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1 Introduction

In the field of cold atom nanophotonics, the interaction between atoms and
photons is studied. In our research group, we bring 87Rb atoms close towards a
golden sample surface to study the interactions between these atoms and nano-
structures on the sample. From a Rubidium source, atoms are trapped in a 2D
magneto-optical trap (MOT). From here, atoms are pushed towards a vacuum
chamber by an on-resonance beam, where they are trapped in a 3D-MOT. By
overlapping an optical dipole trap (ODT) with the cloud of atoms in the 3D-
MOT, the atoms are loaded in the ODT and can be transported to an optical
conveyor. This conveyor will then transport the atoms to the golden sample
surface.

In order to successfully transport the atoms, it is important to study the char-
acteristics of the atoms while they are in the ODT. In this theses, the relation
between the temperature and the time the atoms are trapped in the ODT is
studied. The temperature is related to the spatial distribution of the atoms. By
measuring the spatial distribution using absorption imaging, we determine the
temperature in the ODT.

2



2 Theory

The goal of this experiment is to perform temperature measurements on a cloud
of atoms in an ODT. Trap depths are generally below 1 mK, so the atoms first
need to be cooled down to the µK regime. The ODT is loaded by overlapping
the beam with the atom cloud in the 3D-MOT. More atoms can be trapped if
the density of the cloud is high. A common way to obtain a cold dense cloud of
atoms is by using a magneto-optical trap (MOT). A brief theoretical description
of the MOT is given in section (2.1). After the atoms are cooled down, they are
loaded in the ODT. The theory of optical dipole trapping and the potential of
the trap are discussed in section (2.2). In section (2.3) a theoretical description
of the density distribution of the atoms in the trap is given.

2.1 Magneto-Optical Trap

To obtain a cold dense cloud of atoms, the MOT applies two different forces.
It applies a velocity-dependent force to slow the atoms down and a position-
dependent force to confine them to a small region of space. This section consists
of two parts describing each of the forces in the MOT. The velocity-dependent
force is discussed in section (2.2.1) and the position-dependent force in section
(2.2.2).

2.1.1 Velocity dependent force

The velocity of the atoms is reduced by applying an optical force on them. This
is done by directing a laser beam at atomic resonance frequency ω0 towards the
atoms. The atoms will absorb the photons and go to the exited state. During
this collision, the atom absorbs the momentum of the photon p = ~k. Atoms
moving in the opposite (same) direction of the beam will therefore have their
momentum reduced (increased) by a factor of p = ~k. Once the atom is in the
exited state, it will eventually fall back into its ground state due to spontaneous
emission. The atom will re-emit the photon in a random direction. Since this
direction is random, the average momentum gain is the same in all directions
after many such events. Therefore, the net force from the spontaneous emission
is zero. The momentum of the atoms can be reduced by making them only
absorb photons when they are moving into the beam. This can be realized by
exploiting the Doppler effect.

Doppler cooling
When an atom is moving at a certain velocity, the frequency of a laser beam
in the atom’s frame of reference is shifted due to the Doppler shift. An atom
moving towards the beam with velocity ~v will see the laser’s frequency ωL shifted
at ω′L = ωL−ωD, with ωD = −~k·~v, the Doppler shift. In the case when the atom

is moving towards the beam, ~k and ~v are opposite in sign, so the Doppler shift
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is positive. If the frequency of the photon in the atom’s frame of reference is
close to its resonance frequency ω0, there is a high probability that the atom will
absorb the photon. To realize this, the frequency of the laser is lowered by an
amount equal to the Doppler shift. This lowering of frequency and the Doppler
shift then cancel each other out, so the atom moving towards the beam sees the
beam at resonance. The changing of the frequency is called the detuning of the
laser and is written as

δ = ωL − ω0 (1)

Here, ωL is the frequency of the laser and ω0 the resonance frequency of the
atom. We say that the laser is red detuned if δ < 0 and blue detuned if δ > 0. By
red-detuning the laser, we obtain a high absorption probability when an atom is
moving into the beam and a low absorption probability when an atom is moving
away from the beam. This is because atoms moving away from the beam will
see the lasers frequency to be even further shifted away from resonance. Hence,
absorption and re-emission will result in momentum loss and the atoms are
cooled. This momentum transfer can be quantified in the following way. As
stated before, the momentum of an atom is reduced by p = ~k, each time
it absorbs a photon. If we know the scattering rate, which is the number of
momentum transfers per unit of time, then the force is given by the momentum
change per scattering event times the scattering rate. This gives

~F = ~~kγp (2)

where γp denotes the scattering rate. The scattering rate is given by [2]

γp = (
γ

2
)

s0

1 + s0 + 4(∆/γ)2
(3)

Here γ denotes the natural line width, s0 = I/Isat is the ratio between the
intensity of the beam, I0 = πhc/3λ3τ the saturation intensity, τ = 1/γ the
lifetime of the exited state and ∆ = δ − ωD. From this equation we can see
that, for a given s0, maximum scattering occurs when ∆ = 0 or δ = ωD. This
means that the detuning needs to be equal to the Doppler shift, so the atoms
see the laser beam at resonance. The scattering rate can also be increased by
increasing the intensity of the beam. For high intensities I � Isat, the factor
s0 becomes much bigger than (∆/γ)2. This gives a maximum scattering rate of
γ/2 and the maximum scattering force

~F =
~kγ

2
. (4)

Therefore, the cooling is most efficiënt if high intensities are used.
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Optical molasses
Up to this point, only the interaction of atoms with a single laser beam has
been discussed. Eventually, atoms moving in any direction need to be cooled.
For this, two counter propagating beams are placed in every spatial direction.
This makes a total of six beams that reduce every spatial component of the
velocity. The overlapping volume of these beams is called an optical molasses.
Let us first consider the one dimensional case where an atom is moving along
the x-axis. Two counter propagating beams are placed along this axis .Since
the atom experiences a different Doppler shift from the two beams, the force
from each beam will be different. This has to be taken into account in equation
(2) for the scattering force. Doing this, the scattering force becomes

F± = ±~~kγ
2

s0

1 + s0 + 4(∆±/γ)2
(5)

with ∆± = δ ∓ |ωD|. The total force on the atom in the optical molasses is the
sum of these forces.

FOM = F+ + F− =
~~kγs0

2

(
1

1 + s0 + 4(∆+/γ)2
− 1

1 + s0 + 4(∆−/γ)2

)
(6)

For small Doppler shifts, |~v| � |γ/k, the sum of these forces can be linearly ap-
proximated. By making a linear approximation, the force the atom experiences
in the optical molasses is then given by [2]

FOM '
(

8~k2δ

γ

s0

[1 + s0 + 4(δ/γ)2]2

)
~v = β~v (7)

Reading from this equation, the velocity of the atom could eventually be reduced
to zero and the atom cloud would reach a temperature of 0 K. Heating mech-
anisms will prevent this from happening. When the atoms absorb and re-emit
photons, the re-emitting causes some recoil in a random direction. This gives
a small contribution in kinetic energy which heats the sample of atoms. The
minimum temperature that can be obtained is when the cooling and heating
mechanisms are in equilibrium and is called the Doppler cooling limit [4]

TD =
~γ

2kB
. (8)

For 87Rb, this temperature is 145.57 µK [4].

By applying a velocity-dependent force, the atoms can be cooled, but they
are not trapped in space. By introducing an inhomogeneous magnetic field, the
Zeeman shift can be exploited. This will be discussed in the next section (2.1.2).
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2.1.2 Position dependent force

For optimal loading of the ODT, we want the atom cloud to be dense. This can
be done by applying a position dependent force on the atoms. The force can be
made such that when an atom is moving away from the centre, it will be pushed
back to the centre. This can be realized with the right choice of polarization
and positioning of the beams.

For a two level atom with a ground state F = 0 and an exited state F = 1, the
energy levels of the exited state are split into three components: mf = 0,±1.
Because of the selection rules, different energy states are exited by different
types of polarized light. The mf = −1 state is exited by left handed circular
polarized light (σ−) and the mf = +1 state by right handed circular polarized
light (σ+). This is represented in figure (1).

Figure 1: Energys states in different regimes of the magnetic field. Different
types of light polarization excite different energy levels, as indicated

Let us now apply a linearly inhomogeneous magnetic field ~B(z) = αz. In the
region z > 0 the magnetic field B > 0. In this region, the mf = +1 state
is shifted up and the mf = −1 state is shifted down. In the z > 0 regime,
the more the atom moves to the right, the more the mf = −1 state is shifted
down. Eventually the energy state is shifted down far enough for the atom to
see it on resonance. This can also be seen as the point where the lines cross
in figure (2). This is only the case when the beam on the right is left handed
circular polarized, because only this light can excite the mf = −1 energy state.
Therefore, the beam coming from the right is given this polarization. In the
z > 0 region, atoms that are moving to the right have a higher collision rate
with the beam coming from the right than with the beam coming from the left.
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Hence, the net force on the atom will be in the −z-direction, which is the
direction of the centre of the trap. For the z < 0 regime, the magnetic field
B < 0 and the mf = +1 energy state is shifted down. With the same reasoning
as in the z > 0 regime, the beam coming from the left is given a right handed
circular polarization.

Figure 2: The energy levels of different states. The horizontal line is the energy
of the laser beam. When this line crosses one of the energy states of the atom,
the atom will see the beam at resonance.

Taking the Zeeman shift into account, the force on the atom in the optical
molasses becomes [1]

F± = ±~~kγ
2

s0

1 + s0 + 4(∆±/γ)2
(9)

where ∆± = δ ∓ ωD ± ωZ and ωZ ∼ B.

So far, a theoretical description of the MOT and the forces on the atoms has
been discussed. Once the atoms are trapped in the 3D-MOT, they are loaded in
the ODT. A theoretical description of the optical dipole trap is given in section
(2.2).
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2.2 Optical Dipole Trap

The optical dipole trap (ODT) will transport the atoms towards the optical
conveyor. This conveyor will then transport the atoms towards the sample
surface. In this section, a theoretical description of the optical dipole trap is
given. Here we will derive the potential in of the trap that is needed to find the
density distribution.

The simplest form of an ODT is a focused beam trap and consists of a single
Gaussian beam. The intensity distribution of a Gaussian beam is given by [6]

I(r, ω) = I0 exp

(
−2r2

ω(z)2

)
. (10)

Here, I0 is the intensity at the focus and is obtained by dividing the power P
of the laser by the area at the focus. This gives I0 = 2P/(πω2

0) . Furthermore,
ω(z) is the beam waist where the intensity has dropped to 1/e2. The term ω(z)
depends on the spatial coördinate z and is given by

ω(z) = ω0

√
1 + (z/zR)2, zR = ηπω2

0/λ (11)

Here, zR is the Rayleigh range, which is the depth of focus when focusing a
Gaussian beam. The term ω0 is the minimum beam waist. Equation (10)
gives the intensity distribution for a circular Gaussian beam. For an elliptical
beam, the radial beam waist ωr is split into two components, ωx and ωy for
the beam waists in the x−, and y−direction. This means we have to change
the intensity distribution by taking these beam waists into account. For the
intensity distribution for an elliptical beam we have

I(r, ω) = I0 exp

(
−2x2

ω2
x(z)

+
−2y2

ω2
y(z)

)
(12)

The intensity at the focus is now obtained in a similar way as before, but now
we divide the power by the area of the elliptical beam at the focus. This gives
I0 = (2P )/(πωx,0ωy,0).

The electric field of the beam induces an atomic dipole moment. To find the
relation between the electric field and the atomic dipole moment, we consider
the atom in Lorentz’s model of a classical oscillator. In this model, an electron
is elastically bound to the core, oscillating at a frequency ω0. The mass of the
core is considered to be much bigger than the mass of the electron. For this
model, we can write the equation of motion with ~F = −e ~E the force of the
electric field on the electron. This gives [3]]

meẍ+meΓωẋ+meω
2
0x = −e ~E(t), (13)
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with the solution

x(t) = −
(
e

me

1

ω2 − ω2
0 − iωΓω

)
E(~r, t). (14)

where Γω =
e2ω2

6πε0mec3
is the classical damping rate due to radiative energy

loss. The induced dipole moment is equal to ~p = −e~x [5]. This results in the
following relation between induced dipole moment and the electric field

~p(~r) =

(
e2

me

1

ω2 − ω2
0 − iωΓω

)
= α~E(~r). (15)

Here, α is the complex polarizability of the atom, which is a measure of how
easily the light induces a dipole moment. It depends on the light’s frequency
ω and on the detailed structure of the atom. The real part of the complex
polarizability describes the in-phase component of the induced dipole moment
with the electric field. It is responsible for dispersive properties of interaction.
The imaginary part describes the out of phase component and is responsible for
the absorption of radiation, which is later re-emitted as dipole radiation.

In the ODT there is an interaction between the laser light intensity and the
dipole moment we just derived. This interaction results in an optical force,
making it possible to trap the atoms. Since this force in conservative [3], it can
be written as the negative gradient of the potential. This potential is given by
[3]

Udip = −1

2
〈~p(~r) ~E(~r)〉 = − 1

2ε0c
Re(α)I(~r) (16)

with I(~r) = 2ε0c| ~E(~r)|2 , ε0 the dielectric constant and c the speed of light

in vacuum. Here 〈~p(~r) ~E(~r)〉 is the time average over the oscillating terms.
The factor 1/2 arises because the dipole is induced and not a permanent one.
The dipole force can now be calculated by taking the negative gradient of this
potential.

Fdip(~r) = −∇Udip(~r) =
1

2ε0c
Re(α)∇I(~r) (17)

As mentioned before, the imaginary part of the polarizability is responsible for
absorption. The power absorbed by the oscillator is

Pabs = 〈~̇p · ~E〉 =
ω

ε0c
Im(α)I(~r) (18)
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This absorbed energy is eventually re-emitted as dipole radiation. The power
absorbed can be interpreted as subsequent events in which an atom absorbs and
re-emits a photon. We can find the scattering rate by dividing the absorbed
power by the energy of a photon

Γsc(~r) =
Pabs
~ω

=
1

~ε0c
Im(α)I(~r). (19)

With the above equation and the equation for the polarizability we can derive
the following expressions

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r) (20)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω3
0

)(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r) (21)

These equations are often further simplified by taking the rotating wave approx-
imation. In this approximation, rapidly oscillating terms in the Hamiltonian are
neglected. The equations simplify to [3]

Udip(~r) =
3πc2

2ω3
0

Γ

δ
I(~r) (22)

Γsc(~r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(~r) (23)

However, this approximation is only valid if the laser is detuned relatively close
to resonance. So far we have given a mathematical description of the trap
potential. The cloud of atoms in the ODT has a certain density distribution
that depends on the potential of the trap and the temperature of the atoms.
This spatial distribution is discussed in section (2.3).
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2.3 Density distribution

The atoms in the ODT have a density distribution that depends on the potential
of the trap and the temperature of the atoms. For a finite trap depth εr, atoms
that have an energy ε greater than εr can escape the trap. As high energy
atoms are removed, the average energy of the remaining atoms is reduced. The
atoms then rethermalize due to elastic collisions to a equilibrium state at a
lower temperature. A thermal distribution of the atoms is not possible when
the trap depth εt is finite. This is because an approach to thermal equilibrium
is accompanied by loss of atoms due to evaporation [9]. However, if the average
energy of the atoms is much smaller than the trap depth kT � εr, then most
collisions lead to a redistribution of the energy among the atoms. This leads to
a quasi thermal equilibrium. The distribution of the atoms in an evaporating
gas is described by a truncated Boltzmann distribution, which is truncated at
the trap depth εt = ηkT [9].

f(ε) = n0Λ3 exp(−βε)Θ(εt − ε) (24)

with

Λ =

√
2π~2

mkT
(25)

the thermal de Broglie wavelength and Θ(εt − ε) the Heaviside step function

Θ(εt − ε) =

{
0 if (εt − ε) < 0
1 if (εt − ε) ≥ 0

(26)

The truncation of the Boltzmann distribution is represented in figure (3). Ini-
tially we have an atom cloud at a certain initial temperature T . Truncating the
tail of this distribution is equivalent to removing the atoms with a high energy.

Figure 3: A truncation of the Boltzmann distribution. Figure (a) shows the
initial state. In figure (b) the high energy tail of the distribution is removed.
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The truncated Boltzmann distribution of equation (24) leads to the phase-space
distribution

f(~r, ~p) = n0Λ3 exp
[
−β(U(~r) + p2/2m)

]
·Θ(ηkT − U(~r)− p2/2m) (27)

For large trap depths, truncation effects are small and the Heaviside step func-
tion becomes one. The spatial density is then given by [9]

n(~r) =
1

(2π~)3

∫
f(~r, ~p)d3~p (28)

After integration over momentum states we obtain the thermal density distri-
bution

n(~r, β) = n0 exp(−β U(~r)) (29)

Here, n0 the density at the centre of the trap, β = (kT )−1 as usual and U(x, y, z)
is the potential. For n0 to be the density at the centre of the trap, the potential
has to be zero at the centre. This equation is valid for an infinite trap depth.
However, if the average energy per atom in the trap is much smaller than the
trap depth, which is the case in our experiment, then this equation gives a
good approximation. This spatial distribution will be used to determine the
temperature.
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3 Experiment

This section is divided into two parts. First, in section (3.1) the experimental
setup is described. In section (3.2) the imaging technique to obtain the density
distribution is discussed.

3.1 Experimental setup

The experimental setup essentially consists of a rubidium source and two vac-
uum chambers that are separated by a differential pumping section. Atoms from
the 87Rb source are first trapped in a 2D-MOT. This will give a cigar shaped
cloud of atoms, with the length of the cigar in the direction of the 3D-MOT.
The atoms are then transported from the 2D-MOT vacuum chamber, through
the differential pumping section, into the 3D-MOT vacuum chamber. Here the
atoms are captured in the 3D-MOT. The atoms can then be loaded into the
optical dipole trap. A top view of the setup is shown in figure (4).

Figure 4: Top view of the setup, image from [7]
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3.1.1 Compartments

Rubidium sample
In our experiment we use an ampul of 1g natural rubidium, which consists of
72.17 % 87Rb and 27.83% 85Rb [4]. Only the 87Rb will be cooled. At first,
we heated the rubidium above its melting point of 39.3 ◦C [4] using an oven.
However, at the time of the experiment, the oven was turned off, as enough
rubidium vapour was in the 2D-MOT chamber.

2D-MOT
The atoms are first loaded in the 2D-MOT. The 2D-MOT has a quadrupole
magnetic field in the y, z plane. It is generated by four rectangular coils, each
with 81 windings. A current is runs through the coils, which are connected in
series. This creates a magnetic field, where the magnetic field is zero along the
x− axis. Due to the presence of this magnetic field, the atoms are trapped in
a cigar shaped cloud along the x-direction. For the 2D-MOT, we use one laser
for cooling and one for re-pumping the atoms.

Differential pumping section
From the 2D-MOT, the atoms are transported to the 3D-MOT through a dif-
ferential pumping section. This is basically a metal cylinder with a tiny hole
in it. Only atoms with a velocity that is aligned with the direction through
the hole can travel to the 3D-MOT chamber. This way, a pressure difference
between the two chambers is established. The pressure in both chambers is
maintained by ion-getter pumps. The atoms are transported from the 2D-MOT
to the 3D-MOT chamber by a push beam. This is a laser that is on resonance,
which causes the laser to exert a force on the atoms. The push beam is aligned
in such a way that it goes from the 2D-MOT chamber, through the differential
pumping section, into the 3D-MOT chamber. It ’pushes’ the atoms towards the
3D-MOT, so more atoms are loaded.

3D-MOT
The magnetic field of the 3D-MOT is also a quadrupole field and is created by
two coils in anti-Helmholtz configuration, each of them having 195 windings.
A current of 15.0 A flows through the coils in opposite direction. These coils
are also connected in series and are water cooled. The magnetic field created
by these coils are strong and influence the magnetic field of the 2D-MOT. To
counter this, a compensation coil is placed between the 2D-MOT and the 3D-
MOT. This compensation coil has a diameter of 20 cm and has 320 windings.
Because this compensation coil will influence the magnetic field of the 3D-MOT,
a second compensation coil needs to be placed at the other end. This coil has
320 windings and a diameter of 34 cm. Just as with the 2D-MOT, we need a
laser for cooling and one for re-pumping the atoms.
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Diode lasers
In the experiment we use five different laser beams locked to different transitions.
The transitions of Rubidium can be found in Appendix A. For both the 2D- and
3D-MOT we need a cooling and a re-pump laser. Furthermore, we need another
laser that will be split into the reference laser and the push beam. Below is a
description of each of the lasers.

• Cooling
This laser is used to cool the atoms. It is slightly red detuned with respect
to the F = 2 → F ′ = 3 transition. We detune the laser in order to cool
the atoms using the Doppler shift.

• Repumping
When an atom absorbs a photon from one of the cooling lasers, it goes
the exited state. Eventually the atom will fall back to the ground state
again. In the case of 87Rb, there are two possible ground states the atom
can fall into, namely F = 1 and F = 2. Since the cooling laser is locked
on the F = 1 → F ′ = 3 transition, atoms that have fallen to the F = 2
ground state will not be cooled anymore. Therefore, a re-pump beam is
used. This beam is locked at the F = 2→ F ′ = 3 transition. If the atom
now falls back to the F = 1 ground state it can participate in the cooling
scheme again.

• Reference and push
This laser is locked on atomic resonance. It is used to push the atoms
through the differential pumping section into the 3D-MOT chamber. It
is also used as a reference laser and in imaging techniques for the optical
dipole trap.

3.1.2 Optical dipole trap

The optical dipole trap we use in our experiment is a Gaussian Ytterbium fiber
laser with a maximum power of P = 20 W and wavelength λ = 1070nm. From
equations (17) and (20) one can deduce that for a red detuned trap, the potential
is negative and the force is directed towards regions of high intensity, i.e. the
centre of the trap. We use a large detuning to minimize heating of the atom
cloud due to scattering from the dipole trap. Since we use a large detuning,
we cannot take the rotating wave approximation. Therefore, the equation we
will use for the dipole potential is equation (20). What can also be seen from
equations (20) and (21), is that the potential scales with I/δ, while the scattering
rate scales as I/δ2. In order to keep as many atoms as possible in the trap, the
scattering rate needs to be minimized. This is realized by using a large detuning
and high intensities. The ODT beam is directed to the atom cloud in the 3D-
MOT. The atoms that were in the overlapping volume of the 3D-MOT and the
ODT are captured by the ODT. Atoms that are not captured by the ODT will
fall away due to gravity. The time the ODT is on after the 3D-MOT is turned
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off is the holding time thold. In the experiment, we will determine the relation
between the temperature and the holding time.

3.2 Imaging

The atom density can be determined by absorption imaging. This done by
taking images of the atom cloud using a CCD camera. By illuminating the
atoms with an on-resonance beam, atoms in the beam’s path will cast a shadow
on the camera. In the experiment, we use the probe beam as the on-resonance
beam. The light intensity on the camera is then a measure of the atom density
in the cloud. The transmission of light is given by the Lambert-Beer law, which
states

T =
I

I0
= e−ρO . (30)

Here, I is the light intensity on the camera and I0 the initial light intensity,
i.e. the intensity of the probe beam in our case. The term ρO is the optical
column number density, ρO = nlσ, with n the density of absorbing atoms, l the
path length through the atom cloud and σ the absorption cross section. We can
rewrite equation (30) as

ρO = − ln

(
I

I0

)
(31)

When measuring the light intensities, background light has to be taken into
account. Therefore three images are taken to calculate the optical density. The
first image is of the atom cloud with the probe beam on. This image will give
the light intensity after absorption I. A second image is taken without atoms,
while the probe beam is still on. This gives the initial intensity I0. The third
image is taken without atoms and without the probe beam. This will give
the background light intensity. Since light from the ODT can scatter into the
camera, the ODT is turned off right before the images are taken. To summarize
we have the following three images.

image name atoms probe beam
1 Iatoms yes yes
2 Ino atoms no yes
3 Ibackground no no

Subtracting the background light intensity from both measured intensities, the
equation for the optical density (31) can be rewritten as

ρO = −ln

(
Iatoms − Ibackground

Ino atoms − Ibackground

)
. (32)
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A typical measurement of the optical density is given in figure (5).

Figure 5: A measurement of the optical density. The yellow region shows a
change in light intensity, which indicates that atoms are present in this region.
The blue regions correspond to low densities.

Hence, by measuring the light intensities, we can calculate the optical density.
This optical density will be used to determine the spatial distribution of the
atoms.
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4 Results

This chapter is divided into three sections. In section (4.1) the column number
density is discussed. In section (4.2) an explanation of the data fitting is given
and in section (4.3) the results of the fitting are discussed.

4.1 Column number density

As discussed in section (3.2) we use absorption imaging to determine the optical
density. Recall that ρO = nlσ, with n the density of absorbing atoms, l the path
length through the atom cloud and σ the absorption cross section. The product
nl gives the 2D column number density n2D = nl, which is the two-dimensional
number density of the atoms. From equation (32) n2D we obtain

n2D = − 1

σ
ln

(
Iatoms − Ibackground

Ino atoms − Ibackground

)
(33)

Here, σ is the absorption cross section, which is a measure of the probability of
an absorption process. It is given by [7]

σ =
σ0

1 + s0
(34)

with σ0 = 3λ2/(2π)[4] and s0 = 0.05[7] in our experiment. The images on the
camera are magnified. Taking the magnification M into account we obtain

n2D = −M
σ

ln

(
Iatoms − Ibackground

Ino atoms − Ibackground

)
(35)

The magnification during our measurements was M = 0.85. By applying equa-
tion (35) to an image, we can calculate the 2D column number density. In
figure (5), the background light intensity is not zero everywhere, as a result of
imperfections in the data. To counter this we place a mask around the atom
cloud. In the calculations of n2D, we only consider light intensities that are
within the mask. This way, the influence of imperfections is minimized. For
more accurate data, up to five measurements are taken for each holding time.
These five measurements are then averaged. A typical result of an averaged
measurement with the mask is shown in figure (6).

In the data fitting we want to work with a linear number density n1D. To
obtain n1D, let the z-axis be the long axis of the atom cloud and the x-axis be
perpendicular to the z-axis in the plane of the image. Then we obtain n1D by
summing the column number densities over the x-axis between the mask at a
specific z. This is shown in figure (7).
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Figure 6: Multiple measurements of the optical density are taken and then
averaged. The yellow stripe corresponds to the atom cloud. Mask borders
around the atom cloud are shown.

Figure 7: By summing the column number density n2D over the x-axis between
the mask borders, we obtain the linear number density n1D. This is indicated
as the sum over the blue line
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For the linear number density we obtain

n1D(z) =
M

σ

∑
i

ρO(xi, z) (36)

Hence, by measuring the light intensities we have established a way to calculate
the linear number density n1D. We will fit our model of the density distribution
to this linear number density. This is discussed in section (4.2).

4.2 Data fitting

The atoms in the ODT have a density distribution that depends on the potential
of the trap and the temperature of the atoms. As discussed in section (2.3), our
model for the density distribution is given by equation (29)

n(~r, β) = n0 exp(−β U(~r)) (37)

For n0 to be the density at the centre of the trap, the potential has to be zero
here. To realize this, we shift the potential up by the trap depth U0, which is
the absolute value of the potential at the centre. The potential of the trap is
given by equation (20).

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r) (38)

and the intensity distribution of the beam by equation (12).

I(r, ω) = I0 exp

(
−2x2

ω2
x(z)

+
−2y2

ω2
y(z)

)
(39)

At the centre, the term in the exponential becomes zero. For the trap depth we
then obtain

U0 =

∣∣∣∣−3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
2P

πωx,0ωy,0

∣∣∣∣ (40)

Note that the value of the potential before shifting is between −U0 ≤ Udip ≤ 0.
By adding the trap depth to the potential, we obtain

U ′dip = Udip + U0. (41)

This gives 0 ≤ U ′dip ≤ U0, which makes the potential compatible with equation
(37). Plugging in U ′dip in equation (37) gives
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n(~r, β) = n0 exp(−β U ′dip(~r)) (42)

with n0 the desired density at the centre of the trap. This equation gives the
three-dimensional number density distribution. To fit this model to our data,
we need to rewrite it to a linear number density distribution. This can be done
by integrating the density along the x− and y−direction.

n1D(z, β) =

∞∫
−∞

∞∫
∞

n(~r, β)dxdy (43)

This integral can only be evaluated if the integrand goes to zero for large dis-
tances. Taking a look at equation (42) we can see that this is not the case. At
large distances from the trap’s centre, the density becomes

lim
r→∞

n(~r, β) = n0 exp(−βU0) (44)

Therefore we subtract this value from equation (29). By subtracting n0 exp(β U0)
we obtain

n′(~r, β) = n0 [ exp(−β Udip(~r))− exp(−βU0)] (45)

We now obtain the linear number density distribution by integrating n′(~r, β),
which we will call n1D,fit.

n1D,fit(z, β) =

∞∫
−∞

∞∫
∞

n′(~r, β)dxdy (46)

To determine the temperature, we will fit n1D,fit to our data. This is discussed
in section (4.3).
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4.3 Temperature

Before we fit the model to our data, let us first discuss the dynamics of the atoms
in the ODT. The collisional dynamics in the atom cloud are typically described
by the change in atom number N and total energy E, as was originally suggested
by Hess [11]. Here, we assume that the ratio of the trap depth εr to kT is large.
The atom number and energy evolution in the trap can be modelled by [8]

Ṅ = Ṅev + Ṅθ + Ṅ1B + Ṅ3B (47)

Ė = Ėev + Ėθ + Ė1B + Ė3B (48)

In these equations, terms with the subscript ”ev” account for atom number and
energy loss due to evaporation, subscript ”θ” for changes in the shape of the
trap and ”1B” and ”3B” for one- and three-body collisions. In our experiment,
we do not change the shape of the trap. Therefore atom and energy loss due to
the changing of the trap, Ṅθ and Ėθ are neglected. The different terms in these
equations are now discussed.

Evaporation

In the trap, elastic collisions produce atoms with an energy higher than εr =
ηkT . The production rate of these high energy atoms is equal to the number of
atoms with energy higher than ηkT divided by their collision time. As stated
in section (2.3), the distribution in the trap can be described by a truncated
Boltzmann distribution that is truncated at the trap depth. If η is large, then
the rate at which atoms evaporate out of the trap is identical to the rate at which
high energy atoms are produced in the untruncated distribution. The velocity of
atoms with energy ε = ηkT is

√
2ηkT/m =

√
πηv̄/2, with v̄ the average thermal

velocity. For large trap depths, the fraction of atoms with energy larger than
the trap depth approaches 2e−η

√
η/π. The rate of evaporating atoms is [10]

Ṅ = −Nn0σv̄ηe
−η =

−N
τev

(49)

with τev the time constant for evaporation. Thus, the loss in atom number is
proportional to current atom number. The average energy removed by each
evaporated atom is (η + κ)kT where κ ' (η − 5)/(η − 4) [8].
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One- and three-body collisions

For the one- and three-body collisions we have [8]

˙N1B + Ṅ3B = −Γ1B

∫
n(~r)d3~r − L3B

∫
n(~r)3d3~r (50)

= −Γ1BN − Γ3BN (51)

Ė1B + Ė3B = −Γ1B

∫
e(~r)d3~r − L3B

∫
n(~r)2e(~r)d3~r (52)

= −Γ1BE − Γ3B
2

3
E (53)

Here, Γ3B = L3Bn
2
0/3
√

3, L3B = 4.3(±1.8)x10−29cm6s−1for87Rb [8]. The Γ1B

is mainly due to background collisions and therefore depends on the conditions
of the vacuum chamber. With these results, we can rewrite equations (47) and
(48) to

Ė = −NΓev(η + κ)kT − Γ1BE − Γ3B
2

3
E (54)

Ṅ = −(Γev + Γ1B + Γ3B)N (55)

We see that both the rate of the energy loss and the loss of number of atoms
depends on the current number of atoms N . Therefore, we expect the temper-
ature to drop faster with higher atom numbers. Also, since the atom number
decreases due to the evaporation, the rate at which the temperature drops is
expected to decrease.

By fitting the model to our data we obtain the values of β for different holding
times thold. Once we have found β the temperature is obtained by T = (kβ)−1.
In figures (8) and (9) the temperature is plotted against the holding time. In
figure (8) we started with N ' 275 000 and in (9) N ' 125 000 atoms. Based
on the results of equations (54) and (55), we would expect that the temperature
will drop faster in figure (8) due to the higher atom number. Since the atom
number is higher for short holding times, the rate at which the temperature
drops is higher for short holding times. This can be seen in the figures, as the
rate at which the temperature decreases is highest for holding times between
100 and 500 ms. After that, the decrease in temperature stabilizes.
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Figure 8: Temperature T of the atom cloud plotted against the holding time
thold. Here we started out with N ' 275000 atoms.

Figure 9: Temperature T of the atom cloud plotted against the holding time
thold. Here we started out with N ' 125000 atoms.
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5 Conclusion

We have successfully established a way to determine the temperature in the
optical dipole trap. The temperature evolution of two different runs was mea-
sured, which differed in atom number. In one of the runs, we started out with
a higher atom number than the other one. In both of the runs, we discovered
a decrease in temperature. One possible explanation for the temperature drop
is the evaporation of atoms, due to collisional processes in the optical dipole
trap. When atoms with a higher energy than the average energy escape, the
atom cloud rethermalizes to a lower temperature. This causes the temperature
to decrease. As is concluded in the results, the rate at which the temperature
decreases depends on the number of atoms in the trap. A higher number of
atoms causes the temperature to drop at a faster rate. We concluded that the
temperature decrease was more evident in the run with a higher atom number.
We concluded that in both runs, the rate at which the temperature decreases is
higher for shorter holding times. For larger holding times, when the number of
atoms was lower, the drop rate of the temperature stabilized.

Since the change in temperature is largest for shorter holding times, it would
be interesting to focus more on these points. However, in our experiment it
was not possible to do measurements at shorter holding times. At these shorter
holding times, the presence of the MOT still influenced the measurements. One
could imagine an experiment where it is still possible to perform temperature
measurements at these shorter holding times. It is possible to load the trap
with a deep trap depth and let the system thermalize. When the trap depth is
suddenly lowered, atoms will evaporate out of the trap. In this situation, it is
then possible to perform temperature measurements at short holding times.
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7 A Rubidium hyperfine structure

Figure 10: Rb transition hyperfine structure, taken from [4]
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