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Abstract 
Accurate information about water reserves is crucial in a world where the water demand will 

increase over the coming century. Global Hydrological Models (GHMs) can play a large role 

supporting good decision making by predicting the available water resources. GHMs have different 

features because of their background, each with their own strengths and weaknesses. VIC and PCR-

GLOBWB are both capable of simulating the global water balance, but VIC has the potential to 

simulate the hydrological balance on a local scale more accurately because it solves the energy 

balance. This research will look at the effect that an energy balance in a GHM has on the accuracy of 

the output. Using the WFDEI climate forcing, PCR-GLOBWB and two versions of VIC (with and 

without energy balance) are used to simulate the global water balance. The model output is 

compared to global evapotranspiration (ET), snow water equivalent (SWE) and soil moisture 

datasets, as well as to discharge measurements of the Amazon, Brahmaputra, Mackenzie, 

Magdalena, Mississippi and the Nile. The results show that PCR-GLOBWB has higher Kling-Gupta, 

Nash-Sutcliffe and correlation scores for ET and equal scores to VIC for SWE. VIC, on the other hand, 

has higher accuracy scores for discharge in five of the six rivers and for soil moisture. The effect of an 

energy balance is small, as VIC-EB performs similar to VIC-WB and the results indicate that the 

calibration of VIC plays a larger role in the higher accuracy of VIC for the discharge and soil moisture 

than the energy balance. The sensitivity of PCR-GLOBWB to different climate forcing, potential ET 

and resolution changes was also tested. Using CRU precipitation instead of GPCC precipitation leads 

to significantly lower discharges, but comparable local accuracy scores. Use of the Penman-Monteith 

potential ET equation results in more accurate results for the entire water balance. Running PCR-

GLOBWB on a higher resolution (5 arcminutes) leads to lower accuracy.  
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1. Introduction 
Knowledge about water resources and dynamics is important in a world where water availability is 

changing due to climate change. Moreover, increasing demands by demographic, land use and 

economic changes all contribute to driving more people towards water stress and uncertainty 

(Alcamo et al., 2007). In order to make accurate and good policy decisions on water related topics, it 

is necessary to have information about the water resources in a country. However, several countries 

do not have this information available. 

The EU-funded EartH2Observe (E2O) program aims to produce a complete dataset of freshwater 

resources for the whole world. To achieve this goal, a combination of earth observation data and 

global hydrological models are used to determine the terrestrial water balance components (Dutra 

et al., 2015). This water balance can be used to reanalyse the water resources with a multi-model 

ensemble and to support good decision making in light of the inherent uncertainty that stems from 

climate forcing and model structure. As a first deliverable of E2O, the Tier1 multi-model ensemble of 

global hydrological models has been produced as a first estimate of the uncertainty in the water 

balance components (Dutra et al., 2015). 

Global Hydrological Models (GHMs) use globally availably data as input to calculate the water 

balance on a global scale and are therefore useful to provide information to data-poor regions about 

their water resources. However, the outcome of these models is subject to multiple sources of 

uncertainty: spatial input data (such as climate data, land cover etc.), the structure of the GHM, 

model parameters (Müller Schmied et al., 2014) and insufficient knowledge about processes on a 

global scale (Beven and Cloke, 2012; Wood et al., 2011; 2012).  

Multiple GHMs exist, each with a different structure, different features and different strengths and 

weaknesses (Sood, 2015). For this reason, an ensemble of GHMs is a strong tool to reduce the 

uncertainty of the results, since the strengths and weaknesses of the models may cancel each other 

(Gosling et al., 2011). However, the downside of an ensemble is that a certain model might be very 

accurate for a certain aspect, due to specific features that simulate this aspect, but these results are 

averaged for the ensemble results, which results in loss of accuracy for this aspect. Despite the 

relevance and practicality of GHMs, research about the effects of different features of specific GHMs 

is limited. The focus lies more on either the accuracy of the ensemble (e.g. Gudmundsson et al., 

2011; Davie et al., 2013; Prudhomme et al., 2014) or the accuracy of the individual model.  

Exceptions exist, for example Hurkmans et al. (2008) compared a water balance model (STREAM) to 

a GHM (VIC), but only briefly discussed the model structure or the actual cause of the different 

results of the models. Another example is the Integrated Project Water and Global Change (WATCH). 

An important part of this project was a large model comparison of both Land Surface Models (LSMs) 

and GHMs (Haddeland et al., 2011). They found some model structure related differences: models 

with a physically based energy balance predicted lower snow water equivalent than models with a 

degree day approach. This is due to snow sublimation, which is only accounted for in the energy 

based models. Haddeland (2011) also found that models with the Priestley-Taylor equation simulate 

a higher potential evapotranspiration in humid areas than models with the Penman-Monteith 

equation, the opposite was the case in dry areas. However, since there are also other differences in 

approach between the models, this cannot be solely attributed to the choice of equation.  
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Apart from the previously mentioned studies, research is limited on the benefits and drawbacks of 

specific features in GHMs. More research about the added value of certain features or which 

formulation of standard elements gives the most accurate results would be valuable, since it can be 

used to improve weak modules of a GHM and consequently improve the accuracy of the ensemble.  

Since precipitation is the main source of water for the hydrological budget, this input is of critical 

importance for the outcome of the GHM’s (Fekete et al., 2004). Several different datasets exist, each 

with different input sources (ground observations, satellite estimates and/or climate models) and 

different methods to obtain the desired resolution. Typically, the datasets agree with the main 

spatial and temporal patterns, but regional differences occur between the datasets (Adler et al., 

2001; Fekete et al., 2004). Fekete et al. (2004) forced a water balance model with six different 

precipitation datasets and found that uncertainty in precipitation, results in at least the same 

uncertainty in the runoff. Biemans et al. (2008) evaluated the effects of different precipitation 

datasets for entire river basins. This study found that the average precipitation uncertainty in a basin 

is 30% and that this yields even larger discharge differences.  

This research focuses on a comparison of two global hydrological models, PCR-GLOBWB and VIC. 

Furthermore, the uncertainty of the model output of PCR-GLOBWB is evaluated by looking at the 

effects of different model resolution, precipitation forcing and potential evaporation equations. PCR-

GLOBWB was developed at the Physical Geography department of Utrecht University and is part of 

the ensemble used in the EartH2Observe project. VIC was developed at the University of 

Washington in Seattle and Princeton University and is not included in the multi-model ensemble. 

The main difference between both models is that VIC includes a full energy balance (Liang et al., 

1994; Gao et al., 2010a), whereas PCR-GLOBWB only considers water fluxes (Van Beek and Bierkens, 

2008). This research will compare results of both models, when forced with the same climatological 

data, by evaluating the predicted stream flows, soil moisture, snow water equivalent and 

evapotranspiration for different regions. The results will be used to determine the advantage of an 

energy balance in a GHM, as well as other strengths and weaknesses of both models that result from 

their model structure. 

VIC can also be run in water balance only mode, VIC-WB (VIC-Water Balance). This model is, apart 

from the energy balance, identical to regular VIC and can be used to examine the influence of an 

energy balance to a model. Its results will also be used to see if there might be other differences in 

model structure that might lead to different results.  

1.1. Research objectives 
The main objective of this research is to examine the differences in model structure between VIC 

and PCR-GLOBWB and their effect on the calculated water balance. This will be done by answering 

the following research questions: 

 What is the effect of the energy balance in a global hydrological model on the discharge of a 

major river and on local hydrological variables, such as evapotranspiration, snow water 

equivalent and soil moisture?  

 In which climate zone will this effect be the largest: tropic, arctic, or temperate? 

 How do VIC and PCR-GLOBWB perform in areas where abundant other information is 

available?  
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 Which model provides better estimates of water fluxes in regions where other information 

about the hydrology is not readily available? 

 Will the results of VIC-WB be similar to those of PCR-GLOBWB, or are there other differences 

in the model structure of VIC that cause differences between the results of VIC-WB and PCR-

GLOBWB? 

 How sensitive is PCR-GLOBWB to changes in climate forcing, potential ET forcing and 

resolution? 

This study will answer these research questions by comparing the results from the models to each 

other and to observation-based data sets on both the regional and the local scale. For the regional 

scale, the calculated mean discharge will be compared to measurements from the Global Runoff 

Data Centre (GRDC). On a more local scale, the calculated soil moisture, snow water equivalent and 

evapotranspiration will be evaluated and compared to global datasets. Based on the model 

description (see Materials and methods) and the results found by Haddeland et al. (2011), the 

expectation is that VIC will perform better on a local level in areas with high evaporation or snow 

melt, as these are energy driven processes and should be better calculated by the energy balance in 

VIC. For temperate regions, the energy balance becomes less important and it would be interesting 

to see which model performs better. VIC-WB only considers water fluxes and is therefore more 

similar to PCR-GLOBWB and should produce results that are more similar to PCR-GLOBWB. If this is 

not the case, then there are other differences between VIC and PCR-GLOBWB that might lead to 

different results and are worth exploring. 
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2. Materials and methods 

2.1. PCR-GLOBWB 
PCR-GLOBWB (PCRaster Global Water Balance) is a Global Hydrological Model that can be used to 

solve the water balance on a cell-by-cell basis and subsequently determine the distribution of water 

over a study area. The model is described in detail by Van Beek and Bierkens (2008), Van Beek et al. 

(2011) and Wada et al. (2013, 2014). The main features and features that are of interest for this 

study will be briefly explained in this section. A schematic concept of PCR-GLOBWB is given in Figure 

1. 

 

Figure 1: Schematic concept of PCR-GLOBWB. On the left are the soil compartments, two upper soil stores and a lower 
groundwater store. Each has a drainage component; direct runoff (QDR), interflow (QSf) and base flow (QBf). On the 
right side the channel is depicted, with gains (drainage and precipitation (PREC)) and losses (evaporation). (Van Beek 
and Bierkens, 2009) 

PCR-GLOBWB is a ‘leaky bucket’ type of model. It calculates for each grid cell and each time step 

(daily) the water balance for that cell. This consists of the storage in two soil layers (Store 1 and 

Store 2 in Figure 1), the underlying groundwater (Store 3) and the exchange of water between the 

layers and between Store 1 and the atmosphere (rainfall, ET and snowmelt). Snow cover and/or a 

canopy with interception storage may be present, but bare soil is also possible. Snow accumulation 

and melt are driven by the air temperature and modelled according to the snow module of the HBV 

model (Bergström, 1995). This means that it is modelled on a degree-day approach, with air 

temperature as the driving factor for snow melt and a water holding capacity in the snow pack which 

delays runoff.  

Not all information is specified at the same resolution as the grid size. Sub-grid variability is included 

in the model by several data layers with a higher resolution, such as vegetation (tall and short), open 
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water, soil type distribution and the fraction of saturated soil in the area based on the improved 

Arno scheme (Hagemann and Gates, 2003). Furthermore, the HYDRO1k Elevation Derived Database 

has a resolution of 1 km and is used to correct the spatio-temporal distribution of groundwater 

depth and to represent the snow-rain transition by introducing elevation zones and a lapse rate of 

0.65°C per 100m.  

Incoming water is divided into infiltration and direct runoff (QDR in Figure 1), depending on the 

degree of saturation of Store 1 and the water capacity of the cell. If percolation at the base of Store 

1 and 2 is not possible, the excess soil moisture can drain as interflow (QSf). Drainage from the 

groundwater reservoir (baseflow, QBf) is calculated by a linear reservoir model (Kraaijenhof Van de 

Leur, 1958). The three discharge components (QBf, QSf and QDR) are routed along a river network 

according to the kinematic wave equations. All water surfaces are subject to open water 

evaporation.  

PCR-GLOBWB has three routing options, depending on the accuracy needed and the computation 

time available. The simplest is the accutraveltime option. This option determines the velocity of a 

volume of water in the channel and moves it downstream according to this velocity and the length 

of each time step. PCR-GLOBWB also has two kinematic wave options. The simplified option uses the 

kinematic wave equations, and the water is limited to the channel. The last option also uses the 

kinematic wave equations, but the water is not limited to the channel anymore. This means that 

water leaves the channel and the velocity is changed due to the increased friction. This last option is 

the most computationally intensive, but also the most accurate.  

Reservoirs are also included in PCR-GLOBWB. They are linked to the kinematic routing module. The 

reservoir module optimizes the release for each reservoir, based on their purpose (water supply, 

hydropower, flood control or ‘other’) and the forecast of inflow and demand along the drainage 

network. The outflow is updated when the actual inflow and demand deviate from the long term 

expectations. 94% of the total area and 95% of the total capacity of the world largest reservoirs is 

included; the remainder is missing due to either limited size, or lack of information (Wada et al., 

2013). 

Irrigation was only included in 2014, but improves the accuracy of the model in areas with high 

water demand (Wada et al., 2014). It includes a separation of paddy and nonpaddy crops, each with 

different parameters and links the irrigation with the daily soil and surface water balance. This takes 

the relationship into account between the irrigated water and the changes in the soil and surface 

water balance, which affects the soil moisture and necessary irrigation for the following days. An 

advantage of this method is that the soil moisture conditions and evaporation and crop transpiration 

are more realistically modelled. Therefore, it is not necessary to include irrigation efficiency, as this 

is calculated by the difference between the losses per unit crop area of evaporation and percolation 

and the total applied water.  

An interesting feature, especially for arctic rivers, is the inclusion of a surface water energy balance 

into PCR-GLOBWB (Van Beek et al., 2012). This module simulates the surface temperature of 

freshwater bodies and this is used to predict the occurrence of river ice and those effects on the 

river hydraulics (wetted perimeter, Manning’s coefficient etc.) and consequently the discharge.  
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2.2. VIC 
The Variable Infiltration Capacity (VIC) model (Liang et al., 1994) was developed by the University of 

Washington and Princeton University and can be used as a hydrologic model and a land surface 

scheme. In this research, VIC was used as a global hydrological model. A comprehensive description 

of the model can be found in Gao et al. (2010a), but the main features and distinctive features will 

be described here as well.  

VIC can also be classified as a ‘leaky bucket’ model (Figure 2), as it also balances the water budget in 

a cell and creates runoff from the excess water. Furthermore, the full VIC model also balances the 

surface energy budget by solving for the surface temperature that balances the surface energy 

fluxes (sensible heat (S in Figure 3), ground heat (tG), ground heat storage and latent heat (L)) with 

the net shortwave( Rs) and longwave (Rl) radiation. By obtaining the surface temperature, surface 

processes that are energy related, for example snow melt or evaporation, are more accurately 

modelled. However, the downside is that this requires a sub-daily time-step, with the appropriate 

meteorological input data, and results in a longer computation time. The version of VIC with the 

energy balance is called VIC-EB in the rest of this study. VIC-WB only considers the water balance 

and assumes that the surface temperature is equal to the air temperature when the grid cell is 

snow-free. In the case of snow, the snow model operates at a sub-daily time step and solves the full 

energy equation at the snow surface. Overall, this still results in a significant saving of computation 

time, but at the cost of accuracy.  

Figure 2: Schematic of the VIC 3L model with mosaic representation of vegetation coverage. Included are the different 
soil storage layers and moisture fluxes that are calculated or used by VIC. P is precipitation, Ec is evaporation from the 
canopy layer, Et is evapotranspiration from the vegetation, E is evaporation from the soil layer, L is latent heat flux, S 
the sensible heat flux, Rl is the incoming and outgoing long wave radiation, Rs is the incoming and outgoing short wave 
radiation and tG is the ground heat flux. The discharge components are indicated by R (runoff), B (baseflow), Q 
(percolation) and I (infiltration). Source: Gao et al., 2010a. 
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The energy balance is also included in the snow module of VIC. This module is schematically 

explained in Figure 3. Since the scale of snow processes is smaller than the resolution of VIC in this 

research, sub-grid variability is taken into account. Grid cells are divided in multiple elevation bands, 

which have a number of land use classes. Therefore, each grid cell has a certain number of tiles with 

characteristic properties. Each tile runs the snow module separately and the results are recorded as 

the area-averaged values of all the tiles within a grid cell.  

Snow is simulated in VIC using a two layer snow pack, with energy exchange only occurring within 

the surface layer. The snow is also subject to compaction and ageing, resulting in a higher density 

and lower albedo respectively. Snow can also be intercepted by the vegetation, according to a 

efficiency ratio between precipitation and precipitation interception (taken as 0.6, Storck et al., 

2002). The maximum storage is based on the LAI of the vegetation cover. Meltwater can be stored, 

both in the canopy and in the snowpack on the ground, and will only contribute to runoff once the 

water holding capacity has been exceeded.  

 

Figure 3: Schematic of snow accumulation and ablation processes in the VIC snow model. Source: Gao et al., 2010a. 

As shown in Figure 2, each grid cell can have multiple tiles, each with its own vegetation 

characteristics. The soil characteristics are the same for each tile within a grid cell. Similar to the 

snow module, soil moisture, infiltration, water movement between the soil layers and runoff are 

calculated separately for each tile and then fractionally summed for the whole area. This is also done 

for the energy fluxes. Lakes and wetlands are modelled in the same way. They are assigned a tile 

with appropriate lake or wetland characteristics and that tile is added to the vegetation mosaic 

(Bowling and Lettenmaier, 2010). This option can be turned on or off, as it requires additional 

information to function. This study does not use this function. 
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The routing module of VIC (RVIC) is separate from the water budget calculations in each cell. VIC 

calculates the runoff for each cell and a separate routing model (Lohmann, et al., 1996, 1998) is used 

to transport the runoff and baseflow to the channel and through the channel network. Once the 

water reaches the channel, it is no longer part of the water budget and cannot re-enter the local 

water balance. The routing model uses a time-invariant velocity and diffusivity to calculate a unit 

hydrograph between each upstream grid cell and one or more downstream locations of interest.  

A generic reservoir module was implemented in the routing model by Haddeland et al. (2006a). 

Similar to PCR-GLOBWB, the model forecasts the reservoir inflows for the next year. The optimum 

reservoir release is determined based on these forecasts.  

VIC also has an irrigation component. The main function of this component is to avoid vegetation 

stress due to limited water availability (Haddeland et al., 2006b). Irrigation begins when the available 

soil moisture is below the level where transpiration is possible and continues until the soil reaches 

field capacity. Water needed for irrigation can be extracted from the local river runoff, or from a 

reservoir or another source in the basin. In this mode, the water availability defines the total amount 

of irrigation possible. The irrigation module can also be used to calculate the total water demands. In 

this mode the water is freely available and the irrigation can always continue to field capacity.  

2.3. Important differences between VIC and PCR-GLOBWB 
The aim of VIC is similar to that of PCR-GLOBWB, to calculate the water budget in a grid cell. 

However, by looking at the schematic figures of PCR-GLOBWB (Figure 1) and VIC (Figure 2), 

differences between the structures of both models become visible immediately. The first distinction 

is the amount of surface energy fluxes calculated by VIC compared to PCR-GLOBWB. Together, these 

fluxes (S, L, Rs, RL and τG in Figure 2) make up the energy balance of VIC as described above. The 

direct result of this energy balance is that the surface temperature is more realistically modeled than 

it is with the assumption that the surface temperature is equal to the air temperature. Especially 

during clear conditions the difference between the surface and air temperature is large as the 

surface heats and cools faster than the air above the surface. This should be visible in the output of 

the models in the fact that snow melt and evaporation processes should be more accurately 

modelled on the local scale. However, the energy balance also adds more complexity. The physics 

are more directly represented with an energy balance, but the model also needs more detailed input 

data. If there is an uncertainty in the extra input data, the same would be true for the results.  

Apart from the energy budget, the snow module of VIC is more advanced than the module of PCR-

GLOBWB. PCR-GLOBWB uses the snow module of the HBV model (Bergström, 1995), a relatively 

simple degree day melt model that only deals with snow melt. VIC on the other hand also includes 

processes such as compaction, ageing and snow interception. Moreover, VIC also uses the energy 

balance for the melt and accumulation processes. 

Evaporation is also calculated differently in both models. PCR-GLOBWB uses the Hamon equation 

coupled with crop factors for different vegetation types to calculate the reference potential 

evapotranspiration (PET). Bare soil evaporation can either be forced by the meteorological data 

(ERA40) or calculated by converting the reference evapotranspiration to reference soil evaporation 

and transpiration. It is also possible to force the model with the reference PET. In this case any pre-

existing dataset of PET can be used. This study used the Hamon equation to calculate the reference 
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PET. In order to evaluate the differences between both methods, one simulation of the Amazon 

basin used the reference PET calculated by the Penman-Monteith equation.  

VIC considers three types of evaporation: evaporation from the canopy layer, transpiration from the 

vegetation and bare soil evaporation. Penman-Monteith is used to calculate the potential 

evaporation, which is transformed to actual canopy evaporation and vegetation transpiration using 

vegetation-specific resistance coefficients. Bare soil evaporation is similar for saturated soils in both 

models, with the hydraulic conductivity as the maximum limit, otherwise it is the calculated 

evaporation rate. The Arno formulation is used for unsaturated soil. VIC uses the Arno formulation 

of Franchini and Pacciani (1991) while PCR-GLOBWB uses the revised Arno scheme of Hagemann and 

Gates (2003).The main change in the revised Arno scheme with respect to evaporation is the 

introduction of the minimum soil water capacity. In the old scheme, the minimum soil water 

capacity was set at zero, while in the improved scheme this can be chosen according to the type of 

soil (Hagemann and Gates, 2000). The fractional saturation curves are also improved. These curves 

are used to determine the distribution of soil water capacities in a gridcell and therefore influence 

the infiltration and runoff within a gridcell. 

Another difference in model structure between both models is the amount of sub grid variability 

each model takes into account, essentially improving the resolution of the model. VIC offers more 

versatility in the amount of vegetation/land use tiles that can be chosen for each grid cell. The user 

can specify a ‘N+1’ number of tiles, meaning that the amount of vegetation tiles is only limited by 

the amount of information present for each class and the effort that the user is willing to put into 

the parameterization phase. PCR-GLOBWB has six vegetation classes: natural vegetation, rain-fed 

crops and irrigated crops, all three subdivided into tall and short vegetation. The separation is made 

based on the rooting depth of the vegetation. Tall vegetation reaches the second soil layer and short 

vegetation only draws water out of the first soil layer. In VIC, the rooting depth can also be specified 

for each vegetation tile.  

Even though the vegetation can have many different characteristics in each grid cell in VIC, the soil 

parameters are kept constant within each gridcell. PCR-GLOBWB, in contrast, offers sub grid 

variability for the soil type along with the characteristics for each type. Moreover, due to the 

improved Arno scheme in PCR-GLOBWB, the variability of sub grid soil saturation is better accounted 

for (Hagemann and Gates, 2003).  

VIC does not have a module similar to the river temperature module from PCR-GLOBWB. As a result, 

PCR-GLOBWB might produce more accurate results for open water evaporation due to the more 

accurate river temperature. Moreover, in arctic regions PCR-GLOBWB has the possibility to model 

river ice with this module. The occurrence of river ice and the decrease of discharge in rivers with ice 

jams in PCR-GLOBWB might be one of the causes for different results in the arctic case study.  

Another difference is the amount of discharge fluxes. PCR-GLOBWB calculates three different flows 

to the channel: direct runoff, interflow and baseflow. VIC only differentiates direct runoff from 

baseflow. Because the water balance remains equal, i.e. there is no water lost or created, it will not 

have significant consequences for the discharge. It might reduce the peak of discharge in VIC, as the 

water will have to travel to the lowest soil layer before it can become baseflow. In PCR-GLOBWB, the 

middle soil layer can also drain to the river, which could lead to a more concentrated peak in 

discharge.  
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2.4. Study areas 
The study uses seven domains, consisting of a global domain with a spatial resolution of 0.5-degree 

(30 arcminutes, approximately 50km, depending on the latitude) as well as six specific regional case 

study areas. In PCR-GLOBWB the regional case study areas were simulated on a 0.083 degree 

resolution (5 arcminutes, approximately 10km) to compare them to the low resolution results of the 

global comparison. Three of these regional case study areas are EartH2Observe case study areas: the 

Magdalena-Cauca catchment in Colombia, the Nile catchment in Eastern Africa and the Brahmaputra 

catchment in Bangladesh/India. The other three, which represent the different climate regions of 

the world, were selected because they are large, and have sufficient information available for model 

evaluation: the Amazon in South-America (tropic), the Mississippi in the US (temperate) and the 

Mackenzie in Canada (arctic). The case study areas are described below, each with their unique 

characteristics that could lead to differentiation between the model results of VIC and PCR-GLOBWB.  

 

Figure 4: Main river basins in the world. Case study regions are marked by a red circle. Modified from United Nations 
Environment Program (UNEP); World Conservation Monitoring Centre (WCMC); World Resources Institute (WRI); 
American Association for the Advancement of Science (AAAS); Atlas of Population and Environment, 2001. 

For areas with large amounts of available information, GHMs might seem less useful at first glance. 

However, these areas can be used to evaluate the models on a regional scale and possibly calibrate 

them. If models perform well in these regions, it may be inferred that they perform similarly in other 

areas, as long as the quality of the input is the same. Hence, if the models are forced with globally 

available data and perform adequately for the three information-rich regions, it may be expected 

that the models will perform adequately in the EartH2Observe case study areas as well. 
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Table 1: Statistics for the six different rivers used in this research. Source length and height difference: Penn, 2002 

River Basin Climate 
Height 

difference 
(m) 

Length 
(m) 

Average 
discharge 

EartH2Observe 
study area 

Discharge 
station 

location 
References discharge 

Amazon Tropical 5,170 6,276 203,000 No Jatuares Martinez et al., 2009 
Brahmaputra Monsoon 5,210 2,897 20,000 Yes Bahadurabad Gain et al., 2011 

Mackenzie Arctic 156 1,802 9,910 No 
Arctic Red 

River 
Emerton et al., 2007 

Magdalena Tropical 3,685 1,600 7,200 Yes Calamar Gottschalk et al., 2015 
Mississippi Temperate 450 3,734 16,792 No Vicksburg Goolsby, 2000 

Nile 
Tropical 
and arid 

2,700 6,853 2,830 
Partly (Blue 

Nile 
catchment) 

Dongola 
Nile Basin Initiative: 
www.nilebasin.org 

Each of the rivers has specific features that could provide different results between VIC and PCR-

GLOBWB. The Magdalena and the Amazon are both in a tropical climate, resulting in high 

evaporation and precipitation rates during the year. Moreover, the Amazon has an immense 

drainage basin with a very high average discharge. The size as well as the climate should provide a 

challenge for both PCR-GLOBWB and VIC to obtain accurate model results. The Brahmaputra is the 

largest glacier fed river system of Bangladesh. The river basin (Figure 4, area 19) lies in an area with 

intensive water use, either for agriculture or for economic and demographic demands. Discharges 

are especially high during the spring, when the Himalayan snow melts and during the summer, which 

is the monsoon season in Bangladesh. The high water use, together with the monsoon, high 

temperatures and snow melt rates, makes this an interesting case study to test the evaporation, 

snow melt and water use components of the models. 

The Mackenzie is an arctic river where snowmelt is very important for the discharge. A distinct 

feature of the Mackenzie that is hard to model accurately is river ice. River ice is a key factor in the 

occurrence of extreme hydrologic events in arctic regions (Goulding et al., 2009). It causes ice jams, 

which force the river to rise behind it. This can result in flooding but also in high discharge events 

when the jam clears due to high temperature or enough water pressure behind it (Beltaos, 2008). 

The large fraction of snow melt in the discharge of the Mackenzie could also be a distinction 

between both models for this area. The Mississippi is the main river of the American land and flows 

through a highly productive farming region, where about 58% of the total catchment is cropland 

(Goolsby, 2000). This means that it has a high water use component and this could cause different 

results for the two models. The last river is the Nile. It has a diverse catchment, with tropical 

rainforest in the south and the deserts of Sudan and Egypt in the north. This means that along the 

whole river evaporation rates are expected to be high, but only the southern part of the basin 

receives a significant amount of precipitation. Moreover, a large amount of water is used for 

irrigation, further reducing the discharge of the river. These two characteristics of the basin could 

provide a challenge for VIC and PCR-GLOBWB.  

2.5. Data 
Both VIC and PCR-GLOBWB are constructed to solve the water balance (Eq. 1) for each cell. In Eq. 1, 

ΔS is the change of storage in a cell (either groundwater, soil moisture or snow water equivalent 

(SWE)) over a certain time Δt. The terms on the right-hand-side are accumulated fluxes over the 

interval Δt, where P is the precipitation, E is the evapotranspiration (ET) and Q is the runoff that the 
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cell generates. To evaluate VIC and PCR-GLOBWB, this research will look at all components of the 

water balance. 

   

  
       Eq. 1 

 

The precipitation is part of the climatic forcing of both models. This research will use data from the 

WATCH-Forcing-Data-ERA-Interim (WFDEI) meteorological forcing dataset (version 3, Weedon et al., 

2014), as the data from this project is also used in the EartH2Observe ensemble. There are two 

precipitation datasets available in the WFDEI: the CRU (Harris et al., 2014) and the GPCC (Schneider 

et al., 2014). Both will be used in this research, but for the VIC-PCR-GLOBWB comparison the GPCC 

will be used, as this dataset includes more observation points. For the PCR-GLOBWB comparisons, a 

global simulation is made of PCR-GLOBWB on 30 arcminutes resolution with the CRU precipitation, 

to allow for comparison with the EartH2Observe project. The models will be forced with data from 

the whole period (1979-2010) and the results from the final years (2005-2010) will be used to 

compare the models. Only the final period will be evaluated, to allow for a spin-up of the models and 

because the quality of the comparison datasets is higher during this period than during the period 

before.  

Table 2: Details of the global input datasets used in this research.  

Name dataset Parameter Spatial resolution 
Temporal 
resolution 

Unit Reference 

CRU – TS Precipitation 0.50 degrees Daily m/day Harris et al., 2014 
GPCC Precipitation 0.50 degrees Daily mm/day Schneider et al., 2014 

FLUXNET-MTE ET 0.50 degrees Monthly mm/day Jung et al., 2009 
ERA-Interim ET 0.70 degrees Daily m/day Dee et al., 2011 

GRDC Discharge 1 station per river Monthly m3/s http://www.bafg.de/GRDC 
ASMR-E SWE 0.25 degrees Monthly mm Tedesco et al., 2004 

ESA CCI Soil moisture 0.25 degrees Monthly m3/m3 Liu et al., 2011; 2012; 
Wagner et al., 2012 

 

The ability to simulate the evapotranspiration of the models will be tested by comparing the results 

with upscaled measurement data. This research uses the evapotranspiration estimates from the 

FLUXNET-MTE data set (Jung et al., 2009). This data set provides a gridded, global estimate of fluxes 

of sensible and latent heat from the surface to the atmosphere. This can be converted to ET, since 

the latent heat is the energy version of the ET flux. It is based on the global dataset of eddy 

covariance measurements, the FLUXNET database (Oak Ridge National Laboratory Active Archive 

center, 2015). Jung et al. (2009) developed a new model for the upscaling of the measurements to a 

global grid. This model was based on the measurements of 178 tower sites, mostly located in North 

America and Europe. This means that the accuracy of the dataset is higher in this part of the world 

and a large amount of gridcells are dependent on the interpolation between the sites. Jung et al. 

(2009) also provides a standard deviation map of this dataset, which also indicates that the possible 

error is largest for the tropics. Because large negative correlations were found when comparing both 

models to the Fluxnet dataset in parts of the Amazon and tropical Africa (amongst other regions), an 

extra ET dataset was used to gain more insight in these regions. The ERA-Interim ET dataset was 
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chosen for this purpose (Dee et al., 2011). ERA-Interim is the latest global atmospheric reanalysis 

produced by the European Centre for Medium-Range Weather Forecasts. ERA uses conventional 

observations coupled with satellite data and is therefore less dependent on limited observation 

points (Dee et al., 2011).Mueller et al. (2011) performed a cluster analysis with several ET datasets 

and found that Fluxnet and ERA-Interim do not have a large degree of association between them. 

This means that these datasets show specific spatial patterns that are less correlated to each other 

than to several other ET datasets. This could lead to different results when the models are compared 

to the Fluxnet ET or to the ERA-Interim ERT. Details about the resolutions and units of these datasets 

can be found in Table 2. 

The monthly averaged discharge is compared to measurements obtained from the Global Runoff 

Data Centre (GRDC) (available from http://www.bafg.de/GRDC). All rivers had at least several years 

of monthly averaged discharge measurements available in the GRDC, but not all reached 2010. The 

Bangladesh only had discharge data available in the GRDC from 1985-1992. Data from the 

Bangladesh Water Development Board was used for this river, as this consists of a longer period 

(1985-2010)( obtained from ffwc.gov.bd on 01/12/2015). These are the observation locations for 

each river and the length of the timeseries used: 

 Amazon at Jatuares: 1992-2010. There was a longer dataset available for the Amazon, but 

the models needed a longer spinup. 

 Brahmaputra at Bahadurabad: 1985-2010 

 Mackenzie at Arctic Red River: 1982-2010 

 Magdalena at Calamar: 1980-1990  

 Mississippi at Vicksburg: 1980-2010  

 Nile at Dongola: 1982-2002 

The difference in runoff generation was also evaluated. For each cell the evapotranspiration was 

subtracted from the precipitation. This results in the total amount of water available for runoff 

generation for both models. This does not directly equal the amount of runoff in each cell, but given 

the assumption that over a long period the change in storage is negligible to the amount of runoff 

simulated in that same period, it gives an indication of the runoff generated by that cell. Since there 

are no global datasets that measure this parameter, the obtained results will only be compared to 

each other.  

The storage part of the water balance equation will be evaluated using two parameters: the soil 

moisture in the top layer and the snow water equivalent (SWE). The results of both parameters will 

be compared to remote sensing data, the ESA CCI Soil Moisture dataset and the AMSR-E monthly 

snow water equivalent products. The soil moisture product is a combination of four passive soil 

moisture retrievals (SMMR, SSM/I, TMI and AMSR-E) and two active (ERS AMI and ASCAT) (Wagner 

et al., 2012, Dorigo et al., 2015). This combination leads to an accuracy similar to the best 

performing input product, but with an increased temporal resolution and is therefore preferable to a 

singular product (Liu et al., 2011, Liu et al., 2012). This product has three main drawbacks. First, it is 

only checked with other observations for the northern hemisphere (Dorigo et al., 2015), second, it 

only looks at the top part of the soil and third, it does not give any results when there is snow or 

permafrost in the area. This study compares the soil moisture of the first soil layer of PCR-GLOBWB 

and VIC with the satellite data. For PCR-GLOBWB this layer has a depth of 13-30cm and for VIC this 

http://www.bafg.de/GRDC
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depth is 10cm. Satellites only provide information about the top part of the soil (depending on the 

soil up to 10cm deep), meaning that not the exact same thing is compared. Especially after weather 

events there might be a difference between the models and the satellite data. However, because the 

soil moisture data is monthly averaged before the comparison, this effect is expected to be 

negligible.  

The AMSR-E instrument does not only provide data for soil moisture, its signal can also be used to 

estimate the SWE (Tedesco et al., 2004). There are several of these so called snow products, for this 

research the monthly snow water equivalent data set is used as both models can simulate the SWE 

of each grid cell. Details about the resolutions and units of these datasets can be found in Table 2.  

Table 2 shows that not all input and comparison data has the same spatial or temporal resolution as 

the resolution of the models for the different comparisons. This means that in order to use these 

datasets the resolution has to be changed. All comparison data was first scaled to the correct 

resolution (either 30 or 5 arcminutes) and then compared with the results of VIC and PCR-GLOBWB.  

Other input for both models are the soil characteristics. The FAO Digital Soil Map of the World (FAO, 

2003) was used as input for both models. This map gives the dominant soil for each grid cell and 

based on the soil type the parameters used in the model are determined. VIC used the soil 

parameter file from Zhou et al. (2016), which was calibrated to ensure realistic reservoir behaviour. 

They disaggregated the streamflow to produce spatial runoff fields, which were then used to 

calibrate the model parameters of VIC. Consequently, five of the six basins were calibrated (the 

Magdalena is the only uncalibrated basin). All basins in PCR-GLOBWB are uncalibrated.  

2.6. Model configuration 
PCR-GLOBWB was configured the same for all simulations. The irrigation, water demand and 

reservoir functions were all activated. Both VIC models and PCR-GLOBWB were run two times for the 

model structure comparison. The first run was used as a spin-up to obtain accurate base flow rates 

and water storage (soil, groundwater and snow water equivalent). The second run used the final 

results of the models as initial conditions. PCR-GLOBWB was run during the first run with the 

accuTravelTime routing option and the second time with the simplifiedKinematicWave.  

Only PCR-GLOBWB was used for the other runs. Since the focus of comparison was more on the last 

period of each simulation (2005-2010), only one run was done. For all runs, except the 

Evapotranspiration comparison, the runtime was split in two, to make a distinction in the routing. 

The routing from 1979 to 2004 was calculated with the accuTravelTime function, instead of the 

kinematic wave. This period was used as a spin-up. To obtain the most accurate routing results 

possible for the period used for the comparison, the second period (2005-2010) was simulated with 

the kinematic wave equations. This was done because the kinematic wave function needs more 

calculation time than the accuTravelTime function. Some EartH2Observe catchments only had 

discharge data available for the period before 2005. To obtain the most accurate results for these 

catchments as well, PCR-GLOBWB was run using the simplified kinematic wave (Brahmaputra and 

the Nile) or the kinematic wave (Magdalena-Cauca) function.  

In order to obtain the most accurate comparison results, VIC was configured as similar as possible to 

PCR-GLOWB. This study used the version 4.2.a with irrigation activated (available at 

https://github.com/UW-Hydro/VIC/tree/support/VIC.4.2.a.irrigation on 04/03/2016). VIC was run in 

https://github.com/UW-Hydro/VIC/tree/support/VIC.4.2.a.irrigation
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water balance (VIC-WB) and energy balance (VIC-EB) mode. Apart from the energy balance, no other 

differences in configuration between both VIC models occurred. VIC-WB was run twice for 1979 to 

2010, with the final conditions of the first run as the initial conditions of the second run. VIC-EB was 

run only once, but used the same initial conditions as the second VIC-WB simulations. To obtain the 

discharge at the measurement stations for the rivers, the streamflow routing model RVIC was used.  

2.7. Comparison scheme 
In order to answer the research questions, several separate comparisons were made. The main focus 

is on the comparison between both VIC versions and PCR-GLOBWB to evaluate the differences in 

model structure between these models. This is the only comparison included in the main part of the 

thesis. The other three comparisons are discussed in Appendix 1. Three different comparisons were 

performed to test the sensitivity of PCR-GLOBWB to different climate input data, resolution of the 

model and reference evapotranspiration method. The different properties of each comparison are 

shown in Table 3. All input and comparison data was first converted to the used resolution (either 5 

or 30 arcminutes) before it was used or compared with the results of PCR-GLOBWB 

Table 3: Different comparison schemes and their properties. For the potential evapotranspiration equations PCR-
GLOBWB simulated the Amazon basin using the Hamon equation and the Penman-Monteith equation. Only the model 
structure comparison is discussed in the results and discussion. See Appendix 1 for the results of the other three 
comparisons. The six case study regions are the basins of the Amazon, Brahmaputra, Mackenzie, Magdalena, Mississippi 
and the Nile.  

Comparison Model Resolution Climate forcing Region 

Model structure 
VIC-EB, VIC-WB and 

PCR-GLOBWB 
30 arcminutes GPCC Worldwide 

Climate forcing PCR-GLOBWB 30 arcminutes GPCC and CRU Worldwide 
Resolution PCR-GLOBWB 5 and 30 arcminutes CRU 6 case study regions 
Potential 

Evapotranspiration 
equations 

PCR-GLOBWB 5 arcminutes CRU Amazon basin 

 

2.8. Nash-Sutcliffe and Kling-Gupta efficiency scores 
The comparison of the discharge, evapotranspiration, soil moisture and snow water equivalent was 

done by comparing the coefficient of determination, Nash-Sutcliffe efficiency and Kling-Gupta 

efficiency. The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is one of the most widely 

used criteria for the comparison of hydrological models. It can be interpreted as a classic skill score 

(Murphy, 1988), meaning that it compares the 'prediction skill' of a model to a certain baseline. In 

the case of NSE, this baseline is the observations. It uses the following equation: 

 
      

∑            
  

   

∑          
  

   

 
Eq. 2 

Where n is the number of timesteps,      is the simulated value at timestep  ,      is the observed 

value at timestep   and    is the mean of the observed values.  

The NSE value is dimensionless and ranges from -infinity to 1, where 1 means that the model 

predictions match the observed values perfectly. An NSE value of 0 means that the model 

predictions perform no better than when the mean of observations is used as the predictor. A value 
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less than 0 means that the mean of the observations is a better predictor than the model. Even 

though the NSE is an easy-to-use predictor for model performance, it has its drawbacks. 

Modifications have been proposed by McCuen and Snyder (1975), Krause et al. (2005), Gupta and 

Kling (2009) and other authors. Especially the fact that NSE uses the observed mean as a baseline is 

criticized, because this means that extreme values and seasonality have a disproportionally large 

influence on the eventual score of the NSE.  

This research also uses an alternative measure, the Kling-Gupta efficiency, to complement the 

evaluation based on NSE values. Gupta and Kling (2009) created this alternative model performance 

criterion by decomposing the NSE into three components: the correlation, the variability error and 

the bias error (see eq. 3). They found that when you maximize the NSE value of model predictions, 

the variability will be underestimated. To improve this, they introduced an alternative model 

performance criterion, the Kling-Gupta efficiency (KGE). KGE consists of the same three components, 

but uses the Euclidian distance of the components to calculate the efficiency. As a consequence, the 

model calibration process is improved, as each component has to be calculated before the KGE can 

be calculated, resulting in a clear view of the origin of the model error.  

       √                     

Where: 
                                   

   
  

  
 

   
  

  
 

Eq. 3 

This study uses the NSE, KGE and r scores to determine the accuracy of the models compared to the 

comparison data. The discharge results consist of time series for a certain location and from this the 

NSE, KGE and r2 scores can be computed easily. The soil moisture, snow water equivalent and the 

evapotranspiration are spatially plotted for the entire area. Each cell has.a value for every timestep 

(a month) and the NSE, KGE and correlation scores are calculated for each cell. This means that all 

the predicted values for each cell are compared to the monthly values for the measurements. This 

results in a large grid with NSE, KGE and correlation values, one for each cell for each variable. For 

comparison, these scores were plotted in spatial plots and in boxplots.  

The model results were not only compared to the comparison datasets, but also to each other. The 

NSE, KGE and correlation scores were also calculated in a similar manner as above, but using PCR-

GLOBWB as if it were the observations. This produces spatial plots which show the areas where PCR-

GLOBWB and VIC differ the most.   
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3. Results of the VIC-PCR-GLOBWB comparison 
Here, the results of both VIC models and PCR-GLOBWB are compared to each other. As mentioned in 

the comparison scheme (see Table 3), both models were forced with the GPCC precipitation data 

and the simulation was done on a resolution of 30 arcminutes.  

3.1. Discharge 

Figure 5 shows, for each different model/setup, the average monthly discharge for each river. Keep 

in mind that VIC was calibrated for all studied rivers, except the Magdalena. The location of the 

discharge measurements and the corresponding KGE, NSE and r2 scores of the monthly discharge 

timeseries can be found in Table 4. Figure 6 shows the same scores, but in a graph to allow for easy 

comparison between the different models and rivers. To clarify, the scores in table are calculated 

based on the monthly discharge timeseries observed by the GRDC and simulated by PCR-GLOBWB 

and VIC and not on the average monthly discharge shown in Figure 5.  

It can be noted that each river is simulated accurately by at least one model, but there is not one 

model that performs well on every river. The river that is simulated most accurately by the most 

models is the Brahmaputra. All three models (PCR-GLOBWB, VIC-EB and VIC-WB) have the highest 

NS and high KGE scores for this basin. Especially VIC performs very well, with NS scores of 0.92 (VIC-

EB) and 0.90 (VIC-WB). However, as the average discharge shows, the simulations are still not 

perfect. VIC-EB simulates the peak months during the summer well, but overestimates the dryer 

months. VIC-WB underestimates the peak months, but performs the best during the dry months. 

PCR-GLOBWB underestimates the peak during the summer by around 20,000m3/s and overestimates 

the dry season. This leads to lower scores than the VIC models with a NS of 0.74 and a KGE of 0.56. 

The r2 of all models are high; both VIC models score 0.94 and PCR-GLOBWB 0.88. 

Another river that is simulated well in general is the Mackenzie. Again, both VIC models have the 

highest scores for this river (Table 4). Although the melting season in VIC starts earlier than observed 

by the GRDC and simulated by PCR-GLOBWB, the peak discharge in VIC corresponds to the observed 

values better than the PCR-GLOBWB results do. All models have trouble mimicking the behavior of 

the Mackenzie during the rest of the year. Both VIC models drop too fast after the melt peak and 

underestimate the tail during the summer. This gap closes later in the season and during the winter 

there is only a small underestimation. PCR-GLOBWB’s drop is slower than the observed values and 

therefore ends up overestimating the discharge at the end of the year. The NS, KGE and r2 scores 

confirm these findings as both VIC models score the highest, with VIC-EB slightly outperforming VIC-

WB, followed by PCR-GLOBWB 

For the other rivers there is only one model (either VIC-EB, VIC-WB or PCR-GLOBWB) that performs 

well, whereas the others score lower. An example is the Magdalena; both VIC models score negative 

for the NS and have very low r2 and KGE scores for this basin, PCR-GLOBWB scores better. VIC has 

trouble with the trend of the Magdalena, which results in the low r2 scores and thus also in low NS 

and KGE scores. PCR-GLOBWB performs better and due to the good r2, the KGE score remains 

relatively high.  

Both VIC models perform better for the Amazon than PCR-GLOBWB. The latter has trouble with the 

amount of water present in the basin, as its peak discharge is almost 70,000 m3/s lower than the 

observed value. VIC also does not reach the observed peak discharge, but the gap is smaller. 
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However, the timing of the peak is a month early in VIC, resulting in an underestimation for the rest 

of the year until the ‘dry’ season. PCR-GLOBWB has a correct timing of the peak discharge, but there 

is limited seasonality in the calculated discharge. This means that the gap between observed and 

calculated discharge is very small during the ‘dry’ period in the autumn and the beginning of the 

winter but then starts increasing again until the wet period in the summer. VIC predicts the 

seasonality better, but seems to be a month early with the timing.  

 

The results show that the last two basins, the Mississippi and the Nile were the hardest to predict. 

For these, Only VIC-WB was successful. Especially the difference between VIC-EB and VIC-WB for the 

Mississippi is striking, as VIC has the best and the worst scoring model for this river. These two 

models perform similar to each other on the Amazon, Brahmaputra, Mackenzie and Magdalena but 

differ on the Nile and especially on the Mississippi. All models have trouble with the discharge during 

Figure 5: Discharge (in m
3
/s) seasonality for the selected rivers for the period for which data is available from the GRDC. These periods are: for the 

Amazon (at Jatuares): 1992-2010, for The Brahmaputra (at Bahadurabad): 1985-2010, for the Mackenzie (at Arctic Red River): 1982-2010, for the 
Magdalena (at Calamar): 1980-1990, for the Mississippi (at Vicksburg): 1980-2010 and for the Nile (at Dongola): 1982-2002. PCR30-GPCC are the 
results of PCR-GLOBWB forced with the GPCC precipitation and with a resolution of 30 arcminutes.  
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the dry season for the Nile and the Mississippi. Especially with the Nile, PCR-GLOBWB overestimates 

the discharge for each month by a large amount. VIC-WB performs best for this river, whereas VIC-

EB overestimates the peak discharge of the Nile, but predicts the dry season relatively better.  

Table 4: Kling-Gupta, Nash-Sutcliffe efficiency scores and the coefficient of determination of the simulated discharge at 
an observation point for the different modes of the models. PCR-GLOBWB is indicated by PCR in the table. The same 
scores are also shown in Figure 6. 

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

r2 

   
Basin 

(location) 
Model 
(mode) 

PCR VIC (EB) VIC (WB) PCR VIC (EB) VIC (WB) PCR VIC (EB) VIC (WB) 

Amazon 
0.36 0.74 0.72 -0.50 0.47 0.26 0.80 0.60 0.67 

(Jatuares) 

Brahmaputra 
0.56 0.85 0.78 0.74 0.92 0.90 0.88 0.94 0.94 

(Bahadurabad) 

Mackenzie 
0.53 0.89 0.85 0.62 0.80 0.76 0.71 0.82 0.79 

(Arctic Red River) 

Magdalena 
0.69 0.26 0.33 0.57 -0.85 -0.64 0.89 0.25 0.29 

(Calamar) 

Mississippi 
0.35 -0.07 0.68 -1.58 -4.29 0.47 0.36 0.45 0.80 

(Vicksburg) 

Nile 
-3.23 -0.23 0.76 <-10 -0.88 0.72 0.61 0.81 0.72 

(Dongola) 
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Figure 6: NSE, KGE en r
2
 scores for the 6 basins. NSE scores for the Mississippi (-1.58) and the Nile (<-10) of PCR-

GLOBWB are not included, as well as the NSE scores for the Mississippi (-4.29) of VIC-EB. 
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3.2. Runoff 

The monthly runoff for each cell was estimated to be roughly equal to the precipitation subtracted 

by the calculated evapotranspiration rates. The monthly averaged difference between PCR-GLOBWB 

and VIC-EB is shown in Figure 7. It is visible that there are several regions in the world where the 

choice of model makes a difference in the amount of water available after evapotranspiration. The 

Amazon, Middle America, India and Southeast Asia have more water with VIC-EB than with PCR-

GLOBWB, while for Indonesia, Europe, East Canada/US and Southeast America the opposite is true. 

Looking at the case study regions, both the Amazon and Brahmaputra have more water available for 

runoff in VIC, whereas the Southern Nile basin has more water in PCR-GLOBWB. The other three 

rivers do not show a difference between the models, as both models have areas in these basins 

where they have more water than the other model. This water availability has impact on the 

accumulated discharge in the rivers. Both the Amazon and the Brahmaputra have a higher average 

calculated discharge in VIC-EB than in PCR-GLOBWB (Figure 5), while the Nile has a higher discharge 

calculated by PCR-GLOBWB.  

Despite the fact that there are several areas where one of the models has more water available than 

the other model, the correlation between both models is good (Figure 8). The majority of cells has a 

correlation score above 0.5, the correlation only fades away to scores below 0.5 in small areas in 

Central Canada and the Sahara. Some of the highest scores (above 0.95) occur in the Amazon basin 

and Southeast Asia, the areas where the average monthly differences are the highest.  

 

 

Figure 7: Difference of the monthly averaged precipitation minus evapotranspiration rates as calculated by PCR-
GLOBWB and VIC-EB (in mm/day) and averaged for the period 1979-2010. Positive values mean that the average daily 
precipitation minus evapotranspiration is larger in PCR-GLOBWB than in VIC-EB and vice versa. Note that this does not 
show accuracy, only the difference between the amount of water available after evapotranspiration for both cells. 
Scores above 3 mm occur in Egypt, Iraq/Iran and some coastal cells (in the range 4-6mm).  
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Figure 8: Correlation between the monthly averaged precipitation minus evaporation rates of PCR-GLOBWB and VIC-EB 
for the period 1979-2010.  

Figure B1 (in Appendix 2) shows the difference of the average monthly precipitation minus 

evapotranspiration rates between VIC-EB and VIC-WB. In contrast to the difference between PCR-

GLOBWB and VIC-EB, where both models had areas where they had the most water available, Figure 

B1 shows that VIC-EB has more water available than VIC-WB for almost the entire world. This is also 

shown in the discharge graphs (Figure 5), as the amount of water in the channel calculated by VIC-EB 

is higher than that of VIC-WB. The correlation between the VIC models is on the whole good (Figure 

B2) with scores above 0.9 for almost the entire world.  
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3.3. Snow water equivalent (SWE) 

The SWE comparison was done by comparing the monthly averaged SWE results of VIC and PCR-

GLOBWB to the ASMR-E SWE data product. The pattern of the snow simulations of all three models 

is similar, which is shown in Figure 9 and Table 5. All three comparison criteria are close to each 

other. PCR-GLOBWB has the highest scores for KGE and NS, but the margin with VIC is small. Both 

VIC models have a higher correlation with the ASMR-E data, but only by a small margin. VIC-EB 

scores slightly better than VIC-WB, but the difference is smaller than the difference with PCR-

GLOBWB. The median of the KGE and the NS are below zero, indicating that the models failed to 

achieve the ‘better than the mean of the observations’ benchmark. However, this is the median for 

the whole world. Figure 9 shows that there are several regions where the KGE and NS scores are 

positive and thus perform better than the mean of the observations in those cells. On the other 

hand, there are also several regions where the scores are negative. The regions with the highest 

scores are located in Eastern Europe, inland Scandinavia and central Canada. The lowest scores 

occur along the Atlantic coast (on both sides), the American Pacific coast and central Asia. For most 

areas, the VIC models score more positive than PCR-GLOBWB when the scores are positive, but also 

more negative when the scores are negative. The column ‘ASMR-E only +’ in Table 5 confirms that 

the median of only the positive scores of VIC is higher than PCR-GLOBWB.  

The correlation with the ASMR-E data is quite strong, as there are only a few cells with scores below 

0.5. Only the southern parts, where the occurrence of snow was limited to only a few months in the 

study period, score lower. The pattern of high and low correlation scores is similar between models 

as well, but it is not the same pattern as for the KGE and NS scores.  

Both VIC models have more extreme scores for all comparison criteria. Because both extremes are 

more pronounced in VIC, the median remains similar to PCR-GLOBWB, but the range is larger. This is 

also visible in the boxplots in Figure 10. The median is at the same level, but both the interquartile 

range and the lower whiskers are larger, indicating a larger spread in the calculated SWE values.  

Table 5: Median KGE, NS and correlation scores for the Snow Water Equivalent (SWE) output of all three models (PCR-
GLOBWB, VIC-EB and VIC-WB). Compared to ASMR-E SWE data and to the output of PCR-GLOBWB (indicated by PCR in 
the table). ‘ASMR-E only +’ is the median score of only the positive efficiency scores for that particular score.  

 
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 

 ASMR-E 
ASMR-E 
only + 

PCR ASMR-E 
ASMR-E 
only + 

PCR ASMR-E 
ASMR-E 
only + 

PCR 

PCR-GLOBWB -0.033 0.319 1 -0.094 0.313 1 0.692 0.756 1 
VIC-EB -0.055 0.341 0.737 -0.141 0.335 0.802 0.699 0.770 0.941 
VIC-WB -0.058 0.341 0.739 -0.143 0.336 0.802 0.696 0.770 0.941 
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The output of the models is also compared to the SWE output of PCR-GLOBWB instead of the ASMR-

E SWE. The results are shown in Figure 11 and Table 5. It shows that the results of VIC and PCR-

GLOBWB are similar for large parts of the study area. The KGE and NS scores are high for almost the 

entire Northern Hemisphere. The only negative areas are located in Western Europe and some spots 

in the Rocky Mountains, central China and the Tibetan Plateau. The correlation plots indicate that 

the temporal patterns in both models are comparable, with correlation scores above 0.90 for almost 

the entire area. The areas with the largest KGE and NS score difference in the ASMR-E comparison 

also have the lowest correlation scores (Figure 9), which indicates that the VIC and PCR-GLOBWB 

outputs differ at these locations. 

Figure 9: KGE and correlation scores of Snow Water Equivalent (SWE) output of PCR-GLOBWB, VIC-
EB and VIC-WB when compared to ASMR-E SWE data. 
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Figure 11: KGE and r scores for both VIC models when compared to the Snow Water Equivalent output of 
PCR-GLOBWB. 

Figure 10: From left to right: KGE, NS and correlation scores for the global runs of PCR-GLOBWB, VIC-EB and VIC-WB compared to ASMR-E Snow 
Water Equivalent data. Outliers are not shown in the boxplots. 
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3.4. Evapotranspiration 

Output to Fluxnet 

This comparison was done by comparing the monthly averaged ET results of VIC and PCR-GLOBWB 

to the Fluxnet ET data product. Looking at the spatial distribution of the KGE and NSE scores of both 

models with the Fluxnet dataset, the first observation is the occurrence of a belt of low (<0) scores 

along the tropics (NSE shown in Figure 12). Large parts of the Amazon, the Caribbean, tropical Africa, 

Indonesia and Northwestern Australia score lower than the other regions in both hydrological 

models. For the whole world, the median scores in Table 6 indicate that PCR-GLOBWB has the 

highest median for the KGE (0.464), while the VIC models score lower (median of 0.335 for EB and 

0.236 for WB). The values of VIC are also more skewed to the lower values than PCR-GLOBWB 

(Figure 14). This is also visible in the spatial plots. Even though both models show the blue belt of 

low KGE scores along the tropics, the belt of PCR-GLOBWB is smaller. Furthermore, the scores in 

Europe and the US are also higher than for VIC-EB. The NSE shows the same pattern, PCR-GLOBWB 

has a higher median and more positive scoring areas than VIC-EB, which scores better than VIC-WB.  

The correlation scores do not show the same belt, there are only low (negative) scores for the 

Amazon and to a lesser extent in central Africa and Indonesia (Figure 13). Apart from these three 

areas, the correlation scores are generally high, with the highest scores occurring in the northern 

hemisphere. Except for Northern Africa and the Middle East, the scores rarely dip below the 0.8 for 

both VIC models and PCR-GLOBWB has mostly correlation scores above 0.9 in this region. Northern 

Africa and the Middle East remain positive, but the correlation is weaker than in the other regions, 

as both models score in the 0.2-0.5 range for these regions.  

When comparing VIC-WB to VIC-EB, the blue belt along the tropics is even more pronounced in VIC-

WB. It stretches further south and southern Africa and Argentina score visibly lower as well. Also in 

other parts of the world it can be seen that VIC-WB has lower KGE values. This is also shown by the 

boxplot. 

Output to ERA-Interim 

A similar pattern as with the comparisons with Fluxnet is visible when the output of the models is 

compared to the monthly ERA-Interim ET data (Figure 12 and Figure 13). All models have a large belt 

of lower scores along the tropics, but the belt is less pronounced and especially Eastern Africa, the 

Middle East and Australia score higher. The global boxplots show that for VIC, the KGE, NS and 

correlation scores are all higher than with the Fluxnet comparison (Figure 14). Even though both the 

KGE and NS scores have improved, the correlation scores only improve marginally. The boxplots also 

show that the spread of the correlation has increased.  

Table 6: Median KGE, NS and correlation scores for the ET output of all three models (PCR-GLOBWB, VIC-EB and VIC-
WB), compared to FLUXNET-MTE data, ERA-Interim data and to the output of PCR-GLOBWB (indicated by PCR in the 
table). 

 
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 
 Flux Era PCR Flux Era PCR Flux Era PCR 

PCR-GLOBWB 0.464 0.437 1 0.408 0.320 1 0.895 0.895 1 
VIC-EB 0.335 0.403 0.242 0.005 0.156 -0.175 0.826 0.829 0.860 
VIC-WB 0.236 0.354 0.113 -0.197 0.078 -0.454 0.813 0.818 0.848 
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The boxplot scores for PCR-GLOBWB decreased in the ERA-Interim comparison, but they remain 

slightly higher than the scores for the VIC models (Figure 14 and Table 6). There are also areas in the 

world where both models score worse when comparing the data to ERA-Interim. Examples are India 

and the Sahel region in Africa. For the VIC models the decrease in accuracy over India and the Sahel 

is countered by the increase in South America, Southern Africa and Australia, which leads to higher 

global scores. For PCR-GLOBWB the increase is not sufficient (Southern Africa and Australia) or non-

existent (South America) to counter the decrease in other areas and therefore the global scores 

decrease.  

Important to note is the fact that PCR-GLOBWB obtains the highest comparison scores with the 

Fluxnet dataset, while the VIC models perform better when their output is compared to the ERA-

Interim ET data.  

With ERA-Interim, there also appears to be an issue with the coastline. For all three models, grid 

cells that have a high fraction of water (either coastal cells, or cells containing large lakes), have a 

lower KGE or NS score compared to neighboring cells that have a lower fraction of water. There is a 

similar pattern for the correlation, but it is much less pronounced than for the KGE and NS scores.  

Output to PCR-GLOBWB 

When comparing the output of VIC directly to the output of PCR-GLOBWB, it becomes clear that 

there are large differences between the results of the models for several areas around the world, 

but also several areas where the models perform similarly. The NSE and KGE scores are positive for 

large areas in China, Russia, Australia, North America and the Sahel in Africa, indicating that there is 

similarity in the results for these areas (Figure 12). However, in the tropical zone and Europe the 

scores are negative, indicating differences between both models.  

The correlations between VIC and PCR-GLOBWB are comparable to the correlation scores between 

VIC and ERA-Interim or Fluxnet. The median scores of the VIC-PCR-GLOBWB correlation are slightly 

lower than those of ERA-Interim or Fluxnet (Table 6), but there are less areas with a negative 

correlation. Especially the Amazon, which has low correlation scores for ERA-Interim and Fluxnet for 

Figure 14: From left to right: KGE, NS and correlation scores for the global runs of PCR-GLOBWB and VIC compared with 
ERA-Interim and Fluxnet comparison dataset. Outliers are not shown in the boxplots. 



30 
 

both models, has mostly positive correlation values when the models are compared to each other 

(Figure 13). However, despite the positive correlation, the KGE and NS values for both VIC-EB and 

VIC-WB for this area are below zero. This means that there are substantial differences between both 

models in this area, even though the pattern of the output is similar. 

3.5. Soil Moisture 

The soil moisture output was compared to the monthly volumetric soil moisture data from the ESA 

CCI dataset (Figure 15). For large parts of the world the KGE and NS scores are similar for VIC and 

PCR-GLOBWB. There are some differences between both models as well. PCR scores better for parts 

of central Russia, Northeastern Canada and Australia. But VIC has better KGE and NS scores for most 

of China and the Himalayas, as well as for the Sahara desert, the Arabian Peninsula and large parts of 

South America. Areas where PCR-GLOBWB scores poorly are either dry or wet. This also means that 

VIC scores better for some of the study areas. In the Mississippi, Amazon and the Egyptian Nile basin 

the scores for both VIC models are higher than the PCR-GLOBWB scores. Given the fact that the 

upper soil layer plays a large role in the generation of runoff during rain events, this could have an 

effect for the peak discharge of the rivers in these regions. The boxplots show that PCR has lower 

values than VIC for all three categories. The low medians and high spread indicate that there is a 

large spatial difference for the models. This is also visible in the spatial plots. There are large areas 

where the KGE and NS is low (<0) for both models. Especially in the north, all three comparison 

criteria are very low. Apart from the north, the correlation is only low in the Sahara and some areas 

in the tropics.  

The differences between VIC-EB and VIC-WB are very small. The median KGE and NSE scores for VIC-

WB are slightly higher than for VIC-EB (Figure 15 and Table 7), but the differences are small and no 

clear spatial pattern can be seen in the distribution of the differences. The correlation differences 

between both models are even lower. All put together, VIC-WB scores slightly better than VIC-EB for 

the KGE and NS, with the same score for the correlation.  

Figure B3 shows the KGE and correlation scores when VIC-EB and VIC-WB are compared to the PCR-

GLOBWB output. It confirms the differences in model results that are visible in Figure 15 and shows 

that for the majority of the world the results of VIC and PCR-GLOBWB are relatively close to each 

other (KGE score > 0.3). The correlation between the models is even better. Almost all areas show 

the same pattern in their output. The Nile in Egypt and some patches in northern Russia and Canada 

are lower (0.0-0.1), but only a small amount of the calculated gridcells has a negative correlation. 

Table 7: Median KGE, NS and correlation scores for the soil moisture output of all three models compared to ESA CCI soil 
moisture and to the output of PCR-GLOBWB (indicated by PCR in the table).  

  

 Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 
 ESA PCR ESA PCR ESA PCR 

PCR-GLOBWB 0.036 1 -2.16 1 0.40 1 
VIC-EB 0.10 0.28 -1.86 -3.22 0.47 0.72 
VIC-WB 0.11 0.28 -1.70 -3.23 0.47 0.72 
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Since the calibration of VIC has influence on the infiltration and runoff of the model, it is possible 

that the soil moisture scores are different in calibrated and uncalibrated areas. Figure 16 shows 

boxplots with the comparison scores of the Amazon (calibrated in VIC) and the Congo basin 

(uncalibrated). The boxplots indicate small differences between the scores. The largest difference 

occurs for the KGE score of PCR-GLOBWB, where the Congo basin has a higher score than the 

Amazon. The median scores for VIC are similar to each other, there are improvements for the KGE 

and correlation scores in the lower quartile, but the best 50% of the scores are similar for the 

Amazon and the Congo.  

  

Figure 15: KGE efficiency and correlation scores of soil moisture output of PCR-GLOBWB and both VIC models compared to the ESA CCI dataset. 
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Figure 16: Top to bottom: KGE, NSE and correlation scores for output of the models (PCR is PCR-GLOBWB) in the 
Amazon (AMA) and the Congo (CON) basin compared to ESA CCI soil moisture data. Outliers not shown in the figure.  
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4. Discussion 
In the ideal situation, the datasets used to compare to the results of VIC and PCR-GLOBWB are a 

perfect representation of reality. However, each of the reference dataset has its own shortcomings 

and regions and periods where the accuracy is lower. This makes the evaluation of the model 

differences more difficult, as not only the model outcomes need to be taken into account, but also 

the reliability of the comparison dataset. The evaluation was done by answering the research 

questions. The sensitivity of PCR-GLOBWB to changes in climate input, resolution and evaporation 

method will be discussed in Appendix 1.  

An indicator of the accuracy of a dataset is the correlation with the output of the models. When 

certain cells have high correlations for both VIC and PCR-GLOBWB, the chance that the control 

dataset has realistic values increases. Both models give a calculated estimation of the water balance 

in a certain cell, based on external forcing’s. If both of them give a certain pattern for a cell, this is 

based on those external forcing’s and the internal parameters of that cell. However, the models do 

not use the same internal parameters for each cell. Thus, if both models predict a certain pattern, 

there is a high chance that this pattern is the same for the reality. Therefore, one of the first 

indications of the quality of the comparison data is the correlation between both models and the 

comparison dataset. On the other hand, when the comparison data has a negative correlation with 

both VIC and PCR-GLOBWB, the pattern found by the comparison data is the reversed pattern of 

both VIC and PCR-GLOBWB. This raises doubt about the quality of the comparison data or the output 

of the models for that area.  

It has to be taken in consideration that most of the comparison was done with monthly averaged 

data. This was done because the used remote sensing data also has a monthly resolution. By using 

monthly averaged data the extreme values become less pronounced. This leads to more subdued 

results and inherently higher scores than if the comparison was done on a daily resolution. However, 

as there are still differences between the model output and the remote sensing, it remains 

acceptable to use this method for the evaluation.  

4.1. What is the effect of the energy balance in a global hydrological model on the 

discharge of a major river and on local hydrological variables, such as 

evapotranspiration, snow water equivalent and soil moisture?  

The discharge graphs show that the predicted discharge between PCR-GLOBWB and the VIC models 

is different. Important to note is also that, in five of the six studied discharges, a VIC model has the 

highest KGE and NS scores. VIC-EB scores the highest for the Amazon, the Brahmaputra and the 

Mackenzie and VIC-WB for the Mississippi and the Nile. Important to note is that VIC-WB performs 

similar to VIC-EB for the Amazon, Brahmaputra and Mackenzie (where VIC-EB scores the highest), 

but VIC-EB scores worse for the Mississippi and the Nile (where VIC-WB scores highest). The 

Magdalena is the only river where PCR-GLOBWB has the highest efficiency scores. This corresponds 

to the basins that were calibrated in VIC, only the Magdalena was not calibrated and this basin has 

the lowest scores. Calibration has a large effect on the discharge predictions of a model and it is 

probable that this is the reason for the more accurate discharge results of VIC. However, as the 

discharge is an accumulation of the runoff generated on a cell level, the local hydrology (the ET, soil 

moisture and SWE) plays an important part as well.  
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As explained in the introduction, the expectation was that the model with the energy balance (VIC-

EB) would have an advantage over the other models in the areas where energy based processes (ET 

and snow melt etc.) play a large role. However, the results do not correspond with this hypothesis. 

The ET output of PCR-GLOBWB corresponds better to both the Fluxnet and the ERA-Interim ET 

comparison data than the output of either VIC model. Moreover, PCR-GLOBWB shows higher scores 

on a cell to cell basis for the tropics, an area where the amount of ET plays an important role and 

higher scores of VIC were expected.  

VIC-EB is also compared to VIC-WB to explore the added value of an energy balance, as the energy 

balance is the only difference between VIC-EB and VIC-WB. The results are in favor of the VIC-EB. It 

has higher median values for all three categories with both ET comparison datasets and the boxplots 

and spatial maps show a better spread of the scores as well. Based on this, it can be concluded that 

an energy balance has a positive effect on the accuracy of the ET. However, other elements in the 

model structure of PCR-GLOBWB and VIC have influence on the ET as well and this leads to higher 

scores for PCR-GLOBWB.  

The snow module is also dependent on the energy balance in VIC. Especially since PCR-GLOBWB has 

a different method to model snow; differences between the three models were expected in the 

snow results. However, this is not the case. No clear differences were observed between the three 

models and the accuracy scores are very high when the VIC models are compared to PCR-GLOBWB.  

The high degree of similarity between the VIC and PCR-GLOBWB SWE output raises doubts about the 

accuracy of the ASMR-E SWE products. The high correlation scores between both VIC and PCR-

GLOBWB with the ASMR-E comparison dataset indicate that the snow pattern is included accurately 

in all three datasets (VIC, PCR-GLOBWB and ASMR-E). However, the low KGE and NS scores for the 

same areas suggest that there is a difference between the SWE obtained by ASMR-E and the SWE 

calculated by VIC and PCR-GLOBWB. Given the fact that both models perform very similar to each 

other for extensive areas, it would appear that ASMR-E is the weakest link in the chain. A different 

SWE dataset could be used to test this.  

Gao et al. (2010b) tested the accuracy of the AMSR-E snow products for a test area in central Alaska. 

In this test area an accuracy of 68.5% was obtained and the main issue was an overestimation of the 

SWE values by ASMR-E. Figure 17 shows the mean monthly difference between ASMR-E SWE values 

and the output of VIC-EB and PCR-GLOBWB. Based on the equations of the KGE and NS, in cells 

where the mean difference is large, the KGE and NS scores are low. This figure also shows that the 

difference between ASMR-E and the models is positive above Alaska, indicating that the output of 

Figure 17: Mean monthly difference between SWE registered by ASMR-E and by PCR-GLOBWB and VIC-EB in mm. 
Positive values indicate that the ASMR-E dataset has a larger SWE value for that cell than PCR-GLOBWB or VIC-EB.  
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ASMR-E is larger than the output of the models. This corresponds to the overestimation found by 

Gao et al. (2010b). However, other areas show the opposite: parts of Russia, Northern Europe, East 

Canada and the coast of western Canada show that the VIC-EB and PCR-GLOBWB simulations are 

higher than the ASMR-E observations, but the difference is generally smaller than for the areas 

where the opposite is true. Examining the difference over time shows that ASMR-E predicts higher 

SWE values than VIC and PCR-GLOBWB during the winter, but lower during the spring. This indicates 

that there is also a discrepancy between the melt seasons observed by ASMR-E and simulated by 

PCR-GLOBWB and VIC. 

Because the results of VIC and PCR-GLOBWB are so similar, it is impossible to draw decisive 

conclusions about the benefit of an energy balance for snow simulations where the amount of snow 

on a seasonal basis is an important issue. The differences between both models are very small and 

could easily be caused by the different snow modules of the models. It is interesting to see that, 

despite its relatively simple degree day snow module compared to the more sophisticated VIC snow 

module, PCR-GLOBWB scores similar to both VIC models. However, VIC has both higher and lower 

KGE/NS values than PCR-GLOBWB. This indicates that it scores better than PCR-GLOBWB in the areas 

where both models have positive KGE/NS scores, but also worse for the areas where the simulations 

differ more from the observations. As explained before, this could be due to the accuracy of the 

ASMR-E SWE observations. If only the positive comparison scores are taken into account, the VIC 

models compare better to the ASMR-E data than PCR-GLOBWB. This difference is due to the 

different snow module, of which the energy balance is an important part.  

Despite the fact that VIC-WB uses the energy balance in the snow module, the VIC-EB results give 

slightly higher median scores for the KGE, NS and the correlation than VIC-EB. This is interesting, as 

VIC-WB is programmed to use the same energy balance as VIC-EB for the snow simulations and 

should predict similar values. The median of only the positive scores is more similar between both 

VIC models than the median of all the scores (Table 5), which means that the worse performing cells 

perform different in both models.  

Assuming that the ASMR-E observations have a perfect match with reality, the argument could be 

made for both models that they are the better snow predictors. For the whole world PCR-GLOBWB is 

(slightly) more accurate than both VIC models, as the boxplots show that the median of the KGE and 

NS scores is (slightly) higher, and this model has fewer negative extreme values. On the other hand, 

VIC scores higher for all regions with positive scores and would therefore be the better choice for 

these regions. A more accurate control dataset, or better checks of the ASMR-E dataset could 

remove uncertainty about the actual SWE and lead to a better comparison between VIC and PCR-

GLOBWB.  

The last regional component that was compared in this study was the soil moisture. In contrast to 

the SWE, for soil moisture there are differences between PCR-GLOBWB and VIC. However, it is 

unlikely that the energy balance is the main cause of these differences. Both VIC models score better 

than PCR-GLOBWB for dry and wet areas, but especially the fact that VIC-WB scores slightly better 

than VIC-EB indicates that the energy balance is not the main cause of this. It is more likely that the 

calibration of VIC has a positive influence on the soil moisture in VIC, leading to the higher efficiency 

scores for soil moisture. Figure 16 is a confirmation of this, as the two VIC models score better than 

PCR-GLOBWB for the Amazon (which is calibrated in VIC) and similar for the Congo (which is 
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uncalibrated). Moreover, both VIC models use the same soil parameter file. Therefore, it is 

understandable that the soil moisture results are very similar.  

To conclude, PCR-GLOBWB compares better to both Fluxnet and ERA-Interim for the ET, VIC scores 

better for the soil moisture and the results of the SWE simulations are similar to each other. So 

despite the fact that the overall results of the local comparison are balanced between PCR-GLOBWB 

and VIC, the discharge results are in favor of VIC. An important factor is the calibration of VIC, as VIC 

scores higher than PCR-GLOBWB for each of the calibrated basins. Given the fact that the method of 

calibration was aimed at recreating the runoff fields with VIC it is not surprising that VIC obtains 

higher scores for the discharge. However, the uncalibrated PCR-GLOBWB scores high for the 

Brahmaputra, Mackenzie and Magdalena (with the Penman-Monteith PET method also for the 

Amazon, see Appendix 1) and it would be interesting to see the scores of PCR-GLOBWB when this 

model is also calibrated. 

Given the differences between PCR-GLOBWB and VIC in model structure, it is impossible to draw 

decisive conclusions about the effect of an energy balance when only these two models are 

compared. The VIC-EB and VIC-WB comparison is more suited for this. VIC-EB has higher efficiency 

scores for the ET (for both the ERA-Interim and Fluxnet comparison) and similar scores for the soil 

moisture, SWE and the discharge of most of the studied rivers. Based on this it can be concluded 

that an energy balance has a positive effect on the ET results of the model, but a different ET 

method (e.g. the method of PCR-GLOBWB) is more accurate compared to the Fluxnet and ERA-

Interim datasets.  

4.2. In which climate zone will this effect be the largest: tropic, arctic, or temperate? 

The results show that PCR-GLOBWB scores higher for the ET in both areas where the energy balance 

was thought to be an advantage: the tropics and the boreal regions. VIC-EB scores better for both 

regions than VIC-WB, but PCR-GLOBWB outperforms both models.  

A downside to this comparison is the fact that the tropical region has low (negative on some places) 

correlation scores for all three models. With ERA-Interim the correlations increase, but they remain 

low. Especially for the Amazon the correlation is negative for a large part of the basin. This, coupled 

with the low KGE and NS scores, indicates that there is a large discrepancy between the output of 

VIC and PCR-GLOBWB and the ET of Fluxnet and ERA-Interim. Since ET is an important factor of the 

hydrological balance in the Amazon, this should also be seen in the discharge. However, the 

discharge graphs of the Amazon show that the VIC models are able to approach the observed 

discharge better than the PCR-GLOBWB models. This could indicate that the ET observed by Fluxnet 

and ERA-Interim is less accurate than the ET modelled by VIC or it confirms the fact that calibration 

has a large effect on the accuracy of the discharge. This could be tested by simulating the discharge 

of other tropical rivers, which are not calibrated, and by comparing the ET output of the models to 

other ET datasets.  

The output of the models is very similar for the SWE. This indicates that the effect of an energy 

balance in the snow module is small. However, snow melt plays a major role in the peak discharge of 

arctic rivers and both VIC models give a very good approximation of the peak discharge of the 

Mackenzie. The peak in PCR-GLOBWB is lower, indicating that the model has trouble with the snow 

melt peak during the spring. The discharge in PCR-GLOBWB after the peak is higher than in VIC and 

eventually also higher than the GRDC, with similar yearly discharge values. This means that the 
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response in PCR-GLOBWB is too slow and the water is too much retarded. In VIC, the response is 

actually too fast, as the discharge after the peak is lower than the observations of the GRDC. The 

response of the model is related to the soil parameters, since these determine the timing of the 

runoff and baseflow to the rivers. When the water is in the rivers, the routing module determines 

the velocity in the river, but this effect is small on a monthly timescale. Since both VIC models use 

the energy balance in the case of snow, the discharge is very similar in the winter. During the 

summer this is not the case and small differences between the predicted discharges of VIC-EB and 

VIC-WB are visible. In this period VIC-EB is somewhat more accurate than VIC-WB. 

In conclusion, the calibrated soil parameters of VIC have a large influence on the accuracy of the 

discharge in the tropical and arctic basins. When only VIC-EB and VIC-WB are considered, it becomes 

clear that the energy balance has a positive effect on the ET and discharge in the tropics. In the arctic 

regions this could not be evaluated, as both VIC-EB and VIC-WB use the energy balance in the case of 

snow. VIC-WB does not use the energy balance in the summer and in this period the discharge 

scores are higher for VIC-EB in the Mackenzie. The ET scores are also higher for VIC-EB, which is also 

caused by the energy balance. However, the differences are larger over the tropics, where the 

magnitude of the energy based processes (ET) is larger and therefore the importance to model these 

processes more accurately.  

4.3. How do VIC and PCR-GLOBWB perform in areas where abundant other 

information is available? And which model provides better estimates of water 

fluxes in regions where other information is not readily available? 

The areas with abundant information are assumed to be the developed nations for the local 

variables and for the discharge the basins of the three big rivers; the Amazon, Mississippi and the 

Mackenzie. The Fluxnet and ERA-Interim dataset are both similar in the fact that they use 

observations coupled with a model to create a global grid of ET values (see data section). However, 

there still remain areas in the tropics with low correlations between both datasets and VIC and PCR-

GLOBWB, indicating possible errors in any of the models. Given the dependence on observations in 

both datasets, which are focused in the developed world, it can be assumed that the accuracy of 

both ET datasets is higher for these regions. This might also be the reason why the accuracy scores 

are lower for the tropical regions.  

The soil moisture and SWE data are provided by satellites. This means that there is no extra 

information or accuracy for the developed world compared to the developing world. It is possible 

that the extra information content of the information rich areas is included in the model side of the 

comparison, by using more accurate parameters in those areas. However, based on the results of 

both comparisons, there appears to be no clear bias towards the information rich areas. Therefore it 

can be concluded that both models perform similar for the whole world.  

The discharge results do not show a division in EartH2Observe case study areas and information-rich 

areas. There is always at least one model that gives acceptable results for a single river and the 

highest scores occur in a river from the EartH2Observe program, the Brahmaputra. The worst 

performing rivers are the Mississippi and the Nile, where only VIC-WB obtains a positive Nash-

Sutcliffe score. As shown in the results, the Nile has also very low scores for the local hydrological 

comparison; this explains the low scores for this basin.  
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A possible explanation why the results do not show a spatial distinction between information-rich 

and information-poor regions in the world is the use of globally available data as input. The most 

important parameters that describe the soil, vegetation, land use, climate etc. are globally available 

at the resolution of both models. Comparing the results of the models to accurate data with a higher 

resolution could result in more insight in these regional differences.  

4.4. Will the results of VIC-WB be similar to those of PCR-GLOBWB, or are there other 

differences in the model structure of VIC that cause differences between the 

results of VIC-WB and PCR-GLOBWB? 

The results have shown that, apart from the energy balance, other differences exist between VIC 

and PCR-GLOBWB that influence the results of the models. It can be seen from almost all results that 

VIC-WB corresponds more to VIC-EB than to PCR-GLOBWB. This indicates that the energy balance is 

not the only difference between both models. Other differences between both models that were 

identified before running the simulations were the ET calculations, the snow module, the calibration 

of VIC and the amount of subgrid variability in each cell. The effect of the amount of subgrid 

variability is difficult to measure and calibration has already been discussed above, but the other two 

large differences in model structure can be evaluated.  

In order to compare the ET calculations to each other, a simulation was done where PCR-GLOBWB 

was forced with the potential ET calculated from the Penman-Monteith equation (see Appendix 1). 

However, despite the fact that VIC also calculates the potential ET with the Penman-Monteith 

equation, the results were still far apart. This indicates that there are other factors that also have 

influence on the ET. Given the fact that the ET depends on the amount of soil moisture and that 

these results differ between PCR-GLOBWB and VIC, it will not be possible to obtain exactly the same 

results for the ET. The gap between the results of VIC and PCR-GLOBWB shows that the fundamental 

equations to determine the actual ET in both models differ, leading to differences in the results of 

VIC-WB and PCR-GLOBWB.  

Because VIC uses a different method to simulate snow melt and accumulation processes, it was not 

expected that the SWE results of VIC-WB were more comparable to PCR-GLOBWB than to VIC-EB. 

Since VIC-WB uses the same energy balance as VIC-EB for the snow simulations, it is not surprising 

that the results of VIC-WB are more similar to the results of VIC-EB. The discharge results confirm 

these findings, as the discharge of VIC-WB is more comparable to the discharge of VIC-EB for all 

basins. Only for the Mississippi are the results of VIC-WB closer to the results of PCR-GLOBWB than 

to the results of VIC-EB.  

To sum up, the results of VIC-WB are more comparable to VIC-EB. The energy balance is not the only 

fundamental difference between both models and not the only reason why there are differences in 

results between VIC-EB and PCR-GLOBWB. Other reasons are the fundamental ET equations, the 

different snow module and the calibration/routing method used by the models.  
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5. Conclusion 
This study evaluated the effect of an energy balance on the accuracy of a global hydrological model, 

as well as the sensitivity of PCR-GLOBWB to changes in climate forcing, PET forcing and resolution. 

This was done by 4 different simulations of PCR-GLOBWB, each with a different setting/forcing that 

was changed, and the two versions of VIC (EB and WB). The results were compared to global 

datasets of the main components of the hydrological balance: the evapotranspiration, the soil 

moisture, the snow water equivalent and the discharge. Based on this comparison, the simulations 

received local KGE, NS and correlation scores for the ET, SWE and soil moisture and regional scores 

for the discharge at six different measurement locations.  

The main research question was to look at the effect of an energy balance in a global hydrological 

model. Compared to VIC-WB, the usage of an energy balance (VIC-EB) leads to higher accuracy 

scores for the ET and for three of the six rivers. The simulations with only the water balance score 

slightly higher for the soil moisture, but this difference is small and not in proportion to the increase 

of accuracy that the energy balance gives for the other components. Due to the parametrization of 

VIC, the results for the SWE are similar between VIC-EB and VIC-WB. PCR-GLOBWB performs better 

than both VIC models for the ET and only slightly lower for the soil moisture and SWE. The fact that 

PCR-GLOBWB scores similar for the SWE is surprising, especially given the fact that PCR-GLOBWB 

uses a relatively simple degree day snow module, while VIC has a more sophisticated 

melt/accumulation module with an energy balance. The very similar scores and patterns for the SWE 

suggest that the ASMR-E SWE dataset might not be accurate enough for a good comparison. The 

local results of the VIC comparison indicate that an energy balance has benefits for the ET and the 

SWE components of the water balance, but a completely different scheme (PCR-GLOBWB) might 

have even better or similar results. The results of PCR-GLOBWB can improve further if this model 

would introduce an energy balance. On the other hand, VIC can also benefit from the inclusion of 

the ET methods of PCR-GLOBWB.  

Compared to PCR-GLOBWB, VIC performs better for the discharge, as it has the highest scores for 

five of the six rivers, VIC-EB for the Amazon, Brahmaputra and Mackenzie and VIC-WB for the 

Mississippi and the Nile. Only the Magdalena is simulated better by PCR-GLOBWB than by VIC. While 

the local results are comparable for both models, the discharge results are clearly in favour of VIC. 

Given the fact that both VIC models perform better than PCR-GLOBWB in this area, the difference is 

probably not due to the energy balance of VIC-EB. The main reason that VIC has a higher accuracy 

for the discharge is because five of the used basins were calibrated, the only basin that was not 

calibrated, the Magdalena, was better predicted in PCR-GLOBWB. Moreover, VIC-WB performs 

similar or better than VIC-EB for the discharge predictions of all basins, reducing the need for an 

energy balance if the focus of study is on discharge predictions.  

The sensitivity of PCR-GLOBWB is not the same for each of the tested input/configuration. Forcing 

the model with the PET from the Penman-Monteith equation instead of the Hamon equation has a 

positive effect on all tested parts of the water balance. The discharge results are more similar to the 

results of the GRDC and to VIC, which also uses the Penman-Monteith equation for the PET. The 

effect of a different climate forcing can generally be found on a regional level. On a local level the 

changes are small, but the accumulated effect of the larger amount of precipitation in the GPCC 

dataset can be seen in the discharge of the studied rivers. All rivers show an increase in the 
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discharge, which leads to higher scores for the Amazon, Brahmaputra, Mackenzie and Magdalena. 

The Mississippi and the Nile are better predicted by the CRU precipitation.  

The final comparison was done to see the effect of an increase of resolution. It was expected that by 

increasing the resolution of PCR-GLOBWB from 30 arcminutes to 5 arcminutes, the accuracy of the 

model would improve as well. The higher resolution led to worse comparison scores on a local level, 

but some improvement for the discharge of the Amazon, Brahmaputra, Mackenzie and Magdalena. 

The reason for this remains unclear, but might be related to the input or comparison data. A part of 

the data was down/upscaled to 5 arcminute resolution and this conversion might have caused some 

discrepancies in the data. However, the decline in accuracy is so large in some areas that it is more 

likely that there exists an error in the model.  

Further research  

Areas where further research could provide more definite answers related to the effect of the 

energy balance are the ASMR-E SWE dataset and the effect of the Penman-Monteith PET on other 

areas in the world. As previously stated, the results of the SWE simulated by the models and the 

SWE found by ASMR-E differ on several places in the world. Given the strong correlation between 

the models and ASMR-E and between VIC and PCR-GLOBWB themselves, two models with 

fundamentally different snow modules, there is doubt about the accuracy of ASMR-E in the areas 

where the KGE and NS scores are low for both models. A different SWE dataset could be used to see 

if this would change any of the outcomes of this study. For now, VIC performs better in the areas 

where both models score high and worse for the areas where they do not. It would be a strong point 

in favor of the energy balance of VIC if it would turn out to be more accurate in the entire snow 

covered area. The use of Penman-Monteith for a global simulation of PCR-GLOBWB would result in a 

better worldwide comparison between VIC and PCR-GLOBWB by eliminating a component that is 

different in both models.  
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A. Appendix 1: Sensitivity of PCR-GLOBWB to changes in input 

forcing, resolution and evapotranspiration method 
Here, the results will be described and discussed that are not directly related to the VIC-PCR-

GLOBWB model structure comparison. These comparisons were related to the final research 

question: How sensitive is PCR-GLOBWB to changes in climate forcing, potential ET forcing and 

resolution? 

Climate input 
In order to see where the differences between the CRU and the GPCC precipitation datasets are 

located, a small evaluation of these datasets was done. Both datasets were compared for the period 

1979-2010 on a daily basis. Figure A1a shows that, on average, the daily precipitation differences are 

not very large and remain below 1 mm/day for the majority of the world. However, there are some 

local differences where the discrepancy between both datasets is larger. Moreover, the global sum 

of the average daily difference between GPCC and CRU is 1099mm in favor of the GPCC. Meaning 

that using the GPCC dataset leads to 1099mm water extra each day around the world. This includes 

the area over Greenland where CRU precipitation values are higher. Especially for the Amazon, the 

amount of water available with GPCC is larger than with CRU. Müller Schmied et al. (2014) also did 

some research about the differences between CRU TS 3.2 and GPCC v6 precipitation and their study 

found that the use of the GPCC dataset leads to an average increase of 8.7% compared to the CRU 

precipitation for each cell. Moreover, on 37.5% of the land area (except Greenland and Antarctica) 

the increase is more than 10%.  

Figure A1: A: Average daily difference between the CRU and GPCC precipitation in mm/day for each grid cell. A positive 
value indicates that the CRU has on average more precipitation than the GPCC in that cell and vice versa. B: Correlation 
between CRU and GPCC. All cells have a positive correlation. 
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Other regions of interest are the areas where the correlation between the precipitation datasets is 

relatively low (Figure A1B). The correlation is positive for the whole world, but there are several 

areas where the correlation between the datasets is below 0.5. These areas are the Andes, the 

Himalayas/Tibetan plateau, Arabia/Sahara and two areas in Canada/Alaska. Some of the areas 

where the absolute difference in precipitation is relatively large show a strong correlation.  

Table A1: Median KGE, NSE and correlation scores for the precipitation input simulations. Simulations were done with 
PCR-GLOBWB on 30 arcminute resolution with different precipitation datasets (CRU and GPCC).  

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 
  CRU GPCC CRU GPCC CRU GPCC 

ET 
Fluxnet 0.47 0.46 0.45 0.41 0.92 0.89 

ERA-Interim 0.43 0.44 0.31 0.32 0.87 0.90 
SM ESA CCI 0.21 0.21 x x 0.59 0.59 

SWE ASMR-E -0.05 -0.03 -0.13 -0.09 0.70 0.69 

 

Table A1 indicates that the difference between the two precipitation datasets is small. The scores 

are very close to each other and when the output is directly compared the KGE, NSE and the 

correlations are high (Table A2). The scores indicate that the output generated by the GPCC forcing 

data is more comparable to the ET-ERA and ASMR-E SWE data, whereas the CRU output corresponds 

better to the ET-FLUX. Even though the differences between the scores are very small, the 

differences for the discharge are larger. Figure A3 clearly shows that the six rivers have a higher 

discharge in the GPCC simulations. There are some deviations in the discharge patterns, but these 

changes remain small. For some rivers this leads to better scores (Amazon, Brahmaputra, Mackenzie 

and Magdalena) and for others to worse scores (Mississippi and the Nile) (Table A3).  

The spatial plots (Figure A2) show the areas with the largest differences between the results of the 

two PCR-GLOBWB simulations. The main areas with low KGE and correlation scores are located 

around the Sahara, Arabia, Central-Asia and Canada/Alaska, which are the same areas where the 

differences between the precipitation datasets were relatively large. The spatial plots also allow for 

evaluation of the river basins, in order to see what causes the change in discharge patterns. For the 

ET, almost all basins have high KGE and correlation scores, apart from the Amazon. The northern 

part of the Nile basin has low KGE scores as well, but the values next to the river are higher and play 

a larger role in the hydrology of the river. For the whole world, the SM scores are lower, especially in 

the Mackenzie basin.  
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Table A2: Median KGE, NSE and correlation scores when the output of PCR-GLOBWB with the CRU precipitation dataset 
is compared to the output of PCR-GLOBWB with the GPCC dataset.  

 Kling-Gupta efficiency Nash-Sutcliffe efficiency Correlation 

ET 0.90 0.87 0.94 
SM 0.74 0.53 0.81 

SWE 0.63 0.77 0.96 

 

 

  

Figure A2: KGE (left) and correlation (right) scores when comparing the GPCC PCR output with the CRU PCR output for all the three 
comparison criteria (top to bottom: ET, SM and SWE). 
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Figure A3: Discharge (in m
3
/s) seasonality for the selected rivers for the period for which data is available from the GRDC. These periods are: for 

the Amazon (at Jatuares): 1992-2010, for The Brahmaputra (at Bahadurabad): 1985-2010, for the Mackenzie (at Arctic Red River): 1982-2010, for 
the Magdalena (at Calamar): 1980-1990, for the Mississippi (at Vicksburg): 1980-2010 and for the Nile (at Dongola): 1982-2002. PCR05 are the 
PCR-GLOBWB simulations with a resolution of 5 arcminutes and CRU precipitation, PCR30-GPCC are the PCR-GLOBWB simulations with a 
resolution of 30 arcminutes and GPCC precipitation, PCR30-CRU are the PCR-GLOBWB simulations with a resolution of 30 arcminutes with the 
CRU precipitation and PCR05-Penman are the PCR-GLOBWB simulations with a resolution of 5 arcminutes with the CRU precipitation and the 
Penman-Monteith PET.  
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Table A3: Kling-Gupta, Nash-Sutcliffe efficiency scores and the coefficient of determination of the discharge at an 
observation point in the simulated river basins for the two simulations of PCR-GLOBWB. PCR-CRU corresponds to the 
PCR-GLOBWB simulation with the CRU precipitation as input and PCR-GPCC to the PCR-GLOBWB simulation with the 
GPCC precipitation as input.   

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

r2 

   
Basin 

(location) 
Model 
(mode) 

PCR-CRU PCR-GPCC PCR-CRU PCR-GPCC PCR-CRU PCR-GPCC 

Amazon 
0.38 0.36 -1.80 -0.50 0.38 0.80 

(Jatuares) 

Brahmaputra 
0.43 0.56 0.55 0.74 0.83 0.88 

(Bahadurabad) 

Mackenzie 
0.35 0.53 0.46 0.62 0.67 0.71 

(Arctic Red River) 

Magdalena 
0.72 0.69 0.41 0.57 0.70 0.89 

(Calamar) 

Mississippi 
0.35 0.35 -1.10 -1.58 0.47 0.36 

(Vicksburg) 

Nile 
-1.59 -3.23 -7.00 <-10 0.26 0.61 

(Dongola) 
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Potential evapotranspiration (PET) 
The Amazon basin was used as the test area for the PET. PCR-GLOBWB was run a second time on 5 

arcminute resolution, but with the PET forced by an input dataset. The reference potential ET 

calculated by the Penman-Monteith (hereafter Penman) was used in comparison with the Hamon 

PET calculated by a previous simulation. The CRU precipitation was used for both simulations. 

Table A4: Median KGE, NSE and correlation scores for the Amazon basin with two different evapotranspiration methods. 

 
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 
 Hamon Penman Hamon Penman Hamon Penman 

ET Fluxnet -0.42 -0.27 -22.5 -4.47 0.34 0.63 
SM ESA CCI 0.10 0.17 -2.46 -2.28 0.63 0.59 

 

The Amazon basin is one of the places with the lowest ET scores, compared to the rest of the world. 

With the Penman PET, the scores still remain below zero. Despite the fact that the model still fails 

the ‘better than the mean of the observations’ benchmark, there is improvement when PCR-

GLOBWB is forced with the Penman-Monteith PET data (Figure A4 and Table A4). Especially in the 

eastern part of the basin the scores have increased considerably. The NS scores do not show a large 

improvement at first glance, but the boxplots (Figure A5) show that most NS scores are less negative 

with the Penman PET than with the Hamon ET. This is not shown in Figure A4, as all values below -1 

are marked as -1 to keep visible differentiation of the most important scores (-1 to 1) possible. 

Another large difference is the correlation in the eastern Amazon. The Hamon PET has a negative 

correlation for large parts in this area, but the Penman PET shows a higher correlation for this area.  

The third column of Figure A4 shows the KGE, NS and correlation scores when the outputs of PCR-

GLOBWB of the two PET methods are compared to each other. It shows that there are structural 

differences between both datasets. Low KGE and NS scores over the Andes and the Amazon indicate 

that the output between the models is not comparable in those areas. High correlation scores occur 

in parts of these areas, but especially in the eastern part of the Amazon the correlation is below 

zero, implying that the trend for these cells is opposite to each other. See Table A5 for the median 

scores for this comparison.  

With the more accurate ET, the discharge is also simulated more accurately by PCR-GLOBWB. Figure 

A3 and Table A6 show that the efficiency scores are higher in the Penman-Monteith PET simulation. 

The figure shows that the average discharge of the Amazon is higher in this simulation and the 

seasonality of the basin is more pronounced.  

In Figure A5 the boxplots are shown with the scores of the PCR-GLOBWB output. Since VIC simulates 

the PET using the Penman-Monteith equation, the results of VIC are also included in this figure for 

comparison. Please note that VIC uses the GPCC precipitation instead of the CRU precipitation of 

PCR-GLOBWB and that VIC was originally run on 30 arcminute resolution. For this comparison the 

results of VIC were upscaled to 5 arcminutes and compared to the Fluxnet. Note that the Amazon 

was one of the regions where the precipitation differed between the GPCC and CRU datasets, so this 

is not a perfect comparison.  
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It is clear that, for the Amazon basin, PCR-GLOBWB scores more accurately compared to the Fluxnet 

when the PET is forced by the Penman-Monteith potential ET. VIC also uses the Penman-Monteith 

equation to calculate the potential ET and uses this to find the actual ET for the three components 

(canopy evaporation, vegetation transpiration and bare soil evaporation) (Gao et al., 2010a). 

However, the boxplots in Figure A5, but also Figure 12 and Figure 13, show that the VIC output 

corresponds less to the Fluxnet and ERA-Interim database than PCR-GLOBWB.  

  

Figure A4: Spatial plots with the KGE, NS and correlation scores of the two different PCR-GLOBWB simulations. The third 
column shows the scores when the output of the Hamon run is directly compared to the output of the Penman-
Monteith run. 
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Table A5: Median KGE, NSE and correlation scores when comparing the output of PCR-GLOBWB with the Hamon PET 
method to the Penman-Monteith PET method.  

 

Table A6: Kling-Gupta and Nash-Sutcliffe efficiency scores and the coefficient of determination of the discharge at an 
observation point in the Amazon basin.  

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

r2 

   
Basin 

(location) 
Model 
(mode) 

Hamon 
Penman-
Monteith 

Hamon 
Penman-
Monteith 

Hamon 
Penman-
Monteith 

Amazon 
0.45 0.64 -1.26 0.44 0.48 0.57 

(Jatuares) 

 

  

 Kling-Gupta efficiency Nash-Sutcliffe efficiency Correlation 

ET Fluxnet 0.43 -1.96 0.67 
SM 0.87 0.84 0.93 

Figure A5: From left to right: KGE, NS and correlation scores for the runs of PCR-GLOBWB and VIC with Fluxnet as comparison dataset. 
Outliers are not shown in the boxplots. Both PCR-GLOBWB simulations (Penman and Hamon) were run with a resolution of 5 arcminutes 
and forced with the CRU precipitation dataset. Both VIC simulations were run with a resolution of 30 arcminutes and upscaled to 5 minutes 
before comparing it to the Fluxnet dataset. They were forced with the GPCC precipitation. 



53 
 

Resolution 
Finally, to test the effect of a higher resolution, a comparison was made between PCR-GLOBWB on 

30 arcminute resolution and on 5 arcminute resolution. The six case study areas were used for this, 

as a worldwide simulation would need too much computation time. This comparison used the CRU 

precipitation, therefore the PCR-30 scores correspond to the PCR-CRU scores reported in the Climate 

input sensitivity test earlier.  

Table A7: Median KGE, NS and correlation scores for all studied basins in the two modes of PCR-GLOBWB. PCR-05 
corresponds with the PCR-GLOBWB simulation on 5 arcminute resolution, while PCR-30 corresponds to the PCR-
GLOBWB simulation on 30 arcminute resolution.  

 

 

 

 

 

 

 

 

 

 

 

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

Correlation 

 
Basin  PCR-05 PCR-30 PCR-05 PCR-30 PCR-05 PCR-30 

Amazon ET-Flux -0.42 -0.31 -22.5 -24.2 0.34 0.35 
 SM 0.12 0.17 -2.31 -1.63 0.61 0.64 

Brahmaputra ET-Flux 0.28 0.51 -0.45 0.19 0.90 0.93 
 SM 0.19 0.40 -4.29 -1.61 0.48 0.69 
 SWE -0.48 -0.50 -0.09 -0.07 0.24 0.22 

Mackenzie ET-Flux 0.71 0.65 0.85 0.81 0.97 0.97 
 SM 0.01 0.06 x x 0.26 0.27 
 SWE -0.04 -0.05 0.07 0.03 0.78 0.79 

Magdalena ET-Flux -0.59 -0.27 -36.9 -40.2 0.49 0.45 
 SM 0.31 0.40 -1.95 -1.25 0.56 0.63 

Mississippi ET-Flux 0.69 0.72 0.74 0.79 0.95 0.96 
 SM -0.09 0.012 -52.5 -19.02 0.29 0.39 
 SWE -0.10 -0.11 -0.07 -0.05 0.59 0.61 

Nile ET-Flux 0.16 0.21 -1.17 -1.00 0.68 0.71 
 SM -0.16 -0.05 -7.83 -4.70 0.43 0.46 
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It becomes clear from Table A7, Figure A6 and Figure A7 that, despite the higher resolution, the KGE, 

NS and correlation scores do not increase for almost all basins and test variables. They even 

decrease for the majority of the test cases. For the soil moisture this difference is generally larger 

than for the ET and SWE, but the pattern is similar. The Mackenzie is the only region that shows an 

increase in the ET accuracy when the resolution of the simulation is increased, all regions show a 

decrease in accuracy for the SM. However, despite the apparent decrease in accuracy with a higher 

resolution, Table A8 and Figure A3 show that several rivers obtain higher scores in the PCR-05 

simulation (compared to PCR30-CRU). Apart from the Magdalena and the Nile, all rivers have higher 

KGE and NSE scores for the high resolution simulation.  

The boxplots also show that not every basin has the same range of scores. The Amazon for example 

has correlation scores for ET between 1 and -1, whereas the Mackenzie has almost all scores 

between 1 and 0.8. The spread between the regions is generally the same for both resolutions. Only 

the Brahmaputra has a large difference between the two resolutions for the correlation. The median 

correlation does not decrease significantly (0.90 to 0.93), only the bottom 50% of the correlation 

scores is spread out more in the 5 resolution simulations. The spread of the scores for the different 

basins is more comparable to each other for the soil moisture.  

For the Mackenzie basin more than half of the cells do not have enough values to obtain a NS score, 

resulting in a very low median. The reason for this is that these cells are frozen for several months, 

leading to NoData values in the satellite data and not enough unfrozen months remain to obtain a 

valid NS score. For the Brahmaputra and Mississippi less than 50% of the cell values are not useable, 

this leads to the long tail visible in Figure A7. The Kling-Gupta can be calculated for these regions, 

because of the differences in calculation method.  
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Figure A6: KGE, NSE and correlation score boxplots for all studied basins on both resolutions compared to the Fluxnet ET 
dataset. Note that the NSE boxplots have different y-axis. Outliers are not shown in the boxplots.  
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Figure A7: KGE, NSE and correlation scores boxplots for all studied basins on both resolutions compared to the ESA SM 
dataset. Outliers are not shown in the boxplots. NSE scores for the Mackenzie basins could not be calculated.  
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 Table A8: Kling-Gupta, Nash-Sutcliffe efficiency scores and the coefficient of determination of the discharge at an 
observation point in the simulated river basins for the two simulations of PCR-GLOBWB. PCR-30 corresponds to the PCR-
GLOBWB simulation on 30 arcminute resolution and PCR-05 is the PCR-GLOBWB simulation on 5 arcminute resolution.  

  
Kling-Gupta efficiency 

 

Nash-Sutcliffe efficiency 

 

r2 

   
Basin 

(location) 
Model 
(mode) 

PCR-30 PCR-05 PCR-30 PCR-05 PCR-30 PCR-05 

Amazon 
0.38 0.45 -1.80 -1.26 0.38 0.48 

(Jatuares) 

Brahmaputra 
0.43 0.56 0.55 0.62 0.83 0.73 

(Bahadurabad) 

Mackenzie 
0.35 0.43 0.46 0.52 0.67 0.82 

(Arctic Red River) 

Magdalena 
0.72 0.59 0.41 0.00 0.70 0.81 

(Calamar) 

Mississippi 
0.35 0.46 -1.10 -0.35 0.47 0.43 

(Vicksburg) 

Nile 
-1.59 -1.65 -7.00 -7.12 0.26 0.61 (Dongola) 
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Discussion: How sensitive is PCR-GLOBWB to changes in climate forcing, 

potential ET forcing and resolution? 
The results have shown that the sensitivity of PCR-GLOBWB is not the same for each of these 

changes. Furthermore, there is a difference between the sensitivity on a local level and the 

accumulated difference in the form of the river discharge. On a local level the different precipitation 

input does not have a large influence, as the KGE, NS and correlation scores are similar for the CRU 

and GPCC simulations. A reason for this is the fact that the changes in precipitation are very small on 

a local level. The precipitation is increased on average 8.7% per cell (Müller Schmied et al., 2014), 

this results in relatively small increases in the total amount of water available and therefore the local 

effects remain small. However, the discharge is the accumulation of all the local water balances and 

therefore also influenced by the climate input. Differences between the discharge results are clearly 

visible: the average discharge of the GPCC simulations is higher for all the studied rivers. Only the 

Mississippi and the Nile have lower accuracy scores when the discharge is simulated with the GPCC 

precipitation in PCR-GLOBWB. The other rivers score higher when the GPCC simulations are 

compared to the CRU simulations. It is also worth noting that small differences in precipitation lead 

to larger discharge changes. Some basins are more sensitive to these changes than others, as the 

discharge changes are not the same for each basin, but all differences are above 1000 m3/s. 

PCR-GLOBWB is more sensitive to changes in ET forcing than to changes in the climate forcing. 

Changing the reference potential ET from the Hamon equation to the Penman-Monteith equation 

greatly increases the accuracy for the Amazon region. This effect is especially true for the ET itself as 

the accuracy scores show great improvement for the central basin, a region where the Hamon 

simulation scored lower. Not only the ET predictions, but also the soil moisture accuracy is 

improved. The increase is not as dramatic as the increase for ET, but the soil moisture scores are 

higher when the ET is forced by the Penman-Monteith equation. The discharge simulation for the 

Amazon shows a similar picture. It is more comparable to the observed discharge than any of the 

other PCR-GLOBWB simulations and the scores are more comparable to VIC-EB, which scores the 

highest for this basin.  

The increase of the accuracy scores in the Penman-Monteith simulation indicate that the Hamon 

equation has trouble calculating an accurate PET, at least for the Amazon. This could be expected 

based on the equation. The Hamon equation is relatively simple and requires less information than 

the Penman-Monteith equation. It can be expected that, when more knowledge about an area is 

available and used to predict the PET, the quality of the PET prediction is better than that of an 

equation which uses less information. The results show that with a more accurate PET, PCR-GLOBWB 

also performs better in other areas of the waterbalance (the soil moisture and discharge). Further 

research could look into the effect that the Penman-Monteith has on other parts of the world.  

The resolution results show that the accuracy of PCR-GLOBWB is different when the resolution is 

changed to 5 arcminutes. However, almost all accuracy scores are lower in the 5 resolution 

simulation. The actual reason for this is unknown and outside the scope of this thesis, but could be 

related to the comparison data. The discharge results show a different picture. Despite having worse 

local scores for the ET and soil moisture, the discharge has a higher accuracy in the 5 arcminute 

simulations, except for the Nile and the Magdalena.  
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A drawback of the resolution comparison is that the original resolution of the comparison data is not 

the same as the resolution of PCR-GLOBWB (5 arcminutes, 1/12th degree). The ESA soil moisture 

dataset and the ASMR-E SWE dataset have an original resolution of 15 arcminutes (1/4th degree) and 

the Fluxnet database of 30 arcminutes (1/2nd degree). This means that in order to compare both 

these datasets with the PCR-GLOBWB output they have to be upscaled to 5 arcminute resolution. 

The opposite is also true. Both the ESA and the ASMR-E data have to be downscaled for the 

comparison on 30 arcminute resolution. Moreover, some of the input data is not used on its 

standard resolution as well. An example is the climate forcing. This input has a resolution of 30 

arcminutes and is upscaled during the simulation in PCR-GLOBWB itself. The result is that a 

discrepancy exists between the spatial patterns of precipitation and temperature in the model and 

the real world. This discrepancy also exists in the 30 arcminute simulations, but is less pronounced 

due to the size of each cell. 

The results would be similar if this was the only difference between the two versions of PCR-

GLOBWB. This means that all results would look like the KGE scores for the soil moisture of the 

Southern Nile basin in Figure A8. Here both models produce somewhat similar results, with the same 

areas of high and low scores combined with a chessboard pattern on a more local level. This pattern 

indicates that due to the upscaling of the data, some cells correspond better to the data and some 

worse. The average of these cells is comparable to the cells in the PCR-30 version. However, this 

pattern is not visible for all basins. The boxplots in Figure A6 and Figure A7 already show that some 

basins perform worse in the 5 arcminute resolution and this can also be seen in the spatial 

distribution of KGE scores of Figure A8. The western parts of the Brahmaputra basin and the 

northern area of the Nile show a clear decrease of the KGE scores in the 5 arcminute simulation. The 

scaling issue is not the sole cause for this, as the area of the decrease is too large. This means that 

there are other issues in the model structure of PCR-GLOBWB that cause this decrease and reduce 

the accuracy of PCR-GLOBWB on a higher resolution. 

Figure A8: KGE scores for the Nile and Brahmaputra basin for the two different resolution versions of PCR-GLOBWB 
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B. Appendix 2: Supplementary figures 

  

Figure B1: Difference of the average daily precipitation minus evapotranspiration rates as calculated by VIC-EB and VIC-
WB (in mm/day) and averaged for the period 1979-2010. Positive values mean that the average daily precipitation 
minus evapotranspiration is larger in VIC-EB than in VIC-WB and vice versa. Note that this does not show accuracy, only 
the difference between the amount of water available after evapotranspiration for both cells.  

 

Figure B2: Correlation between the monthly averaged precipitation minus evaporation rates of VIC-EB and VIC-WB for 
the period 1979-2010. 
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Figure B3: KGE and correlation scores of soil moisture output of VIC-EB and VIC-WB compared to the output of PCR-GLOBWB. 


