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Abstract

The Fast Exact Euclidean Distance (FEED) transform is generalized
to support intensity values and gray-scale images. The generalized FEED
(¢FEED) class algorithms support both Euclidean and squared Euclidean
distances. The algorithms are tested on datasets by Schouten and van
den Broek and on newly developed datasets. Tests show a O(m x n) time
complexity on squared Euclidean distances and a O(m x n)(m + n) time
complexity on Euclidean distances.

Keywords. (Generalized) Distance transforms, (Squared) Euclidean dis-
tance, Sampled function, Fast Exact Euclidean Distance (FEED), linear,
generalized FEED (gFEED)

1 Introduction

A Distance Transforms (DT) transforms an image or grid to a new image or
grid, called a Distance Map (DM). It is used in image processing and robotics
[13]. It computes the distance of a (specified) set of elements in a grid, to the
closest element from another specified set of elements in the grid. For binary
images, object and background pixels are defined as elements in the grid. The
DT on background pixel p in the image is the distance d to the closest object
pixel ¢ € O:

D(p) = min (d(p,q)), (1)

with distance function d(p,q) often defined as the Euclidean Distance (ED)
being

dEucl (ZE, y) =

2

(i = vi)?, (2)
=0

on n-dimensional tuples z and y. However, other distance functions can be
adopted, like the Manhattan distance (also known as city-block or L; distance)
and the squared Euclidean Distance (ED?), which does not satisfy triangle in-
equality. This paper discusses the ED and the ED?. Further, we limit our work
to squared grids; triangular and hexagonal grids are not discussed.

DT algorithms can be classified in four broad classes [9], based on[4]:



1. Ordered propagation: These algorithms start from object pixels and pro-
gressively determine new distance values to background pixels in order of
increasing distance.[2]

2. Raster scanning: The image is scanned line by line, top to bottom and,
subsequently, in reversed order using 2D masks.[1][11][12]

3. Independent scanning: Fach row and column of the image is processed in-
dependently of each other. Either the rows or the columns can be scanned
first. After the horizontal and vertical scan, the final DT is produced. The
values of the intermediate image cannot be regarded as distances.[5][8]

4. FEED Algorithms: Eq. 1 suggests that background pixels ‘eat’ their min-
imum distance to an object pixel. Instead of this, the object pixels ‘feed’
their distance to the background pixels. The number of background pixels
an object pixel should feed is reduced by various optimization strategies.
[9][10]

Traditionaly, these classes of DTs are limited to binary images; however,
DTs can be generalized to sampled functions [5][7]:

Dy(p) = min (d(p, q) + £(9)), 3)

where f(g) is a function over element ¢, which returns a rational number from Q.
This generalized DTs (gDT) supports gray-scale images and multi-valued grids.
Without this generalization, only the absence or presence of a feature at each
pixel can be specified. The generalization can specify a cost for a feature at each
pixel. Now, the distance transform reflects a combination of distance and feature
costs. Using this approach, one can for instance split an image in two regions,
using two groups of pixels having different ‘strengths’. Each region is influenced
by one of the two pixel groups. The gDT can also be applied as a geodesic
closing or opening operator [3], this is useful for image segmentation and edge-
sensitive smoothing. The gDT has also been used for inference using large
state-space hidden Markov Models, because of the similarity between transition
probabilities and distance functions [6].

In this paper, we introduce the generalized FEED (¢gFEED) algorithm. We
start with a brief introduction of the Fast Exact Euclidean Distance (FEED)
algorithm and its relevant optimizations (Section 2). In Section 3 and 4, gFEED
is introduced for the ED? and ED. Section 5 approaches the performance of the
algorithms in terms of exactness, correctness and time complexity. In Section 6,
gFEED is tested and compared to state of the art algorithms on multiple grids
with different properties. In Section 7, the results of this paper are discussed
and further research is proposed.

2 Principles of FEED

The FEED-algorithm is derived from the inverse definition of the DT (Eq. 1).
Instead of looping through the background pixels to find the minimum distance
to an object pixel, FEED loops through the object pixels and they ‘feed’ their
distance to all background pixels.



Data: O: object pixels, B: background pixels
Result: Distance Map (DM), with distance transform on all background
pixels
Initialize DM,
foreach g € B do
| DM(q) + o0
end
Start DT
foreach g € O do
foreach p € B do
end
end

Algorithm 1: Basic FEED

FEED knows many optimization strategies, needed for runtime reduction.
Here, we discuss the three strategies that are used for gFEED.

The first and easiest strategy is limiting the amount of ‘feeding’ object pixels.
The distance to a pixel within an object is longer than the distance to the closest
borderpixel of that object. Therefore, only border objectpixels B(O) are feeding
their distance to the background pixels.

The second strategy limits the amount of background pixels that an object
pixel should feed. Given a feeding border pixel b and a random object pixel g,
a line between b and ¢ can be drawn. Perpendicular to this line, a bisection line
can be drawn between the two pixels. The pixels on one side of the line are closer
to b and pixels on the other side are closer to ¢q. Therefore, the pixels to be fed
by b are limited to those that are on his side of the bisection line. By drawing
more bisection lines, a complex shape is constructed, which contains the pixels
to be fed by b. For an efficient representation of this shape, the bisection lines
are defined in a new coordinate system ¢ (z,y) = (z — by,y — b,). Now the
feeding pixel b is shifted to the origin: b = (0,0) and ¢ = (¢, — bz, g, — b,). The
bisection line between b and @ is defined by all points p = (x,y) in ¢ having

dEucl (E;ﬁ) - dEucl((L 25)
VO =22+ (b~ 1)? =\/(& — ) + (¢, — v)*
Since b is shifted to the origin, only the position of ¢ should be taken into
account:
Va1 =@ — 2)? + (@, - v)?

2?4y =@+ 2? - 2@ — 24,y + v+ G2 ()
20,7 + 244y = G° + ¢,°.

(4)

If pixel q is selected at random, it is likely not to be the best choice. Every
pixel on the line between b and ¢ is a better choice, since it moves the bisection
line closer to b. Therefore, a better approach for the selection of ¢, is to create
a scan-line (m,n) with greatestCommonDivisor(m,n) = 1 starting in b. Here,
(m,n) can be either random or pre-selected. A bisection line is created with the
first object pixel the line hits. This is done by calculating the smallest integer



k, where k(m,n) is an object pixel. When k(m,n) is outside the image, no
bisection line can be created using (m,n). This process is called line-scanning.

The third strategy simplifies the use of bisection lines. Instead of creat-
ing a complex shape, a bounding box is created around the complex shape.
The rectangular representation can be efficiently reduced by the bisection lines.
However, the bounding box is often larger than the complex shape. Finally, for
each row in the resulting bounding box, the intersections with bisection lines
can be used to determine the pixels to be fed by b. This process is not used on
small bounding boxes; feeding all pixels in the bounding box is computationally
more efficient in this case.

3 Squared Euclidean distance transforms

A gDT differs from how a DT is used. Where a DT only has two non-overlapping
classes with 2 intensities (0 and oo), a gDT could have all values in between
them. Therefore, not every strategy used in FEED is always relevant for gFEED
algorithms.

Border pixel selection is only useful when clustered pixels with the same
intensity occur in the image. An object with varying intensities can feed with
low-intensity elements in its core as well as with high-intensity elements on its
border. Since background pixels (intensity = oo) are not necessarily present in
the image, gFEED algorithms need to be able to calculate the gDT for non-
background pixels as well. In this case, the initial value of a pixel is equal to
the intensity of that pixel.

The most important speed-up of FEED using bisection lines can also be used
in the computation of the gDT using ED. The bisection line in gFEED using
ED? (¢gFEED?) is defined in ¢ as all points p = (x,y), where

dEycr2 (b p) + f(l_)) dEuciz (q p) + f( )
F0) = (@ —2)” + (@ — v)*) + (@),

(2 +y%) + f(b)
Rewriting this equation gives a similar representation as Eq. 5, for a straight
bisection line:

(6)

2Gx + 24,y = &> + @2 — f(0) + £(@), (7)

which is similar to the line FEED uses as bisection line. Note that for f(b) =
f(@) this is equal to normal FEED. Line scanning in the same way as FEED
might not be useful, for the same reason border pixel selection is not always use-
ful. Therefore, two new approaches are suggested besides normal line scanning
and random selection:

Exhaustive line scan Instead of scanning until the first object pixel, all pixels
until the image border are scanned. The best bisection line created is used
to reduce the bounding box. Since ¢ = k(m,n), the bisection line can be

written as , , - )
s+ 2y = G 6~ 0+ S@ «

The best bisection line is bisection line having the lowest right-hand-side
of this equation.



Limited line scan This line scan is the similar to the exhausting line scan;
but, instead of stopping at the border, the amount of scanning steps is
limited. The scan limit can be set by hand, or the limit can be derived
from the currently best known bisection line and the minimum intensity
used in the image.

Using gFEED? triangle inequality does not hold consequently, unexpected
results may appear. For instance, Eq. 7 states that for two points a bisection
line can be drawn. If the ED? between b and ¢ is smaller than the difference
between f(b) and f(q), the bisection line is drawn behind b or g.

4 FEuclidean distance transforms

Although computationally more expensive, using ED over ED? has advantages,
since triangle inequality does not hold for ED?. Therefore, this section will
discus gFEED using ED (gFEED!) instead of ED2. As with gFEED?, more than
two values can occur in gFEED! and consequently, the first object pixel found
on a line scan still does not necessarily give the best bisection line. However,
bisection lines in gFEED! differ from the bi-section lines used in gFEED?2.

In ¢, a point p = (z,y), is on the bisection between b and § if

dpuct(p,0) + f(b) = dpuct(p: @) + f(q)
VA 4 1) =\ (@ — )2 + (@ — )2 + F(@):
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Figure 1: Bisection between points b = (0,0) and ¢ = (50,50) using the eu-
clidean distance.

This equation is not linear and therefore not a bisection line, but a hyperbolic
curve C, as can be seen in Figure la. If f(b) < f(g) the curve is curving towards
b; so, the area under the curve is strictly smaller than the area limited by the
bisection line L. This line is perpendicular to the scanline S and intersects S
and C on their intersection. Using this bisection line instead of the curve is



possible as long as f(b) < f(g). Since for f(q) = f(b) the hyperbola becomes
linear (Figure 1b) and for f(gq) > f(b) the curve is moving towards q.

When calculating the intersection of C' and .S, the hyperbola causes round-
ing problems. Square root evaluation results in non-exact numbers and one
cannot easily guarantee the correctness of the algorithm. Therefore L will be
approximated. For this approximation, an image of g is used: ¢’ = k'(m,n)
and f(¢’) = f(b). This can be achieved by moving ¢ on the scanline over a
distance of f(b) — f(g). The bisection line L’ between ¢’ and b is equal to L.
This approach however can result in k&’ becoming non-integer. To avoid this, &’
is rounded up, which implies that L’ also moves away from b.

This approach ensures that rounding does not imply incorrectness, since the
area limited by L’ is strictly larger than the area limited by C. It also ensures
that point ¢’ is created with f(q’) = f(b). This results in a bisection line of:

267 + 24y = G° + ¢ — f(b) + f(d) (10)

Given that f(b) = f(¢'), Eq. 5 can be used. Like gFEED?, both exhaustive and
limited line scans can be used.

When using the bisection strategy, one might notice that k' can become
less than 0 when f(b) — f(¢§) > Dguea(b,q). Instead of drawing the bisection
line behind b as done in gFEED?, no bisection line is drawn at all. Because of
triangle inequality, every pixel in the image will rather be fed by ¢ than by b.

We say that b is dominated by ¢ if:

f(b) - f(Cj) > Deucl(bv (j) (11)

When scanning along the scan line, a test should be performed whether Eq. 11
holds. If so, b should not feed at all.

5 Results

5.1 Exactness and correctness

In Section 3 and 4, gFEED? and gFEED! are introduced. Since gFEED? starts
with rational numbers and calculations only use division, multiplication, addi-
tion and subtraction, gFEED? does not suffer from rounding problems. Section
3 shows that limiting the bounding box according to Eq. 6, will not result in
‘forgotten’ pixels. Therefore, gFEED? does provide an exact and correct for the
gDT using ED. When using the heuristic limit, a square root is evaluated. This
does not negatively affect the correctness or exactness of the program, since it
can only result in drawing more or less bisection lines.

gFEED! also uses rational number calculation, but it approximates bisection
lines by square root evaluation. This approximation however is rounded towards
the bigger value of k, resulting in correct bisection lines. However, when feeding
a pixel, a distance of f(b)+d(b, q) is fed. Therefore, the correctness and exactness
of gFEED! in pixel ¢ depends on the possibility of determining whether f(b) +
dpuct(b,q) < f(V') + drua (b, q). When approximating the square root in the
ED with an error of e, the DM is also approximated with an error of e. The
same problem of exactness occurs in the basic O(N?) algorithm.



5.2 Theoretical time complexity

gFEED? using the exhaustive line scan method has a time complexity of ((m x
n) x (m+n)) on images of size m x n, since for each pixel (m x n) an exhaustive
scan in x- and y-direction is performed. The time complexity of the (heuristic)
limited line is harder to prove and will be discussed in Section 5.3, from an
experimental point of view.

gFEED! using the exhaustive line scan method has a time complexity of
Q((m x n) x (m + n)), because it also uses the exhaustive scan in x- and y-
direction. Heuristic and limited line scans have a worst case time complexity
bound from below by Q((m x n) x (m +n)). This worst case scenario is based
on an image having

1. values of pixels in rows and columns in decreasing order;
2. a difference in value between adjacent pixels less than 1.

Given this n x m image, for pixel p = (z,y), the image is scanned in x-direction
for a distance of x — 1 and in y-direction for a distance of y — 1, since no pixel ¢
will be found having f(q) < f(p). In opposite x- and y-direction, no domination
occurs, which is ensured by property 1 of the image. For all pixels the amount
of scanned pixels is given by Y77 (32" (i + ) = (1 4+ m)(1 + n)(m + n),
which results in the time complexity of Q((n x m) x (n4+m)). The average time
complexity for gFEED on ED will be experimentally tested in Section 5.3.

5.3 Experimental time complexity

The time complexity of FEED has been shown to be linear in the amount of
image pixels [9], though no formal proof has been given. gFEED? has been
proven to have a time complexity of Q((m x n) x (m + n)), when using the
exhaustive line scan. For the complexity of the limited line scan and the heuristic
line scan, an experimental approach is used. gFEED? using the exhaustive,
limited and heuristic line scan has been tested on a dataset of 4000 images. The
square images have 400 different sizes between 100 x 100 and 400 x 400. For
each size, 5 images with random dots are 5 images containing gray-scale objects
(rectangles and ellipses) are created. Figure 2 shows the testing results. The
time of the exhaustive line scan grows fast on bigger images, in contrast to the
limited and heuristic line scans. Figure 2a suggest a linear time complexity for
the limited and heuristic lines scans. Figure 2b confirms this and shows that
the exhaustive line scan grows faster than linear. The 1-limited, 3-limited and
heuristic line scan have a time/pixel ratio of respectively 0.0029, 0.0018 and
0.0021 milliseconds per pixel. Standard deviations of these three line scans are
below 1073.

¢gFEED! using the exhaustive, limited and heuristic line scan has also been
tested on the images in the 4000-image dataset. Because gFEED! is slower than
gFEED?, fewer images from the dataset have been used. The results of this tests
are shown in Figure 3. The curve in Figure 3a shows a more than linear time
growth. Section 5.2 shows how the worst case scenario of is bounded below
by O(m x n)(m + n). When scaling Figure 3a by (m x n)(m + n), a constant
factor appears, as can be seen in Figure 3b. Therefore, we can conclude that
the O(m x n)(m + n) complexity also occurs in the average case.
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6 Benchmark

In this section, the different line scans of gFEED! and gFEED? are experimen-
tally compared. If possible, state of the art algorithms are included for reference.
For the comparison, two datasets are used.

The first dataset is generated by Schouten en Van den Broek, and consists
of four sub-sets of 32 black and white object-like images, having increasing
densities, the size of all images is 1000x1000.

The second dataset is a new generated dataset consisting of 8 subsets with
different properties. The first subset consists of 21x20 random images generated
with densities between 0 and 100 (stepsize = 5). Each colored pixel has a random
gray color. The second, third and fourth subset consist of random (open and/or
filled) rectangles and ellipses having random rotations. The last four subsets fill
rectangles and ellipses with a linear or radial gradient. Two subsets have noise
in the image. All images have a resolution of 500x500 and the datasets consist
of 100 images with increasing amount of objects or density.

¢FEED algorithms are executed with line scans in directions (m,n) with
|m| € {1,3,4},|n| € {1,3,4} and greatestCommonDivisor(m,n) = 1. Exhaus-
tive, limited and heuristic line scans are used in comparing gFEED versions.

6.1 Squared Euclidean Distance

Table 1: Timing results of the GDT on squared Euclidean Distances

Dataset Specification Exh. Limit=1  Heur. LLT PE
Random dots 500x500 5880,3 3679,8 612,8 83,1 86,1
Filled 500x500 2017,5 697,5 392.5 64,2 65,1
Open 500x500 1279,9 562,1 333,9 68,1 68,4
Filled/Open 500x500 1899,9 7214 427.,6 73,4 69,3
Lin. Gradient 500x500 2166,3 7442 426,1 67,9 71,6
Rad. Gradient 500x500 2258,9 753,9 4270 71,5 68,4
Lin. Grad. Noise 500x500 44779 1128,2 543,5 54,8 51,9
Rad. Grad. Noise 500x500 38454 1037,4 494,3 61,1 53,2
Objects 1000x1000 29681,0 7260,0 1862,0 339,56 343,1
Objects (r)oughened 1000x1000 29988,2 7386,8 1850,3 346,1 357,6
Objects (o)verlap-removal 1000x1000 22539,3 5620,8 1788,3 340,5 350,4
Objects o-r 1000x1000 20837,7 5283,3 1624,0 321,2 334,1

Average timing results (in ms) of three gFEED? algorithms and two state of the art
algorithms.

For time comparison on gFEED?, two state of the art algorithms as pro-
posed by Lucet [7] and by Felzenszwalb and Huttenlocher[5] are included in
the timing of the algorithms. Lucet’s algorithm is based on the computation
of the Linear-time Legendre Transform (LLT) and Felzenszwalb’s algorithm is
based on the computation of the Parabolic Envelope (PE). Both algorithms are
independent scanning algorithms and compute the exact DM in linear time.

The timing results of gFEED? with exhaustive, limited and heuristic line
scans, compared to the timing results of both LLT and PE are shown in Table
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1. gFEED? using the heuristic line scan is always by far the fastest gFEED?
algorithm. The heuristic scan minimizes the bounding box while also minimizing
the line scan, therefore it successfully combines the advantages of the limited
and exhaustive line scan. Although the heuristic line scan calculates the DM
in less than a second, the LLT and PE algorithm are a factor 6 faster than
gFEED?, this factor is slightly lower in the 1000x1000 images.

The results show that in contrast to FEED, gFEED? is slower than LLT
and PE. This difference can be attributed to the difference between FEED vs.
gFEED? and LLT/PE on binary images vs. LLT/PE on gray-scale images.
LLT and PE on binary images are not optimized for binary images, but are
equal to LLT and PE on gray-scale images (except the final square root is not
taken). Therefore, the speed of those algorithms is not negatively influenced
when using them on the gDT. gFEED? algorithms do differ from the FEED
algorithms. FEED algorithms are optimized for binary images: non-border
pixels are ignored and line scans are limited to the first object pixel it hits. The
gFEED? algorithms drop some of this optimizations (border pixel selection)
or change the way it is computed (heuristic or limited line scans). Since less
optimizations are used in gFEED! and others are computed in different (slower)
ways, gFEED! is slower than FEED, LLT and PE.

Another interesting observation is the relatively slow performance of gFEED?
on the random dots images. The same is observed when noise is added on the
gradient images. The lack of bigger objects with one intensity, also results in
less elimination of their non-border pixels.

The three line scan options are also compared according to their behavior on
different object pixel densities. For testing, the ‘Random dots’ dataset is used
and results are plotted in figure 4. The heuristic line scan is not affected by the
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Figure 4: Time behavior of gFEED-ED? on changing object pixel densities
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object pixel density of the image and the limited line scan is slightly affected by
the object pixel density. The exhaustive line scan, however is clearly influenced
by the object pixel density. Because the exhaustive line scan performs a scan
of O(m + n) for each object pixel, the amount of object pixels have a bigger
influence on the time than they do on the limited and heuristic line scan.

6.2 FEuclidean Distance

gFEED! has also been tested on the datasets described above. The results of
this tests are shown in Table 2.

Table 2: Timing results of the GDT on Euclidean distances

Dataset Exh. Limit=1  Heur.
Random dots 6977,8 41242  3936,3
Filled 32499 3507,7 3138,5
Open 35254 3700,5 3370,6
Filled/Open 3398,5 3550,8 3311,1
Lin. Gradient 3173.,0 3273.3  3067,4
Rad. Gradient 3253,2 29823 2982.,6
Lin. Grad. Noise 3699.4 3780,9 3645,7
Rad. Grad. Noise 3834.,5 3717,5  3649.,4
Objects 37048 15550 1664,0
Objects (r)oughened 38152,9 1575,3 17597
Objects (o)verlap-removal | 27832,6 1593,8 1652,5
Objects o-r 25762,8 1464,0 1452,5

Average timing results (in ms) of three gFEED! algorithms.

This table shows that none of the three line scans does outperform the others.
The exhaustive line scan is never the fastest algorithm and on the four black-and
white images it is a lot slower than the limited and heuristic line scan. Because
each object pixel has the same intensity, heuristic and limited line scans stop at
the first object pixel found, while the exhaustive line scan continues. Therefore,
using the exhaustive line scan is not recommended. The times of the limited and
heuristic line scan are almost identical, this is caused by the amount of object
pixels both algorithms feed. For example, on the ‘Open’ dataset, the limited
line scan algorithm performs about 8000 more feeds on 100 images, than the
heuristic line scan algorithm does. This small difference is also observed in other
datasets.

7 Discussion

This paper introduced FEED-class algorithms for computation of the gDT. The
gDT allows computation over gray-scale images. These FEED-class algorithms
support GDTs on both ED and ED2. gFEED? computes the gDT exact and
correct. Using limited or heuristic line scans, gFEED? shows a linear time
complexity. LLT and PE however outperform gFEED?2.

For gFEED!, the computation suffers from the same exactness problem as
the naive quadratic algorithm does. However, we showed that gFEED! has a

12



O(mxn)(m+n) time complexity instead of the naive O(m xn)? time complexity.
This complexity is the equal for exhaustive, limited and heuristic line scans. In
contrast to gFEED?, gFEED! satisfies triangle inequality, this results in more
intuitive results.

In the future, the speed of the gFEED might be increased by a better ap-
proximation of the bisection curve. Also, quadrant search is not included in this
research, while it might be worthwhile for the computation in gFEED?. New
options to create bisection lines (i.e. by selecting random low intensity pixels)
can also be researched.
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Appendices

A Exactness of Generalized Distance Transforms
using Euclidean Distances

Suppose pixel p is fed by ¢ with value f(q) + dguci(p,q). This is stored as a
tuple (n,m) = (f(q),dpua(p,q)?), so no value is rounded. Subsequently pixel
q' starts feeding and feeds pixel p with (n/,m’) = (f(¢'), dguc(p, ¢')?) iff

f(q) + dEucl (pa Q) > f(ql) + dEucl (p7 q/)

12
n4+vVm>n +vm, (12)

which can be calculated as follows:
e if n >n' and m > m’ then ¢ should update
e if n” > n and m’ > m then ¢’ should not update.

In all other cases, the calculation is less straightforward. The intuitive so-
lution is to evaluate y/m and vm/ , untill a difference occurs. Then, no two
tuples A and B should be evaluated for which holds:

A= (n,m)
B=(n,m)
n' #n (13)
m # m’
n4+vm=n +vVm'.

If no such tuples A and B exist, the evaluation is always a finite process. If
those tuples exist, they should be identified before evaluation.

Blomer [1] proves that for n,m,n’ and m’ being integer, is is possible to

determine whether
Vn24+vm—Vn'?—vVm' =0 (14)

with probability % To my knowledge, no better algorithms exist. Hence, using
current knowledge, both the standard GDT-ED and GDT-ED using FEED can
only be approximated by evaluating the square root in ED-calculation.
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B Implementation and experimentation

B.1 Introduction

This document gives an overview about what I have implemented and tested in
the implementation. This implementation results are not important enough to
be part of the paper. Instead, the work is documented here. In subsection 2,
the implementations of gDT’s using squared Euclidean Distances is discussed on
four algorithms. In subsection 3, the implementations of gDT’s using Euclidean
Distances is discussed on two algorithms. subsection 4 discusses the generation
of different types of test images.

B.2 Squared Euclidean Distance
B.2.1 Naive approach

The naive approach uses the algorithm based on the inverse definition for com-
puting distance transform. For every object pixel, all background pixels are fed
with the squared Euclidean Distance between them plus the value of the object
pixel.

B.2.2 gFEED

gFEED is build on a n-dimensional grid framework, used for n-dimensional
FEED. Since gFEED is only build for 2D images, the 2d-grid is changed to an
2-dimensional array before applying gFEED. After applying gFEED, the data
is again changed to the original n-dimensional grid framework. Both operations
cost O(n) time and are not included in timing experiments.

For gFEED on ED?2, three kinds of line scans are implemented:

1. Exhaustive line scan: This line scan checks every pixel from starting
pixel b to the border and picks the object pixel § which reduces the bound-
ing box the most. This pixel is identified as the pixel having the lowest
value for

(km)® + (kn)* + £(@) — f(b) (15)
k

2. Limited line scan: This line scan stops scanning when either the image
border is found, or the limit [ of found object pixels is exceeded. When an
object pixel is scanned, its bisubsection line is compared to the currently
best known bisubsection line, using Eq. 15. Only the best of the two
bisubsection lines is stored for comparison.

3. Heuristic limited line scan: This line scan on through points k(m, n)
stops scanning when the either the image border is found, or the limit
k exceeds a certain limit [. However, [ is not a fixed variable, but is
updated using the best known bisubsection line and the minimum value
for (@) = fmin(@). Given the best bisubsection line with a value x in Eq.
15, a better bisubsection line by § = k(m,n) has
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(mm2+wm2+ﬂ@—f@><x
k (16)
(@) = frmin(Q)-

The best bisubsection line has

2+ V@ 5w — A fmin(@) — F(0))(m? + n?)
ks 2(m? + n?)

(17)

The maximum value of k is used to update the value of [.

All line-scans as described above are in directions (m,n) with (|m],|n|) €

{(1,1),(1,2), (2, 1)}

Initially, bounding boxes are created by scanning along the lines (0,1), (1,0), (-1, 0)
and (0,—1). Using one of the line scanning methods. These lines create two
horizontal and two vertical bisubsection lines, together this forms a bounding
box. In FEED, only object pixels that do not have adjacent object pixels in
horizontal and vertical direction, do have an initial bounding box covering a
part of all quadrants. In gFEED, more object pixels do have this property.
Therefore, an option is implemented, to create 4 bounding boxes. Each quad-
rant has its own bounding box, this results in more bounding boxes. However,
this also increases the chance of one bounding box being reduced. Tests showed
that this approach did not increase the speed of the algorithm, therefore it is
not discussed in the paper.

A bounding box is reduced using the bisubsection lines. When using ED?,
bisubsection lines can lay behind the pixel. Therefore, the direction of reduction
is important. This direction is determined using the scan line (m,n).

Verification of the implementation of the GDT-ED? using gFEED is done
by comparison with the naive version of the GDT-ED?2.

B.2.3 PE

For testing and experimenting, another GDT-ED? algorithm is implemented.
This algorithm is developed by Felzenzswalb and Huttenlocher. Its implemen-
tation is done using the pseudocode in [1]. Verification of this implementation
is done by comparison with gFEED and by code comparison on the C++ ver-
sion of the authors. The algorithm makes use of an horizontal and vertical pass
and calculates the squared euclidean distance in one direction using Parabolic
Envelopes (PE). We will refer to this algorithm as the PE-algorithm.

B.2.4 LLT

For testing and experimenting, the LLT algorithm as introduced by Lucet [2] is
implemented. According to his paper, this algorithm would be faster than PE.
LLT is based on the Linear-time Legendre Transform. When implementing LLT
in C#; Lucet’s paper, his implementation in SciLab and an implementation by
Schouten and Van den Broek (S&B) were used as reference. My implementa-
tion is based on S&B. The division by two was eliminated and moved to the
computation of the conjungate and the lower hull. However, S&Bs code did
only support zero and infinity values, therefore, the code is changed to achieve
this. The implementation is verified by comparison with PE.
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B.3 Euclidean Distance
B.3.1 Naive approach

The naive approach uses the algorithm based on the inverse definition for com-
puting distance transform. For every object pixel, all background pixels are fed
with the Euclidean Distance between them plus the value of the object pixel.

B.3.2 gFEED

gFEED on ED is also build on the n-dimensional grid framework. Conversion
to 2D arrays and back are not included in timing experiments. For gFEED on
ED, three kinds of line scans are implemented:

e Exhaustive line scan: This line scan checks every pixel from starting
pixel b to the border and picks the object pixel ¢, having f(q) < f(b)
which reduces the bounding box the most. The bounding box is reduced
by a bisubsection line between b and g. An image ¢’ of G is created with
¢ = k'(m,n) and f(q’) = f(b). The best bisubsection line is created by g
having the lowest value for %'.

e Limited line scan: This line scan checks a limited amount [ of object
pixels on the scanline having f(g) < f(b). If less than [ object pixels exist
on the scanline, the line scan stops at the image border.

e Heuristic line scan: The heuristic line scan is also limited by limit [.
This limit is not fixed, but updated when a better bisubsection line is
found. Given the minimum value f,,;, of an object pixel and pixel § =
k(m,n) creating the current best bisubsection line, a better bisubsection
line can only be drawn by pixels on the scanline not being farther than
f(@) = fmin from f(G). Therefore, [ is updated to

(f(q_) B fmin)2
m?2 + n?

The scanline through points k(m, n) is now limited to k <.

+ k. (18)

All line-scans as described above are in directions (m,n) with (|m],|n|) €

{(1,1),(1,2), (2, 1)}

Initially, bounding boxes are created by scanning along the lines (0,1), (1,0), (-1, 0)
and (0,—1). Using one of the line scanning methods. These lines create two
horizontal and two vertical bisubsection lines, together this forms a bounding
box. In FEED, only object pixels that do not have adjacent object pixels in
horizontal and vertical direction, do have an initial bounding box covering a
part of all quadrants. In gFEED, more object pixels do have this property.
Therefore, an option is implemented, to create 4 bounding boxes. Each quad-
rant has its own bounding box, this results in more bounding boxes. However,
this also increases the chance of one bounding box being reduced. Tests showed
that this approach did not increase the speed of the algorithm, therefore it is
not discussed in the paper.

Verification of the implementation of the GDT-ED using gFEED is done by
comparison with the naive version of the GDT-ED.
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B.4 Dataset Generation

Multiple types of datasets are generated, each dataset will be covered in a
subsubsection below. Besides this generated datasets, some existing datasets
will be used as well.

B.4.1 Random noise images

Datasets with random points with random intensities are generated by loop-
ing through the pixels and filling them with a random gray color with a give
probability p. This results in images with a density of approximately p.

B.4.2 Random filled Objects

This Algorithm generates an image with random filled rectangles and ellipses.
The size and amount of ellipses and rectangles is determined by user input.
The rectangles and ellipses are fully filled and have a random orientation and
gray-value.

B.4.3 Random open Objects

This Algorithm generates an image with random open rectangles and ellipses.
The size and amount of ellipses and rectangles is determined by user input. The
rectangles and ellipses have a random orientation and gray-value.

B.4.4 Random open and filled Objects

This Algorithm generates an image with random open and filled rectangles and
ellipses. The size and amount of ellipses and rectangles is determined by user
input. The rectangles and ellipses have a random orientation and gray-value.

B.4.5 Gradient objects

This algorithm generates an image with random filled rectangles and ellipses.
The objects are filled with a random grayscale gradient (linear or radial). The
gradient images can be generated with or without extra noise.
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