
Ward Goes 2016

 Read Between the Lines {of Code}78

Read Between

the Lines {of Code}

Perspectives on Free and Open Source Software

Development in Perspective.

Ward Goes

Sutent Numer: 5623618

Submitted to the Department of Cultural Anthropology

of Utrecht University as part of the requirements for

the degree of Master of Science

Supervisor: Walter Faaij

August 1, 2016

 Read Between the Lines {of Code}78

 1

Index

 Preface 03

 Abbreviations 05

 Introduction 07

1 Beyond Code 17

1.1 Contributions 18

1.2 Different Actors, Different Practices 20

1.3 A Climate for Development 24

2 A Matter of Perspective 27

2.1 A range of Perspectives 27

2.2 Beyond the Classical Standoff 31

2.3 Terminological Confusion 34

3 Cradled in Code 39

3.1 The Making of a Coder 39

3.2 Enculturation 46

3.3 Ways of Learning and Methods of Working 48

 Read Between the Lines {of Code}2

4 Rethinking a Discourse 51

4.1 In the Midst of Diversity 51

4.2 Property and Neoliberalism 53

4.3 Inevitability and Reductionism 56

4.4 The Full Scope of FLOSS 58

 Conclusion {In the Tangle of Reality} 61

 Discussion 65

 Bibliography 69

 Appendices 74

  

 3

Preface

The previous seven months, in which I created the following thesis on free and open source

software development have been demanding and energising at the same time. Even though

this study taught me a great deal as a future anthropologist, I hope my efforts have resulted

in a thesis that proves informative to different academic and non-academic audiences. At

this point I would like to address two of them in particular.

 First and foremost I thank those individuals who have helped me during the process of

producing this master thesis. The individuals I have encountered in the field have given me

energy and have made me part of their inspiring and thriving communities. I want to thank

the individuals who agreed to speak to me, who were friendly and inviting. Specially I

thank the informants who have un-selfishly invested time and effort in my study and who

have taken me in tow and introduced me to their communities. Finally I want to thank

those fellow students who have been my close advisors, my parents for supporting me

intellectually, mentally and financially during my studies and a special thanks to Walter, for

his energetic, encouraging and sharp tutoring.

 Secondly, I want to briefly advocate seeing the university and the faculty of social

sciences as a site for studying technology. I want to specifically shout out to students in

cultural anthropology. I respect individual interests of students, thematically coherent

courses, and I understand the appeal of traveling the world and leaping into what has

traditionally been considered to be the culturally unknown. However, academics that study

technology are exploring and expanding the academic front-line, since technology is

increasingly becoming part of our and our informants’ sociocultural lives. I hope students

and academics thus recognise that technology is part of all anthropological research and

address it accordingly. This train is leaving and future anthropologist need to get on it.

Let us admit that and keep it in mind when going into the field.

Ward Goes, July 30, 2016

 Read Between the Lines {of Code}4

 5

Abbreviations

BSD — Berkley Software Distribution

CMS — Content Management System

Dev — Developer

Devops — Developer/Operator

Devroom — Space for programming together.

DOS — Disk Operating System

FLOSS — Free/Libre and Open Source Software

FOSDEM — Free and Open Source Software Developers

 European Meeting

FOSS — Free and Open Source Software

FSF — Free Software Foundation

FSFE — Free Software Foundation Europe

GPL — General Public License

ICT — Information Communication Technology

IT — Information Technology

Mac OS X — Macintosh Operating system

MIT — Massachusetts Institute of Technology

MS DOS — Microsoft Disk Operating System

BSD — Berkeley Software Distribution

OS — Operating System

OSI — Open Source Initiative

OSS — Open Source Software

PC — Personal Computer

 Read Between the Lines {of Code}6

 Introduction 7

Introduction

Computer technologies have become an integrated part of everyday human life. They are

now mediating a myriad of human interactions. Anthropological studies on computer

technologies are vital since these technologies are inherently social and cultural. First,

because individuals frequently engage in social interactions through such technologies.

Second, such human interactions imbue these technologies with meaning and remake them

into cultural artefacts. The following study engages in such social and cultural connotations

of computer technologies. It will deal with the social and cultural forces that flow from a

particular type of software development: Free and open source software (FLOSS) develop-1

ment. Based on fifteen weeks of ethnographic fieldwork, conducted at the beginning of

2016, I will demonstrate how the individuals who participate in this type of software

development reform existing methods of working, organising and thinking.

Coding is central to software development, since ‘code’ is the collection of instructions

that ensure the functioning of software. To the layman, code has the estranging quality of

alienating a certain reality, while simultaneously bringing the functioning of that reality

down to its mathematical, or consequential essence. The layman does not understand the

code in itself. Yet possibly he, or she has an understanding of how the code provides a

certain service. To the layman understanding code, or coding is not merely a matter of

understanding how to program a particular piece of technology. Rather, such understanding

demands insight into the thinking about how technology works and what it does.

 I was a layman when I started studying FLOSS for this master thesis in October 2015.

Now, ten months later, I still am. Even though I did take a few online courses on Javascript

in the past, doing fieldwork pointed out to me that I am practically incapable of producing

even one proper line of code. However, after having been amongst software developers

 In this thesis I refer to free and open source software as “FLOSS.” This is an abbreviation for Free/Libre and 1

Open Source Software. As included in most academic work, ‘Libre’ comprises the notion of freedom. ‘Free’ is
originally not intended to signify ‘free of charge,’ but rather signifies ‘freedom’ and ‘freedom of speech.’

 Read Between the Lines {of Code}8

for three and a half months during my time in the field, I understand code (and how to talk

about it) in a very particular way. As one informant put it: “Although you might know how

to work with a hammer and nails, that does not mean you understand how to build a cup-

board.” Reversely I learned to communicate with coders — and understand communication 2

between coders — about how they build and construct the cupboard, while I do not under-

stand how they use the hammer and nails to do so. Understanding interactions about

technology in such a particular way has allowed me to do an ethnographic study within the

realm of computer technologies.

 According to Tim Ingold the anthropological study of technology has long been rather

unproductive since anthropologist saw technology as a denominator of certain materiality,

instead of an action, or skill-based phenomena. Ingold argues that by having “placed

technology beyond the pale of culture and society, as a quasi-autonomous system of

productive forces, the way was open for anthropologist, at least those of a “sociocultural”

persuasion, to ignore it” (2001,19). Anthropologist have long reasoned that “[a]s climate

is for meteorologists and ecology for ecologists, so technology is for engineers” (Ingold

2001,19). Schiffer brings technology into the sociocultural realm as he states that “the

anthropology of technology encompasses a bundle of research questions about people-

artefact interactions manifest in activities at various scales” (Schiffer 2001,3). Indeed

technologies are both media and cultural objects at the same time (cf. Mazzarella 2004).

 Based on my time in the field with software developers, I add that academics should

also look at technology as potentially flowing from, towards and in between individuals.

Studying technological practices, rather than the technologies themselves makes them

inherently social and cultural. Hence, I think of the computer technologies and practices I

have come across during my time in the field as performative and sociocultural interaction.

This has been particularly informative since exchange, collaboration and deliberation take

a vital place within FLOSS development. Therefore academics discuss FLOSS not merely

in its technical capacity, but predominantly in its sociocultural and political capacity.

 In line with this discourse I will demonstrate that FLOSS development should not only

be understood as a performative sociocultural interaction, but also as a transformative

sociocultural force. Indeed FLOSS development shapes and re-shapes accepted ideas on

software development, and development in general. Still, I see as the core pursuit of the

 Informant with interview (nr. 28, May 20, 2016).2

 Introduction 9

following thesis to reopen the discourse and understanding of how FLOSS development

does so. I will demonstrate that the true transformative forces that flow from computer

technologies are revealed when they are being understood through the diversity of their

wider sociocultural context. First, allow me to briefly introduce FLOSS development. 3

Software source code is the set of computer instructions in a human-readable programming

language. The source code of proprietary software is foreclosed and its copyright is owned

and commercialised by one designated party. Conversely, the source code of FLOSS is

publicly accessible and operable. Anyone is allowed to use, modify and (re)distribute the

code and software, or parts of it. Moreover, FLOSS development in principle relies on

unsalaried programming, which assures a part of all FLOSS projects to remain non

commercialised. These principles of FLOSS development have proven to produce high

quality software, of which some of the most prominent examples are perhaps Android, 4

Wordpress, Gimp, or Mozilla Firefox. 5 6 7

 In the existing scholarly body of work, FLOSS is understood within a social, cultural

and even political context, since “beyond the FLOSS movement's technical discussions of

programming and code there lies a more fundamental concern with the re-negotiation of

the sociocultural and industrial relations of property, knowledge, and, ultimately, power”

(Bradley 2005, 12). Indeed FLOSS development is not merely discussed in its technical

capacity, “but as a philosophy, a politics, a critique, a sociocultural movement, a revolution,

or even a “way of life”” (Kelty 2004, 499). This is partly due to the fact that FLOSS

development has rich historical and ideological foundations. Free software was brought

into being in 1983, when Richard Stallman (founding father of free software) initiated

the GNU project. This project set out to “respect the users’ freedom” (Stallman 2015, 79). 8

According to Free Software Definition these freedoms are: 9

 For those unacquainted with FLOSS development, in need of a more elaborate introduction might refer to some 3

previously conducted studies (Coleman 2013; Gosh 2005; Kelty 2005; Sullivan 2011) on FLOSS development.
 Android is a Google initiated open source operating system based on Linux, available for mobile and tablet. 4

https://www.android.com Accessed: July 22, 2016.
 Wordpress is a free software content management system (CMS) for web development initiated in 2003. 5

https://nl.wordpress.org/about/ Accessed: July 9, 2016.
 GNU Image Manipulation Program. https://www.gimp.org/about/ Accessed: July 9, 2016.6

 Mozilla Firefox is an internet browser, developed in 1998. https://www.mozilla.org/nl/firefox/desktop/ 7

Accessed: July 22, 2016.
 GNU operating system. https://www.gnu.org/home.nl.html Accessed: June 25, 2016.8

 Free Software Definition. https://www.gnu.org/philosophy/free-sw.en.html Accessed: July 22, 2016.9

https://www.gimp.org/about/
https://www.gnu.org/philosophy/free-sw.en.html
https://nl.wordpress.org/about/
https://www.mozilla.org/nl/firefox/desktop/
https://www.android.com
https://www.gnu.org/home.nl.html

 Read Between the Lines {of Code}10

“The freedom to run the program as you wish, for any purpose (freedom 0). The

freedom to study how the program works, and change it so it does your computing

as you wish (freedom 1). Access to the source code is a precondition for this.

The freedom to redistribute copies so you can help your neighbour (freedom 2).

The freedom to distribute copies of your modified versions to others (freedom

3). By doing this you can give the whole community a chance to benefit from

your changes. Access to the source code is a precondition for this” (Stallman

2015, 3).

This free software ideology advocates equal access to software and source code and the

freedom to both privately and commercially use and (re)distribute software. It is here that

free software development is entangled with larger societal issues. It touches upon “a

broader culturally familiar vision of freedom, free speech rights, and liberalism that harks

back to constitutional ideals” (Coleman 2013, 2).

 Fifteen years later, in 1998, a separate movement was established. It brought into being

Open source software. In the Open Source Definition ten essential criteria were presented 10

by the Open Source Initiative (OSI). Among these criteria were (re)distribution, source 11

code, integrity, discrimination and licensing. Rather than emphasising the necessity of soft-

ware freedom, open source underscores the developmental qualities of bypassing copyrights

and patents. (Carver 2005, 448). Open source software is: “software that harnesses the

power of distributed peer review and transparency of process. The promise of open source

is higher quality, better reliability, greater flexibility, lower cost, and an end to predatory

vendor lock-in.” One of its founding fathers Eric Raymond reassures the practical nature 12

of open source software. According to him it will “triumph not because cooperation is

morally right, or software "hoarding" is morally wrong, but simply because the commercial

world cannot win an evolutionary arms race with open-source communities” (Raymond

1998).

 ‘FLOSS’ is thus a blanket term for different types of software. In academic discourse

both the moral ideology of free software and the practical ideology of open source software

 https://opensource.org/osd-annotated Accessed: July 22, 2016.10

 https://opensource.org Accessed: July 11, 2016.11

 https://opensource.org/about Accessed: June 15, 2016.12

https://opensource.org
https://opensource.org/about
https://opensource.org/osd-annotated

 Introduction 11

development are not understood as colliding only with proprietary software development.

They are also discussed as a critique on neoliberal society at large, since they undermine

the hegemonic understanding of property- and copyright. In FLOSS development ideas

and goods are not licensed to shield them from others, but conversely they are licensed to

ensure they remain accessible and useable to others. For instance Weber (2004) writes that

the success of open source reconfigures existing ideas on property, copying and business.

Sullivan (2011) claims that by reaching out to a audience beyond merely technologists

FLOSS has become a social advocacy movement. Accordingly FLOSS is generally positioned

as a disruptive force. This is visible in titles of academic studies on FLOSS such as Coding

Freedom (Coleman 2013), Decoding Liberation (Chopra, and Dexter 2007), Freedom

Imagined (Leach, Nafus, Krieger 2009) and Hacking Capitalism (Söderberg 2008).

 Ergo, FLOSS development is often academically interpreted as a critique on neo-

liberalism and its foundational principles of open market, competition and property. Yet,

“FLOSS is not a political platform. It is a modality of software production which finds its

production founded in communal forms of decision-making, intellectual labour, and product

distribution” (Bradley 2005, 5). In other words, due to its political agnosticism (Coleman

2004) FLOSS development does not aim to politically engage in a broader sociocultural,

or political discussion, but the practices of FLOSS development do have sociocultural and

political connotations. It has come to stand for a weightier and grander idea within the

discourse on technology, development and society. It is merely impossible to study FLOSS

without considering these sociocultural and political connotations of FLOSS practices.

However, I will show that FLOSS is an elusive phenomena and emphasising its relation to

property and neoliberalism produces a reductionistic understanding of it. Ho (2005) has

previously demonstrated in her study on Wall Street bankers that by placing such emphasis

academics yet once again confirm the universal accommodation and hegemony of neo-

liberalism and reason about FLOSS through a neoliberal rational. Notwithstanding the fact

that FLOSS indeed reconfigures ideas on property, depicting the practices with this single

colour would not do justice to the immense palette of beliefs, practices and practitioners.

 The academic discourse on FLOSS development should not be considered impartial in

shaping the perception of FLOSS practices. Therefore I will not merely analyse practices

of FLOSS development. Rather, I will try to analyse the interplay between the academic

 Read Between the Lines {of Code}12

discussion about such practices and the practices themselves, since they are complexly

intertwined and thus cannot be studied as separate. Hence, this is a thesis not just about a

particular type of software development. It is as much about the language with which, and

frame in which it is being discussed. Seeing that anthropology pre-eminently aims for

ethnographic understanding of practices and practitioners, I study why FLOSS developers

participate in FLOSS and analyse their reasons in relation to the overarching conceptual

discourse. I started my research with the following research question:

Research question — How are individual motivations of programmers to partici-

pate in free and open source software development related to the production and

attribution of critical liberal ideological values to free and open source software

development at large?

As my research has turned out and as will become clear in this thesis, the above research

question is part and parcel to and symptomatic of the issue I will address over the course

of four chapters. Perhaps the question is a legitimate and logical one when considering

the discourse. Still, FLOSS development is once more questioned based on its relation to

property and neoliberalism. This leaves only little space for insights that go beyond this

singular conception of the practice.

 Therefore, I will build up two main arguments over the course of the four chapters of

this thesis. First, to indicate the singular academic understanding of FLOSS I will demon-

strate how this question in itself confirms certain accepted ideas about the sociocultural and

political aspects of FLOSS development and how it produces a reductionistic and specific

answer tied to ideas on property and neoliberalism. Secondly I will postulate that a more

productive way to study FLOSS development is to recognise the diversity of practitioners,

practices, ideas and understandings within the field of FLOSS and understand how this

diversity illustrates the sociocultural transformative force that FLOSS potentially entails.

Seeing that I will not only study the practices of FLOSS development, but make the

discourse on these practices object of study at the same time, I will review the discourse as

if extracted from it, while at the same time being right in the middle of it. In other words,

I will be critical towards this discourse while simultaneously my perception is to certain

 Introduction 13

extent a product of it. I am not aloof from the existing ways of thinking about FLOSS

development and I position myself by definition in relation to them. Still, I do not intend

to present my conclusions as clear cut, all encompassing, or unbiased. There are many

people I have not spoken, many meetings I did not attend, many hackerspaces I did not

visit and so on. This thesis does not give an all-embracing overview of FLOSS, and I do

not claim it does. It is an attempt to reflect on the position of the practices relative to their

conceptual context without making these practices submissive to this context.

 This thesis needs to be read and understood within a larger framework of academic and

public discourse on FLOSS development, while to a certain extent staying clear from this

discourse. It is meant to be understandable to anyone with an academic, or non-academic

interest, coming from either a technological, or non-technological background. Hence, at

times you might find this text too elaborate, at others too concise. At times you might find

it to be too abstract, at others too actual. Furthermore, this text is not an introduction to

FLOSS, nor will it go into specific technical aspects of software development, programming,

or infrastructures through which this software is being developed. I hope to provide insight

into the practical and conceptual field around FLOSS’ technical practices.

As mentioned earlier, I draw the conclusions presented in this thesis from fifteen weeks

of ethnography conducted from the last weekend of January to the second week of May

2016. During this fieldwork I employed different methods. I observed and participated

at about thirty-five meetings ranging from lectures, coding sessions, sprints, hackathons,

or social events. Besides, I conducted a little over thirty semi-structured and structured

interviews. During this same time I also conducted online research on web platforms such

as GitHub and Meetup, communication applications such as IRC and Slack and on 13 14 15 16

organisations, foundations, blogs and projects.

 I set out to conduct the bulk of my research online. I planned to apply methods of

online ethnography, take in consideration the anthropological reflections on the internet and

mostly focus on interactions through online platforms, mailing lists and communication

applications (see Boellstorff 2012; Miller and Slater 2000; Wilson and Peterson 2002). Yet,

 https://github.com Accessed: June 28, 2016.13

 http://www.meetup.com Accessed: June 28, 2016.14

 Internet Relay Chat. http://www.mirc.com/index.html Accessed: June 28, 2016.15

 https://slack.com Accessed: June 28, 2016.16

http://www.meetup.com
http://www.mirc.com/index.html
https://github.com
https://slack.com

 Read Between the Lines {of Code}14

quickly it became apparent that my qualitative and ethnographic outset for this thesis would

not be met with merely online observations. Therefore I pivoted towards both off- and

online research, with emphasis on offline research. Still, I have been interacting with

informants through many different communication platforms, which demanded time in

terms of both understanding how to use the technologies myself and how these technologies

are being used by informants. At the one hand these interactions were of organisational

nature: networking, scheduling meetings, or interviews. At the other hand I used audiovisual

communication platforms to conduct interviews with informants located elsewhere outside

of the Netherlands.

 For the most part my collected data resulted from offline ethnography. The majority of

the interviews and all the meetings were offline, scheduled mostly in Amsterdam, or Utrecht

(the Netherlands). The setup of these meetings varied from informal coding sessions, to

curated evenings with scheduled talks, workshops and networking, to classes on particular

pieces of software, or particular coding skills. This variety of events allowed me to under-

stand different ways in which FLOSS development manifests itself. During these meetings I

participated if possible, but mainly hung around, observed and started informal conversa-

tions (Sluka and Robben 2007). I took field notes, which I processed and integrated into

the collection of my data afterwards through cross-referencing and data triangulation.

 In this thesis I will use information and stories from informants whom agreed to talk to

me after I had clarified my intentions. I worked with informed consent (DeWalt and DeWalt

2002) to make sure informants were aware of the reach and ramifications of the information

they furnished me with. Still, in the field this proved difficult in more complex, or volatile

conversation settings. In such cases I only use observations and insights for more general

conclusions. In the anecdotes and results presented in this thesis were provided to me in

confidentiality and I therefore systematically anonymise informants and use pseudonyms.

All the informants are then treated alike and it does not inadvertently frame the insights

they provided me with in terms of academic value and sensitivity.

 It is impossible to fully anonymise informants, since they might remain recognisable to

peers, colleagues, or others in their professional fields. Therefore decisions are taken in

consultation with informants. Only rarely I encountered such sensitive cases, since

most informants had no issue with being mentioned by name, or recognised otherwise.

Several informants emphasised that such information should indeed be out in the open,

 Introduction 15

since “it is a matter of public record.” Others agreed to speak to me if the results of my 17

study are published under creative commons. Moreover, I predominantly communicated 18

in English due to the international diversity of my informants. Still, I spoke Dutch among

dutchman. In this thesis Dutch citations are translated and presented in English.

Throughout the four chapters of this thesis I will demonstrate a certain discontinuity

between the practices of FLOSS and the way in which FLOSS is being discussed. I will try to

move beyond the discourse of liberal, or anti-neoliberal connotations and illustrate the

transformative force that flows from FLOSS development in a different way. Individually,

each of these four chapters highlights this discontinuity between practices and discourse

in a particular way. Over the course of these four chapters I do not necessarily build a

consequential argument. Rather, observations from the four chapters will be pieced together

in the conclusion so that they together demonstrate how certain values are being produced

and attributed to practices of FLOSS through language and discourse.

 The first two chapters introduce the field of FLOSS as I have encountered it. They give

a general impression of what FLOSS is, who is involved in it and what it signifies to the

different practices and practitioners. More importantly still, these chapters highlight a

particular observation regarding the relation between the practices of and discourse on

FLOSS development. The first chapter (Beyond Code) shows that studying FLOSS

development is not merely a case of code, coding and coders. The field around the actual

practices of FLOSS development allows for many different stakeholders and includes many

contributions from actors who do not posses programming capabilities. The second chapter

(A Matter of Perspective) highlights the hybridity and dynamics of FLOSS beliefs and

practices. Here, I problematise the implied homogeneity of beliefs by demonstrating the

internal diversity between the founding fathers of free software, open source software and

actors in the field. In doing so the chapter highlights that in the discourse these two are

seemingly being blended together in both the practical and conceptual understanding. Using

‘FLOSS’ as an umbrella term for a range of practices is significantly different from using

‘FLOSS’ to denominate a range of beliefs. The last of the two is posited to be problematic.

 Casual Conversation with programmer, January 31, 2016.17

 Creative Commons License. https://creativecommons.org/licenses/?lang=en Accessed July 10, 2016.18

https://creativecommons.org/licenses/?lang=en

 Read Between the Lines {of Code}16

 The third and fourth chapter both more directly address the main research question and

the discourse on FLOSS development as conceptually tied to property and neoliberalism.

The third chapter (Cradled in Code) demonstrates how the actual practices of FLOSS

programmers come to being and why coders participate in FLOSS development. The process

of becoming a FLOSS programmer makes for the internalisation of particular ways of

learning and working. I then propose to understand the internalisation of FLOSS learning

and working through the concept of enculturation. The fourth chapter (Rethinking a

Discourse) shows that the foundational liberal ideology as promoted by the founders of

free software since 1983 has led academics to built a firm sociocultural and political

frame for understanding free and open source software. Yet, the conceptualisations in the

academic discourse that conform to such a frame leave only limited space for other

scholarly interpretations. This results in a singular and reductionistic understanding of

FLOSS. Through the example of one of the most fundamental of FLOSS principles, the

publicly accessible source code, I will illustrate how practitioners in the field interpret

FLOSS principles differently.

 The conclusion brings together these four discontinuities by both critically examining

the main question and demonstrating how the configuration of the discourse incites the

asking of such questions. Instead, I will propose to study FLOSS through all its abundant

practices, practitioners and ideas. This will produce an understanding of FLOSS in practice.

Besides I will show that this diversity specifically indicates the transformative force of

FLOSS, as it branches out onto many different aspects of individual and communal lives

and produces certain new ways of learning, working and even thinking.

Chapter 1: {Beyond Code} 17

Chapter 1

{Beyond Code}

FLOSS is coded by programmers. Programming thus embodies the very core of FLOSS

development and the values anchored in it. Anthropologist have studied how “[h]ackers 19

bring these values into being through an astounding range of social and technical practices”

(Coleman 2013, 3). Especially the Debian Linux distribution has frequently been object of

such academic research. Licensed under the GNU Public License (GPL), the Debian project

is known to adhere free software values. It “boasts an intricate hybrid political system, a 20

developer IRC, a formalized membership entry procedure (the NMP), and a set of charters

that includes the Constitution, Social Contract, and Debian Free Software Guidelines 21 22 23

(DFSG)” (Coleman 2013, 127). Studies on “hacker ethics” (Coleman 2005) in Debian, the

distribution of work among Debian maintainers (Gregorio Robles 2005), or the organisation

of Debian developers (Mateos-Garcia and Steinmueller 2008) allow for specific conclusions

about Debian and its programmers. This makes Debian a rich and informative object of study.

 Debian is merely one example of how FLOSS development is predominantly studied

through programmers that partake in it. In line, contributions to FLOSS are seen as code

based. At the start of my fieldwork I too set out to study FLOSS development through the

practices of its programmers and the production of code. However, the following chapter

will demonstrate that in order to understand how FLOSS practices are framed in a more

general sense, academics should look beyond code and understand the act of FLOSS

programming within a field of varying actors, activities and contributions.

 In contrast to its meaning in public debate, ‘hacking’ does not refer to illegal computer practices. Rather, in 19

academic discourse a ‘hack’ is considered to be a solution to a technical issue, or bug. In academia programmers
are called programmer, hacker, geek, coder and developer. I will refer to them as either programmers, or coders.

 Debian free software statement. https://www.debian.org/intro/free Accessed: July 11, 2016.20

 Debian constitution. https://www.debian.org/devel/constitution Accessed: July 11, 2016.21

 Debian social contract. https://www.debian.org/social_contract Accessed: July 11, 2016.22

 Debian guidelines. https://www.debian.org/social_contract#guidelines Accessed: July 11, 2016.23

https://www.debian.org/devel/constitution
https://www.debian.org/social_contract
https://www.debian.org/intro/free
https://www.debian.org/social_contract#guidelines

 Read Between the Lines {of Code}18

1.1 Contributions

At one of the last days of June 2013, even before I started my studies in Cultural Anthro-

pology at the University of Utrecht, my father and me were on our way to Brussels. We

were moving my belongings since I was starting a three month internship at a Brussels

based graphic design studio. The car was packed. In Antwerp we made a quick stop to fill

the car up with gas, which led us away from the highway into the suburbs of the city. Even

though my father did not very often take along hitchhikers, at one particular crossroads we

picked up Ralph, a middle-aged Dutchman who was living in France. Ralph had visited

his family in the Netherlands and was hitchhiking through Belgium to return to his home-

town Lille. My father proposed to take him along until Brussels. I offered him my seat in

the front and squeezed myself into the backseat, in between my mattress, books and guitars.

I could only partially hear the conversation between the two men in the front seat.

 The conversation mostly covered Ralph’s passion: Drupal, a CMS (Content 24

Management System) with which clients could easily manage their own web content. At

that point I only had a vague and most likely skewed understanding of what Drupal is and

what it does. I understood Ralph was involved with web development for which he used

this particular piece of software. Although I had learnt about the web development platform

Wordpress by that time, I had never heard of Drupal before. I was fascinated with Ralph’s 25

story and his passionate, almost evangelical way of speaking about the Drupal community,

the collaborative development and his contributions to this development. Yet, the difficulty

I experienced to follow the conversation from the backseat and the excitement I felt due

to my move to Brussels, made my mind drift away from the conversation. Ralph and my

father kept their conversation going until we arrived in Brussels. There they exchanged

contact details as we dropped him off at the exit at Brussels North. We said our goodbyes.

 At the beginning of 2016 when starting up my fieldwork on FLOSS development, I

was looking to get in touch with programmers involved with FLOSS projects. After days

of loitering the Internet, lingering around in IRC chats and scanning e-mail lists for relevant

topics, I suddenly thought of Ralph and the conversation he and my father had on the way

 www.drupal.org/about Accessed: July 11, 2016.24

 www.wordpress.org Accessed: July 11, 2016.25

http://www.drupal.org/about
http://www.wordpress.org

Chapter 1: {Beyond Code} 19

to Brussels almost three years earlier. By then I had learnt about Drupal as open source

software and I realised Ralph could thus be of value to my research. After acquiring his

contact information from my father’s address book, I e-mailed him. After one hour he

answered with a lengthy mail, referring to blogs, websites and other writings he had been

working on. That evening we had the first of three elaborate conversations on Drupal, his

activities, writing, our shared passion for cycling and FLOSS.

Having heard only parts of the conversation Ralph had with my father on our way to

Brussels while relying on previous studies on FLOSS, I assumed that he was a software

programmer himself. It became clear in Ralph his first e-mail that he was not. For the

larger part of his life he had worked as a system administrator for a large American

cigarette company which had its European headquarters based in the Netherlands. After-

wards he worked as a teacher in IT education for several years. He thus had a fair amount

of experience and interest in computers and software. It was only when he was dismissed

from this position in 2006 his path crossed open source software:

“Well, at that point I became unemployed and I had to start searching for a job.

I thought to myself: I need to publish my CV online. Then I started searching a

content management system to do this…” 26

Ralph started exploring Drupal and he has been working with it ever since. Still, he was

not able to contribute to its development with written code, nor was he able to propose

patches for particular bugs he would come across. At large he was not able to understand

in what way the software he was using and which he helped developing actually worked.

 Yet, the fact that Ralph is not capable of coding did not restrain him in contributing

to the Drupal project and community. He has co-organised Drupal events in the past and

at the time of our interviews he was putting together a Drupal gathering in Lille. For this

so called Drupal ‘sprint’ Ralph was managing the accommodation, schedule, internet

connection and so on. In general these Drupal sprints were meant for Drupal fanatics and

coders to meet up, discuss issues they encountered, learn about Drupal and socialise. Hence,

while Ralph lacked particular coding skills which would have allowed him to work on

 Interview with event organiser, nr. 2, February 23, 2016.26

 Read Between the Lines {of Code}20

the software itself, Ralph had found his own specific way to contribute to the Drupal

community. More importantly still, in word he was unambiguous about his motivations to

participate in such an open source community:

“Well, within open source I choose for Drupal. You see, I use Skype very often, since

you cannot install open source software for everything. […] But I am interested in

open source mainly because of the idea. Eh.. maybe a better world. That idea.” 27

Seeing that Ralph was merely one of the many cases of non-programming contributors I

have encountered during my fieldwork, FLOSS development goes beyond merely code

and coders. FLOSS houses a wide variety of prominent and less prominent actors who all

contribute in different ways. In order to understand and productively discuss what FLOSS

development signifies beyond its technical capacity, academics should consider a range

of actors and actor groups among which FLOSS foundations, users groups, community

builders, event organisers, activists and even businesses and academics. Only when scholars

move away from a study of programmers onto the study of a field, they will capture how

social and cultural meaning is produced and attributed to FLOSS. Below I will highlight

stories of three of the actors I have met during my time in the field who are not coders

themselves, but still facilitate their respective FLOSS communities in distinctive ways. In

doing so, I further illustrate the fact that contributions are not necessarily about code.

1.2 Different Actors, Different Practices

As mentioned above, using IRC chats and mailing lists to get in contact with potential

informants did not seem to be very fruitful. I experienced the communication via these

media to be of a technical nature. Besides, these media were not used to plan offline

FLOSS gatherings. In search for informants I could get in touch with and for meetings I

could attend, I moved my focus to specific social media: GitHub and Meetup. 28 29

 Interview with event organiser, nr. 2, February 23, 2016.27

 www.Github.com Accessed: July 11, 2016.28

 www.meetup.com Accessed: July 11, 2016.29

http://www.Github.com
http://www.meetup.com

Chapter 1: {Beyond Code} 21

GitHub provides programmers with the ability to communally develop software since it

uses Git , a version control system, originally developed for the Linux kernel. FLOSS 30

programmers share their open source code on GitHub to be able to work on it together

with their peers. This incidentally allowed me to study certain projects and contributors

online and assess if they could be of value to my research.

 Still, Meetup proved to be more valuable. First of all since it is not built around code, or

FLOSS projects, but rather around communities. Meetup made visible and tangible that

FLOSS development is made up of different actors and different practices. Secondly, 31

the features that meetup.com provided me with led to a breakthrough in my research. It is

an online platform that enables its users to start specific groups and organise meetings

for group members (see appendix I). It is used for a wide variety of sportive, religious,

cultural, educational and political activities. Still, it is mostly used for tech, or business

based practices. The fact that Meetup requires all users to make a profile allowed me to

very easily identify relevant groups and individuals who are at the very heart of certain

communities (See appendix I). Ironically — and different from my expectations — these

individuals were in most cases not programmers.

 Jesper — In general FLOSS foundations such as the Free Software Foundation Europe 32

(FSFE), the Free Software Foundation (FSF) and the Open Source Initiative (OSI) 33

take a prominent role within the field and the discourse on FLOSS. Since its launch in

2001 the FSFE considers that “the central component of [its] work is keeping the legal,

political and social base of Free Software strong, secure and free of particular interests.” 34

At one FLOSS event I came across the FSFE booth. Even though I had heard of its

existence and I had conducted some online research on the organisation, I had not spent

much time on studying foundations within the field of FLOSS in general. I took a flyer

and started reading. After e-mailing back and forth with one very helpful intern I got in

touch with Jesper. A couple weeks later in mid April we had a conversation over the phone.

 Jesper is co-founder, executive director and former vice-president of the FSFE. He has a

background both in software engineering and mathematics. During our conversation we

 Git, version control system. https://git-scm.com Accessed: July 11, 2016.30

 Fieldwork Observation (February - May) — online research on meetup.com.31

 https://fsfe.org/index.en.html Accessed: July 11, 2016.32

 http://www.fsf.org Accessed: July 11, 2016.33

 https://fsfe.org/about/principles.en.html Accessed: July 11, 2016.34

https://fsfe.org/index.en.html
https://git-scm.com
http://www.fsf.org
https://fsfe.org/about/principles.en.html

 Read Between the Lines {of Code}22

talked about his activities as a programmer briefly, but quickly moved on to the FSFE and

Jesper’s role within this organisation. To Jesper his involvement in the Free Software

Foundation Europe serves as a mere retribution for all FLOSS had given him: “I wanted

to be part of this community. I wanted to actually make a change to the way that we work

with software, but a large part of it was also felt that wanting to give something back to

this community that had given me so much previously.” In this case Jesper thus chose his 35

role in the FSFE over his role as a programmer since he felt he could ‘give back’ through

this platform. Indeed, software foundations have become an active part of the FLOSS

landscape and actively shape the mission of and communication regarding FLOSS: “Our

overarching goal is to put people in control.” This shows that the forces that flow from 36

FLOSS are not necessarily coming from programming in itself. Moreover, it urges to think

about FLOSS not only in terms of software, but also in terms of communities.

 Peter — On a Wednesday night in March I attended a small Joomla gathering in a 37

office space in Bussum. About ten Joomla fanatics were there. Alike Drupal and Wordpress,

Joomla is a CMS and web development platform used by web-designers to develop complex

websites. After the scheduled presentation the others gave feedback to the speaker and

discussed the contents of the presentation. It was about ten o’clock when I prepared to

leave for the train station of Bussum to catch the train to Utrecht. I was about to say good-

bye to the organisers and thank the speaker for his presentation when somebody noticed:

“Aren’t you going to Utrecht? Peter is going to Utrecht by Car. I’m sure he could give you

a ride.” Thirty minutes later Peter dropped me off at Utrecht central station after a

comfortable journey and an interesting conversation.

 Two weeks after, when I visited his studio space in Utrecht he explained he had been

working as an independent web developer for about six years now: “I started with small

clients, a lot of freelancers, small businesses. I still have those clients, but now I also work

for larger companies. SME’s [Small and medium-sized enterprises] and such.” Peter 38

exclusively worked with Joomla, was active within the Joomla community in the Nether-

lands and wrote a book on search engine optimisation targeting Joomla development.

 Interview with free software advocate, nr. 19, April 15, 2016.35

 Interview with free software advocate, nr. 19, April 15, 2016.36

 Joomla is a free and open source content management system. The Joomla project was initiated in 2005, as 37

it was forked from another FLOSS CMS project: Mambo. https://www.joomla.org Accessed: July 10, 2016.
 Interview with web developer, nr. 15, April 11, 2016.38

https://www.joomla.org

Chapter 1: {Beyond Code} 23

 Even though he is not a software developer and he cannot contribute to the develop-

ment of Joomla in terms of code, Peter explained he still contributes to its development and

community. Once every few months he spends one day testing new features and versions

of Joomla at a so called “Pizza, Bugs and Fun” meeting. These meetings are designed to

test new Joomla features, or versions and are attended by twenty to thirty people. “Whether

you are a developer, translator, a programmer, integrator, designer, or anyone who

occasionally works with Joomla websites is fit to attend.” On such testing days Peter tries 39

to find bugs in new features and versions of the software, or talks with Joomla developers

about improving the software. “Most people who attend such a ‘Pizza, Bugs and Fun,’

well, you get a slice of pizza at the end of the day, but you’ll have to enjoy it in order to

do these things.” He emphasises that “they all help out voluntarily. […] Still, it needs to

yield some sort of fulfilment. […] It is OK to do unsalaried work” Since FLOSS projects 40

often do not have the resources to do controlled beta-testing they often rely on FLOSS

contributors willing to invest time in Joomla.

 Massimo — A day after I sent him a message on meetup.com, Massimo, a FLOSS

event organiser and entrepreneur, replied to my message: “I'll be glad to talk to you and

help you in your research, I always wanted to be a guinea pig :).” It showed the humorous 41

and helpful attitude of the Amsterdam based Italian. He organised several gatherings in

Amsterdam among which a monthly ‘devops' meet-up and a bimonthly openstack users 42 43

group. Furthermore he could boast on a great deal of experience since he has worked for

Redhat in the past, after which he started as an independent development and operator 44

consultant and occasional recruiter within the FLOSS sector in Amsterdam. I decided to

get in touch with Massimo because as an entrepreneur, organiser and expert he has a large

network in the tech and software industry of Amsterdam and beyond. A week after our first

online correspondence we sat down together in a noisy café in the centre of Amsterdam,

and had a two hour discussion on FLOSS.

 http://www.joomlacommunity.eu/nieuws/joomla-in-nederland/976-joomla-pizza-bugs-en-fun-39

nederland.html Accessed June 23 2016.
 Interview with web developer, nr. 15, April 11, 2016.40

 Chat conversation on meetup.com (February 24, 2016).41

 Community around the integration of developing, operating and testing of computer and server systems.42

 https://www.openstack.org/software/ Accessed June 23, 2016.43

 Redhat is a multinational, commercial open source software enterprise. Its core business comprises supporting 44

businesses that use open source software produced by Redhat. https://www.redhat.com/en Accessed June 23, 2016.

http://www.joomlacommunity.eu/nieuws/joomla-in-nederland/976-joomla-pizza-bugs-en-fun-nederland.html
https://www.redhat.com/en
http://meetup.com
https://www.openstack.org/software/

 Read Between the Lines {of Code}24

 Massimo told me about his professional activities, how he indeed had worked for

Redhat in the past and the meet-ups he organised. He introduced me to many different

organisations, websites, companies, events, pieces of software, projects, programmers

and other individuals that might be relevant to my research. Quickly it became clear to

me that Massimo had built a large network within the software sector in Amsterdam over

the course of his career. This allowed him to relatively easily get things done. Whether this

meant sponsoring for a particular event, arranging a space for an openstack meet-up, or

finding suitable programmers for the projects he was working on. Still, it is rather hard to

measurably determine what it was that Massimo contributes to the FLOSS communities

since he is a jack of all trades. Perhaps the most defining contribution Massimo did for

different Amsterdam FLOSS communities was facilitating these communities and

building the essential networks that underpin them.

Whether it is by being a FLOSS advocate, community builder, tester, or one of the myriad

other FLOSS tasks that go beyond code, when considering the above mentioned individuals

and their practices it is fair to say that without producing actual code, they contribute to

the development of FLOSS nonetheless. Even if one would consider their contributions to

be irrelevant, or less relevant than actual coding, still these actors are to be recognised in

academic studies, since they play an active role within the FLOSS field and their practices,

voices and investments should be considered as such.

1.3 A Climate for Development

The above profiles together demonstrate three things. Firstly, they illustrate how the

programmers in these practices are accompanied and facilitated by many different non-

programmers and non-programming practices. It seems naive to regard such practitioners

and practices as irrelevant and leave them out of the equation, since they harness similar

values and foster FLOSS communities. In fact, due to many of those non-coding actors

FLOSS communities thrive. Secondly, since they are part of FLOSS communities they also

actively shape these communities and the way these communities are perceived. Whether

that is explicitly in the case of Jesper and FLOSS foundations, or implicitly in the case of

Chapter 1: {Beyond Code} 25

Peter and the example of software testing. Thirdly, they demonstrate that certain ideas and

values of FLOSS development branch out beyond FLOSS programmers.

 Academics studying FLOSS communities should look beyond technological practices

and understand how a range of different roles facilitate a climate, or vague orderliness that

accommodates the development of FLOSS. For instance Bollier (2008) has written that:

“Perhaps the most enduring contribution of the free software, free culture, and

other “open movements” has been their invention of a new species of citizenship.

Despite significant differences of philosophy and implementation, these commons

share some basic values about access, use, and reuse of creative works and information.

No matter their special passions, the commoners tend to be improvisational, re-

sourceful, self-directed, collaborative, and committed to democratic ideals. They

celebrate a diversity of aesthetics, viewpoints, and cultures” (Bollier 2008, 364).

Bollier's use of citizenship is in this case problematic, since citizenship refers to societies.

However, the above does capture how certain thinking echoes among groups of FLOSS

practitioners, or ‘commoners.’ The similarity in their reasoning about the how and why of

development brings these commoners together in the “severe effort of many converging

wills” (Raymond 1999, 20). This is not to say that programmers do not claim a particular

position within such communities, nor it is to deny that their practices are at the very core

of FLOSS development. Rather, it is to say that when studying meaning making within

FLOSS development it is productive to consider FLOSS development not as a detached,

geeky and computer based set of practices, but as a set of practices firmly embedded in a

community and a wider social and performative canvas.

 Together these different actors thus build a climate for FLOSS development in which

many different individuals saddle themselves with tasks of different size, prominence and

impact. However different, these tasks ultimately all help further the development of soft-

ware. My informants have referred to this symbiosis as a system, community, or ecosystem:

“We compete on those things […] on which commercial competition is possible. For

instance on services, or hours, […] but on the other hand we cooperate continuously, since

we communally profit from it, as an ecosystem.” 45

 Interview with software developer nr. 25, May 6, 2016.45

 Read Between the Lines {of Code}26

In Conclusion — In this chapter I have demonstrated that studying FLOSS development as

a community based process, climate, or ecosystem advocates for a new understanding of

the making and re-making of meaning and values of FLOSS development. It then imbues a

wide range of activities with the potential of meaning making. It as such considers many

different actors and activities in the studies on FLOSS. Moreover, thinking about FLOSS

development as a system, or ecosystem also creates an understanding of how customs of

learning, working and thinking are reproduced and circulate through FLOSS communities.

Whereas the discourse is grafted on the act of programming FLOSS, the range of practices

affiliated to FLOSS development (see appendix II) that go beyond coding underscore the

communities through and the climate in which FLOSS is being developed. Further on in

this thesis it will become apparent that recognising FLOSS diversity and the reproduction

of a climate for FLOSS development is essential.  

 Chapter 2: {A Matter of Perspective} 27

Chapter 2: {A Matter

of Perspective}

The different FLOSS practitioners I described in chapter one were all to a certain extent

familiar with and self-conscious about how their practices are being conceptualised.

However this is partially because the ideological discourse on FLOSS development takes a

prominent place within FLOSS communities, this awareness still signifies the inter-

twinement of discourse and practices. Still, informants all had their own particular way

of interpreting and explaining the relation between FLOSS ideology and their own FLOSS

practices. There is not merely one way to see the relation between the two.

 In this chapter I will demonstrate that incorporating these different perspectives in

studies on FLOSS development shows that the notion of what FLOSS signifies is not at

all homogeneous. In fact I will explain that meaning is produced and ascribed to FLOSS

in many distinctive ways and it should thus be academically understood through such

distinct perceptions. I will address the implied homogeneity that comes with the term

‘free and open source software development’ and demonstrate that its use is potentially

out of place when employing it interchangeably to denominate both a range of practices

and a range of ideas. The use of this term is symptomatic for the way in which FLOSS is

currently being discussed in academic discourse.

2.1 A Different Truth

FOSDEM (Free and Open Source Software Developers' European Meeting) is one of the 46

largest annual, non-commercial FLOSS conferences of Europe. At the end of January it

takes place in Brussels. About 5000 FLOSS fanatics attended the 2016 edition with over

 FODEM homepage. https://fosdem.org/2016/ Accessed: July 22, 2016.46

https://fosdem.org/2016/

 Read Between the Lines {of Code}28

600 presentations. Judging from the names of most of the scheduled presentations — such

as Real-time Charging for distributed community platforms using CGRateS, or FPGA

Manager & devicetree overlays, or Creating rich WebRTC applications with Kurento — I

was going to grasp only very little of most of the presentations that were going to be given

over the course of this last weekend of January, which marked the start of my fieldwork.

On Saturday, the first day of the conference, my international train arrived at Brussels

Central Station a little after ten in the morning. The talk Free as in freedom. The

importance of FOSS in the surveillance era by Giovanni Battista Gallus, scheduled at

eleven, seemed to be comprehensible since it covered a side of FLOSS development I had

been reading about for over three months. While I realised I still needed at least one hour

to get to the Solbosch Campus, I understood I would not be able to make the only

presentation that seemed understandable to me.

 In the train I was trying to decipher yet another of the countless, cryptic presentation

names in the Saturday schedule. I quite suddenly felt intimidated with the assignment I had

given myself: studying practices I was utterly unfamiliar with. How was I going to interact

with and draw conclusions about software developers without the technological knowhow?

The nervousness I felt was perhaps understandable, yet in many ways ill-found. Over the

course of my research, programmers have proven to be extremely helpful and patient with

me. They would try to provide me with insight into their practices without in any way being

patronising, or incomplete. Often programmers had practice, since they very regularly would

try to explain their parents, families and friends what this computer thing they do actually

is. Furthermore, most programmers take pride in what they code, build, fix, contribute, or

develop and are very happy to talk about it. As it turned out, nor the lack of programming

knowhow, nor the lack of experience with actual software development were problematic.

Programmers understood I did not understand.

 In fact, it has shown to be advantageous at times, since my incompetence allowed

me to ask ‘stupid’ questions and converse about ‘simple stuff,’ or led coders to pull out

their laptop and demonstrate. Still, the task of the informant to make his, or her ideas and

practices comprehendible to the researcher is not to be considered natural by definition. It

should not be ignored that the informants I interacted with during my time in the field

were actively part of the translations made between informant and ethnographer. In his

1977 classic Fieldwork in Marocco, Paul Rabinow states that:

https://fosdem.org/2016/schedule/speaker/giovanni_battista_gallus/

 Chapter 2: {A Matter of Perspective} 29

“[T]he informant is asked in innumerable ways to think about particular aspects

of his own world, and he must then learn to construct ways to present this newly

focused-on object to someone who is outside his culture, who shares few of his

assumptions, and whose purpose and procedures are opaque” (1977, 152).

Sometimes this process merely meant that my informants had to explain something three

times over again for me to understand. At other times it meant they actively had to rethink

and reformulate their translations. Their creative solutions and particular strategies with

regards to translations did not just solely proved to be helpful in studying their practices.

It also accommodated me with insight as to how these informants themselves reasoned

about their practices, how they framed them and how they ascribed meaning to them.

The FLOSS enthusiasts I met at FOSDEM were different in terms of background, field,

programming language, interest, skills, nationality and ideas. The crowded cafeteria of

the Solbosch Campus was filled with greetings of long forgotten friends, meetings of new

acquaintances, heated discussions and above all: abundant laughter. Every now and then

when the murmuring voices died down I would hear the buzzing and much subtler sound

of numerous fingers hitting the keys of numerous laptops. As I enjoyed my sandwich in

the corner I took in the colourful sights and sounds of the wide variety of individuals who

harmoniously joined in on a three day “performance of a lifeworld” (Coleman 2010, 64). To

FLOSS fanatics FOSDEM serves as the perfect occasion to flock together and socialise,

code, learn, drink and game. 47

 During the first day I for instance attended a presentation on FLOSS licensing by an

American copyright lawyer at the U building, I listened in on a friendly FLOSS developer

elaborating about his FLOSS desktop project and I enjoyed a (to me overly technical)

discussion on code compilers in one of the devrooms in the H building. The individuals 48 49

I met, spoke to and observed were as much similar as they were different. They were as

much together as they were apart. Indeed these FLOSS fanatics share certain ways of

 Ethnographic Observations (January 30, 2016).47

 Computer program that translates written code in a programming language into machine code which is 48

readable to, and operable by computers.
 ‘Devroom’ is an abbreviation for developer room. On mostly conferences separate rooms accommodate 49

specific developers with spaces to discuss, explore and showcase software.

 Read Between the Lines {of Code}30

thinking (as I will demonstrate in chapter three) and they did in common spirit celebrate

their unity. Still, the FOSDEM attendees seemed segregated. However FLOSS conferences

are often seen to be a chance for birds of a feather to flock together, the unity during these

celebrations should not be seen as fundamental. Even though they might be likeminded,

they do not necessarily share a same notion of FLOSS. 50

 During the second day I engaged in many different casual conversations and conducted

my first interview. I spoke to South Africa based programmer Roger who had come all the

way to Brussels for the conference. Our conversation covered his business involvement

with open source software, his history and track record within software development and

the particular pieces of software he was working on at the time. At one point during the

interview he explained he always experienced testing particular pieces of software on

computers running on Windows to be a hassle, since “the licensing gets complicated. You

can’t just get a cloud machine […] Ok assuming we are willing to pay for it, it’s not a 51

problem, but then how do you give access to multiple developers?” According to him

testing on Linux is faster and simpler. While he was elaborating on this particular testing

process he called himself a ‘pragmatist.’ Even though Roger seemed informed about, and

to a certain extent concerned with the ideological side of FLOSS, he preferred FLOSS over

proprietary software because:

“[It] just has some features that are really really useful. Like if you get.. if you

get software that’s MIT licensed , or BSD, since like GPL is slightly more 52 53 54

sophisticated, you don’t need legal advice to install the software. You can use it

at your company. You can distribute stuff. You don’t care, […] It doesn't matter

it’s for free. It matters that it enables you to do certain things without overhead.

Like, for me legal is always overhead.” 55

Since this was the very first interview I conducted, my world was slightly turned up-side

down. Suddenly Roger introduced me to a entirely different truth. In academic literature I

 Ethnographic Observations (January 30, 2016).50

 Virtual representation of the hardware of a computer.51

 Massachusetts Institute of Technology License https://opensource.org/licenses/MIT Accessed: July 10, 2016.52

 Berkeley Software Distribution License53

 GNU General Public License http://www.gnu.org/licenses/gpl-3.0.html Accessed: July 10, 2016.54

 Interview with programmer, nr. 1, January 31, 2016.55

http://www.gnu.org/licenses/gpl-3.0.html
https://opensource.org/licenses/MIT

 Chapter 2: {A Matter of Perspective} 31

had studied meaning making in FLOSS development through property and neoliberalism.

Roger showed me that FLOSS is understood differently by its practitioners. Of course I

was already well aware that FLOSS development in practice is not per se tied to the free

software ideology. Besides, as befits an anthropologist, I had expected to encounter a wide

array of individuals, stories and truths. Still, this particular anecdote is one of the many

examples that indicated there are very divers, even contradictory ways of both thinking

about FLOSS practices and discourse. Both practically (chapter one) and conceptually

FLOSS development is not merely one thing and it is questionable whether it should, or

should not be addressed as such. Understanding FLOSS is not a comprehension of what

FLOSS truly is. Rather it entails an understanding of how FLOSS is understood.

2.2 Beyond the Classical Standoff

Exactly three months after that last weekend of January in Brussels, my Italian programmer

friend Andrea and me were chatting over a beer on a Saturday afternoon at the waterside

in the centre of Amsterdam. At one point Andrea pulled out his phone and proudly showed

me a photograph of him and a slightly smaller, long haired and bearded man. On the photo

Andrea seemed overjoyed. His face marked by a wide smile, his left hand placed on the

other man’s shoulder and his right held besides his face making a ‘peace’ sign. “Dont’ you

see who it is?” Andrea asked me. “It’s Stallman!” Indeed, as Andrea called out his name

I recognised Richard Matthew Stallman, software activist, free software advocate and

founding father of the Free Software Movement , Free Software Foundation and GNU 56

project. Andrea had attended FOSDEM the year before in 2015 and in one of the hallways

of the Solbosch Campus he had spotted Stallman. He had walked up to his idol and boldly

asked for a photo. By the time Andrea and me were chatting in Amsterdam I already knew

Stallman had come to be a hero to many of my informants. It was almost May and my 57

fieldwork was coming to an end.

 Two months earlier in the second week of March, I saw Stallman entering the stage of

a conference room in Utrecht. A long round of applause escorted him. He set the tone of

 http://www.gnu.org/philosophy/free-software-intro.html Accessed: July 10, 2016.56

 Interview with Programmer (nr. 9, March 10, 2016). Programmer (nr. 23, April 30, 2016).57

http://www.gnu.org/philosophy/free-software-intro.html

 Read Between the Lines {of Code}32

his presentation by first asking for a three round hurray for NSA-whistleblower Edward

Snowden: “Hurray, hurray. One more: Hurray.” The self-willed software protagonist had

come to Utrecht to give a presentation on software privacy. Even though I did not know

about the full extent of his cult-status at that point I read his essays on software freedom

and understood the magnitude of his part in putting free software on the map. The presen-

tation covered what I had already read in his writings and was therefore not startling. Still,

during my fieldwork I became increasingly emphatic towards FLOSS development and the

actors who participate in it. I too felt excited that Stallman was in fact standing there only

a few steps away. Even though his initial ideology is perhaps less visible now, his status

as figurehead of FLOSS has not been diminished.

 In writing Stallman had described free software before as “software that respects users’

freedom and community. This means that the users have the freedom to run, copy, distri-

bute, study, change and improve the software.” (Stallman 2002, 3) The movement that

Stallman started in 1983 emphasises free software to be a call for freedom through and

within technology. According to Stallman software freedom is important since “the nonfree

program controls the users, and the developer controls the program; this makes the program

an instrument of unjust power” (Stallman 2002, 3). Still, the free software ideology is

merely one way in which to understand the significance of FLOSS.

 As highlighted in the introduction, the largest conceptual difference within FLOSS is

that between free software and open source software. The Open Source Initiative (OSI)

profiles itself differently by emphasising the collaborative and functional aspects of FLOSS,

allowing for a market oriented mindset. The principles of open source are described by

American programmer and writer Eric Raymond, who is often seen as Stallman’s adversary.

In his renowned The Cathedral and the Bazaar Raymond refers to open source software

development as “a great babbling bazaar of differing agendas and approaches” (1999, 2). By

using the analogy of the structures of both the cathedral and bazaar he compares the models

of open source software development and proprietary software development. These two 58

models are visualised in figure 1. His treatment is especially informative when he compares

the way in which both models deal with software bugs:

 Raymond initially used his analysis of cathedral and bazaar-like structures to address models of free software 58

development. Only in the later released Halloween documents — a set of confidential Microsoft documents
regarding the ‘threat’ of open source software that were leaked to Raymond — he addresses the difference
between open source and proprietary software development with this same analogy.

 Chapter 2: {A Matter of Perspective} 33

“In the cathedral-builder view of programming, bugs and development problems

are tricky, insidious, deep phenomena. It takes months of scrutiny by a dedicated

few to develop confidence that you've winkled them all out. Thus the long release

intervals, and the inevitable disappointment when long-awaited releases are not

perfect. In the bazaar view, on the other hand, you assume that bugs are generally

shallow phenomena - or, at least, that they turn shallow pretty quick when exposed

to a thousand eager co-developers pounding on every single new release. Accor-

dingly you release often in order to get more corrections, and as a beneficial side

effect you have less to lose if an occasional botch gets out the door” (Raymond

1999, 8).

As a reaction to Raymond’s work, Stallman emphasised during his thirty minute presentation

in Utrecht and in his essay Why Open Source Misses the Point of Free Software that: “[t]he

philosophy of open source, with its purely practical values, impedes understanding of the

deeper ideas of free software; it brings many people into our community, but does not teach

them to defend it” (2002, 80).

 Open source software does not cross swords with certain values of market and

consumption, while “[t]he example set by free software (and a host of similar craftlike

practices), however, should make us at least skeptical of the extent to which an ethic of

consumption has colonized expressive individualism” (Coleman 2013, 14). Reasoned

Figure 1. Models for software development by Raymond. The cathedral (left) and the bazaar (right).
Image: Ward Goes.

 Read Between the Lines {of Code}34

through their respective foundations “[t]he FSF is more committed to provoking changes

in software development by way of an appeal to the social use of information technology.

The OSI is more concerned with implementing the technical practices that emerge from

this activity within everyday computer use” (Bradley 2005, 2). In the light of the above,

‘FLOSS’ turns out to be an (in certain cases misused) umbrella term to academics. Bradley

points out that it is “both an ideological movement and a practical methodology” (2005, 2).

 ‘FLOSS’ as a conceptual definition has come to stand for itself, whereas in fact it bundles

together different, or even conflicting ideas. Also, the discussion on FLOSS is often outlined

as the above classical conflict: Stallman versus Raymond, the FSF versus the OSI, or free

software versus open source software. The definitions and notions that practitioners such

as South Africa based FLOSS programmer Roger compose themselves are just as much

part of a broader understanding of what FLOSS development signifies. Rodger for instance

explained his particular view on such discussions:

“I don’t see so much of a distinction. I think it’s more of a semantic distinction.

You’re calling it the same thing but depending on the contexts. Like, free software

is a more politically motivated term than open source.” 59

Definitions thus move in between, beyond and even separately from the conceptual stand-

off of Stallman and Raymond. I consider that a deeper and broader understanding of FLOSS

is tied to the ethnographic understanding of practices and practitioners. In this broader

notion, the term ‘FLOSS development’ does perhaps suffice in describing a collection of

practices. Yet, I want to emphasise that it fails in academically describing a certain range

of differing rationales. Regardless of whether they are rationales of FLOSS thinkers and

writers, or practitioners.

2.3 Terminological Confusion

As underlined by Stallman and free software advocates, the essence of free software is not

to be understood within the context of charge, money and payment, but rather as tied to

 Interview with programmer, nr. 1, January 31, 2016.59

 Chapter 2: {A Matter of Perspective} 35

freedom, free speech and privacy. An often used meme to describe this meaning of free is:

‘free’ as in ‘free speech,’ not as in ‘free beer.’ Despite the fact that free software advocates 60

emphasise ‘freedom’ rather than ‘free of charge’ does not mean free software is supposed

to be understood as free of charge according to these advocates:

“[W]e [the GNU project] encourage people who redistribute free software to

charge as much as they wish or can. If a license does not permit users to make

copies and sell them, it is a nonfree license. […] Since free software is not a matter

of price, a low price doesn't make the software free, or even closer to free. So if

you are redistributing copies of free software, you might as well charge a sub-

stantial fee and make some money. Redistributing free software is a good and

legitimate activity; if you do it, you might as well make a profit from it.” 61

However the GNU project emphasises free software not to be ‘a matter of price’ — and

even with the idea of what free software is and what it advocates firmly imprinted — the

situation could seem somewhat contradictory to some, since notions on money and FLOSS

differ. For instance “[b]usinesses and investors rarely understood the intended meaning and

wrongly assumed that all free software had to be provided at no cost” (Carver 2005, 449).

As an addition ‘libre' therefore emphasises free software intentions.

 For this study to grasp how free software (and FLOSS in general) is perceived by other

actors active within, or outside FLOSS, it is informative to consider different ways of looking

at the relation between free software and money. Not because either one of these percep-

tions is problematic, or just, but rather to recognise the diversity within the thinking about

FLOSS. Here it also needs to be noted that whereas free software advocates indeed try to

stand their ground on freedom, open source software advocates talk about open source

methodologies increasingly as a business model. Any quick search on open source soft-

ware in a random online search engine produces outcomes such as Greed is good, Nine

Open Source Secrets to Making Money , How to make money from open source 62

 https://www.gnu.org/philosophy/free-sw.en.html Accessed: July 17, 2016.60

 https://www.gnu.org/philosophy/selling.en.html Accessed: July 31st. 2016. 61

 http://www.infoworld.com/article/2612393/open-source-software/greed-is-good--9-open-source-secrets-to-62

making-money.html Accessed: June 23, 2016.

https://www.gnu.org/philosophy/selling.en.html
http://www.infoworld.com/article/2612393/open-source-software/greed-is-good--9-open-source-secrets-to-making-money.html
https://www.gnu.org/philosophy/free-sw.en.html

 Read Between the Lines {of Code}36

software and How do Open Source Companies, Programmers Make Money . This does 63 64

not mean that open source is thus a business model, but rather that it is being engaged

with as such. Besides, the above indicates that the discussion on FLOSS is susceptible to

communication and rhetorics. However the understanding of ‘free’ in free software as it

was positioned by the founders of the free software ideology is the original, there are

many different truths about what ‘free’ signifies with regards to software. The same

goes for what ‘open’ means, or even what ‘FLOSS’ means.

 At the end of February an Utrecht based FLOSS developer opened up to me about his

childhood: “We were dirt poor, so I could not afford a lot of expensive tooling, and open

source was free, and it gave me a way to get the tooling I needed.” He now runs his own 65

software development venture in a studio space in the centre of Utrecht where he receives

me. Furthermore, he is now a successful speaker at FLOSS conferences and organises a

monthly FLOSS event in Utrecht. FLOSS has allowed him to elevate himself onto a

financially stable life. In a similar way an open source developer from Poland explains

that some do not afford proprietary software tooling, since:

“Getting all the equipment to become an IOS developer costs a couple thousand

dollars. You need a Mac machine, you need license for several things, and that for

students, that creates a barrier that’s too high […] So open source gives a very

low barrier.” 66

Over the course of the lives of these particular informants FLOSS becomes an instrument

of emancipation, since it allows the access to a vast body of instruments, information and

other resources for free. This time free as in beer, not freedom. FLOSS functions as an 67

opportunity to self-teach and work oneself out of a social, or financial situation into another.

Again, this does not mean that free software, open source software, or FLOSS should

therefore be per see understood as such. Instead it means that scholars should take into

consideration such notions.

 http://www.cio.com/article/2979583/open-source-tools/how-to-make-money-from-open-source-software.html 63

Accessed: June 23, 2016.
 http://www.thewindowsclub.com/open-source-companies-programmers-make-money Accessed: June 23, 2016.64

 Interview with programmer, nr. 3, February 26, 2016.65

 Interview with programmer, nr. 1, January 31, 2016.66

 Reference to “Free as in Freedom, not Beer.” https://www.gnu.org/philosophy/free-sw.html Accessed: July 10, 2016.67

http://www.thewindowsclub.com/open-source-companies-programmers-make-money
https://www.gnu.org/philosophy/free-sw.html
http://www.cio.com/article/2979583/open-source-tools/how-to-make-money-from-open-source-software.html

 Chapter 2: {A Matter of Perspective} 37

In Conclusion — A general conclusion can be made from the above examples regarding

FLOSS as related, or unrelated to financial affairs. Regardless of the fact that ideological

foundations of FLOSS do not take in views on such financial affairs, informants produce

and ascribe meaning to FLOSS based on their own practices and experiences. The examples

above indicate how informants themselves perceive the meaning and advantages of FLOSS,

(or free software, or open source software) in relation to their own existence and subsistence.

Despite the fact that practitioners might engage in somewhat the same technical practices,

they think about those practices differently, within the context of their own lifeworlds. Often

perspectives of practitioners move between, or even beyond the foundational discussion

about and between free software and open source software camps.

 Besides, unthinkingly using the term ‘FLOSS’ to indicate both practices and ideas leads

to generalisation — of for instance different ideas on the relation between money and free

software, or open source software, or FLOSS. This sheds an entirely different light on these

practices and potentially offers a new way of studying FLOSS practices. The title of this

section ‘Terminological Confusion’ therefore refers to the latter point made. ‘FLOSS’ as a

term serves in indicating a range of practices, but it amiss binds together differing ideas and

rationals at the same time. It is the collection of these different notions of FLOSS that

indicates the width, reach and impact of FLOSS development as it branches out onto many

individuals, groups, businesses, ideas and practices.

 Read Between the Lines {of Code}38

Chapter 3: {Cradled in Code} 39

Chapter 3:

{Cradled in Code}

The first and second chapter have highlighted that it is unproductive to consider FLOSS

development as merely one thing with which only programmers are concerned. ‘FLOSS

development’ is a placeholder for a wide array of practices and believes that complement,

cross and contradict each other. Having said all this, it might seem paradoxical to devote

the entire following chapter to the particular case of FLOSS programmers. Yet, the

following study of programmers teaches valuable insights as to why individuals in general

participate in FLOSS development. It serves as an illustration of the fact that thinking and

talking about participation solely in terms of ‘motivations’ does not do justice to the role

that FLOSS plays in lives of practitioners. In this chapter I will show that programmers

do not participate in FLOSS development either because they find it fundamentally just,

benefit from external, or future rewards, or feel competitive towards one another. I will

demonstrate that they participate because FLOSS methods have simply come to be natural

to them. All of these programmers are comfortable with FLOSS development since they

have internalised certain ways of learning and methods of working.

3.1 The Making of a Coder

“You need to destroy everything.” My informants explained that learning about computers 68

is often equivalent to breaking them. Breaking a computer demands it to be repaired and

repairing a computer gives insight into its functioning. Furthermore, in order to explore,

destroy and repair computers future programmers need a fair amount of independency

 Interview with programmer, nr. 23, April 30, 2016.68

 Read Between the Lines {of Code}40

and curiosity. It is one of the many signs that the way in which FLOSS programmers are

educated is differently from conventional educational systems. This section demonstrates

how this difference results in a different way of learning and working.

 It should be noted that the vast majority of FLOSS programmers is male, and over the

course of my research I have solely been in contact with male FLOSS programmers. Still,

programmers are both female and male and this should thus not be overlooked. Especially

since free software ideology and feminism are heavily intertwined and reinforced, and

feminist technology studies have taken a prominent role in FLOSS studies (see Bray 2007).

Besides, the below experiences and anecdotes of programmers need to be understood within

a particular timeframe. Computing in the 90’s was significantly different from what it is

in the year 2016. In many ways computing for the general public was still in its infancy.

Those individuals computing off the beaten paths had to be well rested with curiosity and

perseverance. This is especially noteworthy seeing that the Internet was still far away from

being web 2.0 and was not as user friendly as it is at this point. Information was only just

becoming to be an easily accessible online good.

 In this section I describe the childhood of a FLOSS programmer. However I present

this programmer as one person, it is a compilation of the lives and experiences of different

FLOSS programmers I interviewed. I incorporate bits and pieces from eight different

interviews to outline a rich and complete profile of FLOSS programmers in general. These

programmers I interviewed were all young men, in between 25 and 35 years old. They

came from a wide variety of countries among which the Netherlands, Poland, the US,

Italy, Romania, the UK and Colombia. Their particular stories all differ and their specific

cultural and social backgrounds make each story particular. Still, from their stories common

tendencies, interests and moments can be identified.

Constantin’s first encounter with a computer was in 1997 at the age ten. Constantin’s

interest in computers and technology developed over the course of the second half of the

90’s as he started to experiment with the computer of his parents and the operating system

that ran on it. Constantin was intrigued by the machine and he would constantly experiment

by installing new pieces of software he wanted to work with. He would explore the

operating system, or he would be surfing the web, scavenging for information. All of this

often accompanied by a fair share of playing computer games.

Chapter 3: {Cradled in Code} 41

“I got into some really old DOS games and navigating in DOS and stuff like that

and a new world opened to me. There were so many details I could go into and learn

that there wouldn’t be a very equivalent outside of this world. […] I never got into

programming in that period. It was mostly learning on how it works, breaking it,

reinstalling Windows, reinstalling DOS, […] getting basically into everything with

the exception of programming.” 69

As Constantin explored the possibilities of computing he slowly but steadily pushed the

boundaries and possibilities of his parents computer, which often led to heated discussions

and friction: “On a regular basis my father had to reboot the computer, because I had caused

Windows to loose it once again.” 70

 Even though his parents were often driven to madness because of their son’s whims,

they harnessed and encouraged his technological curiosity at the same time. Constantin

was using Dial-app, a service that offered phone based internet access during the 90. This

was rather expensive, since such phone services were relatively new. During the night it

would be cheaper, which caused him to spent entire nights behind his computer on the

Internet. His mother would find him still hooked to the computer screen when she would

get up early morning to get to work. She would scream out: “Come on, go to sleep, what

the hell are you doing at this hour… you’re still at the computer!?!” Since Constantin 71

had discovered the Internet to be a treasure trove of information and knowledge he had

trouble restraining himself: “Sometimes I would stay during the day and I would just lose

myself” which led to exceptionally high telephone bills “and my parents would get 72

pretty pissed off about it.” Constantin’s parents then decided to avoid more exorbitant 73

phone costs and had a permanent internet line installed which “was quite early. It was 2001

maybe, which for Romania was.. nobody had a permanent internet line.” 74

 Indeed the Internet served Constantin very well in his development. In the 90’s it

was an unprecedented, almost magical wellspring of knowledge, which he exploited fully:

 Interview with programmer, nr. 29, May 26, 2016.69

 Interview with programmer, nr. 20, April 19, 2016.70

 Interview with programmer, nr. 29, May 26, 2016.71

 Interview with programmer, nr. 29, May 26, 2016.72

 Interview with programmer, nr. 29, May 26, 2016.73

 Interview with programmer, nr. 29, May 26, 2016.74

 Read Between the Lines {of Code}42

“It was my food you know. It was my soul food. I got a lot of information like that. I think

it was one of the reasons why I was able to come here I would say. It opened a whole new

world to me. […] I was going and just learning about everything online.” For instance 75

blogposts, electronic magazines and software documentation made for “cool reading […]

[on] how to exploit a computer, or a bug in the software, how to access a remote computer,

how to run, or copy some files from one place to another, exploring the common line.” 76

His friends would make fun of him because he would not get out of the house. The Internet

“was the catalyst for everything basically” he had already become very skilled and 77

knowledgable in exploiting, managing and adjusting computers and software by the time

he went to high school in 2002.

Besides access to the Internet, there were two moments of upmost importance during his

youth. The first was a little over three years earlier in 1998, when Constantin got his first

(second hand) personal computer. He could still cite brand and model: IBM PC 330. The

fact that he now had his own machine liberated him from the discussions and disputes

with his parents. This also allowed him to take his computing and hacking a step further

and continuously emerge in the world of computing. Moreover, this first computer allowed

Constantin to build his identity around computation, since it functioned as the frame through

which he perceived the world. Therefore this machine did not just bring about an array of

possibilities, it also signified the establishment of a part of his identity as a programmer.

 The second significant moment in the process of Constantin becoming a FLOSS pro-

grammer was the moment he heard about Mandrake Linux for the first time in 2000. 78

Constantin still remembered his friend had told him: “Wow, look at this operating system

[Mandrake Linux], it’s amazing. It never reboots, or you never get blue screens and it’s so

advanced. I know some guys who are hacking around. They are doing stuff with it and I

think it’s really cool.” Linux embodied Constantin’s introduction to FLOSS software: 79

 Interview with programmer, nr. 29, May 26, 2016.75

 Interview with programmer, nr. 23, April 30, 2016.76

 Interview with programmer, nr. 29, May 26, 2016.77

 Linux, or GNU/Linux is perhaps the most famous of FLOSS projects. Linux is a free operating system. Core 78

element is the Linux Kernel that provides the communication between software and hardware by transposing
the user input and output in data processing. Its project was initiated in the early 1990’s and was initially built
to work with GNU software, but by now works with more and more non GNU software as well.

 Interview with programmer, nr. 29, May 26, 2016.79

Chapter 3: {Cradled in Code} 43

“[T]hrough Linux I basically learnt: “OK, it’s open source, you can actually read

the source about it. It was not that I was really going into the source, it was more

the initial appeal. It was something new. It was used by more hardcore technical

people and that attracted me.” 80

During the 90’s Linux and other free software were new and exiting and indeed associated

with more in-crowd hacking and advanced computing. As Constantin started to use 81

Mandrake Linux again innumerable possibilities opened up to him: “As soon as I heard

about Linux I searched for it in Altavista and figured out it was another operating system. 82

It’s a cheesy thing people say, [but] it is sort of a whole world of possibilities.” 83

 Constantin experienced the adaptability, transparency and accessibility of Linux, which

among others Windows, or Macintosh OS had never been able to offer him. Over the course

of the 90’s Linux had gained in popularity amongst likeminded computer fanatics, since the

accessibility and adaptability of Linux distributions allowed Constantin and his friends 84

to faster explore, learn and hack together:

“I went through them [distributions] […] frequently. One thing I really quickly

appreciated was like.. there are so many different people doing so many different

things, so you could just see visions on how to run an operating system, by

installing one on your computer.” 85

Before he eventually started using OpenBSD, he had installed and tested dozens(!) of Linux

distributions. Constantin became increasingly skilled in reading, modifying, or even writing

code. The most advantageous feature of Linux in comparison to proprietary operating

systems was perhaps the fact that he was suddenly able to both use a computer and at the

same time look inside of it: “A new world appeared to me, because I started to sort of create

 Interview with programmer, nr. 29, May 26, 2016.80

 Interview with programmer, nr. 29, May 26, 2016. Interview with programmer, nr. 23, April 30, 2016.81

 Popular internet search engine in the second half of the 1990’s.82

 Interview with programmer, nr. 7, March 7, 2016.83

 Software distributions are assemblages of a range of software parts, applications, libraries and so on. Linux, 84

or Linux/GNU distributions (or distro’s) are different collections of software that together make a Linux operating
system and possibly offer additions to it. Examples include Debian, Ubuntu, OpenSUSE and Mandrake.

 Interview with programmer, nr. 7, March 7, 2016.85

 Read Between the Lines {of Code}44

my own distribution, or modify everything, or understanding what I was doing. […] I really

liked Linux and started to understand how it was working.” 86

Besides the possibilities of the software itself, Linux led Constantin to become more and

more involved with several FLOSS communities. This enabled him to access vast bodies

of information and documentation on FLOSS software development. Furthermore, since he

was starting to build relationships with FLOSS colleagues both online and at a Linux users

groups in a nearby town, FLOSS became a part of his social life as well.

“So I was introduced in a new type of IT let’s say, where there was a community.

People you can ask, people that were willing to answer your question, that were

willing to help you understand something. This is why I was so exited to learn

Linux, because before learning Linux I was at my home, using my computer.” 87

In 2005 Constantin switched completely FLOSS, which marked his full devotion to it

and he became an increasingly integrated part of the FLOSS community, because of which

he increasingly understood “what it all stands for and why it’s important.” He became 88

aware of the moral and practical value of sharing and the availability of resources and

information, since he himself had benefitted so immensely from it. FLOSS communities

helped him to become an independent and predominantly self-thought computer expert.

 These FLOSS communities enabled him in learning about code and software, but he

still had to muster a great deal of curiosity and perseverance in his search for information,

code and as he was ploughing through documentation: “I was doing a lot of self study.

Actually the default route: Try something, get stuck, consult Stackoverflow, Google and 89

so on.” He invested a great amount of time and energy in learning about programming 90

and FLOSS. Still, he did benefit from it in diverse ways: “In certain subjects I was much

better than the vast majority of my colleagues, because I already had a lot of experience.

[…] I had a good foundation.”90

 Interview with programmer, nr. 23, April 30, 2016.86

 Interview with programmer, nr. 23, April 30, 2016.87

 Interview with programmer, nr. 29, May 26, 2016.88

 Stackoverflow is a forum-like website that allows programmers to present each other with coding issues and 89

help solve them online. http://stackoverflow.com Accessed: July 30, 2016.
 Interview with programmer, nr. 22, April 29, 2016.90

http://stackoverflow.com

Chapter 3: {Cradled in Code} 45

 Since Constantin was becoming an increasingly skilled programmer after the turn of

the century, he became a more and more powerful contributor. Besides solely utilising the

community as a resource, he was now able to contribute to this community at the same

time. Contributing code to a FLOSS project for the first time was a weighty and insecure

moment, because “code is really really personal. It’s intimate in a way, because you're

looking at the way somebody thinks about a problem,” Some of his programming friends 91

already contributed code at the age of sixteen, barely out of high school. Others only 92

started contributing code after twenty years of professional programming. Again others

were are still getting to the point of contributing. Constantin was a full grown and 93

advanced developer even before he went to the university in 2006. He had been involved

with OpenBSD already during his earlier teenage years. His commitment and dedication

to the project resulted in him becoming the youngest OpenBSD developer ever:

“My submissions were getting better and better, and with fewer feedback my

submissions were committed by another developer. At one point they were like: 94

“Heck, just commit it yourself. It is of such size, and such quality.. It is better you

do it yourself.” […] I was eighteen when I got my account” 95

Constantin had become a skilled FLOSS programmer. Now in 2016, being not only skilled,

but also experienced, Constantin does not just execute a range of practices which are to be

understood as FLOSS development. Through FLOSS he has firmly integrated a sense of

independency and transparency in his thinking, talking, learning, working, building,

communicating and documenting. Hence, learning to program through FLOSS has not just

thought him to perform FLOSS practices, it has shaped his vision to a large extent. In the

words of Constantin: “The true essence of the free software […] is something I apply on

an everyday basis, on everything. For me it is a lifestyle because of this.” 96

 Interview with programmer, nr. 29, May 26, 2016.91

 Interview with programmer, nr. 20, April 19, 2016.92

 Interview with programmer, nr. 24, May 5, 2016.93

 ‘Committing’ within the context of FLOSS is the process in which certain changes to the code, which are 94

still under scrutiny and are in development, are approved, made definitive and permanently implemented in
the software code by a programmer with the authority to do so.

 Interview with programmer, nr. 20, April 19, 2016.95

 Interview with programmer, nr. 23, April 30, 2016.96

 Read Between the Lines {of Code}46

3.2 Enculturation

Many studies on FLOSS development study the ‘motivations’ of FLOSS programmers.

(see Bezroukov 1999; Hars and Ou 2001; Hertel, Nieder and Hermann 2003; Lakhani and

Wolf 2005; Lerner and Tirole 2001, 2002; Oreg and Nov 2007; Zeitlyn 2003). Lerner and

Tirole (2001) for instance claim that programmers are motivated, since participation creates

career opportunities, or wakes peer recognition. Hars and Ou (2002, 29) acknowledge such

external and future rewards, but add to this what is referred to as “internal motivations”

such as altruism and community identification. Bezroukov (1999) in turn poses that

motivations of developers are triggered through the competition with proprietary software

projects. Although these incentives are valid and I set out to study the motivations of

FLOSS programmers as well, I have come across a more fundamental insight into why

programmers partake in FLOSS development.

 First and foremost, it must be recognised that solely speaking in terms of motivations

would not do justice as to why programmers participate. Becoming a FLOSS programmer is

in essence a process in which specific ways of thinking and working are internalised and are

experienced as natural thereafter. This process is stimulated and facilitated by the FLOSS

communities that programmers become acquainted with. I advocate an understanding of

programmers’ participation in FLOSS as linked to processes of enculturation. At large, 97

the concept of enculturation describes the process through which an individual learns about

the accepted cultural and societal norms and values of his, or her environment. In this

process a sense of boundaries and accepted behaviour is established Kottak (2006). Within

academic work on FLOSS development the concept of enculturation is predominantly

employed to describe the social and cultural process through which programmers become

familiar with and adopt the communication, hierarchy, social structures, or best practices

of particular FLOSS projects, or communities. Often this process is then referred to as a

‘rite of passage’ into a such a FLOSS project.

 Sociology and other disciplines within the social sciences use socialisation to denominate a similar concept. 97

Often the two concepts are used interchangeably. Due to my background in cultural anthropology and my
familiarity with the concept of culture as a dynamic set of practices, I will use enculturation from here on.

Chapter 3: {Cradled in Code} 47

 For instance Ducheneaut (2005) studies particular processes of enculturation in the

Python project. He states that “[i]t appeared clearly that being successfully integrated 98

into an open source project is not as trivial as some would think: joining a project (and

later evolving within it) requires one to go through a complex socialization process.”

(Ducheneaut 2005, 362). He uses the concept of enculturation to refer to the acquirement of

a set of practices and behaviours in relation to others, rather than the internalisation of a

general and intrinsic FLOSS value system. It describes the integration of programmers from

a particular and specific sociocultural context into another. In a similar fashion Bach and

Carroll (2009) describe enculturation as the process of understanding and bringing into

practice certain values and practices: “because sharing practices with developers involves

a process of enculturation: learning a rich set of moves and expectations, a variety of

signals that members may not even be able to readily articulate but which they regularly

and fluently enact” (2009, 239). Enculturation in this sense is informative when studying

processes of socialisation in particular FLOSS projects, but it does not explain a more

fundamental cognitive transformation of FLOSS programmers.

 Coleman (2013) shows that FLOSS programmers internalise certain ethical and moral

values. Indeed she thus refers to an internalisation of certain values. Still, in this case its

concept is once again placed within the realm of the liberalist and anti-neoliberal ideology,

since it is referred to as “ethical enculturation.” Furthermore, it is still grafted on interaction

between actors since ethical enculturation includes “learning the tacit and explicit know-

ledge (including technical, moral, or procedural knowledge) needed to effectively interact

with other project members as well as acquiring trust, learning appropriate social behaviour,

and establishing best practices” (Coleman 2013, 124). The concept of ethical enculturation

is a valid one and Coleman’s description of it does tip into a broader understanding of

FLOSS enculturation. Nonetheless, understanding the internalisation of FLOSS ways of

thinking and working in a broader sense demands it to be free from such ethical connota-

tions, since the FLOSS process of enculturation I will describe in the next section goes

far beyond processes of external socialisation.

 Python is an open source developed multi purpose programming language. The project was initiated in 1989 98

and was published under the OSI open source license. https://www.python.org Accessed June 28, 2016.

 Read Between the Lines {of Code}48

3.3 Ways of Learning and Methods of Working

In response to the above notions of the concept of enculturation within FLOSS development,

I propose a new use of the concept that traces back to the fundamental understanding of

how FLOSS programmers internalise specific ways of learning and methods of working.

As the case of Constantin has demonstrated, two particular aspects of FLOSS development

are internalised during this process of enculturation. I will refer to them here as FLOSS

learning and FLOSS working.

 FLOSS Learning — All the FLOSS programmers I interviewed stated that they had a

certain urge to explore: “In hindsight, it was what it was. It was just curiosity.” Curiosity 99

seems to be a precondition rather than an convenient attribute, seeing that computing in

the nineties was less straightforward: “It was weeks of slogging to get something working,

especially with a CRT monitor. Incorrect settings could just blow up your monitor.” 100

Besides being curious programmers thus need to be persevering and autonomous in solving

the issues they encounter. While steadily obtaining the skills to overcome technical issues

programmers also develop personal methods and structures through which they tackle 101

these issues. They then start to develop and internalise a sense of FLOSS development.

 The introduction to FLOSS communities both saturates and enhances programmers’

curiosity. The code, knowledge and documentation they get access to helps them to improve

their skills, while it also visualises to them how much still is to be learnt and understood.

The support systems that FLOSS communities offer could seemingly make FLOSS pro-

grammers become dependent on these communities. Yet, as they enter FLOSS communities

their transformation into a programmer actuates into becoming a FLOSS programmer and

contributor. This demands a higher level of independence in both learning and working.

Regardless of whether FLOSS programmers drop out of high-school, or attain an academic

degree, at an early age these young men already become self willed and skilled coders as

they have educated themselves through the software, tools, information and documentation

they have at their disposal. They learn how to learn, which constitutes FLOSS learning.

 Interview with programmer, nr. 7, March 7, 2016.99

 Interview with programmer, nr. 20, April 19, 2016.100

 Interview with programmer, nr. 20, April 19, 2016. On time management, workload, project structure, 101

acquiring membership and programmer responsibilities within the OpenBSD project.

Chapter 3: {Cradled in Code} 49

 FLOSS Working — The fact that FLOSS developers are fit to function in this system is

thanks to two reasons. Firstly, FLOSS working in fact relies on the autonomy required

for the particular ways of learning discussed above. FLOSS development is often not

facilitated with clear-cut structures, hierarchies and schedules and FLOSS programmers

thus need to be independent to a large extent. They have to be able to make decisions, plan

their own time and work. Simultaneously they need to be able to effectively communicate

with fellow programmers, document their work and review other programmers’ work. 102

FLOSS programmers do not have an organisational structure to fall back on. They need

to be able to manage their own operations.

 Secondly, as seen in the above mentioned anecdotes, it is during the process of

exploring FLOSS that they become aware of the community and support systems. As they

eagerly make use of them, they develop awareness about collaboration. By the time they

work as full grown FLOSS programmers, contributing back to the community feels natural.

On the one hand this comes from a feeling of owing the community. On the other hand it is

simply the particular form of working they have gotten accustomed to. The combination of

both moral and practical enculturation thus makes these programmers perceive transactions

of information, knowledge and resources as indirect and longitudinal events, instead of

 Interview with programmer, nr. 20, April 19, 2016. on time management, workload, project structure, 102

acquiring membership and programmer responsibilities within the OpenBSD project.

Figure 2. Direct and momentous transactions (left) and indirect and longitudinal transactions (right).
Image: Ward Goes.

 Read Between the Lines {of Code}50

direct and momentous events (See figure 2). They have come to experience that it is

beneficial to both themselves and a wider community to invest time and offer into FLOSS

project and they have acquired an internalised sense of responsibility towards the the

community. This perception grows from the feeling of “giving something back to the

community” [Emphasis Added]. 103

In Conclusion — Richard Stallman and the Free Software Movement set out in 1983 with

a clear motivation of bringing to society’s attention that software freedom is essential

within an increasingly technological society. It has nonetheless (among others) resulted in

the internalisation of certain ways of learning and methods of working that often do not

originate from such ethically motivated ideas. FLOSS communities should accordingly be

seen as ‘communities of practice’ (see Grasseni 2004; Lave & Wenger 2002; Wenger 1998) 104

that have a part in both external processes of social enculturation and the internal process

of cognitive enculturation. Becoming a FLOSS developer is thus a natural process. It not a

given choice, nor is it a matter of a series of events that evoke a decision. Being a FLOSS

programmer stands for something more fundamental than participating in a series of certain

practices on a regular basis. It entails these particular ways of learning and working and

ultimately being. Reasoning about FLOSS development in line with the above could then

produce studies that move beyond research on motivations of individuals towards under-

standing the internalisation and reproduction of such new and transformative methods.

 Informant during Coding Session, February 27, 2016. On contributions and contributing.103

 What I propose here as being ‘FLOSS learning’ and ‘FLOSS working’ is to be studied within the context of 104

separate social scientific debates on labour and skill. This thesis does not offer sufficient space to explore
FLOSS development as related to such concepts and debates at this point. I will briefly address this potential
line of inquiry in the section ‘Discussion’ on page 65.

Chapter 4: {Rethinking a Discourse} 51

Chapter 4: {Rethinking

a Discourse}

This chapter will place the ethnographic insights described above in academic perspective.

I will show how the existing discourse on FLOSS development is constructed (see appendix

III) and demonstrate it is to a certain extent singular and reductionistic when considering

the diverse understandings of FLOSS I encountered in the field. I will first outline the

academic discourse as it is now and show the conceptual implications of the enforcement

of it. Then I will show how this academic understanding could be reconfigured and how it

could offer space for more diverse interpretations of FLOSS. It is not the redefinition of

property, property rights and neoliberalism that together indicate the true transformative

force of FLOSS, but the collection of notions as found in the field.

4.1 In the Midst of Diversity

From the tram stop at Dam square in Amsterdam I rushed to a lofty canal house at the

Herengracht. I was late. This particular part of the Herengracht might not be as prestigious

as the so called ‘Gouden Bocht’ (Gloden Bend) two hundred meters further down the canal.

Still, the venue of that night’s event seemed extraordinary luxurious in comparison to other

meetings I attended in basements, empty school buildings and industrial zones. I wondered

whether I had mistakenly noted down the wrong address. Inside, when I climbed the marble

staircase of the late 17th century building and smelled the scent of melted cheese and

tomato sauce I was sure I was at the right place: Pizza! Five minutes later I was mingling

in a crowd of FLOSS fanatics in the stunning central ballroom. The slice of pizza in my

right hand was too cold, the beer in my left was too warm. Indeed I was late. It seemed like

a paradox: eating pizza with my hands and drinking beer from the bottle in such a grand

 Read Between the Lines {of Code}52

and ornamented hall in which prominent tradesman would use to dine, dance and receive

their guests during the Dutch ‘Golden’ Age.

 Regardless of the venue, or budget of such meet-ups, pizza and beer are a tradition at

most FLOSS events. They are typically served before the scheduled workshops, demos, or

presentations, since these events are invariably held in the evening on weekdays, after

office hours. The attendees thus come straight from work and instead of having dinner at

home they have a slice of pizza at the meet-up. ‘Pizza and beer’ has become a notion in

itself. It indicates an occasion for bringing into practice some of the most typical aspects

of FLOSS development: socialisation, discussion and exchange. During such “pizza and

beer” sessions I encounter the wide range of individuals and ideas that I described in earlier

chapters of this thesis. ‘Pizza and beer’ thus signifies the mixing and mingling of all these

different people, activities and opinions.

 ‘Pizza and beer’ is one of many traditions, customs and moments that made me see and

understand that the notions of FLOSS development in general are not at all homogeneous.

However they might not do and think the same, FLOSS practitioners are not put off by this

diversity and complexity. Still, their communal complexity makes that FLOSS development

becomes an increasingly elusive phenomena. This is perhaps one of the most valuable

insights I have taken from my time in the field. Many evenings of eating pizza and drinking

beer have made me see that an ever widening range of FLOSS practices, practitioners and

ideas is being misrepresented by the current academic discourse in which FLOSS is mainly

seen in the light of property rights and neoliberalism. 105

 In the scholarly discourse on FLOSS development the differently configured ideas

and morals on progress and development are highlighted by perpetually placing FLOSS

development in relation to property and copyright. Even though this reasoning is valid

and it does provide conceptual insight, it is constructed through a very specific frame.

Through this frame FLOSS is described as a highly technological form of liberalism and

it is to certain extent positioned as a critical and opposing force to current neoliberalism.

The first three chapters have emphasised the multiplicity of frames through which meaning

is produced and attributed to FLOSS. These frames as found in the field prove useful in

opening up the scholarly discourse on FLOSS and renegotiating academic understandings

of actors, practices and ideas.

 Fieldwork observations (April 4, 2016).105

Chapter 4: {Rethinking a Discourse} 53

4.2 Property and Neoliberalism

The principles of ownership, property rights and copyrights are seen as fundamental within

neoliberalism (Harvey 2005; Mansfield 2007). Moreover, these fundamental principles are

also essential in the conceptualisation FLOSS and its relation to neoliberalism. If coding is

an expressive activity, then some form of intellectual property rights and copyrights could

be seen as corporate censorship (Kelty 2004, 503). Then the sole right to a creative idea is

not merely a matter of property. It becomes a matter of free speech, since intellectual

property rights and copyrights then constrain the freedom to express oneself (Bollier 2010;

Coleman 2013; Kelty 2004). In other words, when a programmer is limited in expressing

a creative idea through code because this idea is already patented, or owned by somebody

else, this programmer is limited in his, or her expression and freedom of speech. In discussing

FLOSS as a force that opposes such limitations academics bring it into the realm of anti-

neoliberalism and activism (cf. Juris 2005, 2007; Juris and Razsa 2012; Nader 2011).

 The current neoliberal project first occurred several decades ago, as it flowed from what

has been referred to as Thatcherism and Reaganomics. Named after their respective intro-

ducers who had firm believe in such concepts, privatisation and deregulation since serve

as the organisational fundament of structuring societies and exchange:

“Whereas late capitalism is a descriptive or explanatory concept [emphasis added]

that indexes a set of changes in the organizational structures of production and in

relationships between states, industrial capital, and labor, neoliberalism is a pre-

scriptive concept [emphasis added] that articulates a normative vision of the proper

relationship between the state, capital, property, and individuals” (Ganti 2014, 92).

The development and the ubiquitous accommodation of this prescriptive concept have lead

to globalised privatisation and globally accepted ideas on property rights (Harvey 2005;

Hirsch 2010). Mansfield (2007) shows that privatisation and property are essential in neo-

liberal thinking: “The (neo)liberal rationale for property is based on this idea of complete

control: the ability to use an object however one pleases, including the ability to exclude

others from using it and the ability to transfer it to others (eg selling it)” (2007, 399).

 Read Between the Lines {of Code}54

 The privatisation of expression and intellectual ownership might show significant

resemblance to the enclosure of land in the period from the fifteenth to eighteenth century

(Söderberg 2002). Yet, intellectual property rights manifest themselves less unambiguous.

More specifically, in times of (both legal and illegal) digital copying and irrepressible

global information flows, intellectual property rights seem to be further institutionalised in

order to justify behavioural patterns of consumption. Reversely, these property rights and

conditions of scarcity are also under pressure due to digital information and copying. Beebe

explains that this causes an increasing implementation of such property and copyrights:

“The emergence of fiat property, which is protected only because it is scarce, and

scarce only because it is protected, predicts an emerging, though perhaps still distant,

social role for intellectual property law. For all of its emphasis on “Progress,”

intellectual property law is emerging as a means to preserve certain conditions of

scarcity and rarity that “Progress” is increasingly overcoming, and thereby to preserve

social structures based on those conditions.” (Beebe 2010, 888).

On the one hand technological innovation and progress are fundamentally overcoming the

idea of property and on the other hand intellectual property rights are sustained to preserve

certain conditions of scarcity regardless of technological innovation (Beebe 2010). Due to

its specific methods FLOSS development bypasses intellectual property rights and copy-

rights and the underlying discussion on their functioning. In this capacity FLOSS

development is seen as an act of reclaiming freedom through technology. “‘Free speech’

represents the freedom to use/modify/distribute the software as if the source code were

actual speech which is protected by law in the US by the First Amendment” (Coleman

2013, 164).

In order to give shape to the renunciation of copyright, copyleft was brought into being 106

in 1985 (see Kelty 2011) as the GNU project initiated the GPL (General Public Licence). 107

However this entailed a set of documented legal guidelines, the GPL was to reach beyond

technicality: “Stallman intended software developers to use this license on their software

 https://copyleft.org Accessed: July 10, 2016.106

 http://www.gnu.org/licenses/gpl-3.0.en.html Accessed: January 11, 2016.107

https://copyleft.org
http://www.gnu.org/licenses/gpl-3.0.en.html

Chapter 4: {Rethinking a Discourse} 55

and for software users to think about software freedoms. Contrary to the copyrights,

copyleft licenses harness accessibility, modification and distribution of software” (Carver

2005, 455). Ever since, different copyleft licenses have been initiated. Among the more

known are the above mentioned GPL, the Apache License and the MIT License. In 108

different ways copyleft licenses aim to regulate how particular pieces of FLOSS are to be

used, modified and distributed. The GPL for instance declares that modifications made to

GPL licensed software must per definition be publicly accessible and inspectable. In his

1985 GNU manifesto Stallman wrote:

“GNU is not in the public domain. Everyone will be permitted to modify and

redistribute GNU, but no distributor will be allowed to restrict its further

redistribution. That is to say, proprietary modifications will not be allowed. I

want to make sure that all versions of GNU remain free” (Stallman 1985, 99).

The MIT License does not have such demands. In turn it states that the developer of a

derivative piece of software is obligated to mention the developer of the original software,

or code. As such, MIT Licensed FLOSS software could potentially be used and modified

for the development of proprietary software. Whereas copyleft originated from the free

software movement in the early 80’s, now it has been applied to many different types of

information carriers such a for instance image, texts and so on. In spite of its establishment

many years ago, copyleft remains under pressure due to corporate law and resistance from

business sectors. 109

 Indeed the relationship between FLOSS and property- and copyrights (and thus neo-

liberalism) is a strong one. Still, emphasising its relation to property rights and copyrights

leads to a specific way of discussing FLOSS practices as a critique on neoliberalism.

FLOSS might conceptually and practically re-shape thinking about property, ownership

and development. The observations I have described in the previous three chapters have

shown that FLOSS is a versatile, broad and elusive object of study. It seems that a new and

broader academic perspective on FLOSS is necessary in order to understand its social and

cultural implications in their full extent.

 http://www.apache.org/licenses/LICENSE-2.0 Accessed: July 10, 2016.108

 ‘Winning the Copyleft Fight’ by Jonathan Corbet, 2016. https://lwn.net/Articles/675232/109

 Read Between the Lines {of Code}56

4.3 Inevitability and Reductionism

At large, this study on FLOSS development is yet another inquiry into emerging social and

cultural formations resulting from processes of globalisation; in particular technology as

a force of globalisation. It is an ever evolving process and a controversial and subversive

subject within anthropological studies. Zygmunt Bauman describes globalisation as

“‘anonymous forces,' operating in the vast —foggy and slushy, impassable and untamable

— 'no man’s land,'stretching beyond the reach of the design-and-action capacity of

anybody’s in particular" (Bauman 1998, 60). This positions globalisation as a vague and

out of reach process, beyond human power and understanding. Yet, globalisation is not just

a mere phenomena, or given. Karen Ho states: “We need to look critically at globalisation as

not simply a fact, but a hope, a strategy, and a triumphalist ideology” (2005, 86). In

response to scholars attempting to capture globalisation in descriptive and defining systems

(Appadurai 1990; Castells 2000; Eriksen 2007), others such as Tsing (2000) have advocated

that globalisation is a project-based process, as it results from globally oriented projects

pursued by individuals, groups and mankind as a whole.

 Seeing globalisation as a project-based process makes it tangible and within reach,

rather than just something out there. Besides, seeing globalisation as project-based connects

its processes to actual human practitioners and practices. This is not to say that globalisation

processes are influenced by individual actors, but rather that globalisation is a result of

the conjuncture of certain manmade projects of different scale such as FLOSS development,

or neoliberalism. Such projects of globalisation exercise certain cultural and social forces

upon each other and consistently produce globalisation because of that. This is also not to

say that projects of globalisation have apparent actors, univocal, or explicitly voiced goals,

or consensual ideologies. It merely means that certain acts, decisions and processes together

produce certain global forces. This view on globalisation does not aim for categorisation, or

demarcation, but allows the retracing of power relations within and between such projects

of globalisation and among the actors involved with such projects.

 So then why is this analysis of globalisation relevant to this thesis? Frankly, FLOSS in

itself is a highly technological project of globalisation, to which meaning is ascribed by

FLOSS participants and collectives of different size. Through their practices these

Chapter 4: {Rethinking a Discourse} 57

practitioners frame FLOSS development and direct certain ways of thinking about it. Also

the academic discourse on FLOSS leaves its mark on how it is understood. Since this

discourse on FLOSS binds together practices, globalisation and neoliberalism, it confirms

neoliberalism as a universal and hegemonic descriptive order. This while it tries to indicate

FLOSS development as a potentially disruptive project of globalisation. It positions neo-

liberalism once again as the inevitable measure with which all other things are calibrated.

 Anthropologists and other scholars have demonstrated that FLOSS is associated with

liberal ideas and it is often seen as a critique on neoliberalism: “[F]ree software hackers

not only reveal a long-standing tension within liberal legal rights but also offer a targeted

critique of the neoliberal drive to make property out of almost anything, including soft-

ware” (Coleman 2013, 4). Ho argues in her study on Wall Street bankers that hegemonic

discourse and ideas on global capitalism are often enforced through scholarly studies since

“[m]any cultural studies theorists and social scientists, by giving emphasis to capitalism's

omnipotence, have helped to imagine a world of capitalist totality” (Ho 2005, 68). Aca-

demics might aim for the contrary: “In the rush to confront and depict the powerful impact

of Western global hegemony, they have often neglected the power-laden political effects of

their own representations of this very hegemony” (Ho 2005, 68). It becomes apparent that

scholars are potentially complicit in creating powerful and leading projects of globalisation

such as neoliberalism. “[I]t certainly would not appear to make sense for academics

interested in counter hegemonic projects to paint the world using similar colours and

tools” (Ho 2005, 70).

 However the project of FLOSS is deemed to be an opposing, or critical force towards the

neoliberal project, specifying FLOSS within the realm of neoliberalism colonises it and re-

makes it to enforce the neoliberal project. It paints FLOSS using neoliberal colours and tools.

Discussing FLOSS in this particular way is paradoxical since it confirms the inevitability

of universal neoliberalism. Both as an ideological philosophy (socialism and communism

alike) and a project of globalisation, this inevitability makes us only very rarely realise that

neoliberalism is merely one possible resolution to the fact that “[i]n all human societies

there are conceptions of material and immaterial goods. The universal problem with which

all societies have to cope is to regulate their members' relationships with respect to such

goods” (Benda-Beckmann 1995, 310). This potentially creates a singular and reductionistic

understanding of phenomena such as FLOSS development.

 Read Between the Lines {of Code}58

4.4 The Full Scope of FLOSS

The fact that the source code of FLOSS is freely accessible to anyone is perhaps the most

fundamental of FLOSS values. Stallman’s (2002, 43) definition provides: “Free software

is a matter of the users’ freedom to run, copy, distribute, study, change, and improve the

software.” Stallman presents the four fundamental freedoms that I have already mentioned

in the introduction. In this case the second of these four freedoms is informative: “The

freedom to study how the program works, and adapt it to your needs. (Access to the source

code is a precondition for this)” (Stallman 2002, 43). This very fundamental and core idea

of claiming freedom through software source code allows for the academic discussion of

FLOSS in the realm of property rights and neoliberalism. In this section I will turn to this

principle and demonstrate it is this discussion of FLOSS source code that illustrates a

potential misconception. Bezroukov (1999) states that:

“While it is true that the vast majority of users of Linux do not have the skill, nor

the motivation, to add anything to the OS, other things being equal, the suitability

of a program for a particular user is higher if the source code is available, as the

source code is the ultimate documentation to the program. The possibility of making

changes is less important especially for a large program. It is simplistic to assume

that all open source users are C programmers that are both capable and willing 110

to make changes and/or correct errors in the OS and tools. Most users of Linux

use it the same way they use Windows — they install the ready-made distribution

and just apply patches until a new more attractive version arrives. Then the cycle

is repeated” (Bezroukov 1999).

Most users do not have the slightest idea how to access, let alone adapt source code to

their own whims. Most Linux users groups therefore merely focus on learning how to work

with the OS. One informant who organised Linux users group meetings jokingly 111

 General purpose and widely used programming language, published for the first time in 1973. C has 110

branched into many different derivative C programming languages such as C++, Objective C, and Perl.
 Interview with users group organiser, nr. 23, April 7, 2016. Interview with users group board member, 111

nr 18, April 14, 2016.

Chapter 4: {Rethinking a Discourse} 59

explained that these users group meetings are often ‘classes for elderly,’ since they often

lapse into general courses on how to use computers in the first place. Another informant is

looking to start up an OpenSUSE users group: “I just want to set up a group for support

and guidance to use it.” Even if users are capable of accessing the source code, the 112

actual ability to understand and inspect it is an even bigger struggle, seeing that this is

already an uphill battle for programmers:

“Something that I find very false about open source: it is not true that developers

check all the source. So it’s not that you use Linux […] you use open source and

you can add your own changes to the operating system. You must be an extremely

skilled developer. It will take years to understand how it works. And it will take a

lot to change it. So, most of the time you don’t look at the code, but you know that

somebody does. You know that some people like Stallman and his followers look

into that and you expect it to be clean.” 113

Regardless of the almost impossible task to work with the source code, the accessibility

of the source code could still be perceived as valuable to the FLOSS users since it is “an

additional form of consumer protection” (Bezroukov 1999). The above might very well

fall under the same conceptual flag of what the value of accessible source code is in the

light of property. In practice it indicates a variety of activities and ideas on what FLOSS

is and what the value of free or open source code is. Some might see free accessible source

code as a fundamental right, others might be comforted by the idea that it is inspected by

skilled programmers, others again might know about it, but are not interested by the source

code, but in the functionality of the software. There are many different notions of why

FLOSS is potentially disruptive through its methods. Academic discourse often leaves

those notions out of the picture.

In Conclusion — A developer who grew up in an impoverished environment, with only

limited future prospects might see FLOSS as instruments for emancipation; a recruiter 114

scouting skilled programmers at FLOSS meet-ups might see it as a helpful for doing her

 Interview with OpenSUSE user, nr. 14, April 8, 2016.112

 Interview with programmer, nr. 9, March 10, 2016.113

 Interview with programmer, speaker and event organiser, nr. 3, February 26, 2016.114

 Read Between the Lines {of Code}60

job; a Dutch programmer working in his spare time on an emulation of his very first 115

MSX computer from when he was twelve might see FLOSS as fundamentally enjoyable; 116 117

a South Africa based programmer might see FLOSS as a convenient way to avoid over-

head; a young anthropologist might see FLOSS as a colourful collection of beliefs and 118

practices, which together are potentially disruptive precisely because of their diversity.

 As a result from the anthropological holistic approach I had towards studying the

practices of and discourse on FLOSS, I advocate understanding FLOSS its impact through

the collection of all such divers and very subjective understandings of FLOSS by its

practitioners. First, studies on FLOSS are then built on the contextualisations through

which FLOSS practitioners themselves ascribe meaning to their practices. It gives insight

into the actual meaning of FLOSS in its applied social and cultural contexts. Second, this

understanding builds on the idea that the variety of such diverse contextualisations suggests

that FLOSS development reaches into many different sociocultural and political aspects

of society and human life. In this capacity it reveals its widespread force on individuals,

communities, or society at large.  

 Interview with tech-recruiter (e-mail), nr. 31, April 12 - May 2, 2016).115

 First introduced industry standard for home computers in 1982.116

 Interview with programmer (Google Hangouts), nr. 6, March 3, 2016.117

 Interview with programmer, nr 1, January 30, 2016.118

Conclusion: {In the Tangle of Reality} 61

Conclusion: {In the

Tangle of Reality}

Over the course of four chapters I have highlighted different discontinuities between the

practices of FLOSS development and the discourse around those practices. I will now

return to the research question and show how these discontinuities shed new light on this

question. I will demonstrate how the particular language used in this question confirms

the same biased and reductionist premise I have been discussing over the course of this

thesis. In its current form it thus produces a similarly reductionist answer. Despite the fact

that some of these observation might seem obvious, or overly correct, together they

eventually produce a different perspective on the way meaning is produced and attributed

to FLOSS development. Subsequently they also result in a more productive answer and

conclusion to this study as they urge to shrug off current academic connections with regards

to FLOSS and break open its discourse.

I have demonstrated that when academically discussing how FLOSS development practices

are to be understood, it is productive to take into account a wider set of FLOSS practitioners

rather than studying programmers. When studies take into consideration a wider spectrum

of actors, activities and ideas they outline the climate, or ecosystem of FLOSS development

in its widest sense, in which many different acts and actors contribute to FLOSS. This is

not to say that studies on FLOSS programmers are not valuable. Rather, it is to say that

scholars need to understand how all actors contribute to, or antagonise the production of a

certain image of FLOSS. All these actors to different extent influence the general perception

of FLOSS development and as such it is impossible to say something about programmers

without placing them in the larger scheme of things. In other words, the research question

of this thesis covers the relation between programmers and a larger discourse, but prior to

drawing conclusions on how programmers relate to the discourse on liberal ideologies we

 Read Between the Lines {of Code}62

need to consider by whom and how this discourse is generally shaped and re-shaped.

Whether that is by programmers, event organisers, evangelists, community builders, users

groups, businesses, or foundations and so on.

 Also I have demonstrated that the academic use of the term ‘FLOSS development’ is to

a certain extent problematic. First of all since FLOSS as a conceptual field is not homo-

geneous. Using ‘FLOSS’ in an umbrella term to refer to a range of different practices is

in fact valid. Yet, using the term as a conceptual tool in the academic discourse ties practices

together as if they were conceptually similar. This reduces FLOSS and generates a singular

contextualisation of the notions of for instance free software activist Richard Stallman,

open source advocate Eric Raymond, or FLOSS practitioners whose ideas move in between

and beyond those of Stallman and Raymond. These understandings are entangled in a

colourful and multi-dimensional discussion and FLOSS as a conceptual term does not do

them just. The use of the term ‘FLOSS development’ in the research question and academic

discourse in general needs specification.

 Programmers undergo a deeper and intrinsic process of enculturation that makes

participating in FLOSS natural to programmers. The ways of learning and working which

are very specific to FLOSS are internalised through years of experimenting, building,

hacking, destroying and exchanging. It is inadequate to solely discuss why programmers

participate in FLOSS development in terms of motivations, external incentives and future

rewards. Instead, the process of enculturation makes the methodology of FLOSS resonate

in programmers’ practices by the time they become skilled programmers. It simply comes

natural to them. This observation is derived from the particular case of programmers but

leads to think that it is more productive scrutinising why FLOSS participants join in on

FLOSS development in general, rather than using terms such as incentives and motivations.

 Together these insights result in a reconfigured way of looking at the academic dis-

course on FLOSS. Currently it is shaped by academic reasoning about FLOSS, property and

neoliberalism. Even though the conceptual understanding of FLOSS development through

property- and copyrights is valid and should not be disregarded, I want to put forward that

it is merely one. This understanding indicates only one way in which FLOSS development

potentially proves to be transformative. I have demonstrated that FLOSS is for example

transformative to some as an instrument for emancipation, as a process of socialisation and

collaboration, or as a business opportunity. This should not be overlooked nor excluded

Conclusion: {In the Tangle of Reality} 63

from the academic notion of it. When academics do not imbue FLOSS with one particular

meaning this leaves space for appreciation of how FLOSS potentially grows, transforms

and is being redefined. It frees FLOSS from the singular neoliberal contextualisation (cf.

Karen Ho 2005). Understanding and positioning FLOSS as an opposing force to neo-

liberalism inherently makes it part of neoliberalism. It thus reconfirms neoliberalism as the

benchmark in twenty-first century societies, even though academics often aim to indicate

its erratic model. In other words, in their efforts to highlight FLOSS development as funda-

mentally undermining the role of property in society, their emphasis comes to reconfirm

the role of property.

Where does this leave us? What has the effort of this thesis of opening up the discourse

and considering many different FLOSS practitioners, practices and ideas produced? It

places academics right in the middle of a chaotic and dynamic field which is constantly

developing and in which individuals enact a variety of beliefs and values in different ways.

It leaves us right there in the tangle of reality. With this in mind I will now turn to an

analysis of the initial research question.

Research question — How are individual motivations (3) of programmers (1) to

participate in free and open source software development (2) related to the pro-

duction and attribution of critical liberal ideological values (4) to free and open

source software development at large? 119

The above observations do not only highlight problematic aspects of the current academic

debate on FLOSS development. They also indicate problematic aspects which are part of the

research question of this thesis. Also this question is solely focussed on programmers (1).

It leaves unspecified the term ‘FLOSS development’ interchangeably in practical and

conceptual (2). Its language confirms the ideas of motivations (3). Most importantly, it

once again places FLOSS in the conceptual realm of liberalism and anti-neoliberalism (4).

Therefore the research question has become an object of study in itself. Instead of answer-

ing the research question it is more constructive to analyse the answer it brings about.

 The numbers 1 to 4 refer to the different chapters of this master thesis, and are placed next to the terms 119

in this research question to which the chapters refer and which they problematise.

 Read Between the Lines {of Code}64

 To conclude this study it thus seems unproductive to answer a research question that I

have experienced to be biased based on my time in the field with informants. Moreover, it is

inconsistent to present the findings of this thesis in a pointy and trimmed answer. I could

formulate an answer to this research question and let myself be limited by the very

assumptions that confirm the premised discourse on FLOSS development. By using the

concept of enculturation I could indicate that programmers experience a certain sense of

naturalness to participation in FLOSS development. Therewith I could deny programmers’

active allegiance to the liberalist and anti-neoliberal stance. However this would be a valid

answer to such a research question, I want to stress this would again confirm hegemonic

ways of thinking that aim to enforce, but eventually diminish FLOSS’ transformative force.

Denying the current academic approach that emphasises the relation between neoliberalism

and FLOSS would be reductionistic and unproductive. First, because it confirms everything

I have been arguing against over the course of this thesis. Second, because I then produce

a deconstructive answer, rather than a (re)constructive perspective. Therefore I do not give

a more elaborate answer to the research question, but instead propose a different approach

to academic studies on FLOSS and end with a concrete conclusion nonetheless.

 Alike the existing opinions, I too see FLOSS development as a potentially disruptive,

or transformative force and FLOSS principles as potentially reconfiguring thinking about

societal formation and configuration. Instead of regarding this force to result from the

rejection of neoliberal thinking on property this study has shown that such transformative

forces flow from the diversity of FLOSS practitioners, practices and ideas. Together they

indicate how FLOSS principles resonate further than code, coders and software. The

conceptual interpretation and practical appropriation of these principles by different FLOSS

actors together imbue FLOSS with meaning. The principles, of which opening the source

of products and the structures of knowledge are the most fundamental, thus branch out onto

many different areas, even beyond technology, for instance into democracy. 120 121

 If studies on FLOSS development incorporate such observations and retrace its impact

through the range of individuals, activities and ideas academics uncover FLOSS’ true force

 Evgeny Morizov states that in recent years “open” has become an increasingly popular term, used to denominate 120

a wide range of practices and structures beyond technology, such as ‘open democracies,’ ‘open communication.’
http://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html Accessed: June 28, 2016.

 Douglas Rushkoff’s treatment of open source democracy demonstrates how open source principles are 121

potentially transposed toward other fields and structures.

http://www.nytimes.com/2013/03/17/opinion/sunday/morozov-open-and-closed.html

Conclusion: {In the Tangle of Reality} 65

on societies — whether those are neoliberal, or not. Studying what FLOSS signifies to its

practitioners means studying how they learn and work. How they perform FLOSS, rather

than how it is being discussed. This means scholars are to repeatedly connect and disconnect

the different levels of this discussion. They are to consider the ethnographic understanding

of the notions of FLOSS actors and practices and the ways in which academics conceptually

frame FLOSS through specific idioms and reasoning as part of the same reality.

 Admitting that FLOSS actors might not actively ascribe meaning to FLOSS, but rather

feel it is ‘normal,’ or ‘natural’ is perhaps difficult to cultural anthropologists, since they who

study culture are studying meaning making. Yet, it is essential to let go of certain ways

of reasoning about FLOSS development and admit that its actors do not per se position

their activities in relation to the larger scheme of things, since they don't perceive their

own work as different, odd, or dissimilar to such larger schemes. While still highlighting

and discussing more deeply the societal conceptual implications of FLOSS development,

anthropologists should acknowledge that it is the tangle of reality in which practitioners

thrive and in which FLOSS development reveals its true colours.

Discussion

Based on the above I will now briefly outline certain ideas that could lead to a new course

of further inquiry into FLOSS. I address the themes of diversity, discourse and exchange.

 Diversity — This thesis has persistently emphasised the hybridity, heterogeneity and

dynamics of FLOSS development. Studies that focus on the diversity of certain cultural

and social formations often seemingly point out the obvious, since especially anthropology

emphasises a dynamic understanding of cultural diversity. Besides, from a methodological

perspective it leads to question if persistently describing such diversity is productive to

academic activities in terms of formulating results and conclusions. Endlessly recognising

diversity could lead to an academic impasse that would cramp academics and diminish

their vigour and boldness as researchers.

 I hope I have successfully shown that this potentially also works the other way around.

Existing and hegemonic ways of academic thinking and working could just as easily result

in cramped and incomplete academic work. The fact that academics have created a set of

 Read Between the Lines {of Code}66

conceptual understandings of FLOSS is not harmful in itself, as long as it serves them

in perpetually reinventing the studies and discourse. Besides, recognising diversity is not

only essential in order to portray FLOSS ‘truthfully,’ but to study it more productively as a

force that is not merely engaged with technical phenomena, but a force that increasingly

permeates society at large. Academics should take on the digital and transgressive chaos

that postmodern times and globalisation have brought to society in the similar fashion in

which they manifests itself: through meaning making in its most scattered and undefined

manner. The meaning of FLOSS can then be reassembled and reinterpreted.

 Discourse — After having denounced the discourse on property, copyrights and neo-

liberalism as the dominant way to conceptually contextualise FLOSS development, I

here advocate for other contextualisations. When the outset is to study a different type of

citizenship (Bollier 2008), or a climate, or ecosystem for development, then it is essential

to bring that study down to the fundamental traits with which actors together shape it. I

propose to study the ways of FLOSS learning and working and discuss them within the

discourse on labour and skill to understand what these concepts signify within FLOSS

development. Marx for instance states that: “The external character of labour for the worker

appears in the fact that it is not his own, but someone else’s, that it does not belong to him,

that in it he belongs, not to himself, but to another” (Marx and Engels 1978, 74).

 Also FLOSS learning is to be integrated in a larger discourse on skilled vision and

communities of practice (Grasseni 2004; Lave and Wenger 2002; Wenger 1998). In studies

on FLOSS the latter concept means that “activities are specific to the community members

and also share a tacit understanding of how to participate in the community” (Bach and

Carrol 2009, 239). In itself this definition refers again to social enculturation, but in combi-

nation with the concept of ‘skilled vision’ these concepts together refer to the process in

which actors shape their notion of the social and cultural context of their work, the particu-

larities of that work that define the frame through which they see the world. The discourse

on labour and skill serve as contexts in which to study FLOSS.

 Exchange — Finally, there is one more way of looking at the issues I have outlined

in this thesis that I want to briefly address here. This perspective does not per se propose a

line of inquiry concerning FLOSS, but it is relevant nonetheless. Since I operated on both a

conceptual and ethnographic level I have reviewed the interplay between two levels of

inquiry. In doing so I have also addressed the negotiation between two groups and perhaps

Conclusion: {In the Tangle of Reality} 67

also their methods: FLOSS practitioners and academics. On the one hand I demonstrated

that the specific redefining methods and values of FLOSS development resound in practi-

tioners and their practices through a lifelong process of enculturation. On the other hand,

when reviewing the discourse on FLOSS, I have put forward that in academic studies on

FLOSS there resounds a certain methodology of reconfirmation. It seems that also aca-

demics develop, find and sustain certain ‘natural’ ways of thinking, working and talking.

The title of this conclusion (In the Tangle of Reality) therefore also refers to the reality in

which academics study FLOSS and the reality in which these two groups are (perhaps

unknowingly) entangled with one another.

 Just as certain subjective notions of FLOSS development, academic methods for the

production, inspection and distribution of knowledge are not objective. Academics should

therefore take FLOSS development not only as an object of study, but also as an equal in the

effort of dealing with the politics of information and knowledge. This goes beyond certain

‘open source science’ projects and open ways of distributing academic knowledge that have

been undertaken by in recent years. Rather, I want to draw attention to their potential fruitful

exchange. The most prominent area of potential exchange is most likely the fact that

both FLOSS and academic communities rely heavily on the merits of peer review. Academic

and FLOSS systems both secure the quality of their products — which is ultimately infor-

mation — on a peer review basis. Yet, they also deal with its pitfalls. In overcoming these

pitfalls they could benefit from interdisciplinary deliberation. It is not my intention to

position either one of these two groups above the other. I want to emphasise that their

distinct methodologies operate on a same (and subjective) level. Therefore they intertwine

and potentially even converge. Rather than seeing them as independent, a lot is to be learnt

from the connections between such fields and studies that indicate their exchanges.

Much still needs to be studied when it comes to FLOSS development. Still, I hope this

thesis has highlighted potential ways of inquiry. Many of the incumbent academic ideas

on, and notions of FLOSS development are very valuable. Yet, now is the time to reinvent

them and explore the way we employ them. FLOSS is not another interesting area of

study, it teaches valuable and critical insights, musings and even lessons, also to academics.

I hope this thesis has made that clear, that it proved to be an interesting read and that it

indeed feeds the urge for further and broader inquiry. Thank you for reading.

 Read Between the Lines {of Code}68

References 69

References

Literature

Appadurai, Arjun. 1990. “Disjuncture and Difference in the Global Cultural Economy.”

 Public Cult 2:1-24.

Bach, Paula M. and John M. Carroll. 2009. “FLOSS UX Design: An Analysis of User

 Experience Design in Firefox and OpenOffice.org.” In Open Source Ecosystems:

 Diverse Communities Interacting. 237-250.

Bauman, Zygmunt. 1998. Globalization, The Human Consequences. New York, NY:

 Columbia University Press.

Beebe, Barton. 2010. “Intellectual Property Law and the Sumptuary Code.” Harvard Law

 Review 123(4): 809-889.

Benda-Beckman, Franz von. 1995. “Anthropological Approaches to Property Law and

 Economics.” European Journal of Law and Economics 2: 309-336.

Bezroukov, Nikolai. 1999. “Open Source Software as a special type of academic research:

 critique of vulgar Raymondianism.” First Monday 4(10).

 http://journals.uic.edu/ojs/index.php/fm/article/view/696/606

———. 1999b. “A second look at the cathedral and the bazaar.” First Monday 4(12).

 http://journals.uic.edu/ojs/index.php/fm/article/view/708

Boellstorff, Tom. 2012 “Rethinking Digital Anthropology.” In Digital Anthropology.

 Edited by Heather A. Horst and Daniel Miller, 39-60. London: Berg.

Bollier, David. 2009. Viral Spiral: How the Commoners Built a Digital Republic of Their

 Own. New York: New Press.

Braverman, Harry. 1998. Labour and Monopoly Capital, The Degradation of Work in the

 Twentieth Century. New York, NY: Monthly Review Press.

Bray, Fancesca. 2007. “Gender and Technology.” Annual Review of Anthropology 36:

 37–53.

 Read Between the Lines {of Code}70

Carver, Brian W. 2005. “Share and Share Alike: Understanding and Enforcing Open

 Source and Free Software Licenses.” Berkeley Technology Law Journal 20(1):

 443-481.

Castells, Manuel. 2000. “Toward a sociology of the network society.” Contemporary

 Sociology 29: 693–699.

Chopra, Samir and Scott Dexter. 2007. Decoding Liberation: The Promise of Free and

 Open Source Software. New York and London: Routledge.

Coleman, E. Gabriella. 2001. “High-Tech Guilds in the Era of Global Capital.”

 Anthropology of Work Review 22(1): 28-32.

———. 2004. “The Political Agnosticism of Free and Open Source Software and the

 Inadvertent Politics of Contrast.” Anthropological Quarterly 77(3): 507–19.

———. “The Social Construction of Freedom in Free and Open Source Software: Hackers,

 Ethics, and the Liberal Tradition.” (PhD diss., University of Chicago 2005).

———. 2010. “The Hacker Conference: A Ritual Condensation and Celebration of a

Lifeworld.” Anthropological Quarterly 83(1): 47–72.

———. 2013. Coding Freedom: The Ethics and Aesthetics of Hacking. NJ: Princeton

 University Press.

DeWalt, Kathleen Musante, and Billie R. DeWalt. 2011. Participant Observation: A

 Guide for Fieldworkers. Plymouth: Altamira Press.

Ducheneaut, Nicolas. 2005. “Socialization in an Open Source Software Community: A

 Socio-Technical Analysis.” Computer Supported Cooperative Work 14: 323–368.

Eriksen, Thomas Hylland. 2007. Globalization: The Key Concepts. London: Bloomsbury

 Publishing Plc.

Ganti, Tejaswini. 2014. “Neoliberalism.” Annual Review of Anthropology 43 (1): 89-104.

Ghosh, Rishab A. 2005. “Understanding Free Software Developers: Findings from the

 FLOSS study.” Perspectives on Free and Open Source Software. Edited by J. Feller, B.

 Fitzgerald, S. A. Hissam and K. R. Lakhani. Cambridge: MIT Press.  
Grasseni, Cristina. 2004. “Skilled vision. An apprenticeship in breeding aesthetics.”

 Social Anthropology 12(1): 41-55.

Hars, Alexander, Shaosong Ou. 2002. “Working for Free? Motivations for Participating

 in Open-Source Projects.” International Journal of electronic Commerce 6(3):

 25-39.

References 71

Harvey, David. 2005. A Brief History of Neoliberalism. Oxford, NY: Oxford University

 Press.

Hertel, Guido, Sven Nieder and Stefanie Herrmann. 2003. “Motivation of Software

 Developers in Open Source Projects: an Internet-based Survey of Contributors to the

 Linux Kernel” Research Policy 32(7): 1159-1177.

Hirsch, Eric. 2010. “Property and Persons: New Forms and Contests in the Era of

 Neoliberalism.” Annual Review of Anthropology 39: 3470-60.

Ho, Karen. 2005. “A view from Wall Street Investment Banks.” Cultural Anthropology

 20(1): 68-96.

Ingold, Tim. 2001. “Beyond Art and Technology, The Anthropology of Skill” In

 Anthropological perspectives on technology edited by Michael Brian Schiffer.

 Dragoon, Arizona: Amerind Foundation.

Juris, Jeffrey. 2005. “Violence Performed and Imagined: Militant Action, the Black Bloc

 and the Mass Media in Genoa.” Critique of Anthropology 25(4): 413-432.

———. 2008. Juris, Jeffrey S. Networking Futures, The Movement Against Corporate

 Globalization. Duke University Press.

Juris, Jeffrey and Maple Razsa. 2012. Occupy, Anthropology, and the 2011 Global

 Uprisings." Hot spots, Cultural Anthropology website, July 27, 2012. https://

 www.culanth.org/fieldsights/63-occupy-anthropology-and-the-2011-global-uprisings.

Kelty, Christopher M. 2004. “Culture’s Open Sources: Software, Copyright, and Cultural

 Critique.” Anthropological Quarterly 77(3): 499-506.

———. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke

 University Press.

———. 2011. Inventing Copyleft. In Making and Unmaking Intellectual Property:

 Creative Production in Legal and Cultural Perspective. Edited by Mario Biagioli,

 Peter Jaszi, and Martha Woodmansee. 133—48. Chicago: University of Chicago Press.

Kottak, Phillip Conrad. 2006. Cultural Anthropology, Appreciating Cultural Diversity.

 New York, NY: McGraw-Hill Education.

Lakhani, Karim R., and Robert G Wolf. 2005. “Why Hackers Do What They Do:

 Understanding Motivation and Effort in Free/Open Source Software Projects.” In

 Perspectives on Free and Open Source Software. Edited by J. Feller, B. Fitzgerald, S.

 Hissam, and K. R. Lakhani. Cambridge, Massachusetts: MIT Press.

 Read Between the Lines {of Code}72

Lave, Jean & Etienne Wenger. 2002. “Legitimate peripheral participation in communities

 of practice” In Supporting Lifelong Learning edited by Roger Harrison, Fiona Reeve,

 Ann Hanson and Julia Clarke. London: Routledge Falmer.

Leach James, Dawn Nafus, Bernhard Krieger. 2009. “Freedom imagined: morality and

 aesthetics in open source software design.” Ethnos 74(1): 51–71.

Lerner, Josh, and Jean Tirole. 2001. “The Open Source Movement: Key Research

 Questions.” European Economic Review 45(4–6): 819–26.

Mansfield, Becky. 2007. “Privatisation: Property and the Remaking of Nature-Society

 Relations. Introduction to the Special Issue.” Antipode 39(3): 393-405.

Mateos-Garcia, Juan, and Edward W. Steinmueller. 2008. “The Institutions of Open Source

 Software: Examining the Debian Community.” Information, Economics and Policy.

 20(4): 333-344.

Mazzarella, William. 2004. “Culture, Globalization, Mediation.” Annual Review of

 Anthropology 33: 345-68.

Miller, Daniel & Don Slater. 2000. The Internet: An Ethnographic Approach. Oxford: Berg.

Nader, Ralph. 2011. “Going to the Streets to Get Things Done” In This Changes

 Everything: Occupy Wall Street and the 99% Movement edited by Sarah van Gelder.

 Beret Koehler: San francisco California.

Oreg, Shaul, and Oded Nov. 2007. “Exploring Motivations for Contributing to Open

 Source Initiatives: The Roles of Contribution Context and Personal Values.”

 Computers in Human Behavior 24 (2008): 2055–2073

Rabinow, Paul. 1997. Reflections on Fieldwork in Morocco. Berkeley: University of

 California Press.

Raymond, Eric. 1999. “The Cathedral and the Bazaar: Musings on Linux and Open

 Source by an Accidental Revolutionary.” First Monday 3(3).

 http://ojphi.org/ojs/index.php/fm/article/view/578/499

Robles, Gregorio, Jesus M Gonzalez-Barahona, Martin Michlmayr. 2005. “Evolution of

 volunteer participation in libre software projects: evidence from Debian.” Proceedings

 of the 1st International Conference on Open Source Systems, Genova, 2005. Edited by

 Marco Scotto and Giancarlo Succi. 100-107.

Sade-Beck, Liav. 2004. “Internet ethnography: Online and offline.” International Journal

 of Qualitative Methods 3(2) http://www.ualberta.ca/~iiqm/backissues/3_2/pdf.

http://ojphi.org/ojs/

References 73

Schiffer, Michael Brian. 2001. “Toward an Anthropology of Technology” In

 Anthropological perspectives on technology edited by Michael Brian Schiffer.

 Dragoon, Arizona: Amerind Foundation.

Slukka, Jeffrey. and Antonius Robben. 2007. Ethnographic Fieldwork: An

 Anthropological Reader. Oxford: Blackwell Publishing Ltd.

Söderberg, Johan. 2002. “Copyleft vs. Copyright: A Marxist Critique.” First Monday 7(3)

 http://firstmonday.org/article/view/938/860#s6

———. 2008. Hacking Capitalism, The Free and Open Source Movement. New York and

 London: Routledge.

Stallman, Richard Matthew. 2002. Free Software, Free Society. Selected Essays of

 Richard M. Stallman. Boston, MA: Free Software Foundation.

Sullivan, John L. 2011. “Free, Open Source Software Advocacy as a Social Justice

 Movement: The Expansion of F/OSS Movement Discourse in the 21st Century.”

 Journal of Information Technology & Politics 8(3): 223-239.

Tsing, Anna Lowenhapt. 2000. “The Global Situation.” Cultural Anthropology 15(3): 327-360.

———. 2005. Friction: An Ethnography of Global Connection. Princeton: Princeton

 University Press.

Weber, Steven. 2004. The Success of Open Source. Cambridge, MA: Harvard University

 Press.

Wenger, E. 1998. Communities of Practice: Learning, Meaning, and Identity.

 Cambridge: Cambridge University Press.

Wilson, Samuel M. and Leighton C. Peterson. 2002. “The Anthropology of Online

 Communities.” Annual Review of Anthropology 31: 449-467.

Zeitlyn, David. 2003. “Gift economies in the development of open source software:

 Anthropological reflections.” Research. Policy 32(7): 1287-1291.

Websites

Apache.

 http://www.apache.org/

Free Software Foundation

 Read Between the Lines {of Code}74

 http://www.fsf.org

Free Software Foundation Europe.

 https://www.fsfe.org

Debian.

 https://www.debian.org

GNU project.

 https://www.gnu.org

Open Source Initiative.

 https://www.opensource.org

http://www.fsf.org
https://www.fsfe.org
https://www.debian.org
https://www.gnu.org
http://www.opensource.org

 Appendices 75

Appendices

Appendix I

Meetup Interface and Functionality.

Contacts Conversation

Contacts Conversation

 Read Between the Lines {of Code}76

Appendix II

Practices and Practitioners in FLOSS development field.

Image: Ward Goes.

N E O L I B E R A L I S M

P R O P E R T Y A N D F R E E D O M

F / O S A N D L I B E R A L I S M

M O T I V A T I O N S

ActivistsEvent Organisers
UsersTe

ste
rs

Pr
og

ra
m

m
er

s

R
ec

ru
ite

rs
Fo

un
da

tio
ns

Businesses

A
cadem

ics

Entrepeneurs

Evangelists

Community Builders

 Appendices 77

Appendix III

Structure of current discourse on FLOSS development in relation to

personal motivations of FLOSS developers.

Image: Ward Goes

N E O L I B E R A L I S M

P R O P E R T Y A N D F R E E D O M

F / O S A N D L I B E R A L I S M

M O T I V A T I O N S

 Read Between the Lines {of Code}78

 Read Between the Lines {of Code}78

Abstract —— The principles of free and open source software development are
academically understood to be at odds with property- and copyrights; some
of the very fundamental principles of contemporary neoliberal society. As
a consequence free and open source software development is mostly studied
and discussed by academics within this context. This thesis demonstrates
that however this is a logical and legitimate approach to studying such
software development practices, it is merely one way of conceptually
contextualising free and open source software development. This particular
contextualisation overlooks the complexity, hybridity and diversity of
practitioners, practices and perspectives in the field. Drawing on empirical
data, collected during 15 weeks of ethnographic fieldwork, it is argued in
this thesis that it is more productive to break with this singular conceptual
contextualisation of free and open source software development and explore
the variety of contextualisations as found in the field. It reconstructs
how together these perspectives renew academic discourse on free and open
source software development This will offer a new understanding of how
the practices concerning free and open source software development are
connected to larger discourses.

Read Between the Lines of
Code — Perspectives on Free
and Open Source Software
Development in Perspective
is a master thesis for the
completion of the master
Cultural Anthropology:
Sustainable Citizenship at
the University of Utrecht,
Faculaty of Social Sciences.

Ward Goes

