri)}]

The second boundary we add is a vertical limit; as we can divide time
infinitely many times, we specify a precision. We stop our search if we are
trying to improve the departure time by less than a second. This means that
we can be off by a second, but this is fine as the driver will not likely depart
on the exact second we calculate. The binary search algorithm is defined in
Algorithm 2, with a and b as the range parameters and p as the precision
parameter.

while b− a > p do

x← a+ b−a
2

approximate reliabilities ryrc for all c ∈ r using depot departure
time x as we defined in Section 2.1.2
if ∀c ∈ r : mr

c ≤ ryrc then
a← x

else
b← x

end

end
return a

Algorithm 2: Binary search method to find optimal departure time from
the depot, using range [a, b] and precision p.

4.2 Backwards calculation

To calculate Dr, we use Drc; the latest departure time from the depot, such
that we have a reliability for every customer c in route r of at least mr

c.

Dr = min
c∈r

Drc

To find Drc we have to work backwards, from the last customer we visit
in r to the first customer. We work with simulations as the reliability at
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two
ri twc

ri
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j (i)

case 1: two
i ≤ Ars
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j (i) > twc
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case 3: Ars
j (i) < two

i

Figure 4.1: Three cases in the departure time calculation

a customer is also calculated using simulations. Let’s define Drs
j (i) with

0 ≤ i < j as the latest time we can depart from node ri to be on time at
customer rj in simulation world s. Similarly we define Ars

j (i) with 0 ≤ i ≤ j
as the latest time we have to arrive at customer ri to be on time at customer
rj in simulation world s. We first define the relationship between these
functions. The easiest case is the latest time we have to arrive at customer
rj to be on time at customer rj in simulation world s, as this is equal to
the end of the time window of customer rj . The other latest arrival times
can be determined by the latest departure times, as the smallest possible
difference between the arrival time at customer i and departure time from
customer i is the service time si. Therefore we can define Ars

j (i) using the
following formula.

Ars
j (i) =

{
twc

rj if i = j

Drs
j (i)− si otherwise

In Figure 4.1 we show the three cases that can happen when we calculate
from the back. In case 1 the latest arrival time is within the time window.
This means the latest departure time from customer ri−1 is equal to the
latest arrival time at customer ri minus the travel time from ri−1 to ri. In
case 2 the latest arrival time at customer ri for which we can be on time at
customer rj is larger than the time window. We are optimizing to be on time
for customer rj , so being too late for customer ri is irrelevant. Therefore we
can perform the same step as in case 1; we subtract the travel time from ri−1

to ri from the latest arrival time at ri. In case 3 the latest arrival time at
customer i is smaller than the time window. Since the vehicle will wait until
two

ri to serve customer ri, we will be late for customer c in simulation world s
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independent of depot departure time. We mark this simulation as infeasible.
We will define this recursively; if the latest arrival time at customer ri is
after its time window opened, the latest departure time from customer ri−1

is equal to the arrival time at customer ri minus the travel time from ri−1.
More formally defined we get the following formula for Drs

j (i).

Drs
j (i) =

{
Ars

j (i+ 1)−←−−−tsriri+1
(Ars

j (i+ 1)) if Ars
j (i+ 1) ≥ two

ri+1

infeasible otherwise

Now we can compute Drrj by creating a list Lr
rj of size |S|, containing Drs

j (0)
for every s ∈ S. We replace every element ‘infeasible’ mark by the lowest
value in Lr

rj . So for instance, if we have obtained the list [9AM, infeasible,
7AM, 8AM, infeasible], we transform it to [9AM, 7AM, 7AM, 8AM, 7AM].
Then Drrj is equal to the ⌈mrx · |S|⌉th highest value in Lr

rj . As we defined
at the start of this section, we find our answer using Dr = minc∈r Drc

The method will calculate (part of) the route for every customer, for
every simulation world. This means the algorithm will take O(mn2) with n
equal to the amount of customers in the route and m equal to the number
of simulation worlds used.

4.3 Mixed Integer Programming

Kok, Hans and Schutten [13] define a method to find the departure time
from the depot such that duty time of the driver is minimized, given time-
dependent travel times and driving regulations. They present a mixed inte-
ger program to solve their problem. Our problem is different from theirs, as
we do not take driving regulations into account and our travel times are also
stochastic. We will present a MIP that can solve our problem, but can also
be easily adapted to find the best depot departure time for other objectives;
like the lowest average travel time. First, we define our decision variables.
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x = the departure time from the depot

As
i = the arrival time at customer i in simulation s

vsi =

{
1 if we are too late at customer i in simuation s

0 otherwise

tspi = the ratio of the travel time to customer i

that is performed in period p, in simulation s

uspi =

{
1 if we travel to customer i in period p, in simuation s

0 otherwise

The objective is to maximize the departure time from the depot. Con-
straints 4.1b, 4.1c, 4.1d and 4.1e model the arrival time at a customer. Con-
straints 4.1b and 4.1c make sure the arrival time at a customer is later
than the departure time of its predecessor, combined with the travel time
between the two nodes. In Constraints 4.1b the predecessor is the depot.
Constraints 4.1d make sure that the part we travel in a certain time period,
is only in that time period. Constraints 4.1e make sure that adjacent time
periods are selected, by stating that the arrival at a customer must be after
the time period in which we travel. Constraints 4.1f records violations in a
given simulation world, by setting vsi to 1 if the arrival at i is after the time
window has closed. Constraints 4.1g make sure that if uspi is non zero, that
uspi is also. Finally Constraints 4.1i limit the amount of reliability violations
we allow, to obtain the target reliability.
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maxx (4.1a)

x+
∑
p∈P

csp→1t
sp
1 ≤ As

1 ∀s ∈ S (4.1b)

As
i−1 + si−1 +

∑
p∈P

csp→it
sp
i ≤ As

i ∀i ∈ r, s ∈ S (4.1c)

As
i−1 + si−1 + csp→it

sp
i ≤ tpcp ∀i ∈ r, s ∈ S, p ∈ P if uspi = 1 (4.1d)

tpopu
sp
i + csp→it

sp
i ≤ As

i ∀i ∈ r, s ∈ S, p ∈ P (4.1e)

As
i ≤ twc

ri ∀i ∈ r, s ∈ S if vsi = 0 (4.1f)

tspi ≤ uspi ∀i ∈ r, s ∈ S, p ∈ P (4.1g)∑
p∈P

tspi = 1 ∀i ∈ r, s ∈ S (4.1h)

(1−mr
ri)|S| ≥

∑
s∈S

vsi ∀i ∈ r (4.1i)

x ≥ 0 (4.1j)

As
i ≥ two

ri ∀i ∈ r, s ∈ S (4.1k)

tspi ≥ 0 ∀i ∈ r, s ∈ S, p ∈ P (4.1l)

uspi ∈ {0, 1} ∀i ∈ r, s ∈ S, p ∈ P (4.1m)

vsi ∈ {0, 1} ∀i ∈ r, s ∈ S (4.1n)



Chapter 5

Experiments

To analyze our methods, we perform multiple computational experiments.
First we will test the banning methods of the incremental mixed pricing
problem method. Then we will compare our pricing problem methods to
one another. We will use abbreviations for the pricing problem methods,
which can be found in Table 5.1. Finally the methods to determine the
departure time from the depot will be compared to one another.

To the best of our knowledge, no benchmark for the vehicle routing
problem with time windows and time-dependent stochastic travel times is
defined in literature. Therefore we test our algorithms on real data obtained
from the company Veldhuizen. The data we obtained from Veldhuizen are
the costs per distance, duration and vehicle usage and the orders for two
days; 18 September 2015 and 12 January 2016. From now on we will use
V2015 to refer to the dataset of 18 September 2015 and V2016 for the dataset
of 12 January 2016.

To analyze the impact of the problem size on our algorithms, we created
4 subsets, increasing in size, of the customers for both datasets. We select
the customers for every subset by computing the optimal solution for the
VRPTW, using the state-of-the-art VRPTW solver from Quintiq, and then

Abbreviation Pricing problem method Section

MIP Mixed Integer Programming 3.2.1
IMIP Incremental Mixed Integer Programming 3.2.2
LS Local Search Heuristic 3.2.3
DP Restricted Dynamic Programming 3.2.4

Table 5.1: Pricing problem method abbreviations

40
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Dataset Tiny (T) Small (S) Medium (M) Large (L)

V2015 12 26 63 102
V2016 10 27 51 108

Table 5.2: Number of customers in Veldhuizen datasets

Name Start (two
p) End (twc

p) µ L

Night Midnight 7AM 0.84 0.60
Morning rush 7AM 9AM 1.10 0.71
Midday 9AM 4PM 1.03 0.69
Evening rush 4PM 6PM 1.16 0.70
Evening 6PM Midnight 0.88 0.62

Table 5.3: Time periods used in experiments

selecting routes that were close to one another, so many combinations are
possible. Table 5.2 shows the exact number of customers in the different sub-
sets. When we refer to dataset V2015/M, we mean the Medium sized subset
of the dataset from 18 September 2015. The default minimum reliability is
set to 0.95 for every customer. We use 100 simulation worlds to check feasi-
bility on every route and we use translated lognormal distributions for our
stochastic travel times. The distribution between two nodes i, j ∈ N in time
period p ∈ P can be described using the average travel time Aij , mean µ, the
minimum travel time L and the variance σ2, as T p

ij ∼ A(lnN (µ−L, σ2)+L).
The variance is a value between 0.5 and 2.1, depending on the following fac-
tors

1. The travel duration, as short trips have more variance than large trips.

2. The start and end location, as trips in urban areas like the Randstad
in The Netherlands are more prone to traffic jams.

3. Randomness, as other unknown factors also play a role, some degree
of randomness is added.

The mean and the minimum travel time depend on the time period. In Ta-
ble 5.3 we show the 5 time periods we define, accompanied by the mean and
minimum travel time values. These values were determined after analyzing
time-dependent stochastic travel data from TomTom. For our costs we use
0.5 per kilometer, 50 per average hour traveling and 1000 per vehicle we use.
While the costs per kilometer and the costs per hour are somewhat realistic,
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the costs per vehicle are not. We chose to use such a large number to also
minimize the number of vehicles used.

Using the state-of-the-art VRPTW solver from Quintiq, we solved both
V2015/M and V2016/M. As this solver does not take time-dependent stochas-
tic travel times into account, we use the average travel times. This resulted
in solutions that cost 7442.27 and 6277.34 respectively, while not meeting
the minimum reliability of 95% at every customer.

Every experiment in this chapter has been performed on a computer
with an Intel(R) Core(TM) i7-2720QM CPU at 2.20GHz and 16GB RAM.
The mathematical programs are solved using CPLEX 12.6.3 from IMB.

5.1 Banning methods

To test the banning methods for the IMIP pricing problem method defined
in Section 3.2.2 we use the datasets from Veldhuizen. We use the Tiny,
Small and Medium datasets from V2015 and V2016, as we were unable to
find a new column in one hour using either method for the Large datasets.
We stop our column generation solution if we are unable to find a feasible
column within 3 minutes. In this section we will not transform the solution
we found to an integer solution. So the data in this section is only about
the relaxed master problem.

In Figure 5.1 we can see that banning by time window gives a better
result in the experiments than banning by route. First of all, banning by
route adds a more difficult constraint, as we combine multiple binary vari-
ables, while we only use one binary variable when banning by time window.
Furthermore, when banning by time window we may ban too strictly, ban-
ning parts of routes that we need in our solution, but this helps us shrink our
search space faster. In Table A.1 the results of this experiment are shown.

5.2 Pricing problems

In this section we will test the different methods to solve the pricing problem
we defined in Section 3.2. Performing some simple tests we have noticed
that both the MIP and IMIP methods perform extremely poor on even
the smaller experiments. Therefore we stopped experimenting with these
methods. We have not been able to optimize the DP algorithm for speed,
therefore it is very slow compared to the LS method. We will use the
Medium sized datasets to investigate the effects of different parameters in
the problem. Remember that we have the relaxed master problem and the
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Figure 5.1: Effect of banning methods on solution value.

master problem. As the costs in these problems differ, we will report the
costs of the relaxed master problem as Costs (RMP), while the costs of the
master problem will be reported as Costs.

5.2.1 Settings

First we will perform some experiments to find optimal settings for our
problem. In Section 3.1.4 we defined a column management method that
limits the number of columns in the master problem. However, we need
to find the best value for the maximum number of columns we allow in
the master problem. We test this method using DP, as it generates many
routes with negative reduced cost every iteration. The DP pricing problem
method is allowed to expand up to 8 routes every DP iteration, but if it is
unable to find a route, we double this value. For dataset V2015/M we try
the parameter with 10000, 5000 and 2500 columns. In Figure 5.2 we see
the results of this experiment; using a maximum of 2500 columns is enough
to get the best possible value in 6 hours of DP execution. Therefore in
all future experiments we set this value to 2500 columns, meaning that if
we have more than 2500 columns, we will remove the columns with highest
reduced cost until we have 2500 columns remaining.

As described in the previous experiment, the DP pricing problem method
is allowed to double its search space if it cannot find any columns. We
found that extending the search space to allow the DP to extend 16384
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Figure 5.2: Three DP executions with varying maximum number of columns
on dataset V2015/M.

partial routes every iteration resulted in memory issues. In Figure 5.3 we
cannot detect the convergence of the DP pricing problem method at a given
maximum number of routes it is allowed to expand. Investigating the matter
further, we can see in Figure 5.4 that the DP pricing problem method is not
able to converge with a search space of only 8192. So due to memory issues
we are unable to find the best trade-off between the maximum number of
routes to expand and the solution value. Therefore we will limit the search
space to 8192.

As we limit the DP, we will also limit the time the LS is allowed to find
at least one new route. In Figure 5.5 we show the increase in solution value
using different time limits. We allow the LS to run up to 15 minutes and
we can see in the figure that with a time limit of 3 minutes we are able to
find a solution 2% worse than the best solution for both datasets. However,
in both cases we were able to find the 2% worse solution in one-third of the
time it took to find the best solution. Therefore we set a limit of 3 minutes
to the search duration of the LS pricing problem method.

As described in Section 3.3.1, we create second rank routes as they may
be useful in the set partitioning step of the master problem. These routes
have a positive reduced cost up to a certain threshold. By gradually increas-
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Figure 5.3: The best value we get from the DP execution on dataset
V2015/M for different values for the maximum number of routes to expand
per DP iteration.
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Figure 5.5: Best solution found against maximum duration to find at least
one route by LS on Medium datasets.

ing the threshold, we will try to determine the optimal threshold for our
problem using the LS method. We start the threshold at 1 and every time
we are unable to find a new route within 3 minutes, we increase the thresh-
old by 1. In Figure 5.6 we see that around threshold 40 both datasets are
improved. Unfortunately, we are unable to detect a pattern, so we decide to
set the threshold to 75, as every improvement we have found is covered when
using this value. For the DP method, second rank columns did not improve
the solution at all. This is probably due to the large number of columns the
DP method creates, as the useful second rank columns will probably already
be included in the set of routes.

5.2.2 Results

First we would like to see the impact of the number of simulation worlds
on our pricing problem methods. We test the methods with a number of
simulation worlds equal to 100, 50 and 20. To make a fair comparison, we
first generate 100 simulation worlds and then we extract the first 50 and the
first 20 simulation worlds from this instance. In Figure 5.7 we can see that
the execution time of both LS and DP are greatly influenced by the number
of simulation worlds. Fewer simulation worlds mean faster computation, but
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Figure 5.6: Percentage improvement obtained by adding second rank
columns using LP method.

it also means lower accuracy of the time-dependent stochastic travel times.
This means that by using fewer simulation worlds, there is a higher proba-
bility that we create routes which would not meet the minimum reliability
criteria if we had used more simulation worlds. In Table A.2 the raw data
of this experiment can be found.

Next we will test the impact of the minimum reliability of the customers.
We set the minimum reliability to 75%, 90%, 95% and 99% for every cus-
tomer. We were unable to detect a relation between the time it takes to
create a new route and the minimum reliability for both methods. Obvi-
ously as the minimum reliability increases, we have fewer feasible routes in
the problem and by increasing the minimum reliability the costs for the best
solution found increases. In Table A.3 the raw data of this experiment can
be found.

The sizes of the time windows may also influence the execution time and
the final solution value significantly. With average time window sizes of 6
hours and 27 minutes for V2015/M and 7 hours and 17 minutes for V2016/M,
it is not very hard to create routes visiting many customers, while meeting
the minimum reliability constraint at every customer. To make it a bit
harder we shrink the time windows of every customer to sizes of 4 hours, 2
hours, 1 hour, 30 minutes and 10 minutes. In Figure 5.8 we see that the
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Figure 5.7: Impact of the number of simulation worlds on the execution time
of pricing problem methods.

average time window size influences the time it takes to create new routes for
the LS method. We do not find such pattern for the DP method. Figure 5.9
shows that the total execution time for both methods is influenced by the
average time window size. This can be explained as the number of feasible
routes decrease when the average time window size decreases; therefore the
search space is smaller and the necessary search time shorter. In Table A.4
the raw data of this experiment can be found.

Next we experiment with the number of customers in our problem. We
use the datasets as described in Table 5.2. In Figure 5.10 we see that the
time it takes both methods to find their solution increases as the number of
customers grows. This can be explained as the search space grows signifi-
cantly by adding extra customers, as explained in Section 3.1.1. In Table A.5
the raw data of this experiment can be found.

Using the previously described experiments, we found that the pertur-
bation operation to create additional columns as described in Section 3.3.2
improved the solution value on average by 0.9% for the LS method and 1.0%
for the DP method.

Comparing the LS to the DP method we see that LS is the clear winner.
In almost every experiment it was able to find the best solution in the
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Figure 5.10: The effect of the number of customers on the time it takes to
find the solution.

shortest time. This can be explained as the DP method can only improve
a partial route by appending a customer, while the LS method improves a
route by inserting and deleting customers at any position. While the LS
method can exit a local optimum by restarting or exploring unfavorable
neighborhoods, the DP method cannot and therefore it is beaten by the LS
method. Checking the feasibility of a route is the main bottleneck of the
DP method, as this requires many arrival time calculations per route and
makes is slow.

To determine the quality of our method, we have to compare our results
to another method. To the best of our knowledge no other method has been
created to solve our problem. Therefore we will compare it to the state-
of-the-art VRPTW solver by Quintiq to solve our problem as a VRPTW.
Doing so, we lose the time-dependent stochastic nature of our travel times.
To compensate for this, we add a bit of slack to the travel times; for example,
in stead of using the average travel time, we use 1.1 times the average travel
time. In Figure 5.11 we see the results of this experiment. Adding slack to
a VRPTW solver results in a more reliable schedule. However, our method
is able to find solutions with a guaranteed minimum reliability at every
customer, while not sacrificing a lot of quality.
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Figure 5.11: Comparing our column generation method to the obvious
workaround of adding slack to the VRPTW solver. Our solution is marked
by the red cross and the blue dots represent the solutions of the workaround.
The size of a dot represents the number of customers we are unreliable at in
the solution. Left we see V2015/M and V2016/M and right we see V2015/M
and V2016/M with time window sizes of 2 hours.

5.3 Departure time from depot

In this section, we will test the methods to compute the best departure time
from the depot we defined in Chapter 4. As these methods are searching for
the optimal departure time, we are only interested in the time it takes them
to find it. First we will explain our setup and then we will show our results.

We use 5 different routes to test the methods we defined in Chapter 4.
In Table 5.4 the number of customers, the average travel duration and the
travel distance of these routes are shown. These routes are created using
the datasets from Veldhuizen. The customers are selected such that the best
possible reliability is equal to 1 for every customer that is visited. For every
route we will also create similar routes, with different time windows; we
take the average arrival time at a customer and we change its time window
around this time. We create routes with 24 hour time windows for every
customer, but also 10 and 30 minute time windows. Finally we also take a
random number between 0 and 3 hours. For instance, if we have an average
arrival time at 2PM, we create time windows of [2AM, 2AM (next day)],
[1:55PM, 2:05PM], [1:45PM,2:15PM] and something between [2PM, 2PM]
and [12:30PM, 3:30PM]. In Figure A.1 the best possible reliabilities for the
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name # customers avg. duration (hours) distance (km)

XS 8 8.06 444.842
S 15 8.5 414.348
M 21 6.34 256.216
L 27 3.86 130.733
XL 34 5.68 300.366

Table 5.4: Properties of the experimentation routes

customers in these routes are shown.
In Table A.6 the results from the binary search method are shown. We

can see that the number of simulation worlds plays a role in the execution
time of this method. The method is less affected by the problem size, as we
see that some smaller problems take longer to solve than larger ones. In Ta-
ble A.7 the results from the backwards calculation method are shown. Both
the problem size and the number of simulation worlds affect the execution
time of this method. The actual makeup of reliability and time windows do
not affect this method at all. In Table A.8 the results from the mixed integer
method are shown. First of all, some results could not be found in 1 minute
using this method. The method struggles with smaller minimum reliability
values. This is due to the implementation of time-dependent travel times in
the MIP.

Comparing all three methods, we see that the backwards calculation
method is the clear winner. It scores best on every test instance. However,
the method is quite inflexible, as it is hard to change its objective or add
other constraints, like driving regulations. Both the binary search method
and the mixed integer program are more versatile in that respect. While we
can express most constraints and objectives in the mixed integer program,
we may be unable to do so in the binary search method, as this method
requires that the search space is convex; given two departure times di > dj ,
there should not be fewer time window violations for di than for dj . However,
this method can be used as a heuristic if the search space is non-convex.
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Conclusion

In conclusion, we created an algorithm that solves the vehicle routing prob-
lem with stochastic and time dependent travel times. The algorithm uses
column generation and we explored multiple methods to solve the pricing
problem. Comparing them, we found that the MIP methods were not up
to the task, while the local search and the dynamic programming heuristic
were able to find good solutions. The local search method proves to be su-
perior over the dynamic programming heuristic, as its solutions are better
and can be found faster.

We investigated multiple methods to ban routes in a simple MIP method
and we found that the one that bans faster is able to obtain better results.

We compared three methods to find the optimal departure time from the
depot. We found that the algorithm that would be hardest to extend per-
formed the best and the method that would be easiest to extend performed
the worst.

Altogether we found that the MIP formulations that allowed some viola-
tions in time windows did not perform well. The solver had problems finding
the right combination of violations in the problem, as they are modeled using
binary variables.

6.1 Future research

We can make the problem more generally practical by transforming it to
a pickup and delivery problem with time-dependent and stochastic travel
times. The pricing problem methods defined in this thesis should all work
on this problem, except for the restricted dynamic programming one. In
the PDP we need both the pickup and delivery action planned and the
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restricted dynamic programming method extends partial routes. Therefore
the method needs to “guess” whether a delivery can be done, when we plan
a pickup.

Another realistic extension to the problem is the enforcement of real
driving regulations in the problem, like mandatory breaks in the schedule.
Due to the time-dependent nature of the problem it matters at which time
a break is scheduled; a rest during rush hour is preferable. The local search
method will be best suited for this extension, as we can use a heuristic to
find a good time to plan a break. Adding these driving regulations to the
depot departure time algorithms is hard, as they will need to find the best
time to schedule breaks. While we will be able to add them to the MIP, as is
done by Kok, Hans and Schutten in [13], more research needs to be done to
be able to add it to the backwards calculation algorithm. The binary search
method may be a good heuristic to find a reasonable solution.

In our problem, we do not stick to the triangle inequality. This means
that in our problem it can be that traveling from A to B to C takes less
time than traveling directly from A to C, even when the departure times
are equal. A similar problem is one with two customers A and A′ which are
close to one another; if we travel from A to B and from A′ to B using the
same departure time, the arrival times at B may be significantly different.
Obviously this is wrong, but this is an artifact of random sampling of the
travel time distributions. We may be able to solve this by using a smarter
technique to sample from the distributions. Another way to solve this is by
using real data; take one historical day and use the traffic data of this day
in one simulation world.

Finally, we use simulation worlds in our problem. The biggest disadvan-
tage of this is that there is a correlation between precision and performance;
more simulation worlds means more precision, but worse performance. If we
would be able to calculate with the time-dependent stochastic travel times
more easily, we may be able to abandon the simulation worlds altogether. A
promising direction would be to alter the discrete stochastic travel times as
defined by Fasting [6], to allow for time-dependency.
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Appendix A

Raw experimental results

Dataset Ban method # Iter. Time (s) Costs (RMP)

V2015/T Time window 46 931.34 1299.2
V2015/S Time window 66 2015.12 4466.61
V2015/M Time window 191 7126.93 12891.01

V2015/T Route 27 1035.42 1299.2
V2015/S Route 120 3818.35 4533.5
V2015/M Route 94 3045.29 16433.27

V2016/T Time window 17 224.25 1539.21
V2016/S Time window 126 4164.62 4748.86
V2016/M Time window 154 3967.5 12500.07

V2016/T Route 16 208.74 1539.21
V2016/S Route 67 1774.38 4876.17
V2016/M Route 66 1423.34 13845.54

Table A.1: Results of banning method experiments for IMIP
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Figure A.1: Best possible reliability for customers in routes defined in Ta-
ble 5.4.



APPENDIX A. RAW EXPERIMENTAL RESULTS 64

# Sim. worlds Time window Min. rel. XS S M L XL

50 orig 0.99 0.58 1.1 1.25 1.51 1.22
50 orig 0.95 0.59 1.04 1.26 1.49 1.57
50 orig 0.75 0.58 1.04 1.25 1.49 1.67
50 orig rand 0.61 0.98 1.25 1.48 1.62

50 10 min 0.99 0.61 0.76 0.98 1.18 1.45
50 10 min 0.95 0.58 0.77 0.98 1.18 1.46
50 10 min 0.75 0.61 1.02 1.23 1.18 1.47
50 10 min rand 0.6 0.83 1.23 1.19 1.47

50 30 min 0.99 0.59 0.98 1.23 1.23 1.46
50 30 min 0.95 0.62 0.98 1.24 1.23 1.46
50 30 min 0.75 0.59 0.98 1.32 1.49 1.63
50 30 min rand 0.59 0.95 1.25 1.22 1.27

50 day 0.99 0.58 1.01 1.24 1.48 1.6
50 day 0.95 0.58 1.0 1.24 1.48 1.6
50 day 0.75 0.58 1.05 1.26 1.48 1.6
50 day rand 0.58 1.0 1.24 1.47 1.61

50 rand 0.99 0.62 0.97 1.25 1.23 1.5
50 rand 0.95 0.62 0.96 1.25 1.23 1.5
50 rand 0.75 0.63 1.0 1.25 1.6 1.63
50 rand rand 0.63 1.06 1.25 1.23 1.56

100 orig 0.99 0.72 1.24 1.54 1.86 1.52
100 orig 0.95 0.71 1.27 1.54 1.93 1.94
100 orig 0.75 0.73 1.22 1.56 1.86 1.92
100 orig rand 0.71 1.22 1.55 1.84 1.97

100 10 min 0.99 0.57 0.98 1.53 1.54 1.75
100 10 min 0.95 0.56 0.98 1.53 1.54 1.76
100 10 min 0.75 0.69 0.98 1.53 1.57 1.82
100 10 min rand 0.57 0.92 1.53 1.54 1.75

100 30 min 0.99 0.69 1.02 1.55 1.59 1.76
100 30 min 0.95 0.74 1.24 1.54 1.6 1.75
100 30 min 0.75 0.71 1.27 1.54 1.92 1.99
100 30 min rand 0.73 1.21 1.58 1.56 1.59

100 day 0.99 0.74 1.27 1.57 1.87 1.91
100 day 0.95 0.72 1.26 1.56 1.9 1.98
100 day 0.75 0.72 1.27 1.57 1.87 1.9
100 day rand 0.72 1.26 1.56 1.86 1.91

100 rand 0.99 0.73 1.21 1.54 1.6 1.81
100 rand 0.95 0.75 1.23 1.55 1.6 1.8
100 rand 0.75 0.76 1.25 1.54 1.94 1.92
100 rand rand 0.76 1.31 1.54 1.62 1.88

Table A.6: Execution time in seconds of binary search method (Section 4.1)
on different routes.
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# Sim. worlds Time window Min. rel. XS S M L XL

50 orig 0.99 0.03 0.1 0.13 0.19 0.35
50 orig 0.95 0.03 0.09 0.13 0.19 0.34
50 orig 0.75 0.03 0.09 0.13 0.19 0.34
50 orig rand 0.03 0.09 0.13 0.19 0.34

50 10 min 0.99 0.03 0.09 0.13 0.19 0.34
50 10 min 0.95 0.03 0.09 0.12 0.19 0.34
50 10 min 0.75 0.03 0.09 0.12 0.19 0.34
50 10 min rand 0.03 0.09 0.12 0.19 0.34

50 30 min 0.99 0.03 0.09 0.13 0.19 0.34
50 30 min 0.95 0.03 0.09 0.13 0.19 0.34
50 30 min 0.75 0.03 0.09 0.12 0.19 0.34
50 30 min rand 0.03 0.09 0.12 0.19 0.34

50 day 0.99 0.03 0.09 0.13 0.19 0.35
50 day 0.95 0.03 0.09 0.13 0.23 0.35
50 day 0.75 0.03 0.09 0.14 0.19 0.35
50 day rand 0.03 0.09 0.13 0.2 0.34

50 rand 0.99 0.03 0.09 0.13 0.19 0.34
50 rand 0.95 0.03 0.09 0.13 0.2 0.35
50 rand 0.75 0.03 0.09 0.13 0.19 0.34
50 rand rand 0.03 0.09 0.13 0.19 0.34

100 orig 0.99 0.05 0.16 0.23 0.35 0.61
100 orig 0.95 0.05 0.17 0.23 0.35 0.61
100 orig 0.75 0.05 0.17 0.23 0.35 0.61
100 orig rand 0.05 0.17 0.23 0.35 0.61

100 10 min 0.99 0.05 0.16 0.22 0.35 0.61
100 10 min 0.95 0.05 0.16 0.23 0.35 0.6
100 10 min 0.75 0.05 0.16 0.22 0.35 0.62
100 10 min rand 0.05 0.17 0.22 0.34 0.61

100 30 min 0.99 0.05 0.16 0.23 0.34 0.62
100 30 min 0.95 0.05 0.17 0.23 0.35 0.62
100 30 min 0.75 0.05 0.17 0.22 0.34 0.61
100 30 min rand 0.05 0.17 0.23 0.35 0.62

100 day 0.99 0.05 0.17 0.23 0.35 0.62
100 day 0.95 0.05 0.17 0.23 0.35 0.64
100 day 0.75 0.05 0.17 0.23 0.35 0.62
100 day rand 0.05 0.17 0.23 0.35 0.62

100 rand 0.99 0.05 0.17 0.22 0.35 0.62
100 rand 0.95 0.05 0.17 0.22 0.35 0.62
100 rand 0.75 0.05 0.16 0.22 0.34 0.62
100 rand rand 0.05 0.17 0.23 0.35 0.61

Table A.7: Execution time in seconds of backwards calculation algorithm
(Section 4.2) on different routes.
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# Sim. worlds Time window Min. rel. XS S M L XL

50 orig 0.99 0.62 0.98 1.3 1.6 1.43
50 orig 0.95 2.52 9.72 24.91 - 3.87
50 orig 0.75 19.21 41.37 - - 24.31
50 orig rand 0.54 1.18 - - 7.72

50 10 min 0.99 0.55 1.18 1.4 1.8 1.58
50 10 min 0.95 0.59 1.28 1.54 1.94 1.69
50 10 min 0.75 0.74 1.33 1.88 2.1 2.14
50 10 min rand 0.61 1.27 1.69 1.96 1.75

50 30 min 0.99 0.56 1.06 1.35 1.73 1.59
50 30 min 0.95 0.62 1.25 1.65 1.98 1.78
50 30 min 0.75 6.58 55.77 1.91 - 45.42
50 30 min rand 0.68 1.3 1.96 2.11 1.68

50 day 0.99 1.72 7.45 3.33 4.36 4.05
50 day 0.95 1.63 7.47 11.67 6.99 4.08
50 day 0.75 1.75 7.5 9.65 8.12 4.07
50 day rand 1.65 7.5 7.94 18.53 4.08

50 rand 0.99 0.5 0.89 1.32 1.47 1.35
50 rand 0.95 0.65 2.11 1.56 2.12 1.74
50 rand 0.75 22.01 27.11 2.07 - 39.96
50 rand rand 0.64 1.01 1.81 1.62 1.47

100 orig 0.99 9.98 29.67 - 57.42 34.69
100 orig 0.95 11.47 34.92 - - 18.68
100 orig 0.75 25.8 - - - -
100 orig rand 11.94 2.4 - - 29.32

100 10 min 0.99 1.44 2.83 3.29 4.23 3.83
100 10 min 0.95 1.16 2.65 3.42 4.34 3.74
100 10 min 0.75 1.19 2.69 3.51 4.73 3.89
100 10 min rand 1.18 2.89 3.84 4.35 3.66

100 30 min 0.99 1.28 2.73 3.72 4.69 4.39
100 30 min 0.95 1.29 2.86 3.81 4.41 3.84
100 30 min 0.75 37.72 - 19.22 - -
100 30 min rand 1.26 2.83 3.59 4.47 3.66

100 day 0.99 4.83 23.56 12.69 - 11.45
100 day 0.95 4.91 23.19 48.94 55.77 11.53
100 day 0.75 4.9 23.62 - 55.5 11.51
100 day rand 4.91 23.05 - - 13.15

100 rand 0.99 2.08 3.57 4.93 7.38 4.85
100 rand 0.95 1.22 2.86 3.77 4.48 4.11
100 rand 0.75 42.51 - 17.56 - -
100 rand rand 1.28 2.1 3.57 3.39 7.7

Table A.8: Execution time in seconds of mixed integer method (Section 4.3)
on different routes.


