
Cryptographic decoding of the Leech lattice

Alex van Poppelen

Supervisors:
Dr. Léo Ducas (CWI)

Dr. Gerard Tel (Utrecht University)

September 20, 2016

1 / 46



Table of Contents

Introduction

Lattices

Learning with errors

Leech lattice decoding

Cryptographic decoder implementation

Conclusion

2 / 46



Introduction

3 / 46



Encryption

Problem:

I Two parties, Alice and Bob, wish to communicate

I Eve is listening in on the channel

I Alice and Bob want to keep their communication confidential

4 / 46



Symmetric key encryption

Symmetric key encryption works as follows:

I Uses the same key K for encryption and decryption

I Minimal bandwidth overhead

I Typically very efficient

5 / 46



Public key encryption

Public key (asymmetric) encryption consists of three algorithms:

Key generator: Produces a public key P and a private key S .

Encryption: Uses P to hide a message M in a ciphertext C .
Decryption: Uses S to recover M from C .

I Ciphertexts are large (lots of bandwidth overhead)

I Less efficient than symmetric key encryption

I However, does not require a pre-shared secret

6 / 46



Public key encryption

Public key (asymmetric) encryption consists of three algorithms:

Key generator: Produces a public key P and a private key S .
Encryption: Uses P to hide a message M in a ciphertext C .

Decryption: Uses S to recover M from C .

I Ciphertexts are large (lots of bandwidth overhead)

I Less efficient than symmetric key encryption

I However, does not require a pre-shared secret

6 / 46



Public key encryption

Public key (asymmetric) encryption consists of three algorithms:

Key generator: Produces a public key P and a private key S .
Encryption: Uses P to hide a message M in a ciphertext C .
Decryption: Uses S to recover M from C .

I Ciphertexts are large (lots of bandwidth overhead)

I Less efficient than symmetric key encryption

I However, does not require a pre-shared secret

6 / 46



Public key encryption

Public key (asymmetric) encryption consists of three algorithms:

Key generator: Produces a public key P and a private key S .
Encryption: Uses P to hide a message M in a ciphertext C .
Decryption: Uses S to recover M from C .

I Ciphertexts are large (lots of bandwidth overhead)

I Less efficient than symmetric key encryption

I However, does not require a pre-shared secret

6 / 46



Encryption in practice

We combine the two to get best of both worlds.

Public key encryption is used to establish a shared secret (called a
key exchange in this context), then data is encrypted using a
symmetric key algorithm.

7 / 46



Quantum computing

Quantum computing uses quantum-mechanical phenomena for
computation.

Instead of only 0s and 1s, quantum bits can exist in a
superposition of two states, only “collapsing” when measured.
They can also be “entangled”.

New algorithms possible! Often probabilistic.

This is very exciting. But for cryptographers, and people who
depend on cryptography (everyone), it is also very worrying.

8 / 46



Quantum computing

Quantum computing uses quantum-mechanical phenomena for
computation.

Instead of only 0s and 1s, quantum bits can exist in a
superposition of two states, only “collapsing” when measured.
They can also be “entangled”.

New algorithms possible! Often probabilistic.

This is very exciting. But for cryptographers, and people who
depend on cryptography (everyone), it is also very worrying.

8 / 46



Quantum algorithms

Grover’s algorithm

Search algorithm with generic acceleration from O(N) to O(
√
N)

evaluations.

Result: Double key size for symmetric encryption.

Shor’s algorithm

Solves integer factorization and discrete logarithm problems in
polynomial time.

Result: All crypto deployed today is broken.

We need new public key crypto resistant to quantum algorithms!

9 / 46



Post-quantum cryptography

Nobody knows when sufficiently large quantum computers will
become reality. Could be 5 years, could be 30 years, could be never.

If quantum computing is so far away, why is it important
now?

I Cryptanalysis needs a lot of time to mature

I Implementations need time to mature

I Forward secrecy: protect current data for the long term

NSA and many other institutions want a transition to
post-quantum crypto.

10 / 46



Post-quantum cryptography

Nobody knows when sufficiently large quantum computers will
become reality. Could be 5 years, could be 30 years, could be never.

If quantum computing is so far away, why is it important
now?

I Cryptanalysis needs a lot of time to mature

I Implementations need time to mature

I Forward secrecy: protect current data for the long term

NSA and many other institutions want a transition to
post-quantum crypto.

10 / 46



Post-quantum cryptography

Nobody knows when sufficiently large quantum computers will
become reality. Could be 5 years, could be 30 years, could be never.

If quantum computing is so far away, why is it important
now?

I Cryptanalysis needs a lot of time to mature

I Implementations need time to mature

I Forward secrecy: protect current data for the long term

NSA and many other institutions want a transition to
post-quantum crypto.

10 / 46



Lattice-based cryptography

Lattice-based cryptography is a promising candidate for
post-quantum security.

Pros:

I Resistant (so far) to quantum attacks

I Strong theoretical foundation (worst-case hardness)

I Algorithmically simple, highly parallelizable

I Fast

I Broad diversity of cryptographic possibilities

Cons:

I Current protocols require significantly more bandwidth than
those in use today

11 / 46



Improving the bandwidth

Can we do better?

12 / 46



Lattices

13 / 46



What is a lattice?

Definition (Lattice).

A lattice is an additive subgroup L of a finite dimensional
Euclidean vector space Rm such that L is discrete.

Z2: A2:

Informally, a lattice is just a repeating grid of points in a finite
dimensional vector space!

14 / 46



Lattice basis

Definition (Lattice basis).

Given n linearly independent vectors b1, . . . ,bn ∈ Rm as a m × n
matrix B, we can define the lattice

L = L(B) := B · Zk =

{
k∑

i=1

zibi : zi ∈ Z

}
.

Z2: A2:

15 / 46



Lattice basis

Lattice bases are not made equal! Short = good.

Good basis → bad basis : Easy,
Bad basis → good basis : Hard.

16 / 46



SVP

Definition (Shortest Vector Problem).

Given an arbitrary basis B for a lattice, find a shortest nonzero
lattice vector.

This problem is very well-studied.

Variations (esp. approximation versions) form the foundation for
lattice cryptography.

17 / 46



Learning with errors

18 / 46



Learning with errors

Definition (LWE distribution).

For a vector s ∈ Zn
q, and an error distribution χ, the LWE

distribution As,χ is sampled by outputting

(a, b = 〈s, a〉+ e mod q)

where a ∈ Zn
q is uniformly random, and e is sampled from χ.

Search problem:
Given m samples from As,χ, find s.

Decision problem:
Given m samples from As,χ, or m uniformly random samples,
distinguish which is the case.

19 / 46



LWE cryptosystem: key generation and encryption

Key generation: Sample two short matrices S ,E ∈ Zn×k from χ.
S is the private key, and used to calculate the public key B.

Encryption: Sample two short vectors s ′ and e ′. To encrypt a
binary message m ∈ {0, 1}l , the sender generates ciphertext c .

20 / 46



LWE cryptosystem: key generation and encryption

Key generation: Sample two short matrices S ,E ∈ Zn×k from χ.
S is the private key, and used to calculate the public key B.

Encryption: Sample two short vectors s ′ and e ′. To encrypt a
binary message m ∈ {0, 1}l , the sender generates ciphertext c .

20 / 46



LWE cryptosystem: decryption

Decryption: To decrypt c , the receiving party calculates[
−S t Ik

]
· c .

Most terms cancel out, recovering enc(m) plus an error term. All
components of this error term are sampled from χ, meaning they
are short.

21 / 46



Encoding and decoding

How do we encode a binary message into the ciphertext?

Ciphertext coordinates are modulo q. Suppose we want to encode
1 bit per coordinate.

Encoding: {0, 1} → Zq.
Map 0 → 0, and 1 → q

2 .

Decoding: Zq → {0, 1}.
Map ranges [0, q4 ) and [3q4 , q) → 0,

and [q4 ,
3q
4 ) → 1.

Error must be bounded by q
4 in each coordinate!

22 / 46



Decoding

Decoding all bits in k coordinates can be seen as decoding a
lattice. Specifically, the scaled integer lattice, q

2Z
k
q .

What is lattice decoding in general? Can we use other lattices?

23 / 46



Decoding

Decoding all bits in k coordinates can be seen as decoding a
lattice. Specifically, the scaled integer lattice, q

2Z
k
q .

What is lattice decoding in general? Can we use other lattices?

23 / 46



Leech lattice decoding

24 / 46



Lattice decoding = CVP

Definition (Closest Vector Problem).

Given an arbitrary basis B for a lattice and a target point t ∈ Rn,
find a lattice vector v such that the distance between v and t is
minimal among lattice vectors.

25 / 46



Lattice codes

What kind of lattice encoding is best for the cryptosystem (or
error-correction in general)?

Requirements:

I Efficient to decode (CVP is very hard in general)

I Dense (encode more bits in fewer coordinates)

I Large minimal distance (tolerate higher error)

Our error distribution is Gaussian in each coordinate. In multiple
dimensions, this distribution looks spherical.

I Efficient error correction relates to dense sphere packings.

26 / 46



Lattice codes

What kind of lattice encoding is best for the cryptosystem (or
error-correction in general)?

Requirements:

I Efficient to decode (CVP is very hard in general)

I Dense (encode more bits in fewer coordinates)

I Large minimal distance (tolerate higher error)

Our error distribution is Gaussian in each coordinate. In multiple
dimensions, this distribution looks spherical.

I Efficient error correction relates to dense sphere packings.

26 / 46



Lattice codes

What kind of lattice encoding is best for the cryptosystem (or
error-correction in general)?

Requirements:

I Efficient to decode (CVP is very hard in general)

I Dense (encode more bits in fewer coordinates)

I Large minimal distance (tolerate higher error)

Our error distribution is Gaussian in each coordinate. In multiple
dimensions, this distribution looks spherical.

I Efficient error correction relates to dense sphere packings.

26 / 46



Sphere packing

Very difficult problem in general, lots of research!

Z2: A2:

Same minimal distance between points, but A2 is significantly
denser (0.91 vs 0.79)!

27 / 46



The Leech lattice

The Leech lattice Λ24 is the densest sphere packing in 24
dimensions.

I Exceptionally dense

I Related to many other branches of mathematics

I Exceptionally structured (symmetries, sublattices)

I Many decoding algorithms available

I Error correction properties extensively studied

28 / 46



Leech lattice encoding in LWE

Restrict Leech lattice points to the following:

qZ24 ⊂ TΛ24 ⊂ Z24,

where T is some transformation.

I Encode binary message m as Leech lattice point

I Blocks of 24 coordinates

I Use decoding algorithm to decode received point which has
error

How much can we decrease the bandwidth of the key
exchange scheme?

29 / 46



Leech lattice encoding in LWE

Restrict Leech lattice points to the following:

qZ24 ⊂ TΛ24 ⊂ Z24,

where T is some transformation.

I Encode binary message m as Leech lattice point

I Blocks of 24 coordinates

I Use decoding algorithm to decode received point which has
error

How much can we decrease the bandwidth of the key
exchange scheme?

29 / 46



Analysis

We try several parameter sets for both encodings, subject to the
following requirements:

I Parameter sets achieve 128 bits of quantum security

I The failure rate of the protocol (error is too large) is very low

I The standard deviation of the error distribution χ is ≥ 1.0

The last requirement ensures combinatorial attacks are not feasible.

30 / 46



Key exchange results

encoding q n σ k bits failure bandwidth

Zk
q 212 568 1.75 128 256 2−38 19.1 KB

213 618 1.70 86 258 2−38 18.6 KB
214 664 1.65 64 256 2−38 18.2 KB

Λ24 210 500 1.15 192 288 2−37 17.1 KB
211 552 1.10 120 300 2−38 16.3 KB
212 574 1.55 96 288 2−37 16.8 KB
213 626 1.50 72 288 2−37 16.9 KB
214 700 1.00 48 264 2−38 16.7 KB

31 / 46



Key exchange results

Improvement: 10%.

Significant, but is it worth the extra complexity?

Turns out the 24 dimensions of the Leech lattice do not fit well
with the requirement to agree on 28 = 256 bits of key material.

What if we only need to agree on 240 bits? We get an
improvement of 18%!

32 / 46



Key exchange results

Improvement: 10%.

Significant, but is it worth the extra complexity?

Turns out the 24 dimensions of the Leech lattice do not fit well
with the requirement to agree on 28 = 256 bits of key material.

What if we only need to agree on 240 bits? We get an
improvement of 18%!

32 / 46



Cryptographic decoder implementation

33 / 46



Leech lattice decoder

CVP Leech lattice decoder by Vardy and Be’ery, 1993.

I Fastest Leech lattice decoder known

I Makes extensive use of the Leech lattice’s structure

I Requires 3595 “real” operations in the worst case (ignoring
memory addressing, negation, absolute value calls)

I 2955 operations on average

Very complex. Divides the Leech lattice into six component
lattices, and combines the cosets of these component lattices using
three levels of “glue” codes.

34 / 46



Cryptographic requirements

Implementation must not leak information. This is very difficult.
Some side-channels include timing, power consumption, cache
accesses, error messages.

Requirements:

I Constant time algorithm

I No data-dependent branching

I No data-dependent memory access

35 / 46



Constant time algorithm

For every algorithm step, must do all calculations for all possible
cases, regardless of whether necessary.

Leech decoder:

I Many alterations to calculate all branch cases

I Large sorts required list traversing → potential leak

I Break up sorting step into many smaller sorts. No more list
traversing

Resulting decrease in efficiency was minor.

36 / 46



Branching and memory access

Widely varying compilers and CPU architectures make things
difficult.

Code we write as “safe” may be modified or optimized by compiler
to be unsafe.

Branching: In general, compiler will remove branches, rather than
introduce them (branching is expensive).

Cache: However, we have little control over how the cache is used.

37 / 46



Cache attack

Evil process first overwrites the cache.

38 / 46



Cache attack

Decoder process gets a turn on the CPU. Accesses some data
dependent memory, overwriting parts of the cache corresponding
to these addresses.

39 / 46



Cache attack

Evil process now tries to access all of its memory. By timing its
own memory access calls, can determine when it has experienced a
cache miss. A cache miss indicates the decoder accessed memory
pointed to by this part of the cache.

40 / 46



Minimization and sorting

Problem:
Get the minimum and maximum of two values: a, b

Solution:

I Extract sign s of a− b (e.g. via a bitshift)

I Construct
min = as + b(s XOR 1),

max = bs + a(s XOR 1).

I Set a = min and b = max.

This “swap” ensures constant time, and data independent memory
access.

Sorting: Use this swap, and constant swap “plan”.

41 / 46



Implementation

Unsafe algorithm and safe algorithm (with above modifications and
considerations) were implemented in C. Compiled using GCC 5.3.1,
run on a 2.4GHz Intel Core i3 M370 processor.

Unsafe: 41.2 ± 2.3 microseconds
Safe: 55.4 ± 0.1 microseconds

I did spend more time optimizing the safe version! Lots more room
for improvement: algorithm is ripe for vectorization/parallelization.
Could cut time in 4, or possibly 8.

Compare to running times of 300 to 1300 microseconds and up for
lattice-based key exchanges, and 1400 and up for elliptic curve DH
(all on better hardware).

42 / 46



Implementation

Unsafe algorithm and safe algorithm (with above modifications and
considerations) were implemented in C. Compiled using GCC 5.3.1,
run on a 2.4GHz Intel Core i3 M370 processor.

Unsafe: 41.2 ± 2.3 microseconds
Safe: 55.4 ± 0.1 microseconds

I did spend more time optimizing the safe version! Lots more room
for improvement: algorithm is ripe for vectorization/parallelization.
Could cut time in 4, or possibly 8.

Compare to running times of 300 to 1300 microseconds and up for
lattice-based key exchanges, and 1400 and up for elliptic curve DH
(all on better hardware).

42 / 46



Conclusion

43 / 46



Conclusion

Leech lattice encoding for LWE

I Approximately 10% improvement in key exchange bandwidth

I Leech lattice’s dimension is cumbersome in the context of 256
bits, and inhibits better coding gain

I Decoder implementation is fast enough

I It is definitely feasible to make the decoder cryptographically
safe

44 / 46



Future work

I Other lattice codes, with more agreeable dimensions?

I Leech lattice as an ideal in a Ring-LWE scheme (more efficient
version of LWE), could be a more natural fit?

45 / 46



Thanks for listening!

Questions or comments?

46 / 46


	Introduction
	Lattices
	Learning with errors
	Leech lattice decoding
	Cryptographic decoder implementation
	Conclusion

