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Abstract

The Fast Exact Euclidean Distance transform (FEED) algorithm is ex-
tended beyond two dimensions. 3D-FEED is introduced, followed by
nD-FEED. The nD-FEED algorithm uses the inverse approach from the
naive DT algorithms and works with exact euclidean distances. The time-
complexity of nD-FEED is proven to be exponential in the amount of di-
mensions: Ω(dN × 2d).
Keywords:n-dimensional distance transforms, Euclidean distance, FEED,

3D-FEED.

1 Introduction
A distance transform(DT) calculates for a set of pixels in a picture the min-
imal distance to another set of pixels in a picture. Often, background and
object pixel sets are distinguished. Those distance transforms calculate a
new image with the distances for each background pixel to the closest ob-
ject pixel. The resulting image is called a distance map. DT’s are used
in many scientific or industrial area’s like bio-medical image analysis and
robotics. The general equation for the distance transform on pixel p to an
object pixel q ∈ O is defined as

D(p) = min
q∈O

d(p, q), (1)

where we use d(p, q) to denote the distance between pixel p and q.

Distances

Calculating distance transforms can be done with different distances met-
rics, important distances are:

• Manhattan distance: The Manhattan distance is the sum of the distance
traveled horizontal and vertical direction in a grid. Formula (2) cal-
culates the Manhattan distance which is also known as the city block
distance.

d(p, q) = |p1 − q1|+ |p2 − q2|, (2)

• Chessboard distance: The chessboard distance is the distance it takes a
king on a chessboard to reach a certain point. With formula (3) you
can calculate the chessboard distance.

d(p, q) = max(|p1 − q1|, |p2 − q2|), (3)

• Euclidean distance: The Euclidean distance is the direct distance be-
tween two points and is also known as the Pythagorean distance. Cal-
culating this distance is however computationally harder than the
Manhattan distance or the chessboard distance. Formula (4) calcu-
lates the Euclidean distance. In this paper we focus on the Euclidean
distance.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2. (4)
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Derived from these distances we find how the fundamental distance no-
tation for the Euclidean and Manhattan distance can be defined by the Lu

distance metric:

du(p, q) = (

n∑
i=1

|pi − qi|u)
1
u , (5)

where p and q are n-tuple’s and i is used to denote their n coordinates (or
dimensions). This distance is also known as the Hinkowski distance. The
Manhattan and Euclidean distance metrics are respectively denoted by L1

and L2

Euclidean distance transforms

The Euclidean DT can either be calculated as a Baseline DT, where the Eu-
clidean distance is very crudely calculated, an Approximate Euclidean DT,
where the Euclidean distance is approximated to speedup distance calcu-
lations, or an Exact Euclidean DT, where the exact Euclidean distances is
calculated. Because the exact Euclidean distance uses a square-root eval-
uation, it is computational harder to calculate the exact DT. We define the
exact Euclidean distance as:

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2, (6)

where p and q are points in the n-dimensional space and pi and qi are their
positions in dimension i.

Pixel-processing

Based on the order in which pixels are processed, there are 4 types in which
DT algorithms can be classified[15][7]:

• Raster scanning(RS): For each dimension, each pixel is processed from
start to end and in reversed order. n-dimensional masks can be used
to speed up the process.

• Ordered propagation(OP): This method is similar to fire spreading
through grass. For each object pixel we start by propagating the dis-
tance to each “fire-edge” pixel until we visit the edge of the picture or
until we visit another fire front.

• Independent scanning(IS): For each dimension, each pixel is processed
from start to end. Further propagation of distances of previously en-
countered object pixels are discarded since the new encountered ob-
ject pixels are always closer. This process is also done in reversed
order.

• FEED class(FEED): The FEED algorithm takes a new fundamental ap-
proach. Instead of p selecting the minimum distance to q ∈ O, the
FEED algorithm feeds for each q ∈ O the distance to p, which im-
plies that the FEED algorithm is the inverse function of (1). The feed
on pixel p is only accepted when the distance to q is lower than the
currently known distance to p.
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Dimensions

The FEED algorithm works on 2 dimensions, however there are also im-
ages which use 3 dimensions (e.g. medical images of the brain, air traffic
models). If additional information (e.g. time or speed) needs to be added
in the information of the images, more dimensions are needed to illustrate
the image. Currently 4 algorithms are available which can calculate exact
distances in images with n-dimensions. Table (1) gives a small overview of
the history of DT algorithms with their exactness, the way pixels are pro-
cessed and on how many dimensions they apply. [15]

Algorithm Year Exact PP Dim
RosenFeld and Pfaltz [11][12] 1966 Baseline RS 2
Borgefors [1][2] 1984 Baseline RS n
Coiras, Santamaria, and Miravet [5] 1998 Baseline OP 2
Danielsson [6] 1980 Approximate RS 2
Danielsson (Modified) [3] 1980 Approximate RS 3
Ye [18] 1988 Approximate RS 2
Shih and Wu [16] 2004 Approximate RS 2
Maurer, Jr, Qi and Raghaven [10] 2003 Exact IS n
Coeurjolly and Montanvert [4] 2007 Exact IS n
Lucet [9] 2009 Exact IS n
Felzenszwalb and Huttenlocher [8] 2012 Exact IS n
Schouten and van den Broek [15] 2004 Exact FEED 2

Table 1: An overview of some algorithms for different DT’s [17] with respec-
tively the algorithm, the year, the exactness, the way pixels are processed and
on how many dimensions. [15].

This paper will introduce the FEED [14][13][17]algorithm as described by
Schouten and van den Broek [15], in section 3 the FEED algorithm will be
adapted for 3 dimensions, and in section 4 for n-dimensions. The princi-
ples of the FEED algorithm will be explained in section 2. The new FEED
algorithms will have its theoretical time complexity explained in section 5.
In section 6, additional research suggestions are made and this paper closes
with a discussion in section 7.

2 Principle of FEED
Let us first define a binary image I , a set of object pixels O{o|o ∈ I ∧o = 1}
and a set of background pixel B{b|b ∈ I∧b = 0}. Instead of p ∈ B selecting
the minimum distance to q ∈ O (1), the FEED algorithm feeds for each
q ∈ O the distance to all p ∈ B. This is done with the following algorithm:

Algorithm: Basic FEED

foreach q ∈ O do
foreach p ∈ B do

D(p) = min(D(p), d(q, p))
end

end
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Since this is a very basic approach, several speedups are needed for
faster execution time.

2.1 Speedups
Border pixels

The number of feeding object pixels can be significantly reduced if the ob-
ject pixels that are completely surrounded by other object pixels do not
feed. All neighboring object pixels are always closer to background pixel
in that direction. An object pixel is a border pixel if one of its four con-
nected neighbors is a background pixel, meaning formula (7) is satisfied,
which means that

p ∈ B(O) ⇐⇒ ∃y|y ∈ n(p) ∧ y /∈ O ∧ p ∈ O, (7)

where n(p) is the set neighboring pixels having a Manhattan distance to p
of one. B(O) is the set of border pixels.

Bisection Line

The number of background pixels an object pixel feeds, can also be sig-
nificantly reduced. Assume feeding pixel p and pixel q ∈ O and p 6= q.
For convenience reasons we create a new coordinate system with p in the
origin. In order to lower the amount of pixels that are being fed by p, a
bisection line can be created between pixel p and q, defined by:

2q1x + 2q2y = (q21 + q22) (8)

In order to select q, a line-scan from p in a specified direction is performed.
The scan-line is defined as (i, j) = k(mi,mj), with mi and mj being in-
tegers and k being the running index starting at one. This line-scan stops
when it hits another object pixel or the border of the image. Performing
a line-scan ensures that the selected object pixel q creates an optimal bi-
section line in direction (mi,mj). High values of mi or mj tend to create
bisection lines farther away from p then low values.

Perpendicular to this scan-line the bisection line is created. The bisec-
tion line splits the image in two parts. The side closer to p will be fed by p
and the side closer to q will be fed by q Multiple scan-lines from p can be
initiated creating a convex hull of background pixels which will be fed by
p.

Bounding Box

Since it is hard to keep track of the convex hull around p when using multi-
ple bisection lines, a bounding box can be created around the convex hull.
This bounding box is possibly reduced in size by each new bisection line.
In figure (1) a new bisection line l is created by the use of scan-line s to-
wards object pixel q inside bounding box bb. Due to the direction of s, only
the bounds b1 and b2 of the bounding box can be moved towards s, which
excludes b3 and b4 from being updated. This results in a new bounding
box which excludes the gray parts. If the bounds need to be adapted, then
the x-bound needs to be updated to

bb.xmax = min(bb.xmax,max(ymax.x, ymin.x)). (9)
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Figure 1: Beginning with a bounding box bb, a line-scan s, originating from
border pixel p, is conducted, in the direction of object pixel q. When s hits q, a
perpendicular bisection line l is created.

This equation is similar for the y-coordinate. Although the bounding box
is often larger than the convex hull, it is computational more efficient to
keep track of only the bounding box and not the convex hull. For each row,
the bisection lines are used to determine which background pixels should
be fed by p. Because of this, only the background pixels that are inside
the convex hull are actually fed by p. In the ideal case, two intersecting
bisection lines can also update a bound of the bounding box.

3 3D-FEED
When we increase the amount of dimensions to three, the basic FEED
[13]algorithm keeps the same inefficient approach. Formula 4 has to be
adapted to 3D space:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2. (10)

When we look at the speedups they have to be adapted to deal with the
extra dimension.

Border pixels
To extract the border pixels from the object pixels, n(p) from formula 7 con-
tains two more neighbors. The object pixel is still a border pixel if formula
(7) is satisfied.
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Bisection plane
Instead of creating a bisection line, we now have to create a bisection plane.
The location of the bisection plane is still defined in a new coordinate sys-
tem with the feeding pixel p in the origin. Now the bisection plane made
with any other object pixel q can be defined as

2q1x + 2q2y + 2q3z = (q21 + q22 + q23), (11)

which is still halfway on the scan-line between p and q and perpendicular
to this line. Pixel b ∈ B satisfying d(p, b) ≤ d(q, b) has to be fed by p and
pixel b ∈ B satisfying d(p, b) > d(q, b) has to be fed by q.

Figure 2: 3d bounding cuboid, with border pixel p, object pixel q, scan-line
s and the minimum and maximum values of x and z. In this case, the y-
coordinate is being updated, and the gray part is removed from the bounding
cuboid based on xmaxzmax.y.

Bounding cuboid
By combining the bisection planes we still get a convex hull, but this
time in 3D space. To handle these 3D convex hulls, a rectangular
cuboid can be created from the bisection planes. After a new bisection
plane is created it might be possible to decrease the size of the bound-
ing box. Figure (2) shows a bounding cuboid with scan-line s, bisec-
tion plane bp which intersect on the borders of the bounding cuboid in
xminzmin.y, xminzmax.y, xmaxzmin.y, xmaxzmax.y,. In the 2D case, based
on the direction of s, it was only needed to update two bounds, in the 3D
case three bounds might need to be updated (e.g. xmax, ymaxandzmax)
and 3 will be excluded based on the direction of the scan-line. (e.g.
xmin, yminandzmin). In the 2D case, formula (9) is used to update the
maximum x coordinate of the bounding box. In the 3D case a similar up-
date has to be done, however the extra dimension doubles the intersection
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points, changing the formula for the x-dimension into

bc.xmax = min(bc.xmax,max(max(ymaxzmin.x, yminzmin.x),

max(ymaxzmax.x, yminzmax.x).
(12)

The y and z dimensions have similar formulas. The nested maximum op-
erator can be generalized by taking the maximum value of all the pos-
sible combinations between the three sets {xmin, xmax} {ymin, ymax}and
{zmin, zmax} excluding the current dimension set. Note that a plane can
be parallel to one of the cuboid’s bounding planes. Then, no intersection
can be found.

4 nd-FEED
Looping through an image in 2D (and 3D) is intuitive. Looping through an
nD image is possible with n nested loops, however if n is not defined or
known, a more dynamic approach is needed. To handle an nD image we
first define a new coordinate system for a pixel in an image. The location
of a pixel can be defined as a vector: ~p = {p1, p2, . . . , pn}. Where n is
the amount of dimensions and pi the position of the coordinate in the i-
th dimension. In this coordinate system all pixels ~p are stored in a list on
position

L(~p) =

n∑
j=0

sjpj , with

sj =

n∏
i=j+1

vi.

(13)

Where v is the vector with the lengths of every dimension.
The basic FEED algorithm as described in algorithm 1 does not change

and keeps its basic approach. The Euclidean distance becomes the equation
stated in (6).

Border pixels
Formula 7 can still be used to determine if an object pixel is also a border
pixel. The amount of pixels in n(p) is double the amount of dimensions.

Bisection hyper-plane
Again we make a new local coordinate system with its origin in p. We select
an object pixel q ∈ O found by the scan-line from p which can be used to
define a hyper-plane between p and q. The perpendicular hyper-plane is
positioned exactly on 1

2
d(p, q). The hyper-plane H which is perpendicular

to the scan-line between p and q is defined in nD as

2q1x1 + 2q2x2 + · · ·+ 2qnxn = q0

q0 = (q21 + q22 + · · ·+ q2n),
(14)

where for each point hi on H , d(hi, p) = d(hi, q).
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Bounding n-orthotope
Similar to the 2D and 3D cases, combining several bisection
hyper-planes creates a convex hull. In an n-dimensional space
a n-orthotope surrounding this convex hull makes it computa-
tional easier to handle. In n-dimensions the sets of bounds are
{1max, 1min}, {2max, 2min}, ......, {nmax, nmin}, which implies the
amount of combination doubles at each new dimension. Formula (12) can
now be written as

bc.1max =min(bc.xmax,max(

max(2min.1, 3min.1, . . . , nmin.1),

max(2max.1, 3min.1, . . . , nmin.1)

. . .

max(2max.1, 3max.1, . . . , nmax.1).

(15)

5 Theoretic Time Complexity
Basic Feed

The run-time complexity of the basic FEED algorithm has been experimen-
tal determined. Schouten and van den Broek have shown in [15], that the
run-time complexity of FEED is linear in the amount of pixels in the image.
They bench-marked the algorithm with the Fabbri et al. data set [7] where
each image focuses on a specific image characteristic. Schouten and van
den Broek created their own data set where the specific characteristics of
Fabbri et al. are combined in individual images to further analyze the in-
fluences of these characteristics on the processing speed. The tests showed
that the FEED algorithm is significantly faster compared to other state of
the art DT algorithms.

3D FEED

Changing to 3D, has influence on run-time complexity. Determining the
neighbor space for n(x) in formula (7) is increased by two for the extra
dimension.

More scan-lines have to be conducted for the extra dimensions and the
direction of the scan-line s includes a third dimension.

More intersections have to be checked to determine if a bound of
the bounding cuboid can be updated in any dimensions resulting in an
increase of two extra checks. Also the maximum and minimum bounds of
the third dimension need to be checked for updates.

nD FEED

Beyond 3 dimensions, the algorithm becomes increasingly slower. The
neighbor space for n(x) is linear in the dimensions of the images. Also
more intersections have to be checked beyond 3 dimensions to determine
if a bound of the bounding n-orthotope should be updated. This results
in doubling the amount of checks for every new dimension: in an n-
orthotope, (2n − 1) checks should be performed. This implies that the nD
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FEED algorithm is less suitable for n-dimensions since it grows exponential
in the amount of dimensions. Taking the exponential intersections check
and the linear neighbor space into account, the time complexity becomes
Ω(dN × 2d), d being the amount of dimensions and N being the amount of
pixels.

6 Further Research

Intersecting planes
In the original FEED algorithm, intersection with other bisection lines can
also lower the size of the bounding box. In 3 dimensions, the intersection
of two bisection planes can be defined as a line. The maximum of this line
is always on a bound. Representing the two planes as a formula on this
bound can pinpoint its location and be used to update bounds. However,
lines could be parallel to one or more cuboid bounds, which causes a new
challenge. For n dimensions, the case is even more challenging and this
needs to be further researched.

Scan-line
For the 2D case, vertical and horizontal scan-lines do not always create
bisection lines with one or more intersections with all the elements in
formula (9) For 3 or more dimensions there are more possibilities of
parallel hyper-planes which results in non-computably values in formula
(15). To deal with those specific scan-lines more general approaches
should be considered. (See appendix D).

7 Conclusion
This paper introduced the n-dimensional FEED algorithm. The nD-FEED
algorithm is used to calculate the DT on n-dimensional binary images.
nD-FEED shows a time-complexity exponential in the amount of dimen-
sions, in contrast to state of the art n-dimensional DT algorithms like Lucet
and Felzenswalb & Huttenlocher, which are linear in the amount of di-
mensions. This implies that the nD-FEED algorithm will not be useful in
practice for a large amount of dimensions.
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Appendices
A Data-set generation
For future testing an algorithm has been build to create data sets which can
be used to benchmark nD algorithms including the nD-FEED algorithm.
Given an object count, dimension count and a density, a random colored
picture is generated.

B Binary, O and B
nD-FEED works on binary images. To handles multicolored images, a fast
pass over the image has to be conducted to rewrite the image, according to
formula (16, to a binary image.

G(p) =

{
0 if I(p) 6= 0

1 if I(p) = 0
(16)

where I is the incoming image, G the resulting image and p is the pixel be-
ing processed. Taken from G we define two sets: O = {p|G(p) = 0)} being
the set of Object pixels and B = {p|G(p) = 1} being the set of Background
pixels.

C Truncation
Background pixels which are exactly on the line between p and q needs to
be fed by either one of these, not by both. According to formula (17) each
pixel b ∈ B is fed by p if d(p, b) ≤ d(b, q).

q1x1 + q2x2 + · · ·+ qnxn = [int](
((q21 + q22 + · · ·+ q2n) + ud)

2
)

ud =

{
0 if qj ≥ 0

1 otherwise

(17)

After truncation to an integer of H it is possible a pixel p which satisfies
d(p, b) = d(p, q) will no longer be fed by b. An adaptation ud is needed for
coordinates that are on the bisection hyper-plane H to ensure b is fed by p.

D Parallel bisection
In section BLA we found that a bisection plane can be parallel to a bound
of the bounding cuboid. These bisection planes are based on a scan-line
containing a 0 in all but one dimension. Parallel planes will give errors
when formula BLA is checked since there is no minimum or maximum
value for the dimension containing a 0. For this reason one might limit the
values of scan-line s to si ∈ Z+

0 .

A second option to handle this problem is to conduct a preliminary
check on the scan-line to see if all dimensions contains a 0 except for one.
If this is the case, the scan-line can be used to create the initial bound.
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